
A CENTRAL-DIFFERENCE SCHEME FOR A PURE STREAM
FUNCTION FORMULATION OF INCOMPRESSIBLE

VISCOUS FLOW∗

RAZ KUPFERMAN†

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 1–18

Abstract. We present a numerical scheme for incompressible viscous flow, formulated as an
equation for the stream function. The pure stream function formulation obviates the difficulty
associated with vorticity boundary conditions. The resulting biharmonic equation is discretized
with a compact scheme and solved with an algebraic multigrid solver. The advection of vorticity is
implemented with a high-resolution central scheme that remains stable and accurate in the presence
of large gradients. The accuracy and robustness of the method are demonstrated for high Reynolds
number flows in a lid-driven cavity.
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1. Introduction. The vorticity formulation of the Navier–Stokes equations is a
classical starting point for approximation methods, due to the distinguished role of
vorticity in high Reynolds number flows. The difficulty with a vorticity formulation is
the lack of natural boundary conditions; the no-slip boundary conditions do not have
a simple counterpart in terms of vorticity. In the context of computational methods,
the problem of vorticity boundary conditions has a long history, dating back to the
30’s [22]; it has received much attention within the context of vortex methods [6], and
there exists a substantial amount of recent work (see, e.g., Goodrich and Soh [11],
Auteri and Quartapelle [3], Anderson and Reider [2], and E and Liu [8, 7]).

Recently, Ben-Artzi, Fishelov, and Trachtenberg have developed a method of
vorticity/stream function dynamics [4]. This method uses explicitly the space of
functions in which the dynamics take place. Specifically, the stream function dynamics
take place in the Sobolev space H2

0 , whereas the vorticity field resides in the image
of H2

0 under the action of the Laplace operator. At the end of every time step a
provisional solution is projected back onto the right functional space, in analogy with
the projection onto the space of divergence-free velocity fields in the primitive-variable
formalism [5]. As a result, no reference to vorticity boundary conditions is needed, and
instead, natural boundary conditions are imposed (as an integral part of the dynamics
space) on the stream function. The scheme we present in this paper belongs to this
category. Like the scheme in [4], it evolves the stream function within the above-
mentioned functional space, but rather than using a “predictor-corrector” approach,
it does it via implicit time stepping. In both cases, the computational complexity is
dominated by the solution of a linear system of biharmonic type.

The advection of vorticity has been implemented using the Kurganov–Tadmor
(KT) scheme [16], which was developed in the context of hyperbolic conservation laws;
this scheme has been shown to remain accurate and robust in the presence of large
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gradients; at the same time, it shares the relative simplicity of the central differencing
framework. In addition, the KT scheme has a well-behaved semidiscrete limit, and as
a result, time stepping is not tied to the spatial discretization (except for the standard
stability requirements). The independence of the spatial and temporal discretizations
adds a degree of modularity that may greatly simplify subsequent adaptations and
improvements.

The biharmonic viscous term is discretized by means of a compact stencil (see
[1]), which simplifies the treatment of boundary conditions. The fourth-order elliptic
equation is then solved with an algebraic multigrid (AMG) solver [13]. This technique
can be adapted with little modification to more complicated systems and geometries.

In section 2 we present the flow equations in vorticity-stream function formula-
tion and describe the difficulty associated with boundary conditions. In section 3 we
investigate a linear model equation, uxxt − uxxxx = 0, inspired by the stream func-
tion formulation of the Navier–Stokes equations. This system is simple enough to be
completely tractable but is still rich enough to capture the issue of boundary condi-
tions. We prove the convergence of an implicit scheme that uses a compact stencil.
The convergence is with respect to the H2 norm, which is the appropriate norm for
a variable analogous to the stream function. In section 4 we extend the scheme of
section 3 to the Navier–Stokes equations in a two-dimensional bounded domain. In
section 5 we present numerical results for a classical benchmark problem: flow in a
two-dimensional lid-driven cavity. The method is found to be accurate and robust
up to a regime of high Reynolds numbers, in which the flow becomes highly unstable
and generates convoluted vorticity patterns. The scheme seems to be able to resolve
vorticity patterns almost down to the scale of a single mesh size.

2. The vorticity-stream function formulation. We consider incompressible
viscous flow in a two-dimensional domain. The motion of the fluid is governed by the
Navier–Stokes equations,

∂u

∂t
+ (u ·∇)u = −∇p + ν∆u,

∇ · u = 0,
(2.1)

where u = u(x, t) = (u(x, t), v(x, t)) is the Eulerian velocity field, p = p(x, t) is the
pressure, and ν is the kinematic viscosity. In a bounded domain Ω enclosed by rigid
walls, the impermeability of the walls and the no-slip condition imply

u(x, t) = U(x, t), x ∈ ∂Ω, t > 0,(2.2)

where U is the velocity of the wall.
In terms of the vorticity field ω = (∇×u)z = ∂xv− ∂yu, the flow equations read

∂ω

∂t
+ (u ·∇)ω = ν∆ω,(2.3)

where u is obtained from ω through the div-curl relations

∇ · u = 0,

(∇× u) · ẑ = ω.
(2.4)

The divergence condition implies that the flow field is derivable from a scalar stream
function, ψ(x, t),

u = ∇⊥ψ =

(
−∂ψ

∂y
,
∂ψ

∂x

)
,(2.5)
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which, substituted into the curl condition, yields the Poisson equation

(∇× u) · ẑ = ∆ψ = ω.(2.6)

Finally, the boundary conditions (2.2) translate into boundary conditions for the
stream function

∇⊥ψ = U, x ∈ ∂Ω.(2.7)

The set of equations (2.3), (2.5), and (2.6), together with the boundary conditions,
(2.7), is known as the vorticity-stream function formulation of the Navier–Stokes
equations.

The classical difficulty with the vorticity-stream function formulation is the im-
proper partition of boundary conditions. The presence of a dissipative term in (2.3)
requires the specification of boundary conditions for the vorticity, but these are not
prescribed explicitly. Vorticity boundary conditions are extremely important from a
physical point of view as they represent the mechanism of vorticity generation at the
boundary. On the other hand, the Poisson equation (2.6) is overdetermined by both
Neumann and Dirichlet boundary conditions (2.7).

This difficulty is immediately removed if the vorticity equation (2.3) is interpreted
instead as an equation for the stream function

∂

∂t
∆ψ +

[
(∇⊥ψ) ·∇

]
∆ψ = ν∆2ψ.(2.8)

This equation contains a biharmonic operator so that the boundary conditions (2.7)
are the natural ones with no over- or underdetermination.

3. A linear model equation. The issue of vorticity boundary conditions can
be illustrated by considering a simple model equation inspired by (2.8): a fourth-order
linear equation for a one-dimensional scalar field u(x, t),




uxxt = uxxxx, x ∈ (0, 1),

u(0, t) = u(1, t) = 0,

ux(0, t) = ux(1, t) = 0,

u(x, 0) = u0(x),

(3.1)

where subscripts denote differentiation. Here u plays a role analogous to the stream
function, and uxx is the analogue of vorticity. We consider homogeneous boundary
conditions; inhomogeneous ones are readily reduced to the homogeneous case by a
standard change of variables [12].

Equation (3.1) is solvable by standard techniques, and its solution can be repre-
sented as a Fourier sine-series

u(x, t) =

∞∑
q=1

aq sin(πqx) e−π
2q2t +

∫ t

0

b1(s)

∞∑
q=1

sin(πqx) e−π
2q2(t−s) ds

+

∫ t

0

b2(s)

∞∑
q=1

(−1)q sin(πqx) e−π
2q2(t−s) ds,

(3.2)

where

aq =

∫ 1

0

u0(x) sin(πqx) dx
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and b1(t),b2(t) are functions to be determined. The sine-series (3.2) automatically
satisfies the Dirichlet boundary conditions u(0, t) = u(1, t) = 0. The role of the func-
tions b1(t),b2(t) is to enforce the Neumann boundary conditions; they are determined
implicitly by the conditions ux(0, t) = ux(1, t) = 0. Note that

lim
s→t

∞∑
q=1

sin(πqx) e−π
2q2(t−s) = δ(x),

lim
s→t

∞∑
q=1

(−1)q sin(πqx) e−π
2q2(t−s) = δ(1− x),

which means that b1(t),b2(t) can be regarded as the strength of point sources that are
concentrated on the left and right boundary, respectively; they play a role analogous
to vortex sheets in fluid mechanics.

The solution (3.2) can also be expanded in eigenfunctions,

u(x, t) =
∑
q

αqϕq(x)eΩqt,

where the index q runs over a discrete set of wavenumbers, and Ωq = −π2q2 is the
corresponding amplification rate. The eigenfunctions, ϕq, divide into two families:

ϕ(1)
q (x) = [1− cos(πqx)] ,(3.3)

where q = 2, 4, . . . , and

ϕ(2)
q (x) = (2/πq) sin(πqx)− cos(πqx)− 2x + 1,(3.4)

where the wavenumbers q are solutions of the transcendental equation

tan
πq

2
=

πq

2
.

Such wavenumbers are typical to a system with mixed boundary conditions [12]. The

eigensolutions ϕ
(1)
q correspond to the case where the boundary terms are identically

zero: b1(t) = b2(t) ≡ 0 (no generation of “vortex sheets”).

A natural approach in approximating (3.1) is to view it as an implicit equation for
ut(x, t); this is analogous to the choice of stream function variables in fluid mechanics.
For simplicity, it is sufficient to consider schemes that are first-order in time; the
generalization to higher-order is straightforward. For example, a backward-Euler
scheme reads

un+1
xx − unxx

k
= un+1

xxxx,

where k = tn+1 − tn is the time step interval.

We discretize the unit segment using a regular mesh of N +1 points, with the first
and last points coinciding with the left and right boundaries, x0 = 0, xN = 1; the mesh
spacing is h = 1/N . The standard discretizations of second and fourth derivatives
involve stencils of three and five points, respectively, which implies that boundary
conditions need to be prescribed at two points near each boundary. Alternatively, it
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is possible to use a compact 3-point stencil by introducing an auxiliary field v that
approximates ux. Following [1], we propose the following scheme:

D0
(
vn+1
j − vnj

)
= 12λ

(
D0vn+1

j −D+D−un+1
j

)
,

D0un+1
j =

(
I +

1

6
h2D+D−

)
vn+1
j ,

j = 1, . . . , N − 1,(3.5)

where D0,D± are the standard central-, forward-, and backward-difference operators,
λ = k/h2, and u0 = uN = v0 = vN = 0 at the boundary points. Equation (3.5)
is a discrete differential-algebraic system; the first equation is an evolution equation,
whereas the second is a constraint.

To prove that the numerical scheme (3.5) is convergent we first analyze its con-
sistency and stability properties. Convergence follows from a generalization of Lax’s
theorem.

Lemma 3.1. The numerical scheme (3.5) is consistent with truncation error
τ = O(h2, k).

Proof. Let u(x, t) be a smooth solution of uxxt = uxxxx, and let the discrete
auxiliary field vj(t) be defined implicitly by

D0u(xj , t) =

(
I +

1

6
h2D+D−

)
vj(t)

with v0(t) = vN (t) = 0. A Taylor expansion gives

(
I +

1

6
h2D+D−

)
[ux(xj , t)− vj(t)] = O(h4),

from which we conclude that

vj(t) = ux(xj , t) + O(h4).(3.6)

Substituting (3.6) into the first equation in (3.5) and performing another Taylor ex-
pansion, we finally obtain

D0 [vj(t + k)− vj(t)] = 12λ
[
D0vj(t + k)−D+D−u(xj , t + k)

]
+ k τnj

with τnj = O(h2, k).
Lemma 3.2. The numerical scheme (3.5) is unconditionally stable.
Proof. It is possible to construct two families of eigenvectors analogous to (3.3),

(3.4) that span the space of solutions of (3.5). Specifically,

unj =
∑
q

αqϕ̃q(xj) Ω̃nq ,

where the eigenvectors that correspond to (3.3) are

ϕ̃(1)
q (xj) = 1− cos(πqxj)(3.7)

for q = 2, 4, . . . , N − 1, and the eigenvectors that correspond to (3.4) are

ϕ̃(2)
q (xj) = (2/Aq) sin(πqxj)− cos(πqxj)− 2xj + 1(3.8)
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with

tan
πq

2
=

Aq
2

, Aq =
3 sin(πqh)

h [2 + cos(πqh)]
.

The amplification factor Ω̃q is given in both cases by

Ωq =

(
1 +

4k

h2
tan2 πqh

2

)−1

.

It is readily verified that (3.7) and (3.8) form a total of n − 1 eigenvectors and
thus span the space of solutions. For all values of q the amplification factor |Ωq| is
strictly less than one, from which follows that all eigenmodes decay and the scheme is
stable.

Theorem 3.3. The numerical scheme (3.5) is convergent.
Proof. The proof is essentially a generalization of Lax’s theorem. It relies on

the facts that the truncation errors are small (consistency), and that there is no
mechanism that amplifies errors (stability).

Let u(x, t) be a smooth solution of (3.1), let unj be a numerical solution of (3.5),
and let enj = u(jh, nk) − unj be the global error. By virtue of Lemma 3.1 and the
linearity of (3.5), we obtain the equation for the error

D0
(
wn+1
j − wnj

)
= 12λ

(
D0wn+1

j −D+D−en+1
j

)
+ k τnj ,

D0en+1
j =

(
I +

1

6
h2D+D−

)
wn+1
j ,

(3.9)

where wnj is the auxiliary field associated with enj .
We next expand the error in the discrete eigenmodes (3.7), (3.8),

enj =
∑
q

αnq ϕ̃q(xj).(3.10)

Substitution of (3.10) into the auxiliary equation in (3.9) gives

wnj =
∑
q

αnq ψ̃q(xj),(3.11)

where

ψ̃(1)
q (xj) = Aq sin(πqxj),

ψ̃(2)
q (xj) = 2 cos(πqxj) + Aq sin(πqxj)− 2

are the two families of functions that correspond to ϕ̃
(1)
q and ϕ̃

(2)
q . Noting that

D0ψ̃q(xj) =
hAq

4

sin(πqh)

sin2(
1

2
πqh)

D+D−ϕ̃q(xj) =
3 cos2(

1

2
πqh)

1 + 2 cos2(
1

2
πqh)

D+D−ϕ̃q(xj),

we substitute (3.11) into the first equation in (3.9) and obtain after some basic ma-
nipulations

∑
q

(
Ω̃−1
q αn+1

q − αnq

)
D0ψ̃q(xj) = k τnj , j = 1, 2, . . . , N − 1.(3.12)
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Now let χq(xj) = D0ψ̃q(xj); these functions span the space of grid functions

defined over the N − 1 inner points xj , j = 1, 2, . . . , N − 1. Let (f, g) =
∑N−1
j+1 hfjgj

denote the discrete inner product, and let B be the (N − 1)× (N − 1) matrix whose
entries are Bq,q′ = (χq, χq′).

To obtain an explicit recursion relation for the αnq , we take the scalar product of
(3.12) with χq′ and invert by multiplying on the left by B−1; thus

αn+1
q = Ω̃qα

n
q + k Ω̃q

∑
q′

B−1
q,q′(χq′ , τ

n),

which by the discrete Duhammel principle gives

αnq = Ω̃nqα
0
q + k

n−1∑
r=0

Ω̃n−rq

∑
q′

B−1
q,q′(χq′ , τ

r).(3.13)

The first term of the right-hand side represents the amplification of the initial error,
whereas the second represents the accumulation of the local truncation errors.

The vector which we are going to estimate is D0wn =
∑
q α

n
qχq, which is equiva-

lent to the second derivative of the error en. If
∥∥D0wn

∥∥
2
→ 0 as h, k → 0, then the

scheme converges in the H2 norm, which is indeed the relevant norm for u [4]. Using
(3.13), the Cauchy–Schwarz inequality, and the fact that 0 < Ωq < 1, we find

∥∥D0wn
∥∥2

2
=
∑
q,q′

αnqBq,q′α
n
q′

≤ ∥∥D0w0
∥∥2

2
+ 2 kn

∥∥D0w0
∥∥

2
‖τ‖2 + (kn)2 ‖τ‖22 ,

where ‖τ‖2 = maxn ‖τn‖2. We need only the initial conditions to converge at least as
O(h2) to conclude with the aid of Lemma 3.2 that the scheme converges in H2, and
that the order of convergence is O(h2, k).

4. The numerical scheme. Inspired by the model equation presented in the
previous section, we construct an approximation scheme for (2.8). The temporal
and the spatial discretizations are considered separately; this is legitimate when the
scheme has a well-behaved semidiscrete limit [16].

4.1. Temporal discretization. Let ψn denote the stream function at time tn.
We approximate (2.8) by a discretization that is second-order in time:(

∆− 1

4
νk ∆2

)
ψn+ 1

2 =

(
∆ +

1

4
νk ∆2

)
ψn − 1

2
k [(u ·∇)ω]

n
,

(
∆− 1

2
νk ∆2

)
ψn+1 =

(
∆ +

1

2
νk ∆2

)
ψn − k [(u ·∇)ω]

n+ 1
2 ;

(4.1)

that is, we use Crank–Nicholson for the viscous term and a midpoint rule for the
advection term.

4.2. Spatial discretization. We discretize the system on a rectangular grid
with fixed mesh spacing, ∆x = ∆y = h; a generalization to more complicated metrics
will be presented elsewhere. The examples below are for a square domain, where the
outermost grid points coincide with the boundaries of the system. We assume that
at the beginning of each time step we possess second-order approximations for ψ and
its first derivatives—the two velocity components—at the grid points (xi, yj), which
we denote by ψi,j , ui,j , and vi,j , respectively.
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4.2.1. The advection term. We start with the advection term, which describes
the conservative transport of vorticity along streamlines. Due to the incompressibility
of the flow, it can be written in an equivalent conservative form,

(u ·∇)ω = ∇ · (ωu),

where the vector field ωu is the vorticity flux.
The numerical analysis of nonlinear advection has been studied extensively in the

context of hyperbolic systems of conservation laws (see, e.g., [10, 17]). Considerable
effort has been devoted to the construction of so-called high-resolution schemes, which
are designed to capture the structure of singularities, such as shocks and rarefaction
waves. Although incompressible flows do not form shocks, experience shows that a
careful treatment of the advection is still of primary importance in the presence of
sharp gradients. Indeed, sharp gradients seem as discontinuities on the scale of a mesh
spacing.

Our discretization of the advection term is based on the central-difference scheme
introduced by Kurganov and Tadmor (KT) [16]. Central schemes tend to be simpler
than their upwind counterpart and can more easily be used and adapted as “black
box” solvers. The KT scheme was found to introduce less numerical viscosity than
earlier central schemes [19, 14]; its other advantage is that it can be brought to a simple
semidiscrete formulation by letting the time step k tend to zero; thus it is possible
to consider the spatial discretization independently from the temporal discretization,
which can then be implemented by any standard ODE solver.

