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A CENTRAL-DIFFERENCE SCHEME FOR A PURE STREAM
FUNCTION FORMULATION OF INCOMPRESSIBLE
VISCOUS FLOW*

RAZ KUPFERMANT

Abstract. We present a numerical scheme for incompressible viscous flow, formulated as an
equation for the stream function. The pure stream function formulation obviates the difficulty
associated with vorticity boundary conditions. The resulting biharmonic equation is discretized
with a compact scheme and solved with an algebraic multigrid solver. The advection of vorticity is
implemented with a high-resolution central scheme that remains stable and accurate in the presence
of large gradients. The accuracy and robustness of the method are demonstrated for high Reynolds
number flows in a lid-driven cavity.
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1. Introduction. The vorticity formulation of the Navier—Stokes equations is a
classical starting point for approximation methods, due to the distinguished role of
vorticity in high Reynolds number flows. The difficulty with a vorticity formulation is
the lack of natural boundary conditions; the no-slip boundary conditions do not have
a simple counterpart in terms of vorticity. In the context of computational methods,
the problem of vorticity boundary conditions has a long history, dating back to the
30’s [22]; it has received much attention within the context of vortex methods [6], and
there exists a substantial amount of recent work (see, e.g., Goodrich and Soh [11],
Auteri and Quartapelle [3], Anderson and Reider [2], and E and Liu [8, 7]).

Recently, Ben-Artzi, Fishelov, and Trachtenberg have developed a method of
vorticity /stream function dynamics [4]. This method uses explicitly the space of
functions in which the dynamics take place. Specifically, the stream function dynamics
take place in the Sobolev space HZ, whereas the vorticity field resides in the image
of HZ under the action of the Laplace operator. At the end of every time step a
provisional solution is projected back onto the right functional space, in analogy with
the projection onto the space of divergence-free velocity fields in the primitive-variable
formalism [5]. As a result, no reference to vorticity boundary conditions is needed, and
instead, natural boundary conditions are imposed (as an integral part of the dynamics
space) on the stream function. The scheme we present in this paper belongs to this
category. Like the scheme in [4], it evolves the stream function within the above-
mentioned functional space, but rather than using a “predictor-corrector” approach,
it does it via implicit time stepping. In both cases, the computational complexity is
dominated by the solution of a linear system of biharmonic type.

The advection of vorticity has been implemented using the Kurganov—Tadmor
(KT) scheme [16], which was developed in the context of hyperbolic conservation laws;
this scheme has been shown to remain accurate and robust in the presence of large
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2 RAZ KUPFERMAN

gradients; at the same time, it shares the relative simplicity of the central differencing
framework. In addition, the KT scheme has a well-behaved semidiscrete limit, and as
a result, time stepping is not tied to the spatial discretization (except for the standard
stability requirements). The independence of the spatial and temporal discretizations
adds a degree of modularity that may greatly simplify subsequent adaptations and
improvements.

The biharmonic viscous term is discretized by means of a compact stencil (see
[1]), which simplifies the treatment of boundary conditions. The fourth-order elliptic
equation is then solved with an algebraic multigrid (AMG) solver [13]. This technique
can be adapted with little modification to more complicated systems and geometries.

In section 2 we present the flow equations in vorticity-stream function formula-
tion and describe the difficulty associated with boundary conditions. In section 3 we
investigate a linear model equation, Uz .t — Ugrrr = 0, inspired by the stream func-
tion formulation of the Navier—Stokes equations. This system is simple enough to be
completely tractable but is still rich enough to capture the issue of boundary condi-
tions. We prove the convergence of an implicit scheme that uses a compact stencil.
The convergence is with respect to the H2 norm, which is the appropriate norm for
a variable analogous to the stream function. In section 4 we extend the scheme of
section 3 to the Navier—Stokes equations in a two-dimensional bounded domain. In
section 5 we present numerical results for a classical benchmark problem: flow in a
two-dimensional lid-driven cavity. The method is found to be accurate and robust
up to a regime of high Reynolds numbers, in which the flow becomes highly unstable
and generates convoluted vorticity patterns. The scheme seems to be able to resolve
vorticity patterns almost down to the scale of a single mesh size.

2. The vorticity-stream function formulation. We consider incompressible
viscous flow in a two-dimensional domain. The motion of the fluid is governed by the
Navier—Stokes equations,

Ju
— -Viu=-V A
2.1) 5 +(u-V)u p+ vAu,
V- -u=0,

where u = u(x,t) = (u(x,t),v(x,t)) is the Eulerian velocity field, p = p(x,t) is the
pressure, and v is the kinematic viscosity. In a bounded domain 2 enclosed by rigid
walls, the impermeability of the walls and the no-slip condition imply

(2.2) u(x,t) = U(x, t), x€oN, t>0,

where U is the velocity of the wall.
In terms of the vorticity field w = (V x u), = 9,v — Oyu, the flow equations read

0
(2.3) a—‘;} + (u- Vw = vAw,
where u is obtained from w through the div-curl relations
V.-u=0,
(2.4) N
(Vxu) 2=uw.

The divergence condition implies that the flow field is derivable from a scalar stream
function, ¥(x,t),
o 31/})

—vly = (22 2%
(2.5) u=V 1/1( 9y’ Or
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which, substituted into the curl condition, yields the Poisson equation
(2.6) (Vxu)-z2=AY=w.

Finally, the boundary conditions (2.2) translate into boundary conditions for the
stream function

(2.7) Viy=U, xeco.

The set of equations (2.3), (2.5), and (2.6), together with the boundary conditions,
(2.7), is known as the vorticity-stream function formulation of the Navier—Stokes
equations.

The classical difficulty with the vorticity-stream function formulation is the im-
proper partition of boundary conditions. The presence of a dissipative term in (2.3)
requires the specification of boundary conditions for the vorticity, but these are not
prescribed explicitly. Vorticity boundary conditions are extremely important from a
physical point of view as they represent the mechanism of vorticity generation at the
boundary. On the other hand, the Poisson equation (2.6) is overdetermined by both
Neumann and Dirichlet boundary conditions (2.7).

This difficulty is immediately removed if the vorticity equation (2.3) is interpreted
instead as an equation for the stream function

(2.8) %Au} + [(VH/J) : V] A = VA2,

This equation contains a biharmonic operator so that the boundary conditions (2.7)
are the natural ones with no over- or underdetermination.

3. A linear model equation. The issue of vorticity boundary conditions can
be illustrated by considering a simple model equation inspired by (2.8): a fourth-order
linear equation for a one-dimensional scalar field u(zx,t),

Ugat = Ugzza, HARS (01 1)7
u(0,t) = u(l,£) =0,
uz(0,t) = ug(1,t) =0,

u(z,0) = ugp(x),

(3.1)

where subscripts denote differentiation. Here u plays a role analogous to the stream
function, and wu,, is the analogue of vorticity. We consider homogeneous boundary
conditions; inhomogeneous ones are readily reduced to the homogeneous case by a
standard change of variables [12].

Equation (3.1) is solvable by standard techniques, and its solution can be repre-
sented as a Fourier sine-series

o0 t )
u(x,t) = Zaq sin(mqx) et +/ bi(s) Zsin(wqx) o (t=5) g
qg=1 0 a=1
(3.2) . .
+ / ba(s) (—=1)7sin(mqx) 37“2‘12(’5*5) ds,
0

q=1

where

1
ag = / up(z) sin(mwqx) dx
0
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and by (t),b2(t) are functions to be determined. The sine-series (3.2) automatically
satisfies the Dirichlet boundary conditions u(0,t) = u(1,t) = 0. The role of the func-
tions by (t),b2(¢) is to enforce the Neumann boundary conditions; they are determined
implicitly by the conditions u,(0,t) = u;(1,t) = 0. Note that

lim Zsin(ﬁqm) e =9 = §(x),
q=1

s—t

o0
. . —72¢%(t—s
ll_)H% qZZl(—l)q sin(mqz)e™™ ) = §(1 — ),
which means that by (t),b2(t) can be regarded as the strength of point sources that are
concentrated on the left and right boundary, respectively; they play a role analogous
to vortex sheets in fluid mechanics.

The solution (3.2) can also be expanded in eigenfunctions,

u(z,t) = Z aqgoq(m)eﬂ‘lt,
q

where the index ¢ runs over a discrete set of wavenumbers, and Q, = —n2¢? is the
corresponding amplification rate. The eigenfunctions, ¢,, divide into two families:

(3.3) (@) = [1 — cos(rqa)],

where ¢ = 2,4,..., and

(3.4) go,(f) (x) = (2/mq) sin(wqx) — cos(mgx) — 2z + 1,
where the wavenumbers ¢ are solutions of the transcendental equation

t mq _ Tq
an == = -

Such wavenumbers are typical to a system with mixed boundary conditions [12]. The
eigensolutions 90((11) correspond to the case where the boundary terms are identically
zero: by(t) = ba(t) = 0 (no generation of “vortex sheets”).

A natural approach in approximating (3.1) is to view it as an implicit equation for
u¢(x, t); this is analogous to the choice of stream function variables in fluid mechanics.
For simplicity, it is sufficient to consider schemes that are first-order in time; the
generalization to higher-order is straightforward. For example, a backward-Euler
scheme reads

ug;‘rl — uga: _ . n+1

k = Uggrz>

where k = "1 — ¢" is the time step interval.

We discretize the unit segment using a regular mesh of N+ 1 points, with the first
and last points coinciding with the left and right boundaries, g = 0, zxy = 1; the mesh
spacing is h = 1/N. The standard discretizations of second and fourth derivatives

involve stencils of three and five points, respectively, which implies that boundary
conditions need to be prescribed at two points near each boundary. Alternatively, it
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is possible to use a compact 3-point stencil by introducing an auxiliary field v that
approximates u,. Following [1], we propose the following scheme:

D° (v — o) = 120 (D% — DT D)

3.5 1
(35) DOultt = <1 + 6h2D+D> ot

where D° D* are the standard central-, forward-, and backward-difference operators,
A =k/h? and up = uy = v9 = vy = 0 at the boundary points. Equation (3.5)
is a discrete differential-algebraic system; the first equation is an evolution equation,
whereas the second is a constraint.

To prove that the numerical scheme (3.5) is convergent we first analyze its con-
sistency and stability properties. Convergence follows from a generalization of Lax’s
theorem.

LEMMA 3.1. The numerical scheme (3.5) is consistent with truncation error
T =0(h% k).

Proof. Let u(x,t) be a smooth solution of Uzt = Ugzss, and let the discrete
auxiliary field v;(t) be defined implicitly by

1
D u(z;,t) = <I + 6h2D+D> v;(t)
with vo(t) = vy (t) = 0. A Taylor expansion gives
1
(1+ §2DD7) fualey) = 0y(0] = O(n)
from which we conclude that

(3.6) v;(t) = ug(x;,t) + O(h?).

Substituting (3.6) into the first equation in (3.5) and performing another Taylor ex-
pansion, we finally obtain

D° [v;(t + k) — v;(t)] = 12X [D%;(t + k) — DT D~ u(x;, t + k)] + k7]
with 77" = O(h?, k). 0
LEMMA 3.2. The numerical scheme (3.5) is unconditionally stable.

Proof. Tt is possible to construct two families of eigenvectors analogous to (3.3),
(3.4) that span the space of solutions of (3.5). Specifically,

uj = Zaqgéq(xj) Qg,
q
where the eigenvectors that correspond to (3.3) are
(3.7) P (25) = 1 = cos(mqa;)
for ¢ =2,4,...,N — 1, and the eigenvectors that correspond to (3.4) are

(3.8) 927((12)(%») = (2/A,) sin(mqz;) — cos(mqz;) — 2x; + 1
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with
g _ Aq 4 - 3 sin(wqh)
2 )

tan — = — O SER)
) 97 R2 + cos(nqh)]

The amplification factor Qq is given in both cases by

4k mqgh\ !
Qq: <1+h2tan2 2> .

It is readily verified that (3.7) and (3.8) form a total of n — 1 eigenvectors and
thus span the space of solutions. For all values of ¢ the amplification factor || is
strictly less than one, from which follows that all eigenmodes decay and the scheme is
stable. a

THEOREM 3.3. The numerical scheme (3.5) is convergent.

Proof. The proof is essentially a generalization of Lax’s theorem. It relies on
the facts that the truncation errors are small (consistency), and that there is no
mechanism that amplifies errors (stability).

Let u(z,t) be a smooth solution of (3.1), let u? be a numerical solution of (3.5),
and let e = u(jh,nk) — u? be the global error. By virtue of Lemma 3.1 and the

J
linearity of (3.5), we obtain the equation for the error

D° (witt —wj) = 12X\ (D wj*! — DY Dl + k77,

3.9 1
(3.9) DOeitt = <I+ 6h2D+D—> wit,

where wj is the auxiliary field associated with €.
We next expand the error in the discrete eigenmodes (3.7), (3.8),

(3.10) e = ardy(x;).
q
Substitution of (3.10) into the auxiliary equation in (3.9) gives

(3.11) wi =" al(x;),

where
12)51)(;3]-) = Aq sin(wqmj),
,(;((12) (.23]) =2 cos(?'rq.rj) + A4, Sin(ﬂ-ql‘j) -2

are the two families of functions that correspond to @Sf) and 4,55]2). Noting that

1
2
A s 3 cos*(=mgh)
hdy _sin(rgh) DYD~ G, (x;) = 2 DYD™g,(x;),

1 1
Sinz(iwqh) 142 COSQ(gTK’qh)

Doiq(xj) =

we substitute (3.11) into the first equation in (3.9) and obtain after some basic ma-
nipulations

(812) > (9%ag —a) DOy () = k), j=1,2,... ,N—-1.

q
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Now let x,(x;) = D° wq(xj) these functions span the space of grid functions
defined over the N — 1 inner points z;, j =1,2,...,N — 1. Let (f,g) = Zj+1 hf;ig;
denote the discrete inner product, and let B be the (N — 1) x (N — 1) matrix whose
entries are By ¢ = (Xq: X¢')-

To obtain an explicit recursion relation for the oy, we take the scalar product of
(3.12) with x, and invert by multiplying on the left by B~1; thus
antlt = Qa"—i—kﬂ ZB (Xq»T™"),

q

which by the discrete Duhammel principle gives

n—1
(3.13) ay =Qrag+k Y QY B L (xe, )
r=0 q’

The first term of the right-hand side represents the amplification of the initial error,
whereas the second represents the accumulation of the local truncation errors.

The vector which we are going to estimate is D'w™ = 37 ayx,, which is equiva-
lent to the second derivative of the error e”. If HDOw"H2 — 0 as h,k — 0, then the
scheme converges in the H? norm, which is indeed the relevant norm for u [4]. Using
(3.13), the Cauchy-Schwarz inequality, and the fact that 0 < €, < 1, we find

’DO ”H2 Za qu/a,

q,q’

< || DO |5 + 2kn (| DO, 7], + (kn)? |I7l3,

where ||7]|, = max, ||7"||,. We need only the initial conditions to converge at least as
O(h?) to conclude with the aid of Lemma 3.2 that the scheme converges in H?, and
that the order of convergence is O(h?, k). ad

4. The numerical scheme. Inspired by the model equation presented in the
previous section, we construct an approximation scheme for (2.8). The temporal
and the spatial discretizations are considered separately; this is legitimate when the
scheme has a well-behaved semidiscrete limit [16].

4.1. Temporal discretization. Let 1™ denote the stream function at time ¢".
We approximate (2.8) by a discretization that is second-order in time:

<A L A2> Pt = <A + L A2> P — L [(u- V)w]”
1) 4 4 2

1 1 1
(A - iuk A2> Pt = (A + §Vk AZ) P —k [(u- V)w]nJré ;

that is, we use Crank—Nicholson for the viscous term and a midpoint rule for the
advection term.

4.2. Spatial discretization. We discretize the system on a rectangular grid
with fixed mesh spacing, Ax = Ay = h; a generalization to more complicated metrics
will be presented elsewhere. The examples below are for a square domain, where the
outermost grid points coincide with the boundaries of the system. We assume that
at the beginning of each time step we possess second-order approximations for ¢ and
its first derivatives—the two velocity components—at the grid points (x;,y;), which
we denote by ; ;, u; j, and v; ;, respectively.



8 RAZ KUPFERMAN

4.2.1. The advection term. We start with the advection term, which describes
the conservative transport of vorticity along streamlines. Due to the incompressibility
of the flow, it can be written in an equivalent conservative form,

(u-V)w=V"-(wu),

where the vector field wu is the vorticity flux.

The numerical analysis of nonlinear advection has been studied extensively in the
context of hyperbolic systems of conservation laws (see, e.g., [10, 17]). Considerable
effort has been devoted to the construction of so-called high-resolution schemes, which
are designed to capture the structure of singularities, such as shocks and rarefaction
waves. Although incompressible flows do not form shocks, experience shows that a
careful treatment of the advection is still of primary importance in the presence of
sharp gradients. Indeed, sharp gradients seem as discontinuities on the scale of a mesh
spacing.

Our discretization of the advection term is based on the central-difference scheme
introduced by Kurganov and Tadmor (KT) [16]. Central schemes tend to be simpler
than their upwind counterpart and can more easily be used and adapted as “black
box” solvers. The KT scheme was found to introduce less numerical viscosity than
earlier central schemes [19, 14]; its other advantage is that it can be brought to a simple
semidiscrete formulation by letting the time step k tend to zero; thus it is possible
to consider the spatial discretization independently from the temporal discretization,
which can then be implemented by any standard ODE solver.

Conservative schemes are based on an integral representation of the conserva-
tion law; the discrete variables represent averages of the conserved quantities—here
vorticity—over control cells. Due to conservation, the rate of change of the mean
vorticity equals to the integral of the vorticity flux over the cell’s boundaries. We
take for control cells squares centered at the grid points. Every time step consists of
the following steps. (i) Reconstruction of point values from the given cell averages;
for a second-order scheme the reconstructed field is piecewise-linear. (ii) Evaluation
of the fluxes at the cell’s boundaries; because the reconstructed solution might be
discontinuous, a careful treatment is necessary. The KT scheme introduces at the
cells’ interfaces local control volumes of adaptive size over which the discontinuous
behavior is integrated; thus, Riemann solvers are avoided. (iii) Update of cell averages
by integrating the fluxes using an appropriate quadrature rule.

Specifically, the spatial discretization of V - (wu) proceeds as follows.

e Using the standard 5-point Laplacian, we obtain a second-order approxima-
tion for the cell-average vorticity,

1
(4.2) wij = Apyj = 72 (Yit1, +Vim1j + Vi1 + i1 — 4eij),

valid in all interior cells, i,7 = 1,..., N — 1; our scheme does not require the
evaluation of vorticity at boundary cells.
e We proceed with a piecewise-linear reconstruction of the vorticity,

w(z,y) = Z [wij + (W )i (@ — ) + (Wy)ij (Y — v5i)] Xi,5 (2, y),

where x; ; is the indicator function of the (4, ) cell. The numerical slopes,
(wg)i; and (wy); ;, can be evaluated by simple central differencing when the
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solution is smooth (on the scale of a mesh spacing). Otherwise, nonlinear
slope limiters should be used—for example, the min-mod limiters

1 . 1
(Wz)i,j = 5 minmod |0 (wi+1,j - Wi,j) 5 (Wi+1,j - wi—Lj) ,0 (wz',j - Wi—l,j)

with 1 < 6 < 2. In particular, we evaluate the vorticity at the centers of the
cells” edges:

1
i = wiy E Shlws)ij,

wi® =wi ;& %h(wy)i,j
with the superscripts W="*"“west,” E=%“east,” S=%“south,” and N=*“north”
referring to the orientations of the four edges.

e We then evaluate the normal velocities on the cells” edges by simple second-
order averaging [18]:

Uimg ;= 5 (Ui +uio1),

ii-3 = 5 (Wij +vig-1).

e At each edge we define a numerical flux

1 1

Hi—%,j = 5((") +w1 1]) %,j7§|al—7,j|( I wiE—l,j)a
1 1

Hij3=3 (Wi Fwii1) vy — Zlai -l (Wi —wiio1)

where the first term on the right-hand side is the average of the one-sided flux
evaluations, whereas the second term is a correction that arises from the more
precise treatment at the discontinuous boundaries; the prefactors a; 1 and
a; j—1 correspond to the local characteristic speeds at the cells’ 1nterfaces

which in our case are simply the normal velocities, u and v, respectively.

e Finally, the divergence of the flux is approximated by

My m By Higey —Higy
by h h

[V - (wu)];

4.2.2. The viscous term. We next address the spatial discretization, A,%, of
the biharmonic operator. The standard second-order discretization uses a 13-point
stencil. Noncompact stencils are problematic from the point of view of linear solvers.
An alternative representation of the discrete biharmonic operator that uses a compact
9-point stencil was developed by Altas et al. [1], and its one-dimensional version was
presented in section 3. The idea is to express A;Q#%',j in terms of the grid values of ¥
and its first derivatives, ¢, = v and ¥, = —u. A second-order approximation of the
biharmonic operator can then be written as

12 4 1-
(4.3) Aoy = — <3Ah1/)¢,j + gAthi,j + Ddv; j — Dgui,j) ;
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where Dgfyt are the standard differencing operators and A}, is the star-Laplacian

Aty = (Yit1,j+1 + Vic1j41 T Yit1-1 + Yic1,j-1 — 4 ).

1
2 h?
In addition, we need fourth-order expressions for u; ; and v; ;:

1
(I + 6h2DjDr> vij = +D%; ;,
(4.4) )
(I + 6h2D;Dy) Uj,5 = _Dgwi,j-

These approximations are valid for all interior points; at boundary points ¢, u, and
v are prescribed by the boundary conditions.

4.3. The linear solver. From a computational point of view, the most time-
consuming part of the computation is the solution of a linear system of the form

(Ap — a A7) = ths; j,

which results from the spatial discretization of (4.1); two such linear systems need to
be solved at every time step. Standard iterative methods are known to converge very
slowly, if at all, for biharmonic operators.

Biharmonic systems that use the compact stencil representation (4.3), (4.4) can
be solved very efficiently with AMG solvers. AMG methods are powerful techniques
for the solution of sparse linear systems. They are “black box” solvers, in the sense
that they treat the problem to be solved as a pure algebraic system, without reference
to the geometrical interpretation of the transition between coarse and fine grids. The
advantage of such an approach is that it is readily portable to more complicated
systems of coordinates and geometries.

The principle of AMG methods can be summarized as follows. Given an n-
dimensional linear system Az = b, an m X n restriction matrix R is generated by an
algorithm that inspects the graph of the matrix A. The m-dimensional vector Rz
is the projection of x on the restricted (“coarse”) subspace. The transpose of the
restriction matrix, I = R”, is used as an interpolation matrix to revert back to the
original (“fine”) space. AMG methods are based on the presumption that if the right-
hand side vector, b, is sufficiently “smooth” (in a sense that needs to be specified),
then the solution x is close to the range of the interpolation matrix I, i.e., there exists
an m-dimensional vector y such that = ~ Iy. Multiplying the system Ax = b by R
on the left and approximating x by Iy, we obtain the restricted system

(RAI)y = Rb.

This two-level approach can be applied recursively to form a multilevel method. It
then remains to introduce an appropriate “smoother” to operate on the solution before
and after being projected to the lower-dimensional subspace.

AMG solvers vary in the way they generate the restriction matrix, in the choice of
smoothers, and in the choice of multigrid cycles. Our coarsening method is based on
a red-black coloring algorithm developed by Kickinger [13]. Gauss—Seidel iterations
have been used for smoothing. Each multigrid cycle starts from the finest level down
to the coarsest level and back up (V-cycle). For a 128 x 128 grid (that is, a linear
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system of dimension 3 x 128 x 128), about ten multigrid cycles with two pre- and
postsmoothing steps were needed to reduce the error norm to 1078.

There are a number of implementational issues. As long as the time step is not
modified, the linear operator is unchanged. In such a case, it is efficient to compute
the set of restriction matrices, R, with the corresponding linear operators, RAI, once,
and store them. Most of the computational time is then spent on sparse matrix-vector
multiplications, which can be parallelized easily.

5. Numerical results. We have tested our numerical scheme on a classical
benchmark problem: flow in a lid-driven cavity. The fluid is confined in a square
domain, Q = [0,1]?, and is driven by the transversal motion of its boundaries. This
setup is a challenging test problem, in particular, because the velocity field is discon-
tinuous at the corners adjacent to the moving boundaries, and the viscous stresses
diverge logarithmically. (In a method that uses the primitive variables (u,p), one
faces the logarithmic divergence of the pressure.)

We first conducted convergence tests to obtain error estimates and assess the
order of accuracy. In Table 1 we show the discrete Ly norm ||[¢¥n41 — Yany1|y, where
1 denotes the computational solution on an M x M grid. The initial conditions are

(5.1) Y(x,y,0) = %SiHQ(T(l‘) sin?(7y),

and the boundaries are stationary; the Reynolds number here is 103. For short times
the convergence rate seems to be less than expected; this is because the errors are
very small and therefore dominated by the tolerance specified for the linear solver. For
times longer than ¢ = 0.4 we get an estimated second-order convergence, as expected.
Similar results were found for a range of Reynolds numbers between 102 and 10

TABLE 1
Error estimate and convergence test for the initial conditions (5.1) and Reynolds number 103.

Time || [[th33 —esll2 | %65 — t120ll2 | Rate
0.1 4.1 x10°° 1.3x 107 ° 1.64
0.2 7.2 x 107" 2.1 x 107° 1.81
0.3 9.5 x 10~° 2.5 x 1075 1.90
0.4 1.2 x 104 2.9 x 107° 1.99
0.5 1.4 x 10~ 3.3x107° 2.08

We next display results for lid-driven flows. For low enough Reynolds numbers
the flow approaches a steady state; the lower the Reynolds number is, the shorter the
transient is. In Figure 1(a) we display stream function contour lines in the steady
state for Re = 400. The fluid is initially at rest, and it is driven impulsively by the
rightward motion of the top boundary. For comparison we display the same level sets
as in [9, Figure 3 and Table III]. In Figure 1(b), (c¢) we plot the steady-state profile
of the u(v) component of the velocity as a function of y(z) at x = 0.5 (y = 0.5).
The solid line represents our results, whereas the symbols are data reported in [9]).
The agreement is excellent. In Table 2 we list the minimum value of the stream
function, which takes place in the core of the primary vortex, at different times and
for three different grid sizes. For a grid size of 128 x 128 the results seem to have
fully converged. It takes about 35 time units to reach a steady flow; the minimum
value of the stream function is then —0.1140; in [9] the reported value is —0.1139; the
same value has also been reported by Pan and Glowinski for a slightly regularized
flow [20]. We also compare extremal values of the stream function for the secondary
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Fic. 1. (a) Contour plots of the stream function at time t = 40 after an impulsive start at
Reynolds number Re = 400. The top boundary mowves to the right with velocity w = 1. (b) Steady-
state profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the
v velocity component as a function of x at y = 0.5.

TABLE 2
Minimum value of the stream function at different times and for different mesh sizes. The
Reynolds number is Re = 400.

Time 64 x 64 96 x 96 128 x 128
t=5.0 —0.09062 | —0.09074 | —0.09076
t=15.0 —-0.11164 | —0.11173 | —0.11174
t=25.0 —0.11378 | —0.11385 | —0.11385
t =35.0 —0.11393 | —0.11400 | —0.11401

vortices. For the bottom-right secondary vortex the maximum value of the stream
function is 6.579 x 104, and it is 1.404 x 10~° for the bottom-left vortex; the numbers
reported in [9] are 6.423 x 10~ and 1.419 x 1075, respectively. In [11] the time to
reach a steady state was estimated to be about 46 time units. A precise quantitative
comparison is hard to perform due to the arbitrary nature of the stopping criterion.

Similar calculations were carried out for Re = 5000. In Figure 2(a) we plot the
minimum value of the stream function versus time. Steady-state velocity profiles are
shown in Figure 2(b), (c). Snapshots of stream function contour lines are presented
in Figure 3. Note the much longer transient; its takes about 340 time units to reach
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Re = 5000
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041
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Fic. 2. (a) Minimum value of the stream function versus time for Re = 5000. (b) Steady-state
profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the v
velocity component as a function of x at y = 0.5.

a steady flow. Note also the nonmonotonic behavior of the minimum value of the
stream function, which reflects the fact that recirculation zones are created and an-
nihilated along the side and bottom walls until the final vorticity pattern emerges.
Such dynamics were also reported in [11] and are consistent with subcritical behavior
prior to an oscillatory instability, whose occurrence has been predicted in [21, 20].
Eventually, the stream function reaches the value of —0.122160; in [9] the predicted
value is —0.118966, whereas in [20] it is —0.121218. The velocity profiles are again in
excellent agreement with the data reported in [9].

In a recent paper, Pan and Glowinski [20] obtained limit cycle solutions for Re =
8500. The occurrence of a Hopf bifurcation has been speculated before [21] but was
believed to take place at a significantly higher Reynolds number. Our results for
Re = 8500 support the findings of [20]. In Figure 4 we plot the time evolution of the
kinetic energy over a time interval of ¢ = 3; the function is oscillatory with a period of
about 2.5; the period reported in [20] is 2.27. In Figure 5 we show a complete cycle of
stream function contours during a time interval of 2.5. The primary vortex remains
practically unchanged, variations being noticeable only within the secondary vortices.
It takes about 200 time units to reach this state starting from a fluid at rest.



14 RAZ KUPFERMAN
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Fic. 3. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 5000. The contours are shown for time t = 10, t = 20, t = 30,
and t = 300. The grid size is 128 x 128.
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FiG. 4. Kinetic energy versus time for Re = 8500.
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Re =8500 Time =0 Re =8500 Time =0.5

0.1 0.2 0.3 0.4 05 0.6

Re =8500 Time=1

Fic. 5. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 8500. This sequence covers one period of the limit cycle. The
grid size is 128 x 128.

For even higher Reynolds numbers the flows are much more complex. An Re =
20000 flow is shown in Figure 6, where we display snapshots of vorticity contour
lines for a fluid that is driven by the upward motion of its left and right boundaries.
Narrow and concentrated shear layers are generated along the moving boundaries and
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Fic. 6. Contour plots of vorticity. The left and right walls move upward with velocity v = 1.
The Reynolds number is Re = 20000. The contours are shown for timet =2,t=6,t =10, t = 14,
and t = 18. The grid size is 128 x 128.

transported with the flow. The shear layers are unstable and rapidly intermingle to
form a convoluted vorticity pattern. This sequence of vorticity contours demonstrates
the robustness of the scheme. The vorticity gradients are large with sharp variations
over single cells.



A PURE STREAM FUNCTION FORMULATION 17

6. Concluding remarks. The present scheme is based on the paradigm that has
been established in [4], whereby vorticity dynamics should be viewed as a projection of
stream function dynamics; thus vorticity boundary conditions are totally avoided, and
natural boundary conditions are imposed on the stream function. Numerical methods
based on stream function variables are by themselves not a novel idea. What have
been missing for many years are accurate and efficient ways of implementation. We
make no claim, however, that methods based on vorticity boundary conditions are
invalid. Such methods have been proven to work within the frameworks of both
difference schemes and vortex methods.

An important property of the proposed scheme is its modularity. It is not re-
stricted to a specific type of hyperbolic or biharmonic solver, and each of its elements
can be implemented in various ways. In particular, higher-order spatio-temporal
discretizations are relatively easy to implement (see, e.g., [1] for a fourth-order dis-
cretization of the biharmonic equation and [15] for a third-order version of the KT
scheme). Finally, an extension to three dimensions seems realizable.
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TWO-DIMENSIONAL SIMULATIONS OF VALVELESS PUMPING
USING THE IMMERSED BOUNDARY METHOD*

EUNOK JUNG! AND CHARLES S. PESKIN*

Abstract. Flow driven by pumping without valves is examined, motivated by biomedical appli-
cations: cardiopulmonary resuscitation (CPR) and the human fetus before the development of the
heart valves. The direction of flow inside a loop of tubing which consists of (almost) rigid and flexible
parts is investigated when the boundary of one end of the flexible segment is forced periodically in
time. Despite the absence of valves, net flow around the loop may appear in these simulations. The
magnitude and even the direction of this flow depend on the driving frequency of the periodic forcing.

Key words. valveless pumping, immersed boundary method, frequency, CPR
AMS subject classifications. 76D05, 76799, 92-08, 92B99, 92C05, 92C50
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1. Introduction. Pumping blood in one direction is the main function of the
heart, which is equipped with valves that ensure unidirectional flow. Is it possible,
though, to pump blood without valves? This paper is intended to show by numerical
simulation the possibility of a net flow which is generated by a valveless mechanism
in a circulatory system. Simulations of valveless pumping are motivated by physical
experiments of Kilner [12], which had been developed from experiments by Liebau
[13, 14, 15]. Kilner observed net flow in one direction which depends on the location
of periodic forcing in his experiments. We have examined flows driven by pumping
without valves in Liebau’s model, a loop of tubing of which part is almost rigid and
the other part is flexible. In agreement with Kilner, we find that net flow can indeed
be driven around such a loop by periodic forcing at one location, but we also find
something new: the direction of the flow depends on the driving frequency of the
periodic forcing.

As reviewed by Moser et al. [18], there have been several earlier investigations of
valveless pumping. Harvey (1628), Weber (1834), Donders (1856), and Thomann [26]
suggest theories of valveless pumping, and Ozanam (1881) and Liebau [13, 14, 15]
make the various types of physical experiments to explain the mechanism of valveless
pumping. Moser et al. [18] try to identify the responsible mechanism and conditions
under which this mechanism operates. Their proposed mechanism involves a difference
in impedance of two pathways between compliant reservoirs.

One of the applications of valveless pumping may turn out to be cardiopulmonary
resuscitation (CPR). The blood flow during CPR has been explained by two theories:
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the thoracic pump and cardiac compression mechanisms. In support of the thoracic
pump model, it has been reported that the heart is “a passive conduit for blood flow”
during chest compression [1, 3, 10], with an open mitral valve throughout the cardiac
cycle and anterograde (forward) transmitral blood flow even during chest compres-
sion. Werner et al. [27] also report that the mitral valve remains open throughout
the entire compression-release cycle of CPR while the aortic valve opens during the
compression phase of CPR and closes during the release phase. Thus, the left side of
the heart appears to act as a conduit for passage of blood, and mitral valve closure
is not necessary for forward blood flow during CPR. Despite the observed lack of
valve function, some patients with cardiac arrest are successfully resuscitated by ex-
ternal chest-compression CPR [25]. These findings are controversial, however. Other
researchers such as Feneley et al. [4] report results that are inconsistent with the tho-
racic pump theory and support direct cardiac compression as the primary mechanism
of blood flow with the high-impulse manual CPR technique. These investigators fa-
vor the cardiac compression theory, in which the heart acts as a pump and its valves
function normally. It is possible, of course, that both theories are correct, each in a
different set of circumstances. Our computational model of valveless pumping might
be applicable to the thoracic pump model and help to understand the thoracic pump
mechanism. If the magnitude and even the direction of flow in valveless pumping are
indeed frequency dependent, as our results seem to indicate, it is of obvious impor-
tance to know what frequency of chest compression will produce the most effective
CPR.

Another biological example of valveless pumping may occur in the human embryo
at the end of the third week of gestation. At this stage of development, the valves
of the heart have not yet formed. Nevertheless, there is a net flow in the circulatory
system that is somehow generated by the beating of the heart.

An industrial application of valveless pumping is in microelectromechanical sys-
tem (MEMS) devices [17], where there is a need to produce fluid motion without
moving anything inside the fluid. MEMS devices could be built that incorporate flex-
ible flow channels. In that case, our findings might be applicable to the design of
valveless pumps for MEMS devices.

We do not attempt to construct a theory of valveless pumping in this report. In-
stead, we use numerical simulation as an “experimental” tool to study this mysterious
phenomenon.

The rest of the paper is organized as follows. In section 2 the immersed bound-
ary method will be introduced. Section 3 is devoted to the description of the two-
dimensional valveless pumping model. The results will be discussed in section 4. In
section 5 several special cases will be observed. Finally, some conclusions will be
drawn in section 6.

2. The immersed boundary method.

2.1. Mathematical formulation. The immersed boundary method is applica-
ble to problems involving an elastic structure interacting with a viscous incompressible
fluid. It has been applied to a variety of problems, particularly in biophysics, includ-
ing two-dimensional and three-dimensional simulations of blood flow in the heart
[19, 20, 9, 21, 22], the design of prosthetic cardiac valves [16], platelet aggregation
during blood clotting [7], wave propagation in the cochlea [2], the flow of suspensions
[8], peristaltic pumping of solid particles [6], and aquatic animal locomotion [5]. The
version of the immersed boundary method used in this work is that of [23], except
that here we are in two space dimensions.
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Fic. 1. Initial position of two-dimensional valveless pumping: flexible boundary (thin lines),
almost rigid (thick lines), and fluid markers (dots).

The philosophy of the immersed boundary method is that the elastic material
is treated as a part of the fluid in which singular forces are applied. The fluid and
the elastic immersed boundary constitute a coupled mechanical system: The motion
of the fluid is influenced by the force generated by the immersed boundary on the
fluid, but at the same time the immersed boundary moves at the local fluid velocity
and exerts singular forces locally on the fluid. The strength of this method is that
it can handle the complicated and time dependent geometry of the elastic immersed
boundary which interacts with the fluid, and that it does so while using a fixed regular
lattice for the fluid computation.

Consider a viscous incompressible fluid which fills a periodic rectangular box 2
and an immersed boundary S in the shape of a racetrack which is contained in the
box, where b = 1 (inner immersed boundary) or b = 2 (outer immersed boundary).
Figure 1 displays the two-dimensional model in which we shall simulate valveless
pumping.

We shall now consider the mathematical formulation of the equations of motion
for the fluid-immersed boundary system. Let p be the constant fluid density and p
be the constant viscosity. The equations of motion are then as follows:

21) (au(w’t) + (u(z, 1) - V)u(w,t)) + Vp(z,t) = pVu(z, t) + F(x, 1),

o
(2.2) V- u(z,t) =0,

(2.3) Fla) = [ fifs0) 82(x — Xo(s,1)) ds,
(2.4) Us(snt) = | ulat) @ - Xy(s.1) da.
(25) OXolos8) (s 1) — U (s,0),

ot
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%Xy (s,t)
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Equations (2.1) and (2.2) are the fluid (Navier—Stokes) equations in Eulerian form.
The fluid velocity u(x, t), fluid pressure p(x, t), and singular force density F(x,t) are
unknown functions of (x,t), where * = (z,y) are fixed Cartesian coordinates and
t is the time. Equations (2.5) and (2.6) are the immersed boundary equations in
Lagrangian form. The configurations of the immersed boundaries are described by
the unknown functions X (s,t), where b = 1 (inner immersed boundary) or 2 (outer
immersed boundary), and 0 < s < L; for the inner immersed boundary and 0 < s
< L, for the outer immersed boundary. L; and Lo are the unstressed lengths of the
inner and outer boundaries, respectively. The boundary force densities f,(s,t) and
the boundary velocities Uy (s, t), for the inner and outer boundaries b =1 and b = 2,
are also unknown functions of s and t. A fixed value of the Lagrangian parameter s
marks a material point of the immersed boundary.

In (2.6) the boundary force is computed as a sum of two terms. In the first term,
the given function Z,(s,t) is called the target position of the immersed boundary.
This first term provides a restoring force that keeps the boundary points near their
target positions. Target positions are used for two purposes in this work: first to
maintain the shape of the flow loop, and second, by allowing Z(s,t) to change with
time, to apply periodic forcing to the immersed boundaries. The curvature term in
(2.6) models an elastic membrane under tension. Together, the two terms model the
boundaries as tethered elastic membranes.

Note that the curvature term actually is the response to stretching of the mem-
brane; it is not a response to curvature per se. It can be derived from an energy
function which is just the sum of the squares of the lengths of the individual seg-
ments. Also, the curvature term has little effect on the parts of the racetrack that
are stiffly pinned to target points, since those forces dominate there. It is important
only on the straight flexible segment.

Equations (2.4) and (2.5) are, in effect, the no-slip condition, since they state that
the immersed boundary moves at the local fluid velocity. Equations (2.3) and (2.4)
are the interaction equations in mixed Eulerian and Lagrangian form. The core of
the immersed boundary method is the delta function, which describes the interaction
between the fluid and the immersed boundary. Both of the interaction equations are
in integral form with kernel 62(x — X (s,t)). The integral in (2.4) is taken over the
two-dimensional space occupied by the fluid. However, in (2.3), the integral is taken
over a one-dimensional space, the immersed boundary, but the delta function is a
product of two one-dimensional delta functions: §2(x) = 6(x)é(y). Therefore, F(x,t)
is a singular force density. The total force is finite despite the singularity in the force
density F(z,t).

(2.6) Folsu) = —(ke)o(Xn(s.8) — Zu(s,1)) + e (

2.2. Numerical method. In this section, we present the summary of the im-
mersed boundary method to find a numerical solution to the system of equations
(2.1)-(2.6). For details of this numerical method, see [11, 23]. Let superscripts and
subscripts denote the time step index and the spatial discretization, respectively.
Let the time proceed in steps of duration At, let Ax and Ay be the fluid-lattice
spacing, and let As;, be the unstressed distance between material points of the im-
mersed boundary. The fluid equations (2.1) and (2.2) in Eulerian form are discretized
on a fixed rectangular lattice at time ¢ = nAt: x7, = x(jAzx, kAy,nAt), where
j=0,...,N, -1, k=0,...,Ny— 1, and n = 0,1,.... The immersed boundary
equations (2.5) and (2.6) in Lagrangian form are discretized on a collection of moving
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points in the immersed boundary at time ¢t = nAt : X}, = X, (lAsp, nAt) which do
not coincide with the fluid lattice, where [ = 1,..., My and L1 = M1As; for b = 1
(inner boundary) or I =1,..., My and Ly = M2Ass for b = 2 (outer boundary).

Our goal is to compute the update u"+!, XZLH from given u™, X}'. This is done
as follows:

For simplicity, let N, = N, = N and choose Az = Ay = h.

Step 1. Find the force f; on the immersed boundary from the given boundary
configuration X7 .

Forl =1, ..., My, and b = 1 (inner boundary) or 2 (outer boundary),
X7 — 2XT + X
(2.7) o= —(k)1(X = Z3) + ke < b(I+1) Asgl b(l 1)) ’
b

where Z} is a target position at ¢ = nAt, As, is an arc length, s is a stiffness
constant, and k. is another stiffness constant for the curvature force term.