Conservative schemes are based on an integral representation of the conserva-
tion law; the discrete variables represent averages of the conserved quantities—here
vorticity—over control cells. Due to conservation, the rate of change of the mean
vorticity equals to the integral of the vorticity flux over the cell’s boundaries. We
take for control cells squares centered at the grid points. Every time step consists of
the following steps. (i) Reconstruction of point values from the given cell averages;
for a second-order scheme the reconstructed field is piecewise-linear. (ii) Evaluation
of the fluxes at the cell’s boundaries; because the reconstructed solution might be
discontinuous, a careful treatment is necessary. The KT scheme introduces at the
cells’ interfaces local control volumes of adaptive size over which the discontinuous
behavior is integrated; thus, Riemann solvers are avoided. (iii) Update of cell averages
by integrating the fluxes using an appropriate quadrature rule.

Specifically, the spatial discretization of ∇ · (ωu) proceeds as follows.
• Using the standard 5-point Laplacian, we obtain a second-order approxima-

tion for the cell-average vorticity,

ωi,j = ∆hψi,j =
1

h2
(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) ,(4.2)

valid in all interior cells, i, j = 1, . . . , N − 1; our scheme does not require the
evaluation of vorticity at boundary cells.
• We proceed with a piecewise-linear reconstruction of the vorticity,

ω(x, y) =
∑
i,j

[ωi,j + (ωx)i,j(x− xi) + (ωy)i,j(y − yj)]χi,j(x, y),

where χi,j is the indicator function of the (i, j) cell. The numerical slopes,
(ωx)i,j and (ωy)i,j , can be evaluated by simple central differencing when the
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solution is smooth (on the scale of a mesh spacing). Otherwise, nonlinear
slope limiters should be used—for example, the min-mod limiters

(ωx)i,j =
1

h
minmod

[
θ (ωi+1,j − ωi,j) ,

1

2
(ωi+1,j − ωi−1,j) , θ (ωi,j − ωi−1,j)

]

with 1 < θ < 2. In particular, we evaluate the vorticity at the centers of the
cells’ edges:

ωE,Wi,j = ωi,j ± 1

2
h(ωx)i,j ,

ωN,Si,j = ωi,j ± 1

2
h(ωy)i,j

with the superscripts W=“west,” E=“east,” S=“south,” and N=“north”
referring to the orientations of the four edges.
• We then evaluate the normal velocities on the cells’ edges by simple second-

order averaging [18]:

ui− 1
2 ,j

=
1

2
(ui,j + ui−1,j) ,

vi,j− 1
2

=
1

2
(vi,j + vi,j−1) .

• At each edge we define a numerical flux

Hi− 1
2 ,j

=
1

2

(
ωWi,j + ωEi−1,j

)
ui− 1

2 ,j
− 1

2
|ai− 1

2 ,j
| (ωWi,j − ωEi−1,j

)
,

Hi,j− 1
2

=
1

2

(
ωSi,j + ωNi,j−1

)
vi,j− 1

2
− 1

2
|ai,j− 1

2
| (ωSi,j − ωNi,j−1

)
,

where the first term on the right-hand side is the average of the one-sided flux
evaluations, whereas the second term is a correction that arises from the more
precise treatment at the discontinuous boundaries; the prefactors ai− 1

2 ,j
and

ai,j− 1
2

correspond to the local characteristic speeds at the cells’ interfaces,
which in our case are simply the normal velocities, u and v, respectively.
• Finally, the divergence of the flux is approximated by

[∇ · (ωu)]i,j =
Hi+ 1

2 ,j
−Hi− 1

2 ,j

h
+

Hi,j+ 1
2
−Hi,j− 1

2

h
.

4.2.2. The viscous term. We next address the spatial discretization, ∆2
h, of

the biharmonic operator. The standard second-order discretization uses a 13-point
stencil. Noncompact stencils are problematic from the point of view of linear solvers.
An alternative representation of the discrete biharmonic operator that uses a compact
9-point stencil was developed by Altas et al. [1], and its one-dimensional version was
presented in section 3. The idea is to express ∆2

hψi,j in terms of the grid values of ψ
and its first derivatives, ψx = v and ψy = −u. A second-order approximation of the
biharmonic operator can then be written as

∆2
hψi,j =

12

h2

(
−4

3
∆hψi,j +

1

3
∆̃hψi,j + D0

xvi,j −D0
yui,j

)
,(4.3)
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where D0,±
x,y are the standard differencing operators and ∆̃h is the star-Laplacian

∆̃hψi,j =
1

2h2
(ψi+1,j+1 + ψi−1,j+1 + ψi+1,j−1 + ψi−1,j−1 − 4ψi,j) .

In addition, we need fourth-order expressions for ui,j and vi,j :

(
I +

1

6
h2D+

xD−
x

)
vi,j = +D0

xψi,j ,(
I +

1

6
h2D+

y D−
y

)
ui,j = −D0

yψi,j .

(4.4)

These approximations are valid for all interior points; at boundary points ψ, u, and
v are prescribed by the boundary conditions.

4.3. The linear solver. From a computational point of view, the most time-
consuming part of the computation is the solution of a linear system of the form

(∆h − α∆2
h)ψi,j = rhsi,j ,

which results from the spatial discretization of (4.1); two such linear systems need to
be solved at every time step. Standard iterative methods are known to converge very
slowly, if at all, for biharmonic operators.

Biharmonic systems that use the compact stencil representation (4.3), (4.4) can
be solved very efficiently with AMG solvers. AMG methods are powerful techniques
for the solution of sparse linear systems. They are “black box” solvers, in the sense
that they treat the problem to be solved as a pure algebraic system, without reference
to the geometrical interpretation of the transition between coarse and fine grids. The
advantage of such an approach is that it is readily portable to more complicated
systems of coordinates and geometries.

The principle of AMG methods can be summarized as follows. Given an n-
dimensional linear system Ax = b, an m× n restriction matrix R is generated by an
algorithm that inspects the graph of the matrix A. The m-dimensional vector Rx
is the projection of x on the restricted (“coarse”) subspace. The transpose of the
restriction matrix, I = RT , is used as an interpolation matrix to revert back to the
original (“fine”) space. AMG methods are based on the presumption that if the right-
hand side vector, b, is sufficiently “smooth” (in a sense that needs to be specified),
then the solution x is close to the range of the interpolation matrix I, i.e., there exists
an m-dimensional vector y such that x ≈ Iy. Multiplying the system Ax = b by R
on the left and approximating x by Iy, we obtain the restricted system

(RAI)y = Rb.

This two-level approach can be applied recursively to form a multilevel method. It
then remains to introduce an appropriate “smoother” to operate on the solution before
and after being projected to the lower-dimensional subspace.

AMG solvers vary in the way they generate the restriction matrix, in the choice of
smoothers, and in the choice of multigrid cycles. Our coarsening method is based on
a red-black coloring algorithm developed by Kickinger [13]. Gauss–Seidel iterations
have been used for smoothing. Each multigrid cycle starts from the finest level down
to the coarsest level and back up (V-cycle). For a 128 × 128 grid (that is, a linear
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system of dimension 3 × 128 × 128), about ten multigrid cycles with two pre- and
postsmoothing steps were needed to reduce the error norm to 10−8.

There are a number of implementational issues. As long as the time step is not
modified, the linear operator is unchanged. In such a case, it is efficient to compute
the set of restriction matrices, R, with the corresponding linear operators, RAI, once,
and store them. Most of the computational time is then spent on sparse matrix-vector
multiplications, which can be parallelized easily.

5. Numerical results. We have tested our numerical scheme on a classical
benchmark problem: flow in a lid-driven cavity. The fluid is confined in a square
domain, Ω = [0, 1]2, and is driven by the transversal motion of its boundaries. This
setup is a challenging test problem, in particular, because the velocity field is discon-
tinuous at the corners adjacent to the moving boundaries, and the viscous stresses
diverge logarithmically. (In a method that uses the primitive variables (u, p), one
faces the logarithmic divergence of the pressure.)

We first conducted convergence tests to obtain error estimates and assess the
order of accuracy. In Table 1 we show the discrete L2 norm ‖ψN+1 − ψ2N+1‖2, where
ψM denotes the computational solution on an M ×M grid. The initial conditions are

ψ(x, y, 0) =
1

π
sin2(πx) sin2(πy),(5.1)

and the boundaries are stationary; the Reynolds number here is 103. For short times
the convergence rate seems to be less than expected; this is because the errors are
very small and therefore dominated by the tolerance specified for the linear solver. For
times longer than t = 0.4 we get an estimated second-order convergence, as expected.
Similar results were found for a range of Reynolds numbers between 102 and 104.

Table 1
Error estimate and convergence test for the initial conditions (5.1) and Reynolds number 103.

Time ‖ψ33 − ψ65‖2 ‖ψ65 − ψ129‖2 Rate
0.1 4.1× 10−5 1.3× 10−5 1.64
0.2 7.2× 10−5 2.1× 10−5 1.81
0.3 9.5× 10−5 2.5× 10−5 1.90
0.4 1.2× 10−4 2.9× 10−5 1.99
0.5 1.4× 10−4 3.3× 10−5 2.08

We next display results for lid-driven flows. For low enough Reynolds numbers
the flow approaches a steady state; the lower the Reynolds number is, the shorter the
transient is. In Figure 1(a) we display stream function contour lines in the steady
state for Re = 400. The fluid is initially at rest, and it is driven impulsively by the
rightward motion of the top boundary. For comparison we display the same level sets
as in [9, Figure 3 and Table III]. In Figure 1(b), (c) we plot the steady-state profile
of the u(v) component of the velocity as a function of y(x) at x = 0.5 (y = 0.5).
The solid line represents our results, whereas the symbols are data reported in [9]).
The agreement is excellent. In Table 2 we list the minimum value of the stream
function, which takes place in the core of the primary vortex, at different times and
for three different grid sizes. For a grid size of 128 × 128 the results seem to have
fully converged. It takes about 35 time units to reach a steady flow; the minimum
value of the stream function is then −0.1140; in [9] the reported value is −0.1139; the
same value has also been reported by Pan and Glowinski for a slightly regularized
flow [20]. We also compare extremal values of the stream function for the secondary
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Fig. 1. (a) Contour plots of the stream function at time t = 40 after an impulsive start at
Reynolds number Re = 400. The top boundary moves to the right with velocity u = 1. (b) Steady-
state profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the
v velocity component as a function of x at y = 0.5.

Table 2
Minimum value of the stream function at different times and for different mesh sizes. The

Reynolds number is Re = 400.

Time 64× 64 96× 96 128× 128
t = 5.0 −0.09062 −0.09074 −0.09076
t = 15.0 −0.11164 −0.11173 −0.11174
t = 25.0 −0.11378 −0.11385 −0.11385
t = 35.0 −0.11393 −0.11400 −0.11401

vortices. For the bottom-right secondary vortex the maximum value of the stream
function is 6.579×10−4, and it is 1.404×10−5 for the bottom-left vortex; the numbers
reported in [9] are 6.423 × 10−4 and 1.419 × 10−5, respectively. In [11] the time to
reach a steady state was estimated to be about 46 time units. A precise quantitative
comparison is hard to perform due to the arbitrary nature of the stopping criterion.

Similar calculations were carried out for Re = 5000. In Figure 2(a) we plot the
minimum value of the stream function versus time. Steady-state velocity profiles are
shown in Figure 2(b), (c). Snapshots of stream function contour lines are presented
in Figure 3. Note the much longer transient; its takes about 340 time units to reach
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Fig. 2. (a) Minimum value of the stream function versus time for Re = 5000. (b) Steady-state
profile of the u velocity component as a function of y at x = 0.5. (c) Steady-state profile of the v
velocity component as a function of x at y = 0.5.

a steady flow. Note also the nonmonotonic behavior of the minimum value of the
stream function, which reflects the fact that recirculation zones are created and an-
nihilated along the side and bottom walls until the final vorticity pattern emerges.
Such dynamics were also reported in [11] and are consistent with subcritical behavior
prior to an oscillatory instability, whose occurrence has been predicted in [21, 20].
Eventually, the stream function reaches the value of −0.122160; in [9] the predicted
value is −0.118966, whereas in [20] it is −0.121218. The velocity profiles are again in
excellent agreement with the data reported in [9].

In a recent paper, Pan and Glowinski [20] obtained limit cycle solutions for Re =
8500. The occurrence of a Hopf bifurcation has been speculated before [21] but was
believed to take place at a significantly higher Reynolds number. Our results for
Re = 8500 support the findings of [20]. In Figure 4 we plot the time evolution of the
kinetic energy over a time interval of t = 3; the function is oscillatory with a period of
about 2.5; the period reported in [20] is 2.27. In Figure 5 we show a complete cycle of
stream function contours during a time interval of 2.5. The primary vortex remains
practically unchanged, variations being noticeable only within the secondary vortices.
It takes about 200 time units to reach this state starting from a fluid at rest.
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Fig. 3. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 5000. The contours are shown for time t = 10, t = 20, t = 30,
and t = 300. The grid size is 128× 128.
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Fig. 5. Contour plots of the stream function. The top boundary moves to the right with velocity
u = 1. The Reynolds number is Re = 8500. This sequence covers one period of the limit cycle. The
grid size is 128× 128.

For even higher Reynolds numbers the flows are much more complex. An Re =
20000 flow is shown in Figure 6, where we display snapshots of vorticity contour
lines for a fluid that is driven by the upward motion of its left and right boundaries.
Narrow and concentrated shear layers are generated along the moving boundaries and
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Fig. 6. Contour plots of vorticity. The left and right walls move upward with velocity v = 1.
The Reynolds number is Re = 20000. The contours are shown for time t = 2, t = 6, t = 10, t = 14,
and t = 18. The grid size is 128× 128.

transported with the flow. The shear layers are unstable and rapidly intermingle to
form a convoluted vorticity pattern. This sequence of vorticity contours demonstrates
the robustness of the scheme. The vorticity gradients are large with sharp variations
over single cells.
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6. Concluding remarks. The present scheme is based on the paradigm that has
been established in [4], whereby vorticity dynamics should be viewed as a projection of
stream function dynamics; thus vorticity boundary conditions are totally avoided, and
natural boundary conditions are imposed on the stream function. Numerical methods
based on stream function variables are by themselves not a novel idea. What have
been missing for many years are accurate and efficient ways of implementation. We
make no claim, however, that methods based on vorticity boundary conditions are
invalid. Such methods have been proven to work within the frameworks of both
difference schemes and vortex methods.

An important property of the proposed scheme is its modularity. It is not re-
stricted to a specific type of hyperbolic or biharmonic solver, and each of its elements
can be implemented in various ways. In particular, higher-order spatio-temporal
discretizations are relatively easy to implement (see, e.g., [1] for a fourth-order dis-
cretization of the biharmonic equation and [15] for a third-order version of the KT
scheme). Finally, an extension to three dimensions seems realizable.
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TWO-DIMENSIONAL SIMULATIONS OF VALVELESS PUMPING
USING THE IMMERSED BOUNDARY METHOD∗
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Abstract. Flow driven by pumping without valves is examined, motivated by biomedical appli-
cations: cardiopulmonary resuscitation (CPR) and the human fetus before the development of the
heart valves. The direction of flow inside a loop of tubing which consists of (almost) rigid and flexible
parts is investigated when the boundary of one end of the flexible segment is forced periodically in
time. Despite the absence of valves, net flow around the loop may appear in these simulations. The
magnitude and even the direction of this flow depend on the driving frequency of the periodic forcing.

Key words. valveless pumping, immersed boundary method, frequency, CPR
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1. Introduction. Pumping blood in one direction is the main function of the
heart, which is equipped with valves that ensure unidirectional flow. Is it possible,
though, to pump blood without valves? This paper is intended to show by numerical
simulation the possibility of a net flow which is generated by a valveless mechanism
in a circulatory system. Simulations of valveless pumping are motivated by physical
experiments of Kilner [12], which had been developed from experiments by Liebau
[13, 14, 15]. Kilner observed net flow in one direction which depends on the location
of periodic forcing in his experiments. We have examined flows driven by pumping
without valves in Liebau’s model, a loop of tubing of which part is almost rigid and
the other part is flexible. In agreement with Kilner, we find that net flow can indeed
be driven around such a loop by periodic forcing at one location, but we also find
something new: the direction of the flow depends on the driving frequency of the
periodic forcing.

As reviewed by Moser et al. [18], there have been several earlier investigations of
valveless pumping. Harvey (1628), Weber (1834), Donders (1856), and Thomann [26]
suggest theories of valveless pumping, and Ozanam (1881) and Liebau [13, 14, 15]
make the various types of physical experiments to explain the mechanism of valveless
pumping. Moser et al. [18] try to identify the responsible mechanism and conditions
under which this mechanism operates. Their proposed mechanism involves a difference
in impedance of two pathways between compliant reservoirs.

One of the applications of valveless pumping may turn out to be cardiopulmonary
resuscitation (CPR). The blood flow during CPR has been explained by two theories:

∗Received by the editors February 1, 2000; accepted for publication (in revised form) June 8,
2000; published electronically May 10, 2001. Preliminary accounts of this work have appeared in
the conference paper of the International Conference on Mechanics in Medicine and Biology, Maui,
Hawaii, 2000, pp. 41–44. This work was supported by the National Science Foundation under
research grant DMS-9626104. Computation was performed at the Applied Mathematics Laboratory,
New York University, and also in part on the Cray T90 computer at the San Diego Supercomputer
Center under a grant of resources MCA93S004 from the National Resource Allocations Committee
(NRAC).

http://www.siam.org/journals/sisc/23-1/36609.html
†Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, MS-6367, Oak Ridge, TN 37831-

6367 (junge@ornl.gov).
‡Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,

NY 10012 (peskin@cims.nyu.edu).

19



20 EUNOK JUNG AND CHARLES S. PESKIN

the thoracic pump and cardiac compression mechanisms. In support of the thoracic
pump model, it has been reported that the heart is “a passive conduit for blood flow”
during chest compression [1, 3, 10], with an open mitral valve throughout the cardiac
cycle and anterograde (forward) transmitral blood flow even during chest compres-
sion. Werner et al. [27] also report that the mitral valve remains open throughout
the entire compression-release cycle of CPR while the aortic valve opens during the
compression phase of CPR and closes during the release phase. Thus, the left side of
the heart appears to act as a conduit for passage of blood, and mitral valve closure
is not necessary for forward blood flow during CPR. Despite the observed lack of
valve function, some patients with cardiac arrest are successfully resuscitated by ex-
ternal chest-compression CPR [25]. These findings are controversial, however. Other
researchers such as Feneley et al. [4] report results that are inconsistent with the tho-
racic pump theory and support direct cardiac compression as the primary mechanism
of blood flow with the high-impulse manual CPR technique. These investigators fa-
vor the cardiac compression theory, in which the heart acts as a pump and its valves
function normally. It is possible, of course, that both theories are correct, each in a
different set of circumstances. Our computational model of valveless pumping might
be applicable to the thoracic pump model and help to understand the thoracic pump
mechanism. If the magnitude and even the direction of flow in valveless pumping are
indeed frequency dependent, as our results seem to indicate, it is of obvious impor-
tance to know what frequency of chest compression will produce the most effective
CPR.

Another biological example of valveless pumping may occur in the human embryo
at the end of the third week of gestation. At this stage of development, the valves
of the heart have not yet formed. Nevertheless, there is a net flow in the circulatory
system that is somehow generated by the beating of the heart.

An industrial application of valveless pumping is in microelectromechanical sys-
tem (MEMS) devices [17], where there is a need to produce fluid motion without
moving anything inside the fluid. MEMS devices could be built that incorporate flex-
ible flow channels. In that case, our findings might be applicable to the design of
valveless pumps for MEMS devices.

We do not attempt to construct a theory of valveless pumping in this report. In-
stead, we use numerical simulation as an “experimental” tool to study this mysterious
phenomenon.

The rest of the paper is organized as follows. In section 2 the immersed bound-
ary method will be introduced. Section 3 is devoted to the description of the two-
dimensional valveless pumping model. The results will be discussed in section 4. In
section 5 several special cases will be observed. Finally, some conclusions will be
drawn in section 6.

2. The immersed boundary method.

2.1. Mathematical formulation. The immersed boundary method is applica-
ble to problems involving an elastic structure interacting with a viscous incompressible
fluid. It has been applied to a variety of problems, particularly in biophysics, includ-
ing two-dimensional and three-dimensional simulations of blood flow in the heart
[19, 20, 9, 21, 22], the design of prosthetic cardiac valves [16], platelet aggregation
during blood clotting [7], wave propagation in the cochlea [2], the flow of suspensions
[8], peristaltic pumping of solid particles [6], and aquatic animal locomotion [5]. The
version of the immersed boundary method used in this work is that of [23], except
that here we are in two space dimensions.
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Fig. 1. Initial position of two-dimensional valveless pumping: flexible boundary (thin lines),
almost rigid (thick lines), and fluid markers (dots).

The philosophy of the immersed boundary method is that the elastic material
is treated as a part of the fluid in which singular forces are applied. The fluid and
the elastic immersed boundary constitute a coupled mechanical system: The motion
of the fluid is influenced by the force generated by the immersed boundary on the
fluid, but at the same time the immersed boundary moves at the local fluid velocity
and exerts singular forces locally on the fluid. The strength of this method is that
it can handle the complicated and time dependent geometry of the elastic immersed
boundary which interacts with the fluid, and that it does so while using a fixed regular
lattice for the fluid computation.

Consider a viscous incompressible fluid which fills a periodic rectangular box Ω
and an immersed boundary Sb in the shape of a racetrack which is contained in the
box, where b = 1 (inner immersed boundary) or b = 2 (outer immersed boundary).
Figure 1 displays the two-dimensional model in which we shall simulate valveless
pumping.

We shall now consider the mathematical formulation of the equations of motion
for the fluid-immersed boundary system. Let ρ be the constant fluid density and µ
be the constant viscosity. The equations of motion are then as follows:

ρ

(
∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t)

)
+∇p(x, t) = µ∇2u(x, t) + F (x, t),(2.1)

∇ · u(x, t) = 0,(2.2)

F (x, t) =

∫
Sb

f b(s, t) δ
2(x−Xb(s, t)) ds,(2.3)

U b(s, t) =

∫
Ω

u(x, t) δ2(x−Xb(s, t)) dx,(2.4)

∂Xb(s, t)

∂t
(s, t) = U b(s, t),(2.5)
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f b(s, t) = −(κt)b(Xb(s, t)−Zb(s, t)) + κc
(
∂2Xb(s, t)

∂s2

)
.(2.6)

Equations (2.1) and (2.2) are the fluid (Navier–Stokes) equations in Eulerian form.
The fluid velocity u(x, t), fluid pressure p(x, t), and singular force density F (x, t) are
unknown functions of (x, t), where x = (x, y) are fixed Cartesian coordinates and
t is the time. Equations (2.5) and (2.6) are the immersed boundary equations in
Lagrangian form. The configurations of the immersed boundaries are described by
the unknown functions Xb(s, t), where b = 1 (inner immersed boundary) or 2 (outer
immersed boundary), and 0 ≤ s ≤ L1 for the inner immersed boundary and 0 ≤ s
≤ L2 for the outer immersed boundary. L1 and L2 are the unstressed lengths of the
inner and outer boundaries, respectively. The boundary force densities f b(s, t) and
the boundary velocities U b(s, t), for the inner and outer boundaries b = 1 and b = 2,
are also unknown functions of s and t. A fixed value of the Lagrangian parameter s
marks a material point of the immersed boundary.

In (2.6) the boundary force is computed as a sum of two terms. In the first term,
the given function Zb(s, t) is called the target position of the immersed boundary.
This first term provides a restoring force that keeps the boundary points near their
target positions. Target positions are used for two purposes in this work: first to
maintain the shape of the flow loop, and second, by allowing Zb(s, t) to change with
time, to apply periodic forcing to the immersed boundaries. The curvature term in
(2.6) models an elastic membrane under tension. Together, the two terms model the
boundaries as tethered elastic membranes.

Note that the curvature term actually is the response to stretching of the mem-
brane; it is not a response to curvature per se. It can be derived from an energy
function which is just the sum of the squares of the lengths of the individual seg-
ments. Also, the curvature term has little effect on the parts of the racetrack that
are stiffly pinned to target points, since those forces dominate there. It is important
only on the straight flexible segment.

Equations (2.4) and (2.5) are, in effect, the no-slip condition, since they state that
the immersed boundary moves at the local fluid velocity. Equations (2.3) and (2.4)
are the interaction equations in mixed Eulerian and Lagrangian form. The core of
the immersed boundary method is the delta function, which describes the interaction
between the fluid and the immersed boundary. Both of the interaction equations are
in integral form with kernel δ2(x −Xb(s, t)). The integral in (2.4) is taken over the
two-dimensional space occupied by the fluid. However, in (2.3), the integral is taken
over a one-dimensional space, the immersed boundary, but the delta function is a
product of two one-dimensional delta functions: δ2(x) = δ(x)δ(y). Therefore, F (x, t)
is a singular force density. The total force is finite despite the singularity in the force
density F (x, t).

2.2. Numerical method. In this section, we present the summary of the im-
mersed boundary method to find a numerical solution to the system of equations
(2.1)–(2.6). For details of this numerical method, see [11, 23]. Let superscripts and
subscripts denote the time step index and the spatial discretization, respectively.
Let the time proceed in steps of duration ∆t, let ∆x and ∆y be the fluid-lattice
spacing, and let ∆sb be the unstressed distance between material points of the im-
mersed boundary. The fluid equations (2.1) and (2.2) in Eulerian form are discretized
on a fixed rectangular lattice at time t = n∆t: xnjk = x(j∆x, k∆y, n∆t), where
j = 0, . . . , Nx − 1, k = 0, . . . , Ny − 1, and n = 0, 1, . . . . The immersed boundary
equations (2.5) and (2.6) in Lagrangian form are discretized on a collection of moving
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points in the immersed boundary at time t = n∆t : Xn
bl = Xb(l∆sb, n∆t) which do

not coincide with the fluid lattice, where l = 1, . . . , M1 and L1 = M1∆s1 for b = 1
(inner boundary) or l = 1, . . . , M2 and L2 =M2∆s2 for b = 2 (outer boundary).

Our goal is to compute the update un+1, Xn+1
b from given un, Xn

b . This is done
as follows:

For simplicity, let Nx = Ny = N and choose ∆x = ∆y = h.
Step 1. Find the force fnb on the immersed boundary from the given boundary

configuration Xn
b .

For l = 1, . . . , Mb, and b = 1 (inner boundary) or 2 (outer boundary),

fnbl = −(κt)l(Xn
bl −Znbl) + κc

(
Xn
b(l+1) − 2Xn

bl +X
n
b(l−1)

∆s2b

)
,(2.7)

where Znb is a target position at t = n∆t, ∆sb is an arc length, κt is a stiffness
constant, and κc is another stiffness constant for the curvature force term.

Note that the subscript arithmetic on l in (2.7) has to be interpreted in a periodic
sense, since the boundary is closed: when l =Mb, l + 1 = 1; when l = 1, l − 1 =Mb.
The target positions Znb are calculated by the given boundary configurationX

n
b . The

formulations of the target positions will be given in the following section.
Step 2. Spread the boundary force into the nearby lattice points of the fluid using

the δ function.

F njk =

2∑∑∑
b=1

Mb∑∑∑
l=1

fnblδ
2
h(xjk −Xn

bl)∆sb for j, k = 0, 1, . . . , N − 1,(2.8)

where xjk = (jh, kh) and δ2h is a smoothed approximation to the two-dimensional
Dirac delta function:

δ2h(x) =
1

h2
φ(x/h)φ(y/h),

where

φ(r) =




3−2|r|+
√

1+4|r|−4r2

8 if |r| ≤ 1,
5−2|r|−

√
−7+12|r|−4r2

8 if 1 ≤ |r| ≤ 2,
0 if 2 ≤ |r|.

The motivation for this particular choice of φ(r) is given in [22].
Step 3. Solve the Navier–Stokes equations on the rectangular lattice to get the

update un+1 and pn+1 from un and F n. The periodic boundary conditions for the
computational domain are imposed. These equations are solved by the following
implicit first order scheme in time and space:

ρ

(
un+1 − un

∆t
+ un · ∇±

h u
n

)
+D0pn+1 = µ∆hu

n+1 + F n,(2.9)

D0 · un+1 = 0.(2.10)

The difference operators in these equations are constructed as follows. First, the
forward (D+), backward (D−), and centered (D0) difference operators are defined
in the standard way. Then D0 is defined by D0 = (D0

x, D
0
y). This is used in the
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discrete divergence and gradient. Next, the discrete Laplacian for the viscous term is
defined by ∆hu =

∑∑∑2
α=1D

+
αD

−
αu. Finally, the upwind difference operator u · ∇±

h =∑∑∑2
α=1 uαD

±
α , where

uαD
±
α =

{
uαD

+
α if uα < 0,

uαD
−
α if uα > 0.

This difference scheme is stable (provided that
∑∑∑2

α=1 |uα|∆t < h) because of
the choice of the upwind scheme for the convection terms and the backward Euler
differencing used for the Stokes system.

Because of the periodic boundary conditions of the computational domain, it is
natural to use the fast fourier transform (FFT) algorithm to solve (2.9) and (2.10) for
the unknowns (un+1, pn+1). To get the update un+1 and pn+1, first take the discrete
Fourier transformation of (2.9) and (2.10). Then, the system can be solved for ûlm,
v̂lm, and p̂lm for each l and m, 0 ≤ l,m ≤ N − 1. Finally, evaluate un+1 and pn+1 by
applying the inverse FFT algorithm to p̂n+1 and ûn+1.

Step 4. Once the updated fluid velocity, un+1, has been determined, we can find
the velocity, Un+1

b , and then the new position, Xn+1
b , of the immersed boundary

points. This is done using a discretization of (2.4) and (2.5).
The difference approximations to the interpolation equation and no-slip condition

are expressed as follows:
For l = 1, . . . , Mb, and b = 1 (inner boundary) or 2 (outer boundary),

Un+1
bl =

N−1∑∑∑
j,k=0

un+1
jk δ

2
h(xjk −Xn

bl)h
2,(2.11)

Xn+1
bl =Xn

bl +∆tU
n+1
bl .(2.12)

Note that we use the same delta function in (2.11) as the one in the interaction
equation for the force term, (2.8).

This completes the description of the process (Steps 1–4, above) by which the
quantities u and X are updated.

3. Two-dimensional model of valveless pumping. In this section, we shall
introduce a two-dimensional computational model of valveless pumping. The initial
configuration of our model is presented first. Then we present the motions of target
positions to investigate fluid motions around the flow loop. In particular, we explain
how the time dependent target positions are used to provide the periodic forcing which
is applied on the one end of the immersed boundary. Finally, we display the physical
and computational parameters which are used in our numerical experiments.

3.1. Initial position. Consider an incompressible viscous fluid with a constant
density ρ and viscosity µ in a periodic rectangular box which contains an immersed
elastic boundary. Figure 1 shows the initial configuration of the immersed boundary
of two-dimensional valveless pumping in our numerical experiments. In this two-
dimensional model, the immersed boundary consists of two closed curves, each in the
form of a racetrack. The part of each curve shown with thick lines in Figure 1 is
almost rigid and the other part with thin lines is flexible. The fluid fills the entire
box. Fluid markers, however, are only shown inside the flow loop, since that is the
region of interest.
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Fig. 2. The target positions during one cycle: The motion of fluid inside the loop is driven by
the periodic vertical expansion and contraction of the target configuration of the tube. This motion
is confined to the left 1/3 of the flexible segment of tubing.

Throughout this paper, we assume that the motions are driven by periodic ver-
tical oscillations of the left 1/3 of the flexible tube boundary. Details of how these
oscillations are applied will be described next.

3.2. Target positions and parameters. Recall that the equation for the force
on the immersed boundary (2.6) involves target positions Zb(s, t). After discretiza-
tion, these become Znbl. For most of the flow loop, these are independent of time
and serve the purpose of maintaining the racetrack shape of the flow loop. Time
dependent target positions are used in the left 1/3 of the flexible segment of the flow
loop (as shown in Figure 2) in order to provide periodic forcing to the flow. Figure 2
displays the target positions at eight equally spaced times over one cycle.

Now we describe the mathematical formulations of the time dependent target
positions in the left 1/3 of the flexible segment of tubing.

Let Zb(s, t) = (Zxb(s), Zyb(s, t)), where s is restricted to the range of values that
defines the left 1/3 of the flexible segment of tubing. This may be a different range of
s values in the case b = 1 (inner boundary) than in the case b = 2 (outer boundary).
Note that the x component of the target position Zb(s, t) is independent of t, whereas
the y component varies with time in the manner that we prescribe.

Define

A(s, t) = A0 sin

(
2πt

T

)
sin

(
π
Zxb(s)− 0.25Xscale

1
30.5Xscale

)
,

where A0 is the amplitude of the target position motion, T is its period, and Xscale
is the length of the computational domain (i.e., its size in the x direction).
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Table 1
Physical parameters.

Physical parameters Symbol

Density ρ 1 g/cm3

Viscosity µ 0.01 g/cm ·s
Circumference of a loop D 28.57 cm
Diameter of tube d 0.6 cm
Computational domain Xscale × Yscale 16 cm × 8 cm
Period T 0.05 s ∼ 4 s
Amplitude(target) A0 0.4 cm and 0.6 cm
Duration of experiment tmax 150 s
Stiffness constant(almost rigid) κt 26000 g/s2· cm
Stiffness constant(flexible) κt 900 g/s2· cm
Stiffness constant(curvature) κc 120 g· cm/s2

Table 2
Computational parameters.

Computational parameters Symbol

Fluid lattice Nx ×Ny 256× 128
Number of immersed boundary points M1 +M2 3654
Meshwidth h = ∆x = ∆y 0.0625 cm
Initial distance between boundary points ∆s1 = ∆s2 h/4 = 0.0156 cm
Time step duration ∆t 0.5 h2 = 0.00195 s

The flexible segment begins at x = 0.25Xscale and ends at x = 0.75Xscale. Thus,
the whole flexible segment has length 0.5Xscale, and the part of it in which we allow
the target position to move has length 1

30.5Xscale.
With A(s, t) defined as above, let Zby(s, t) be defined as follows:

Zby(s, t) =

{
0.25Yscale + 0.5d+A(s, t) if b = 1 (inner boundary),

0.25Yscale − 0.5d−A(s, t) if b = 2 (outer boundary),

where d is the resting diameter of the tube, Yscale is the width of the computational
domain (i.e., its size in the y direction), and s is again restricted to the range of values
that defines the left 1/3 of the flexible segment of tubing.

The flows that we have investigated are all driven by these periodic motions of
the time dependent target positions in the left 1/3 of the flexible segment of tubing.

Note that the target tube, taken as a whole, has nonconstant volume. This is
reasonable, since the physical tube is only connected to the target tube by springs
and does not follow the target motion in detail; see Figures 10, 11, and 12. In fact,
the volume conservation of the physical tube is valid (see Figures 4 and 5) and does
not reflect the periodic volume changes imposed on the target tube.

In this work, we use CGS units, but to give a sense of the dimensionless character
of the flow, we sometimes report results in terms of a Reynolds number, which is
defined by Re = ρUd

µ = ρΦ
µ , where U is a time-averaged velocity, d is a diameter

of the tube, ρ is a constant density, µ is viscosity, and Φ is a time-averaged flux.
Note that this Reynolds number refers to the time-averaged velocity and flux, so any
nonzero value indicates that valveless pumping has occurred. The Reynolds number,
so defined, has varied in our computations between 0 and about 160.

Tables 1 and 2 display the physical and computational parameters, respectively.
As indicated in Table 1, the two physical parameters that we systematically vary
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Table 3
The ratios of the L2 difference of velocities.

L2 difference ratio

‖u64-u128‖2/‖u128-u256‖2 1.910726
‖u128-u256‖2/‖u256-u512‖2 1.995359

‖v64-v128‖2/‖v128-v256‖2 1.662576
‖v128-v256‖2/‖v256-v512‖2 1.869106

in this work are the period and amplitude of the prescribed motion of the target
positions. The resulting flows are definitely dependent on these two parameters. In
particular, they determine not only the amount of net flow that develops but even
the direction of the net flow around the loop.

4. Results and discussion. The two main results of this paper are as follows:
First, a net flow around the loop is produced by the periodic forcing on one end
of the flexible boundary, despite the absence of valves. Previous investigators have
observed this phenomenon in physical experiments [12], and a theoretical explanation
based on a lumped parameter (ODE) model has been proposed [18], but this is the
first time, to our knowledge, that valveless pumping has been demonstrated by a
computer simulation based on the Navier–Stokes equations. Second, we find that
the direction of flow around the loop is determined not only by the position of the
periodic compression (as in [12]) but also by the amplitude and frequency of the
driving force. This is a new, unexpected phenomenon, not previously reported, and
the most important prediction of our model.

Preliminary physical experiments performed in the Courant Institute WetLab con-
firm that the flow can be driven in either direction from the same location depending
on the details of the forcing. Experiments will be described in a future publication
with Jun Zhang.

In this section, we first justify our numerical method and then show that the
amplitude and the frequency are the crucial parameters to determine the direction
of a net flow around the loop. Some special cases of valveless pumping are then
discussed.

4.1. Checks on the numerical method. We report two checks on the validity
of the numerical method. One check on the computation is to show that our numerical
scheme has first order accuracy in time and space. Another check is to see whether
the volume of the closed flow loop is conserved.