Note that the subscript arithmetic on [ in (2.7) has to be interpreted in a periodic
sense, since the boundary is closed: when | = My, l+1=1; whenl=1,1—1= M,.
The target positions Z} are calculated by the given boundary configuration X . The
formulations of the target positions will be given in the following section.

Step 2. Spread the boundary force into the nearby lattice points of the fluid using
the ¢ function.

2 M,

(28) Fjo=3_> fubéi(z— X5)As, for jk=0,1,...,N—1,
b=1 l=1

where xj; = (jh,kh) and 67 is a smoothed approximation to the two-dimensional
Dirac delta function:

5 (@) = 7 ola/h)b(y/h)

where

3—2‘T‘+\/;+4|7‘|—4T2 if ‘7‘| < 1’
(r) = 22V TR g <y <,
0 if 2 <|r|.

The motivation for this particular choice of ¢(r) is given in [22].

Step 3. Solve the Navier—Stokes equations on the rectangular lattice to get the
update u”! and p"*! from u™ and F™. The periodic boundary conditions for the
computational domain are imposed. These equations are solved by the following
implicit first order scheme in time and space:

un+1 —un
(29) p (At +un . Vfun> + D0p7l+1 — MAhun+1 +Fn,
(2.10) D" .yt =0.

The difference operators in these equations are constructed as follows. First, the

forward (D7), backward (D7), and centered (D) difference operators are defined
in the standard way. Then D is defined by D° = (D9, DY). This is used in the
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discrete divergence and gradient. Next, the discrete Laplacian for the viscous term is
dei;lned by Apu = 22:1 D} D u. Finally, the upwind difference operator u - Vi =
> uaDE, where

Dt ua DT ifu, <0,
UV = .
ua D, if uq > 0.

This difference scheme is stable (provided that 22:1 |uq|At < h) because of
the choice of the upwind scheme for the convection terms and the backward Euler
differencing used for the Stokes system.

Because of the periodic boundary conditions of the computational domain, it is
natural to use the fast fourier transform (FFT) algorithm to solve (2.9) and (2.10) for
the unknowns (u"*1, p"*1). To get the update w1 and p"*+1, first take the discrete
Fourier transformation of (2.9) and (2.10). Then, the system can be solved for U,
Vim, and Py, for each I and m, 0 < I,m < N — 1. Finally, evaluate u™*! and p"*! by
applying the inverse FFT algorithm to p™** and @™

Step 4. Once the updated fluid velocity, 4!, has been determined, we can find
the velocity, U Z“, and then the new position, X Z“, of the immersed boundary
points. This is done using a discretization of (2.4) and (2.5).

The difference approximations to the interpolation equation and no-slip condition
are expressed as follows:

Forl=1,..., My, and b = 1 (inner boundary) or 2 (outer boundary),
(2.11) Ut = Z w67 (g — X ),
7,k=0
(2.12) Xyt =X+ AUyt

Note that we use the same delta function in (2.11) as the one in the interaction
equation for the force term, (2.8).

This completes the description of the process (Steps 1-4, above) by which the
quantities u and X are updated.

3. Two-dimensional model of valveless pumping. In this section, we shall
introduce a two-dimensional computational model of valveless pumping. The initial
configuration of our model is presented first. Then we present the motions of target
positions to investigate fluid motions around the flow loop. In particular, we explain
how the time dependent target positions are used to provide the periodic forcing which
is applied on the one end of the immersed boundary. Finally, we display the physical
and computational parameters which are used in our numerical experiments.

3.1. Initial position. Consider an incompressible viscous fluid with a constant
density p and viscosity p in a periodic rectangular box which contains an immersed
elastic boundary. Figure 1 shows the initial configuration of the immersed boundary
of two-dimensional valveless pumping in our numerical experiments. In this two-
dimensional model, the immersed boundary consists of two closed curves, each in the
form of a racetrack. The part of each curve shown with thick lines in Figure 1 is
almost rigid and the other part with thin lines is flexible. The fluid fills the entire
box. Fluid markers, however, are only shown inside the flow loop, since that is the
region of interest.
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Fi1G. 2. The target positions during one cycle: The motion of fluid inside the loop is driven by
the periodic vertical expansion and contraction of the target configuration of the tube. This motion
s confined to the left 1/3 of the flexible segment of tubing.

Throughout this paper, we assume that the motions are driven by periodic ver-
tical oscillations of the left 1/3 of the flexible tube boundary. Details of how these
oscillations are applied will be described next.

3.2. Target positions and parameters. Recall that the equation for the force
on the immersed boundary (2.6) involves target positions Zy(s,t). After discretiza-
tion, these become Zj;. For most of the flow loop, these are independent of time
and serve the purpose of maintaining the racetrack shape of the flow loop. Time
dependent target positions are used in the left 1/3 of the flexible segment of the flow
loop (as shown in Figure 2) in order to provide periodic forcing to the flow. Figure 2
displays the target positions at eight equally spaced times over one cycle.

Now we describe the mathematical formulations of the time dependent target
positions in the left 1/3 of the flexible segment of tubing.

Let Zy(s,t) = (Zb(5), Zyp(s,t)), where s is restricted to the range of values that
defines the left 1/3 of the flexible segment of tubing. This may be a different range of
s values in the case b = 1 (inner boundary) than in the case b = 2 (outer boundary).
Note that the « component of the target position Z(s,t) is independent of ¢, whereas
the y component varies with time in the manner that we prescribe.

Define
2mt Zan(5) — 0.25 X qcate
A(s,t) = Agsin <”) sin <7T .,b(51) 0.25X 5. le) |
T 50'5Xscale

where Ag is the amplitude of the target position motion, T is its period, and Xg.q7e
is the length of the computational domain (i.e., its size in the x direction).
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TABLE 1
Physical parameters.

H Physical parameters [ Symbol [ H
Density p 1 g/cm3
Viscosity n 0.01 g/cm -s
Circumference of a loop D 28.57 cm
Diameter of tube d 0.6 cm
Computational domain Xscale X Yscale 16 cm X 8 cm
Period T 0.05s~4s
Amplitude(target) Ao | 0.4 cm and 0.6 cm
Duration of experiment tmazx 150 s
Stiffness constant(almost rigid) Kt 26000 g/s%- cm
Stiffness constant(flexible) Kt 900 g/s2- cm
Stiffness constant(curvature) Ke 120 g- cm/s?

TABLE 2

Computational parameters.

H Computational parameters [ Symbol [ ”
Fluid lattice Nz X Ny 256 x 128
Number of immersed boundary points My + Mo 3654
Meshwidth h=Az=Ay 0.0625 cm
Initial distance between boundary points As1 = Asy h/4 = 0.0156 cm
Time step duration At | 0.5 h? =0.00195 s

The flexible segment begins at x = 0.25X .4 and ends at x = 0.75X5¢q7e. Thus,
the whole flexible segment has length 0.5X.4;e, and the part of it in which we allow
the target position to move has length %O.BXscale.

With A(s,t) defined as above, let Zy,(s,t) be defined as follows:

0.25Y5cate + 0.5d + A(s,t) if b =1 (inner boundary),

Zby (S, t) = { .
0.25Y5ca1e — 0.5d — A(s,t) if b =2 (outer boundary),

where d is the resting diameter of the tube, Y;.qie is the width of the computational

domain (i.e., its size in the y direction), and s is again restricted to the range of values

that defines the left 1/3 of the flexible segment of tubing.

The flows that we have investigated are all driven by these periodic motions of
the time dependent target positions in the left 1/3 of the flexible segment of tubing.

Note that the target tube, taken as a whole, has nonconstant volume. This is
reasonable, since the physical tube is only connected to the target tube by springs
and does not follow the target motion in detail; see Figures 10, 11, and 12. In fact,
the volume conservation of the physical tube is valid (see Figures 4 and 5) and does
not reflect the periodic volume changes imposed on the target tube.

In this work, we use CGS units, but to give a sense of the dimensionless character
of the flow, we sometimes report results in terms of a Reynolds number, which is
defined by Re = pUd %, where U is a time-averaged velocity, d is a diameter
of the tube, p is a constant density, u is viscosity, and @ is a time-averaged flux.
Note that this Reynolds number refers to the time-averaged velocity and flux, so any
nonzero value indicates that valveless pumping has occurred. The Reynolds number,
so defined, has varied in our computations between 0 and about 160.

Tables 1 and 2 display the physical and computational parameters, respectively.
As indicated in Table 1, the two physical parameters that we systematically vary
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TABLE 3
The ratios of the Lo difference of velocities.

| Lo difference ratio [ |

uga-u128|[2/||ui2s-u2se |2 1.910726
u128-u256 |2/ ||u2ss-usiz||2 1.995359
ve4-v128 |2/ ||v128-V256 ]2 1.662576
v128-v256|2/||v256-v512]2 1.869106

in this work are the period and amplitude of the prescribed motion of the target
positions. The resulting flows are definitely dependent on these two parameters. In
particular, they determine not only the amount of net flow that develops but even
the direction of the net flow around the loop.

4. Results and discussion. The two main results of this paper are as follows:
First, a net flow around the loop is produced by the periodic forcing on one end
of the flexible boundary, despite the absence of valves. Previous investigators have
observed this phenomenon in physical experiments [12], and a theoretical explanation
based on a lumped parameter (ODE) model has been proposed [18], but this is the
first time, to our knowledge, that valveless pumping has been demonstrated by a
computer simulation based on the Navier—Stokes equations. Second, we find that
the direction of flow around the loop is determined not only by the position of the
periodic compression (as in [12]) but also by the amplitude and frequency of the
driving force. This is a new, unexpected phenomenon, not previously reported, and
the most important prediction of our model.

Preliminary physical experiments performed in the Courant Institute WetLab con-
firm that the flow can be driven in either direction from the same location depending
on the details of the forcing. Experiments will be described in a future publication
with Jun Zhang.

In this section, we first justify our numerical method and then show that the
amplitude and the frequency are the crucial parameters to determine the direction
of a net flow around the loop. Some special cases of valveless pumping are then
discussed.

4.1. Checks on the numerical method. We report two checks on the validity
of the numerical method. One check on the computation is to show that our numerical
scheme has first order accuracy in time and space. Another check is to see whether
the volume of the closed flow loop is conserved.

Numerical convergence. To test accuracy of our numerical scheme, we perform
the same computation on the successive lattice refinements and compare the results
in the Lo norm. The physical parameters of this computation are as follows: period
= 1.55 s, amplitude of the target position = 0.6 cm, and number of cycles = 96.
The other physical parameters are the same as ones in Table 1. We consider the
three successive mesh sizes within a fixed size physical domain: Ny xN, = 128x64,
256x128, and 512x256. The ratio of the time step duration to the meshwidth is kept
fixed throughout this study: A¢/Az = 0.0312 s/cm. As N, and N, vary, the number
of points on the immersed boundary changes in proportion to N, or N,, which, of
course, are changing in proportion to each other. Specifically, we choose an initial
distance between immersed boundary points which is equal to Az/4.

Table 3 shows the results of the numerical convergence. The ratio of the Lo
norms on the difference of velocities, u = (u,v), at the successive lattice refinements
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F1G. 3. Average flow versus period (1/frequency): Flows with two different amplitudes of target
positions, Ag = 0.6 cm and Ag = 0.4 ecm, are compared. The plus data points denote fluzes computed
on a horizontal cross section through the middle of the curved segment of tubing on the right side of
the racetrack, and the circle data points denote fluxes computed on a vertical cross section through the
middle of the straight segment of tubing at the top of the racetrack. In both cases, the time-averaged
flux is plotted as a function of the period of the imposed oscillation in target position that drives the
flow. FEach pair of data points summarizes a separate numerical experiment, the duration of which
is 150 s. Positive flur denotes clockwise net flow around the loop of tubing; negative flur denotes
counterclockwise net flow. The existence of net flow in these numerical experiments is evidence of
valveless pumping. This figure shows that the frequency is a crucial factor to determine the direction
and magnitude of flow, and also shows the conservation of volume (area) by the comparison of time-
averaged fluxes at two locations.

are compared in Table 3. Since the asymptotic ratio is almost 2, our numerical method
has almost first order accuracy. Presumably, the numbers in the table are converging
to 2, but it would take computations on finer grids to show this.

Conservation of volume (area). The volume (area) should be conserved in time,
since the fluid is incompressible. The conservation of volume (area) is checked in
the following two ways: First, the time-averaged flux on two different cross sections
of flow loop are compared. Second, the area inside the flow loop is computed as a
function of time to see how much it varies. The time-averaged flux is defined by the
mean flux computed on a cross section through the middle of the curved (or straight)
segment of tubing on the racetrack over the simulated time.

Figure 3 displays the time-averaged flux, which is the main output of our numer-
ical experiments concerning valveless pumping, plotted as a function of the period
of the imposed oscillation in target position that drives the flow. To check volume
conservation, these fluxes have been computed on two different cross sections of the
tube: a vertical cross section in the middle of the straight segment that forms the
top of the tube and a horizontal cross section in the middle of the curved segment of
tubing on the right. Two different amplitudes of the target positions, 49 = 0.6 cm
and Ay = 0.4 cm, are chosen. The time-averaged fluxes at each of these two cross
sections practically coincide, over a wide range of periods. (Figure 3 contains four
plots but appears to contain only two because the agreement of flows measured at
different cross sections is so good.) Other physical and numerical parameters are as
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F1G. 4. Conservation of volume (area): The difference between the time-averaged area and the
initial area inside the loop versus the period of the driving oscillation. Each data point summarizes
a different numerical experiment of 150 s duration (simulated time). The area of the loop is 34.2796
em? initially. The mazimum error occurs at a driving period of 0.2 s, and is equal to 0.4196 cm?2,
which is 1.22% of the initial area.

shown in Tables 1 and 2.

Figure 4 shows the difference between the time-averaged area inside the flow loop
and the initial area inside the flow loop plotted as a function of the period of the
driving oscillation. Each data point summarizes a different numerical experiment of
150 s duration (simulated time). The parameters are also given in Tables 1 and 2
except the amplitude of the driving oscillation, which is 0.6 cm. The initial area of
the flow loop is 34.2796 cm?. The maximum difference between the time-averaged
area and the initial area occurs at period 0.2 s, and it is only 0.4196 cm?, which is
1.22% of the initial area inside the flow loop.

As a further check on the volume (area) conservation, we plot the area within
the flow loop as a function of time. This is done for only one case, the driving period
of 0.2 s, at which the maximum difference between the time-averaged area and the
initial area occurs. Even in this worst case, the area as a function of time is nearly
constant; see Figure 5, and note the expanded scale of the plot.

The volume errors we observed in this subsection are judged to be acceptable,
but it could be further reduced if desired by using the method of Peskin and Printz
[24].

4.2. The time-averaged flow around the loop as a function of the am-
plitude of the driving oscillation. In this section, we investigate the influence of
the amplitude of the driving oscillation (i.e., the amplitude of the prescribed target
position motion) on the magnitude and direction of the net flow around the loop
of simulated tubing. Four different periods of the driving oscillation are considered:
T =0.3s, 0.375 s, 0.525 s, and 1.7 s. Figure 6 displays the time-averaged flux as a
function of the amplitude of the driving oscillation at these four chosen periods. Other
parameters besides amplitude and period are given in Tables 1 and 2. Positive flow
values denote clockwise net flow, and negative values denote counterclockwise net flow.
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Fic. 5. Conservation of volume (area): Area versus time at a driving period of 0.2 s. The
area inside the flow loop is almost constant in time (note the expanded scale of the plot: 0 is way
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Fic. 6. Average flux versus amplitude: The flows at four different periods, T = 0.3 s, 0.375 s,
0.525 s, and 1.7 s, are compared. Fach data point summarizes a separate numerical experiment of
150 s duration (simulated time). For all periods shown, the flow is megative (counterclockwise) at
low amplitude, but for some periods (T = 0.3 s and T = 0.375 s) it reverses and becomes positive
(clockwise) at high amplitude.

The results plotted in Figure 6 show the following features:

e At low amplitude of the driving oscillation, net flow is always in the coun-
terclockwise direction. Its magnitude at any given amplitude depends on the
period of the driving oscillation. Of the four examples given in the figure, the
periods T'=0.375 s and 7' = 1.7 s result in only weak counterclockwise flow,
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whereas T'= 0.3 s and 7" = 0.525 s result in much stronger counterclockwise
flow.

e As the amplitude increases a qualitative distinction between the different
cases appears. For T = 0.525 s and T' = 1.7 s, the counterclockwise flow
simply gets stronger monotonically as the amplitude of the driving oscillation
increases. But for 7' = 0.3 s and for 7' = 0.375 s, the flow changes direction
at some critical amplitude and becomes clockwise at high amplitude. Note
that one cannot predict from the strength of the counterclockwise flow at low
amplitude which of the cases will have clockwise flow at high amplitude: Of
the two cases that have clockwise flow at high amplitude, one had a strong
counterclockwise flow and the other had a weak counterclockwise flow at low
amplitude.

Overall, there seems to be a preference for counterclockwise flow in these results.
All periods generate counterclockwise flow at low amplitude, and only some periods
generate flows that reverse and become clockwise at high amplitude. We can speculate
on the reason for this, as follows. Recall that the driving oscillation is imposed at the
left end of the flexible segment of tubing, which forms the lower straight segment of
the racetrack; see Figure 2. If waves propagate from this source to the right along the
flexible segment, these would tend to generate counterclockwise flow by a peristaltic
mechanism. This argument leaves open the question of why the flows reverse and
become clockwise, for some periods of the driving oscillation, when the amplitude of
the driving oscillation becomes sufficiently large.

4.3. The time-averaged flow around a loop as a function of frequency.
In this subsection, we present a new, unexpected phenomenon which is the most
important prediction of our model: the driving frequency (1/period) is a crucial pa-
rameter to determine the magnitude and even the direction of a net flow generated
by valveless pumping.

The time-averaged flow around a loop as a function of the period of the driving
oscillation is investigated for two different amplitudes of the driving oscillation, Ay =
0.4 cm and Ap = 0.6 cm. In Figure 3, we plot the time-averaged flux versus period
for these two cases. Each data point is the result of a separate numerical experiment,
and the parameters are the same as in Tables 1 and 2. As before, positive flow is
clockwise, and negative flow is counterclockwise.

The result that is obvious from a glance at Figure 3 is that valveless pumping has
a strong dependence on the frequency of the driving oscillation. Indeed, there appear
to be resonances at rather specific frequencies, which are most effective in driving the
flow in one direction or the other. At the lower amplitude, the net flow is almost
always counterclockwise, so these peaks are in the negative direction. As we shift to
the higher amplitude, the negative peaks seem to be preserved, but now positive peaks
emerge as well. Another indication of the dynamic character of valveless pumping is
that it seems to disappear at the extremes of frequency. In the high-frequency (low-
period) limit, it is clear from Figure 3 that the net flow approaches zero. This also
seems to be true in the low-frequency (high-period) limit, although for the higher
amplitude data one cannot be sure whether the net flux is approaching zero or some
negative value. In any case, strong valveless pumping happens at specific frequencies
that are neither too large nor too small.

Since the driving frequency is an important parameter of valveless pumping, it
may be of interest to interpret our results in terms of the Womersley number Wo =
d\/w/v, where d is the tube diameter (0.6 cm), v is the kinematic viscosity (v = p/p =
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0.01 cm?/s), and w is the driving frequency in radians/s (w = 27 /T). For example,
the maximum average clockwise flow occurs at a period of T" = 0.325 s, which is a
Womersley number of Wo = 26, and the maximum average counterclockwise flow
occurs at a period of T' = 0.21 s, corresponding to a Womersley number of Wo =
33. In both cases, the Womersley number is substantially larger than 1, which means
that the velocity profile is far from parabolic.

5. Case studies. In this section, several special cases of valveless pumping are
studied. Recall Figure 3 in the previous section. We chose the special cases based on
the results from that figure. The amplitude of the driving oscillation, Ag = 0.6 cm,
is chosen, since a qualitative distinction between the different cases appears as the
amplitude increases, and Ay = 0.6 cm is large enough to show that distinction. The
following three cases are considered:

e Maximum average clockwise flow (7' = 0.325 s).

o Almost zero flow (T' = 1.34 s).

e Maximum average counterclockwise flow (7' = 0.21 s).

As before, the fluid motions are driven by the oscillations in target positions which
are imposed along the 1/3 left end of the flexible segment of tubing, which forms the
lower straight segment of the racetrack. The parameters are as given in Table 1 and
2.

These three cases have been investigated and compared qualitatively in the fol-
lowing ways.

e The angles from the center of the computational domain, (x,y) = (8 cm, 4
cm), to the current positions of the fluid markers inside the flow loop are
measured in order to determine the direction of the flow.

e Flowmeter fluxes computed on the vertical cross section through the middle
of the straight segment of tubing at the top of the racetrack as functions of
time are measured to test whether the fluid motion is in a periodic steady-
state through the final duration, ¢,,,, = 150 s, and to show the nature of the
oscillation and the net progress of the fluid motions.

e The wave motions along the top of the flexible boundaries over one cycle of
the periodic steady-state are investigated in order to determine whether the
motion looks like a traveling wave or a standing wave (or some other more
complicated kind of wave motion).

e The target positions and the real physical positions of the immersed boundary,
in particular the flexible segment, are compared in order to see how the time
dependent target positions affect the motions of the real physical boundary.

e The velocity vector fields and pressure contours of the maximum clockwise
and the maximum counterclockwise cases at 4 different phases over one period
after the periodic steady-state are presented.

e Changing the direction of the flow by changing the period during a computer
experiment.

e Zero net flux for the symmetric driving force.

5.1. Three cases. Angle. Here we examine the net progress of the flow by
following the angular position of selected fluid markers. The angles are measured
from the center of the computational domain, (x,y) = (8 cm, 4 ¢cm), to the positions
of the fluid markers as functions of time. The angle is increased as the position of
the fluid marker is changed in the clockwise direction. We choose arbitrarily 6 fluid
markers around the flow loop for each case. These 6 fluid markers are located at the
same position initially in all three cases.
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Fic. 7. The angles of fluid markers are plotted as functions of time. The leftmost and rightmost
figures show the case of mazimum average flow in the clockwise direction (positive slope) and the
case of mazrimum average flow in the counterclockwise direction (negative slope), respectively. The
middle figure shows the case of almost zero flow (almost zero slope).

Figure 7 displays the change of the positions of 6 fluid markers by measuring
the angle as a function of time for the three cases. The angles are plotted at every
10 time steps up to t;e: = 25 s. Since there are some vortices inside the flexible
segment, some fluid markers get trapped and take time to escape the segment. Once
fluid markers do escape, however, they move much faster along the rigid part of the
racetrack. Examples are the sixth fluid marker in the leftmost frame, the second one
in the middle frame, and the third one at the rightmost frame. Some other fluid
markers stick to the immersed boundary. Ignoring these details and looking at the
general trend, we can see that there is net clockwise motion of the markers in the
leftmost frame, no net motion in the middle frame, and net counterclockwise motion
in the rightmost frame of Figure 7.

Flowmeter. Figure 8 displays flowmeter results, which are the fluxes computed
on the vertical cross section through the middle of the straight segment of tubing at
the top of the racetrack. These results are plotted as functions of time over the last 5
cycles in each case. The positive values denote clockwise flow and the negative denote
counterclockwise flow. In all three cases the flow is oscillatory, and the oscillation has
settled down to a periodic steady state. The flow changes direction with a positive
phase and a negative phase during each cycle. In two of the three cases (top and
bottom in Figure 8) there is a nonzero mean flow superimposed upon the oscillatory
motion. This nonzero mean flow is the phenomenon of valveless pumping.

The motions of wave along the flexible segment. We observe another
interesting phenomenon of valveless pumping by investigating the wave motions along
the flexible boundary. Figure 9 displays the motions of wave along the top of the
flexible segment. Sixteen equal-time snapshots of the wave motions along the top of
flexible segment over one cycle of the periodic steady-state are plotted for the three
cases. In the top frame, there is a standing wave pattern with two nodes (at about
6.3 cm and 9.8 cm). For reasons that we do not understand, this standing wave
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FiG. 8. Flowmeter. The fluzes are computed on the vertical cross section through the middle of
the straight segment of tubing at the top of the racetrack. They are plotted as functions of time are
plotted over the last five cycles in each case (note the different time scales). The case of mazimum
average flow in the clockwise direction, almost zero flow, and mazximum flow in the counterclockwise
direction are considered from top and bottom. Note that the mean flow is positive (clockwise) in the
top frame and megative (counterclockwise) in the bottom frame.

Wave motions on the top of the flexible segment over one cycle
T

Fic. 9. Sizteen equal-time snapshots over one cycle of the periodic steady-state wave motions
along the top of the flexible segment are plotted. The top frame shows the case of mazimum average
flow in the clockwise direction. The middle frame shows the case of almost zero net flow. The bottom
frame shows the case of mazimum average flow in the counterclockwise direction. In all these cases,
the source of vibration is confined to the left 1/3 of the flexible segment, i.e., to the interval from
4 cm to 6.7 cm.

pattern is associated with maximum clockwise flow. In the middle frame, there again
seems to be a standing wave pattern with just one node (at about 6.7 cm). Note,
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Fia. 10. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of mazimum average clockwise flow.

however, that the location of this node coincides with the edge of the driven part
of the flexible boundary, i.e., the part where an oscillation of the target positions is
imposed. Thus, it seems that the driven part of the flexible boundary is oscillating in
one phase, and that the rest of the flexible boundary is oscillating in antiphase with
flexible part. This wave pattern seems to be associated with the absence of valveless
pumping, i.e., with zero net flow. In the bottom frame we see traveling waves (note the
absence of nodes) propagating to the right, away from the driven part of the flexible
boundary. Such traveling waves might be expected to pump fluid in the direction
of propagation by a peristaltic mechanism, and indeed what we see in this case is
maximum counterclockwise flow.
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Fia. 11. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of almost zero flow.

Comparison of the motions of the target positions and the real physical
boundary. Here we compare the motions of the target positions and the physical
boundary for the three cases. This is done in Figure 10 for the case of maximum
average clockwise flow, in Figure 11 for the case of almost zero net flow, and in Figure
12 for the case of maximum average counterclockwise flow. The target positions
(dark) are the same in all three figures, since the target motion is specified in advance
and differs in three cases only with respect to time scale. Note also that the target
positions are time dependent only in the left 1/3 of the flexible segment, which form
the bottom of the racetrack.

Only in the case of zero net flow (Figure 11) does the physical boundary motion
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Fia. 12. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of mazimum average counterclockwise flow.

track the target position motion. This is probably because the frequency is too low for
inertia to introduce any phase lags. In the other two cases, there are substantial phase
differences (presumably consequences of fluid inertia) between the target position and
the physical boundary position.

The velocity vector fields and pressure contours. Figures 13 and 14 display
the velocity vector fields of the maximum clockwise flow (period = 0.325 s). Four
equal-time snapshots over one cycle of the periodic steady-state are plotted. Figures 15
and 16 display the velocity vector fields of the maximum counterclockwise flow (period
= 0.21 s). Four equal-time snapshots over one cycle of the periodic steady-state are
also plotted.
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Figures 17 and 18 display the pressure contours of the maximum clockwise flow.
Four equal-time snapshots over one cycle of the periodic steady-state are plotted.
Figures 19 and 20 display the pressure contours of the maximum counterclockwise
flow. Four equal-time snapshots over one cycle of the periodic steady-state are also
plotted.

Note that it is true that the positions of the immersed boundary are influenced not
only by the fluid inside of the loop but also by the fluid outside of the loop. However,
motions of the fluid inside the loop seem to be dominant, since that is where the
larger velocities and pressure gradients are typically seen in Figures 13-20.

5.2. Further case studies. Flow which is changing the direction by
changing the period during a computer experiment (periods, T' = 0.325 s
and T = 0.21 s). In this section, we present two more interesting cases. In Figure
21, we show that the result does not depend on initial conditions. One might worry
that once the flow starts going one way it will keep going that way, but this case shows
this is not true. In order to show that the crucial parameter to decide the direction
of a net flow is frequency, we have examined the situation in which the period of the
driving oscillation is 0.325 s for the first half of the simulated experiment, and then
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Fia. 18. Continuation of Figure 17.

changes to 0.21 s for the balance of the simulated experiment. Note that these are
the periods which generated maximum net flow in the clockwise and counterclockwise
direction, respectively. All other parameters except the period are fixed during the
simulation.

Figure 21 displays the changing of the positions of two arbitrary fluid markers
inside the flow loop by measuring the angles from the center, (z,y) = (8 cm, 4 cm),
to the current positions of the markers. We plot angles as functions of time at every
10 time steps up to t = 20 s for each fluid marker. The curves in Figure 21 are chang-
ing from increasing (clockwise direction) to decreasing (counterclockwise direction)
around 10 s.

Zero net flux for the symmetric driving force. Is there still a net flow if the
system of valveless pumping would be symmetric? We consider the following special
case to show that there is almost zero net flow when the periodic driving forcing is
imposed on the center of the flexible segments. All other parameters are chosen for the
case of the maximum counterclockwise flow, 7' = 0.21 s. This experiment is run until
the periodic steady-state t = 150 s. The time-averaged flux for this case is —0.023625
cm?/s. This shows that there is almost zero net flow when the system is symmetric.

From this case and the previous one, we see that valveless pumping does not
represent an instability of a symmetric situation. On the contrary, the direction of



42 EUNOK JUNG AND CHARLES S. PESKIN

8
400
0 200
NN 3
o I m\‘\:'\»)w | 200
3
< 4r N 0
0
) (it -200
2t 0 1
| | | | -400
% 2 4 6 8 10 12 14 16
8 Y % \ J
NIERS. = —— 300
of L *
s 200
o N
[o)] 3
3 af 1A 100
N
- i 0
of
2+ > |
-100
0 . FRa - "'JE 1 i I I -200
0 2 4 6 8 10 12 14 16

F1c. 19. Pressure contours of the mazimum counterclockwise flow. Four equal-time snapshots
over one cycle after the periodic steady-state, plotted here and in Figure 20. The units of pressure
are dynes/cm?.

the mean flow is determined by the asymmetry of the problem but in a frequency and
amplitude dependent manner.

6. Conclusions. We have presented numerical experiments concerning “valve-
less pumping” in the two-dimensional case using the immersed boundary method.
As in the earlier papers and physical experiments of valveless pumping, we have also
observed the existence of a net flow. Furthermore, we have presented the new, un-
expected result that the direction of the flow around the loop of tubing is decided
not only by the position of the driving oscillations but also by the frequency and the
amplitude of the driving oscillations. Since CPR may involve valveless pumping, it
is of obvious importance to know what frequency and amplitude of chest compres-
sion will produce the most effective CPR. Of course we cannot hope to answer this
question quantitatively with such an idealized model, but perhaps we have shown
qualitatively what phenomena may be expected as the frequency and amplitude of
the driving oscillation are varied. We have put special emphasis on the conditions
that generate maximum net flow, since that is the goal of CPR.

In studying these cases, we have found an interesting phenomenon: the clockwise
net flow seems to be associated with a standing wave in the flexible segment of tubing,



VALVELESS PUMPING 43

8
400
ol ]
~ 200
S
S ]
i 0
2| | -200
% 2 4 6 8 0 12 14 16
8 £33 300
0111
of D o "
e
% af f . 0
8
0 ‘ -100
di Ll ) | -200
0 ‘ ‘ : ‘ ‘ -300
0 2 4 6 8 10 12 14 16
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whereas the counterclockwise net flow seems to be associated with a traveling wave.
In the clockwise case (standing wave) the flow in the flexible segment of tubing is going
toward the site at which the periodic forcing is applied, but in the counterclockwise
case (traveling wave) it is going away from that site and in the same direction as
the traveling wave. Therefore, we believe that the counterclockwise flow is driven by
the traveling wave via a peristaltic mechanism, but we have no explanation for the
clockwise flow in the standing-wave case.

The immersed boundary methodology used here may also be applicable to other
biological instances of valveless pumping, such as the blood circulation within the hu-
man embryo at the end of the third week of gestation, and to engineering applications
such as the design of MEMS.

We are confident that numerical experiments such as those begun in this paper
will help answer many questions about the mechanism of valveless pumping. Even
though the results demonstrate success in modeling valveless pumping, there is still
much future work that remains to be done, such as giving a theoretical explanation
for this mysterious phenomenon, and extending this model to the three-dimensional
case in order to make it more realistic and more applicable to real-world biomedical
problems, like CPR.

A physical experiment of valveless pumping is being constructed at the Courant
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Fic. 21. Flow which is changing the direction by changing the period during a computer exper-
tment: The angles of the positions of two fluid markers are changed from increasing (clockwise) to
decreasing (counterclockwise) in time by changing the period from 0.325 s to 0.21 s at time = 10 s.
This result shows that the result does not depend on the initial condition.

Institute WetLab. An important part of the future work will be the comparison of
computed and experimental results.
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TIME MARCHING MULTILEVEL TECHNIQUES FOR
EVOLUTIONARY DISSIPATIVE PROBLEMS*

B. COSTA', L. DETTORI}, D. GOTTLIEBS, AND R. TEMAMY

Abstract. In this article we use a pseudospectral Fourier discretization in conjunction with a
multilevel splitting of high and low modes to solve dissipative partial differential equations. We de-
velop unconditionally stable explicit techniques for the temporal integration of the linear terms and
apply them to the high modes equation, improving the overall temporal stability of the multilevel
method and resulting in a competitive fully explicit numerical scheme for nonlinear problems. In
the cases where the linear term determines the time step restriction, numerical experiments with
the Burgers equation in one and two dimensions showed substantial CPU cost reduction when com-
paring the resulting method with the standard spectral collocation associated with regular temporal
integration schemes.

Key words. Runge-Kutta methods, nonlinear Galerkin, Fourier collocation, Burgers equation
AMS subject classifications. 65M70, 65106, 65120, 76 M25
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1. Introduction. For partial differential equations modeling dissipative prob-
lems, the large scale and the small scale components of the unknown play different
roles in the dynamics of their solutions. When solving such problems with a multi-
level scheme of the nonlinear Galerkin type (NLG) or with a more general collocation
splitting, the unknown u is decomposed in the physical space into its low modes com-
ponent y and high modes component z, and the governing equation is split into two
equations, one containing only the low modes and the other containing only the high
modes. This separation of modes allows the use of distinct time integration techniques
for each equation.

Certain problems require a minimum number of modes to be contained in the
numerical approximation of their solutions. However, increasing the number of modes
in dissipative problems decreases the size of the time step when using explicit temporal
integration. In this article, we show that by using the splitting of modes we are able
to relax the stability constraint of the high modes equation, allowing the use of time
steps larger than the ones permitted by the standard time integration of the original
variable w.

In the original NLG method, the high frequency component z of the solution was
computed as a function of the low frequency component y through the utilization of
an approximate inertial manifold (see [21]). This has proven to yield very unstable

*Received by the editors June 8, 1998; accepted for publication (in revised form) January 8,
2001; published electronically May 10, 2001. The second and third authors were partly supported
by AFORS grant F49620-96-10150 and NSF grant DMS-9500814.

http://www.siam.org/journals/sisc/23-1/33996.html

TInstitute of Applied Mathematics, Indiana University, Bloomington, IN 47406 and Departamento
de Matematica Aplicada, IM-UFRJ, Caixa Postal 68530, Rio de Janeiro, RJ, C.E.P. 21945-970, Brazil
(bcosta@ufrj.br). This author was partly supported by the CNPq, Brazil, under grant 200431/93-5,
by the National Science Foundation under grant NSF-DMS-9705229, and by the Research Fund of
Indiana University.

¥School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604 and Division of
Applied Mathematics, Brown University, Providence, RI 02912 (ldettori@cs.depaul.edu).

§Division of Applied Mathematics, Brown University, Providence, RI 02912.

YDepartament of Mathematics & The Institute for Scientific Computing and Applied Mathemat-
ics, Indiana University, Bloomington, IN 47406.

46



TIME MARCHING TECHNIQUES 47

schemes (see [19]). In the schemes that were subsequently considered (see [9]) the
temporal variation term z; was maintained, leading to much more stable discretiza-
tions than the original NLG with the same computational cost. Nevertheless, the
essential idea of computing the low and high modes differently was retained, since
their physical significances are different.

The collocation version of NLG was introduced in [6] and [7] for the Fourier
and Chebyshev bases, respectively. There, the original approach of earlier papers in
NLG (see [8] and [20]) was maintained. This approach, which consists in disregarding
the nonlinear interactions of high and low modes and, sometimes, even the temporal
evolution of the high modes, although leading to better accuracy with respect to
the standard collocation method (SCM), would do so at a higher computational cost
(see [13] and [14]). In [2] it was shown that by keeping all terms in both equations,
the resulting splitting scheme would generate the same numerical solution as the SCM
with equivalent computational effort. In this article we propose temporal evolution
methods which integrate the low and high modes equations of the splitting scheme of
[2] in different ways.

The general idea stems from the fact that high modes carry very little energy
and, when computing steady state solutions, they evolve much faster than the low
modes to an equilibrium state. This fast convergence at the transient stage of the
temporal evolution requires small time intervals in the numerical integration process
in order to capture the fast changes of the high modes. Therefore, artificially slowing
this convergence to the same pace as the low modes enables the use of time intervals
as large as the ones determined by the low modes only. Note that although we aim
to approximate time dependent solutions, we believe that a proper approximation of
the stationary solution is a necessary requirement for such a numerical scheme.

From the numerical point of view, the speed of convergence of the high modes is
determined by the size of the corresponding eigenvalues of the dissipative operator. As
hinted in [6], the size of these eigenvalues can be decreased by shifting the upper part
of the spectrum through an exponential transformation in the z variable, hereafter
referred to as the eigenvalues shifting technique. This involves the computation of a
parameter, which determines the intensity of the shifting and can be chosen in a way
of turning the high modes equation unconditionally stable. However, this technique
has the drawback of altering the steady state solution of the high modes. A similar
alternative way of shifting the spectrum that fixes this problem is proposed, and we
call it the implicit correction technique. This technique, which is similar to previous
ones developed in the study of stiff ODEs (see [10], [11], [17], [18], [22], and [24]), is
applied through a modification of the temporal scheme, in our case, a Runge-Kutta
scheme, allowing the use of a much larger time step. This method is consistent at
steady state with the original method and has time accuracy at the transient stage.

A necessary observation is that we propose in this work a multilevel method for
nonlinear problems, but since the stability analysis for these is mathematically too
involved to be presented in this article, we will only apply the above techniques to the
linear terms of the corresponding equations, relaxing only the time step restriction
imposed by the dissipative linear operator. Nevertheless, the numerical results show
computational advantages even in the cases of a weak dissipation.

This article is organized as follows. In section 2 we present the Runge-Kutta
method modified by the eigenvalues shifting and analyze its stability and generation
of steady state solutions. Section 3 presents the implicit correction technique and its
application to some temporal integration schemes. Stability and error analysis for the
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modified schemes are also presented. Numerical experiments are shown in section 4.

2. The eigenvalues shifting technique. We start by considering the Burgers
equation in one dimension, with periodic boundary conditions as below:
(1) Up — Vigy + 2(u), = f, z€(0,2m), t>0,
u(0,t) = u(2m,t), ¢t>0.

The multilevel splitting procedure applied to this equation yields the following
system for the low and high modes components y and z:

(2) yt_Vyww‘F%JN((y‘Fz)Q)g; :J]\]f7
2 = V2gn + 5Gu((y +2)%)0 = Gu f,

where Jy and G, are the projectors onto the low and high modes spaces, respectively
(see [2] and [6]).

In the next two sections, we will introduce three modified time integration schemes
to be applied in conjunction with the above decomposition. If the numerical solution
contains M = 2N modes, the y component corresponds to the first N modes and the
z component to the last N modes. The stability condition imposed by the linear term
of the low modes equation yields a time step proportional to ﬁ7 while the time step
for the high modes should be proportional to ﬁ < ﬁ The idea of the methods
presented below is to modify the time integration of the high modes equation in a
way that reduces its stability constraint to that of the low modes equation allowing
the choice of a much larger At. Thus, for the sake of simplicity, and since we are only
interested in changing the time step restriction coming from the linear terms, we will
consider for the numerical analysis that follows the linear equation

with periodic boundary conditions and its corresponding multilevel splitting

(4) yt:Vya;a:+JNfa
Zt = V2w + G f-

Nevertheless, the analysis that follows remains valid for nonlinear problems where
the linear stability restriction is dominant. In these cases, the methods proposed in
this section lead to fully explicit schemes with time steps much larger than the ones
allowed by the standard explicit integration methods, as we shall see in the numerical
experiments of section 4.

Consider a high modes function z in the form

N
(5) 2(z) = N" Z s M ik
k=1

and the homogeneous linear equation
(6) 2t = Zag-
Multiplying (6) by ¢®N"*, 8> 0, and defining the new variable w = ¢#V"*z, we have

(7) Wy = Wyy + SN?w.
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Substituting 1y, = efN Qték into (7), we obtain the following system of equations in
the phase space:
d

(8) aAszfuvk, k=1,..., N,

where
(9) A= —((N+k)? =8N, k=1,...,N.

To improve stability we need to choose a 3 that decreases the absolute values of the

eigenvalues (9). As shown in [6], 3 = 5 minimizes max, |)\,€\, yielding

max |A)/?] = §N2, k=1,...,N,
k 2
allowing the use of a time step proportional to ﬁ Hereafter, we denote this trans-
formation of variables as the eigenvalues shifting (ES) technique.
A straightforward application of this idea to a temporal integration method con-
sists in integrating the variable wy for one iteration and recovering Z; at the end by

setting
(10) ék = e_ﬁNzAth}k.

The choice of the parameter 8 will depend on the specific temporal discretization.
In what follows, we apply the modification above to the fourth order Runge-Kutta
(RK4) scheme and give an estimate for the parameter (3.
Let us consider (6) in the phase space:
d

(11) o= VT

The standard RK4 scheme is given by

LEr =0z Ky = L&D,
n+l/4 [ Ay At _ ran+tl/4
z, = |2+ 7K1 , Ky =1Lz, ,
n o A on

(12) g = ( + 2Kz> . Ky=rL
AT = (50 4 ALKG), Ky =L

At
2Z+1 _ {22 + ?(Kl + 2(K2 + K3) + K4)

and may be written in the form

(13) 2 = GANLAL)ZE,

where the amplification factor G(A)At) is given by

ORAY? | (RAD° | (AAN*
2 6 24

If we apply the eigenvalues shifting to RK4 (ES-RK), we obtain

(14) G\)AL) =1+ \)At +

(15) 2 = GOV ALz,
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where the amplification factor G ()\f At) is given by

(AL AL)? N (AL AL)? N (NS AL BNAL

A\ B _
(16)  G\At) = . - i

1+ \AL +

2.1. Stability analysis of ES—RK. In order to incorporate both methods in
a common framework, we define the following family of functions:

2 3 4
P,(z) = P(x)e’™.