Numerical convergence. To test accuracy of our numerical scheme, we perform
the same computation on the successive lattice refinements and compare the results
in the L2 norm. The physical parameters of this computation are as follows: period
= 1.55 s, amplitude of the target position = 0.6 cm, and number of cycles = 96.
The other physical parameters are the same as ones in Table 1. We consider the
three successive mesh sizes within a fixed size physical domain: Nx×Ny = 128×64,
256×128, and 512×256. The ratio of the time step duration to the meshwidth is kept
fixed throughout this study: ∆t/∆x = 0.0312 s/cm. As Nx and Ny vary, the number
of points on the immersed boundary changes in proportion to Nx or Ny, which, of
course, are changing in proportion to each other. Specifically, we choose an initial
distance between immersed boundary points which is equal to ∆x/4.

Table 3 shows the results of the numerical convergence. The ratio of the L2

norms on the difference of velocities, u = (u, v), at the successive lattice refinements
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Fig. 3. Average flow versus period (1/frequency): Flows with two different amplitudes of target
positions, A0 = 0.6 cm and A0 = 0.4 cm, are compared. The plus data points denote fluxes computed
on a horizontal cross section through the middle of the curved segment of tubing on the right side of
the racetrack, and the circle data points denote fluxes computed on a vertical cross section through the
middle of the straight segment of tubing at the top of the racetrack. In both cases, the time-averaged
flux is plotted as a function of the period of the imposed oscillation in target position that drives the
flow. Each pair of data points summarizes a separate numerical experiment, the duration of which
is 150 s. Positive flux denotes clockwise net flow around the loop of tubing; negative flux denotes
counterclockwise net flow. The existence of net flow in these numerical experiments is evidence of
valveless pumping. This figure shows that the frequency is a crucial factor to determine the direction
and magnitude of flow, and also shows the conservation of volume (area) by the comparison of time-
averaged fluxes at two locations.

are compared in Table 3. Since the asymptotic ratio is almost 2, our numerical method
has almost first order accuracy. Presumably, the numbers in the table are converging
to 2, but it would take computations on finer grids to show this.

Conservation of volume (area). The volume (area) should be conserved in time,
since the fluid is incompressible. The conservation of volume (area) is checked in
the following two ways: First, the time-averaged flux on two different cross sections
of flow loop are compared. Second, the area inside the flow loop is computed as a
function of time to see how much it varies. The time-averaged flux is defined by the
mean flux computed on a cross section through the middle of the curved (or straight)
segment of tubing on the racetrack over the simulated time.

Figure 3 displays the time-averaged flux, which is the main output of our numer-
ical experiments concerning valveless pumping, plotted as a function of the period
of the imposed oscillation in target position that drives the flow. To check volume
conservation, these fluxes have been computed on two different cross sections of the
tube: a vertical cross section in the middle of the straight segment that forms the
top of the tube and a horizontal cross section in the middle of the curved segment of
tubing on the right. Two different amplitudes of the target positions, A0 = 0.6 cm
and A0 = 0.4 cm, are chosen. The time-averaged fluxes at each of these two cross
sections practically coincide, over a wide range of periods. (Figure 3 contains four
plots but appears to contain only two because the agreement of flows measured at
different cross sections is so good.) Other physical and numerical parameters are as
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Fig. 4. Conservation of volume (area): The difference between the time-averaged area and the
initial area inside the loop versus the period of the driving oscillation. Each data point summarizes
a different numerical experiment of 150 s duration (simulated time). The area of the loop is 34.2796
cm2 initially. The maximum error occurs at a driving period of 0.2 s, and is equal to 0.4196 cm2,
which is 1.22% of the initial area.

shown in Tables 1 and 2.

Figure 4 shows the difference between the time-averaged area inside the flow loop
and the initial area inside the flow loop plotted as a function of the period of the
driving oscillation. Each data point summarizes a different numerical experiment of
150 s duration (simulated time). The parameters are also given in Tables 1 and 2
except the amplitude of the driving oscillation, which is 0.6 cm. The initial area of
the flow loop is 34.2796 cm2. The maximum difference between the time-averaged
area and the initial area occurs at period 0.2 s, and it is only 0.4196 cm2, which is
1.22% of the initial area inside the flow loop.

As a further check on the volume (area) conservation, we plot the area within
the flow loop as a function of time. This is done for only one case, the driving period
of 0.2 s, at which the maximum difference between the time-averaged area and the
initial area occurs. Even in this worst case, the area as a function of time is nearly
constant; see Figure 5, and note the expanded scale of the plot.

The volume errors we observed in this subsection are judged to be acceptable,
but it could be further reduced if desired by using the method of Peskin and Printz
[24].

4.2. The time-averaged flow around the loop as a function of the am-
plitude of the driving oscillation. In this section, we investigate the influence of
the amplitude of the driving oscillation (i.e., the amplitude of the prescribed target
position motion) on the magnitude and direction of the net flow around the loop
of simulated tubing. Four different periods of the driving oscillation are considered:
T = 0.3 s, 0.375 s, 0.525 s, and 1.7 s. Figure 6 displays the time-averaged flux as a
function of the amplitude of the driving oscillation at these four chosen periods. Other
parameters besides amplitude and period are given in Tables 1 and 2. Positive flow
values denote clockwise net flow, and negative values denote counterclockwise net flow.
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The results plotted in Figure 6 show the following features:

• At low amplitude of the driving oscillation, net flow is always in the coun-
terclockwise direction. Its magnitude at any given amplitude depends on the
period of the driving oscillation. Of the four examples given in the figure, the
periods T = 0.375 s and T = 1.7 s result in only weak counterclockwise flow,
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whereas T = 0.3 s and T = 0.525 s result in much stronger counterclockwise
flow.
• As the amplitude increases a qualitative distinction between the different
cases appears. For T = 0.525 s and T = 1.7 s, the counterclockwise flow
simply gets stronger monotonically as the amplitude of the driving oscillation
increases. But for T = 0.3 s and for T = 0.375 s, the flow changes direction
at some critical amplitude and becomes clockwise at high amplitude. Note
that one cannot predict from the strength of the counterclockwise flow at low
amplitude which of the cases will have clockwise flow at high amplitude: Of
the two cases that have clockwise flow at high amplitude, one had a strong
counterclockwise flow and the other had a weak counterclockwise flow at low
amplitude.

Overall, there seems to be a preference for counterclockwise flow in these results.
All periods generate counterclockwise flow at low amplitude, and only some periods
generate flows that reverse and become clockwise at high amplitude. We can speculate
on the reason for this, as follows. Recall that the driving oscillation is imposed at the
left end of the flexible segment of tubing, which forms the lower straight segment of
the racetrack; see Figure 2. If waves propagate from this source to the right along the
flexible segment, these would tend to generate counterclockwise flow by a peristaltic
mechanism. This argument leaves open the question of why the flows reverse and
become clockwise, for some periods of the driving oscillation, when the amplitude of
the driving oscillation becomes sufficiently large.

4.3. The time-averaged flow around a loop as a function of frequency.
In this subsection, we present a new, unexpected phenomenon which is the most
important prediction of our model: the driving frequency (1/period) is a crucial pa-
rameter to determine the magnitude and even the direction of a net flow generated
by valveless pumping.

The time-averaged flow around a loop as a function of the period of the driving
oscillation is investigated for two different amplitudes of the driving oscillation, A0 =
0.4 cm and A0 = 0.6 cm. In Figure 3, we plot the time-averaged flux versus period
for these two cases. Each data point is the result of a separate numerical experiment,
and the parameters are the same as in Tables 1 and 2. As before, positive flow is
clockwise, and negative flow is counterclockwise.

The result that is obvious from a glance at Figure 3 is that valveless pumping has
a strong dependence on the frequency of the driving oscillation. Indeed, there appear
to be resonances at rather specific frequencies, which are most effective in driving the
flow in one direction or the other. At the lower amplitude, the net flow is almost
always counterclockwise, so these peaks are in the negative direction. As we shift to
the higher amplitude, the negative peaks seem to be preserved, but now positive peaks
emerge as well. Another indication of the dynamic character of valveless pumping is
that it seems to disappear at the extremes of frequency. In the high-frequency (low-
period) limit, it is clear from Figure 3 that the net flow approaches zero. This also
seems to be true in the low-frequency (high-period) limit, although for the higher
amplitude data one cannot be sure whether the net flux is approaching zero or some
negative value. In any case, strong valveless pumping happens at specific frequencies
that are neither too large nor too small.

Since the driving frequency is an important parameter of valveless pumping, it
may be of interest to interpret our results in terms of the Womersley number Wo =
d
√
ω/ν, where d is the tube diameter (0.6 cm), ν is the kinematic viscosity (ν = µ/ρ =
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0.01 cm2/s), and ω is the driving frequency in radians/s (ω = 2π/T ). For example,
the maximum average clockwise flow occurs at a period of T = 0.325 s, which is a
Womersley number of Wo = 26, and the maximum average counterclockwise flow
occurs at a period of T = 0.21 s, corresponding to a Womersley number of Wo =
33. In both cases, the Womersley number is substantially larger than 1, which means
that the velocity profile is far from parabolic.

5. Case studies. In this section, several special cases of valveless pumping are
studied. Recall Figure 3 in the previous section. We chose the special cases based on
the results from that figure. The amplitude of the driving oscillation, A0 = 0.6 cm,
is chosen, since a qualitative distinction between the different cases appears as the
amplitude increases, and A0 = 0.6 cm is large enough to show that distinction. The
following three cases are considered:

• Maximum average clockwise flow (T = 0.325 s).
• Almost zero flow (T = 1.34 s).
• Maximum average counterclockwise flow (T = 0.21 s).

As before, the fluid motions are driven by the oscillations in target positions which
are imposed along the 1/3 left end of the flexible segment of tubing, which forms the
lower straight segment of the racetrack. The parameters are as given in Table 1 and
2.

These three cases have been investigated and compared qualitatively in the fol-
lowing ways.

• The angles from the center of the computational domain, (x, y) = (8 cm, 4
cm), to the current positions of the fluid markers inside the flow loop are
measured in order to determine the direction of the flow.
• Flowmeter fluxes computed on the vertical cross section through the middle
of the straight segment of tubing at the top of the racetrack as functions of
time are measured to test whether the fluid motion is in a periodic steady-
state through the final duration, tmax = 150 s, and to show the nature of the
oscillation and the net progress of the fluid motions.
• The wave motions along the top of the flexible boundaries over one cycle of
the periodic steady-state are investigated in order to determine whether the
motion looks like a traveling wave or a standing wave (or some other more
complicated kind of wave motion).
• The target positions and the real physical positions of the immersed boundary,
in particular the flexible segment, are compared in order to see how the time
dependent target positions affect the motions of the real physical boundary.
• The velocity vector fields and pressure contours of the maximum clockwise
and the maximum counterclockwise cases at 4 different phases over one period
after the periodic steady-state are presented.
• Changing the direction of the flow by changing the period during a computer
experiment.
• Zero net flux for the symmetric driving force.

5.1. Three cases. Angle. Here we examine the net progress of the flow by
following the angular position of selected fluid markers. The angles are measured
from the center of the computational domain, (x, y) = (8 cm, 4 cm), to the positions
of the fluid markers as functions of time. The angle is increased as the position of
the fluid marker is changed in the clockwise direction. We choose arbitrarily 6 fluid
markers around the flow loop for each case. These 6 fluid markers are located at the
same position initially in all three cases.
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Fig. 7. The angles of fluid markers are plotted as functions of time. The leftmost and rightmost
figures show the case of maximum average flow in the clockwise direction (positive slope) and the
case of maximum average flow in the counterclockwise direction (negative slope), respectively. The
middle figure shows the case of almost zero flow (almost zero slope).

Figure 7 displays the change of the positions of 6 fluid markers by measuring
the angle as a function of time for the three cases. The angles are plotted at every
10 time steps up to tmax = 25 s. Since there are some vortices inside the flexible
segment, some fluid markers get trapped and take time to escape the segment. Once
fluid markers do escape, however, they move much faster along the rigid part of the
racetrack. Examples are the sixth fluid marker in the leftmost frame, the second one
in the middle frame, and the third one at the rightmost frame. Some other fluid
markers stick to the immersed boundary. Ignoring these details and looking at the
general trend, we can see that there is net clockwise motion of the markers in the
leftmost frame, no net motion in the middle frame, and net counterclockwise motion
in the rightmost frame of Figure 7.

Flowmeter. Figure 8 displays flowmeter results, which are the fluxes computed
on the vertical cross section through the middle of the straight segment of tubing at
the top of the racetrack. These results are plotted as functions of time over the last 5
cycles in each case. The positive values denote clockwise flow and the negative denote
counterclockwise flow. In all three cases the flow is oscillatory, and the oscillation has
settled down to a periodic steady state. The flow changes direction with a positive
phase and a negative phase during each cycle. In two of the three cases (top and
bottom in Figure 8) there is a nonzero mean flow superimposed upon the oscillatory
motion. This nonzero mean flow is the phenomenon of valveless pumping.

The motions of wave along the flexible segment. We observe another
interesting phenomenon of valveless pumping by investigating the wave motions along
the flexible boundary. Figure 9 displays the motions of wave along the top of the
flexible segment. Sixteen equal-time snapshots of the wave motions along the top of
flexible segment over one cycle of the periodic steady-state are plotted for the three
cases. In the top frame, there is a standing wave pattern with two nodes (at about
6.3 cm and 9.8 cm). For reasons that we do not understand, this standing wave



34 EUNOK JUNG AND CHARLES S. PESKIN

148.4 148.6 148.8 149 149.2 149.4 149.6 149.8 150

−1

0

1

2

Flowmeter over the last 5 cycles

T=0.325 s

144 145 146 147 148 149 150

−1

0

1
T=1.34 s

149 149.1 149.2 149.3 149.4 149.5 149.6 149.7 149.8 149.9 150

−4

−2

0

2

Time(s)

T=0.21 s

Fig. 8. Flowmeter. The fluxes are computed on the vertical cross section through the middle of
the straight segment of tubing at the top of the racetrack. They are plotted as functions of time are
plotted over the last five cycles in each case (note the different time scales). The case of maximum
average flow in the clockwise direction, almost zero flow, and maximum flow in the counterclockwise
direction are considered from top and bottom. Note that the mean flow is positive (clockwise) in the
top frame and negative (counterclockwise) in the bottom frame.

4 5 6 7 8 9 10 11 12

2.5

3

4 5 6 7 8 9 10 11 12

2.5

3
Wave motions on the top of the flexible segment over one cycle

4 5 6 7 8 9 10 11 12

2.5

3

Fig. 9. Sixteen equal-time snapshots over one cycle of the periodic steady-state wave motions
along the top of the flexible segment are plotted. The top frame shows the case of maximum average
flow in the clockwise direction. The middle frame shows the case of almost zero net flow. The bottom
frame shows the case of maximum average flow in the counterclockwise direction. In all these cases,
the source of vibration is confined to the left 1/3 of the flexible segment, i.e., to the interval from
4 cm to 6.7 cm.

pattern is associated with maximum clockwise flow. In the middle frame, there again
seems to be a standing wave pattern with just one node (at about 6.7 cm). Note,
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Fig. 10. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of maximum average clockwise flow.

however, that the location of this node coincides with the edge of the driven part
of the flexible boundary, i.e., the part where an oscillation of the target positions is
imposed. Thus, it seems that the driven part of the flexible boundary is oscillating in
one phase, and that the rest of the flexible boundary is oscillating in antiphase with
flexible part. This wave pattern seems to be associated with the absence of valveless
pumping, i.e., with zero net flow. In the bottom frame we see traveling waves (note the
absence of nodes) propagating to the right, away from the driven part of the flexible
boundary. Such traveling waves might be expected to pump fluid in the direction
of propagation by a peristaltic mechanism, and indeed what we see in this case is
maximum counterclockwise flow.
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Fig. 11. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of almost zero flow.

Comparison of the motions of the target positions and the real physical
boundary. Here we compare the motions of the target positions and the physical
boundary for the three cases. This is done in Figure 10 for the case of maximum
average clockwise flow, in Figure 11 for the case of almost zero net flow, and in Figure
12 for the case of maximum average counterclockwise flow. The target positions
(dark) are the same in all three figures, since the target motion is specified in advance
and differs in three cases only with respect to time scale. Note also that the target
positions are time dependent only in the left 1/3 of the flexible segment, which form
the bottom of the racetrack.

Only in the case of zero net flow (Figure 11) does the physical boundary motion
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Fig. 12. Comparison of the motions of the target positions (dark) and the physical boundary
(light) for the case of maximum average counterclockwise flow.

track the target position motion. This is probably because the frequency is too low for
inertia to introduce any phase lags. In the other two cases, there are substantial phase
differences (presumably consequences of fluid inertia) between the target position and
the physical boundary position.

The velocity vector fields and pressure contours. Figures 13 and 14 display
the velocity vector fields of the maximum clockwise flow (period = 0.325 s). Four
equal-time snapshots over one cycle of the periodic steady-state are plotted. Figures 15
and 16 display the velocity vector fields of the maximum counterclockwise flow (period
= 0.21 s). Four equal-time snapshots over one cycle of the periodic steady-state are
also plotted.
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Fig. 13. Velocity vector fields of the maximum clockwise flow. Four equal-time snapshots over
one cycle of the periodic steady-state are plotted here and in Figure 14.
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Fig. 15. Velocity vector fields of the maximum counterclockwise flow. Four equal-time snapshots
over one cycle of the periodic steady-state are plotted here and in Figure 16.
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Fig. 17. Pressure contours of the maximum clockwise flow. Four equal-time snapshots over
one cycle after the periodic steady-state, plotted here and in Figure 18. The units of pressure are
dynes/cm2.

Figures 17 and 18 display the pressure contours of the maximum clockwise flow.
Four equal-time snapshots over one cycle of the periodic steady-state are plotted.
Figures 19 and 20 display the pressure contours of the maximum counterclockwise
flow. Four equal-time snapshots over one cycle of the periodic steady-state are also
plotted.

Note that it is true that the positions of the immersed boundary are influenced not
only by the fluid inside of the loop but also by the fluid outside of the loop. However,
motions of the fluid inside the loop seem to be dominant, since that is where the
larger velocities and pressure gradients are typically seen in Figures 13–20.

5.2. Further case studies. Flow which is changing the direction by
changing the period during a computer experiment (periods, T = 0.325 s
and T = 0.21 s). In this section, we present two more interesting cases. In Figure
21, we show that the result does not depend on initial conditions. One might worry
that once the flow starts going one way it will keep going that way, but this case shows
this is not true. In order to show that the crucial parameter to decide the direction
of a net flow is frequency, we have examined the situation in which the period of the
driving oscillation is 0.325 s for the first half of the simulated experiment, and then
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Fig. 18. Continuation of Figure 17.

changes to 0.21 s for the balance of the simulated experiment. Note that these are
the periods which generated maximum net flow in the clockwise and counterclockwise
direction, respectively. All other parameters except the period are fixed during the
simulation.