Let us define the parameter

—B3N?
(18) = ﬂﬁ :
)‘k‘

Note that 42 = 0 and that 'yf increases when ( increases.

Setting xf = /\g At, we can write the amplification factor of both methods as

(19) GOAL) = Py(a)) = Po(af),  GO\JAL) = P ().
Figure 1 depicts the graphs of P, (z) for increasing values of 7. The stability condition
is determined by the first negative value of = such that P, (z) = 1. Note that increasing
the value of 8 and therefore of v increases the maximum absolute value of osg that
yields stability and therefore increases At. In the following we show that there is a
value of 3 that makes the scheme unconditionally stable.

LEMMA 2.1. Let the function Py(x) be defined as in (17). There exist two real
numbers vy, > 0 and v, < 0 such that if v > vy, then Py(x) < 1 for x < 0, and if
v < Ya, then Py(z) <1 for x > 0.

Proof. The proof follows from the fact that P(x) < el*!. Therefore,

P,(z) = P(z)e"” < erTelel,



TIME MARCHING TECHNIQUES 51

yielding
’721:7177 (ESO7 7§_1:7aa x> 0. O

In light of the previous results, if we can find a value of 3 for which 'y,f ¢ (Ya, V)
for all k, the method (15) becomes unconditionally stable.

THEOREM 2.2. For 3 = %, 'y,f ¢ (Ya, ) for allk =1,...,N, and therefore the
modified method is unconditionally stable for the high modes equation.
Proof. Let us rewrite ’y,f as
AN?
(1—B)N2 4 2kN + k2’

For a fixed positive 0 there exists 1 < ky < N such that

(20) "=

k<ko = 77 <0,
k>ky = 7 >0.

Moreover, fy,f is increasing and decreasing in modulus for k < ko and k > kg, re-
spectively. Therefore, we just need to check that %ﬁ and 'y]ﬁv are not in (v4,7s). The
value 0 = % is the one corresponding to ’yf, = 7, and for this value of 3, ’ylﬂ ~-2<

Ya- O

REMARK 2.1. The proposed modification shifts the upper part of the spectrum
and causes the stability condition to be determined by the low modes. However, when
considering the high mode solution 2i after n iterations

AMADZ (WA (WA "
<1+>\§:At+(k )+(k )_|_(k ) efﬁNzAt 22’

21)  2n =
@) & 2 6 24

one can easily see that the mode zj} converges exponentially to 0. The scheme will
therefore be inconsistent whenever the high modes of the exact solution do mot go to
0 exponentially. This suggests that the exponential correction to retrieve the original
variable z at the end of each iteration may be too strong. In the following section we
propose a different correction that will eliminate this inconvenience.

Further evidence of the inconsistency of this scheme is the fact that the steady
state solution generated by ES-RK does not converge to the steady state solution of
the original problem (3)

(22) P Ly

For the sake of simplicity, consider the eigenvalues shifting for the forward Euler
method:
(23) 20 = (14 AQAL + BN2AL)ZE + At fi,)e PN°AL
The steady state solution for this method is
At f,
ePNZAL — (14 BN2AL) — NDAL

(24) ' =

Note that, due to the desired stability condition, 3N2At = O(1); therefore, (24) is
not a good approximation to (22).



52 B. COSTA, L. DETTORI, D. GOTTLIEB, AND R. TEMAM

3. The implicit correction technique. As pointed out in the previous section,
the exponential correction to the Runge-Kutta scheme for the modified (8) is too
strong and yields a different steady state solution from the original problem. This
is due to the fact that applying an RK4 corresponds to applying a fourth order
polynomial approximation of the exponential which we then counterbalance using a
negative exponential at the end of each iteration.

The idea is to use a milder polynomial correction instead of an exponential one.
In this section we illustrate the details of this idea first on the forward Euler scheme
and later we extend it to higher order Runge-Kutta schemes.

3.1. Nonconsistent implicit correction. Let us consider the first iteration of
the standard forward Euler scheme for the modified (8):

(25) wf = (1 4+ A\ At + BN2AL) 22,

Note that the forward Euler scheme for the original equation can be retrieved by
setting

(26) 21 =y — BN?ALEY.

Instead, we propose the implicit correction

(27) Z =y — BN ALz},

which leads to the modified forward Euler scheme for the nonhomogeneous equation:

bl _ 1+ M\ At + BN2AE _, At

2 fe.
(28) % L1 AN?AL kT T aNeart

REMARK 3.1. The scheme above, although obtained from the ES idea presented
in the last section, can be classified in the more general class of rational Runge—Kutta
schemes, which have been previously considered by ODE analysts in the study of stiff
systems (see [17], [18], and [24]). Nevertheless, here we conjugate scheme (28) with
the multilevel splitting method by applying it only to the high modes equation.

The implicit correction technique differs from the ES in the substitution of the
exponential term e~ BN*At for the polynomial correction (1 + SN2At)~1, which can
be seen as a formal truncation in the Taylor series approximation to e #V At Tt s
easy to check that the steady state solution of the modified Euler scheme coincides
with the steady state solution of the original nonhomogeneous problem.

The following theorem shows that for certain values of the parameter (§ this
polynomial correction is enough to improve the stability of the method or even make
it unconditionally stable.

THEOREM 3.1. The modified forward Euler scheme (28) applied to the high modes
equation in (4) with 8 = 3/2 is stable for

(29) At < =5

which is the same stability condition of the original forward Fuler scheme applied to
the low modes. Moreover, if 3 = 2, the scheme is unconditionally stable.
Proof. The scheme (28) is stable if

|1+ A\ At + BN2AL
11+ BN2AY
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Knowing that Ay = —k? and 3 > 0, we obtain the condition

2
At< ————,
= k2 — 23N?2

Considering the largest eigenvalue Aoy, we have

_ 2

At<— 2
~ 4N2 —2BN2 (4 —2B)N?’

Therefore, the choice of § = 3/2 yields (29), and if 8 = 2, the denominator vanishes,
yielding unconditional stability. 0

REMARK 3.2. When choosing At = %, as required by the stability condition for
the low modes equation, it can be shown that the homogeneous version of the scheme
is a discretization of the modified equation

d Ak

(30) ﬁgk = m

2k

which, in the physical space, corresponds to solving

It is necessary to point out that adding the term [z in (31) is the correct way of
decreasing the viscosity without changing the steady state solution of (6). However,
this modification introduces an inconsistency and affects the order of the truncation
error of the temporal scheme. In the next section we will consider a consistent implicit
correction.

In the following we compare the error committed by the standard forward Euler
scheme,

L= (14 MA0" 5

(32) ay = (14 M\ At)"ad — " s

with that committed by the modified forward Euler (28):

n AkAt \n
o A At o L+ )"
(33) e = <1 + 1+BNAt> = " J
Defining €7 = @} — 4% and considering that A\, = —k?, we obtain
~n k2At " 2 n ~0 fk
ez = H(ll—I—ﬁNQAt> — (1 —k*At) } (uka
(34) <lnae(1- —1 ) 4... |a|+|f—’“| .
= 1+ BN2At kU R2
Since N2At = O(1) = nAt, the term (1 — m) = O(1), and we obtain
(35) €1 = O laR| + | fel-

Let us consider, for example, f to be a continuous differentiable function, whose
Fourier modes fj decay as O(k—lz), and an initial data ug, whose Fourier modes decay
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as ﬁg = O(k%) The contribution to the error in the low and high modes, respectively,
is

w8

Substituting this into (35), we get

)=O0(fi) = O0(k?) =0(1)  for k<N,
) = O(A#2), O(fi) = O(At), and O(k?) = O(At™Y)  for k > N.

FTOFO
>

(37) & :{ O(1)  for k<N,

O(At) for k > N.

This shows that for f with the required regularity, we will have an error of the
first order in time if we apply the modification to the high modes equation and no
convergence if we apply it to the low modes equation.

Scheme (28) is unconditionally stable even when applied to the nonsplit equation
(3). However, (37) shows that no time accuracy is obtained when including the low
modes in the modified scheme.

3.2. The nonconsistent implicit correction of RK2 and RK4. The ex-
tension of the method to a multistage scheme like a higher order Runge-Kutta is
done following the guidelines of Remark 3.2, where the addition of the term (z; is
enforced at each stage. Thus, the nonconsistent implicit correction of the second order
Runge-Kutta (NCIC2) for the nonhomogeneous version of (11) is the following:

Lz} = (A} + BN?)zy, Ky = L&'+ fi,
1 At - At - = ntl
oy AR )/ () Ramig ek

= (z;; + AtK'2> J(1+ BN2AR).

As before, the steady state solution of scheme (38) converges to the original steady
state solution, and the value 8 = 1/2 allows the use of the same time step of the low
modes equation.

Finally, we introduce the nonconsistent implicit correction of the fourth order
Runge-Kutta scheme (NCIC4):

Lzp = (\) + BN?)zp, Ky =Lz + fi,

nt+i - At - At ~ ~ pal A

Zk+4 =%+ 7[{1 /{1 +5N2? . Ky = sz+4 + fks

n+2 - At - At ~ < pa2 A
(39) A = (Ee S E) /(1N ) Ke =L

B = (o AtRe) J(1+ BN, Ka= L5 4

) LA
att= {Z;?JrG(Kl +2(Ka + K3) + Kq)| /(1 + BN?At).

The computation of the corresponding parameter § is more involved in this case;
however, the discussion in section 2 hints at the correct range for 3, since both methods
apply the same idea. Numerical experiments indicate that for § = 2, unconditional
stability is achieved for (39).
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3.3. A consistent implicit correction. The idea that led to the NCIC can
be improved to yield a consistent method. In this method we replace 22 in (26) by

=1, =—1
% and obtain

(40) Z o=y, — 5N2At(

This leads to the modified forward Euler scheme (CIC1)

BN2At

(41) Z = (1 4+ Atz — (Zptt — 232 4 207,

or, alternatively,

9 1 LENAE BNZ4L
(42) T pNeAL R T T g AL
2 2

(27 — 271,

The stability analysis of the scheme above follows by defining a new variable
vt = 2" transforming (42) into a system of equations whose amplification matrix
G is given by

1+ A, At+8N2AL —ﬂNQH
G(\, B, At) = R o

We will show that the eigenvalues of G are strictly less than 1 in magnitude for
the high modes, and stability will follow. In order to simplify the calculations, we set
A = yYN?, where v € [1,2] and At = %, since we are only interested in stability for
the set of high modes when using the low modes time step. Additionally, if, as before,
we put 0 = 2, the matrix G above becomes

5—2~2 2
G = 3 3
()

a++va?+4b
2 b

with its eigenvalues given by

OZ,Y:

where a = 5_572 and b = f%. When v € [1,2], it is easily proven that a? + 4b < 0;
therefore,

loy |2 < 1.

It is easily shown that the steady state solution of the CIC1 scheme (42) converges
to the original steady state solution.
The truncation error of scheme (42) is given by

(43) O(AL) + O((ALN)2zy).

The first term comes from the forward Euler scheme, and the second is the one
associated with the implicit correction (40). Differently from scheme (28), scheme (42)
possesses time accuracy independently of the particular set of modes being solved. If
AtN? is fixed (O(1)), then the second term in (43) is O(Atzy).
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REMARK 3.3. Observe for (43) that zy is not small in the sup norm, but it is
small in average. Hence there is here a new issue in numerical analysis on how to
understand and define truncation error accuracy for high modes.

REMARK 3.4. The CIC scheme is similar to the Du Fort-Frankel scheme (see
[4], [15], and [16])

(44) u" = " 2ALE% U — 'yNQAt(u;”r1 —2uf + u;l*l),

where 8% represents the discrete second derivative operator and 7y is a coefficient play-
ing the same role as B for the previous schemes. The fundamental difference is in
the way the first derivative in time is discretized. The Du Fort—Frankel scheme uses
a central approximation resulting in a nondissipative scheme, not well suited for the
parabolic equations under consideration, while in the CIC1 a forward approximation
is used.

By applying the consistent implicit correction at each stage of the fourth order
Runge-Kutta we obtain the CIC scheme of order 4 (CIC4):

g =04+ aNdg, Ro=Lg -0 g

5= (27; + A;fﬁ> / (1 +6N2A2t> o Ra=IgT- 5]2\[22'“ e
(5) 51 = (zk + Aﬁ@) / (1 +5N2Azt> B

B = (o AtKs) /(14 BN?AY), Ky =L - 6]2\722’“ + i

At - - - :
it = [51? + ?(fﬁ +2(K2 + K3) + K4)] /(1+ BN?At).

3.4. The nonlinear case. The analysis presented above is still valid for non-
linear problems where the stiffness of the linear dissipative operator determines the
stability restriction on the time step, in particular, problems with a high value for the
viscosity parameter v. For those where the choice of the At is also influenced by the
Courant, Friedrichs, and Lewy (CFL) condition, an extra modification in the implicit
correction is necessary in order to control the numerical instability coming from the
nonlinear advective terms. This is the subject of a forthcoming work. Here we limit
ourselves to see the numerical advantages obtained when the above schemes relax the
stability restrictions of the linear operator without recurring to implicit integration.

Thus, in the next section, when applying the implicit correction schemes to non-
linear problems, the nonlinear terms will be treated explicitly as in the standard
Runge—Kutta schemes. All the gain in the size of the time step will come from the
weaker stability restriction of the linear term obtained with the new schemes. The re-
sulting scheme when applying the modified forward Euler scheme (28) to the nonlinear
system (2) is given by

Y=yt Aty + 5 In (" + 2)?) + I ),
{ 2t = ﬁ(z" + vzl + BN2At") + ﬁ(%GM(y” +2™)2 + Gu ™).
(46)

The second equation of the nonlinear system above is obtained from the linear
scheme (28) by adjoining the nonlinear term to the forcing term. For the sake of
completeness we include below the fourth order scheme corresponding to (39) when
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applied to the high modes equation of the nonlinear system (2):

Lzp = (\) + BN?)zp, K, = EEIZL‘FNLZ-i-fk,
~’I’L+% ~n At g ZAt ~ +4 A n+4 A~
Zk = | %z + 7K1 / 1+ﬂN 5 KQ sz +NL +fk7
n+4 ~n 2 % ~~”+% i n+% £
(47) = + *Kz 1+6N2—),  K3y=1Lz " +NL, '+ fi
..n+4 2 ~ ~ ~n+% A n-‘,—% A
( + AtKg—I—) /(1+ BN At), Ky=1Lz,  *+NL, * + fx,
Frl = [ + — K1 + 2(Ky + K3) + fq)} /(14 BN2AL),
where

1
NL" = (QGM(y” + z")i) .

One obtains the higher order schemes for the nonlinear case corresponding to (38)
and (45) in an analogous way.

4. Numerical experiments. In what follows we will refer to the SCM with the
standard fourth order Runge—Kutta as SCM4. The collocation splitting coupled with
the nonconsistent and consistent implicit corrections of the fourth order Runge—Kutta
schemes ((39) and (45)) will be denoted by NCIC4 and CIC4, respectively.

The parameter 3 is set to 2 in order to yield unconditional stability for the high
modes. The time step is written in the form

C

(48) A= e

where the constant C is the parameter determining the size of At.

It is shown in [2] that the computational cost per iteration is the same when
solving (3) with the SCM or the collocation splitting. Since the modification in the
Runge-Kutta methods does not cause any relevant increase in the number of flops
with respect to the original Runge-Kutta method, the constant C, and therefore the
number of iterations to achieve a final time T, can also be used as a measure of the
computational effort for comparison purposes. In this paper, we are interested only in
measuring the gain in computational time by the use of a bigger At. It is shown in [2]
that by just applying the splitting, CPU effort reduction can be achieved; however,
this might also depend on the particular equation being solved.

REMARK 4.1. As was mentioned in the previous section, the following numerical
experiments deal only with problems where the linear stability restriction on the time
step is stronger than the CFL condition arising from the nonlinear advective terms.
More precisely, since the nonlinear terms in scheme (46) are treated explicitly, the
quantity

Ammin

[lulloo

(49)

must be larger than (48) at all times. For the dissipative problems below, it is sufficient
that the initial data satisfies the above condition. However, depending on the strength
of the nonlinearity, the time step bound (49) must also be checked during temporal
integration to avoid blow-up of solutions.
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4.1. The one dimensional case. We start by solving the linear equation

(50) Up — Vg = f, x € (0,27), t>0,
u(0,t) = u(2m,t), t>0,

with a right-hand side of the form

M cos(kx)
(51) f(z,t) = cos(vat) Z 12

k=1
The exact solution is

M .
_ t) asin(vat)

- = w2t veos(a i
(52) u(x,t) I; |:Ck:€ + Sa? + kD) + R (02 + kD) cos(kx),

where ¢, = O(71). We set a = 0.01 (providing a small variation in time) and M = 33.

Figures 2 and 3 show the L? error generated by SCM4, NCIC4, and CIC4 for
v = 0.1 and v = 0.001, respectively. We took C' = 2 in (48) when using SCM4.
(The maximum value of C' for SCM4 is 2.8; see section 2.) However, when using
the modified methods NCIC4 and CIC4, C was taken equal to 8, a time step four
times larger. Since we are considering 33 modes in (52), a minimum of 66 points is
necessary to completely represent low, £ < 16, and high modes, kK > 17. Note that
the multilevel methods generate intermediate solutions between SCM4 with 34 and
66 points, but at a lower computational cost than this last one since they use a bigger
At.

Another interesting aspect of Figures 2 and 3 is the different behavior of NCIC4
and CIC4 with regard to the temporal stage of the solution. We see that NCIC4
presents a smaller error during the transient phase. This can be understood by
analyzing the special form of the solution (52). At the beginning of the temporal
evolution, the dominating term in (52) is the negative exponential, which represents
the transient part of u(z,t). Therefore, for small ¢ we can write that

Ztt = O(N2Zt)

This makes both NCIC4 and CIC4 of the same order whenever a strong dissipation is
dominating the evolution of z (see Remark 3.2 and (43)). Figure 4 shows the graph
of the numerical values of z; and Atz for v = 0.001 and confirms the preceding
analysis.

In the next example we solve the full Burgers equation

(53)

ut_Vuzm+%(u2)I :fa T e (07271—)7 t> Oa
u(0,t) = u(2m,t), t>0,

with an exact solution of the form
L0 cos(kx)

(54) u(a,t) =y (1—e )=y

k=1

We applied SCM4 with two grids containing 34 and 66 points. Due to the non-
linearity, only this last one solves the problem without aliasing. The solution was
computed up to t = 25 with v = 0.1 and C = 2. For the modified methods, NCIC4
and CIC4, we used the 66 points grid with C = 8.



TIME MARCHING TECHNIQUES 59

SCMA4 34 pts

CIC4 66 pts

SCM4 66 pts

v =0.001

SCM4 34 pts

NCIC4 66 pts

L2 Error
=
S,
T

SCM4 66 pts

L L
0 500 1000 1500
t

Fic. 3. Comparison between SCM4, NCIC4, and CIC4 for v = 0.001.

Figure 5 shows the L? error results for these experiments. Note that the high
modes interactions, which are not captured by the 34 points grid, are relevant for the
correct solution at the steady state. NCIC4 and CIC4 achieved the same steady state
with the bigger time step. Now, CIC4 presents a better result than NCIC4 at the
transient stage due to its consistency.

Finally, Figure 6 shows that although the modified schemes achieved the steady
state at a later value of ¢, they did so at a smaller computational cost than SCM4 due
to the utilization of the bigger At. The little discrepancy observed at the steady state
of the 66 points grid is due to the better roundoff error presented by the modified
methods (see [2, section 4]).
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Fic. 4. Comparison between the numerical values of z¢ when using NCIC4 and Atzi when
using CIC4: (z¢) dashed line; (Atzi:) continuous line.
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FiG. 5. L? error for the Burgers equation. (SCM4) continuous line; (CIC4) dashed line;
(NCIC4) dash—dotted line.

4.2. The two dimensional case. In the next example we solve the periodic
Burgers equation in two dimensions:

_ . _ 2
(55) {Ut VAU + (U-V)U =0, z € [0,27]?,

U(,t) =U(2m,t), t>0,
where U = (u,v) with the initial conditions

u(0, z,y) = sin(z) cos(3y),
(56) { v(0, m,ZyJ) = cos(3x) cos(Z).
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CIC4 and NCIC4

s s s s s s s
0 2 4 6 8 10 12 14 16
CPU time (secs)

Fic. 6. CPU time for the Burgers equation. (SCM4) continuous line; (CIC4) dashed line;
(NCIC4) dash—dotted line.

As shown in [2], in the two dimensional case each component of the unknown U is
split in four quantities w, 21, 22, and z3, depending on the mode k = (k1, k2):

low modes w, |k1] < N, |ko| < N,
mixed modes z1, N < |k1| <M, |ko| <N,
mixed modes zs, |k1| < N, N < |ko| < M,

pure high modes z3, N < |k1| <M, N <|ko| <M.

In this case, we apply the modified methods above to the three resulting equations
involving the z variables. The determination of the parameter (3; for each set of modes
follows along the same lines as in the one dimensional case.

In the first example we consider a high viscosity problem, v = 0.5, and compare
the SCM coupled with a forward Euler scheme for the time integration (SCM1) with
the multilevel method coupled with the nonconsistent (NCIC1) and the consistent
(CIC1) implicit corrections. Figure 7 shows the SCM1 solution at ¢ = 1 when using
ten Fourier modes in each direction for the solution representation. The time step in
(48) was taken with C' = 1. Figure 8 shows the NCIC1 and CIC1 solutions at the
same time and same number of modes, but now using C' = 4, i.e., we use a time step
four times bigger than the SCM. At ¢t = 1 the problem is still in its transient stage,
and we notice the difference between the solutions in Figure 8. The parameters (;
were taken to be 3; =4, i = 1,2, 3, for both NCIC1 and CICI1.

Figure 9 shows the solutions at t = 4 for all methods above. Here NCIC1 and
CIC1 display the same graphic solutions. On the other hand, since these last two
schemes used a bigger time step than SCM1, their computational costs are much lower.
Figure 10 presents the CPU time results for the three methods when integrating in
time up to t = 10.

In the case of a lower viscosity, the stability constraint is influenced by the ad-
vective term of (55). Therefore, increasing the time step requires a modification also
in the nonlinear part of the equation. Since this is out of the scope of this article, we
want to show instead that the splitting of modes can also reduce computational costs
by generating solutions with fewer modes than the minimum resolution required by
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SCM1 v-solution att = 1, v =0.5, 10 Fourier modes

Fi1a. 7. SCM1 v-solution for (55) att =1 and v = 0.5.

NCIC1 v-solution at t = 1, v =0.5, 10 Fourier modes CIC1 v-solution at t = 1, v =0.5, 10 Fourier modes

Fi1G. 8. NCIC1 and CIC1 v-solutions for (55) at t =1 and v = 0.5.

the standard collocation in order to avoid blow-up due to the accumulation of energy
in the high modes.

Thus, in this second example, we compare the solutions obtained by SCM1 and
NCIC1 when solving problem (55), (56) with a value of v = 0.01. Due to the low vis-
cosity, the solution goes through a critical high gradient phase before being smoothed
out by the dissipative term. When using SCM1, a minimum of 80 Fourier modes in
each direction is necessary to pass the high gradient stage, which occurs at t = 1,
without the blow-up of the solutions. The results are shown in Figure 11 for t = 1
and ¢ = 6. On the other hand, when using NCIC1, only 40 modes are necessary
to overcome the high gradients and continue the temporal integration achieving the
results shown in Figure 12 for t =1 and ¢t = 6.

5. Conclusions. In this article we introduced new time marching techniques
that make use of distinguished treatments of low and high modes to improve the
stability condition of explicit time integration schemes, allowing the use of larger time
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SCM1 v-solution at t = 4, v =0.5, 10 Fourier modes CIC1 and NCIC1 v-solution at t = 4, v =0.5, 10 Fourier modes

. e\

1 2 3 4 5 0 1 2 3 4 5

Fic. 9. SCM1, NCIC1, and CIC1 solutions for (55) att =4 and v = 0.5.
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Fi1c. 10. CPU time for (55).

steps. These techniques consist of applying an unconditionally stable explicit scheme
to the high modes equation in order to use the larger time step determined by the low
modes equation. They are based on a shifting of the upper part of the spectrum of
the dissipative operator and they bear similarities with well-known explicit numerical
schemes like the Du Fort-Frankel and rational Runge-Kutta methods.

The numerical experiments showed that association of the new techniques with
spatial discretizations of the collocation type can substantially reduce the computa-
tional effort in numerically approximating the solution of partial differential equations
due to the utilization of a larger step to march in time. In this article, we altered only
the stability condition related to the linear dissipative operator. In a forthcoming
work we intend to treat the nonlinear hyperbolic case where the numerical stability is
strongly influenced by the CFL condition when dealing with low viscosity problems.




64 B. COSTA, L. DETTORI, D. GOTTLIEB, AND R. TEMAM

SCM1, u-solution at t=1, v =0.01, 80 Fourier modes SCML1 u-solution at t = 6, v =0.01, 80 Fourier modes

1 2

Fic. 11. SCM1 solution for (55) att =1 and t = 6 with v = 0.01 and 80 Fourier modes in

each direction.

L

NCIC1 u-solution at t = 1, v =0.01, 80 Fourier modes NCIC1 u-solution at t = 6, v =0.01, 40 Fourier modes
=)
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F1G. 12. NCIC1 solution for (55) at t = 1 and t = 6 with v = 0.01 and 40 Fourier modes in
each direction.
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A NEW TRIANGULAR FINITE-ELEMENT WITH OPTIMUM
CONSTRAINT RATIO FOR COMPRESSIBLE FLUIDS*

DANIEL Y. LE ROUX'

Abstract. The discretization of the shallow-water equations using the finite-element method
is a delicate problem. Apart from the possible occurrence of pressure and/or velocity modes, other
spurious modes may appear that are essentially a consequence of having more momentum than
continuity discretized equations, contrary to the continuum case. In this paper a new triangular
finite-element pair is proposed which overcomes this imbalance problem. The new pair is shown to
improve on results obtained with existing pairs in representing the propagation of fast gravity and
slow Rossby waves by discretizing the linear shallow-water equations.
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PII. S1064827500367403

1. Introduction. In the case of the compressible Navier-Stokes and shallow-
water equations, the contribution of the time derivative in the continuity equations
leads, at least theoretically, to a problem that is always stable without an inf-sup
(or LBB) [2] condition. An important result obtained in [11, 12], in the context of
the incompressible Navier—Stokes equations, is, however, generalized in [14] to include
the shallow-water and the compressible Navier-Stokes equations by examining their
numerical dispersion relations. It is found that spurious solutions may arise from
the coupling of the momentum and continuity equations, and that their existence
and behavior depend upon the placement of the variables on a mesh and upon the
choice of appropriate basis functions for finite-element formulations. These spurious
modes are small-scale artifacts introduced by the spatial discretization scheme which
do not propagate but are trapped within the model grid. In [14] two basic sets of
such spurious modes are described. For the first set the velocity field is zero and
nonconstant pressure functions lie in the null space of the discrete gradient operator.
Solution uniqueness is then lost since any multiple of a spurious mode can be added to
any solution of the discrete equations and still satisfy them. The second set of possible
modes are those for which the pressure is zero and the velocity field is in the null space
of the discrete divergence operator. Having noted their possible existence, little else
is said about them in [14]; attention is focused almost exclusively on the spurious
pressure modes of zero velocity, since these are argued to be the most troublesome.
The occurrence of such spurious pressure and/or velocity modes has been observed in
a variety of finite-difference [15] and finite-element [14] approximations to the shallow-
water equations.

Another difficulty comes from the so-called constraint ratio (CR), defined to be
the ratio of the number of continuity equations to the number of vector momentum
equations. In the continuum, at each point in the fluid, one vector momentum equa-
tion is balanced with one continuity equation; hence CR = 1. A desirable goal of the
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discrete approximation would be to achieve the same balance. For most of the finite-
difference schemes the balance is obtained and CR ~ 1. A valuable example, however,
is the C-D finite-difference grid [1] leading to CR ~ 1/2. The dispersion relation ob-
tained in [1] by discretizing the shallow-water equations on the C-D grid reveals the
presence of spurious frequencies; they are essentially a consequence of having twice
as many momentum equations as pressure equations. The use of the finite-element
method in discretizing the shallow-water equations is even more problematic because
for many popular finite-element pairs, e.g., the P, — P, Pyiso P, — Py, and Q2 — Q1
pairs, CR ~ 1/4 [9]; hence spurious frequencies are highly expected.

The purpose of this paper is to find new triangular finite-element pairs which are
able to improve upon the discretization of the shallow-water equations; such pairs
need to have no pressure modes and preferably satisfy CR ~ 1. All the aforemen-
tioned problems occur in the context of linear formulations; hence solving inviscid
linear equations is sufficient for our purpose. The shallow-water equations are of
considerable importance for a variety of problems of coastal and environmental engi-
neering, including oceanic, atmospheric, and groundwater flows. For many of these
flows the boundary conditions require the calculation of the normal at the boundary.
The latter is generally not unique at boundary vertices, and hence velocity nodes
should be located elsewhere in order to exactly satisfy the boundary conditions.

Element pairs satisfying CR ~ 1 and avoiding the placement of velocity nodes
at vertices are found in section 2. The ability of these pairs to generate pressure
modes and to solve two basic equations embedded in the shallow-water equations is
examined in sections 3 and 4, respectively. This leads to the choice of a new pair. In
section 5 the linear inviscid shallow-water equations are discretized using this pair.
The results of environmental flow experiments, namely, propagation of fast gravity
modes and slow Rossby modes, are presented and discussed in section 6. Conclusions
are summarized in section 7.

2. Finite elements candidates. In the two-dimensional case, for one con-
nected component, let V' be the total number of vertices of a given domain, C' the
number of cells or triangles, T'F' the total number of faces of the triangulation, and
IF the number of interior faces. Euler’s relations may then be expressed as

(2.1) TF+IF=3C,
V4IF=2C+1.

Assuming TF ~ IF we deduce from (2.1) and (2.2) that the number of triangles and
midpoint nodes is approximately 2V and 3V, respectively. This estimate provides
an easy tool for finding velocity and pressure node locations leading to CR ~ 1. An
obvious choice—and the subject of this section—is to locate one variable at midpoints
and the other at both vertices and barycenters. A second possibility offers three
possible locations for the variables: at vertices, barycenters, and midpoints (P5 [2])
or twice at midpoints (P2V¢ [3]) or at three internal nodes (Py_3 [9]). However,
because the P{NC element is not directly usable [5] and the P;% has nodes at the
vertices, this second possibility is not investigated here. Further, it seems difficult to
obtain other tractable combinations.

In the following let the subscripts 4, g, and ¢ distinguish new elements from
existing ones, and let N and N? be, respectively, the number of velocity and pressure
nodes of the domain. In all figures the symbol e indicates the location of nodes.
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F1g. 2.1. The elements (a) Po—a, (b) Po_p, (c) PNC. The compact support of the basis
function at selected nodes is shaded.

2.1. Constant and linear elements. Examples of Py_ 4 and Py_p elements
are shown in Figures 2.1(a) and (b), respectively, on a square domain made up of eight
biased dotted triangles (except for the boundaries). The element Py_ 4 is obtained in
Figure 2.1(a) by joining the barycenters of biased triangles (dotted lines) with their
vertices. The nodes are defined at midpoints and the basis functions are constant over
the resulting quadrangles (solid lines), or triangles for boundary nodes. The element
Py_ g shown in Figure 2.1(b) has nodes at both vertices and barycenters, and the basis
functions are constant over the hexagonal and “star” areas defined by solid lines. The
PNC element [3, 7], shown in Figure 2.1(c), has nodes at triangle midpoints. The
nonconforming linear basis functions are continuous only across triangle boundaries
at midpoint nodes and are discontinuous everywhere else around a triangle boundary.
Four pairs are considered: the Py_4 — Py_p, the Py_ 4 — PINC, the PlNc — Py_4, and
the PNC — Py_p pairs. The first of these pairs is treated as a finite volume.

2.2. Linear—linear element pairs.

2.2.1. The PlN C_cross-grid P; element pair. The cross-grid P; element
shown in Figure 2.2(a) has nodes at the triangle vertices and barycenters. The basis
functions are linear upon each one of the three subtriangles sharing the center of
gravity of the element as a common vertex and vanishing on the element boundary.
We have N? =V 4+ C and N* =TF, and thus N» — N* =V +C —TF. From (2.1)
and (2.2) we have TF —V = C — 1, and thus N» — N" =1 and CR ~ 1.

L] " Ig L [
.2 \ [] L) [] L) []

F1G. 2.2. The elements (a) cross-grid P1, (b) PN isoP>. The compact support of the basis
function at selected nodes is shaded.
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Fic. 2.3. (a) and (b): The Pi_a element. (c) The Pi_p element. At node I, (a) and (c)
on a horizontal face, (b) on a diagonal face; the compact support of a PlNC iso P> basis function is
shaded.

TABLE 2.1
Definition of the weights used in the calculation of the gradient matrixz of a scalar field for the
PlNC isoPo — Py_ 4 and PlNC iso Po — Py _p pairs.

PNCisoPy — Pi_4 PNCisoPy — P_p
1 109 2 1 3 1 1
WIZ*E wgzﬁ w5:ﬁ w7=§ U.)gzﬁ wlzﬁ W3=§
16 23 13 3 11 7 1
WQ:Z5 W4:§5 Wﬁz—% 0-18:—% wl():% ’WQZTS w4:—T8

2.2.2. The PlNC iso P,—P;_ 4 and PlNC iso P, — P;_ g element pairs. The
PN%is0 P, element is obtained by dividing each biased triangle of Figure 2.2(b) (solid
lines) into four subtriangles (dotted lines) using the midpoints of the triangle sides.
On each subtriangle, the nodes are defined at triangle midpoints and nonconforming
linear basis functions (P{¥¢) are used over the refined triangulation. The PN iso P,
element is chosen to approximate the velocity variable, and so there are 9 velocity
nodes per unrefined triangle or 12V over the domain. To obtain CR = 1 we need
to find 12V pressure nodes. If we suppose that the pressure variables are at least
located at the V vertices, we search for two positive integers n; and ng, respectively,
the number of nodes per face and per cell of the unrefined triangulation, such that

(2.3) BV)ni+2V)nya =12V -V or 3ny+2ng =11.

Equation (2.3) has only two solutions, (n1,n2) = (3,1) and (n1,n2) = (1,4), which
define the nodal positions for the P,_4 and P;_p pairs, as shown in Figure 2.3 for
two biased triangles. In both cases 12 subtriangles are defined per unrefined triangle
and conforming linear basis functions are used over the refined triangulation. We
have Nj =V +3TF +C, N, =V +TF +4C, and N} p(u) = 2TF +3C. Let
BF to be the number of boundary faces, with TF = [F + BF. From (2.1)—(2.2) we
deduce N} — N} p = BF +1 and N — N} 5 = 1; thus CR ~ 1 for both elements.
The weights w; (i = 1,10) and w; (i = 1,4) given in Table 2.1 are used to
calculate the discrete gradient matrix of a scalar field (e.g., pressure) for any original
triangulation, even an unstructured one. For example, in Figure 2.3(a) let I (denoted
by the symbol ©O) be a velocity node and (x5, yg) and (z¢, yco) denote the coordinates
of the nodes B and C. The entries of the gradient matrix at line I and column A (for
the contribution of triangle (4, B, C) only) are wy (yp —yc) and wy (xc —xp) for the
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x- and y-derivatives, respectively. The other entries are obtained in the same manner
by cyclic permutations. For the element P;_4 only, two different sets of weights are
defined depending on whether I is an interior or a boundary element node.

2.2.3. The PlN C_Pi_c element pair. The cross-grid P; element is shown
in Figure 2.4(a) over a biased triangulation intentionally represented with dotted
faces, except for the bottom and right boundaries. The P;_¢ element is derived
from the cross-grid P; in the following manner. Each dotted face (Figure 2.4(a)) is
suppressed and replaced by a new face (Figure 2.4(b)) joining the barycenters of the
two adjacent triangles (except for the boundary faces). For example, faces 1-2, 2-3,
and 3-1 are suppressed in Figure 2.4(a) and faces 4-5, 4-6, and 4-7 are created in
Figure 2.4(b). Except for the boundary triangles, such a transformation preserves
equilateral triangles. As for the P{¥“—cross-grid P, pair, N — N% = 1; thus CR ~ 1.

N6 6
L3 2 N LG4 5 \
4 4
) ) 5 7! <5
\ \ 1

Fic. 2.4. The elements (a) cross-grid Pi, (b) Pi_c, (c) reconnection of faces for nonregular
geometries.

The determination of the weights used to calculate the discrete gradient matrix of
a scalar field in the case of the PN~ P, _¢ pair now follows. The computation is more
difficult than in section 2.2.2 because the P;_¢ element results from a redefinition of
the triangulation by swapping the faces. Except for regular geometries (e.g., biased
triangles of Figure 2.4(b)), it is no longer guaranteed that the midpoints of old and
new faces coincide. The problem is illustrated in Figure 2.4(c). Let My and M be
the middle points of (M7, M2) and (M5, Mg), respectively, where My and Mg are the
respective barycenters of the triangles Ky (M, M2, M3) and Ky (My, My, Ms). Let
(z4,y:) and (x,y) be the coordinates of M; (i = 0,6) and M, respectively, and let K
be the triangle (Mo, M5, Mg) with

€
(2.4) Area(Ko) = ) [ (x5 — 20) (Ys — yo) — (y5 — ¥o) (x6 — w0) |,
where ¢ = 41 if My, M5, Mg are numbered counterclockwise (as in Figure 2.4 (¢)) and
€ = —1 otherwise.
ProposITION 2.1. We have
— 3 e Area(K)p)

(25) MMo= Area(K1) + Area(K3)

MM .

Proof. Since M_]\;[O and Ml—J{IQ are parallel,

(2.6) (ro — ) (Y2 —y1) + (yo — y) (v1 — 22) = 0.
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Then, noting that M belongs to (Ms, Mg), we obtain
(2.7) T (ye —Ys) +y (z5 — T6) = T5Y6 — T6 Y5 -
By using the property M;TJ\)@ =3 MJJG and (2.4), equation (2.7) reduces to
(2.8) (xo — ) (y3 — ya) + (Yo — y) (x4 — 23) = 6¢ Area(K).

Some elementary calculations show that

Y2 — Y1 T1 — T2
2.9 =2[A K A Ks)|,
(29) | =2l Area(K)) + Area(K5)

and the solution of (2.6) and (2.8) then gives

3 e Area(Ky)
2.1 —x = —
(2.10) o Area(K1) + Area(K>) (w2 =),
3 e Area(Ky)
2.11 —y = — .
(2.11) oy Area(K7) + Area(K>) (v2 = w1)

Thus, we obtain (2.5), and the proof is completed. d

Let I be a velocity node located at the middle point of (My, M3) as shown in Figure
2.4(c). Typical weights associated with I over the triangles (M, Mg, M), (Ma, M5, M),
and (Ma, M3, M5) of the P;_¢ triangulation are

1, M| Area(K1)
9 3 | M1 Mo || Area(K7) + Area(K3)

(212) Wy, M, M5) =

2 e |[MMy| Area(K1)
2.13 Mo =gtz — ’
(213)  wonMsMe) = | 5T 3 My 1| ) Area(Ky) + Area(Ky)

7
(2.14) Wy, My, M5) = s whether (Ms, M3) is a boundary face or not,

where || M Mpy|| is obtained from (2.5). If (Mj, Ms) is a boundary face, we have
WM, Ms,M5) = 1/18. All the weights are derived by analogy with (2.12)-(2.14) and
they are used in the same manner as in section 2.2.2 to calculate the entries of the
gradient matrix of a scalar field at line I.

3. Examination of the pressure modes. To determine if the element pairs
considered in section 2 have pressure modes, their corresponding discrete gradient
matrices are computed on Grid 1, as shown in Figure 3.1(a), and then decomposed in
singular values (SV). For all pairs at least 3 SV are zero, implying that the kernel of
the discrete gradient operator is more than one-dimensional and hence that pressure
modes exist. On Grid 1 two sides of a triangle may coincide with the boundary. By
requiring triangulation into corners, as shown on Grid 2 in Figure 3.1(b) at the upper
right and lower left corners, better results are obtained as shown in Table 3.1 for
different types of boundary conditions.

For the Py_ 4 — PlNC and the PlNc — P)_¢ pairs only 1 SV is zero; the null space of
their discrete gradient operator is one-dimensional and these pairs have no pressure
modes. This result reflects the fact that pressure is only determined to within an
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FiG. 3.1. (a) Grid 1, a 4 x 4 mesh; (b) Grid 2, as for (a) with triangulation into corners.

TABLE 3.1
Number of zero SV of the discrete gradient matriz computed on Grid 2 for several element pairs.

Dirichlet Normal | Tangential
Element pair boundary velocity velocity
conditions | specified specified
Py_s—FPo—B 2 2 1
Py_4—PNC 1 1 1
PNC—cross-grid Py 2 2 1
PNCisoPa-Pi_4 2 2 1
PNCiso P,-Pi_p 2 2 1
PNC-P_¢o 1 1 1

arbitrary additive constant by fixing the pressure reference level. The requirement
to triangulate into corners is a minor constraint, even sometimes desirable to impose
boundary conditions. The other pairs in Table 3.1 have 2 zero SV and thus have
pressure modes. Finally, the PlN ¢ _ Py_4 and the PlN € _Pypg pairs (not included
in Table 3.1) have many pressure modes whatever the grid.

The results shown in Table 3.1 have been found to be identical on meshes n x n
with n > 5 and do not depend on whether the number of nodes in each direction
is even or odd. It has been also verified that when only 1 SV is zero no other SV
converges to zero as the mesh parameter becomes small.

At this stage of the argument, the Py_ 4~ P{N¢ and PN~ P;_¢ pairs are favorable
candidates for solving the coupled momentum-continuity equations.

4. Representing basic equations. Two basic equations embedded in the
shallow-water formulation are now considered:

(4.1) u=aVp,

where u = (u,v) and p are, respectively, the velocity field and the pressure, and «
and +y are constant scaling factors.