Figure 21 displays the changing of the positions of two arbitrary fluid markers
inside the flow loop by measuring the angles from the center, (x, y) = (8 cm, 4 cm),
to the current positions of the markers. We plot angles as functions of time at every
10 time steps up to t = 20 s for each fluid marker. The curves in Figure 21 are chang-
ing from increasing (clockwise direction) to decreasing (counterclockwise direction)
around 10 s.

Zero net flux for the symmetric driving force. Is there still a net flow if the
system of valveless pumping would be symmetric? We consider the following special
case to show that there is almost zero net flow when the periodic driving forcing is
imposed on the center of the flexible segments. All other parameters are chosen for the
case of the maximum counterclockwise flow, T = 0.21 s. This experiment is run until
the periodic steady-state t = 150 s. The time-averaged flux for this case is −0.023625
cm2/s. This shows that there is almost zero net flow when the system is symmetric.

From this case and the previous one, we see that valveless pumping does not
represent an instability of a symmetric situation. On the contrary, the direction of
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Fig. 19. Pressure contours of the maximum counterclockwise flow. Four equal-time snapshots
over one cycle after the periodic steady-state, plotted here and in Figure 20. The units of pressure
are dynes/cm2.

the mean flow is determined by the asymmetry of the problem but in a frequency and
amplitude dependent manner.

6. Conclusions. We have presented numerical experiments concerning “valve-
less pumping” in the two-dimensional case using the immersed boundary method.
As in the earlier papers and physical experiments of valveless pumping, we have also
observed the existence of a net flow. Furthermore, we have presented the new, un-
expected result that the direction of the flow around the loop of tubing is decided
not only by the position of the driving oscillations but also by the frequency and the
amplitude of the driving oscillations. Since CPR may involve valveless pumping, it
is of obvious importance to know what frequency and amplitude of chest compres-
sion will produce the most effective CPR. Of course we cannot hope to answer this
question quantitatively with such an idealized model, but perhaps we have shown
qualitatively what phenomena may be expected as the frequency and amplitude of
the driving oscillation are varied. We have put special emphasis on the conditions
that generate maximum net flow, since that is the goal of CPR.

In studying these cases, we have found an interesting phenomenon: the clockwise
net flow seems to be associated with a standing wave in the flexible segment of tubing,
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Fig. 20. Continuation of Figure 19.

whereas the counterclockwise net flow seems to be associated with a traveling wave.
In the clockwise case (standing wave) the flow in the flexible segment of tubing is going
toward the site at which the periodic forcing is applied, but in the counterclockwise
case (traveling wave) it is going away from that site and in the same direction as
the traveling wave. Therefore, we believe that the counterclockwise flow is driven by
the traveling wave via a peristaltic mechanism, but we have no explanation for the
clockwise flow in the standing-wave case.

The immersed boundary methodology used here may also be applicable to other
biological instances of valveless pumping, such as the blood circulation within the hu-
man embryo at the end of the third week of gestation, and to engineering applications
such as the design of MEMS.

We are confident that numerical experiments such as those begun in this paper
will help answer many questions about the mechanism of valveless pumping. Even
though the results demonstrate success in modeling valveless pumping, there is still
much future work that remains to be done, such as giving a theoretical explanation
for this mysterious phenomenon, and extending this model to the three-dimensional
case in order to make it more realistic and more applicable to real-world biomedical
problems, like CPR.

A physical experiment of valveless pumping is being constructed at the Courant
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Fig. 21. Flow which is changing the direction by changing the period during a computer exper-
iment: The angles of the positions of two fluid markers are changed from increasing (clockwise) to
decreasing (counterclockwise) in time by changing the period from 0.325 s to 0.21 s at time = 10 s.
This result shows that the result does not depend on the initial condition.

Institute WetLab. An important part of the future work will be the comparison of
computed and experimental results.

Acknowledgments. The authors are especially grateful to David M. McQueen
for many helpful discussions and to Jun Zhang for making the physical experiment
of valveless pumping. Thanks also to Simcha Milo for pointing out the problem, to
Philip Kilner for the experiments that inspired this research project and for help-
ful discussions, and to Mory Gharib for further experimental insight into valveless
pumping.

REFERENCES

[1] C. Beattie, A. D. Guerci, T. Hall, A. M. Borkon, W. Baumgartner, R. S. Stuart, J.
Peters, H. Halperin, and J. L. Robotham, Mechanisms of blood flow during pneumatic
vest cardiopulmonary resuscitation, J. Appl. Physiol., 70 (1991), pp. 454–465.

[2] R. P. Beyer, A computational model of the cochlea using the immersed boundary method, J.
Comput. Phys., 98 (1992), pp. 145–162.

[3] J. M. Criley, J. T. Niemann, J. P. Rosborough, S. Ung, and J. Suzuki, The heart is a
conduit in CPR, Crit. Care Med., 9 (1981), p. 373.

[4] M. P. Feneley, G. M. Maier, J. W. Gaynor, S. G. Gall, J. K. Kisslo, J. W. Davis, and
J. S. Rankin, Sequence of mitral valve motion and transmitral blood flow during manual
cardiopulmonary resuscitation in dogs, Circulation, 76 (1987), pp. 363–375.



VALVELESS PUMPING 45

[5] L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, J. Comput.
Phys., 77 (1988), pp. 85–108.

[6] L. J. Fauci, Peristaltic pumping of solid particles, Comput. & Fluids, 21 (1992), pp. 583–598.
[7] A. L. Fogelson, A mathematical model and numerical method for studying platelet adhesion

and aggregation during blood clotting, J. Comput. Phys., 56 (1984), pp. 111–134.
[8] A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the three-dimensional

Stoke’s equations in the presence of suspended particles, J. Comput. Phys., 79 (1988), pp.
50–69.

[9] S. Greenberg, D. M. McQueen, and C. S. Peskin, Three-dimensional fluid dynamics in
a two-dimensional amount of central memory, in Wave Motion: Theory, Modelling, and
Computation, Math. Sci. Res. Inst. Publ. 7, Springer-Verlag, New York, 1987, pp. 85–146.

[10] H. R. Halperin, J. E. Tsitlik, R. Beyar, N. Chandra, and A. D. Guerci, Intrathoracic
pressure fluctuations move blood during CPR: Comparison of hemodynamic data with
predictions from a mathematical model, Ann. Biomed. Engrg., 15 (1987), pp. 385–403.

[11] E. Jung, 2-D Simulations of Valveless Pumping Using the Immersed Boundary Method, Ph.D.
thesis, Courant Institute of Mathematical Sciences, New York University, New York, 1999.

[12] P. J. Kilner, Formed flow, fluid oscillation and the heart as a morphodynamic pump (ab-
stract), European Surgical Research, 19 (1987), pp. 89–90.

[13] G. Liebau, Die Bedeutung der Tragheitskrafte für die Dynamik des Blutkreislaufs, Zs Kreis-
laufforschung, 46 (1957), pp. 428–438.

[14] G. Liebau, Die Stromungsprinzipien des Herzens, Zs Kreislaufforschung, 44 (1955), pp. 677–
684.
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Abstract. In this article we use a pseudospectral Fourier discretization in conjunction with a
multilevel splitting of high and low modes to solve dissipative partial differential equations. We de-
velop unconditionally stable explicit techniques for the temporal integration of the linear terms and
apply them to the high modes equation, improving the overall temporal stability of the multilevel
method and resulting in a competitive fully explicit numerical scheme for nonlinear problems. In
the cases where the linear term determines the time step restriction, numerical experiments with
the Burgers equation in one and two dimensions showed substantial CPU cost reduction when com-
paring the resulting method with the standard spectral collocation associated with regular temporal
integration schemes.
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1. Introduction. For partial differential equations modeling dissipative prob-
lems, the large scale and the small scale components of the unknown play different
roles in the dynamics of their solutions. When solving such problems with a multi-
level scheme of the nonlinear Galerkin type (NLG) or with a more general collocation
splitting, the unknown u is decomposed in the physical space into its low modes com-
ponent y and high modes component z, and the governing equation is split into two
equations, one containing only the low modes and the other containing only the high
modes. This separation of modes allows the use of distinct time integration techniques
for each equation.

Certain problems require a minimum number of modes to be contained in the
numerical approximation of their solutions. However, increasing the number of modes
in dissipative problems decreases the size of the time step when using explicit temporal
integration. In this article, we show that by using the splitting of modes we are able
to relax the stability constraint of the high modes equation, allowing the use of time
steps larger than the ones permitted by the standard time integration of the original
variable u.

In the original NLG method, the high frequency component z of the solution was
computed as a function of the low frequency component y through the utilization of
an approximate inertial manifold (see [21]). This has proven to yield very unstable
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schemes (see [19]). In the schemes that were subsequently considered (see [9]) the
temporal variation term zt was maintained, leading to much more stable discretiza-
tions than the original NLG with the same computational cost. Nevertheless, the
essential idea of computing the low and high modes differently was retained, since
their physical significances are different.

The collocation version of NLG was introduced in [6] and [7] for the Fourier
and Chebyshev bases, respectively. There, the original approach of earlier papers in
NLG (see [8] and [20]) was maintained. This approach, which consists in disregarding
the nonlinear interactions of high and low modes and, sometimes, even the temporal
evolution of the high modes, although leading to better accuracy with respect to
the standard collocation method (SCM), would do so at a higher computational cost
(see [13] and [14]). In [2] it was shown that by keeping all terms in both equations,
the resulting splitting scheme would generate the same numerical solution as the SCM
with equivalent computational effort. In this article we propose temporal evolution
methods which integrate the low and high modes equations of the splitting scheme of
[2] in different ways.

The general idea stems from the fact that high modes carry very little energy
and, when computing steady state solutions, they evolve much faster than the low
modes to an equilibrium state. This fast convergence at the transient stage of the
temporal evolution requires small time intervals in the numerical integration process
in order to capture the fast changes of the high modes. Therefore, artificially slowing
this convergence to the same pace as the low modes enables the use of time intervals
as large as the ones determined by the low modes only. Note that although we aim
to approximate time dependent solutions, we believe that a proper approximation of
the stationary solution is a necessary requirement for such a numerical scheme.

From the numerical point of view, the speed of convergence of the high modes is
determined by the size of the corresponding eigenvalues of the dissipative operator. As
hinted in [6], the size of these eigenvalues can be decreased by shifting the upper part
of the spectrum through an exponential transformation in the z variable, hereafter
referred to as the eigenvalues shifting technique. This involves the computation of a
parameter, which determines the intensity of the shifting and can be chosen in a way
of turning the high modes equation unconditionally stable. However, this technique
has the drawback of altering the steady state solution of the high modes. A similar
alternative way of shifting the spectrum that fixes this problem is proposed, and we
call it the implicit correction technique. This technique, which is similar to previous
ones developed in the study of stiff ODEs (see [10], [11], [17], [18], [22], and [24]), is
applied through a modification of the temporal scheme, in our case, a Runge–Kutta
scheme, allowing the use of a much larger time step. This method is consistent at
steady state with the original method and has time accuracy at the transient stage.

A necessary observation is that we propose in this work a multilevel method for
nonlinear problems, but since the stability analysis for these is mathematically too
involved to be presented in this article, we will only apply the above techniques to the
linear terms of the corresponding equations, relaxing only the time step restriction
imposed by the dissipative linear operator. Nevertheless, the numerical results show
computational advantages even in the cases of a weak dissipation.

This article is organized as follows. In section 2 we present the Runge–Kutta
method modified by the eigenvalues shifting and analyze its stability and generation
of steady state solutions. Section 3 presents the implicit correction technique and its
application to some temporal integration schemes. Stability and error analysis for the
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modified schemes are also presented. Numerical experiments are shown in section 4.

2. The eigenvalues shifting technique. We start by considering the Burgers
equation in one dimension, with periodic boundary conditions as below:

{
ut − νuxx + 1

2 (u
2)x = f, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t), t > 0.
(1)

The multilevel splitting procedure applied to this equation yields the following
system for the low and high modes components y and z:

{
yt − νyxx + 1

2JN ((y + z)2)x = JNf,
zt − νzxx + 1

2GM ((y + z)2)x = GMf,
(2)

where JN and GM are the projectors onto the low and high modes spaces, respectively
(see [2] and [6]).

In the next two sections, we will introduce three modified time integration schemes
to be applied in conjunction with the above decomposition. If the numerical solution
contains M = 2N modes, the y component corresponds to the first N modes and the
z component to the last N modes. The stability condition imposed by the linear term
of the low modes equation yields a time step proportional to 1

N2 , while the time step
for the high modes should be proportional to 1

M2 � 1
N2 . The idea of the methods

presented below is to modify the time integration of the high modes equation in a
way that reduces its stability constraint to that of the low modes equation allowing
the choice of a much larger ∆t. Thus, for the sake of simplicity, and since we are only
interested in changing the time step restriction coming from the linear terms, we will
consider for the numerical analysis that follows the linear equation

ut = uxx + f(3)

with periodic boundary conditions and its corresponding multilevel splitting

{
yt = νyxx + JNf,
zt = νzxx +GMf.

(4)

Nevertheless, the analysis that follows remains valid for nonlinear problems where
the linear stability restriction is dominant. In these cases, the methods proposed in
this section lead to fully explicit schemes with time steps much larger than the ones
allowed by the standard explicit integration methods, as we shall see in the numerical
experiments of section 4.

Consider a high modes function z in the form

z(x) = eiNx
N∑
k=1

ẑMk e
ikx(5)

and the homogeneous linear equation

zt = zxx.(6)

Multiplying (6) by eβN
2t, β > 0, and defining the new variable w = eβN

2tz, we have

wt = wxx + βN2w.(7)
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Substituting ŵk = eβN
2tẑk into (7), we obtain the following system of equations in

the phase space:

d

dt
ŵk = λβk ŵk, k = 1, . . . , N,(8)

where

λβk = −((N + k)2 − βN2), k = 1, . . . , N.(9)

To improve stability we need to choose a β that decreases the absolute values of the
eigenvalues (9). As shown in [6], β = 5

2 minimizes maxk |λβk |, yielding

max
k
|λ5/2
k | =

3

2
N2, k = 1, . . . , N,

allowing the use of a time step proportional to 2
3N2 . Hereafter, we denote this trans-

formation of variables as the eigenvalues shifting (ES) technique.
A straightforward application of this idea to a temporal integration method con-

sists in integrating the variable ŵk for one iteration and recovering ẑk at the end by
setting

ẑk = e−βN
2∆tŵk.(10)

The choice of the parameter β will depend on the specific temporal discretization.
In what follows, we apply the modification above to the fourth order Runge–Kutta
(RK4) scheme and give an estimate for the parameter β.

Let us consider (6) in the phase space:

d

dt
ẑk = λ0

kẑk.(11)

The standard RK4 scheme is given by

Lẑnk = λ0
kẑ
n
k , K1 = Lẑnk ,

ẑ
n+1/4
k =

(
ẑnk +

∆t

2
K1

)
, K2 = Lẑ

n+1/4
k ,

ẑ
n+2/4
k =

(
ẑnk +

∆t

2
K2

)
, K3 = Lẑ

n+2/4
k ,

ẑ
n+3/4
k = (ẑnk +∆tK3) , K4 = Lẑ

n+3/4
k ,

ẑn+1
k =

[
ẑnk +

∆t

6
(K1 + 2(K2 +K3) +K4)

]
(12)

and may be written in the form

ẑn+1
k = G(λ0

k∆t)ẑ
n
k ,(13)

where the amplification factor G(λ0
k∆t) is given by

G(λ0
k∆t) = 1 + λ0

k∆t+
(λ0
k∆t)

2

2
+
(λ0
k∆t)

3

6
+
(λ0
k∆t)

4

24
.(14)

If we apply the eigenvalues shifting to RK4 (ES–RK), we obtain

z̃n+1
k = G̃(λβk∆t)z̃

n
k ,(15)
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where the amplification factor G̃(λβk∆t) is given by

G̃(λβk∆t) =

[
1 + λβk∆t+

(λβk∆t)
2

2
+
(λβk∆t)

3

6
+
(λβk∆t)

4

24

]
e−βN

2∆t.(16)

2.1. Stability analysis of ES–RK. In order to incorporate both methods in
a common framework, we define the following family of functions:

{
P (x) = 1 + x+ x2

2 +
x3

6 +
x4

24 ,
Pγ(x) = P (x)eγx.

(17)

Let us define the parameter

γβk =
−βN2

λβk
.(18)

Note that γ0
k = 0 and that γ

β
k increases when β increases.

Setting xβk = λβk∆t, we can write the amplification factor of both methods as

G(λ0
k∆t) = P0(x

0
k) = Pγ0

k
(x0
k), G̃(λβk∆t) = Pγβ

k
(xβk).(19)

Figure 1 depicts the graphs of Pγ(x) for increasing values of γ. The stability condition
is determined by the first negative value of x such that Pγ(x) = 1. Note that increasing

the value of β and therefore of γ increases the maximum absolute value of xβk that
yields stability and therefore increases ∆t. In the following we show that there is a
value of β that makes the scheme unconditionally stable.

Lemma 2.1. Let the function Pγ(x) be defined as in (17). There exist two real
numbers γb > 0 and γa < 0 such that if γ > γb, then Pγ(x) < 1 for x < 0, and if
γ < γa, then Pγ(x) < 1 for x > 0.

Proof. The proof follows from the fact that P (x) ≤ e|x|. Therefore,

Pγ(x) = P (x)eγx ≤ eγxe|x|,
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yielding

γ ≥ 1 = γb, x ≤ 0, γ ≤ −1 = γa, x ≥ 0.
In light of the previous results, if we can find a value of β for which γβk /∈ (γa, γb)

for all k, the method (15) becomes unconditionally stable.

Theorem 2.2. For β = 3
2 , γ

β
k /∈ (γa, γb) for all k = 1, . . . , N , and therefore the

modified method is unconditionally stable for the high modes equation.
Proof. Let us rewrite γβk as

γβk =
βN2

(1− β)N2 + 2kN + k2
.(20)

For a fixed positive β there exists 1 ≤ k0 ≤ N such that

k < k0 ⇒ γβk < 0,

k > k0 ⇒ γβk > 0.

Moreover, γβk is increasing and decreasing in modulus for k < k0 and k > k0, re-

spectively. Therefore, we just need to check that γβ1 and γ
β
N are not in (γa, γb). The

value β = 3
2 is the one corresponding to γ

β
N = γb, and for this value of β, γ

β
1 ≈ −2 <

γa.
Remark 2.1. The proposed modification shifts the upper part of the spectrum

and causes the stability condition to be determined by the low modes. However, when
considering the high mode solution ẑnk after n iterations

ẑnk =

[(
1 + λβk∆t+

(λβk∆t)
2

2
+
(λβk∆t)

3

6
+
(λβk∆t)

4

24

)
e−βN

2∆t

]n
ẑ0
k,(21)

one can easily see that the mode ẑnk converges exponentially to 0. The scheme will
therefore be inconsistent whenever the high modes of the exact solution do not go to
0 exponentially. This suggests that the exponential correction to retrieve the original
variable z at the end of each iteration may be too strong. In the following section we
propose a different correction that will eliminate this inconvenience.

Further evidence of the inconsistency of this scheme is the fact that the steady
state solution generated by ES–RK does not converge to the steady state solution of
the original problem (3)

ẑstk = −
f̂k
λ0
k

.(22)

For the sake of simplicity, consider the eigenvalues shifting for the forward Euler
method:

z̃n+1
k = ((1 + λ0

k∆t+ βN2∆t)z̃nk +∆tf̂k)e
−βN2∆t.(23)

The steady state solution for this method is

z̃stk =
∆tf̂k

eβN2∆t − (1 + βN2∆t)− λ0
k∆t

.(24)

Note that, due to the desired stability condition, βN2∆t = O(1); therefore, (24) is
not a good approximation to (22).
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3. The implicit correction technique. As pointed out in the previous section,
the exponential correction to the Runge–Kutta scheme for the modified (8) is too
strong and yields a different steady state solution from the original problem. This
is due to the fact that applying an RK4 corresponds to applying a fourth order
polynomial approximation of the exponential which we then counterbalance using a
negative exponential at the end of each iteration.

The idea is to use a milder polynomial correction instead of an exponential one.
In this section we illustrate the details of this idea first on the forward Euler scheme
and later we extend it to higher order Runge–Kutta schemes.

3.1. Nonconsistent implicit correction. Let us consider the first iteration of
the standard forward Euler scheme for the modified (8):

ŵ1
k = (1 + λk∆t+ βN2∆t)z̃0

k.(25)

Note that the forward Euler scheme for the original equation can be retrieved by
setting

ẑ1 = ŵ1
k − βN2∆tz̃0

k.(26)

Instead, we propose the implicit correction

z̃1
k = ŵ1

k − βN2∆tz̃1
k,(27)

which leads to the modified forward Euler scheme for the nonhomogeneous equation:

z̃n+1
k =

1 + λk∆t+ βN2∆t

1 + βN2∆t
z̃nk +

∆t

1 + βN2∆t
f̂k.(28)

Remark 3.1. The scheme above, although obtained from the ES idea presented
in the last section, can be classified in the more general class of rational Runge–Kutta
schemes, which have been previously considered by ODE analysts in the study of stiff
systems (see [17], [18], and [24]). Nevertheless, here we conjugate scheme (28) with
the multilevel splitting method by applying it only to the high modes equation.

The implicit correction technique differs from the ES in the substitution of the
exponential term e−βN

2∆t for the polynomial correction (1 + βN2∆t)−1, which can

be seen as a formal truncation in the Taylor series approximation to e−βN
2∆t. It is

easy to check that the steady state solution of the modified Euler scheme coincides
with the steady state solution of the original nonhomogeneous problem.

The following theorem shows that for certain values of the parameter β this
polynomial correction is enough to improve the stability of the method or even make
it unconditionally stable.

Theorem 3.1. The modified forward Euler scheme (28) applied to the high modes
equation in (4) with β = 3/2 is stable for

∆t ≤ 2

N2
,(29)

which is the same stability condition of the original forward Euler scheme applied to
the low modes. Moreover, if β = 2, the scheme is unconditionally stable.

Proof. The scheme (28) is stable if

|1 + λk∆t+ βN2∆t|
|1 + βN2∆t| ≤ 1.
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Knowing that λk = −k2 and β ≥ 0, we obtain the condition

∆t ≤ 2

k2 − 2βN2
.

Considering the largest eigenvalue λ2N , we have

∆t ≤ 2

4N2 − 2βN2
=

2

(4− 2β)N2
.

Therefore, the choice of β = 3/2 yields (29), and if β = 2, the denominator vanishes,
yielding unconditional stability.

Remark 3.2. When choosing ∆t = 1
N2 , as required by the stability condition for

the low modes equation, it can be shown that the homogeneous version of the scheme
is a discretization of the modified equation

d

dt
z̃k =

λk
1 + β

z̃k,(30)

which, in the physical space, corresponds to solving

(1 + β)zt = zxx.(31)

It is necessary to point out that adding the term βzt in (31) is the correct way of
decreasing the viscosity without changing the steady state solution of (6). However,
this modification introduces an inconsistency and affects the order of the truncation
error of the temporal scheme. In the next section we will consider a consistent implicit
correction.

In the following we compare the error committed by the standard forward Euler
scheme,

ûnk = (1 + λk∆t)
nû0

k −
1− (1 + λk∆t)

n

λk
f̂k,(32)

with that committed by the modified forward Euler (28):

ũnk =

(
1 +

λk∆t

1 + βN2∆t

)n
û0
k −

1− (1 + λk∆t
1+βN2∆t )

n

λk
f̂k.(33)

Defining ε̂nk = ũnk − ûnk and considering that λk = −k2, we obtain

|ε̂nk | =
∣∣∣∣∣
[(
1− k2∆t

1 + βN2∆t

)n
− (1− k2∆t)n

](
û0
k −

f̂k
k2

)∣∣∣∣∣
≤
∣∣∣∣
[
k2n∆t

(
1− 1

1 + βN2∆t

)
+ · · ·

]∣∣∣∣
(
|û0
k|+

|f̂k|
k2

)
.(34)

Since N2∆t = O(1) = n∆t, the term (1− 1
1+βN2∆t ) = O(1), and we obtain

|ε̂nk | = O(k2)|û0
k|+ |f̂k|.(35)

Let us consider, for example, f to be a continuous differentiable function, whose
Fourier modes f̂k decay as O(

1
k2 ), and an initial data u0, whose Fourier modes decay
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as û0
k = O( 1

k4 ). The contribution to the error in the low and high modes, respectively,
is

{
O(û0

k) = O(fk) = O(k2) = O(1) for k ≤ N,

O(û0
k) = O(∆t2), O(f̂k) = O(∆t), and O(k2) = O(∆t−1) for k > N.

(36)

Substituting this into (35), we get

|ε̂nk | =
{

O(1) for k ≤ N,
O(∆t) for k > N.

(37)

This shows that for f with the required regularity, we will have an error of the
first order in time if we apply the modification to the high modes equation and no
convergence if we apply it to the low modes equation.

Scheme (28) is unconditionally stable even when applied to the nonsplit equation
(3). However, (37) shows that no time accuracy is obtained when including the low
modes in the modified scheme.

3.2. The nonconsistent implicit correction of RK2 and RK4. The ex-
tension of the method to a multistage scheme like a higher order Runge–Kutta is
done following the guidelines of Remark 3.2, where the addition of the term βzt is
enforced at each stage. Thus, the nonconsistent implicit correction of the second order
Runge–Kutta (NCIC2) for the nonhomogeneous version of (11) is the following:

L̃z̃nk = (λ
0
k + βN2)z̃nk , K̃1 = L̃z̃nk + f̂k,

z̃
n+ 1

2

k =

(
z̃nk +

∆t

2
K̃1

)
/

(
1 + βN2∆t

2

)
, K̃2 = L̃z̃

n+ 1
2

k + f̂k,

z̃n+1
k =

(
z̃nk +∆tK̃2

)
/(1 + βN2∆t).

(38)

As before, the steady state solution of scheme (38) converges to the original steady
state solution, and the value β = 1/2 allows the use of the same time step of the low
modes equation.

Finally, we introduce the nonconsistent implicit correction of the fourth order
Runge–Kutta scheme (NCIC4):

L̃z̃nk = (λ
0
k + βN2)z̃nk , K̃1 = L̃z̃nk + f̂k,

z̃
n+ 1

4

k =

(
z̃nk +

∆t

2
K̃1

)
/

(
1 + βN2∆t

2

)
, K̃2 = L̃z̃

n+ 1
4

k + f̂k,

z̃
n+ 2

4

k =

(
z̃nk +

∆t

2
K̃2

)
/

(
1 + βN2∆t

2

)
, K̃3 = L̃z̃

n+ 2
4

k + f̂k,

z̃
n+ 3

4

k =
(
z̃nk +∆tK̃3+

)
/(1 + βN2∆t), K̃4 = L̃z̃

n+ 3
4

k + f̂k,

z̃n+1
k =

[
z̃nk +

∆t

6
(K̃1 + 2(K̃2 + K̃3) + K̃4)

]
/(1 + βN2∆t).

(39)

The computation of the corresponding parameter β is more involved in this case;
however, the discussion in section 2 hints at the correct range for β, since both methods
apply the same idea. Numerical experiments indicate that for β = 2, unconditional
stability is achieved for (39).
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3.3. A consistent implicit correction. The idea that led to the NCIC can
be improved to yield a consistent method. In this method we replace z̃0

k in (26) by
(z̃1k+z̃

−1
k

)

2 and obtain

z̃1
k = ŵ1

k − βN2∆t
(z̃1
k + z̃−1

k )

2
.(40)

This leads to the modified forward Euler scheme (CIC1)

z̃n+1
k = (1 + λk∆t)z̃

n
k −

βN2∆t

2
(z̃n+1
k − 2z̃nk + z̃n−1

k ),(41)

or, alternatively,

z̃n+1
k =

1 + λk∆t

1 + βN2 ∆t
2

z̃nk +
βN2 ∆t

2

1 + βN2 ∆t
2

(2z̃nk − z̃n−1
k ).(42)

The stability analysis of the scheme above follows by defining a new variable
vn+1 = zn, transforming (42) into a system of equations whose amplification matrix
G is given by

G(λ, β,∆t) =

(
1+λk∆t+βN

2∆t
1+βN2 ∆t

2

−βN2 ∆t
2

1 0

)
.

We will show that the eigenvalues of G are strictly less than 1 in magnitude for
the high modes, and stability will follow. In order to simplify the calculations, we set
λ = γN2, where γ ∈ [1, 2] and ∆t = 2

N2 , since we are only interested in stability for
the set of high modes when using the low modes time step. Additionally, if, as before,
we put β = 2, the matrix G above becomes

G =

(
5−2γ2

3 − 2
3

1 0

)

with its eigenvalues given by

αγ =
a±√a2 + 4b

2
,

where a = 5−2γ2

3 and b = − 2
3 . When γ ∈ [1, 2], it is easily proven that a2 + 4b < 0;

therefore,

|αγ |2 < 1.
It is easily shown that the steady state solution of the CIC1 scheme (42) converges

to the original steady state solution.
The truncation error of scheme (42) is given by

O(∆t) +O((∆tN)2ztt).(43)

The first term comes from the forward Euler scheme, and the second is the one
associated with the implicit correction (40). Differently from scheme (28), scheme (42)
possesses time accuracy independently of the particular set of modes being solved. If
∆tN2 is fixed (O(1)), then the second term in (43) is O(∆tztt).
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Remark 3.3. Observe for (43) that ztt is not small in the sup norm, but it is
small in average. Hence there is here a new issue in numerical analysis on how to
understand and define truncation error accuracy for high modes.

Remark 3.4. The CIC scheme is similar to the Du Fort–Frankel scheme (see
[4], [15], and [16])

un+1 = un−1 + 2∆tδ2un − γN2∆t(un+1
j − 2unj + un−1

j ),(44)

where δ2 represents the discrete second derivative operator and γ is a coefficient play-
ing the same role as β for the previous schemes. The fundamental difference is in
the way the first derivative in time is discretized. The Du Fort–Frankel scheme uses
a central approximation resulting in a nondissipative scheme, not well suited for the
parabolic equations under consideration, while in the CIC1 a forward approximation
is used.

By applying the consistent implicit correction at each stage of the fourth order
Runge–Kutta we obtain the CIC scheme of order 4 (CIC4):

L̃z̃nk = (λ
0
k + βN2)z̃nk , K̃1 = L̃z̃nk − βN2

2 z̃
(n−1)+ 2

4

k + f̂k,

z̃
n+ 1

4

k =

(
z̃nk +

∆t

2
K̃1

)
/

(
1 + βN2∆t

2

)
, K̃2 = L̃z̃

n+ 1
4

k − βN2

2
z̃nk + f̂k,

z̃
n+ 2

4

k =

(
z̃nk +

∆t

2
K̃2

)
/

(
1 + βN2∆t

2

)
, K̃3 = L̃z̃

n+ 2
4

k − βN2

2
z̃nk + f̂k,

z̃
n+ 3

4

k =
(
z̃nk +∆tK̃3

)
/
(
1 + βN2∆t

)
, K̃4 = L̃z̃

n+ 3
4

k − βN2

2
z̃nk + f̂k,

z̃n+1
k =

[
z̃nk +

∆t

6
(K̃1 + 2(K̃2 + K̃3) + K̃4)

]
/(1 + βN2∆t).

(45)

3.4. The nonlinear case. The analysis presented above is still valid for non-
linear problems where the stiffness of the linear dissipative operator determines the
stability restriction on the time step, in particular, problems with a high value for the
viscosity parameter ν. For those where the choice of the ∆t is also influenced by the
Courant, Friedrichs, and Lewy (CFL) condition, an extra modification in the implicit
correction is necessary in order to control the numerical instability coming from the
nonlinear advective terms. This is the subject of a forthcoming work. Here we limit
ourselves to see the numerical advantages obtained when the above schemes relax the
stability restrictions of the linear operator without recurring to implicit integration.

Thus, in the next section, when applying the implicit correction schemes to non-
linear problems, the nonlinear terms will be treated explicitly as in the standard
Runge–Kutta schemes. All the gain in the size of the time step will come from the
weaker stability restriction of the linear term obtained with the new schemes. The re-
sulting scheme when applying the modified forward Euler scheme (28) to the nonlinear
system (2) is given by

{
yn+1 = yn +∆t(νynxx +

1
2JN ((y

n + zn)2) + JNf
n),

zn+1 = ∆t
1+βN2∆t (z

n + νznxx + βN2∆tzn) + ∆t
1+βN2∆t (

1
2GM (y

n + zn)2x +GMf
n).

(46)

The second equation of the nonlinear system above is obtained from the linear
scheme (28) by adjoining the nonlinear term to the forcing term. For the sake of
completeness we include below the fourth order scheme corresponding to (39) when



TIME MARCHING TECHNIQUES 57

applied to the high modes equation of the nonlinear system (2):

L̃z̃nk = (λ
0
k + βN2)z̃nk , K̃1 = L̃z̃nk + N̂L

n

k + f̂k,

z̃
n+ 1

4

k =

(
z̃nk +

∆t

2
K̃1

)
/

(
1 + βN2∆t

2

)
, K̃2 = L̃z̃

n+ 1
4

k + N̂L
n+ 1

4

k + f̂k,

z̃
n+ 2

4

k =

(
z̃nk +

∆t

2
K̃2

)
/

(
1 + βN2∆t

2

)
, K̃3 = L̃z̃

n+ 2
4

k + N̂L
n+ 2

4

k + f̂k,

z̃
n+ 3

4

k =
(
z̃nk +∆tK̃3+

)
/(1 + βN2∆t), K̃4 = L̃z̃

n+ 3
4

k + N̂L
n+ 3

4

k + f̂k,

z̃n+1
k =

[
z̃nk +

∆t

6
(K̃1 + 2(K̃2 + K̃3) + K̃4)

]
/(1 + βN2∆t),

(47)

where

NLn =

(
1

2
GM (y

n + zn)2x

)
.

One obtains the higher order schemes for the nonlinear case corresponding to (38)
and (45) in an analogous way.

4. Numerical experiments. In what follows we will refer to the SCM with the
standard fourth order Runge–Kutta as SCM4. The collocation splitting coupled with
the nonconsistent and consistent implicit corrections of the fourth order Runge–Kutta
schemes ((39) and (45)) will be denoted by NCIC4 and CIC4, respectively.

The parameter β is set to 2 in order to yield unconditional stability for the high
modes. The time step is written in the form

∆t =
C

νM2
,(48)

where the constant C is the parameter determining the size of ∆t.
It is shown in [2] that the computational cost per iteration is the same when

solving (3) with the SCM or the collocation splitting. Since the modification in the
Runge–Kutta methods does not cause any relevant increase in the number of flops
with respect to the original Runge–Kutta method, the constant C, and therefore the
number of iterations to achieve a final time T, can also be used as a measure of the
computational effort for comparison purposes. In this paper, we are interested only in
measuring the gain in computational time by the use of a bigger ∆t. It is shown in [2]
that by just applying the splitting, CPU effort reduction can be achieved; however,
this might also depend on the particular equation being solved.

Remark 4.1. As was mentioned in the previous section, the following numerical
experiments deal only with problems where the linear stability restriction on the time
step is stronger than the CFL condition arising from the nonlinear advective terms.
More precisely, since the nonlinear terms in scheme (46) are treated explicitly, the
quantity

∆xmin

||u||∞(49)

must be larger than (48) at all times. For the dissipative problems below, it is sufficient
that the initial data satisfies the above condition. However, depending on the strength
of the nonlinearity, the time step bound (49) must also be checked during temporal
integration to avoid blow-up of solutions.
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4.1. The one dimensional case. We start by solving the linear equation
{
ut − νuxx = f, x ∈ (0, 2π), t > 0,
u(0, t) = u(2π, t), t > 0,

(50)

with a right-hand side of the form

f(x, t) = cos(ναt)
M∑
k=1

cos(kx)

k2
.(51)

The exact solution is

u(x, t) =
M∑
k=1

[
cke

−k2t +
ν cos(αt)

ν(α2 + k4)
+

α sin(ναt)

νk2(α2 + k4)

]
cos(kx),(52)

where ck = O( 1
k4 ). We set α = 0.01 (providing a small variation in time) andM = 33.

Figures 2 and 3 show the L2 error generated by SCM4, NCIC4, and CIC4 for
ν = 0.1 and ν = 0.001, respectively. We took C = 2 in (48) when using SCM4.
(The maximum value of C for SCM4 is 2.8; see section 2.) However, when using
the modified methods NCIC4 and CIC4, C was taken equal to 8, a time step four
times larger. Since we are considering 33 modes in (52), a minimum of 66 points is
necessary to completely represent low, k ≤ 16, and high modes, k > 17. Note that
the multilevel methods generate intermediate solutions between SCM4 with 34 and
66 points, but at a lower computational cost than this last one since they use a bigger
∆t.

Another interesting aspect of Figures 2 and 3 is the different behavior of NCIC4
and CIC4 with regard to the temporal stage of the solution. We see that NCIC4
presents a smaller error during the transient phase. This can be understood by
analyzing the special form of the solution (52). At the beginning of the temporal
evolution, the dominating term in (52) is the negative exponential, which represents
the transient part of u(x, t). Therefore, for small t we can write that

ztt = O(N2zt).

This makes both NCIC4 and CIC4 of the same order whenever a strong dissipation is
dominating the evolution of z (see Remark 3.2 and (43)). Figure 4 shows the graph
of the numerical values of zt and ∆tztt for ν = 0.001 and confirms the preceding
analysis.