In [9] it is shown that pairs having a low CR perform poorly in solving (4.1), while
smooth results are obtained for pairs with a CR larger than 1. A similar situation is
expected to arise, in the opposite sense, when computing p from u in (4.2); this has
been verified for several pairs (results not shown). As a preliminary before solving
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Fic. 4.1. (a) A window of Mesh 1 made up of unstructured triangles with smoothing (row
1), a window of Mesh 2 made up of unstructured triangles without smoothing (row 2); (b) isolines
(upper right quarter) of the simulated flow speed field corresponding to (4.1) on Mesh 1 (row 1) and
Mesh 2 (row 2) for the PlchPl_c pair; (c) isolines (upper right quarter) of the simulated pressure
corresponding to (4.2) on Mesh 1 (row 1) and Mesh 2 (row 2) for the PN -Pi_¢ pair.
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the shallow-water equations, smooth results should be obtained for u and p in (4.1)
and (4.2). These two basic equations are now solved for the pairs in Table 3.1.

The pressure in (4.1) is a specified Gaussian distribution with an e-folding radius
that is resolved by about 15 velocity nodes on Meshes 1 and 2, shown in Figure 4.1(a),
and u is to be determined from the finite-element discretization of (4.1). The velocity
field in (4.2) is the exact gradient of the specified Gaussian distribution used for p
in (4.1) and p is to be determined from the finite-element discretization of (4.2). The
exact solutions for the flow-speed field (u? +v2)1/ 2 and p are shown in Figure 4.2. The
numerical solutions shown here are all obtained using the visualization environment
VU [10].

For the PN~ Py_¢ pair smooth solutions, shown in Figures 4.1(b) and (c), are
obtained on Mesh 1. Good results are also found on Mesh 2 considering the unusually
high level of mesh distortion. The other pairs of Table 3.1 also give smooth results for
both solutions, due to the fact that CR ~ 1. There is, however, an exception for the
Py_a—P}NC pair, which gives a very noisy representation of p in (4.2). The problem
arises from a lack of contribution of u and v to the discretization of the divergence
term at horizontal and vertical nodes, respectively. This is consistent with the lack
of equations for v and v on horizontal and vertical faces, respectively, in solving (4.1)
with the P{¥¢~Py_ 4 pair (and also the P)N“-P, pair [9, Figure 3(a)]).

By a process of elimination, the P{¥“~P;_ ¢ pair has been identified as a promising
choice. The discretization of the linear inviscid shallow-water equations using this pair
now follows.
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ﬁ

FiG. 4.2. (a) Isolines (upper right quarter) of the exact solution for the flow-speed field corre-
sponding to (4.1), where the pressure is a specified Gaussian; (b) isolines (upper right quarter) of
the exact solution for pressure corresponding to (4.2), where the velocity field is the ezact gradient
of a specified Gaussian.

Y

5. Discretization of the inviscid linear shallow-water equations. Let )
be the model domain with boundary I'. The inviscid linear shallow-water equations
are expressed in Cartesian coordinates [8] as

(5.1) w+ fkxu+gVn=0,

where 1 is the surface elevation with respect to the reference level z = 0, f and g¢
are the Coriolis parameter and the gravitational acceleration, respectively, k is a unit
vector in the vertical, and the mean depth H is constant. Note that n plays the
role that pressure plays in the Navier—Stokes equations. For a contained flow, (5.1)
and (5.2) are solved subject to the no-normal flow boundary condition

(5.3) un=0 onT,

where n is the outward pointing normal at the boundary.
An implicit Crank-Nicolson time discretization of (5.1) and (5.2) gives

A A A A
(5.4) u—l—ukxu—i—g—tVn: u—ukxu—g—tVn =R",
2 2 2 2 Ay
HA HA
(5.5) 7]—|—7tv-u= n—itV~u = R",
2 t—At

where [.]t—a+ denotes evaluation at the previous timestep.

The Sobolev space H! () is the space of functions in the square-integrable space
L2 (Q), whose first derivatives belong to L? (Q). Let n be in a subspace V of H* (2)
and let each component of u be a sufficiently regular scalar function such that u-n =0
on I'. The weak formulation of (5.4) and (5.5) requires the test functions ¢ (whose -
or y-component is formally denoted by ¢) and ¥ to belong, respectively, to the same
function space as u and 7, such that

At At
(5.6) /u~<pdﬂ+f/f(kxu)-gadQ—i—L/Vn-gonz/R“wde,
Q 2 Ja 2 Ja Q

(5.7) /ande—kHTAt/QV-uz/}dQ:/QR"wdQ,

where dfQ is the areal element.
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On both sides of (5.7) the term V-u is integrated by parts using Green’s theorem.
The boundary integrals vanish by applying (5.3); thus (5.7) can be rewritten as

HAt
. dQ) — —— . dQ) = M) dS)
(58) [ wvae- =30 [ wviaa- [ R,
where
HAt
69 [ wvd= [ lesvars TR [ ula e,

The Galerkin finite-element method then approximates the solution of (5.6) and (5.8)
in finite-dimensional subspaces. Consider two triangulations 7, and 7, of the polyg-
onal domain {2, defined in Figures 2.1(c) and 2.4(b), respectively, where h is a dis-
cretization parameter tending to zero. For triangles K € 7," and K" € 7, let
Py (K") and P;(K™) denote the space of linear polynomials on K" and K", respec-
tively.

The discrete solution uy, sought belongs to a finite-dimensional space W), defined
to be the set of functions u; whose restriction on K" belongs to Py (K"Y) x P;(K"),
with u), being continuous only at the midpoints of each face of 7,*, and uj, -n = 0 on
T". The discrete solution 7y, is sought in a finite-dimensional subspace V}, of V', where
V4, is defined to be the set of functions 7, whose restriction on K" belongs to Py (K"),
with 7, being continuous at each vertex of 7.

By applying the Galerkin procedure the problem can be summarized as seeking
solutions uy, and ny,, respectively, in W}, and V}, such that

At
Z /uuh-goidQ—i—T Z fkxup)- @, dQ

KuETI,:’ K“E'Th‘,‘ Ku
At
(5.10) +2=0 Vin-pid2= 3 RY - o, dS,
2 o K
KueTy KueTy
HAt
(511) 3 / - =2 Y / wh Ve = Y / R b, dQ2
KneTy K" ke VKT ket K"

for all basis functions ¢; and v, (defined in [3]) belonging to W}, and V},, respectively,
where ¢ and j are typical nodes of 7;" and 7,, respectively.

After insertion of the expansions uy, = 22:1 uy @ over K" and 7, = 2?21 m
over K" into (5.10) and (5.11), where uy and 7; are the values of uy, and », at nodes
k and [ of 7, and 7', respectively, we obtain a set of linear equations of the form

At

(5.12) M“u+% n=RY,
HAt

(5.13) M5 — — G'u=R",

where M" and M" denote the velocity and surface-elevation mass matrices, respec-
tively, G is the gradient matrix, and R" and R" are the right-hand sides.

Since the velocity nodes are located at triangle midpoints, the normal direction
along the boundary is defined uniquely, a property which is not true in general for
boundary vertices. Following [4], the z-y momentum equations corresponding to a
boundary node in (5.12) are transformed into tangential and normal equations, the
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local x-y coordinate system at this node is rotated to coincide with the tangential and
normal directions, and the boundary condition (5.3) is then applied.
Due to the orthogonality property of the velocity basis functions [13], M" is a
diagonal matrix with 2 x 2 blocks along the diagonal. Equation (5.12) is rewritten as
gAt

(5.14) u= T(M“)—1Gn+(|\/|“)—1R“,

and (5.14) is then used to eliminate u from (5.13). The substitution results in

At)? A
(5.15) <M" +9H% G' (M)~ G) n=R" +H7t G (M¥)~1RY.

The elimination of u thus leads to a linear system for the n only, which greatly
enhances computational efficiency. The matrix on the left-hand side of (5.15) is a
very sparse matrix, with an average of 31 nonzero elements per row. Finally, once n
is obtained from (5.15), u is computed explicitly from (5.14).

6. Numerical results. A linear stability analysis of (5.1) and (5.2) reveals that
there are two basic kinds of associated motion: small-amplitude fast-moving gravita-
tional oscillations and slow-moving Rossby modes [6]. To determine how the P{¥¢—
P, pair approximates these two types of modes, two tests are proposed. The first
test examines the propagation and dispersion of fast surface gravity waves in a circu-
lar basin and their reflection at the lateral boundary. In the second test, the slowly
propagating Rossby modes are simulated in the case of the evolution of a typical
anticyclonic vortex at midlatitudes.

For both tests, the linear inviscid shallow-water equations are solved with a Gauss-
ian distribution of the surface elevation prescribed at initial time, i.e.,

2
(6.1) n(r,0) = aefbr ,

where r is the distance from the Gaussian’s center, and a and b are prescribed.

The second, more stringent test was applied in [9] and the P; iso Po—FPy_3 pair
(CR = 3/2) was shown to give much better results than already existing pairs. Hence,
this pair is chosen for comparison with the PNY~P;_¢ pair.

6.1. Gravity wave propagation and dispersion. For many applications very
little energy is carried by the small-amplitude fast-moving surface gravity waves, and
this justifies slowing them down via a semi-implicit time discretization. Nevertheless,
the numerical solution of (5.1)—(5.3) at small values of the gravitational Courant
number C;, = ¢At/ hg, where ¢ = /g H is the phase speed of the surface gravity
waves and hg is the smallest distance between two nodes of 7;" or 7,’, should be
expected to reasonably well approximate the analytical one when using the semi-
implicit scheme.

The analytical solution of the problem is obtained from (5.1) and (5.2) by exploit-
ing the circular symmetry. In order to do so, the Coriolis term is set to zero, leading
to a second-order wave equation in polar coordinates for 7, viz.

1
(6.2) Net —02;(7"7% )r =0

subject to the boundary conditions 7,|,._, = 0, and no singularity at the origin.
The initial conditions are n(r,0) = ae ™ and n: (r,0) = 0; the latter condition
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follows from setting the initial velocity to zero. The exact solution of (6.2) is the
Bessel-function expansion

n(r,t)zz tin Jo (VAnT) cos e/ Ant,
n=1

" 0 (r,0) Jo (VRar) rdr
fo fOR R Sryrdr and A, are the roots of J; (A, R) = 0.

The circular domain has a radius of R = 1000 km and is discretized using a 40 km
vertex node spacing unstructured triangulation 7," with smoothing (hy = 20km).
A flat bottom with mean depth H = 2000m is assumed, leading to ¢ ~ 140ms~".
By taking a timestep of 20s, C, is approximately 0.15. The Gaussian distribution
parameters that define 7 at initial time are set to a = 100m and b = 6.4 x 10~ m—2.

Time sequences for 1 are shown in Figure 6.1. The surface elevation is first shown
at stage 1, after a single timestep. At stage 3 it is being reflected by the basin wall, and
by stages 5, 6, 7, and 8 it has returned one, two, three, and four times, respectively,
to its starting point. Comparing panels 1 and 5 of Figure 6.1 we can see that very
little dispersion has occurred after a single cycle, but after two and three cycles the
dispersion effect is quite obvious. The dispersion is due to the individual Bessel modes
of the exact solution propagating with different phase speeds.

where p, =

1 2 3 4

A

Fic. 6.1. Vertical cross sections in the x,z plane of the surface elevation n at different stages
of gravity wave propagation and dispersion. The initial Gaussian distribution is shown in panel
1. Reflection occurs at the boundary in panel 3, and in panels 5, 6, 7, and 8 the disturbance has
returned to its starting point one, two, three, and four times, respectively.

Good agreement is obtained between the analytical and the computed solutions
for the PN¢~P,_¢ pair as shown in Table 6.1. Further, it has been observed that
the radial symmetry of the exact solution is very well reproduced by the numerical
one. For the Pjiso P, — Py_3 pair the discrepancy with the analytical solution after
stage 4 may arise from the constant approximation for 7 and/or from an inaccurate
calculation of the normal at the boundary vertices. The test has been done on a
Power Challenge XL machine with MIPS R8000 processor chips. Note that for the
PNC-P;_¢ pair the computational cost and the memory requirement are reduced by
a factor of 6; = 3.74 and 6y = 1.84, respectively, compared to the Pjiso Po—FPy_3
pair. A conjugate gradient method is used to solve for (5.15) and residuals are found
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TABLE 6.1
Mazximum and minimum values of the analytical and computed surface-elevation field, for the
PlNc -P1_¢c and P iso Pa—Py_3 pairs, at the stages corresponding to the plots of Figure 6.1.

No. of
Stage  timesteps Analytical PlN C_Pi_¢c PiisoPy—Py_3
1 1 99.55 99.55 99.77
0.00 0.00 0.00
14.84 14.91 15.05
2 179 ~9.47 -9.53 -9.58
18.53 18.64 18.13
3 357 -3.33 -3.43 -3.68
18.12 18.25 18.58
4 536 466 479 479
80.76 80.40 83.36
5 683 -3.58 -3.69 -3.57
3.40 3.52 4.10
6 1430 -95.57 -95.60 -90.86
4.26 4.46 4.36
7 2113 -83.92 -83.03 -86.10
95.91 96.13 82.02
8 2860 -1.33 -1.48 -3.03
Number of velocity nodes 8176 10958
Number of pressure nodes 8177 16185
Computational cost 875 s 3271 s
Memory requirement 2.5 MB 4.6 MB

to decrease by a factor of 1076 within 10 iterations for both pairs using a diagonal
preconditioner.

6.2. Eddy propagation. In the second experiment the domain is an idealized
1200 km x 1200 km square basin discretized using a 10 km vertex node spacing unstruc-
tured triangulation 7;" with smoothing (hy = 5km). The constant depth H = 1.63m
results in a phase speed for gravity waves of approximately 4ms~!. Such a small
equivalent depth is pertinent for the adjustment under gravity of a density-stratified
fluid [6]. The initial Gaussian surface-elevation distribution is centered on a point 600
km from both the south and west walls. By setting b = 5.92 x 107! m~2 the e-folding
radius is 130 km. The [-plane approximation, f = fo + By, is used, where fy and
3 are evaluated at 25°N (fo = 6.16 x 107 5s7 and 3 = 2.07 x 10~ m~1s~1). The
radius of deformation at midbasin is thus Rq = /g H/ fo ~ 65km.

The initial symmetric anticyclonic velocity field is taken to be in exact geostrophic
balance fk x u= —¢gVn, and thus

(6.3) u(x,y,0) =2 % abye_b(mQ +4?) :
(6.4) v (2,y,0) = —2§abme—b<w2 +4°)

By setting @ = 0.95m, the initial maximum surface azimuthal velocity is 1 ms~!. The
timestep is 30 minutes and thus Cy is approximately 1.5; the results are relatively
insensitive to the precise choice of the timestep.

During the first inertial period (27/fo ~ 28 h22mn) the initial condition adjusts
to the O-plane balance of the model. After this initial adjustment, the anticyclonic vor-
tex evolves purely westward at an average translation speed of 3 Ry ~ 7.5km day .

The evolution of the flow-speed field and surface elevation is shown in Figure 6.2
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Fia. 6.2. Isolines of the flow-speed field (row 1) and surface elevation (row 2) after one week
of simulation for the (a) Py iso Pa—Po—3, (b) PlchPl_c pairs. The contour interval is 0.05ms~1
for the flow-speed field and 0.05 m for the surface elevation.

for the PN C_P,_¢ and P iso Py-Py_5 element pairs after one week of simulation.
Smooth surface elevations are obtained for both pairs. For the P;iso P,—Py_3 pair,
noise gradually develops in the flow-speed field during the week of simulation while
results obtained with the P{¥“~P;_ pair are much smoother.

For this experiment 6; and 6o are similar to the first test. A GMRES iterative
method is used to solve for (5.15) and residuals are found to decrease by a factor
of 1075 within 21 and 32 iterations for the PlchPl_C and P;iso P,—Py_3 pairs,
respectively, using a diagonal preconditioner.

The PNC-P,_¢ element pair is shown to give favorable results not only for the
propagation and dispersion of gravity waves, but also for the simulation of the slowly
propagating Rossby modes.

7. Conclusions. Most popular finite-element pairs result in having more vector
momentum than continuity discretized equations. Consequently, relevant problems
such as wave propagation may be poorly approximated. In this paper several new
pairs are proposed which lead to a good balance. Of these, one pair is shown to
be preferable; it has no pressure modes (assuming a triangulation into corners) and
gives smooth results for two basic equations embedded in the inviscid linear shallow-
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water equations. The latter set of equations is then solved using this new pair. Two
tests are performed: simulation of propagation of gravity waves in a circular basin
and simulation of evolution of an anticyclonic velocity field. In both experiments
the new pair gives better results than those obtained previously, and at much lower
computational and memory requirement costs. It is concluded that this pair is a very
promising choice for the discretization of the nonlinear shallow-water equations with
forcing and varying depth.
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EVALUATION OF SINGLE LAYER POTENTIALS OVER CURVED
SURFACES*

LEANDRO FARINAT

Abstract. The evaluation of nearly singular single layer potentials encountered in boundary
element methods is treated by a new approach. The potential is expressed as a sum of a one-
dimensional integral and a correction term that vanishes for planar surfaces. The small variance of
the second term’s integrand allows the use of a quasi-Monte Carlo quadrature. Numerical results
show that a significant reduction in computational time is obtained over algorithms employing domain
subdivisions.

Key words. numerical integration, potential theory, boundary integral method, Monte Carlo
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1. Introduction. In boundary element methods, the solution of a boundary
value problem is expressed in terms of an integral over the boundary S of the original
domain. For potential problems, a solution ¢ is obtained by solving the Fredholm
integral equation

(11) AP)6(p) + /S H(0)G(p.q) do = f(p), peS,

where G = ﬁlpiiql' p=(&n,¢) € R3 is called the field point.

Discretization of (1.1) poses the task of evaluating

(1.2) U= /Sg(q) G(p,q) dog,

called the single layer potential with density g. A number of methods has been
described [4], [10] to deal with integrals where the integrand behaves like the funda-
mental solution of Laplace’s equation. However, usually the assumption that S is of a
particular form or has a certain parametrization is made, and/or the case where the
integral is nearly singular is ill treated. In this paper, we will relax the usual condi-
tions over the parametrization on S, and we also treat the case where U assumes a
moderate to a highly near singular character, as explained below. This is a topic of
interest in the boundary element method, in particular, in higher-order methods.
Let S be defined by a mapping T : P = [a,b] X [¢,d] — S with the property

(1.3) T(dP) = 8S.
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It is useful to classify U according with the order of magnitude of the distance dist(p,S)
between the field point p and the surface S. Thus we say

(1.4) if dist(p, S) = O(1), U is regular,
(1.5) if 0 < dist(p, S) < o(1), U is nearly singular, and
(1.6) if dist(p, S) =0, U is singular.

We are mainly interested in the case in (1.5). In this case, the integral U above is
regular. However, as the integrand is near a singularity, standard quadrature formulae
are not appropriate. This case appears in the boundary element method, typically in
applications involving bodies with thin components where one part of S is close to
another part of this surface. Moreover, the occurrence of nearly singular integrals is
also associated with more general types of domains, depending on how the surface is
discretized or panelized. A large difference in size between two panels may create the
condition described in (1.5). Recently, it was shown by Luo, Liu, and Berger [7] that
conventional boundary integral methods will not degenerate even when applied to
thin structures with the thickness to length ratio in the micro (10~%) or nano (1079)
scales. This is true as long as numerical difficulties, such as the calculation of the
nearly singular integrals, are addressed.

2. Semianalytical approach. Integrals of type (1.2), where g is a polynomial,
can be evaluated in closed form when the surface S is a flat polygon (see Newman [8]).
However, for an arbitrary surface S, numerical integration becomes mandatory in the
evaluation of U. Our approach here is to use analytical evaluation to a maximum
degree in this ultimately numerical task. This will sustain the accuracy and efficiency
of an analytical evaluation into the method.

Thus we decompose the surface integral U as

(2.1) U=U,+U,

where U, is a planar approximation to U in the sense that it is given as an integral
over a flat domain in R® and it coincides with U when S is flat. U, is the correction
due to this approximation. As we will see, the inner integral in U, will be evaluated
analytically.

A precise expression for U, and U, will be given later. Let us first describe the
change of variables defining the auxiliary flat domain.

3. New coordinate systems. The function G presents a weak singularity at
q = (x,y,2) = p, where it is unbounded. The fact that this function’s integral is
finite can be easily proved by using polar coordinates, since the jacobian will cancel
the singularity. This also suggests a way of evaluating U numerically as a regular
integral. Consider a new coordinate system given by

X
@,5,2)=M""{ vy |.
z

where the field point p is the origin lying on the #7-plane, denoted by D. M~! is a
3 x 3 matrix. Using the polar coordinates p = /22 + 92, 6 = arctan(y/x) gives

1 2w rR(0) p _
3.1 U:—/ / ) —L— J dpad,
(31) L et
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FiG. 1. The domains P, S, D and the transformations T, M, and M.

where h = Z(p,0) and R(0) is the value of p, as a function of 0, at the boundary of S.
J is the jacobian of the transformation M ~!, and it is given by J = where np

nD]jnS ’
and ng are the respective normal vectors to D and S at gq. Because D is flat, J = n3,
where n3 is the third component of ng.

With this new setting, we see that as ¢ approaches p, the integrand remains
bounded and approaches the value of ¢gJ at that point. Thus, in our approach, the
integral defining U is represented in the physical three-dimensional space.

There are three domains of interest in our problem: the parameter domain

P = [a,b] x [c,d],

the three-dimensional space R® (where S is embedded), spanned by the canonical
basis

C ={z,y,z},
or by the alternative basis

B ={z,y,%},
and the flat domain

D = span{z,y} = span{p, 0}

where the integrand is regularized.

The main difficulty associated with evaluating (3.1) is that it is not possible, in
general, to evaluate R,h, and J as functions of (p,6). This is a result of the lack
of restriction on S. Indeed, we assume S can be any parametrized surface with the
property (1.3). Then, the fact that the transformation T : P = [a,b] X [¢,d] — S
is not, in general, invertible prevents us from evaluating R,h, and J directly as
functions of variables in S or D (see Figure 1) and therefore from using a quadrature
formula where the location of the integration points are predefined. In other words,
the control over the integration points is lost; the relative locations of these points in
‘P will be altered by the transformation 7. Thus our approach is to use a interpolation
quadrature [2] based on linear functions or on splines for computing U, and a Monte
Carlo method for U.. We will describe and give details about this approach in the
following sections.
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L ] - nD
./—\O T D

Fic. 2. The domain D and the surface S.

4. Independence on the field point. We saw that the change of variables
described in the last section, above formula (3.1), provides a regular and simple inte-
grand. However, the new variables are dependent on the field point p. This feature
is inconvenient from the computational point of view if the objective is to evaluate U
for several, say, L field points, as is usual in boundary element methods for numerical
solution of integral equations. Therefore, we will use a similar change of variables, but
independent on the field point. In this way, the matrix of the linear transformation
between C and B is determined once for all computations associated with the surface
S. Moreover, the integration points and certain parts of the integrands are computed
only once. Then consider B = {Z,§, 2}, as defined in section 3, but with a fixed
origin O = (01,03,03) € S, which will be a free parameter specified as one finds
appropriate (see Figure 2). The optimum location of O is found by minimizing

max{|Z| : ((Z,7,2) — O) € S}.

Let us assume g may be expanded in powers of x — &, y —n, and z — (. In view of this,
for the evaluation of U, it is sufficient to consider U#*V := fS P,v(p—q) G(p,q) dog,

where P[LV’U(p - Q) = (m - é‘)ﬂ(y - 77)””(2 - C)U
Now define UK as

(4.1) ke = 1 /27r /R((’) Puo(p — q)L dpd®,
ar Jo o p?+bp+a

where a = £2 + 02 + (Z — ¢)? and b(0) = —2(£ cos @ + nsinf). The value Z represents
an average value of Z and can be taken as zZ = Os.
We now have

UVU _ TTRVU nZy
UFe =UE" - U,

where

4.2 Uy = — P vu - J— d da?
(42) ¢ 4m /0 /0 o (P =) { rn3 T } p

with r = [p—gland 7 = /(T = )? + (7 —1)* + (2 - () = /P> + bp + a.

5. Quadrature of U,. The objective in this section is to express (4.1) in the
form

1 2w

(5.1) uym=— F(R(6),0) db,
dm Jo

where F' is an exact closed form expression for the inner integral in (4.1), and to
subsequently apply a one-dimensional quadrature to (5.1). This quadrature will be
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based on nodes (6;, F;) obtained from a sample of points (u;,v;) selected in 9P :=
P1 U Py UP3U Py, where

P ={(u,v):v=c}, Pa2={(u,v):u=D>},
Ps ={(u,v) :v=d}, Ps={(u,v):u=a}.

Condition (1.3) assures that R is in fact evaluated at the boundary of S. This is
the only place where (1.3) is used. Thus the quadrature nodes (6;, F;) are obtained
without the knowledge of their exact location. For smooth integrands F', a quadra-
ture based on interpolating cubic splines or Hermite functions [5] can be used. Al-
ternatively, noninterpolating methods could be used, such as the locally corrected
quadrature proposed by Strain [9], where singularities are allowed in the integrand F'.

In order to make F'(R(6),0) explicit, note that

(l',y,Z)ZM _O>

S K

where M = {M;;} is a 3 x 3 matrix. It follows that on D we have

x = My1 pcosf + My psinf — O,
Yy = M21 pCOSG+M22 pSiI’lQ—OQ,
z = Msy pcosf + Mss psin€ — Os.

Therefore,

R(0) P
5.2 F(R(9),0 z/ cp+d)H(ep+ fY(hp + 1)’ —————— dp,
(5.2) (R(0),0) | ( ) ( )"( )\/m

where d = = — Oy, f = —n— 03,1 = —=( — O3, ¢(0) = My cos + Miosinf, e(d) =
Moy cos@ + Moy sinf, and h(f) = Mszy cos + Msssinf. Expanding the binomials
in (5.2), we get

F(R(0),0) =} (“W) 4 1R (9)e" 3 (0)h°(6)

ijk
i—0 j—0 ko \ "

X Hu+u+v7ifjfk+1 (9)1

where (i) == (7) (5) () and

(5.3)

R(0) pt
H,(0) = / — dp.
0 VP2 +bp+a

The integral (5.3) can be recursively evaluated using [3]

t—1

w0 = L mpra- C W) - LDy, ),
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with the starting functions

p=R(0)
log|2p + b+ 2+/p? + bp + a , da # b2,
(5.4) Hoy(0) = p=R(0) =0
log |b + 2p| , da = b?,
p=0
p=TR(0) b
(5.5) Hi(0) =+p*+bp+a — §H0(9).
p=0

6. Quadrature of U, by quasi-Monte Carlo. The evaluation of expres-
sion (4.2) is more complex than the numerical integration of (4.1). In the case of
U,, it was possible to separate the variables p and 6 in order to evaluate the inner
integral analytically. Because n3 is an arbitrary function associated with the given
surface S, the correction component U, does not permit a similar variable separation.
Thus U, has to be integrated numerically as a two-dimensional integral. Since U,
presents the same discretization condition as U,, namely, the location of the nodes
in the (p,0) variables is arbitrary, this makes the problem more delicate. The ap-
parent solution! seems to use interpolation in two variables, imitating the procedure
for evaluating (5.1). However, we believe that interpolation provides neither more
efficiency nor more accuracy than a Monte Carlo quadrature. Traditionally, since its
convergence rate is independent of the problem dimension, Monte Carlo quadrature
has been used in high-dimensional integrals as an efficient and robust alternative to
grid-based methods. In what follows we will outline the reasons for using a Monte
Carlo type of quadrature in a low-dimensional (i.e., two-dimensional) integral and
describe the specific approach employed.

Let (pi,0;)i=f1,...,n} be a sequence of points in D. To evaluate (4.2) we use an
integration formula @y of the form

(6.1) Qn(Ue) = A(D)pun (K),

where

pl p
K—Puuv(p_Q){rng_r}7

and ppn denotes the sample mean of K on D, given as
XN
pn(K) =+ 21((/%91‘)-

Note that the evaluation of A(D) is intimately related with the numerical integra-
tion of U,. From (5.1), we see that A(D) is a special case, where F(R(0),0) = R(0).

IStrain’s approach [9] does not seem applicable here because of its restriction that the domain
of integration must be a hypercube.
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Fic. 3. The effect of the partitioning algorithm represented by the location of the integration
nodes in the @ — p plane bounded by R(0). Here N. =1, and S is a curved quadrilateral.

As is well known in the theory of Monte Carlo methods, there are basically two
resources for improving the convergence rate of our approximation (6.1) to U.. One
is to force the nodes to be as uniform as possible, and the other is to reduce somehow
the variance

o2 — T2
(1) = [ (o< =R dpas,

where K is the mean of the integrand K.

We will use both means to obtain a suitable algorithm for the computation of
U.. The particular procedure to achieve this goal in the correction integral will be
described next.

The control variates [1], [6, Chapter 6] form of variance reduction is in fact used
from the beginning in our approach to evaluate the single layer potential as in the

decomposition (2.1). The term
pl _»
rn3 T

in K vanishes where the S is flat and, for moderate curvatures in .S, presents small
variances.

The other resource that we will use to improve convergence rates is the wumni-
formization of the nodes distribution over the domain of integration.

The sequence of the nodes will fill the integration domain more uniformly and less
uncorrelatedly than random nodes characterizing a quasi-Monte Carlo formula. For
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Fic. 4. The surface Se.

our case, the transformations 7" and M would void any deterministic choice of points
in P. In order to obtain low-discrepancy nodes, we combine the stratification and the
acceptance-rejection methods [6] into a partitioning algorithm. Thus we divide the
p— 6 domain in approximately equal sized cells, or subregions, and we accept or reject
the pseudorandom generated points for the formula (6.1) until an equal number of
subnodes N, are present in each cell. A typical example of the effect of this algorithm
can be seen in Figure 3, where the distribution of the integration nodes in the 6 — p
plane is represented. In this figure, the bounding curve is R(#), given for a curved
quadrilateral with equal, straight sides, and the cells are rectangles with one subnode.

7. Numerical results. In this section we present numerical results obtained
from the Monte Carlo-based method described above and compare them with a stan-
dard quadrature employing the Gauss—Legendre formula combined with subdivision
of the integration domain. This subdivision takes place whenever dist(p, S) becomes
small compared with the area of S. All results in this section are believed to have
relative error less than 0.3%.

Let S. be a curved quadrilateral given by

Se : (x(u,v),y(u,v), 2(u,v)) = T(u,v) = (u,v,0.01sinusinv + 0.01)

and represented in Figure 4. In Figure 5, the dotted line represents a subdivision
method, and the solid line indicates quasi-Monte Carlo. The computing time (on a
UNIX workstation) is plotted as a function of the number L of single layer potentials
computed, each layer potential corresponding to a field point. Thus up to 1000 field
points p; were chosen satisfying the condition dist(p;, S) > 1072, For L ~ 28, quasi-
Monte Carlo requires less computational time than a standard subdivision method.
The graph shows monotonically increasing linear functions, and for a large number of
evaluations (1000 field points), we see a factor of 3 difference between the two meth-
ods. This difference is due to the fact that in our field point independent approach,
information such as the location of the integration nodes and parts of the integrands
are reused in all the integrals evaluated. In particular, calls to a subroutine or func-
tion defining the transformation 7' are made only for the first integral. Furthermore,
the value of A(D) in (6.1) is fixed. Hence the effort to evaluate successive integrals
becomes minimal with the increase of L.

Let us now comment on another example. Suppose now that the surfaces over
which the integration is done are a family of planar quadrilaterals given as

Se 1 (z(u,v),y(u,v), 2(u,v)) = T(u,v) = (u,v,€),

where 1077 < e < 0.1. In this case, U, = 0, and the Monte Carlo method is not
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FIG. 5. The results for the surface Se and for dist(p;,S) > 1072. The dotted line represents
the subdivision method, and the solid line indicates the quasi-Monte Carlo method.

necessary to use. The integrals are evaluated by one-dimensional quadrature since
U=U0,.

In Figure 6, with the same representations for the dotted and solid line, we see the
computational time as a function of dist(p;, s) = €, in the range of € specified above.
Here L = 500, and the field points are distributed uniformly over the z-axis. As can
be seen, the computation of U, is not affected by the degree of the near singularity,
represented by €. On the other hand, the use of standard quadratures, even with
domain subdivision, suffers from the necessity of an excessive number of nodes and/or
domain subdivisions.

It should be noted that under certain conditions the algorithm presented here
will not be appropriate in its present form. Although it will provide good results
for the case (1.4) because the integrand will be smooth and well approximated by
polynomials; its efficiency will not be superior to a regular quadrature with a small
number of nodes. Also, for surfaces with large curvature, the contribution from U,
will be large compared with U,, and a large number of nodes may be required to
sustain accuracy.

8. Conclusion. A method for computing nearly singular single layer potentials
has been introduced. Restrictions on the parametrization of the integration domain
are relaxed, and the original integral is decomposed in a sum two terms, U, and
U., where the first is an approximation which coincides with the single layer potential
when the surface is planar. The term U, provides the correction when the surface loses
its planar character. This decomposition not only allows U, to be evaluated in terms
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FiG. 6. The results for Se and for L = 500. The dotted line represents the subdivision method,
and the solid line indicates the quasi-Monte Carlo method.

of a one-dimensional regular quadrature but also reduces the integrand variance in
U,., making it viable to apply a two-dimensional quadrature based on pseudorandom
nodes. This latter quadrature also employs a uniformization algorithm to the nodes
distribution in order to improve the formula convergence rate. Also, because the
quadrature of U, is not grid-based, adaptiveness can be easily incorporated.

Usually, in boundary element methods, integrals like U have to be computed
several times according with different field points. The method described above ex-
plores this fact by reusing information from previous computations. Numerical results
clearly show an economy in computational costs for this approach when compared with
standard quadrature employing domain subdivisions. For surfaces with moderate cur-
vature, previously prohibitive nearly singular integrals where the ratio distance from
the field point to the surface average length reaches 10~7 or less can be dealt with
using the present algorithm without significant increase in the computational cost.

It may be possible to extend this approach to other types of integrands, such as
the double layer potential. In order to achieve this successfully, one needs to efficiently
integrate the strong near singularity that will be present in U.
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Abstract. A class of FETI methods for the mortar approximation of a vector field problem
in two dimensions is proposed. Edge element discretizations of lowest degree are considered. The
method proposed can be employed with geometrically conforming and nonconforming partitions.
Our numerical results show that its condition number increases only with the number of unknowns
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1. Introduction. In this paper, we consider the boundary value problem

Lu:=curl(acurlu)+ Au = { in Q,

(1) u-t 0 on 09,

with  a bounded polygonal domain in R?. Here

ov
curlv := Oz; curlu := % — %
ov ’ (91'1 8932’
" o1

see, e.g., [17]. The coefficient matrix A is a symmetric, uniformly positive definite
matrix-valued function with entries A;; € L>°(?), 1 <¢,j <2, and a € L>®(Q) is a
positive function bounded away from zero. The domain 2 has unit diameter, and t
is the unit tangent to its boundary.

The weak formulation of problem (1) requires the introduction of the Hilbert
space H(curl; ), defined by

H(curl; Q) := {v € (L*(V))?| curlv € L*(Q)}.
The space H (curl; () is equipped with the following inner product and graph norm:

(0, V)eun = / u-vdx —l—/ curlucurl v dx, ||u\|fur1 = (w0, W)eurl-
Q Q
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The tangential component u - t, of a vector u € H(curl;Q) on the boundary 09,
belongs to the space H~2(99); see [17, 8]. The subspace of vectors in H (curl; ()
with a vanishing tangential component on 0f is denoted by Hg(curl; ).

For any D C (), we define the bilinear form

(2) ap(u,v) := / (a curlucurlv+ Au-v)dx, u,ve H(curl;Q).
D

The variational formulation of (1) is as follows.
Find u € Hy(curl; Q) such that

(3) ag(u,v) = / f-vdx, veHy(curl;Q).
Q

We discretize this problem using edge elements, also known as Nédélec elements; see
[24]. These are vector-valued finite elements that ensure only the continuity of the
tangential component across the common side of adjacent mesh triangles, as is phys-
ically required for the electric and magnetic fields, which are solutions of Maxwell’s
equations.

In this paper, we consider a mortar approximation of this problem. The com-
putational domain is partitioned into a family of nonoverlapping subdomains, and
independent triangulations are introduced in each subdomain. The weak continuity
of the tangential component of the solution is then enforced by using suitable integral
conditions that require that the jumps across the subdomain inner boundaries are
perpendicular to suitable finite element spaces defined on the edges of the partition.
The mortar method was originally introduced in [9] for finite element approximations
in H'. Mortar approximations for edge element approximations in two and three di-
mensions have been studied in [3] and [4], respectively. There has also been additional
recent work for the case of sliding meshes for the study of electromagnetic fields in
electrical engines; see, e.g., [25, 26].

The applications that we have in mind are mainly problems arising from static
and quasi-static Maxwell equations (eddy current problems); see, e.g., [6, 5]. In this
paper, we consider only the model problem (3), where the dependency on the time
variable or on the frequency has been eliminated, and we generically refer to it as
Maxwell’s equations. A good preconditioner for this model problem is the first step
for the efficient solution of linear systems arising from the edge element approximation
of static problems, and of time- or frequency-dependent problems arising from the
quasi-static approximation of Maxwell’s equations.

The aim of this paper is to build an iterative method of finite element tearing and
interconnecting (FETI) type for a mortar edge element approximation of problem (1).
FETI methods were first introduced for the solution of conforming approximations of
elasticity problems in [15]. In this approach, the original domain 2 is decomposed into
nonoverlapping subdomains €;, i = 1,..., N. On each subdomain €2; a local stiffness
matrix is obtained from the finite element discretization of aq,(-,-). Analogously, a
set of right-hand sides is built. The continuity of the solution corresponding to the
primal variables is then enforced by using Lagrange multipliers across the interface
defined by the subdomain inner boundaries. In the original FETI algorithm, the
primal variables are then eliminated by solving local Neumann problems, and an
equation in the Lagrange multipliers is obtained. Several preconditioners have been
proposed and studied for its solution; see, e.g., [14, 16, 23, 13, 30, 27, 19, 33].
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Many iterative methods for the solution of linear systems arising from mortar
approximations have been proposed. We cite, in particular, [22, 1, 20, 2, 10, 11, 7,
12, 21, 34] and refer to the references therein for a more detailed discussion.

To our knowledge, the application of FETI-type preconditioners to mortar approx-
imations was first explored in [21, 18] and then tested more systematically in [29]. The
idea is fairly simple and relies on the observation that mortar approximations with
Lagrange multipliers and FETIT formulations, where the pointwise continuity across
the substructures is enforced by using Lagrange multipliers, give rise to indefinite lin-
ear systems that have the same form. FETI preconditioners can then be devised for
mortar approximations in a straightforward way; see [29]. In this paper, we apply the
FETI preconditioner introduced in [19] for the case of nonredundant Lagrange multi-
pliers to the mortar approximation originally studied in [3]. Our work generalizes our
previous study of FETI preconditioners for two dimensional conforming edge element
approximations in [33]. As opposed to the H! case, the generalization of FETI pre-
conditioners to mortar approximations requires some modifications in H(curl). More
precisely, the coarse components of the preconditioners need to be modified here in
order to obtain a scalable method, and a suitable scaling matrix @) has to be intro-
duced; see section 5. As shown in [29], no modification appears to be necessary for
nodal finite elements in H!. Finally, we note that in this paper we consider only
problems without jumps of the coefficients. For conforming approximations, FETI
methods that are robust with respect to large variations of jumps of the coefficients
have been developed and studied (see [27, 19]), but the case of nodal or edge element
approximations on nonmatching grids still needs to be explored and is left for a future
work.

The outline of the remainder of this paper is as follows. In section 2, we introduce
a partition of the domain € and local finite element spaces. In section 3, we consider
the mortar condition, and in section 4, we present our FETI method, in terms of
a projection onto a low dimensional subspace and a local preconditioner. The ex-
pressions for the projection and the preconditioner are then given in section 5, and
some numerical results for geometrically conforming and nonconforming partitions
are presented in section 6.

2. Finite element spaces. We first consider a nonoverlapping partition of the
domain 2,

fH:{Qi,Z'Zl,...,N| Uﬁzzﬁ s N =0 1§k<l§N},

i=1

such that each subdomain €); is a connected polygonal open set in R®. We remark
that Fg does not need to be geometrically conforming. We denote the diameter of
Q; by H; and the maximum of the diameters of the subdomains by H:

H := max {H;}.

1<i<N

The elements of Fp are also called substructures. Let t; be the unit tangent to 0);,
chosen so that, following the direction of t;, €2; is on the left.

For every subdomain §2;, we define the set of its open edges that do not lie on
o0 by {I'J] j € Z;}. We then define the interface T, also called the “skeleton” of the
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decomposition, as the union of the edges of Fy that do not lie on 0:

N N
F:UmAWZUUWJ
=1

i=15€L;
We also define the local spaces of restrictions of vectors in Hy(curl; ) to £2;:
H,(curl; ;) := {u; € H(curl; ;)| u; -t =0 on 9Q N OQ;}.

For every substructure 2;, we consider a triangulation 7; , made of triangles or
rectangles. Let &; 5 be the set of edges of 7; . For every edge e € &, we fix a
direction, given by a unit vector t.. The length of the edge e is denoted by |e|. The
local triangulations are assumed to be shape-regular and quasi-uniform, and they do
not need to match across the inner boundaries of the subdomains. We define h as the
maximum of the mesh-sizes of the triangulations.