In the next example we solve the full Burgers equation
{
ut − νuxx + 1

2 (u
2)x = f, x ∈ (0, 2π), t > 0,

u(0, t) = u(2π, t), t > 0,
(53)

with an exact solution of the form

u(x, t) =

16∑
k=1

(1− e−νk2t)
cos(kx)

k4
.(54)

We applied SCM4 with two grids containing 34 and 66 points. Due to the non-
linearity, only this last one solves the problem without aliasing. The solution was
computed up to t = 25 with ν = 0.1 and C = 2. For the modified methods, NCIC4
and CIC4, we used the 66 points grid with C = 8.
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Figure 5 shows the L2 error results for these experiments. Note that the high
modes interactions, which are not captured by the 34 points grid, are relevant for the
correct solution at the steady state. NCIC4 and CIC4 achieved the same steady state
with the bigger time step. Now, CIC4 presents a better result than NCIC4 at the
transient stage due to its consistency.

Finally, Figure 6 shows that although the modified schemes achieved the steady
state at a later value of t, they did so at a smaller computational cost than SCM4 due
to the utilization of the bigger ∆t. The little discrepancy observed at the steady state
of the 66 points grid is due to the better roundoff error presented by the modified
methods (see [2, section 4]).
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4.2. The two dimensional case. In the next example we solve the periodic
Burgers equation in two dimensions:

{
Ut − ν∆U + (U · ∇)U = 0, x ∈ [0, 2π]2,
U(0, t) = U(2π, t), t > 0,

(55)

where U = (u, v) with the initial conditions

{
u(0, x, y) = sin(x) cos(3y),
v(0, x, y) = cos(3x) cos(y).

(56)
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As shown in [2], in the two dimensional case each component of the unknown U is

split in four quantities w, z1, z2, and z3, depending on the mode 'k = (k1, k2):

low modes w, |k1| ≤ N, |k2| ≤ N,
mixed modes z1, N < |k1| ≤M, |k2| ≤ N,
mixed modes z2, |k1| ≤ N, N < |k2| ≤M,
pure high modes z3, N < |k1| ≤M, N < |k2| ≤M.

In this case, we apply the modified methods above to the three resulting equations
involving the z variables. The determination of the parameter βi for each set of modes
follows along the same lines as in the one dimensional case.

In the first example we consider a high viscosity problem, ν = 0.5, and compare
the SCM coupled with a forward Euler scheme for the time integration (SCM1) with
the multilevel method coupled with the nonconsistent (NCIC1) and the consistent
(CIC1) implicit corrections. Figure 7 shows the SCM1 solution at t = 1 when using
ten Fourier modes in each direction for the solution representation. The time step in
(48) was taken with C = 1. Figure 8 shows the NCIC1 and CIC1 solutions at the
same time and same number of modes, but now using C = 4, i.e., we use a time step
four times bigger than the SCM. At t = 1 the problem is still in its transient stage,
and we notice the difference between the solutions in Figure 8. The parameters βi
were taken to be βi = 4, i = 1, 2, 3, for both NCIC1 and CIC1.

Figure 9 shows the solutions at t = 4 for all methods above. Here NCIC1 and
CIC1 display the same graphic solutions. On the other hand, since these last two
schemes used a bigger time step than SCM1, their computational costs are much lower.
Figure 10 presents the CPU time results for the three methods when integrating in
time up to t = 10.

In the case of a lower viscosity, the stability constraint is influenced by the ad-
vective term of (55). Therefore, increasing the time step requires a modification also
in the nonlinear part of the equation. Since this is out of the scope of this article, we
want to show instead that the splitting of modes can also reduce computational costs
by generating solutions with fewer modes than the minimum resolution required by
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Fig. 7. SCM1 v-solution for (55) at t = 1 and ν = 0.5.
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Fig. 8. NCIC1 and CIC1 v-solutions for (55) at t = 1 and ν = 0.5.

the standard collocation in order to avoid blow-up due to the accumulation of energy
in the high modes.

Thus, in this second example, we compare the solutions obtained by SCM1 and
NCIC1 when solving problem (55), (56) with a value of ν = 0.01. Due to the low vis-
cosity, the solution goes through a critical high gradient phase before being smoothed
out by the dissipative term. When using SCM1, a minimum of 80 Fourier modes in
each direction is necessary to pass the high gradient stage, which occurs at t = 1,
without the blow-up of the solutions. The results are shown in Figure 11 for t = 1
and t = 6. On the other hand, when using NCIC1, only 40 modes are necessary
to overcome the high gradients and continue the temporal integration achieving the
results shown in Figure 12 for t = 1 and t = 6.

5. Conclusions. In this article we introduced new time marching techniques
that make use of distinguished treatments of low and high modes to improve the
stability condition of explicit time integration schemes, allowing the use of larger time
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Fig. 9. SCM1, NCIC1, and CIC1 solutions for (55) at t = 4 and ν = 0.5.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

C
P

U
 ti

m
e

SCM1

NCIC1

CIC1

Fig. 10. CPU time for (55).

steps. These techniques consist of applying an unconditionally stable explicit scheme
to the high modes equation in order to use the larger time step determined by the low
modes equation. They are based on a shifting of the upper part of the spectrum of
the dissipative operator and they bear similarities with well-known explicit numerical
schemes like the Du Fort–Frankel and rational Runge–Kutta methods.

The numerical experiments showed that association of the new techniques with
spatial discretizations of the collocation type can substantially reduce the computa-
tional effort in numerically approximating the solution of partial differential equations
due to the utilization of a larger step to march in time. In this article, we altered only
the stability condition related to the linear dissipative operator. In a forthcoming
work we intend to treat the nonlinear hyperbolic case where the numerical stability is
strongly influenced by the CFL condition when dealing with low viscosity problems.
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Fig. 11. SCM1 solution for (55) at t = 1 and t = 6 with ν = 0.01 and 80 Fourier modes in
each direction.
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Fig. 12. NCIC1 solution for (55) at t = 1 and t = 6 with ν = 0.01 and 40 Fourier modes in
each direction.
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[14] B. Garćıa-Archilla and J. de Frutos, Time integration of the non-linear Galerkin method,
IMA J. Numer. Anal., 15 (1995), pp. 221–244.

[15] D. Gottlieb and B. Gustafsson, Generalized Du Fort–Frankel methods for parabolic initial-
boundary value problems, SIAM J. Numer. Anal., 13 (1976), pp. 129–144.

[16] D. Gottlieb and L. Lustman, The DuFort-Frankel Chebyshev Method for Parabolic Initial
Boundary Value Problems, ICASE Report 81-42, ICASE, Hampton, VA, 1981.

[17] E. Hairer, Unconditionally stable methods for second order differential equations, Numer.
Math., 32 (1979), pp. 373–379.

[18] E. Hairer, Unconditionally stable methods for parabolic differential equations, Numer. Math.,
35 (1980), pp. 57–68.

[19] F. Jauberteau, Résolution numérique des équations de Navier-Stokes instationnaires por
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Abstract. The discretization of the shallow-water equations using the finite-element method
is a delicate problem. Apart from the possible occurrence of pressure and/or velocity modes, other
spurious modes may appear that are essentially a consequence of having more momentum than
continuity discretized equations, contrary to the continuum case. In this paper a new triangular
finite-element pair is proposed which overcomes this imbalance problem. The new pair is shown to
improve on results obtained with existing pairs in representing the propagation of fast gravity and
slow Rossby waves by discretizing the linear shallow-water equations.
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1. Introduction. In the case of the compressible Navier–Stokes and shallow-
water equations, the contribution of the time derivative in the continuity equations
leads, at least theoretically, to a problem that is always stable without an inf-sup
(or LBB) [2] condition. An important result obtained in [11, 12], in the context of
the incompressible Navier–Stokes equations, is, however, generalized in [14] to include
the shallow-water and the compressible Navier–Stokes equations by examining their
numerical dispersion relations. It is found that spurious solutions may arise from
the coupling of the momentum and continuity equations, and that their existence
and behavior depend upon the placement of the variables on a mesh and upon the
choice of appropriate basis functions for finite-element formulations. These spurious
modes are small-scale artifacts introduced by the spatial discretization scheme which
do not propagate but are trapped within the model grid. In [14] two basic sets of
such spurious modes are described. For the first set the velocity field is zero and
nonconstant pressure functions lie in the null space of the discrete gradient operator.
Solution uniqueness is then lost since any multiple of a spurious mode can be added to
any solution of the discrete equations and still satisfy them. The second set of possible
modes are those for which the pressure is zero and the velocity field is in the null space
of the discrete divergence operator. Having noted their possible existence, little else
is said about them in [14]; attention is focused almost exclusively on the spurious
pressure modes of zero velocity, since these are argued to be the most troublesome.
The occurrence of such spurious pressure and/or velocity modes has been observed in
a variety of finite-difference [15] and finite-element [14] approximations to the shallow-
water equations.

Another difficulty comes from the so-called constraint ratio (CR), defined to be
the ratio of the number of continuity equations to the number of vector momentum
equations. In the continuum, at each point in the fluid, one vector momentum equa-
tion is balanced with one continuity equation; hence CR = 1. A desirable goal of the
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discrete approximation would be to achieve the same balance. For most of the finite-
difference schemes the balance is obtained and CR � 1. A valuable example, however,
is the C-D finite-difference grid [1] leading to CR � 1/2. The dispersion relation ob-
tained in [1] by discretizing the shallow-water equations on the C-D grid reveals the
presence of spurious frequencies; they are essentially a consequence of having twice
as many momentum equations as pressure equations. The use of the finite-element
method in discretizing the shallow-water equations is even more problematic because
for many popular finite-element pairs, e.g., the P2 − P1, P1 isoP2 − P1, and Q2 −Q1

pairs, CR � 1/4 [9]; hence spurious frequencies are highly expected.

The purpose of this paper is to find new triangular finite-element pairs which are
able to improve upon the discretization of the shallow-water equations; such pairs
need to have no pressure modes and preferably satisfy CR � 1. All the aforemen-
tioned problems occur in the context of linear formulations; hence solving inviscid
linear equations is sufficient for our purpose. The shallow-water equations are of
considerable importance for a variety of problems of coastal and environmental engi-
neering, including oceanic, atmospheric, and groundwater flows. For many of these
flows the boundary conditions require the calculation of the normal at the boundary.
The latter is generally not unique at boundary vertices, and hence velocity nodes
should be located elsewhere in order to exactly satisfy the boundary conditions.

Element pairs satisfying CR � 1 and avoiding the placement of velocity nodes
at vertices are found in section 2. The ability of these pairs to generate pressure
modes and to solve two basic equations embedded in the shallow-water equations is
examined in sections 3 and 4, respectively. This leads to the choice of a new pair. In
section 5 the linear inviscid shallow-water equations are discretized using this pair.
The results of environmental flow experiments, namely, propagation of fast gravity
modes and slow Rossby modes, are presented and discussed in section 6. Conclusions
are summarized in section 7.

2. Finite elements candidates. In the two-dimensional case, for one con-
nected component, let V be the total number of vertices of a given domain, C the
number of cells or triangles, TF the total number of faces of the triangulation, and
IF the number of interior faces. Euler’s relations may then be expressed as

TF + IF = 3C ,(2.1)

V + IF = 2C + 1 .(2.2)

Assuming TF � IF we deduce from (2.1) and (2.2) that the number of triangles and
midpoint nodes is approximately 2V and 3V , respectively. This estimate provides
an easy tool for finding velocity and pressure node locations leading to CR � 1. An
obvious choice—and the subject of this section—is to locate one variable at midpoints
and the other at both vertices and barycenters. A second possibility offers three
possible locations for the variables: at vertices, barycenters, and midpoints (P+

2 [2])
or twice at midpoints (PNC2 [3]) or at three internal nodes (P0−3 [9]). However,
because the PNC2 element is not directly usable [5] and the P+

2 has nodes at the
vertices, this second possibility is not investigated here. Further, it seems difficult to
obtain other tractable combinations.

In the following let the subscripts A, B , and C distinguish new elements from
existing ones, and let Nu and Np be, respectively, the number of velocity and pressure
nodes of the domain. In all figures the symbol • indicates the location of nodes.
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Fig. 2.1. The elements (a) P0−A, (b) P0−B, (c) PNC1 . The compact support of the basis
function at selected nodes is shaded.

2.1. Constant and linear elements. Examples of P0−A and P0−B elements
are shown in Figures 2.1(a) and (b), respectively, on a square domain made up of eight
biased dotted triangles (except for the boundaries). The element P0−A is obtained in
Figure 2.1(a) by joining the barycenters of biased triangles (dotted lines) with their
vertices. The nodes are defined at midpoints and the basis functions are constant over
the resulting quadrangles (solid lines), or triangles for boundary nodes. The element
P0−B shown in Figure 2.1(b) has nodes at both vertices and barycenters, and the basis
functions are constant over the hexagonal and “star” areas defined by solid lines. The
PNC1 element [3, 7], shown in Figure 2.1(c), has nodes at triangle midpoints. The
nonconforming linear basis functions are continuous only across triangle boundaries
at midpoint nodes and are discontinuous everywhere else around a triangle boundary.
Four pairs are considered: the P0−A−P0−B , the P0−A−PNC1 , the PNC1 −P0−A, and
the PNC1 − P0−B pairs. The first of these pairs is treated as a finite volume.

2.2. Linear–linear element pairs.

2.2.1. The PNC
1 –cross-grid P1 element pair. The cross-grid P1 element

shown in Figure 2.2(a) has nodes at the triangle vertices and barycenters. The basis
functions are linear upon each one of the three subtriangles sharing the center of
gravity of the element as a common vertex and vanishing on the element boundary.
We have Np = V +C and Nu = TF , and thus Np −Nu = V +C − TF . From (2.1)
and (2.2) we have TF − V = C − 1, and thus Np −Nu = 1 and CR � 1.
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Fig. 2.2. The elements (a) cross-grid P1, (b) PNC1 isoP2. The compact support of the basis
function at selected nodes is shaded.
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Fig. 2.3. (a) and (b): The P1−A element. (c) The P1−B element. At node I, (a) and (c)
on a horizontal face, (b) on a diagonal face; the compact support of a PNC1 isoP2 basis function is
shaded.

Table 2.1
Definition of the weights used in the calculation of the gradient matrix of a scalar field for the

PNC1 isoP2 − P1−A and PNC1 isoP2 − P1−B pairs.

PNC1 isoP2 − P1−A PNC1 isoP2 − P1−B

ω1 = −1

6
ω3 =

109

450
ω5 =

2

225
ω7 =

1

3
ω9 =

3

25
�1 =

1

18
�3 =

1

9

ω2 =
16

45
ω4 =

23

225
ω6 = − 13

225
ω8 = − 3

25
ω10 =

11

50
�2 =

7

18
�4 = − 1

18

2.2.2. The PNC
1 isoP2−P1−A and PNC

1 isoP2−P1−B element pairs. The
PNC1 isoP2 element is obtained by dividing each biased triangle of Figure 2.2(b) (solid
lines) into four subtriangles (dotted lines) using the midpoints of the triangle sides.
On each subtriangle, the nodes are defined at triangle midpoints and nonconforming
linear basis functions (PNC1 ) are used over the refined triangulation. The PNC1 isoP2

element is chosen to approximate the velocity variable, and so there are 9 velocity
nodes per unrefined triangle or 12V over the domain. To obtain CR = 1 we need
to find 12V pressure nodes. If we suppose that the pressure variables are at least
located at the V vertices, we search for two positive integers n1 and n2, respectively,
the number of nodes per face and per cell of the unrefined triangulation, such that

(3V )n1 + (2V )n2 = 12V − V or 3n1 + 2n2 = 11 .(2.3)

Equation (2.3) has only two solutions, (n1, n2) = (3, 1) and (n1, n2) = (1, 4), which
define the nodal positions for the P1−A and P1−B pairs, as shown in Figure 2.3 for
two biased triangles. In both cases 12 subtriangles are defined per unrefined triangle
and conforming linear basis functions are used over the refined triangulation. We
have Np

A = V + 3TF + C, Np
B = V + TF + 4C, and Nu

A,B(u) = 2TF + 3C. Let
BF to be the number of boundary faces, with TF = IF +BF . From (2.1)–(2.2) we
deduce Np

A −Nu
A,B = BF + 1 and Np

B −Nu
A,B = 1; thus CR � 1 for both elements.

The weights ωi (i = 1, 10) and �i (i = 1, 4) given in Table 2.1 are used to
calculate the discrete gradient matrix of a scalar field (e.g., pressure) for any original
triangulation, even an unstructured one. For example, in Figure 2.3(a) let I (denoted
by the symbol ©) be a velocity node and (xB , yB) and (xC , yC) denote the coordinates
of the nodes B and C. The entries of the gradient matrix at line I and column A (for
the contribution of triangle (A,B,C) only) are ω4 (yB − yC) and ω4 (xC −xB) for the
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x- and y-derivatives, respectively. The other entries are obtained in the same manner
by cyclic permutations. For the element P1−A only, two different sets of weights are
defined depending on whether I is an interior or a boundary element node.

2.2.3. The PNC
1 –P1−C element pair. The cross-grid P1 element is shown

in Figure 2.4(a) over a biased triangulation intentionally represented with dotted
faces, except for the bottom and right boundaries. The P1−C element is derived
from the cross-grid P1 in the following manner. Each dotted face (Figure 2.4(a)) is
suppressed and replaced by a new face (Figure 2.4(b)) joining the barycenters of the
two adjacent triangles (except for the boundary faces). For example, faces 1-2, 2-3,
and 3-1 are suppressed in Figure 2.4(a) and faces 4-5, 4-6, and 4-7 are created in
Figure 2.4(b). Except for the boundary triangles, such a transformation preserves
equilateral triangles. As for the PNC1 –cross-grid P1 pair, Np−Nu = 1; thus CR � 1.
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Fig. 2.4. The elements (a) cross-grid P1, (b) P1−C , (c) reconnection of faces for nonregular
geometries.

The determination of the weights used to calculate the discrete gradient matrix of
a scalar field in the case of the PNC1 –P1−C pair now follows. The computation is more
difficult than in section 2.2.2 because the P1−C element results from a redefinition of
the triangulation by swapping the faces. Except for regular geometries (e.g., biased
triangles of Figure 2.4(b)), it is no longer guaranteed that the midpoints of old and
new faces coincide. The problem is illustrated in Figure 2.4(c). Let M0 and M be
the middle points of (M1,M2) and (M5,M6), respectively, where M5 and M6 are the
respective barycenters of the triangles K1 (M1,M2,M3) and K2 (M1,M4,M2). Let
(xi, yi) and (x, y) be the coordinates of Mi (i = 0, 6) and M , respectively, and let K0

be the triangle (M0,M5,M6) with

Area(K0) =
ε

2
[ (x5 − x0) (y6 − y0)− (y5 − y0) (x6 − x0) ] ,(2.4)

where ε = +1 ifM0,M5,M6 are numbered counterclockwise (as in Figure 2.4 (c)) and
ε = −1 otherwise.