We next consider the lowest-order Nédélec finite element spaces, originally intro-
duced in [24], defined on each subdomain €; as

Xn() = X; :={u; € Hy(curl; ;)| u;|, € R(t), t € Tints

where, in the case of triangular meshes, we have

mw:{[m+%”}|%eR}

Qg — (31

We recall that the tangential component of a vector u; € X; is constant on the edges
of the triangulation 7; , and that the degrees of freedom can be chosen as the values
of the tangential component on the edges

(4) )\Ek (ui) = ugj) =u; - tek|ek’ e € 81‘7}1.
We next introduce the product space
N N
Xn(Q) =X =[] Xi  [] Hu(cwl; ),
i=1 i=1

the spaces of tangential vectors
WiL(09Q;) = W; := {(u; - t;) t; restricted to 9Q; \ 0 | u; € X;},

and the product space

We note that we have chosen a different definition of the trace spaces than that
employed in [33]. Here, the spaces W; consist of piecewise constant tangential vectors
on 08); \ 09

Throughout this paper, we will use the following conventions. We will use the
same notation for the vectors in X; and tangential vectors in W;. We denote a
generic vector function in X; using a bold letter with the subscript 7, e.g., u;, and
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Fic. 1. Ezample of a partition of the domain Q2. We show the directions of the subdomain
boundaries, given by the unit vectors {t;}, those of the fine edges on the interface I', and the
corresponding values of the degrees of freedom t(9).

the column vector of its degrees of freedom, defined in (4), using the same letter with
the superscript (i), e.g., u(® . Tts kth degree of freedom corresponding to the edge ey,
defined in (4), is ug). A generic vector in the product space X (or W) is also denoted
by a bold letter, e.g., u, and the corresponding vector of degrees of freedom by the
same letter, e.g., u. We will use the same notation for the spaces of functions X; and
W; and the corresponding spaces of degrees of freedom.

Given the unit vectors t;, the column vectors () are defined by

téi) =t te,, e COUN\OIQ, e €&

We will need these tangential vectors in the definition of our FETI method; see section
5. We remark that in case all the edges e on 0f); have the same direction of the
boundary 9€2;, the entries of the vector t() are equal to one. Figure 1 shows an
example of a partition, with the directions of the subdomain boundaries and of the
fine edges on the interface T', and the corresponding degrees of freedom (%),

Finally, for i = 1,..., N, we define the discrete harmonic extensions with respect
to the bilinear forms agq, (-, -) into the interior of §);:

We recall that H;u; minimizes the energy aq, (H;u;, H;u;) among all the vectors of
X, with tangential component equal to u; on 9€; \ 9.
3. A mortar condition. The mortar method presented in this section was
originally developed and studied in [3]. We consider the skeleton I' and choose a
s Ce . . =k,j .
splitting of T" as the disjoint union of some edges {I" J}, which we call mortars. We
note that this partition is not in general unique; see Figure 2 (left) for an example of

decomposition.
A unique set of indices corresponds to this choice, and we denote it by

T := {m = (k, ) such that T*7 is a mortar }.

To simplify the notation, we denote the mortars by {I'"™| m € Zp;}. We have

M
f::Ufm, N =0, ifm#nandn,meZy.

i=1
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Fic. 2. An example where the domain is decomposed into three (rectangular) nonoverlapping
subdomains. The skeleton has two partitions (figure on the left): one in terms of mortars (solid
dark line) and the other in terms of nonmortars (long dashed lines). On the right is an example
of discretization of the subdomains by means of triangular grids that do not match at the interfaces
between adjacent subdomains.

For any m in Zy;, we denote by W™ the space W*J (m = (k, j) € Zyp) given by
Wk .= {(uy, - t3) ty restricted to T*7 | uy;, € X;}.

We note that the vectors in W*J are also the restrictions of vectors in Wy, to T'%4.
Before introducing the mortar space, we need to fix a last point. Let I'"* be a mortar
edge with m = (k,j) and u € Xp: for almost every x € I'™, there exists an index
1 (1 <1< N),1+#ksuch that x € T™ N 9€;. At this point x we have two fields,
namely, u; and u;. Since the domain decomposition is in general nonconforming, the
value of | depends on x, and we denote by 7, the set of indices [ (1 <1 < N) such
that T N 9Q; # (). We then define

u_(x) :=w(x), xel™nNay, € Tn.

The function u_g is defined for almost all x € I'"™. In general, it is not the tangential
component at I'"™ of a field u € H,(curl;§;): it can indeed correspond to tangential
components from different subdomains which share a subset of I'"* and live on different
grids.

The equality between u_g -t and uy -t; at I'™™ becomes too stringent a condition
since the two fields are in general defined on different and nonmatching grids. As
is usually done in nonconforming mortar domain decomposition methods, we impose
these constraints in a weak form by means of suitable Lagrange multipliers. Here, the
Lagrange multiplier space consists of the tangential components of the shape functions
at the mortar edges; see [3].

Remark 3.1. The definition of the mortar space for the edge elements is simpler
than for nodal finite elements. In the nodal case, the space of Lagrange multipliers
cannot be chosen as a space of traces on the mortar edges but only as a suitable
subspace of it. In the edge case, it is not necessary to decrease the dimension of the
multiplier space since the information is associated to edges and not to nodes; see [9]
for more details.

The Lagrange multiplier (mortar) space is now defined by

{veL* )| vpm e W", meIy}

We remark that this is a space of tangential vectors on I'. The transmission conditions
at the interface between adjacent subdomains are then weakly imposed by means of
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these Lagrange multipliers. A solution u € W is required to satisfy the constraints
(5) / (uk~tk—u_k-tk)v-tkd8207 VEI/Vm7 m:(kz,j)EIM.

The set of transmission conditions can be expressed in matrix form in the following
way.

Let w¥ be the basis function associated to the kth mesh edge of 9Q; \ 9Q. We
introduce two matrices C' and D by

Ch1 = / (wiC tz)(wi t;)ds = bpy lex|, er,ep CT™,

Dg.y, ::/ (wf ct) (Wl -t)ds, e CT™, e, CIN, 1T E Tm,

where I'™ = T'%J. Then the matching conditions (5) have the form
Bu=0, where B=C-D.

We remark that the entries of C' and D depend on the particular choice of degrees of
freedom defined in (4).
The matrix B can also be written as

5[ ® ... g™

)

where the local matrices B(* act on vectors in W;. The entries of B do not belong
in general to {0,1,—1} as in the conforming case described in [33], and, since we are
working with nonmatching grids, they take into account the edge intersections at the
interfaces.

We conclude this section by recalling an a priori estimate of the approximation
error for the mortar edge element method in two dimensions (see [3] for a proof).

THEOREM 3.1. Assume that the exact solution u of (1) is such that u; € H'(Q;)?
and curlu; € H(;), and that the data f is such that £; € HY(Q;)?. Then the
following estimate holds:

N

Ju—willee < C S hilllwills e + llewrlwil s a,e + 1l @02).
=1

where

N 2
[lu—upflv0 = (Z [lu—unl[22(q,)> + lleurl (u — uh)liz(m) -

i=1

4. A FETI method. In this section, we introduce a FETI method for the
solution of the linear system arising from the mortar edge element approximation of
problem (3).

We first assemble the local stiffness matrices, relative to the bilinear forms aq, (-, -),
and the local load vectors. The degrees of freedom that are not on the interface I'
belong only to one substructure and can be eliminated in parallel by block Gaussian
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elimination. Let f(®) be the resulting right-hand sides, and let S(? be the Schur
complement matrices

S(l) : Wi — Wi,

relative to the degrees of freedom on 05); \ 5.
We recall that the local Schur complements satisfy the following property:

(6) u(i)tS(i)u(i) = agq, (H;u;, H;w,);

see, e.g., [28, 32].
Following [19, 33], we can then write our mortar problem as

Su+ B\ = f,
(7) Bu =0,
where
u® f(l)
u = : eW, §:=diag{sW,...,sM™M}, f:= :
u@™) f(N)

The vector A is a Lagrange multiplier relative to the weak continuity constraint
Bu=0.

We remark that the S*) are always invertible, and, consequently, there is no
natural coarse space associated to the substructures; we are in a similar case as the
one considered in [13]. We first find u from the first equation in (7) and substitute its
value in the second equation. We obtain the system

(8) F\=d,
where
F:=BS'B' d:=BS'f.

Following [19, 33, 29], we now define a preconditioner. Since we assume that
the coefficients do not have any jump, we do not need to introduce a set of scaling
matrices as is required for problems with coefficient jumps; see, e.g., [31, 32, 19, 33].
We introduce the matrices

(9) R:= |RMW R® ... R(M)] ., G:=QBR,

where R are vectors in W, related to the substructures {;}, and @ is a suitable
invertible matrix that we will specify in the next section. More precisely, we suppose
that R(*) is obtained from a local vector r; € W; on 9€; \ 9Q by extending it by zero
on the boundaries of the other substructures. We will make a particular choice of R
for problem (3) in section 5 and specify the dimension M.

Following [13, 33], we define the projection

P:=1-GG'FG)'G'F

onto the complement of Range(G). This projection is orthogonal with respect to the
scalar product induced by F. Following [19, 33|, we next define the preconditioner

M~':=(BB")"'BSB'(BB")"\.
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It can be easily seen that BB? is invertible and is block-diagonal only if the partition
Fp is geometrically conforming.
Now we consider a projected conjugate gradient method as in [13, 33].

1. Initialize

M =G(G'FG) Gl
@ =d—F\

2. Tterate k = 1,2, - until convergence

Project: wk=1 = ptgh—1
Precondition: zF~1 = M~ lywk~!

Project: y*=1 = pzF—1
e N e R B LA U
=yt g pt =y
af = (LWt [(oF, Fp)
AF = \B=L 4 gk
¢ = ¢*1 = oFFpP

The first projection can be omitted; because of the choice of the initial vector
A0, we have w*~! = ¢*~1 after the first projection step. Here we have denoted the
residual at the kth step by ¢*. In practice, partial or full reorthogonalization may be
required; cf. [16].

The method presented here is equivalent to using the conjugate gradient method
for solving the preconditioned system

(10) PM~'P'FA=PM 'P'd, A€ X+V,
with
(11) V := Range(P).

We remark that the matrices S and S~! do not need to be calculated in practice.
The action of S on a vector requires the solution of a Dirichlet problem on each
substructure, while the action of S~! requires the solution of a Neumann problem on
each substructure; see [28, Ch. 4].

Remark 4.1. The extension of FETI-type preconditioners to the case of problems
with jump coefficients on nonmatching grids appears to be hard, both for nodal and
Nédélec finite elements. In the conforming case, suitable scaling diagonal matrices are
employed. For each degree of freedom on the subdomain interface (a node for nodal
elements or an edge for Nédélec elements), the corresponding entry is constructed with
the values of the coefficients on the subdomains that share this degree of freedom; see,
e.g., [19, 33]. This can certainly be generalized to the corresponding mortar methods
built on geometrically conforming partitions. However, in the general case, an edge
on the interface may belong only partially to a subdomain, and it is reasonable to
assume that the scaling matrices should also take into account the relative size of the
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intersection of an edge with a subdomain boundary. Presently, it is not clear to the
authors how exactly this can be accomplished, and this generalization is left for a
future work.

5. A particular choice of the matrices R and Q. In this section, we consider
a particular choice of the matrices R and @ in the definition of the FETT algorithm
for problem (3).

We proceed in a similar way as in [33, sect. 5], but we will need to introduce a
suitable matrix @, different from the identity.

The definition of R is the same as in the conforming case (see [33, sect. 5]) and
is given in terms of local vectors.

DEFINITION 5.1. The local vectors {r;, i = 1,..., N} with the corresponding
vectors of degrees of freedom {r(i)} are the unique vectors that satisfy

PO, Z iy :/ vi-tids, v, €W,
29,\00

e, COQ;\ 00
ek €€ h

The global vectors R are obtained by extending the local vectors r*) by zero outside
09;.
We can easily find that

r) = len|t, e C O\ 09

The vectors r; have then the same direction as the t; and are scaled using the lengths
of the edges of the triangulations 7; 5.
We then define the matrix () as

(12) Q:= (BB L.

Remark 5.1. In the case of a conforming triangulation the matrix @ is a multiple
of the identity; see [33]. For matching grids, we then obtain the same preconditioner
as introduced in [33] for conforming approximations. Here our choice of @ does not
require any additional calculation since (BB!)~! is also needed for the application of
the preconditioner M~'. When Q is applied to a vector, this requires the solution of
a linear system involving BB?. The matrix BB? is block-diagonal only in the case
of conforming partitions. However, it can be shown that if the two meshes across
the interface are not too different, it is strongly diagonally dominant. It is thus well
conditioned, and few iterations of the conjugate gradient method are enough to obtain
the solution.

The idea behind the choice of the matrix ) can be explained in the following
way. In the conforming case, a proof of an upper bound for the condition number
of the operator PM~'P!F that is independent of the number of substructures is
possible if certain tangential vectors have a mean value of zero on the boundary of
each substructure. In particular, for the case with no jumps, it is necessary that

u= BY(BB") 'Buw
has mean value zero if w € W satisfies

p'Bw =0, pu € Range(Q);
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see [33, sect. 5]. One can show that this is not satisfied in our more general case but
that this condition holds if a modified matrix G is employed,

G := QBR,

and our numerical results in section 6 confirm our choice of modified coarse space.
It remains to decide how many of the local vectors R need to be considered in
the definition of the matrix R. We introduce Gy as the dual graph of the partition
Fy. Thus Gy has a vertex for each substructure of Fg, and there is an edge in
Gr between two vertices if the intersection of the boundaries of the corresponding
substructures has positive measure. As in [33], we define the matrix R by

(13) R { [R(l) R - R(N_l)] if Gy is two-colorable,

[RD R® ... RM]  otherwise .

The following result can be proven using [33, Lem. 5.2 and Thm. 5.1].
LEMMA 5.1. Let R be defined in (13). Then the matriz G has full rank.
Remark 5.2. An analogous FETI method can also be devised for problems in-
volving the bilinear form

/(adivudivv+Au-v) dx, u,ve H(div;Q),
Q

discretized with the lowest-order Raviart-Thomas spaces. Here, H(div;Q) is the
space of vectors in (L?)? with divergence in L?. Since, in two dimensions, vectors
in the Raviart—Thomas spaces can be obtained from those in the Nédélec spaces by
a rotation of 90 degrees, the unit outward normal vectors n; to the boundaries 052;,
instead of the unit tangent vectors t;, have to be employed in the construction of
the local functions r;. All the definitions in this paper remain valid in this case. For
Raviart-Thomas discretizations in three dimensions, an analogous method can also
be defined, and all our definitions remain valid.

6. Numerical results. The purpose of this section is to show that, for problems
without jumps, the FETT method proposed here performs similarly to the correspond-
ing method for conforming approximations; see [33, sect. 6]. In particular, our method
appears to be scalable, its condition number depends only on the number of degrees
of freedom per subdomain, and it is quite insensitive to variations of the ratios of the
coeflicients.

In many iterative substructuring methods, an important role is played by the ratio
H/h that measures the number of degrees of freedom per subdomain. In particular,
the condition number of these methods grows only quadratically with the logarithm of
H/h; see, e.g., [28]. This ratio is regarded as a local quantity and can vary greatly from
one subdomain to another. In our numerical results, we always report the maximum
value of this ratio taken over the subdomains.

We consider the domain Q = (0,1)? and assume that the coefficient matrix A is

diagonal and equal to
b 0
A= { by ] .

In our first set of results, we consider a family of geometrically conforming par-
titions of €, into 2¢ x 2¢ substructures of equal size, with d = 1,2,3,4. For a fixed
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F1a. 3. A conforming partition and a checkerboard-type discretization.

TABLE 1
The FETI method for conforming partitions with hi/he = 4/3. Estimated condition number
and number of CG iterations necessary to obtain a relative residual ||qr||/||f|| less than 1076 (in
parentheses), versus H/h and h. Case of a =1, b=1. The asterisks denote the cases for which we
do not have enough memory to run the corresponding algorithm.

[ H/h [ 32 [ 16 [ 8 [ 4 ]
1/h = 32 (1600 el.) - 1.805 (5) | 2.941 (9) [ 2.179 (8)
1/h = 64 (6400 el.) 2.151 (6) | 4.045 (11) | 3.035 (10) | 2.165 (7)
1/h =128 (25600 el.) | 5.314 (12) | 4.175 (12) | 3.013 (9) *

Estimated condition number and quadratic log fit Estimated condition number and quadratic log fit

Condition number
[l
q
Condition number

Fic. 4. Case with a = 1, b = 1. Estimated condition numbers (asterisk) from Tables 1 (left)
and 3 (right), and least-square second order logarithmic polynomial (solid line) versus p = H/h for
the FETI method for conforming (left) and nonconforming (right) partitions.

partition, we consider two kinds of uniform triangulations for the substructures in
such a way that on the interface between two adjacent substructures the meshes do
not match. The ratio between the mesh-sizes of the two triangulations is hy /hs = 4/3.
Figure 3 shows an example of this checkerboard-type discretization for d = 2.

We first consider the case a = 1 and b = 1. In Table 1, we show the estimated
condition number and the number of iterations to obtain a relative residual ||gx||/|| ]l
less than 1076 as a function of the diameter of the finer mesh and the partition. Here
qr is the kth residual as defined in the algorithmic description given in section 4.
For a fixed ratio H/h, the condition number and the number of iterations are quite
insensitive to the dimension of the fine meshes. In addition, even for nonmatching
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TABLE 2
The FETI method for conforming partitions with hi/ha = 4/3. Estimated condition number
and number of CG iterations necessary to obtain relative preconditioned residual (||qxl||/||fl|) less
than 1078 (in parentheses), versus H/h and b. Case of 1/h =128 and a = 1.

[(H/R [ 8 [ 6 [ 32 |
b=0.0001 | 3.091 (16) | 4.216 (20) | 5.364 (18)
b=0.001 | 3.078 (14) | 4.21 (18) | 5.358 (16)
b=0.01 3.069 (13) | 4.203 (16) | 5.353 (15)
b= 0.1 3.044 (11) | 4.192 (14) | 5.346 (14)
b= 3.013 (9) | 4.175 (12) | 5.314 (12)
b= 10 2.992 (8) | 4.114 (11) | 5.154 (11)
b= 100 2.939 (9) | 3.829 (11) | 4.379 (11)
b= 1000 | 2.501 (7) | 2.746 (8) | 2.486 (7)
b=1c+04 | 1.418 (4) | 1.493 (4) | 1.533 (4)
b=1c+05 | 1.037 (2) | 1.042 (2) | 1.044 (2)
b=1e+06 | 1.06 (2) | 1.046 (2) | 1.044 (2)

Fic. 5. A block consisting of five subdomains, employed for building a nonconforming partition.

grids, the ratio H/h appears to play an important role; see also Figure 4.

In Table 2, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 128 and a = 1, and for the partitions into 2¢ by 2¢
substructures with d = 2, 3,4, the estimated condition number and the number of
iterations are shown as a function of H/h and b. The number of iterations and the
condition number appear to be bounded independently of the ratio of the coefficients.

We then consider some test cases relative to geometrically nonconforming parti-
tions of the domain (0, 1)2. We consider partitions consisting of 2¢ x 2¢ equal blocks,
d=0,1,2,3. A block is made of five nonconforming subdomains and is shown in Fig-
ure 5 together with a possible triangulation. Figure 6 shows a partition for the case
d =1 (four blocks and twenty subdomains). The number of subdomains is five times
the number of blocks. We then consider uniform triangulations for the subdomains
in each block. The rectangular subdomains have the same mesh.

We first consider a case where the ratio between the mesh sizes of the rectangular
and square subdomains is hy/he = 7/5; see Figures 5 and 6 for two examples. In
Table 3, we show the estimated condition number and the number of iterations to
obtain a relative residual ||gx||/|| f|| less than 10~° as a function of the diameter of the
finer mesh and the ratio H/h. The condition number appears to increase slowly with
H/h and to be quite insensitive to the size of the fine meshes.
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o 0.2 0.4 0.6 0.8 1
Fic. 6. A nonconforming partition consisting of four blocks.

TABLE 3

The FETI method for nonconforming partitions with h1/ha = 7/5. Estimated condition number

and number of CG iterations necessary to obtain a relative residual ||qr||/||f|| less than 1076 (in
parentheses), versus H/h and h. Case ofa =1, b=1.

[ H/h [ 20 [ 10 [ 5 |
1/h =21 (1832 el.) - 2.728 (8) | 2.63 (10)
1/h =42 (7328 el.) 3.459 (8) [ 3.23 (11) [ 2.876 (10)

1/h = 84 (29312 el.) 4.034 (13) | 3.619 (12) | 2.901 (10)
1/h =168 (117248 el.) | 4.552 (14) | 3.619 (12) *

In Table 4, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 84 (29312 elements) and a = 1, and for the partitions into
2¢ by 2¢ blocks with d = 1,2, 3, the estimated condition number and the number of
iterations are shown as a function of H/h and b.

For the same nonconforming partitions, we finally consider a case where the ratio
between the diameters of the meshes of the rectangular and square subdomains is
larger. We choose hy/hg = 2.8. In Table 5, we show some results when the ratio
of the coefficients b and a changes. For a fixed value of 1/h = 168 (48128 elements)
and a = 1, and for the partitions into 2¢ by 2¢ blocks with d = 1,2, 3, the estimated
condition number and the number of iterations are shown as a function of H/h and b.
In this case, the meshes of adjacent substructures are fairly different, but the condition
numbers and the number of iterations are still quite satisfactory.

To end this section, we give an upper bound for the condition number of the
proposed method, both in the cases of conforming and nonconforming partitions.
Figure 4 shows the estimated condition numbers (asterisk) from Tables 1 (left) and 3
(right) for a = b =1 as a function of p = H/h for different values of n. We have also
plotted the best second-order logarithmic polynomial least-square fits. Our results for
both conforming and nonconforming partitions are consistent with the bound for the
condition number

— H\?
k(PM~'P'F)<C (1 + log h) ,

which was proven in [33, Thm. 5.2] for conforming approximations, and suggest that
this bound is sharp.
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TABLE 4
The FETI method for nonconforming partitions with h1/ho = 7/5. Estimated condition number
and number of CG iterations necessary to obtain relative preconditioned residual (||qxl||/||fl|) less
than 1078 (in parentheses), versus H/h and b. Case of 1/h =84 and a = 1.

[(H/R [ 5 [ 0 [ 20 |
b=0.0001 | 2.966 (17) | 3.667 (20) | 4.068 (21)
b=0.001 | 2.955 (15) | 3.663 (18) | 4.064 (19)
b=0.01 2.951 (14) | 3.658 (16) | 4.06 (17
b= 0.1 2.933 (12) | 3.651 (14) | 4.054 (15)
b= 2.901 (10) | 3.619 (12) | 4.034 (13)
b= 10 2.882 (9) | 3.561 (11) | 3.93 (12)
b= 100 2.769 (9) | 3.214 (10) | 3.284 (10)
b= 1000 | 2.305 (7) | 2.197 (7) | 2.229 (7)
b=1c+04 | 1.656 (5) | 1.523 (4) | 1.54 (4)
b=1c+05 | 1.173 (3) | 1.178 (3) | 1.086 (2)
b=1e+06 | 1.135 (2) | 1.115 (2) | 1.089 (2)

TABLE 5
The FETI method for nonconforming partitions with h1/hs = 2.8. Estimated condition number
and number of CG iterations necessary to obtain relative preconditioned residual (||qr|l/|f]l) less
than 1079 (in parentheses), versus H/h and b. Case of 1/h = 168 and a = 1.

[ H/h [ 14 [ 28 [ 56 ]
b=0.0001 | 5.058 (23) | 5.062 (24) | 6.275 (24)
b=0.001 5.054 (21) | 5.056 (22) | 6.27 (23)
b=0.01 5.045 (19) | 5.043 (19) | 6.258 (21)
b= 0.1 5.026 (16) | 5.032 (17) | 6.241 (18)
b= 1 4.994 (14) | 5.008 (15) | 6.205 (16)
b= 10 4.922 (13) | 4.977 (14) | 6.094 (15)
b= 100 4.833 (12) | 4.761 (13) | 5.48 (13)
b= 1000 | 4.448 (11) | 3.938 (10) | 4.078 (9)
b=1e+04 | 3.381 (8) 2.669 (6) 2.668 (6)
b=1e+05 | 2.257 (5) 1.901 (4) 1.906 (3)
b=1e+06 | 1.947 (3) 1.786 (3) 1.436 (2)
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AMGE BASED ON ELEMENT AGGLOMERATION*

JIM E. JONEST AND PANAYOT S. VASSILEVSKI®

Abstract. This paper contains the main ideas for an AMGe (algebraic multigrid for finite
elements) method based on element agglomeration. In the method, coarse grid elements are formed
by agglomerating fine grid elements. Compatible interpolation operators are constructed which yield
coarse grid basis functions with a minimal energy property. Heuristics based on interpolation quality
measures are used to guide the agglomeration procedure. The performance of the resulting method
is demonstrated in two-level numerical experiments.
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AMS subject classifications. 65F10, 65N20, 656N30

PII. S1064827599361047

1. Introduction. The algebraic multigrid (AMG) [5], [6], [13], [14], was devel-
oped as a generalization of the standard geometric multigrid to problems that either
had no grid or were posed on unstructured grids where standard geometric multigrid
methods are difficult to apply. The standard AMG method works well for many prob-
lems; however, its performance on some finite element problems is unsatisfactory. The
heuristics used in the standard AMG method are based on properties of M-matrices,
and finite element discretizations can produce non-M-matrices. This deficiency in the
standard AMG method led Brezina et al. [7] to develop the algebraic multigrid for fi-
nite elements (AMGe). This previous paper showed how to use multigrid convergence
theory and the local stiffness matrices for the individual finite elements to produce
interpolation operators superior to those produced by standard AMG. This current
paper uses AMGe ideas to produce not only interpolation operators but coarse grids
(and elements) as well. The coarse elements are based on agglomeration of fine ele-
ments. A key point is the construction of a local, compatible interpolation operator.
The interpolation is local in the sense that degrees of freedom (dofs) in an agglom-
erate interpolate only from other dofs in the same agglomerate. The interpolation is
compatible in that the interpolation to dofs shared by two or more agglomerates is
uniquely defined. In this way, the coarse element matrices are variationally related
to the assembled matrices in a given agglomerated element, and (due to the com-
patibility) the global coarse matrix is variationally obtained from the global fine grid
matrix.

In the remainder of this introductory section, we outline the proposed agglomer-
ation AMGe method. The goal is to solve a system

Au=Tf,

where A is the positive definite matrix arising from a finite element discretization. In
the agglomeration AMGe method, we assume that we have access to the individual
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element matrices. Our goal is to produce the components needed for a two-level solver:
a coarse grid, grid transfer operators, and the coarse grid operator. In order to apply
the method recursively (i.e., multigrid as opposed to two-level), individual element
matrices on the coarse level must be produced. These goals are outlined below.

e Given information.

1. A list Dy = {d} of the fine grid dofs.

2. A list & of fine grid elements {e}, where each element e, by definition,
is a list of dofs, i.e., e = {di, da,..., dp, }. Typically, & provides an
overlapping partition of the set Dy.

3. The element matrices A, i.e., a list of n. x n, real numbers associated
with the dofs of e = {dy, da,..., d,_ }. Equivalently, one may say that
a quadratic form a.(v, v) = vl A.v, is given, where v is a vector (or
discrete function) defined on Dy restricted to e; i.e.,

o(dn,)

Note that this will be the notation consistently used throughout this
paper, namely, for any subset {2 C D and a vector v defined on D we
will denote by vq = v/, the restriction of v to 2. When it simplifies the
notation, we will sometimes use superscripts instead of subscripts with
the same meaning (restriction to subset).
e Qutput coarse information.

1. A coarse set of dofs, D. C Dy.

2. A set of coarse elements £. = {E.}, i.e., an overlapping partition of D..

3. The coarse element matrices Ag, for each E,. € &..

4. An interpolation mapping P : D, — Dy such that

-[7]

To be specific, assume that our “algebraic” elements (i.e., a list of collections {e}
of dofs) come from a finite element triangulation of a three-dimensional (3D) domain
and respective conforming finite element spaces with nodal dofs. To create the coarse
information we propose the following steps.

e Create a set of agglomerated elements £ = {F}, where each F = e; Uey U
---Ueny, €; € &, and E is a connected set. By connected we mean that for
any two elements, e;,e; € IV, there exists a connecting path of elements also
in E beginning with e; and ending with e; such that consecutive elements
in the path have nonempty intersection. This is a result of the “topological”
algorithm used in the agglomeration procedure (Algorithm 4.1). Note that
each fine grid element e should belong to a unique agglomerated element.

e Define faces and vertices of the agglomerated elements as follows.

1. Consider all intersections F; N E; for all pairs of different agglomerated
elements E; and E;. An intersection of this type is called a face if it
is a maximal one, i.e., if it is not contained in any other intersection.
This defines the set of faces F = {F}. We will also assume that a list
of boundary faces 0D will be given, and we will append them to £. A
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formal definition of a boundary face is then simply a maximal set of the

type ENJD, i.e., it is not a proper subset of any other intersection set

(either of type E; N Ej; or of type E; N D).

2. Finally, consider all faces F' € F as lists of dofs. For each dof d compute

the intersection N{F : d € F'}. The minimal (nonempty) intersections

define the set of vertices V = {V'}.
For true finite element applications the last set of vertices will be disjoint sets; each
vertex may contain more than one dof. This is the case if the underlying problem is a
finite element discretization of a system of PDEs, such as elasticity, for example. For
3D problems, one may refine the above algorithm to create edges of the agglomerated
elements; edges are defined to be maximal intersections of faces. In order to keep the
presentation simple, we will focus mostly on two-dimensional (2D) problems.

At any rate, the above “topological” information (faces and vertices of elements)
is readily provided by most of the finite element grid generators. So one may assume
that this information is given on the fine grid. If not, one can create it as explained
above based on computing, for faces, the maximal intersection sets of the type e; Ne;,
e; # e; or of the type e;N boundary surface.

In order to generate the same information on a coarse level, it can be advanta-
geous to carry out the intersection sets algorithm by preserving the dimensionality
(or topology) in the following sense. If E is an agglomerated element, one has the
option to represent E either in terms of the dofs of the original elements or in terms
of the faces of the original elements. If the agglomerated elements and the boundary
surfaces 9D are represented in terms of the faces of the original elements, then all
nonempty intersections of the type F; N E; or £; N 0D are maximal. This is the
storage (agglomerated elements in terms of faces of elements) that we use in practice.

DEFINITION 1.1 (coarse dofs). Having computed the set of vertices, we define
our (minimal) coarse set of dofs to be those dofs which are contained in a vertex of
an agglomerated element:

D.={deD;: IV eV withd € V}.

Note that in practice, one may have to enrich the minimal (vertex) set of coarse dofs
for better performance.

Figure 1 shows the coarse dofs for a 2D scalar problem. Note that for a scalar
problem, vertex and degree of freedom are synonymous.

DEFINITION 1.2 (coarse elements). For each agglomerated element E, we define
a coarse element E. consisting of dofs contained in a vertex of E, i.e.,

E.=D.NE.

For each agglomerated element F (or, equivalently, for each coarse element E.),
we construct a local interpolation operator Pg. This operator maps a vector defined
at coarse dofs in E,. to a vector defined at the fine dofs in E. We require the set of
local interpolation operators be compatible in that if d € £y N Ey, then Pg, vg:(d) =
Pg,vEg(d) for all vectors v. In other words, compatibility means that at shared dofs,
the interpolation rules for the agglomerates must agree. Compatibility implies the
following restriction.

Requirement 1.1. For d € Dy, let N(d) = N{all agglomerated elements E(d)

that contain d}. Then the value v(d) must be interpolated from the dofs at the
vertices of N(d). Note that we assume interpolation is the identity at the vertices.
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------------------ W T Egj

Fic. 1. Triangulation of domain Q into triangular and quadrilateral fine grid elements. Ag-
glomerated elements E1, Ea, ..., Es and coarse dofs.

DEFINITION 1.3 (interpolation mapping). Having constructed a compatible set of
local interpolation mappings {Pg}, define a global mapping P : D, — D by Pv.|p =
Prvg, . Compatibility implies that this uniquely defines P.

DEFINITION 1.4 (coarse element matrices). Assume that a compatible set of
interpolation operators {Pg} has been computed. Let Ag be the assembled matriz
corresponding to the agglomerated element E = e; Uea U ---Ue,, defined by

ng

(1.1) ngEWE = ZVZ;AQWGZ. for any vg, wg.
i=1

Then, the coarse element matrixz for the coarse element E. is defined by

(1.2) ¢ =PLARPE.
Note that the global coarse (stiffness) matrix A¢ defined as
A°=PTAP

can be assembled from the coarse element matrices, i.e., that

ne

T pc _ T c

v, Aw, = E Ve AR Wie.
i=1

Indeed, for E; = U;:E1 eg,

Ne

Ne
= i=

?

)" Ap,(Pwelg,)

i

(Pl )T A, (Pw,|.))
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We should mention at this point that there are other approaches of constructing
AMG methods that target non-M-matrices. One example is the aggregation based
AMG of Vanek, Mandel, and Brezina [15]. In this method, one constructs aggre-
gates (nonoverlapping partitions of the dofs) and forms a generally unstable (but
simple) tentative prolongator. Finally, a smoothing step is applied in order to get a
better quality interpolation. In Wan, Chan, and Smith [17], a direct approach of con-
structing coarse bases is proposed. The bases are selected by minimizing a quadratic
energy functional while enforcing locality and a partition of unity property. In Man-
del, Brezina, and Vanek [12], this approach was further developed by proposing fast
algorithms for minimizing the quadratic functional. In Chan, Xu, and Zikatanov [9],
the construction of the agglomerated elements is used a posteriori in the sense that
one first selects a coarse grid (as a maximal independent set) and then agglomerated
elements are constructed (based on the dual matrix graph). The agglomerates are sub-
sequently divided into triangles, and the procedure can be recursively applied. The
interpolation weights are computed based on averaging. In that sense, the present
paper substantially differs from [9]. Our agglomeration algorithm is different (the
coarse dofs are selected after the agglomeration is performed), and we assume more
information. Namely, similar to the original AMGe paper [7], we require access to the
individual elements and the respective element matrices on the fine grid. Note that
this information is readily provided by most finite element grid generators. In contrast
to [7] we are able to more systematically generate the input information (elements and
their respective element matrices) on the coarse levels. This allows straightforward
recursive use of the same two-level algorithm.

The remainder of the present paper is organized as follows. In section 2 we con-
sider the construction of the local interpolation mappings based on a minimal energy
principle. Section 3 deals with the energy minimization property of the coarse basis.
In section 4, we specify an algorithm for agglomerating elements, which provides nicely
matched agglomerated elements for structured triangular or quadrilateral meshes. We
also discuss using measures of interpolation quality to guide the agglomeration pro-
cedure yielding semicoarsening for problems with anisotropy. In the final section, the
performance of the resulting method is demonstrated in two-level numerical experi-
ments.

2. The local interpolation mappings. In this section we present an algorithm
for generating the local interpolation mappings in a way that produces coarse grid ba-
sis functions with a quasi-minimal energy property. Most of the proofs in this section
rely on basic properties of Schur complements of symmetric positive semidefinite ma-
trices. A summary of these properties can be found, for example, in [1, section 3.2].
The problems that we target are second-order scalar elliptic problems without the
low-order term as well as elasticity in two and three dimensions.

We begin by defining, for each fine grid dof d, the following sets:

e a neighborhood Q(d) = U{all agglomerated elements F(d) that contain d};
e a minimal set N(d) = N{all agglomerated elements E(d) that contain d}.

Note that N(d) can be a vertex, a face, or even an agglomerated element. From
the definition of vertices, each N (d) contains at least one vertex. Note also that there
might be multiple copies of N(d), i.e., N(d;) = N(d;) for a d; # d;. We next introduce
the following definition for the boundary of the sets N(d).

DEFINITION 2.1. For any set N(d) different than a face or an agglomerated
element, define the boundary of N(d), denoted ON(d), to be the vertices contained in
N(d) (which is a nonempty set). If N(d) is a face of an agglomerated element, define
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ON(d) as the dofs in N(d) that belong to more than one face. Finally, if N(d) is an
agglomerated element E, define the boundary, OF, as the union of all faces of E.

We now describe the construction of the local and compatible interpolation map-
pings. The set of interpolatory coarse dofs df, ..., d; that will be used to interpolate
to d is constructed according to Requirement 1.1. That is, df = d if d belongs to a
vertex; otherwise, the interpolatory coarse dofs are the vertices of the set N(d).

To define the interpolation weights for a dof d we use the following recursive
procedure. The interpolation is the identity at the vertices. Then, for the set N(d)
assume that the interpolation at the dofs on ON(d) has already been defined, i.e.,
(Pve)lon(ay is well defined for v, specified at the vertices of N(d). Now extend the
definition of Pv, on N(d)\ (ON(d)) by considering the neighborhood €2(d) of all ag-
glomerated elements that contain d. Let Aqg(g4) be the assembled matrix corresponding
to all elements contained in that neighborhood. Consider the following two-by-two
block structure of Aq g, corresponding to the partitioning (€2(d) \ N (d)) U IN(d),

| Au Ay }Q2(d) \ ON(d),
Aaw = [ Ap; Abz ]

YON(d).
Here “i” stands for interior, and “b” stands for boundary dofs. Note that {d5, ..., d5} C
ON(d). The interpolation coefficients wy, ds, © =1,2, ..., p are obtained by solving

the following equation (x¢ given):
Ayx' + Ap(Px%)on(a) = 0.
Then the equation corresponding to a dof dy in N(d) \ ON(d) gives
(x)a, = (—A7" Ain(Px)an )], -

yvertices of N(d)\{d},

}de , one gets the

That is, in particular for dy = d, and x° = [(1)]
interpolatory coefficient

wg ge = | — AZ1A, (P 0 | }vertices of N(d)\ {d§}
- " 1 }df ON(d)

This approach assumes that A;; is invertible. As the following lemma shows, this
is always the case for symmetric positive semidefinite matrices Agq) if the set of
boundary dofs ON(d) is sufficiently rich.

LEMMA 2.2. Given a set E, a union of fine elements, partition it into two groups:
“f 7-dofs denoted by Dg, y and “c”-dofs denoted Dk, .. Let Ag be the assembled matriz
corresponding to E partitioned as follows:

_ | 4B rr A, fe
AE B |: AE, cf AE, cc '

d

If there exists a basis {d;} for the null-space of the assembled, symmetric positive
semidefinite matriz Ag, such that {d;} restricted to Dg. . remain linearly independent,
then Ag, yy is invertible.

Proof. Assume that A ;yx/ = 0. This implies that

4T ]y
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and since Ag is positive semidefinite, this implies
f
X
A =0.

s
That is, [7 | is in the null-space of Ag. Therefore, we can expand it in terms of the

basis of the null-space, i.e.,
f
The second block equation implies

0= Z Cld:
%

The assumption that {d;} remains linearly independent when restricted to Dg, .
means that {d¢} are linearly independent. Thus all ¢; = 0 and x/ = 0. That is,
Ag, ffxf = 0 implies x/ = 0; hence Ag. ¢y is invertible. ]

Remark 2.1. For the model case of second-order scalar elliptic equations, Lu =
1

: ] , and its restriction onto the
1
set of coarse dofs is again the constant vector; hence it is linearly independent. The
above lemma shows that the corresponding Ag, s will be invertible.

Remark 2.2. If x is in the null-space of Ag, i.e.,

—div(aVu) = F, a basis of the null-space of Ap is

xf
x = { XC:| and Apx =0,

then
AE7 ffo + AE7 fcxc =0.

Thus the previously defined interpolation procedure is exact for vectors in the null-
space of Ag.

In showing that the interpolation mappings produce coarse basis functions en-
joying a certain energy minimization property, we rely on the following relationships
between energy minimization and Schur complements.

Remark 2.3. Consider a matrix A with any two-by-two blocking

_ | Arr Age
A= |: Acf Acc ’
Assume Ay is invertible, and define the Schur complement of A on c as S, = A.. —

A, fA;J}A fe. If A is symmetric positive semidefinite, then

(2.1) vIiS.v.,= inf v Av.

V‘CZVC

In cases where Ay is not invertible, (2.1) can be used to define the Schur complement.
Note that if A is symmetric positive semidefinite, then so is S.. Finally, one has the
identity

(2.2) Av = { SCOVC }
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for any minimizer v, i.e., for any vector v for which vI'S.v. = vI Av and v|. = ve.
The following lemma is a straightforward consequence of Remark 2.3.

LEMMA 2.3. Using the notation of the previous remark, assume Ayy is invertible,
and let v, be a null-vector of S.; then v. can be uniquely extended to the null-space
of A.

We are now ready to show several energy minimization properties of the local
interpolation mappings Pg formulated for simplicity for 2D elements.

We first demonstrate an energy minimization property for dofs interior to an
agglomerated element. Let d belong to a unique agglomerated element E. Thus the
neighborhood €(d), used to define interpolation, consists of the fine-grid elements
that are contained in E. Then, P = Pg is constructed based on the following block-
ordering of Ag:

A | A Aw ]} E\OE,
B Avi Aw | } OE.

The coefficients of Pg are obtained by solving the equation (x¢ given)
Ap, X'+ A, i(Ppx©)sr = 0.
It is equivalent then to say that x* = fAi_ilAib(PExC) solves the minimization problem

(2.3) min xT Apx.

x: X|gp=(Pex°)or

By definition, Ppx.|, = — Ai_ilAib(PExC)aE‘d for all d € E that do not belong to a
face of E.

We next show an energy minimization property for dofs on faces; this is used later
to show a global energy minimization property of the coarse grid basis functions. For
every face F, the neighborhood used to define interpolation is E;f U B, where E}t
and E are the two neighboring agglomerated elements that form the face F' (one of
them can be ) if F' is a boundary face).

LEMMA 2.4. For every face F = E;t N EL, the interpolation P minimizes the
quadratic form (WF)T(SE}—} P+ SE;, p)Wr for wi fived at the vertices of F', where
Sk, F denotes the Schur complement of Ag on F.

Proof. Denote £y = E; and Ep = EIJE Each dof on F' which is not a ver-
tex is interpolated from the vertices of F' based on the assembled matrix Ag,ug,
corresponding to the domain Fy U Fy. To define P on F', one looks at the matrix

A | Afp Ape | }ELUES\ ( vertices of F),
BB = ALy Aee | }( vertices of F).

Then (Pve)(ds) = (—A;;Afcvc)(df) for any dy € F'\ ( vertices of F'). Equivalently,
from the equations that define P on F,

Affwf + Afcwc =0,

one can eliminate the dofs that are on E; U Fs \ F, thus ending up with the Schur
complement problem

wf } YF\ ( vertices of F),

F _ F_
(24) Spup,, FW |F\( vertices of F) — 0, w' = { w¢ } vertices of F.
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Since F' is a separator for Ey U Es, one has that Sg,ur,, r = SE,, r + SE,, . Since
SE,UE,, F is symmetric semidefinite, (2.4) is equivalent to the following minimization
problem:

inf (WF)TSEIUEZ, FWF.
F‘ . =w¢
vertices of r
By definition wf" = Pw® solves (2.4) and thus has this equivalent minimization
property. ]

Throughout the remainder of the paper we will assume the following relations be-
tween the null-spaces of the assembled matrices Ap_ and Ag, for any two neighboring
agglomerated elements E_ and E, that share a common face F.

Assumption 2.1. For any xp_ such that Agp_xp_ = 0 there is an extension x of
xp_ defined on E_ U E such that Ag_yp,x = 0 and x|, = xp_. Equivalently,
Ap, xp, =0and x|, =xg_|p.

As a corollary of the above assumption, the respective Schur complements Sg_, ¢
and Sg,. p of Ap_ and Ag, on the face I' are spectrally equivalent or, equivalently,
have the same null-space.

Actually, the following local estimates hold.

LEMMA 2.5. Assume, in addition to Assumption 2.1, that every null-vector v of
Apg restricted to a face F of E is uniquely determined from its vertex values v, on
F. Note that this is always the case if the set of coarse dofs on any F' is sufficiently
rich (see Lemma 2.2). If we have determined x = Pgx. first on OF and then in the
interior of E as specified above, the local quadratic forms

(PEXC)TAEPEXC, i‘nf xT Apx
x: X|p =Xc

are spectrally equivalent. That is, there exists a constant ng such that

inf XTAEX S (PEXC)TAEPEXC S ne inf XTAEX.
x: X|p =Xc x: X|p =Xc
In other words, the coarse element matriz Ag,  and the Schur complement S. of Ag
on D. N E are spectrally equivalent. ‘
Proof. To prove the result it is sufficient to show that both matrices have the
same null-space. Assume now that S.x. = 0. For any face F' of E one can compute
the Schur complement of S, on F' denoted by S, p. It is clear then (see (2.2)) that

(25) Sc, FXc, F = 0.

Our goal is to show that (Pg)? AgPgpx. = 0, which is equivalent to Ap(Pgx.) =
0. By construction, one has Ag(Prx.) = 0 in the interior of E. Also, from the
definition of Pg for dofs on faces F' (see (2.4)) one has

(Se.r+ Sp, F) (PEXC)F|F\VertiCGS of p =0

Here, F is the neighboring element to E which shares a common face F' with F.
From Assumption 2.1 it follows that Sg r+SEg ., F and Sg r have the same null-space.
Therefore, their respective Schur complements on the vertices of F' (FFND,), o., r and
Se, p will have the same null-space. Then (2.5) implies that o, px. r = 0. Applying
identity (2.2) (based on Lemma 2.4) yields

(Sp,r + Sg, r) (PpXe)p = [ 0 } } F\ vertices of F,

Oc, FXe, F }  vertices of F,
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from which it follows that
(Se,r + S, r) (PEXc)p =0o0n F.
Again, the fact that Sg r + Sg, r and Sg r have the same null-space implies that
Se,F (PExc)p =0 on F.

This shows that (Pgx.) is a restriction of a null-vector of Ag on F'. Assumption 2.1
and the additional assumption we have made that every vector in the null-space of
Ap restricted to a face is uniquely determined by its vertex values on that face then
imply that (PgX.)yp is the restriction of a null-vector of Ag on OE. This together
with the fact that Ag (Pgx.) = 0 in the interior of E finally show that

Ag (Ppx.) =0 on E.

This completes the proof that Pgrx. is in the null-space of Ag, i.e., that x. is in
the null-space of A% . The converse is also true. Namely, A% x. = 0 implies that

(Pex.)TApPgpx. = 0, and since Ap is symmetric positive semidefinite, one gets
that AgPrgx. = 0 or that Pgx. belongs to the null-space of Ag. Therefore, x, =
PrXc|vertices of £ belongs to the null-space of the Schur complement S, of Ag. O

We then have the following global estimate by summing up the local estimates
over the individual agglomerated elements.

THEOREM 2.6. The compatible local interpolation mapping P = Pg is approzi-
mately harmonic in the sense that its norm in the energy inner product is bounded,
ie.,

vIiAwv. = (Pv.)TA(Pv,)
<> ng inf v%AEvE
E

VEIDCHEZVC
<n inf vTAv.
Vch:vc
The exact harmonic mapping corresponds to the best constant n = 1. As shown in
Lemma 2.5, n = maxgee NE, and thus the individual ng can be estimated locally. With
this result, a classical two-level Gauss—Seidel iteration (see, e.g., Bank and Dupont [3]
or Bank [2]) will have a convergence factor bounded by v* =1 — %

Remark 2.4. Note that the proof of Theorem 2.6 does not require uniqueness
of the minimizers (hence of P). Note, however, that we assumed uniqueness on the
faces (see Lemma 2.5). Hence it applies to element matrices coming from 2D and 3D
elasticity. If one assumes a little more (see Assumption 2.2) the uniqueness of P (or
of the minimizers) is guaranteed. Namely, one may assume the following.

Assumption 2.2. If d. is a dof at a vertex and F is an agglomerated element
containing that vertex, the only vector in the null-space of Ap and vanishing at d. is
the zero vector.

For the model case of 2D and 3D second-order scalar elliptic equations (of the form
Lu = —divaVu = f), this assumption holds. However, it may not hold for systems of
PDEs. (It is not true for elasticity problems, for example.) If Assumption 2.2 holds,
Pg is defined uniquely at the interior of N(d) (edge, face, or agglomerated element
E) based on a Schur complement of Agg) (to N(d)) by harmonically extending the
values from the boundary of N(d) into its interior. In particular, one has (see (2.3))
that for each E (2.6) holds, wp = Pgw,|, for any face (or edge) F' C E:

(2.6) wlASw,. = inf vEApvE.
ve|p=wr, for all FcE
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Remark 2.5. The constants ng in Lemma 2.5 are computable and can be used
as local measures for interpolation quality in the sense that smaller g implies better
interpolation. Theorem 2.6 shows that the local measures imply the approximate
harmonic property of P. More details on how to compute measures of interpolation
quality and their relation with other local constants are found in section 4.

3. Energy minimization properties of coarse basis functions. With the
local interpolation operators defined, one can construct a coarse grid basis function vy
for each d € D, as follows. Define the coarse grid vector v§ that is one at d and zero
elsewhere, and define v4 as this vector interpolated to the fine grid (i.e., vq = Pv§). It
is clear then that it will be zero outside the neighborhood Q(d) = UY_; E; of the given
dof d. In this way, v4 can be viewed as a basis vector (function) of the interpolated
coarse space. Using finite element terminology, one may also say that v, is a fine grid
vector representation of a coarse-grid basis function.

LEMMA 3.1. For the model problem of finite element matrices (before imposing
Dirichlet boundary conditions) coming from second-order scalar elliptic problems (2D
or 3D), the {v4} provide the partition of unity, i.e.,

1

(3.1) > va=

deD. 1

Proof. In the case of finite element matrices coming from 2D (or 3D) second-order
scalar elliptic problems, constant vectors are in the null-space of the element matrices.

1 1
By Remark 2.2, if v, = l : ] € R", then v = Pv, = l : ] € R™. This holds since
1 1

vg = Pgv., g, for each coarse element E. (or agglomerated element E). This, in
1

particular, implies that >, ., va= | : | € R™ d
1

COROLLARY 3.2. Consider the model case of finite element matrices (before im-
posing Dirichlet boundary conditions) coming from second-order scalar elliptic prob-
lems (2D or 3D) on quasi-uniform triangulation. Let {vq} be the set of basis functions
generated by the local interpolation operators. Let {ws} be any other potential set of
local basis functions, i.e., a basis function exists for each d € D, with wq(d) =1 and
wq = 0 outside of the neighborhood Q(d). Then the following energy minimization
property of {vq} holds:

(3.2) Z VgAVd <C Z infwdTAWd.
deD, dep.
Proof. Applying the approximate harmonic property of Pg for each agglomerated
element E (Lemma 2.5), one ends up with the estimate
(Vd|E)TAE(Vd|E) S ne ) inf WgAEWE
wet Wyertices of = Vilvertices of &

Summing up over the agglomerated elements E : E C Q(d), where Q(d) is the union
of all agglomerated elements that contain the vertex d (note that vy is zero outside
Q(d)), one ends up with the global estimate

T : T
vy Avg <17 inf wy Ag@yWa, 1= maxng.
Wy WdlDC:VdIDC E
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Note that wy = 1 at the vertex d and is zero at the remaining vertices, and it is also
zero outside §2(d), i.e., it is locally supported.
Finally, summing over all d € D,, one ends up with the desired estimate

E VdTAVd <C E ' infﬁ WdTAQ(d)wd
deD, dep, W Wl =valp,

=C inf wlAw,. |
deD, Wq: Wd‘"pc:lepc

Remark 3.1. Theorem 3.2 shows, for the model case of finite element matrices
coming from second-order scalar elliptic equations as well as in the elasticity, that
the coarse basis functions corresponding to the coefficient vectors v4 solve the energy
minimization functional as defined in Wan, Chan, and Smith [17] up to a multiplicative
constant. Fast algorithms to solve the problem of the energy minimization functional
are proposed and analyzed in Mandel, Brezina, and Vanek [12].

Remark 3.2. For finite element matrices coming from 2D and 3D second-order
scalar elliptic problems on quasi-uniform triangulation, the coarse space produced by
the above algorithm also admits a weak approximation property (or, equivalently,
provides partition of unity—see Lemma 3.1 and also estimate (4.2)) since the element
matrices contain the constants in their null-space. Therefore, the constant is exactly
interpolated from the vertices of the agglomerated elements as the same constant on
the rest of the agglomerated element. That is, with the above minimization property,
the AMGe method can actually become an optimal- (or almost optimal) order MG
method if one can control the local constants g from Lemma 2.5 which depend on the
way we agglomerate the elements at every coarsening step. If  gets large, a potential
remedy might be the algebraic multilevel iteration (AMLI) stabilization procedure
(cf. Vassilevski [16]) which is like the W-cycle or even more cycles. Approaches
to rigorously study the convergence of the underlined AMG method can draw on
the existing analytical tools for geometric MG convergence theory for finite element
problems (see, e.g., the book by Bramble [4]). In the present paper we do not deal
with multilevel convergence results.

Remark 3.3. One can actually apply the same interpolation procedure on ag-
glomerated elements using it recursively to fine-grid element matrices coming from a

nonsymmetric elliptic operator like convection-diffusion, e.g., Lu = — div(eVu)+b-Vu.
In Figures 2 and 3 a coarse basis function is shown (face and rotated) using four levels
of coarsening procedure for a constant convection field b = 1, b = —0.5, and ¢ = 0.1.

Note also that in this case of the convection-diffusion operator the basis functions
computed on the coarse levels by the proposed AMGe method will provide a partition
of unity (as in the symmetric operator case), and hence the coarse spaces will admit
a certain weak approximation property. The same applies for the so-called streamline
diffusion operator Lsu = — div((e + 6b b")Vu) + b- Vu, where 6 is a mesh-dependent
parameter.

Remark 3.4. We finally remark that the presented AMGe method can be used in
the so-called “homogenization” procedures to generate averaged coarse problems from
problems on computationally unfeasible highly refined meshes and possibly with os-
cillatory coeflicients (cf., e.g., [11] and references therein; see also [10]). The difference
that we see here is that our coarsening procedure is local. We require the solution of
small local problems (involving a few elements) rather than large subdomain solves
in order to compute the effective coarse grid basis functions (or coarse-grid element
matrices).
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Fic. 2. AMGe constructed “minimum energy” coarse basis function for convection-diffusion

operator.

4. Algorithms for element agglomeration. This section introduces the al-
gorithm we have used in selecting the coarse grid agglomerates. The algorithm relies
of the faces and edges of the original elements {e}; to simplify the discussion, we will
focus mainly on 2D elements (i.e., having faces and vertices only). The method is
based on the face-face graph of the fine grid elements (i.e., face f; and fy are neighbors
if they share a common vertex) and uses an integer weight w(f) for each face f. The
eliminated faces f will have a weight w(f) = —1.

ALGORITHM 4.1 (element agglomeration based on the face-face graph).
e initiate. Set w(f) =0 for all faces f;
e global search. Find a face f with mazimal w(f); set E = (;

1.
2.

Set E = EUeyUeg, where eyNes = f, and set wmax = w(f), w(f) = —1;
Increment w(f1) = w(f1) + 1 for all faces f1 such that w(f1) # —1 and
f1 is a neighbor of f;

Increment w(fa) = w(fa) + 1 for all faces fo such that w(fz) # —1, fo
1s a neighbor of f, and fo and f are faces of a common element;

From the neighbors of f, choose a face g with a mazimal w(g); if w(g) >
Wmax, Set [ =g, and go to step (1);

If all neighbors of f have smaller weight than wyay, the agglomerated
element E is complete; set w(g) = —1 for all faces of the elements e
contained in E; go to step global search;

This algorithm tends to produce nicely matched agglomerated elements and pro-
duces standard multigrid coarsening (up to boundary effects) for structured grid
problems using linear or bilinear elements. See Figures 4 and 5 for the results of
this procedure applied to a uniform triangular mesh after one and two agglomeration
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Fic. 3. AMGe constructed “minimum energy” coarse basis function for convection-diffusion
operator, rotated.

steps, respectively. The setup cost of the algorithm is linear, i.e., proportional to the
total number of dofs. The algorithm is easily implemented using, for example, double
linked lists.

Figures 6 and 7 show the results of the algorithm for several unstructured prob-
lems. Figures 8,9, 10, and 11, show fine unstructured grids using triangular elements,
the agglomerated elements are shown in Figures 12, 13, 14, and 15 respectively. The
latter are the actual grids on which the first set of numerical tests was performed.

In three dimensions one has the opportunity to introduce edges. Then one may
construct more refined agglomeration algorithms that exploit this additional topo-
logical information, namely, the edge-edge and edge-face graphs. This information,
however, has not been utilized in the present paper.

It is important to note that the above algorithm does not take into account any
matrix entries while agglomerating the elements. For structured grid problems with
anisotropy, it will produce full-coarsening. To produce semicoarsening for such prob-
lems, one can introduce barriers. This can be implemented by assigning to each face

another (binary) weight a(f) = {(1) iiféiﬁfgle. To prevent agglomeration through a

face f, one can simply set a(f) = 1, and then in step 4 of Algorithm 4.1 one searches
for a face g, a neighbor to f, which is with a maximal weight w(g), and if a(g) = 1
(i.e., unacceptable), one looks for an acceptable face g, (neighbor to f) such that
w(gq) = w(g). If such a face does not exist, the agglomeration step is terminated and
the agglomerated element E is ready.

The way we have put barriers on the faces is based on the element matrices;
namely, given a face f = e; N eq, assemble A ., and ask if the dofs on f can be
well interpolated from the rest of the dofs in e; U ey. If the resulting measure of
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FiG. 4. Agglomerated elements for structured triangular mesh: One step of agglomeration.

interpolation quality is reasonable, we say that the face f is acceptable; otherwise,
we label f as unacceptable by initializing a(f) = 1 to prevent agglomeration of ey
and es. To implement this approach, one must be able to access the quality of the
interpolation for the dofs on f. A measure of interpolation quality was proposed in
[7]. In our setting, it can be reformulated as follows. Given the interpolation mapping
P defined by interpolating dofs on f from the rest of the dofs in e; U ey, define the
quadratic form (or matrix) Wy for vectors on f by

. v dofs on f,
V?V[/ffvf = 1‘r,16f(v + PVC)TA61U62 (v+Pve); v= [ Of } %61 Ues \ff

Then the measure of interpolation quality (denoted by M; in [7]) is
1
AminP7; Wrsl’

where Dy is, for example, the diagonal of A, e, restricted to f. Small mp indicates
good quality interpolation; interpolation well approximates functions with low energy.
In finite element notation, small m p means that the functions v, from the coarse space
can approximate well the fine-grid functions v in a weighted L?-norm |.|o. To show
this, let m be a bound such that

(41) mp =

(4.2) ilr)lcf lv — vc||(2)7 e1Ues S Aeyue, (V,0)  forall v vlp = ve|p_ .

This is equivalent (letting v = vy + v, above) to

104113, cyes < 0 F e,y (0 + e, v + ) forall vy : gl =0,
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F1G. 5. Agglomerated elements for structured triangular mesh: Two steps of agglomeration.

In vector notation, this becomes

(vi) " Dygvy < moinf (v + Pve)" Aeyue, (v + Pve) for all v = { \:)f }

=m (Vf)TVfoVf7 for all Vif.

This, with the best choice of m, leads to the definition (4.1) of the measure mp. It is
clear, from (4.2), that smaller mp corresponds to better interpolation quality.
Remark 4.1. One can actually compute the minimum

V?Wffvf - H\llln (V + PVC)TA61U62 (V + PVC), vV = |: Vi :| } dofs on fa

0 } (61 U 62) \ f
One has, with A := A, ., and v, :=tv, for any t € R,
(v +tPv.)TA(v + tPv.) = vI Av + 2tvT APv, + t*(Pv.) T APv...

vl APv

The minimum with respect to ¢ is achieved for t = —Pv)TAPv. and equals
TAP 2
vIiAv — v ve)
(Pv.)TAPv,
Hence,

T 2
T — min (vT _ (vTAPve)R _ [ s
viWspvy = l’l‘lllcl’l <vaffvf (PvoTAPv, ) v=1 4 |
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o
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F1G. 6. Agglomerated elements: Rectangular domain with unstructured triangular elements.

In particular, V?Wffvf < V?Affo. Here, Ay represents the f-f block of A :=
Ae e, (see (4.3) below). Note that if there is a v, such that (APv)|, = 0, then
ViWspvy = v Appvy. The latter is true also for the so-called “optimal” P, i.e., such
that P = —A;}Afc, where A, e, is partitioned as follows:

[ A Aye ] } dofson f,
(4.3) Aeive, = [ Ay Ace ] bo(eaUe)\ f.

In that case, mp = 3

1
min[D;flAff] ’

Remark 4.2. Note that if instead of D¢ one uses in (4.1) the principal submatrix
Aygy of A corresponding to the fine dofs that are not coarse, then mp = ﬁ, where
v € [0,1) stands for the cosine of the abstract angle between the coarse space V. =
{v® = Pv.} and its hierarchical complement V; = {v/ = [¥/]}. The angle is measured

in the energy inner product, i.e.,

(V)T A, e, vE < 7y \/(Vf)TAelLJEZVf\/(VC)TAEIUEZVC for all v/ € V, v¢ € V.

For a proof of the relation mp = ﬁ, see, e.g., Vassilevski [16].

Instead of mp one can use y as a measure of the interpolation quality. Then small
~v will correspond to small mp and hence to good quality interpolation, whereas =
close to one will imply large mp and hence poor quality interpolation.

In following example, we will use vy to define a measure for strength on connections
between neighboring elements and thus label faces as acceptable or unacceptable.
Consider two fine elements e; and eg sharing a face f as shown in Figure 16. Let ig, be
an interpolation rule for dof 3 from x; and x5, and let i, be an interpolation rule for
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Fic. 8. Fine elements: Rectangular domain with 48 unstructured triangular elements.

dof x4 from x5 and xg; these could be constructed as proposed in the previous section.
For 2D scalar elliptic problems with constant coefficients, these are linear interpolants
along the faces F; and Fy treating x1, z2, o5, and xg as coarse-grid nodes and x3
and 4 as complementary to the coarse-grid, fine-grid nodes. Then, given a coarse
function v, defined at the nodes z;,x2, x5, and x6, the mapping Pfv, = {11;12 :’Jcc 2;243
defines a coarse-to-fine prolongation operator.

Let B = e Ueg, and let Ag be the assembled matrix corresponding to E. Given
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Fic. 10. Fine elements: Rectangular domain with 4016 unstructured triangular elements.

a coarse-grid vector v, let 9, = PJv,. be its representation on the fine-grid. Then the
local fine-grid space is decomposed as Pfv, ® v?, where v? are the fine-grid functions
which vanish on the coarse-grid. As mentioned, the cosine v € [0,1) of the angle
between these components can be used to measure a strength of connection between
e1 and eg with respect to the given matrix Ag (or pair of element matrices 4., and
A, that correspond to the pair of elements e; and es2). Recall that the constant + is
defined as the best constant in the strengthened Cauchy inequality

(4.4) ag(Ve, v}) <7 Vagp(., V) Vas(y, v§)  for all o, v

To write this inequality in matrix-vector notation, let

r~[[4)
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Fi1c. 11. Fine elements: Rectangular domain with 16000 unstructured triangular elements.

Fia. 12. Agglomerated elements: Rectangular domain with unstructured triangular elements.

and Ag = PTApP. Consider the following two-by-two blocking of Ap:

~

Ap =

Ag; f¢ A\E; fe } complementary fine-grid nodes; i.e., x3, 4,

Ag. f AE: ce } coarse nodes; i.e., x1, T2, T5, Tg.

Note that Ag. ¢ is the resulting coarse matrix corresponding to £. Then the strength-
ened Cauchy inequality (4.4) reads

~ T
vIAp, cfv(} <y\/VIAE: ceve \/v? A, ffv? for all v, v(}.

A way to compute 7 is to find the largest eigenvalue m = Apax > 1 of the generalized
eigenvalue problem

AE, ccd = )\SE, 9
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Fic. 14. Agglomerated elements: Rectangular domain with unstructured triangular elements.

where Sg, y is the Schur complement of Ag on f,ie,

SE, t = Ap, cc — Ap; ot (Ap; 11) " Ap, fe.

Thenfy:,/l—%.

DEFINITION 4.1 (strongly connected elements). We call e; and ey strongly con-
nected if v is close to zero, i.e., when the resulting local coarse space is almost or-
thogonal to its complementary (the so-called two-level hierarchical complementary)
space.

Algorithm 4.1 can be modified to agglomerate only strongly connected elements.
One would set a threshold « and label a face f unacceptable if v > « by initializing

a(f) = 1.
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F1G. 16. Neighboring elements e1 and ex with a common face f = {3, x4}; the nodes x1,x2, x5,
and xe are viewed as coarse-grid nodes.

4.1. Examples of v. We conclude this section with examples showing that this
definition of strongly connected elements can lead to the correct semicoarsening for
anisotropic problems. Consider the model second-order elliptic bilinear form, which,
restricted to an element e, reads

O0p O Op O
(45) o) = | (%%*%%) dz dy.

Consider two vertically adjacent rectangular elements (see Figure 17) and bilinear test
functions. Consider the following cases.

(a) Anisotropic elements h, < hy; hy = 0.1hy, v = 0.8649; h, = 0.01h,, v =
0.8660. These values of v indicate that the elements are weakly connected
and one should not agglomerate them.

(b) Anisotropic elements h; > hy; hy = 10hy, v = 0.1698; h, = 100h,, v =
0.0173. This example shows that since 7 is close to zero, the elements are
strongly connected, and hence one should agglomerate this pair of elements.
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F1a. 17. Neighboring elements e1 and ea; (a) ha < hy, (b) hy > hy.

(c) For comparison, if h, = hy, v = 0.7746 (or % = %)
Thus, this measure correctly leads to coarsening only in the direction of small
mesh size.

5. Numerical experiments. In this section we present some preliminary nu-
merical results that show the potential of the proposed element agglomeration AMGe
method.

We have tested the two-grid method with the coarse-grid obtained using the
agglomeration algorithm described in section 4. After the coarse dofs were selected the
interpolation mapping was constructed as described in section 2. We used one forward
Gauss—Seidel iteration as a presmoother and one backward Gauss—Seidel iteration for
a postsmoothing. The stopping criterion was a relative reduction of the residual
¢2-norm by a factor of 1075,

We tested two sets of problems.

e The Poisson equation discretized on a square domain on four “unstructured”
rectangular grids are shown in Figures 8, 9, 10, and 11, and the respective
grids with agglomerated elements are shown in Figure 12, 13, 14, and 15.
Dirichlet boundary conditions were imposed, and the results are collected in
Table 1.

e The elasticity equation which comes from minimizing the quadratic functional
discretized with square bilinear elements.

(5.1)
1 1-— 1-—
/ [ Y Gyt 0,0)% + ?”(axu —0,0)% + T”(ayu +0,0)2| dady.
Q

2
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TABLE 1
Two-grid convergence results; unstructured triangular grid; Laplace operator; Gauss—Seidel
smoother.

[ oW#F [ 1T [ 7 [ 5 [ 1]

# fine elements 48 1001 | 4016 | 16 016
# coarse elements 20 242 1016 3 859
# fine dof 35 523 2 085 8 095
# coarse dof 27 281 1 083 3 515

# iterations 7 9 8 8
0 0.159 | 0.320 | 0.256 0.260

TABLE 2

Two-grid convergence results; structured rectangular grid; elasticity operator; Gauss—Seidel
smoother.

[ Grid # [ 1 T 2 [ 3 T 47
# fine elements 400 900 1600 2500
# coarse elements 118 253 438 673
# fine dof 882 1922 3362 5202
# coarse dof 314 624 1034 1544
# iterations 9 9 9 9
0 0.251 | 0.245 | 0.254 | 0.248

Here v = L. Again, Dirichlet boundary conditions were imposed, and these

results are in Table 2.
One notices the similar convergence factors ¢ and the number of iterations for
Poisson and elasticity problems.

w
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Abstract. We introduce a new asynchronous parallel pattern search (APPS). Parallel pattern
search can be quite useful for engineering optimization problems characterized by a small number of
variables (say, fifty or less) and by objective functions that are expensive to evaluate, such as those
defined by complex simulations that can take anywhere from a few seconds to many hours to run. The
target platforms for APPS are the loosely coupled parallel systems now widely available. We exploit
the algorithmic characteristics of pattern search to design variants that dynamically initiate actions
solely in response to messages, rather than routinely cycling through a fixed set of steps. This gives
a versatile concurrent strategy that allows us to effectively balance the computational load across all
available processors. Further, it allows us to incorporate a high degree of fault tolerance with almost
no additional overhead. We demonstrate the effectiveness of a preliminary implementation of APPS
on both standard test problems as well as some engineering optimization problems.
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1. Introduction. We consider solving the unconstrained nonlinear optimization
problem, minimize f(x), where z € R™ and f : R® — R. The problems of particu-
lar interest to us are defined by computationally expensive computer simulations of
complex physical processes. Such simulations may take anywhere from a few seconds
to many hours of computation on a single processor. In addition, we often cannot
use derivative-based methods to solve these problems because no procedure exists for
the evaluation of the gradient and the function evaluations are not precise enough to
produce an accurate finite-difference gradient.

Pattern search is a class of direct search methods that is popular for solving
the problems described above because no derivative information is required. Fur-
ther, pattern search methods admit a wide range of algorithmic possibilities; see,
e.g., [15, 16, 26]. The dominant computational cost for pattern search methods lies
in the evaluation of the objective function. We can exploit the definition of pattern
search to derive variants that perform multiple independent function evaluations si-
multaneously. We then can take advantage of parallel computing platforms to reduce
the overall computational cost of the search.
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Both the nature of the problems of interest and the features of current distributed
computing environments raise some issues that we address in this work.

The original investigation into parallel direct search methods [7, 25] made two
fundamental assumptions about the parallel computing environment: (1) that the
processors were both homogeneous and tightly coupled and (2) that the amount of
time needed to finish a single evaluation of the objective function was effectively con-
stant. It is time to reexamine these two assumptions. Clearly, given the current vari-
ety of parallel computing platforms, including distributed systems comprising loosely
coupled, often heterogeneous, off-the-shelf commercial components [24], the first as-
sumption is no longer valid. The second assumption may not hold in our case because
we focus on problems defined by the simulations of complex physical processes. Typ-
ically, the simulations themselves are based on iterative numerical techniques and so
the assumption that evaluations of the objective finish in constant computational time
on equivalent processors often does not hold. In fact, the behavior of the simulation
for any given input is difficult to assess in advance since it can vary substantially
depending on a variety of factors.

Because the original assumptions underlying parallel direct search are not valid
for the situations we now face, we can no longer assume that the computation proceeds
in lockstep. A single synchronization step at the end of every iteration, as in [25],
is neither appropriate nor effective when any of the following factors holds: function
evaluations finish in varying amounts of time (even on equivalent processors), the
processors employed in the computation possess different performance characteristics,
or the processors have varying loads. Our goal is to introduce a class of asynchronous
parallel pattern search (APPS) methods that make more effective use of a variety
of computing environments, as well as to devise strategies that accommodate the
variation in completion time for function evaluations. Our approach is outlined in
section 3.

Another consideration we address in this paper is incorporating fault-tolerant
strategies into APPS since one intent is to use this software on large-scale systems. As
the number of individual computers participating in a computation grows, the chance
that one (or more) will fail also grows. If we embark on a lengthy computation, we
want reasonable assurance of producing a final result, even if a subset of processors
fails. Thus, our goal is to design methods that respond to such failures and protect
the solution process. Rather than simply checkpointing intermediate computations to
disk and then restarting in the event of a failure, we are instead considering methods
with heuristics that adaptively modify the search strategy. We discuss the technical
issues in further detail in section 4.

In section 5 we provide numerical results, for both standard and engineering
optimization test problems, that compare a preliminary implementation of APPS
with an implementation of parallel pattern search (PPS) that incorporates a blocking
synchronization point within each iteration. Finally, in section 6 we outline additional
questions to pursue.

Although we are not the first to embark on the design of asynchronous parallel
optimization algorithms, we are aware of little other work, particularly in the area
of nonlinear programming. Approaches to developing asynchronous parallel Newton
or quasi-Newton methods are proposed in [4, 10], though the assumptions underlying
these approaches differ markedly from those we address. Specifically, both assume
that solving the Newton equation at each iteration is the dominant computational
cost of the optimization algorithm because the dimensions of the problems of interest
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are relatively large. A different line of inquiry [23] considers the use of quasi-Newton
methods in the context of asynchronous stochastic global optimization algorithms; we
consider only the problem of identifying local stationary points.

2. Parallel pattern search. Before proceeding to a discussion of APPS, let us
first review some key features of pattern search.

A primary characteristic of pattern search methods is that they sample the func-
tion over a predefined pattern of points, all of which lie on a rational lattice. By
enforcing structure on the form of the points in the pattern, as well as simple rules
on both the outcome of the search and the subsequent updates, we are guaranteed
global convergence to a stationary point [9, 16, 26].

For our purposes, the feature of pattern search that is amenable to parallelism
is that once the candidates in the pattern have been defined, the function values at
these points can be computed independently and, thus, concurrently.

To make this more concrete, consider the following particularly simple version of
a parallel pattern search algorithm. At iteration k, we have an iterate x € R™ and a
steplength control parameter Ay > 0. The pattern of p search directions is denoted
by D = {di,...,d,}. Although other choices for D are possible, for our simple variant
we choose D = {ey,...,en, —€1,...,—€yn}, where e; represents the jth unit vector.
Figure 2.1 illustrates an example of this search pattern when n = 2.

Lk

Fic. 2.1. A simple instance of a pattern for pattern search.

Now that we have selected D, multiple algorithmic options are open to us. An
obvious strategy for concurrent computing is to identify an z, € {xy + Agd;, @ =
1,...,p} such that f(zy) = min{f(xr+Axd;), 7 =1,...,p}. This strategy requires us
to compute f(xr + Ard;) for all p vectors in the set D. To ensure global convergence
of some subsequence to a stationary point we can accept any point xj + Ay d; for
which f(zr + Ard;) < f(xg) [26]. Thus, finding f(zy) = min{f(zr + Axd;), i =
1,...,p} is in some sense more than is really needed. However, concurrency masks
the computational expense of the stronger acceptance condition.

If none of the points in the pattern reduces the objective, then we set xx41 =
and reduce A by setting Ag4q1 = %Ak; otherwise, we set Ag11 = Ay and 41 = 4.
We repeat this process until some reasonable stopping criterion, such as Ay < tol, is
satisfied [8, 9]. This basic strategy leads us to the algorithm we call parallel pattern
search (PPS), which is given in Figure 2.2.

There still remains the question of what constitutes an acceptable pattern. Fol-
lowing the examples in [16], we borrow the following definition from [6].

DEFINITION 2.1. A set of vectors {d1,...,d,} positively spans R™ if any vector
v € R™ can be written as a nonnegative linear combination of the vectors in the set;
i.e., for any v € R™ there exist a1, g,...,ap > 0 such that

v o= aidi + -+ apdp.



ASYNCHRONOUS PARALLEL PATTERN SEARCH 137

Initialization:

Set the iteration counter & = 0.

Select a set of search directions D = {dy,...,dp}.
Select a steplength control parameter Ag.

Select a stopping tolerance tol.

Select a starting point z¢ and evaluate f(zo).

Iteration:
1. Compute ), + Agd; and evaluate f(xy + Agd;), for i = 1,...,p, concurrently.
2. Determine x4 and f(z4) such that f(z4) = min { f(zr + Axd;), i=1,...,p}
(synchronization point).
3. If f(z4) < f(zg), then x «— x4 and f(zg) «— f(z4). Else Ag — %Ak.
4. If A > tol, k — k+ 1, go to step 1. Else, exit.

Fic. 2.2. The PPS algorithm.

We require D to be a positive spanning set for R™. (This is a bit of a misnomer;
given the definition, it perhaps would be more apt to call it a “nonnegative” spanning
set.) We add the condition that D be composed of rational vectors [16].

3. Asynchronous parallel pattern search. The appeal of the PPS strategy
outlined in Figure 2.2 is that it is straightforward to implement. Unfortunately, ineffi-
ciencies in processor utilization for PPS arise when the objective function evaluations
do not finish in approximately the same amount of time. This may happen for several
reasons. First, the objective function evaluations may be complex simulations that
require different amounts of work depending on the input parameters. Second, the
computational loads on the individual processors may vary. Third, the processors
participating in the calculation may possess different computational characteristics.
When the objective function evaluations take varying amounts of time, those proces-
sors that can finish their share of the computation more quickly wait for the remaining
processors to contribute their results. Fourth, the number of processes we are inter-
ested in executing may not exactly match the number of available processors. Finally,
there is the real risk that either processes or processors may fail during the course
of the computation. For all these reasons, we pursue a more versatile concurrent
strategy, which we call asynchronous parallel pattern search (APPS), that allows us
to effectively balance the computational load across the available processors.

Were we simply interested in load-balancing issues, the master-slave paradigm for
the design of parallel programs would be inviting. Given such a design perspective,
we could localize all decision making to a single process (the master) and devote all
remaining processes (the slaves) to the evaluation of f(xa) for various choices of
Ttrial determined by the master process. Since we are assuming that the evaluation
of the objective is the dominant computational cost, we would not have to be overly
concerned about the communication bottlenecks that can sometimes occur using such
a paradigm. However, fault tolerance is our other prominent concern. If we localize the
decision making to a single process and the master process fails, we would be unable
to finish the computation. (Recovery in the event that one of the slave processes fails
is easy; once a failure is detected, the master process can simply restart the failed
slave process.)

Such concerns lead us to the peer-to-peer paradigm. We want each process to be
an independent unit, capable of making its own decisions and equipped to respond
intelligently whenever it detects that other processes have failed.
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Initialization:

Determine my search direction d € D.

Receive the initial value of the steplength control parameter Ayg,ia)-
Receive the value of the stopping tolerance tol.

Receive the starting point zpesy and receive (or evaluate) fhest = f(Tbest)-

Iteration:
1. Compute Ttrial <= Thest T Atlrial d and evaluate ftrial = f('rtrial)'
2. Perform a global reduction to determine fi (and the associated zy) such that f is
the minimum of all fi;i,) values on all p processes.

3. (a) If f+ < foest, then
i. Atrial — A Atrial with A € {2@ ‘ le Z+} and
ii. {zbesta fb?st} - {me f+}

(b) Else Agyial + §Atrial~
4. If Agrial > tol, go to step 1. Else, exit.

F1G. 3.1. Peer-to-peer version of (synchronous) PPS.

3.1. Peer-to-peer synchronous PPS. In order to better understand APPS,
let us first consider a peer-to-peer version of synchronous PPS.

For PPS, there are p processes, with each process in charge of a single search
direction in the set D. In Figure 3.1, we show the peer-to-peer version of synchronous
PPS from the perspective of a single process. We drop the subscript i = {1,...,p} to
emphasize that each process is only concerned with its own unique direction. In the
initialization, each process determines its search direction and “receives” the values
of Ayyial, tol, and xyest either by reading them from an input file or by receiving them
in a message from another process.

In the main iteration of PPS, the only communication a process has with its peers
is the reduction in step 2, where all the processes participating in the computation
contribute their values for xya and firia. The reduction operation returns f;, the
minimum value of fi,i,) over all processes, and x, the associated point. This reduction
operation is the synchronization point for PPS—the minimum value of fi.. over all
processes cannot be determined until all processes have finished their evaluation of
f(xtrial)-

As indicated in step 3(a)i, we may increase Ay, when a decrease in f is obtained.
We have two possible reasons for doing so. First, we do not want Ay, to become too
small based on the outcome of a search along a single direction. So if we find a step
that produces decrease in f, but for which Ay.a is smaller than some A, > tol,
then we choose the least nonnegative integer ¢ (i.e., £ € Z ) such that 2 Arial > Amin
(in our implementation we somewhat arbitrarily choose Ay, = 23 - tol). Assuming,
instead, that we ended the search successfully with a choice of Ay, that satisfies
Atrial > Amin, we may still choose to expand Atya. In our implementation we
double A¢yia1 (i-e., we choose £ = 1) if the same search direction produces at least two
successful iterates in a row. Our reason for this condition is straightforward: if we
have just completed a sequence of reductions in A, to arrive at a steplength that
is sufficiently small to produce descent, it is counterproductive to follow this with an
immediate doubling of Ay,i,1. However, if the same search direction produces at least
two successful iterates in a row, then this would indicate that the size of the step we
are taking is probably too short, so we double Aya in an effort to accelerate the
search along that direction. If neither of the above two situations holds, then we do
not alter Agya (i-e., we choose £ = 0).
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On the other hand, if there is no decrease in f, in step 3(b) we reduce Agial by
a factor of one-half.

In step 4, all processes simultaneously check for convergence, each using its own
locally stored, locally updated copy of Aga1. We note that in a heterogeneous envi-
ronment, there exists the possibility that the processes may not have identical values
for A¢yia1 because of slight differences in both storage and arithmetic for floating-point
numbers; see [2]. We address this issue in further detail in section 3.3.2.

Iteration:
0. For each new best message in my queue:
(a) If f+ < fpest for an incoming triplet {zy, f+,A+}, then
L {xbcstv Soests Abcst} - {I+7 S+, A+}1 and
il Atrial < Apest-
(b) Else, discard the triplet {zy, f4+,A+}.
Compute Tirial + Thest + Atrial d and evaluate firial = f(Ttrial)-
Set {CI?+, f+7 A+} — {Ztrialv Strial, Atrial}'
3. (a) If f4 < fpest, then
i Agrial — A Agrial With X € {22 ‘f € Z"F}; A-‘r — Atrial;
ii. {xbestv fbestv Abest} — {Z‘+, f+7 A+}; and
iii. broadcast a nonblocking new best message with the triplet
{xbcstv fbcsm Abcst}'
(b) Else Agrial < %Atrialv

4. If Agyial > tol, go to step 0. Else broadcast a nonblocking single direction

convergence message with the triplet {Tpest, fbests Dbest |-
5. Wait and process each incoming message in my queue until either

(a) enough of the processes report single direction convergence for this same point

or

(b) a better point is received.

In case (a), exit. In case (b), go to step O.

N =

F1c. 3.2. Peer-to-peer version of APPS.

3.2. Peer-to-peer APPS. The peer-to-peer version of APPS, from the per-
spective of a single process, is given in Figure 3.2. Note that the process’s local values
for Thest, T+, Atrial, €tC., may not always agree with the local values on other processes.
This is in contrast to PPS, where all values except fiyia1 and a1 are synchronized.
While PPS relies on a global reduction operation to synchronize all critical values,
APPS relies on nonblocking broadcasts to exchange information between processes.
Descriptions of the individual steps of APPS follow. (The initialization for APPS is
unchanged from that for PPS.) As we examine these steps, keep in mind that at each
step, every process decides what to do next based only on its current local information.

Step 0: Checking for candidates from other processes. Before a process
undertakes a new evaluation of the objective function, it considers any “new best”
messages that may have arrived during the previous function evaluation. The receiving
process considers each incoming triplet {x, fy, AL} as a candidate for a new best;
hence the test in step 0(a). To make the procedure robust, we handle tie-breaking
(i.e., the case where fi = fpest) in a consistent fashion, the details of which are
deferred to section 3.3.2.

Step 1: Evaluating the function. Step 1 is the computational workhorse of
PPS and is equivalent to the same step in synchronous PPS. The one substantive
difference is that in PPS, xes and Ay a1 are identical across all processes. In APPS,
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these values are no longer synchronized; they depend only on the information that is
currently known to the process when it constructs x;ial-

Step 2: Assigning the local candidate. This step does not actually require
any action; it is here to emphasize that, in contrast to PPS, accepting the local trial
point as a possible candidate for the new best does not involve the other processes.
Instead, input from other processes is assessed in step 0, as it becomes available.

Step 3: Assessing the local candidate. If f,, the function value at z, is
better than fiest, then Agyia (and Ay) are increased (using the same strategy given
in section 3.1 for PPS), the process’s triplet {Zpest, fbest, Abest} 1S updated, and a
message is broadcast to the other processes to inform them of this improvement.
Otherwise, the process reduces A¢a1 and continues.

Step 4: Checking for convergence along my search direction. There are
two possible outcomes for step 3: either fi replaces fpest (in which case, A,ia1 may be
increased) or fhest is unchanged and Ay, is reduced. If the second outcome occurs
and Ayial < tol, this signals that no improvement can be found from the current st
along the search direction d that this process owns and thus we may have arrived at a
stationary point [9]. The process then notifies the other processes, by broadcasting a
“single direction convergence” message, that it has converged (within tolerance) along
its search direction.

Step 5: Waiting for a more complete picture of the entire search. The
last step in APPS is the one step where a process may wait in an idle loop. Step 5 is
reached only when a process has converged along its search direction. The idle pro-
cess waits until either one of two things happens: it receives enough single direction
convergence messages to verify global convergence to a stationary point of the objec-
tive function, or another process produces a point with a function value that is lower
than fhest- The details regarding what constitutes “enough” single direction conver-
gence messages are deferred to section 3.3.3, where we discuss the precise measure of
“enough” and how this can be determined.

3.3. Handling messages and exploiting parallelism. Now that we have
discussed the essential logic of APPS, we change it slightly to better handle the
message traffic and to better exploit parallelism.

There are technical considerations underlying the implementation of APPS that
cause us to modify the algorithm slightly from the version presented in Figure 3.2.
In particular, in the discussion above we have referred to a set of p processes, each
of which handles computation, communication, and decision making. However, it is
convenient to split the computation (i.e., the evaluation of the objective function) from
the communication and decision making. One motivation for spawning a separate
process to handle each evaluation of the objective function is that as a consequence
of receiving a new best point from another process, it may be desirable to terminate
an evaluation at some i, in order to move to the search to the new Tpest. A
second motivation is that it should eliminate the accumulation of a large number of
unprocessed messages, which can cause the message queue to overflow.

We start with a group of APPS agent processes that are in charge of the commu-
nication and decision making. Each evaluation of f(xia1) is spawned as a separate
process that is subservient to a single APPS agent. The result is a set of APPS agents
working in peer-to-peer mode, with each APPS agent spawning function evaluation
processes as necessary. In contrast with the description of APPS given in Figure 3.2,
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APPS agents now dynamically initiate actions solely in response to messages, rather
than routinely cycling through a fixed set of steps. It should be noted that the APPS
agents require very little processing time, relative to the amount of time devoted to
evaluating f(zria). Essentially, each APPS agent lies dormant until the arrival of an
incoming message, which then triggers some action.

The types of incoming messages that an APPS agent receives are categorized as
follows: a “return” from the process it spawned for the evaluation of f(ziyal), 8 “new
best” message from another APPS agent, a “single direction convergence” message
from another APPS agent, or a “shutdown” message from another APPS agent. We
now investigate in more detail an APPS agent’s reaction to each type of incoming
message.

3.3.1. Handling “return” messages. An APPS agent receives a “return”
message when the process it spawned to evaluate f(xiyia1) returns the computed value
firial- In Figure 3.3 we show an APPS agent’s actions in response. In the discussions
that follow, we introduce here an additional item to be associated with each point—a
convergence table II. The convergence table is used to detect a stationary point. It
lists which of the p search directions from x have converged to within tolerance. We
defer a further discussion of how this information is processed to section 3.3.3, where
we discuss an APPS agent’s action in response to a “single direction convergence”
message in more detail.

Return from evaluation of the objective. Receive fiial-
1. Update Tpest and/or Agyial-
(a‘) If ftrial < fbestv then
i Arial = A Ayl with X € {2¢]£ €24},
ii. {wbcstv Soests Abpests Hbcst} — {xtrialv ftrial, Atrial, Htria1}7 and
ili. broadcast a nonblocking new best message with the quadruple
{xbestv Soests Apests Hbest}'
(b) Else if xpest is not the point used to generate Tiyial, then Agrial < Apest-
(C) Else Agyial + %Atriab
2. Check for convergence and spawn next objective function evaluation.
(a) If Agpial > tol, then compute Zirial < Thest + Atrial d, initialize Miyia) to
FALSE, and spawn a new process to evaluate f(Ztyial)-
(b) Else update ITest (to signal convergence to zpest along my direction d) and
broadcast a nonblocking single direction convergence message with the

quadruple {zbestv Soests Dbests Hbest}-

Fic. 3.3. APPS agent’s response to a return message.

After receiving a return message, an APPS agent first must determine if a new
best point has been identified, as shown in step 1(a). If so, the steplength A, may be
increased (using the same rule as for PPS; given in section 3.1) and {®tyial, ftrial, Atrial,
ILtyia1 } replaces {Thests foests Abests Hbest - The improvement is broadcast to all other
APPS agents.

Upon first inspection, the need for step 1(b) may not be clear. An APPS agent
constructs Tira using its current values of Tpest and Agia (step 2(a) in Figure
3.3). While the process spawned by an APPS agent is busy evaluating f(Ztrial),
there is always the chance that another APPS agent will broadcast a quadruple
{zy, f+, Ay, T, } whose value of f improves upon the resident value of fiest. As we
shall see in section 3.3.2, when an APPS agent receives such an incoming message,
it replaces {Zbest, foest, Abests Ubest } with {z4, f+, Ay, 1 }. Before constructing the
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next Tiral, the APPS agent ascertains if, while f(2a1) was being computed, Tpest
was replaced as the result of an incoming message from another APPS agent. If so,
then this new zpesy will be used to compute the next .. In this case, the APPS
agent replaces Aygpial With Aypest; using the value of A associated with the best point
retains some scaling information.

In step 1(c), we halve Ay, after confirming that fpest has not been replaced
either by fi,ia1 or by some f; contained in a message that arrived from another APPS
agent while f(ztyia1) was being computed.

Step 2 in Figure 3.3 checks the value of Ay, our measure of progress toward
a solution, and reacts appropriately. If Aya is greater than tol, we continue the
search. Otherwise, when Ay < tol, the search along the APPS agent’s direction d
has converged to Tpest, and this information needs to be broadcast to all APPS agents.

3.3.2. Handling “new best” messages. When an APPS agent receives a
“new best” message from another APPS agent, the first thing to check is whether or
not the incoming quadruple really does contain the best function value seen thus far.

Here we encounter an important caveat of heterogeneous computing [2]. The
comparison of floating-point values (in particular, f’s and A’s) controls the flow of
APPS and we depend on these comparisons to give consistent results across all pro-
cesses. Therefore, we must ensure that values are compared only to a level of precision
available on all processors. In other words, a “safe” comparison declares a equivalent
to b if

la—b] .
3.1 —— <€
( ) max{|a\,\b|} mach»
where €, is greater than or equal to the maximum value of machine epsilon across

the values for machine epsilon on all processors participating in the computation. If
both |a| and |b| are below €, ., then they are automatically considered equal and
(3.1) is not evaluated.

The second concern raised by the concurrency of the processes is what to do when
f+ and frest are equivalent. Currently, APPS uses the following tie-breaking scheme.
If fi and fhesy satisfy (3.1), then compare A, and Apes; and select the candidate
with the larger value of A. If A, and Ayes also satisfy (3.1), check next to see if x4
and Tpest are the same. Rather than comparing xy and zpest directly, by computing
some norm of the difference, we use a unique global identifier with which APPS tags
each point. Thus, two points are considered equivalent if and only if their f-values,
A-values, and unique global identifiers are equivalent. This means that two points
that actually are equal, but were generated via different paths on different processes,
will be considered to be “different” points since their global identifiers do not match.
However, since the purpose of the identification is to break ties in a consistent fashion,
all we need worry about is what to do when both the f-values and the A-values are
equivalent but the global identifier is not. In this last case, ties are broken in favor
of the point with the lower global identifier. Since the global identifier of each point
is a unique integer, the resolution is unambiguous. So, whenever we compare f; and
fbest, the comparison incorporates this tie-breaking strategy.

Now that we can assess “improvement” on fes in a way that both handles the
vagaries of floating-point representation and breaks ties in a consistent fashion, we
examine in more detail an APPS agent’s actions to a “new best” message, shown in
Figure 3.4.
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New best. Receive {z4, f+, Ay, 14}
1. If f+ < fpbest, then
(a) If I had converged to xpest along my search direction d, then
i {xbest: fbest7 Abestv Hbest} — {m+7 f+7 A+7 H+}7 Atriaul — Abest:
ii. compute Tirial < Thest + Atrial d, initialize I, to all FALSE, and
spawn a new process to evaluate f(Ztrial)-
(b) Else if Agpial < Ay, then
i. terminate the process evaluating f(Ztyial),
ii. {xbestv fbesm Abesty Hbest} — {$+, f+7 A+7 H+}7 Atrial — Abest:
ili. compute Tirial < Tphest + Atrial d, initialize Il 51 to all FALSE, and
spawn a new process to evaluate f(Zirial)-
(C) Elsey {xbesty fbest7 Abestv Hbest} - {erv f+7 A+7 H+}-
2. Else discard {x4, f+, A4, It }.

Fic. 3.4. APPS agent’s response to a new best message.

Assuming improvement on fpest, the first action taken by an APPS agent is to
determine the status of the search along the direction d. There are three possibilities
to consider.

The first possibility, shown in step 1(a), is that at some point the search along d
had converged within tolerance and so the APPS agent is now waiting for incoming
messages to either confirm overall convergence of the search or, as in this case, produce
a new best point (see step 5 in Figure 3.2). When the latter occurs, the incoming
quadruple is accepted and the search is resumed from the new Zpest.

The second possibility, shown in step 1(b), is that the search along d is still
in progress, but that the steps along d have become small, i.e., Ayl < Apest- If
so, then the search along d has reduced Aya—perhaps repeatedly—in an effort to
find improvement on fhest. In this case, it is particularly useful to have an APPS
agent acting independently of the function evaluation process. An APPS agent can
terminate the current evaluation of f(xiya1) before it actually finishes (step 1(b)i)
in favor of starting a new evaluation of the objective based on a new value of xpest
(step 1(b)iii). The question to ask is why we would choose to do so.

In certain cases, the current evaluation of the objective function is terminated in
favor of starting one based on a new best point. Imagine the following scenario. Sup-
pose three APPS agents, A, B, and C, start off with the same value for x},eg;, generate
their own Ztia1’s, and spawn their own evaluations of f(xtia1). Each evaluation of
the objective function takes several hours. The evaluation for Agent A completes first
and there is no improvement, so Agent A reduces its steplength, generates a new trial
point, and spawns a new evaluation of the objective function. A few minutes later,
Agent B’s evaluation finishes and it produces improvement. Agent B broadcasts a
“new best” message to the other APPS agents. Agent A receives this message and
terminates its current evaluation of the objective function in order to move to the
better point. This may save several hours of wasted computing time. However, Agent
C, which is still working on its first evaluation of the objective function, waits for
that to complete before considering a move to the new xpest because the inequality
on Ayyia does not hold in step 1(b) of Figure 3.4.

The third possibility when the incoming value of f; improves upon the local value
of fhest is to simply accept the incoming quadruple, as shown in step 1(c). This is
exactly the strategy for Agent C' outlined in the scenario described above.

The final observation to be made is that if f; does not improve upon fyest, the
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Single direction convergence. Receive {xy, f4, A4, 11}
1. If f+ < fpest, then go through the steps for a new best message.
2. If f+ = fpest, then
(a) Update Ipest to include any new information contained in IT4.
(b) If I am the temporary master, then check for convergence.
If enough of the other processes have converged (i.e., their associated
directions form a positive spanning set), then
i. report {Tbest; foest }s
ii. broadcast a nonblocking shutdown message to the remaining APPS
agents, and
iii. exit.
3. Else discard {z+, f+, A4+, I+ }.

Fic. 3.5. APPS agent’s response to a single direction convergence message.

quadruple {z, f+, Ay, I, } is simply discarded; it already has been superseded by
another point and thus is of no interest.

3.3.3. Handling “single direction convergence” messages. Detecting con-
vergence for APPS is a trickier issue than it is for PPS because the APPS agents do not
perform a synchronized test for convergence. Instead, each APPS agent stops spawn-
ing processes to evaluate f(ra1) when its local value of Ag,ia satisfies Agyiar < tol.
Any APPS agent that arrives at this conclusion then waits until either enough other
APPS agents stop at the same best point (we describe “enough” below) or another
APPS agent produces a better point from which to resume the search. Since every
quadruple {Ztrial, firial, Dtrial; Hirial } which improves upon fhest is broadcast to all
APPS agents, every APPS agent eventually agrees on the best point.

When an APPS agent receives a “single direction convergence” message (see Fig-
ure 3.5), it checks to make sure that this function value and associated point have
been seen before. If not (a distinct possibility since messages may arrive out of order),
then the APPS agent handles the incoming quadruple as if it were part of a “new
best” message.

If the incoming point is the same as the best point we have, i.e., f1 = fpest, then
the APPS agent receiving the message must update its convergence table I} to
include any new information regarding the convergence of other search directions to
the same point Tpest. Again, timing issues must be taken into account as either the
sending or the receiving APPS agent may have information that has not yet been seen
by the other.

Next, in order to check for convergence of a sufficient number of the p indepen-
dent search directions, it is useful to have a temporary master to avoid redundant
computation. We define the temporary master to be the APPS agent with the lowest
process identification number. While this is usually process 0, it is not necessarily
the case if a fault occurs; we discuss this scenario further in section 4. The tempo-
rary master checks to see if the set of directions along which the search has converged
forms a positive spanning set. If so, it reports to the user the final result of the search,
broadcasts a “shutdown” message, and exits.

Checking for a positive spanning set can be done as follows. We know that
a positive spanning set for R” must contain at least n + 1 vectors [6]. So if the
convergence table has at least n + 1 entries, it is time for the temporary master to
check for convergence of the overall process. (Every APPS agent knows D, which is
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why it is possible for any APPS agent to serve as temporary master.) Let V C D be
the candidate for a positive spanning set. We solve n 4+ 1 nonnegative least squares
problems according to the following theorem.

THEOREM 3.1. A set V = {v1,v2,...,0m} is a positive spanning set if the set
E={ey,ea,...,e,, — 1} is in its positive span (where —1 is the vector of all —1’s).

Alternatively, we can check the positive basis by first verifying that ) is a spanning
set using, say, a QR factorization with pivoting, and then solving a linear program.

THEOREM 3.2 (see Wright [27]). A spanning set V = {v1, va, ..., Un} is a positive
spanning set if the maximum of the following linear program is 1.

max t subjecttoVe =0, x; >tV 0<t <1,

where V' is a matriz representing the spanning set V.

We make use of Theorem 3.1 since Netlib provides freely available software, due
to Lawson and Hanson [14], for solving nonnegative least squares problems. To make
use of Theorem 3.2 requires software both for QR factorizations and for the solution
of linear programs; the latter is particularly difficult to come by in a freely available,
portable, and easy-to-use format.

3.3.4. Handling “shutdown” messages. The reactions of the other APPS
agents to a “shutdown” message from the temporary master should be clear after the
discussion in section 3.3.3; they are given in Figure 3.6. Again we note the value of
having both an APPS agent and a separate process for evaluating f(xyia1); once the
shutdown message has been received, an APPS agent can immediately terminate the
process evaluating f(Za1) and exit.

Shutdown. Receive the shutdown message from the temporary master.
1. Terminate the process evaluating f(Ztria1) and
2. exit.

F1c. 3.6. APPS agent’s response to a shutdown message.

4. Fault tolerance in APPS. The move toward a variety of computing en-
vironments, including heterogeneous distributed computing platforms, brings with it
increased attention to the fault tolerance of parallel algorithms. The large size, di-
versity of components, and complex architecture of such systems create numerous
opportunities for hardware failures, and our computational experience confirms that
these failures do, in fact, occur.

In addition, the size and complexity of current simulation codes call into question
the robustness of the function evaluations. For example, our experience has been that
it is possible to generate input parameters that are both physically and mathemati-
cally feasible but for which the simulation codes fail to finish successfully. Thus, we
must contend with software failures as well as hardware failures.

A great deal of work has been done in the computer science community with
regard to fault tolerance; however, much of that work has focused on making fault
tolerance as transparent to the user as possible. This often entails strategies such
as checkpointing the entire state of an application to disk or replicating processes.
Fault tolerance has traditionally been used with loosely coupled distributed applica-
tions that do not depend on each other to finish, such as business database applica-
tions. This lack of interdependence is atypical of most scientific applications. While
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checkpointing and replication are adequate techniques for scientific applications, they
incur a substantial amount of unwanted overhead; however, certain scientific applica-
tions have characteristics that can be exploited to derive more efficient and elegant
stratagems for fault tolerance. Algorithm-dependent strategies for incorporating fault
tolerance have already received attention in the scientific computing community; see,
e.g., [21]. These approaches rely primarily on the use of diskless checkpointing, a
significant improvement over traditional approaches. The nature of APPS is such
that we can even further reduce the overhead for fault tolerance and dispense with
checkpointing altogether.

Two important observations should be made regarding fault tolerance in APPS.
First, there are no single points of failure in the APPS algorithm itself. Assuming
initialization is successful, there is just one scenario that requires a single APPS agent
to coordinate efforts among all agents (i.e., the temporary master used to check con-
vergence of the entire search, as shown in Figure 3.5). However, the choice of master is
not fixed. If the APPS agent serving as temporary master should fail while performing
its tasks, another APPS agent steps up to take over. This means the degree of fault
tolerance in APPS is constrained only by the underlying communication architecture.
The current implementation of APPS uses PVM [11], which provides a rich library of
communication and process management procedures needed by the APPS agents. The
one limitation we inherit from PVM is that it executes multiple processes on multiple
processors under the control of a single master PVM daemon. Thus the PVM daemon
introduces a single point of failure within our current implementation of APPS. We
expect HARNESS [1], the successor to PVM, to eliminate this disadvantage. The
second observation to be made is that no checkpointing or replication of processes
is necessary. The APPS agents can be reconfigured dynamically. New APPS agents
require only a small packet of information from any active APPS agent in order to
take over where a failed APPS agent left off. Therefore, we have been able to take
advantage of algorithmic characteristics of pattern search in order to incorporate a
high degree of fault tolerance into APPS with almost no additional overhead.

Having made these two observations, we now describe how fault tolerance is ad-
dressed in APPS. Every APPS agent keeps a record of active and inactive APPS
agents (one per search direction), the available hosts, and a mapping of the active
APPS agents to the available hosts. There are three types of faults with which we
are concerned: (1) the failure of a process evaluating the objective function, (2) the
failure of an APPS agent, and (3) the failure of a host processor. Once again we
note the advantage of maintaining pairs of processes: an APPS agent to handle all
communication (including information from PVM regarding the failure of processes)
that is separate from the processes tasked with the major computations, the evalu-
ations of the objective function. An individual APPS agent uses its record of active
and inactive APPS agents to decide whether or not it is the temporary master and
to determine the other APPS agents with whom it should interact in response to a
failure. The responses to these three scenarios are shown in Figure 4.1.

When a process evaluating f(xtya) fails, the failure is reported to its master
(i.e., the APPS agent that originally spawned it), and that APPS agent respawns the
evaluation of the objective function at the current trial point. If several (e.g., five)
attempts to evaluate the objective function fail at the same trial point, the APPS
agent that was spawning those evaluations exits, triggering an APPS agent failure
message to be sent to the other APPS agents. The failure of an evaluation could be
handled in different ways for different applications; for instance, attempts to evaluate
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e An APPS agent detects failure of its function evaluation process.
1. If the number of attempts to evaluate f(xtria1) is less than the maximum
number allowed, then respawn a new process to evaluate f(Ztyial)-
2. Else exit.
e An APPS agent detects failure of another APPS agent.
1. Record the failure.
2. If “my” process number is the lowest among the APPS agents still active,
then assume the responsibility of temporary master.
3. If I am the temporary master, then

(a) Check for convergence. If enough of the other APPS agents report
convergence (i.e., their associated directions form a positive spanning
set), then

i. report {zbest’ fbest}7
ii. broadcast a nonblocking shutdown message to the remaining
APPS agents, and
iii. exit.

(b) If the directions corresponding to the remaining APPS agents do not
form a positive spanning set, respawn all failed APPS agents on
available host processors.

e An APPS agent detects failure of a host processor.
1. Remove failed host from list of available host processors.
2. Determine all APPS agents residing on the failed host processor and treat
each as a failed APPS agent.

Fi1G. 4.1. Fault tolerance messages and actions.

the objective function at a certain point could be abandoned without necessarily
terminating the APPS agent.

When an APPS agent fails, all the remaining APPS agents record this failure. If
the APPS agent that failed happened to be serving the role of temporary master, then
another APPS agent must assume this responsibility. We maintain the convention that
the active APPS agent with the lowest process number serves as temporary master.
Once the question of who is temporary master is resolved, the first thing the new
temporary master does is check for convergence since the now defunct APPS agent
may have been in the midst of that check when it failed. If the search has not yet
converged, the temporary master checks whether or not the set of directions owned by
the remaining active APPS agents forms a positive spanning set. If so, then it is still
possible to reliably determine whether or not the algorithm has converged, so nothing
is done. Otherwise, all defunct APPS agents are restarted on the available hosts by the
temporary master. Note that multiple APPS agents may be assigned to a single host.

If a host fails, the defunct host processor is removed from the list of viable hosts.
The APPS agents that were running on the defunct host are regarded individually as
failed APPS agents, which are then handled using the rules stated for APPS agent
failures.

Despite the growing attention to fault tolerance in the parallel computing world,
we are aware of only one other parallel optimization algorithm that incorporates fault
tolerance, FATCOP [3]. FATCOP is a parallel mixed integer program solver that
has been implemented using a Condor-PVM hybrid as the communication substrate.
FATCOP is implemented in a master-slave fashion, which means that there is a sin-
gle point of failure at the master process. This is addressed by having the master
checkpoint information to disk (via Condor), but recovery requires user intervention
to restart the program in the event of a failure. In contrast, once APPS has finished
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initialization, it can recover from the failure of any process of its own creation, includ-
ing the failure of the temporary master. It does so on its own, with no checkpointing
whatsoever.

5. Numerical results. We compare APPS and PPS on several test problems as
well as two engineering problems: a thermal design problem and a circuit simulation
problem.

The tests were performed on the CPlant supercomputer at Sandia National Labs
in Livermore, CA. CPlant is a cluster of DEC Alpha Miata 433 MHz processors. For
our tests, we used 50 processors dedicated to our sole use.

5.1. Standard test problems. We compare APPS and PPS with 8, 16, 24,
and 32 processors on six four-dimensional test problems [20, 5], shown in Table 5.1.

TABLE 5.1
Siz standard test problems.

1 2 3 4 5 6
broyden2a | broyden2b | chebyquad | epowell | toint_trig | vardim

Since the function evaluations are extremely fast, we added extra “busy work” (in
the form of solving a 100 x 101 nonnegative least squares problem) in order to slow
down the processes evaluating f and better simulate the computational behavior of
the optimization problems in which we are interested.

The parameters for APPS and PPS were set as follows. Let n = 4 be the problem
dimension, and let p € {8, 16, 24,32} be the number of processors. The first 2n search
directions in D are {ey, ea, ..., €,, —€1,—€2, ..., —€,}. The remaining p—2n directions
are generated randomly (with a different seed for every run) and normalized to unit
length. This construction ensures that D is a positive spanning set. We initialize
A = 1.0 and tol = 0.001. We start each of these six problems from the standard
starting point [20, 5].

Before considering the summary results, we discuss the details of two sample
runs (one each for APPS and PPS) given in Table 5.2. Each process reports its own
counts and timings. All times are reported in seconds and are wall clock times. Be-
cause APPS is asynchronous, the number of function evaluations spawned by each
APPS agent varies considerably. Furthermore, the APPS agents sometimes termi-
nate (“break”) processes evaluating f(Ztia1). On the other hand, because PPS is
synchronous, every process executes the same number of function evaluations and
there are no breaks. For both APPS and PPS, the initialization time is longer for
Process 0 since it is in charge of spawning all remaining tasks. The idle time varies
from process to process, but is overall lower for APPS than PPS. An APPS agent is
idle only when it has converged along its search direction, but a PPS process may
potentially have some idle time every iteration while it waits for the completion of the
global reduction. The total wall clock time varies from process to process since each
starts and stops at slightly different times. The summary information reports the
mean over all eight processes, except in the case of total time, where the mazimum
total time over all eight processes is reported.

Because some of the search directions are generated randomly, every run of APPS
and PPS follows a different path to the solution and generates possibly different
solutions in the case of multiple minima. (The exception is PPS with p = 8. Because
there are no “extra” search directions, the path to the solution is the same for every
run—only the timings differ. The nondeterministic nature of APPS causes us to see
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TABLE 5.2
Detailed results for epowell on eight processors.

Method Process Function | Function Init Idle Total

ID evals breaks time | time time

APPS 0 237 66 0.17 | 0.00 | 24.72
1 266 70 0.02 | 0.12 | 22.36

2 302 89 0.02 | 0.12 | 24.32

3 274 77 0.02 | 0.15 | 22.31

4 270 62 0.02 | 0.04 | 24.56

5 282 81 0.02 | 0.04 | 24.58

6 273 59 0.02 | 0.04 | 24.59

7 276 61 0.02 | 0.03 | 24.55

Summary statistics 272.5 70.6 0.04 | 0.07 | 24.72
PPS 0 235 0 0.74 2.55 | 30.63
1 235 0 0.39 7.23 | 30.28

2 235 0 0.25 | 6.74 | 30.14

3 235 0 0.13 | 6.94 | 30.01

4 235 0 0.10 | 6.36 | 29.98

5 235 0 0.07 | 6.51 | 29.95

6 235 0 0.04 | 6.23 | 29.92

7 235 0 0.02 | 6.26 | 29.90

Summary statistics 235 N/A 0.22 | 6.10 | 30.63

different counts and different timings for every run, even if the search directions for
each run are identical.) Therefore, for each problem in Table 5.1 we report the mean
of the summary statistics from 25 runs; for each individual run we collected the same
summary statistics (except the initialization time) reported in Table 5.2.

The test results are summarized in Table 5.3. These tests were executed in what
should have been a particularly favorable environment for PPS—a cluster of homoge-
neous, dedicated processors. The primary difficulty for PPS is the cost of synchroniza-
tion in the global reduction. In terms of average function evaluations per processor,
APPS and PPS typically required about the same number. In general, for both APPS
and PPS, the number of function evaluations per processor decreased as the number
of processes increased. We expected the idle time for APPS to be less than that for
PPS; and, indeed, the idle time is two orders of magnitude less. Furthermore, the
idle time for PPS increases as the number of processors goes up. APPS was faster
(on average) than PPS in 23 out of 24 cases. The total time (on average) for APPS
either stayed more or less steady or actually decreased as the number of processors
increased. In contrast, the total time (on average) for PPS almost always increased
as the number of processors increased, due to the synchronization penalty incurred
with the addition of more processes.

Comparing APPS and PPS on simple problems is not necessarily indicative of
results for typical engineering problems. The results in sections 5.2 and 5.3 yield
more meaningful comparisons, given the types of problems for which pattern search
is best suited.

5.2. TWAFER: A thermal design problem. In this set of tests, the engi-
neering application is an optimal control problem for a thermal deposition furnace
for silicon wafers. The furnace contains a vertical stack of wafers and several heater
zones. The goal is to choose power settings for the heaters in each of n zones to achieve
a prescribed constant temperature across each wafer and throughout the stack. The
simulation code, TWAFER [12], yields measurements at a discrete collection of points
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TABLE 5.3
Summary statistics (across 25 runs) for the four-dimensional test problems shown in Table 5.1.

Prob No. Function evals APPS Idle time Total time
no. procs APPS PPS breaks | APPS PPS APPS PPS
1 8 40.59 37.00 8.14 0.07 0.95 3.88 4.88
16 41.77 40.12 7.93 0.02 2.04 3.98 6.68
24 38.30 37.36 6.98 0.02 4.68 3.80 9.33
32 36.57 37.92 6.88 0.03 7.81 3.83 12.81
2 8 40.35 37.00 8.28 0.06 0.97 3.84 4.92
16 41.07 39.11 7.38 0.02 2.06 3.95 6.62
24 38.47 39.60 7.20 0.02 4.77 3.77 9.68
32 35.10 36.76 6.23 0.03 7.04 3.72 11.92
3 8 73.06 62.00 16.74 0.05 1.61 6.86 8.11
16 48.33 40.44 9.54 0.02 2.11 4.69 6.92
24 45.67 38.64 9.26 0.02 4.59 4.47 9.39
32 44.34 37.60 9.14 0.04 7.54 4.59 12.56
4 8 272.29 235.00 68.27 0.30 6.64 24.50 30.48

16 139.63 153.04 37.39 0.05 8.04 12.24 24.76
24 139.38 126.96 36.40 0.03 14.10 12.26 28.46

32 98.88 102.64 26.20 0.03 28.07 9.41 41.03
5 8 53.83 41.00 10.97 0.04 1.11 4.99 5.60
16 51.40 39.12 10.47 0.02 1.97 4.91 6.51
24 47.86 36.88 9.24 0.02 4.43 4.69 9.03
32 45.90 33.04 8.70 0.04 6.41 4.81 10.83
6 8 205.39 77.00 51.24 0.05 2.00 18.15 9.97
16 101.46 80.44 25.58 0.02 3.97 8.93 12.83
24 72.44 49.96 17.19 0.02 5.61 6.57 11.63
32 64.09 46.04 15.96 0.03 9.58 6.14 15.51

on the wafers. The objective function f is defined as

N
(5.1) flz) =) (Tj(z) - T.)*,

j=1

where N is the number of discrete temperature measurement points, Tj(x) is the
simulated temperature at the jth point for the power settings defined by x, and T} is
the prescribed ideal temperature.

We consider the four- and seven-zone (or variable) problems with N = 40 and N =
400, respectively. For the four-zone problem, the initial guess produced a function
value of 2.26 x 10%. The initial guess for the seven-zone problem produced a function
value of 7.43 x 10%. (The initial guess for the seven-zone problem was much closer to
the final solution.)

We used the following settings for APPS and PPS. The first n+1 search directions
are the points of a regular simplex centered about the origin. The remaining p—n—1
points are generated randomly and normalized to unit length. Because the magnitude
of the variables was O(100), we set A = 10.0. Note that it can be quite useful to
choose the initial A based on the magnitudes of the components in xy as a way to
capture some scaling information about the problem [25]. We chose tol = 0.1, which
corresponds to a level of accuracy that is reasonable in the power settings.

There are some difficulties from the implementation point of view that are quite
common when dealing with simulation codes. Because TWAFER is a legacy code,
it expects an input file with a specific name and produces an output file with a
specific name. The names of these files cannot be changed, and TWAFER cannot be
hooked directly to PVM. As a consequence, we must write a “wrapper” program that
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runs an input filter, executes TWAFER via a system call, and runs an output filter.
Because TWAFER is executed via a system call, APPS has no way of terminating its
execution prematurely. (APPS can terminate the wrapper program, but TWAFER
itself will continue to run, consuming system resources.) Therefore, we allow all
function evaluations to run to completion; that is, we do not allow any breaks.
Another feature of TWAFER is that there are nonnegativity constraints on the
power settings. The solution is known to be strictly positive, and the constraints
play only a minor role in finding the solution. We did not invoke TWAFER at any
point that had one or more negative components; to accomplish this, we use a simple
barrier function that returns a large value (e.g., 10°°). This is a classic trick used by
direct search methods for dealing with bound constraints. With the correct choice of
D, pattern search methods that use such a strategy can be shown to have at least one
subsequence of iterates that converge to a Karush-Kuhn-Tucker point [18, 19].

TABLE 5.4
Summary statistics (across multiple runs) for the four- and seven-zone TWAFER problems.

Problem | Method | Procs | f(z*) | Function Idle Total

evals time time
4 Zone APPS 20 0.67 334.6 0.17 395.94
4 Zone PPS 20 0.66 379.9 44.77 503.88
7 Zone APPS 35 3.30 240.4 71.48 2260.46
7 Zone PPS 35 2.85 202.2 213.90 2306.83

Results for the TWAFER problem are given in Table 5.4. The four-zone results
report the means across all twenty processors over all ten runs. The seven-zone results
report the means across all 35 processors over all nine runs. (We started ten runs
for the seven-zone problem. One of the ten PPS runs failed due to a processor fault.
One of the ten APPS runs experienced several faults and, although it did get the final
solution, the summary data was incomplete.)

Recall that the goal is to choose power settings to achieve a constant temperature
across each wafer and throughout the stack. In Figure 5.1 we show the temperatures
computed by TWAFER at each wafer along a line of discretization points from the
bottom to the top of the furnace. We show results for both the initial settings we were
given for the seven-zone problem and the best and worst settings returned by APPS,
corresponding to function values of 1.48 and 7.74, respectively. (The plots of the
results from the best and worst PPS solutions are indistinguishable from the best and
worst plots for APPS.) Table 5.4 shows that for this problem, on average, PPS yields
slightly better function values than APPS (less than 1/1000th of a percent relative
difference compared to the function value at the starting point) but required more
total time. Figure 5.1 demonstrates that, qualitatively, all the solutions produced
were comparable, particularly given the modest choice of tol = 0.1.

Clearly, the idle time figures prominently in the overall performance of PPS. The
average simulation time is 1.3 seconds for the four-zone problems and 10.4 seconds for
the seven-zone problem. However, when the nonnegativity constraints are violated,
TWAFER is not called, so the execution time is essentially zero since we simply return
10°° after checking the coordinates of Ziya1. The relatively high mean idle time for
APPS (for the seven-zone problem) can be traced to a single run for which the idle
time was particularly high for some processors (634 seconds on average across all 35
processors); on the remaining runs, the average APPS idle time per processor was
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Fic. 5.1. TWAFER results for the seven-zone problem wusing APPS with tol = 0.1. The
solid line represents the simulation output for the best settings found by APPS and the dotted line
represents the simulation output for the worst settings found by APPS. The dashed line represents
the simulation output for the initial settings. The target is a constant temperature of 1300.

lower by several orders of magnitude. We were unable to determine the cause of the
unusually large idle time.

5.3. SPICE: A circuit simulation problem. The problem is to match simu-
lation data to experimental data for a particular circuit in order to determine its char-
acteristics. In our case, we have 17 variables representing inductances, capacitances,
diode saturation currents, transistor gains, leakage inductances, and transformer core
parameters. The objective function is defined as

(52) Z VSIM VEXP) ’

j=1

where N is the number of time steps, VjSIM(x) is the simulation voltage at time step
4 for input x, and VjEXP is the experimental voltage at time step j.

The SPICE3 [22] package is used for the simulation. Like TWAFER, SPICE3
communicates via file input and output and so we again use a wrapper program.

The input filter for SPICE is more complicated than that for TWAFER because
the variables for the problem are on different scales. Since APPS has no mechanism for
scaling, we handled this within the input filter by computing an affine transformation
of the variables used to formulate the objective function (5.2). Additionally, all the
variables have upper and lower bounds. Once again, we use a simple barrier function.

The output filter for SPICE is also more complicated than that for TWAFER. The

SPICE output files consist of voltages that are to be matched to the experimental data.
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Fic. 5.2. Spice results using APPS with tol = 0.1. The solid line represents the experimen-
tal output. The dashed line represents the simulation output after optimization. The dotted line
represents the simulation output for the initial point.

The experimental data is two cycles of output voltage measured at approximately N =
2700 discrete time steps (see Figure 5.2). The simulation data contains approximately
10 or more cycles, but only the last few complete cycles are used because the early
cycles are not stable. The cycles must be automatically identified so that the data
can be aligned with the experimental data. Furthermore, the time steps from the
simulation may differ from the time steps in the experiment, and so the simulation
data are interpolated (piecewise constant) to match the experimental data. The
function value at the initial point is 465.

The APPS parameters were set as follows. The search directions were generated
in the same way as those for the test problems in section 5.1. We set A = 1.0 (the
affine transformation means the variables are well scaled) and tol is 0.1 (the tolerance
corresponds to a less than 1% change in the circuit parameter). Once again, we do
not allow “breaks” since the function evaluation is called from a wrapper program via
a system call.

The results from APPS and PPS on the SPICE problem are reported in Table 5.5.
In this case, we are reporting the results of single runs; we give results for 34 and 50
processors. The average SPICE run time is approximately 20 seconds; however, once
again we do not differentiate between times when the boundary conditions are violated
and when the SPICE code is actually executed. Increasing the number of processors
by 47% results in a 39% reduction in execution time for APPS but only 4% for PPS.
For both 34 and 50 processors, APPS is faster than PPS and even produces a slightly
better objective value (compared to the starting value of more than 400). At the
solution, two constraints are binding.
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TABLE 5.5
Results (one run each) for the 17 variable SPICE problem.

Method | Procs | f(z*) | Function Idle Total
evals time time
APPS 34 26.3 57.5 111.92 | 1330.55
APPS 50 26.9 50.6 63.22 807.29
PPS 34 28.8 53.0 521.48 | 1712.24
PPS 50 34.9 47.0 905.48 | 1646.53
TABLE 5.6

APPS results for the 17 variable SPICE with o failure approximately every 30 seconds.

Initial | Final | f(z*) Total

procs | procs time
34 34 27.8 | 1618.46
50 32 54.2 | 1041.14

Table 5.6 shows the results of running APPS with faults. In this case, we used
a program that automatically killed one PVM process every 30 seconds. The PVM
processes are the APPS agents and the wrapper programs. The SPICE3 simulation
is executed via a system call, and so continues to execute even if its wrapper termi-
nates; regardless, the SPICE3 program can no longer communicate with APPS and
is effectively dead.

The results are quite good. In the case of 34 processors, every APPS task that
fails must be restarted in order to maintain a positive basis. So, the final number of
APPS processes is 34. The total time is only increased by 21% despite approximately
50 failures; furthermore, this time is still faster than PPS. In the case of 50 processors,
the final number of processors is 32. (Recall that tasks are only restarted if there are
not enough remaining to form a positive basis.) In the case of 50 processors, the
solution time is only increased by 29% with faults, and is once again still faster than
PPS. In this case, however, the quality of the solution is degraded. This is likely due
to the fact that the solution lies on the boundary and some of the search directions
that failed were needed to ensure convergence to a KKT point (see [18, 19]).

6. Conclusions. Our preliminary numerical results make clear that because
APPS dynamically initiates actions solely in response to messages, it is a more effec-
tive method—even in a homogeneous cluster environment—than PPS, where “more
effective” means that APPS requires less total time to return results that are compa-
rable to those returned by PPS. We expect the differences to be even more pronounced
for larger problems (where by “larger” we mean in terms of both the execution time
and the number of variables) and for heterogeneous cluster computing environments.
Unlike PPS, which routinely cycles through a fixed set of steps, APPS does not have
any required synchronizations and, thus, appears to gain most of its advantage by
reducing idle time.

Further, APPS is a fault-tolerant algorithm. We accomplish this by making al-
gorithmic changes to PPS that introduce almost no additional overhead. As we saw
in the results for the SPICE problem solved using 34 processors (section 5.3), APPS
does not suffer much slow-down when faults do occur.

Finally, in forthcoming work, Kolda and Torczon [13] will show that in the un-
constrained case, APPS is globally convergent (even when faults occur) under the
standard assumptions for pattern search [16, 26].

These features duly noted, we are investigating further improvements to the imple-
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mentation of APPS. For instance, in the implementation described here, each APPS
agent is responsible for exactly one process to evaluate the objective function. For
multiprocessor (MPP) compute nodes, this means there will be multiple agents per
node. An alternative implementation of APPS is being developed in which there
is exactly one agent per node, with the single agent managing multiple evaluations
of the objective function. As part of this alternative implementation, the ability to
dynamically add new hosts as they become available (or to re-add previously failed
hosts) also will be incorporated.

Another improvement to the implementation will be the addition of a cache to
store the values of the function at all the points visited by the search in order to avoid
reevaluating the same point more than once. The challenges are to make the recovery
of this information fast and to decide when two points are actually equal. The latter
is especially difficult when we do not know the sensitivity of the function to changes
in each variable.

The importance of positive bases in the pattern also raises several interesting
questions. In general, we might consider the best way to generate the starting basis.
The analysis of pattern search makes clear that the “conditioning” of the positive basis
has an effect on the amount of decrease that may be realized [16]. Our numerical
studies have indicated that the quality of the positive basis can, indeed, affect the
progress of the search. Thus, explicitly monitoring the conditioning of the positive
basis, which changes dynamically, could improve the overall performance of APPS.
Further, supposing that enough failures have occurred so that there is no longer a
positive basis, we may ask if we can easily determine the smallest number of vectors
to add to once again have a positive basis. Our current implementation simply restarts
all failed APPS agents (see Figure 4.1). In general, we desire a pattern that maximizes
the probability of maintaining a well-conditioned positive basis in the event of failures,
without requiring us to keep a large number of processes active when it is neither
necessary nor convenient to do so.

Finally, although the engineering examples used in this work have bound con-
straints, the current version of APPS does not handle constraints in a rigorous fash-
ion. The poor results on the SPICE problem with faults on 50 processors may well
be attributed to this fact since several constraints are active at a known solution.
The analysis for pattern search suggests several algorithmic options we could pursue
[17, 18, 19], but the challenge is to do so in a way that works effectively within the
asynchronous framework we have devised. Future work will explore robust extensions
for handling constraints.
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ON BLOCK PRECONDITIONERS FOR NONSYMMETRIC
SADDLE POINT PROBLEMS*
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Abstract. We discuss a class of preconditioning methods for an iterative solution of algebraic
nonsymmetric saddle point problems arising from a mixed finite element discretization of partial
differential equations, in particular the Navier—Stokes equation. We prove that block diagonal and
block triangular preconditioners based on symmetric, positive definite blocks guarantee that the
convergence rate of the method is independent of the mesh parameter h.
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1. Introduction. In many applications one needs to solve a discrete system of
linear equations with a block matrix

o ()= %) ()= ()

where the matrix block A is positive definite, yet not necessarily symmetric, and C' is
nonnegative. Our motivation for considering this kind of problem comes from com-
putational fluid dynamics, precisely, from the linearized discrete mixed finite element
Navier—Stokes equations, where, except in some very simple cases, A is nonsymmet-
ric, while usually it is reasonable to assume that it is positive definite [10]. C can
be zero or positive semidefinite when a stabilized method is applied. Since (1.1) is ill
conditioned with respect to the mesh parameter h, our aim in this paper is to design
and/or analyze block preconditioners for this system, for which an iterative method
converges independently of h.

Block preconditioners for a symmetric matrix M have been considered by many
authors, for example, Bramble and Pasciak [1], [3], Rusten and Winther [27], Silvester
and Wathen [29], and Klawonn [20], [19]. A symmetrized approach has been consid-
ered by D’yakonov [7] and Bramble and Pasciak [2]. Block preconditioned Uzawa-type
methods have also attracted research interest; see, for example, papers by Elman and
Golub [12] or Bramble, Pasciak, and Vassilev [4]. These preconditioners have been
verified in computational tests (see the references listed above and also [9]).

Elman and Silvester [10] were probably the first to analyze how block precondi-
tioners do work in the nonsymmetric case. They analyzed discretizations of the Oseen
equations

—vAu+ (k- V)u+Vp=f,
divu =0,
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which serve as a model of the linearized Navier—Stokes equations and lead to a non-
symmetric system. In papers by Elman, Silvester, and Wathen [13], [14], Elman [11],
Silvester et al. [30], and Golub and Wathen [17], a range of block preconditioning
methods for this kind of problem has been introduced and analyzed. Some of these
methods show very good convergence properties with respect to both h and v. Of
these, [10], [11], and [30] address diagonal/triangular preconditioners using also inex-
act nonsymmetric solves, while [17] develops a method based on Stokes-like solves with
inexact blocks. Recently, Bramble, Pasciak, and Vassilev studied the inexact Uzawa
algorithm for nonsymmetric saddle point problems [5], exploiting preconditioners for
the symmetric part of A.

Independently, Klawonn and Starke [23] provided a field-of-values analysis of block
triangular preconditioners for the Oseen problem. Their analysis is valid for triangular
block preconditioner with upper diagonal block that is “sufficiently close” to A.

In this paper, based on [24] and [26], we present a new mathematical analysis of
block preconditioning algorithms and propose other approaches as well. Our analysis
is valid for inexact and symmetric block solvers and shows that for diffusion-dominated
Oseen equations, a sufficient preconditioner can be based just on the symmetric part
of the diagonal blocks of M. We perform our analysis in a discrete H' x L2-like norm
(which is natural for the problem), using a custom inner product derived from the
preconditioner being used.

We focus on block preconditioners built up from preconditioners for symmetric
parts of diagonal blocks of (1.1) and we consider two preconditioning strategies, using
block diagonal or block triangular matrices. The first approach is to symmetrize the
problem. We prove that the resulting system spectral condition number is independent
of the dimension of (1.1), so that the PCG method [16] converges uniformly in h.
However, the numerical experiments that we report on show that this method is
quite computationally intensive (because it uses two or more solves per iteration).
Thus, our second approach relies on applying the GMRES [28] iterative method to
system (1.1) preconditioned by a block triangular matrix. We prove that, under minor
assumptions, the block triangular preconditioner guarantees the GMRES to converge
independently of h.

In the case of the linearized Navier—Stokes equations, block preconditioners dis-
cussed in the paper can be based on symmetric and positive definite preconditioners
for the discrete Laplacian and mass matrices. That gives an application programmer
a great opportunity to reuse, in an efficient way, existing very powerful methods (or
software) like domain decomposition [31] or multigrid [18] methods for these simpler
problems. Using symmetric solvers can also lead to some computational savings. We
believe that in certain cases this may be a robust alternative to custom domain de-
composition preconditioners, such as those proposed by Klawonn and Pavarino [21],
developed for the whole saddle point problem (for a comparison between a 2-level
Schwarz method and block preconditioners based also on 2-level Schwarz methods,
see another paper by Klawonn and Pavarino [22]).

A general drawback of the methods being analyzed in the paper is that their
convergence rate deteriorates when the ellipticity constant of A decreases. Clearly, in
such a case, the symmetric part holds too little information about A. This limits the
application of these methods to flows with reasonably small Reynolds number.

The plan of the remaining sections is as follows. In section 2, we introduce the
framework in which we shall analyze our algorithms. Some useful estimates are also
provided there. Section 3 is devoted to the analysis of preconditioning methods which
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lead to symmetric positive definite systems. In section 4, we analyze a block triangular
preconditioner for the GMRES method. We conclude with section 5, which contains
the results of numerical experiments for the Oseen equation.

2. General assumptions. We consider the saddle point problem (1.1) with ma-
trix M, which arises from a mixed finite element discretization of partial differential
equations, so our framework should reflect the dependence of (1.1) on the mesh pa-
rameter h. For theoretical convenience, we shall carry our analysis in terms of linear
operators rather than in terms of matrices.

Let V, W be real Hilbert spaces with scalar products denoted by ((-,-)) and (-, -),
respectively. The norms in these spaces, induced by the inner products, will be
denoted by ||-|| and |-|. We consider a family of finite-dimensional subspaces indexed
by the parameter h € (0,1): V3, C V, W}, C W. If V},, W}, come from the finite element
approximation, the dimension of these subspaces increases for decreasing h.

Let us introduce three continuous bilinear forms, a : VxV — R, b: V xW — R,
c: W x W — R, and assume that a(-, -) is V-elliptic, i.e.,

(2.1) 0<v<l WweV, a(v, v) > v|[v||?

(by analogy to the Oseen equations, we shall call v the viscosity parameter), and that
c(-, -) satisfies

(2.2) =20 YpeW,  cp p)=9lpf

(we allow v = 0). Notice that a(-,-) does not need to be symmetric. We shall also
assume that V3, and W), satisfy the uniform LBB condition (see [15])

b
(2.3) 8>0 Vhe(0,1), Vpe W, Blp| < sup (v. p)
veVio£0 | |V]

In what follows we consider preconditioners for a family of finite-dimensional
problems (we drop the subscript A for simplicity of notation).
PROBLEM 2.1. Find (u,p) € V. x W such that

2 MG =G %) () -(6)

The operators in (2.4) are

A: V-V, ((Au,v)) =alu,v) Yu,veV,
B:V —W, (Bu,p)=>bu,p) YueV,peW,
C:W—W, (Cpq)=clp,q) Vp,qeW,

while the right-hand side F' € V,G € W is defined through ((F,v)) = {((f,v)) and
(G,w) = (g, w), where f,g are given continuous functionals on V, W, and ({-,-)),
(-,-) denote the duality pairing in V, W, respectively. B* denotes the formal adjoint
operator to B, i.e., (Bu,p) = ((u, B*p)) Vue V,pe W.

We introduce two more operators, Ag : V — V and Jy : W — W. We assume
that they are self-adjoint, their inverses are easy to apply, and there exist positive
constants ag, a1, bg, b1, which are independent of A and v, such that

(2.5) aop((u,u)) < ((Apu,u)) < a1((u,u)) Yu eV,
(2.6) bo(p,p) < (Jop,p) < bi(p,p)  Vp e W.
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In other words, we shall always assume that Ay and Jy define good preconditioners for
the Grammian matrices for the chosen bases in V' and W, respectively. For example,
in the case of the linearized Navier—Stokes equations, Ay may be a preconditioner
for the discrete Laplace operator, while Jy may be a pressure mass matrix operator
preconditioner. Thus, the Ag preconditioner may be constructed using very efficient
domain decomposition or multigrid techniques; for Jy, instead of domain decomposi-
tion, one can also use very cheap diagonal scaling [33].

For f € V, g € W, the energetic norms defined by |||f\|\A51 = ((Ag'f, £))Y/? and

|||g|||J(;1 = (Jy'g,9)"/? are equivalent, with constants independent of h and v, to

[|f|] and |g|, respectively. This fact follows directly from (2.5) and (2.6). The product
space V' x W is equipped with the natural scalar product (-, -),

<<Z> ’ (Z>> = ((w,v)) + (1, 9);

however, we are going to analyze the preconditioned problem using a custom inner
product [, -], which is dependent on the preconditioners being used:

en ()] sama=((8 )-())

Again, the norms generated by both products are equivalent to one another, with
constants independent of h and v.

The generic constant “const,” which we shall use later in the paper, is independent
of both the mesh parameter h and the viscosity parameter v. The following estimates
hold for the operators involved in Problem 2.1.

LEMMA 2.1. The norms of A, B, C, Ay, Jo, M operators and their adjoints in
adequate spaces are bounded independently of h and v:

Allv—v, [IBllv—w, Cllw-w,
A vy, (B lwov, [IC*[lw-w,
HAOHV—»Va HJOHW—»Wa ||MHV><W—>V><W’ HM*HVXW—>V><W < const .
Moreover,
145 v—v.  [1Jg |lw—w < const,

_ 1
M 1HV><W~>V><W < ;Const.

Proof. The norm estimates for A, B, C, Ao, Jo, Ay 1 Jy 1 and their adjoints follow
from our assumptions on the corresponding bilinear forms and from (2.5), (2.6). Then
the estimate for M and its adjoint follows. The estimate ||[M™!|lyxw_vxw <
% const is another statement of the stability result for saddle point problem solutions
[6]: there exists const > 0, independent of h and v, such that any solution (u,p) €
V x W of Problem 2.1 satisfies ||u|| + |p| < L const(||F|| + |G]). 0

3. Preconditioners leading to symmetric, positive definite problems.
In this section we are going to extend the results obtained previously for symmet-
ric saddle point problems, e.g., in [7] and [2]. This approach is of normal equations
type, which influences the convergence speed and the computational complexity of the
method, though it has certain interesting advantages, too. The transformed system
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allows for using the conjugate gradients (PCG) method, which is less memory con-
suming than, e.g., GMRES; for fixed v, the condition number of transformed system
is independent of h. Moreover, the analysis remains valid for A only VO-elliptic; see
Remark 3.1. As the condition number grows like O(r~2), the use of these precondi-
tioners is practically limited only to diffusion-dominated flows.

3.1. Block diagonal preconditioner. Using the block diagonal preconditioner
(Ao O
MD - < 0 JO) ’

we transform system (2.4) into the following one.
PROBLEM 3.1. Find (u,p) € V x W such that

(3.1) ME MMM (g) = MpIME M) (g) .
Clearly, the operator P = MBIM*M;M is self-adjoint with respect to the
inner product [-,-]. The following theorem guarantees P is also well conditioned.

THEOREM 3.1. There exist positive constants mg, my, independent of h, v, such
that

6 me [G).G)] <[ C)-C) = )G

Proof. Observe that

(3.3)
[P (;) ; (Z)] = ((Aal(Au + B*p), Au+ B*p)) + (J(;I(Bu _ Cp), Bu— Cp)
= |l|Au+ B*p||> -+ + |||Bu — Cpl||> .
0 0
In what follows we will use the fact that for a,b > 0, there holds a? +b? < (a +b)? <
u’

2(a? + b?). Defining f = Au+ B*p and § = Bu — Cp, we obviously have that (u,p)
satisfies

(3.4)

so from Lemma 2.1 we obtain

U u\| 72 o , ) i
P (2) ()] = I+ a1 = conses? (lall + 19P).

which yields the lower bound in (3.2). In order to prove the upper bound, we return
to (3.3) and use Lemma 2.1 again.

P 6)-G)) = (ermaeG)-G))
< el i ( (2 (4)
<o [(5). ()]

since from Lemma 2.1 it follows that \|M51|\wa_>\/xw < const. ]
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REMARK 3.1. From a theoretical point of view it is worth noticing that the V-
ellipticity assumption in Theorem 3.1 on A may be weakened. Indeed, all that is
needed in the proof is that the saddle point problem (3.4) be uniquely solvable and that
the stability estimate holds. According to [15], a sufficient condition is to assume the
LBB condition (2.3) and the VO-ellipticity of A:

(3.5) a(u, u) > v||u|? Yo e VO,

where VO ={v eV :b(v,p) =0 Vpe W}
The above preconditioning technique has been previously investigated in [25] in
the context of micropolar equations.

3.2. Block triangular preconditioner. It is also possible to construct a sym-
metric preconditioner for the operator M, which is based on a block lower triangular
matrix:

(3.6) My = <f]130 5)0)

We transform system (2.4) into an equivalent one,
P (") = mecsisioom (Y) = meciisor (F)
p) = T/ ~T p) ™0 ~T \ )

where

et _ (I AF'B*\ (A7 0 I 0
£rko ‘CT—<0 ~1 0 Jo')\BASY —1)°

Observe that /\/lBlLT is nothing but M;l and that P is symmetric with respect to
the scalar product (-, -).
THEOREM 3.2. There exist constants 0 < ¢g < ¢q independent of h and v, such

@O0 Q)0 0)

Y(u,p) € V x W.

Proof. First, we shall prove the lower bound. As in the previous section, the upper
bound will be easy to derive from the boundedness assumptions (see Lemma 2.1). For
(u,p) € V x W we have

s () ()= (e () e ()

and
A B*
LrM= (B(AolA — 1) BA;'B*+ c) '
Therefore,
(3.8)

(P(5): (4)) = lAws BaIE, o+ 113G A = Aoput (BAT'B* + Ol
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Defining this time f = Au 4+ B*p and § = BAG'(A — Ag)u + (BAy*B* + C)p we
obviously have that the pair (u,p) satisfies the system

(3.9) Au+ B'p=f,

' Cp—Buzg—BAal(Au+B*p):Q—BAalf.

From stability estimates for the saddle point problem (see Lemma 2.1), it follows that
the solution (u,p) of (3.9) satisfies

(3.10) v~ ([[ul + |pl) < const (|| ]| + [BAG " f = g]) < const-([|flll -1 + [11g]]] ;-1)-

This estimate yields the lower bound on the spectrum of P. To get the upper bound
we return to (3.8) and use the estimates from section 2. a

REMARK 3.2. Observe that the preconditioner discussed here is more costly to
evaluate than the diagonal one: it requires three applications of Agl per inner product,
compared to only one Aal for the diagonal preconditioner analyzed in the previous
subsection.

REMARK 3.3. Again, the ellipticity assumption on A in Theorem 3.2 may be
weakened. VO-ellipticity of A (see (3.5)) is sufficient.

4. Preconditioner for the GMRES method. It is well known that after
symmetrizing the system, its condition number increases; moreover, the symmetrized
preconditioned matrix is quite costly to apply, as it takes at least two preconditioner
solves. This fact is also indicated by numerical experiments (see section 5). There-
fore, rather than symmetrizing the system, we may use an efficiently preconditioned
GMRES method for our problem. If the preconditioner works well enough so that
satisfactory approximation is obtained after few iterations, then the GMRES memory
consumption is less painful, and we can benefit from its better convergence properties.

For k£ > 0 to be specified later, let us consider the block triangular preconditioner,

(kA0
MT(B —k-Jo)’

which was previously discussed (with another choice of scaling parameters), e.g., in
[1], [10], [13] and [19], [23]. The convergence rate of the GMRES method for a system

" s (1) = (6) - (§)

can be estimated by means of two parameters (see [8]),

e GG e () e ()]
e GG 66

Recall that [-, ] is defined by (2.7) and generates the norm in which the residual for
GMRES is measured.

We shall prove that these parameters are bounded independently of h. Since they
are strongly dependent on v, the preconditioner use is practically limited to diffusion
dominated flows.

(4.2)
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LEMMA 4.1. There exists k > 0 such that the symmetric part of A, Asymm =
(A + A*)/2, together with A*Ay* A, satisfies

13 (o e 152) 0 ) 2 6ty e v

for some constant 6 > const -v. The scaling parameter k can be chosen independently
of h, precisely, k > const -v !,
Proof. Let X be the smallest eigenvalue of the following generalized eigenproblem:
Asymmu = Mo,
and let p be the largest eigenvalue of another generalized eigenproblem,

A*AalAu = pApu.

From (2.1) it follows that A > const v, while from Lemma 2.1 we have p < const.

Then
(((Asymm T 1A) v U)> > (A= 2-) (Aou, w),

and for k > const-v~! > &, (4.3) holds with 6 = % This gives the estimate 6 >
const -v. ]

REMARK 4.1. The scaling requirement is similar to that of Bramble and Pasciak
[1] for the triangular preconditioner in the symmetric case. In the general case, the
scaling parameter k would need to be computed from (rough) estimates of the above
eigenvalues. In practice, however, the scaling is usually not essential for the con-
vergence. For example, in our numerical experiments (see section 5) there was no
significant difference between scaled and unscaled preconditioner convergence.

THEOREM 4.2. For any fixred v > 0 and for k as in Lemma 4.1, the convergence
rate of the GMRES for (4.1) is independent of h, precisely,

c > const '1/2, ¢ < const .

Proof. Our aim is to estimate the quantities ¢, ¢ in (4.2) independently of k. Since

KAy 0 L (T 0
(0 ) o = (s 1),
then
_1 u w\| 1 i _1 .
[MT M (p)’ <p)] = k((Au, u)) + 2 ((Ag " Au, B*p))
1
+ 2 (A5 B"p, B'D)) + (Cp. p).

From (2.2) we estimate

-1 u u 1 * 1112 1 Lo -1
> — -1 7 symm ~ 57 9
(). ()] 2 gt s 5ot o g (((Aomm = gea5'a) o)

1 * 2
+@|||B PH\ASI'
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Obviously, [[|Au+ B*pl|[% -, > 0 and [||B*p||[% . = (BA;"B*p, p) > const(Jup, p).
0 0

the latter from (2.6) and the LBB condition; see [1]. Therefore, for k and § as in
Lemma 4.1, we can conclude that

i () ()] = eome () ()]

In order to estimate ¢, observe that

o () ws Q)] = (M ) p () 2 ()
- (e s (). ()

_ |M*|~|(M;1)*|I~IMD|'|M51|'|M|'<(Z>’ (Z>>

As k > const -v!, then using estimates from section 2 and the factorization

I I 0 Lt
M= () (s ) ()
T o) \B —I I

we have that || M7, |[(M7")*]| < max{1, %5} - const < const, and finally

o () 2 ()] <o ) G

which completes the proof. ]

5. Numerical experiments. We implemented certain preconditioners consid-
ered in this paper and examined their applicability in the iterative solution of a non-
symmetric saddle point problem. The test problem was to solve the Oseen equations
in a rectangle Q = (—1,1) x (—=1,1)

{—yAu—l— (k-V)u+Vp={,

divu = 0,

with homogeneous Dirichlet boundary conditions on u. The function k(-, -) was defined
as in [10], [23], as a simple vortex,

([ 2y(1—2?)
k(x,y) - (_21,(1 _ y2)> .

For the right-hand side vector in our experiments, we always took a random vector
with elements uniformly distributed between (—1,1). We discretized the equation
using popular Q2—@)1 Taylor—-Hood rectangular finite elements; see [6]. The mesh was
uniform in both directions, with nx inner pressure nodes along the z-axis and ny
inner pressure nodes in y-direction, so there were approximately twice as many inner
nodes in each direction for each component of the discrete velocity. In all experiments
presented below, nz = ny. To keep the pressure in L3, we added to the system a
discretized condition f p = 0 using the Lagrange multipliers.

All algorithms were implemented on an unloaded Linux PC, using PETSc 2.0.29
library subroutines for the iterative solvers and additive Schwarz preconditioners [32].
We performed our tests in three different solver/preconditioner configurations.
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TABLE 5.1
Iteration counts for different solvers and preconditioning strategies: results for A9 = Laplacian,

Jo = mass matriz. Wall clock time (seconds) in parentheses.

Timings relative to GMRES /triang for different solver/preconditioner strategies reported in

Tables 5.1 and 5.3.

nx DOFI! GMRES/diag GMRES/triang CG/symm

10 1202 38 (0.4) 21 (0.2) 45 (0.7)

20 4182 39 (1.5) 21 (0.9) 46 (2.8)

40 15542 40 (8.0) 21 (3.8) 49 (12.8)

80 59862 39 (47.3) 21 (17.7) 49 (56.1)
TABLE 5.2

nz || GMRES/diag GMRES/triang CG/symm
“best” 20 1.7 1.0 3.1

40 2.1 1.0 3.4

80 2.7 1.0 3.2
ASM 20 1.4 1.0 2.3

40 1.4 1.0 1.9

80 1.7 1.0 1.6

1. CG/symm: the symmetrized preconditioned conjugate gradient method with
the block diagonal preconditioner; see section 3.1.

2. GMRES/triang: the GMRES method with the block triangular precondi-
tioner; see section 4.

3. GMRES/diag: the GMRES method with the block diagonal preconditioner.

To compare the overall efficiency of the preconditioners, we report both the itera-
tion counts and the wall clock times (in seconds) needed to reduce the initial residual
by a factor of 10°. We used a restarted version of GMRES, with restart after every
30 iterations.

Two simplifications to GMRES algorithms have been made, which, as it turns
out in the preliminary set of experiments, hardly influences the convergence rate of
the methods. Our GMRES algorithm minimizes the Euclidean norm of the residual,
instead of the energy norm analyzed in section 4. For the same reason we always used
k =1 (see Theorem 4.2). All this makes the GMRES algorithm cheaper.

Except for the last set of experiments, we restrict ourselves to the case where the
viscosity parameter v = 1. The influence of v on the convergence rate will be reported
at the end of this section. As it has been indicated in the above theorems and will be
confirmed in Table 5.5 as well, the performance of our preconditioner deteriorates for
small values of the viscosity parameter v. This is the reason that we focus mainly on
diffusion dominated flow.

First, we conducted experiments under the best available circumstances, that is,
we used as the preconditioners Aq = Laplacian, Jy = mass matrix. Notice that, in
contrast to [11] and [23], we restricted ourselves only to symmetric preconditioners.
We refer to the above choice of preconditioners as the “best” preconditioners, since
in this case we exactly solve the symmetric part of the relevant diagonal operators.
Our results are presented in Tables 5.1 and 5.2 and Figure 5.1.

Next, we tested the same methods using inexact preconditioners for Ag, Jy, namely,
the 1-level additive Schwarz method (ASM) with standard black-box decomposition

IDOF = the total number of degrees of freedom.
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- »—  GMRES/diag
-+ .

I e -0 GMRES/triang
4 +--+ CGlsymm

—  GMRES/diag
o0  GMRES/triang
+=-+  CG/symm

Iterations
Iterations

' 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
nx n
Fic. 5.1. The growth of iterations as a function of the problem size for different solvers and

preconditioning strategies. Left: Ao = Laplacian, Jo = mass matriz. Right: additive Schwarz
preconditioners (fized number of subdomains, small overlap, no coarse grid).

TABLE 5.3
Iteration counts for different solvers and preconditioning strategies: The results for additive
Schwarz preconditioners. (Timings in parentheses.)

nr  DOF GMRES/diag GMRES/triang CG/symm
10 1202 63 (1.0) 51 (0.7) 73 (1.7)
20 4182 128 (6.0) 76 (4.2) 128 (9.8)
40 15542 127 (23.1) 77 (16.3) 113 (31.6)
80 59862 || 183 (155.0) 108 (91.8) 130 (146.7)

into 6 rectangular subdomains with small and fixed overlap (2 nodes) provided by
PETSc. The results are presented in Tables 5.2 and 5.3 and Figure 5.1.

The experiments confirm theoretical results, showing that the number of iterations
reflects the quality of the preconditioning blocks being used. This may be seen very
clearly from the experiments with “best” solvers and implicitly from those for the
inexact solvers (Figure 5.1). For v = 1, the number of iterations is moderate and,
with “best” solvers, virtually independent of the mesh size. As one could expect,
the triangular preconditioner is most effective, being usually more than two times
faster than diagonal preconditioners. The CG/symm combination is even slower than
GMRES/diag.

According to [31], for the ASM preconditioning blocks, with fixed number of
subdomains, small overlap, and no coarse grid, the number of iterations in Table 5.3
should increase as the square root of nx, and this is approximately what we actually
see. Theorems 3.1 and 4.2 ensure that the convergence rate would be fully independent
of nz if a 2-level ASM were used.

Another experiment (Table 5.4) shows the performance of our preconditioners
when the number of subdomains is scaled with the problem size, so that v N /nx
remains constant. As compared to [21, Table 1], the number of iterations of the
GMRES/triang method is quite similar to a 1-level overlapping ASM for the whole
system (1.1), despite the fact that our decomposition might suffer from subdomain
bad aspect ratios (we did not have control over the shape of the subdomains). This
indicates that a block 1-level ASM preconditioner may be an alternative to 1-level
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TABLE 5.4
Iteration counts for different solvers and preconditioning strategies: the results for additive
Schwarz preconditioners with number of subdomains scaled with problem size, so that vV N /nx = 4.
(Note: full GMRES used.)

VN nz DOF GMRES/diag GMRES/triang CG/symm

1 4 279 34 21 40

2 8 823 66 51 96

4 16 2775 95 62 108

8 32 10135 165 124 139

10 40 15543 221 147 184
TABLE 5.5

Iteration counts for varying mesh size nx and viscosity v with preconditioning blocks Ag =
Laplacian, Jo = mass matriz.

GMRES/diag GMRES/triang CG/symm

v 1.0 0.1 0.02 1.0 0.1 0.02 1.0 0.1 0.02
nx
16 38 111 > 300 | 21 76 255 43 42 116
32 40 102 > 300 | 22 73 >300 | 48 41 117
64 40 105 > 300 22 73 > 300 48 37 115

ASM designed in [21] for the full system, although it seems that 1-level ASM for the
full system is still a bit cheaper. More comparisons of this type have recently been
made in a paper by Klawonn and Pavarino [22].

Finally, we examined the behavior of our methods for decreasing values of the
viscosity parameter v. They confirm that symmetric-block-based preconditioners are
competitive to those using nonsymmetric A solves only if the symmetric part domi-

nates in A; for small v, the convergence rate deteriorates very quickly, as indicated in
Table 5.5.
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VORTICITY-PRESERVING LAX-WENDROFF-TYPE SCHEMES
FOR THE SYSTEM WAVE EQUATION*

K. W. MORTONT AND P. L. ROE*

Abstract. In numerical solutions of fluid flow, vorticity can be generated by truncation errors.
We analyze this phenomenon for linearized equations and give conditions for preventing it. The Lax—
Wendroff method that meets these constraints is essentially unique, although there are two distinct
interpretations, and also turns out to have optimal properties regarding stability and truncation
error. The extension of the scheme to unstructured grids is given, together with some discussion of
practical problems to which these schemes might bring improvement.

Key words. vorticity-preserving, system wave equation, discrete Kelvin’s theorem
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1. Introduction. Much of computational fluid dynamics (CFD) is based on
the analysis of simple “model problems.” To an astonishing extent, the solution of
problems governed by hyperbolic equations is based on analysis of the one-dimensional
linear advection equation u;+au, = 0. However, neither this nor the multidimensional
up+a-Vu = 0 really reflects the richness of fluid behavior, capturing merely advection
and some aspects of wave propagation but ignoring, for example, all phenomena
associated with vorticity, which are of vital importance in many three-dimensional
situations.

The simplest model problem to combine wave propagation and vorticity is the
system wave equation. We will write this in two space dimensions in the matrix form,
using a notation corresponding to acoustic waves in a fluid that is stationary in the
mean, with pressure p* and velocity @* = (u*,v*); thus

(1) ou+clu=0.

Here u = (p*/(pc?),u* /c,v*/c) = (p,u,v,), c is the sound speed in the mean flow,
and

0 8, 0,
(2) L=|d, 0 0
8, 0 0

Restriction to two dimensions is merely for economy of notation; all of the analysis
at the PDE level extends very straightforwardly to three dimensions, as does the
numerical analysis on Cartesian grids. We study the wave equation in system rather
than scalar (Oyu = ¢*V2u) form for two reasons: first, because this is the form of

*Received by the editors July 22, 1999; accepted for publication (in revised form) January 16,
2001; published electronically June 19, 2001.

http://www.siam.org/journals/sisc/23-1/35914.html

TDepartment of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK and Oxford
University Computing Laboratory, Oxford, UK (Bill. Morton@comlab.ox.ac.uk).

fDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI and Centre
pour Mathematiques et Leurs Applications, Ecole Normale Supérieure de Cachan, France (philroe@
engin.umich.edu).

170



VORTICITY-PRESERVING SCHEMES 171

the wave equation that is hidden inside the Euler equations, whether in their two-
dimensional unsteady or in their three-dimensional supersonic steady forms [1], and
second, because the scalar form automatically implies vanishing vorticity, whereas the
interaction of the waves with vorticity is one of the aspects we want to study.

Here the interaction is very simple, as befits a model problem. We easily deduce
from (1), (2), if ¢ is a constant, that

0¢¢ =0, where ¢ = 0yv — Oyu.

In other words, there is no interaction, and any initial distribution of vorticity is
preserved. Maintaining this independence at the discrete level will be one of our
objectives. In section 6, however, we consider more general, variable coefficient, prob-
lems, for which vorticity is created by the interaction of waves with density gradients.
In this case, there is a very satisfying discrete parallel.

It is a trivial modification to change the notation so that (1), (2) describe Maxwell’s
equations, and the constraint of invariant vorticity becomes one of invariant (and
vanishing) divergence of the magnetic field. The two cases differ, however, when
nonconstant coefficients are involved, a case that will be treated in due course. The
analysis also applies to the divergence constraint in magnetohydrodynamics and to
maintaining the div-curl identity when using a velocity-vorticity formulation of the
Navier—Stokes equations.

We study fully discrete schemes because of our personal conviction that transient
hyperbolic problems are most naturally treated by such methods. More specifically, we
study Lax—Wendroff schemes because the Taylor expansion of the evolution operator
seems to be the most general technique available, applicable to the wave equation
for any order of accuracy. However, Lax—Wendroff schemes are ambiguous in more
than one dimension. For example, if we look to discretize u; + @ - Vu = 0 to second-
order accuracy on the standard nine-point stencil, we have only six constraints on the
nine coefficients and hence three degrees of freedom. There are even more degrees
of freedom in discretizing a system of equations. One reason for the rise of finite-
element and finite-volume methodologies is that by working within a more disciplined
framework some of the ambiguity is removed, hopefully without at the same time
losing valuable options.

In the early stages of the present analysis we consider mainly regular rectangular
grids with uniform spacing h in both x and y. We do not impose any particular
interpretation on the discrete solution ug;: the values could represent cell-averaged
quantities as in a cell-centered finite-volume scheme, or nodal values as in a vertex-
centered finite-difference scheme. One point of interest is that by initially taking a
simple finite-difference viewpoint, the formulae that emerge as having distinguished
properties are precisely those that have dual interpretations as each of the above.
Subsequently, however, we find that only the finite-volume interpretation generalizes
to unstructured grids but that the particular form of finite-volume scheme to emerge
is not the one most commonly encountered.

In section 2 of the paper, we recall some simple formulae of the finite-difference
calculus and some elementary properties of the wave equation. In section 3 we place
constraints on the scheme such that some discrete measure of vorticity is preserved
and in section 4 show that requiring an adjoint property on a minimal stencil results
in a unique version of the Lax—Wendroff scheme, although one having two distinct
implementations. In section 5 we analyze the stability and truncation error of this
scheme. In section 6 we show that if the waves are being propagated in a uniformly
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Fic. 1. Grid definition.

moving medium, then any vorticity present in the initial conditions will be propagated
numerically according to the scalar version of our Lax—Wendroff method.

In section 7 we turn to irregular grids, and we find that there is still a measure of
vorticity that is conserved, and in section 8 generalize further to the case of a problem
with variable coefficients, although still linear. In this case the argument can be made
global to yield a discrete Kelvin theorem.

2. Properties of the exact and discrete solution operators.

2.1. Discrete notation. As stated in the introduction, we concentrate at first
on simple finite-difference formulations on uniform grids. These can be manipulated
using a calculus that is almost as transparent as that of the differential operators. We
exploit this simplicity to remove ambiguity from the finite-difference formulae by re-
quiring certain algebraic properties. Then we ask what interpretations are compatible
with the formulae.

We adopt a uniform square grid, such that the spacing in the x and y directions
is h and the time step is At, with u;’; a discrete approximation located at (z,y,t) =
(ih, jh,nAt). The standard discrete differencing and averaging operators are defined
by

0. =001 = 0.1, w0 =3{0, 42 +0. -1},

where it is understood that the result of any operator is located halfway between
the two input points. Then the product Ay;();; = 1205()i; is a central difference
21{0it1,; — 0)i=1,;} located at the grid point i,j, and the product p,8,();;, which
features frequently in what follows, involves four points (i %, j =+ %) of a square
centered at 7, j.

The points with integer coordinates will be called cells, those with one integer and
one half-integer coordinate edges, and those with two half-integer coordinates vertices.
The variables stored at cells will be (p, u,v). The same variables stored at vertices will
be distinguished by primes where necessary. The variables stored at vertical edges
will be (P,U) and those stored at horizontal edges (@, V), where both P and @ are
approximations to the pressure. In a finite-volume interpretation the edge quantities
are the fluxes (see Figure 1).
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If it is recognized that each application of the above operators changes the center-
ing of the mesh values to a different set of grid points, then arbitrarily long products of
operators are allowed and all multiplications commute. It is simple to prove analogues
of differential identities. For example, using (-, ) to denote an inner product,

(p,6,U) = thm( gy Uz_,J)

= *Zh pz+1,j pz,j)UH_ g = *<6xan>

4]

and a similar argument leads to (p, 4, U) = (u.p, U). Thence we have

<p7 Mm51u> = <p7 onu> = —<onP7 u>7 etc.

Also we can combine cell and vertex values; for example,

N — 112 / / / /
Py pybo’) = Z s Pig (Wi g —Wimy gy T Uiy o)~ Yimyyoy)
==Y 50 Pirrgr = Pigat +Pivrg —pig) Uiy g1 = —{ybap ).
4,
Thus inner products are meaningful provided each term has the same centering.
Such products may be called compatible. Matrix-valued operators will be a useful

way to describe schemes, and obey the usual rules of matrix multiplication, provided
each matrix has compatible entries.

2.2. Symmetry of solutions. An obvious property of (1), (2) is that because
it involves only the divergence and gradient operators, then any solution remains a
solution under an arbitrary translation or rotation of the (z,y)-plane. Clearly this
cannot be true of the discrete solution, but we should insist on the weaker condition
that the solution remains a solution under any translation or rotation that maps the
grid onto itself.

This will ensure that all truncation errors are symmetric functions of the wave
numbers kg, ky; it would also be a desirable property (minimizing the anisotropy of
the scheme) if the leading terms depended only on (k2 + k7).

2.3. Power series form. A formal solution to the initial-value problem for (1)
is
(3) u(t) = e “Ltu(0).

Let e “Lt be represented by its power series, separating the odd and even terms,

p=00 q=00

7th Z CLt 2p-1 T CLt
— @-Dt e 2 q)
We can easily verify that
L(L? - V%) =0

which implies that

(4) LPT2 = V2P, p> 1.
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Then we can write

e i Yl LA RC R el Ll I
(5) u(t) = (1 (Lt)pz:;) G 1! + (cLt) qz::o BT (0).

Truncating each sum at its first term will lead to a second-order Lax—Wendroff
method. For extension to higher order it is useful to note that each term beyond
the third merely represents continued applications of the Laplacian, either to L or to
L2. The structure of L is that its first row represents a divergence and its first column
a gradient. As for L?, we have

aZ+or 0 0
L? = 0 92 0,0, |,
0 0,0, 02

which displays the Laplacian and the grad-div operator. Most of these operators are
ambiguous on the usual nine-point stencil of Lax—Wendroff schemes, and it is that
ambiguity we seek to resolve.

2.4. Conservation form. In the cell-centered finite-volume method, discrete
conservation is ensured by drawing a control volume around the grid point of interest
and writing the update as an integral around this volume. In the generic case of a
vector U of conserved variables, with fluxes F, G in the (z, y)-directions, respectively,
one has

h? [U™H — U] + hAt[5,F* + 6,G*] =0,

where F*, G* are numerical fluxes evaluated from some formula to be determined. In
the present case we can write, with v = ¢At/h and following the notation of Figure 1,

(6) p T —p" +v[6,U +6,V] =0,
(7) u™ Tt — " v, P =0,
(8) "t — 0" 4+ 16,Q = 0.

It will usefully restrict the schemes to require that they can be written in this form.
A second-order scheme of the Lax—Wendroff type follows from taking U, V, P, Q to be
estimates halfway through the time step. However, we will find subsequently that it
is a rather special type of conservation form that emerges from the analysis.

3. Preservation of discrete vorticity. We will now require that some discrete
measure of vorticity is preserved during a time step. There are two simple measures.

3.1. Centered vorticity. First define the “centered vorticity”
(9) CA1 = ﬂmézv - N’y(syu = Zlua
where Z1 = [0, —pty 6y, 1to6,], and require that Cgfl = (R, so that

0= Zl(un+1 _ un)
= —I/Z1 [6xU + 6y‘/7 63:Pa 6yQ]
= 6,6, (j1y P — 11.Q).
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Fia. 2. The stencil for Richtmyer’s version of Laxz—Wendroff.

This measure of vorticity will therefore be preserved if the pressures assigned
to the edges have the property that p,P = p,Q, and this is ensured if we take
P = p,r,Q = pyr, where r is some quantity defined in cells. For consistency, it should
be some local mean of the pressure, and to obey the symmetry principle (section 2.2)
it must be evaluated by a symmetrical operator such as [1+ a(62 + 55) + ,86555]. The
smallest possible stencil comes from taking simply r = p, and hence

P = iy = pugp, Q = pyr = pyp,

which corresponds to the simplest form of central differencing used in cell-centered
finite-volume schemes, for example, [2]. However, this would lead to an uncondi-
tionally unstable scheme. Averaging just in the coordinate directions, as for the
well-known Lax—Friedrichs difference scheme, leads to taking o = %, g =0.

To obtain second-order accuracy P,(Q should be evaluated halfway through the
time step, and to preserve vorticity we need to derive them from an r that has been
evaluated halfway through the time step, so that r = p + %Atatp =p-— %cAtdiva’.

On the most compact available stencil, and maintaining stability as for the Lax—

Friedrichs scheme, this leads to
r=[1+ 3067 + 8)Ip — 5vlpbau + 11y6,7]
and hence, with P = p,r, Q = pyr, (7), (8) become

(10) T = = vpg 6 {1+ (67 4 8)]p — Svipabau + pydyvl},

(1) V= — a8, ([ 362+ 62)lp — Suliabu + p1y8,00).

If we update the pressure with the same standard central-differences, together with
a four-point averaging of p to give stability, we recover Richtmyer’s form of the Lax—
Wendroff method, usually written as a two-step scheme [3] (see also [4, pp. 360
365]). Its vorticity-preserving property does not seem to have been previously noticed.
However, in other respects, it is less desirable. The stencil is shown in Figure 2 and
can be seen to involve only points of one “parity” (value of (i + j)(mod2)). Therefore
the method suffers from “odd-even decoupling.” We do not consider this method
further but turn to an alternative definition of discrete vorticity.

3.2. Compact vorticity. Next let us define the “compact vorticity”

(12) CAy = iy — plzbyu = Zau.
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Following the previous argument, we can preserve this if

0= Z2(Un+1 o un)
= —I/Zg [6acU + 6yV7 637Pa 62/@]
= V8,6 (1a P — 11,Q),

and the condition jz P = 1, @ will be met if we take P = p,r’, Q = pgr’, where 7’ is
some quantity defined at vertices. The only way to define a consistent local pressure
while retaining a nine-point stencil is to take

(13) ' = papyp.

In that case we have

(14) P = paulp, Q= piuyp.

To obtain second-order accuracy, ' must now be updated to halfway through the
time step. The simple formula

r' = HabyD — %V[My(sxu + Uwéyv}

is the unique symmetrical formula to achieve this without enlarging the stencil, lead-
ing to

(15) P = Myrf/ = Mm/fézsz - %V[Uiému + Uwuyéyv]a
(16) Q = par’ = P2 pyp — vy pabu + p26,0).

3.3. Two remarks on implementation. We insert here an important observa-
tion relating to the construction of nonlinear “limited” schemes that avoid nonphysical
overshoots [5]. We do not attempt a thorough discussion of this issue in the present
paper, because the objectives for such schemes are still unclear. For example, there
is no maximum principle because waves may focus and increase in strength. How-
ever, we do note that any limiting applied to the intermediate quantity r’ will still
leave the vorticity exactly preserved. The limiter for such a scheme must, however,
be centered on a vertex and therefore depend on values in the four neighboring cells.
Schemes that are based, like most upwind schemes in current use, on one-dimensional
reconstruction and interpolation cannot preserve vorticity in any of the above senses.

Our second remark deals with the application of boundary conditions, for exam-
ple, to simulate the generation of acoustic waves by a moving boundary. In most
finite-volume schemes one would derive from the boundary condition some expres-
sion for the unknown pressure at an interface (say, P, in Figure 1) in terms of the
known normal velocity (say, U, for a vertical boundary). This would be incorrect.
The correct procedure is to obtain vertex pressure p’ in terms of given vertex veloc-
ities u’. If the condition is applied in this way one can easily show that vorticity at
nodes adjacent to the wall is preserved; for any other procedure a vortical layer will
be produced.

4. Construction and properties of evolution operator. We collect the re-
sults of section 3.2 into a prescription for the matrix operator that will update the
solution, so that if

(17) un—i—l _ un _ MAu",
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certain elements of the matrix M are already uniquely determined by insisting that
the velocities are updated with second-order accuracy while preserving the discrete
vorticity (12). We have in fact, from (7), (8), (15), (16),

77 7?7 77
Ma = | vpepibs 12262 V2 i f1y66,

VG HySy 5V HablySaby %VQNi‘%

The adjoint property div, = —grad; requires that this matrix be symmetric,
hence
7 V,ua:/J'g?/(Sx VU?;Uyéy
Ma = | vpepib, V2262 202l 160,
Vﬂiﬂyéy %Vz,uz,uyézéy %VQN:%:(S;%

and only the 1,1 element remains open. This can be determined by noting that the
flux U, say, is implied by the above formula to be

U = papgu = iy (popiyu) = pyu,

where v’ = p i u is an average evaluated at the vertices, as in (13). To update this
o (n+ %)At we need to add a term —%At@mp which can only be —%Vuyézp. By
considering V' also, we finally arrive at

sV (gd2 + 130) Vi ds V3 1y Sy
(18) Ma = Vﬂzﬂiéz %Vzﬂzéa% %VQMmﬂy(SI(Sy
Vi3 1y By 312 sty Sy %’/2/@55

The scheme represented by this matrix has been uniquely determined by the require-
ments of conservation, vorticity preservation, symmetry of the solution under grid
transformations, adjoint symmetry of the discrete operator, and second-order accu-
racy. Again, however, it is not a new scheme. It can be recognized by noting that
MAa can be factored as

(19) MaA = vLA[popyl — %I/LA],

where

(20) La = pyby 0 0 ,
a0y 0 0

and therefore can be written as a two-step scheme. The operation
(21) W = [rapy T — SvLaJu
gives a provisional solution at the vertices. The operation

(22) u"tt = u" —vlau
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4

k

F1G. 3. (left) The rotated Richtmyer scheme. In the first step, symbolized by white arrows, data
from the cells are used to create a half time-step solution at the vertices. In the second step (black
arrows) integration round the vertices updates the central cell. (right) Ni’s cell-vertex scheme. In
the first step (white arrows) we integrate around the cells to obtain a “cell-residual.” In the second
step (black arrows) these are distributed to the vertices.

completes the update by integrating around the vertices. This is in fact the ver-
sion of Lax—Wendroff known as the rotated Richtmyer scheme (see, e.g., [5, p. 125]).
It is shown schematically on the left of Figure 3; comparing with Figure 2 we see
the reason for the name. The original motivations for this scheme were compact-
ness, computational economy, and stability. In the nonlinear case, as in all two-step
Lax—Wendroff schemes, one avoids any multiplication by the Jacobian matrices. The
vorticity-