Proposition 2.1. We have

−→
MM0=

3 εArea(K0)

Area(K1) + Area(K2)

−→
M1M2 .(2.5)

Proof. Since
−→
MM0 and

−→
M1M2 are parallel,

(x0 − x) (y2 − y1) + (y0 − y) (x1 − x2) = 0 .(2.6)
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Then, noting that M belongs to (M5,M6), we obtain

x (y6 − y5) + y (x5 − x6) = x5 y6 − x6 y5 .(2.7)

By using the property
−→
M3M4 = 3

−→
M5M6 and (2.4), equation (2.7) reduces to

(x0 − x) (y3 − y4) + (y0 − y) (x4 − x3) = 6 εArea(K0) .(2.8)

Some elementary calculations show that

∣∣∣∣ y2 − y1 x1 − x2

y3 − y4 x4 − x3

∣∣∣∣ = 2 [Area(K1) + Area(K2) ] ,(2.9)

and the solution of (2.6) and (2.8) then gives

x0 − x =
3 εArea(K0)

Area(K1) + Area(K2)
(x2 − x1) ,(2.10)

y0 − y =
3 εArea(K0)

Area(K1) + Area(K2)
(y2 − y1) .(2.11)

Thus, we obtain (2.5), and the proof is completed.
Let I be a velocity node located at the middle point of (M2,M3) as shown in Figure

2.4(c). Typical weights associated with I over the triangles (M1,M6,M5), (M2,M5,M6),
and (M2,M3,M5) of the P1−C triangulation are

ω(M1,M6,M5) =


−1

9
+
ε

3

‖
−→
MM0‖
‖

−→
M1M2‖


 Area(K1)

Area(K1) + Area(K2)
,(2.12)

ω(M2,M5,M6) =


2

9
+
ε

3

‖
−→
MM0‖
‖

−→
M1M2‖


 Area(K1)

Area(K1) + Area(K2)
,(2.13)

ω(M2,M3,M5) =
7

18
whether (M2,M3) is a boundary face or not ,(2.14)

where ‖
−→
MM0‖ is obtained from (2.5). If (M1,M2) is a boundary face, we have

ω(M1,M2,M5) = 1/18. All the weights are derived by analogy with (2.12)–(2.14) and
they are used in the same manner as in section 2.2.2 to calculate the entries of the
gradient matrix of a scalar field at line I.

3. Examination of the pressure modes. To determine if the element pairs
considered in section 2 have pressure modes, their corresponding discrete gradient
matrices are computed on Grid 1, as shown in Figure 3.1(a), and then decomposed in
singular values (SV). For all pairs at least 3 SV are zero, implying that the kernel of
the discrete gradient operator is more than one-dimensional and hence that pressure
modes exist. On Grid 1 two sides of a triangle may coincide with the boundary. By
requiring triangulation into corners, as shown on Grid 2 in Figure 3.1(b) at the upper
right and lower left corners, better results are obtained as shown in Table 3.1 for
different types of boundary conditions.

For the P0−A−PNC1 and the PNC1 −P1−C pairs only 1 SV is zero; the null space of
their discrete gradient operator is one-dimensional and these pairs have no pressure
modes. This result reflects the fact that pressure is only determined to within an
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(a) (b)

Fig. 3.1. (a) Grid 1, a 4× 4 mesh; (b) Grid 2, as for (a) with triangulation into corners.

Table 3.1
Number of zero SV of the discrete gradient matrix computed on Grid 2 for several element pairs.

Dirichlet Normal Tangential

Element pair boundary velocity velocity

conditions specified specified

P0−A–P0−B 2 2 1

P0−A–PNC1 1 1 1

PNC1 –cross-grid P1 2 2 1

PNC1 isoP2–P1−A 2 2 1

PNC1 isoP2–P1−B 2 2 1

PNC1 –P1−C 1 1 1

arbitrary additive constant by fixing the pressure reference level. The requirement
to triangulate into corners is a minor constraint, even sometimes desirable to impose
boundary conditions. The other pairs in Table 3.1 have 2 zero SV and thus have
pressure modes. Finally, the PNC1 − P0−A and the PNC1 − P0−B pairs (not included
in Table 3.1) have many pressure modes whatever the grid.

The results shown in Table 3.1 have been found to be identical on meshes n× n
with n ≥ 5 and do not depend on whether the number of nodes in each direction
is even or odd. It has been also verified that when only 1 SV is zero no other SV
converges to zero as the mesh parameter becomes small.

At this stage of the argument, the P0−A–PNC1 and PNC1 –P1−C pairs are favorable
candidates for solving the coupled momentum-continuity equations.

4. Representing basic equations. Two basic equations embedded in the
shallow-water formulation are now considered:

u = α∇p ,(4.1)

p = γ∇ · u ,(4.2)

where u = (u, v) and p are, respectively, the velocity field and the pressure, and α
and γ are constant scaling factors.

In [9] it is shown that pairs having a low CR perform poorly in solving (4.1), while
smooth results are obtained for pairs with a CR larger than 1. A similar situation is
expected to arise, in the opposite sense, when computing p from u in (4.2); this has
been verified for several pairs (results not shown). As a preliminary before solving



A NEW FINITE ELEMENT WITH OPTIMUM CONSTRAINT RATIO 73

(a) (b) (c)

Fig. 4.1. (a) A window of Mesh 1 made up of unstructured triangles with smoothing (row
1), a window of Mesh 2 made up of unstructured triangles without smoothing (row 2); (b) isolines
(upper right quarter) of the simulated flow speed field corresponding to (4.1) on Mesh 1 (row 1) and
Mesh 2 (row 2) for the PNC1 –P1−C pair; (c) isolines (upper right quarter) of the simulated pressure
corresponding to (4.2) on Mesh 1 (row 1) and Mesh 2 (row 2) for the PNC1 –P1−C pair.

the shallow-water equations, smooth results should be obtained for u and p in (4.1)
and (4.2). These two basic equations are now solved for the pairs in Table 3.1.

The pressure in (4.1) is a specified Gaussian distribution with an e-folding radius
that is resolved by about 15 velocity nodes on Meshes 1 and 2, shown in Figure 4.1(a),
and u is to be determined from the finite-element discretization of (4.1). The velocity
field in (4.2) is the exact gradient of the specified Gaussian distribution used for p
in (4.1) and p is to be determined from the finite-element discretization of (4.2). The
exact solutions for the flow-speed field (u2+v2)1/2 and p are shown in Figure 4.2. The
numerical solutions shown here are all obtained using the visualization environment
VU [10].

For the PNC1 –P1−C pair smooth solutions, shown in Figures 4.1(b) and (c), are
obtained on Mesh 1. Good results are also found on Mesh 2 considering the unusually
high level of mesh distortion. The other pairs of Table 3.1 also give smooth results for
both solutions, due to the fact that CR � 1. There is, however, an exception for the
P0−A–PNC1 pair, which gives a very noisy representation of p in (4.2). The problem
arises from a lack of contribution of u and v to the discretization of the divergence
term at horizontal and vertical nodes, respectively. This is consistent with the lack
of equations for u and v on horizontal and vertical faces, respectively, in solving (4.1)
with the PNC1 –P0−A pair (and also the PNC1 –P0 pair [9, Figure 3(a)]).

By a process of elimination, the PNC1 –P1−C pair has been identified as a promising
choice. The discretization of the linear inviscid shallow-water equations using this pair
now follows.
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(a) (b)

Fig. 4.2. (a) Isolines (upper right quarter) of the exact solution for the flow-speed field corre-
sponding to (4.1), where the pressure is a specified Gaussian; (b) isolines (upper right quarter) of
the exact solution for pressure corresponding to (4.2), where the velocity field is the exact gradient
of a specified Gaussian.

5. Discretization of the inviscid linear shallow-water equations. Let Ω
be the model domain with boundary Γ. The inviscid linear shallow-water equations
are expressed in Cartesian coordinates [8] as

ut + f k× u+ g∇η = 0 ,(5.1)

ηt +H∇ · u = 0 ,(5.2)

where η is the surface elevation with respect to the reference level z = 0, f and g
are the Coriolis parameter and the gravitational acceleration, respectively, k is a unit
vector in the vertical, and the mean depth H is constant. Note that η plays the
role that pressure plays in the Navier–Stokes equations. For a contained flow, (5.1)
and (5.2) are solved subject to the no-normal flow boundary condition

u · n = 0 on Γ ,(5.3)

where n is the outward pointing normal at the boundary.
An implicit Crank–Nicolson time discretization of (5.1) and (5.2) gives

u+
f ∆ t

2
k× u+

g∆ t

2
∇ η =

[
u− f ∆ t

2
k× u− g∆ t

2
∇ η

]
t−∆ t

≡ Ru ,(5.4)

η +
H∆ t

2
∇ · u =

[
η − H∆ t

2
∇ · u

]
t−∆ t

≡ Rη ,(5.5)

where [ . ]t−∆ t denotes evaluation at the previous timestep.
The Sobolev space H1 (Ω) is the space of functions in the square-integrable space

L2 (Ω), whose first derivatives belong to L2 (Ω). Let η be in a subspace V of H1 (Ω)
and let each component of u be a sufficiently regular scalar function such that u·n = 0
on Γ. The weak formulation of (5.4) and (5.5) requires the test functions ϕ (whose x-
or y-component is formally denoted by ϕ) and ψ to belong, respectively, to the same
function space as u and η, such that∫

Ω

u ·ϕ dΩ +
∆ t

2

∫
Ω

f (k× u) ·ϕ dΩ +
g∆ t

2

∫
Ω

∇ η ·ϕ dΩ =

∫
Ω

Ru ·ϕ dΩ ,(5.6)

∫
Ω

η ψ dΩ +
H∆ t

2

∫
Ω

∇ · u ψ dΩ =

∫
Ω

Rη ψ dΩ ,(5.7)

where dΩ is the areal element.
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On both sides of (5.7) the term ∇·u is integrated by parts using Green’s theorem.
The boundary integrals vanish by applying (5.3); thus (5.7) can be rewritten as

∫
Ω

η ψ dΩ− H∆ t

2

∫
Ω

u · ∇ψ dΩ =

∫
Ω

Rη ψ dΩ ,(5.8)

where ∫
Ω

Rη ψ dΩ =

∫
Ω

[ η ]t−∆ t ψ dΩ +
H∆ t

2

∫
Ω

[u ]t−∆ t · ∇ψ dΩ .(5.9)

The Galerkin finite-element method then approximates the solution of (5.6) and (5.8)
in finite-dimensional subspaces. Consider two triangulations T u

h and T ηh of the polyg-
onal domain Ω, defined in Figures 2.1(c) and 2.4(b), respectively, where h is a dis-
cretization parameter tending to zero. For triangles Ku ∈ T u

h and Kη ∈ T ηh , let
P1(K

u) and P1(K
η) denote the space of linear polynomials on Ku and Kη, respec-

tively.
The discrete solution uh sought belongs to a finite-dimensional space Wh defined

to be the set of functions uh whose restriction on Ku belongs to P1(K
u) × P1(K

u),
with uh being continuous only at the midpoints of each face of T u

h , and uh ·n = 0 on
Γ. The discrete solution ηh is sought in a finite-dimensional subspace Vh of V , where
Vh is defined to be the set of functions ηh whose restriction on Kη belongs to P1(K

η),
with ηh being continuous at each vertex of T ηh .

By applying the Galerkin procedure the problem can be summarized as seeking
solutions uh and ηh, respectively, in Wh and Vh such that

∑
Ku∈T u

h

∫
Ku

uh ·ϕi dΩ +
∆ t

2

∑
Ku∈T u

h

∫
Ku

f (k× uh) ·ϕi dΩ

+
g∆ t

2

∑
Ku∈T u

h

∫
Ku

∇ηh ·ϕi dΩ =
∑

Ku∈T u
h

∫
Ku

Ru ·ϕi dΩ ,(5.10)

∑
Kη∈T η

h

∫
Kη

ηh ψj dΩ− H∆ t

2

∑
Kη∈T η

h

∫
Kη

uh · ∇ψj dΩ =
∑

Kη∈T η
h

∫
Kη

Rη ψj dΩ(5.11)

for all basis functions ϕi and ψj (defined in [3]) belonging to Wh and Vh, respectively,
where i and j are typical nodes of T u

h and T ηh , respectively.

After insertion of the expansions uh =
∑3
k=1 uk ϕk over Ku and ηh =

∑3
l=1 ηl ψl

over Kη into (5.10) and (5.11), where uk and ηl are the values of uh and ηh at nodes
k and l of T u

h and T ηh , respectively, we obtain a set of linear equations of the form

Mu u+
g∆ t

2
G η = Ru ,(5.12)

Mη η − H∆ t

2
Gt u = Rη ,(5.13)

where Mu and Mη denote the velocity and surface-elevation mass matrices, respec-
tively, G is the gradient matrix, and Ru and Rη are the right-hand sides.

Since the velocity nodes are located at triangle midpoints, the normal direction
along the boundary is defined uniquely, a property which is not true in general for
boundary vertices. Following [4], the x-y momentum equations corresponding to a
boundary node in (5.12) are transformed into tangential and normal equations, the
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local x-y coordinate system at this node is rotated to coincide with the tangential and
normal directions, and the boundary condition (5.3) is then applied.

Due to the orthogonality property of the velocity basis functions [13], Mu is a
diagonal matrix with 2× 2 blocks along the diagonal. Equation (5.12) is rewritten as

u = −g∆ t
2

(Mu)−1 G η + (Mu)−1 Ru ,(5.14)

and (5.14) is then used to eliminate u from (5.13). The substitution results in

(
Mη + g H

(∆ t)2

4
Gt (Mu)−1 G

)
η = Rη +H

∆ t

2
Gt (Mu)−1 Ru .(5.15)

The elimination of u thus leads to a linear system for the η only, which greatly
enhances computational efficiency. The matrix on the left-hand side of (5.15) is a
very sparse matrix, with an average of 31 nonzero elements per row. Finally, once η
is obtained from (5.15), u is computed explicitly from (5.14).

6. Numerical results. A linear stability analysis of (5.1) and (5.2) reveals that
there are two basic kinds of associated motion: small-amplitude fast-moving gravita-
tional oscillations and slow-moving Rossby modes [6]. To determine how the PNC1 –
P1−C pair approximates these two types of modes, two tests are proposed. The first
test examines the propagation and dispersion of fast surface gravity waves in a circu-
lar basin and their reflection at the lateral boundary. In the second test, the slowly
propagating Rossby modes are simulated in the case of the evolution of a typical
anticyclonic vortex at midlatitudes.

For both tests, the linear inviscid shallow-water equations are solved with a Gauss-
ian distribution of the surface elevation prescribed at initial time, i.e.,

η (r, 0) = a e−b r2 ,(6.1)

where r is the distance from the Gaussian’s center, and a and b are prescribed.
The second, more stringent test was applied in [9] and the P1 isoP2–P0−3 pair

(CR = 3/2) was shown to give much better results than already existing pairs. Hence,
this pair is chosen for comparison with the PNC1 –P1−C pair.

6.1. Gravity wave propagation and dispersion. For many applications very
little energy is carried by the small-amplitude fast-moving surface gravity waves, and
this justifies slowing them down via a semi-implicit time discretization. Nevertheless,
the numerical solution of (5.1)–(5.3) at small values of the gravitational Courant
number Cg ≡ c∆ t / h0, where c ≡ √g H is the phase speed of the surface gravity
waves and h0 is the smallest distance between two nodes of T u

h or T ηh , should be
expected to reasonably well approximate the analytical one when using the semi-
implicit scheme.

The analytical solution of the problem is obtained from (5.1) and (5.2) by exploit-
ing the circular symmetry. In order to do so, the Coriolis term is set to zero, leading
to a second-order wave equation in polar coordinates for η , viz.

ηtt − c2 1

r
( r ηr )r = 0(6.2)

subject to the boundary conditions ηr|r=R = 0, and no singularity at the origin.

The initial conditions are η (r, 0) = a e−b r
2

and ηt (r, 0) = 0; the latter condition
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follows from setting the initial velocity to zero. The exact solution of (6.2) is the
Bessel-function expansion

η (r, t) =

∞∑
n=1

µn J0 (
√
λn r ) cos c

√
λn t ,

where µn =

∫ R
0
η (r,0) J0 (

√
λn r ) r dr∫ R

0
J2
0 (

√
λn r ) r dr

and λn are the roots of J1 (
√
λnR ) = 0.

The circular domain has a radius of R = 1000 km and is discretized using a 40 km
vertex node spacing unstructured triangulation T u

h with smoothing (h0 = 20 km).
A flat bottom with mean depth H = 2000m is assumed, leading to c ≈ 140m s−1.
By taking a timestep of 20 s, Cg is approximately 0.15. The Gaussian distribution
parameters that define η at initial time are set to a = 100m and b = 6.4×10−11 m−2.

Time sequences for η are shown in Figure 6.1. The surface elevation is first shown
at stage 1, after a single timestep. At stage 3 it is being reflected by the basin wall, and
by stages 5, 6, 7, and 8 it has returned one, two, three, and four times, respectively,
to its starting point. Comparing panels 1 and 5 of Figure 6.1 we can see that very
little dispersion has occurred after a single cycle, but after two and three cycles the
dispersion effect is quite obvious. The dispersion is due to the individual Bessel modes
of the exact solution propagating with different phase speeds.

1 2 3 4

5 6 7 8

Fig. 6.1. Vertical cross sections in the x, z plane of the surface elevation η at different stages
of gravity wave propagation and dispersion. The initial Gaussian distribution is shown in panel
1. Reflection occurs at the boundary in panel 3, and in panels 5, 6, 7, and 8 the disturbance has
returned to its starting point one, two, three, and four times, respectively.

Good agreement is obtained between the analytical and the computed solutions
for the PNC1 –P1−C pair as shown in Table 6.1. Further, it has been observed that
the radial symmetry of the exact solution is very well reproduced by the numerical
one. For the P1 isoP2 − P0−3 pair the discrepancy with the analytical solution after
stage 4 may arise from the constant approximation for η and/or from an inaccurate
calculation of the normal at the boundary vertices. The test has been done on a
Power Challenge XL machine with MIPS R8000 processor chips. Note that for the
PNC1 –P1−C pair the computational cost and the memory requirement are reduced by
a factor of δ1 = 3.74 and δ2 = 1.84, respectively, compared to the P1 isoP2–P0−3

pair. A conjugate gradient method is used to solve for (5.15) and residuals are found
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Table 6.1
Maximum and minimum values of the analytical and computed surface-elevation field, for the

PNC1 –P1−C and P1 isoP2–P0−3 pairs, at the stages corresponding to the plots of Figure 6.1.

No. of
Stage timesteps Analytical PNC1 –P1−C P1 isoP2–P0−3

1 1 99.55 99.55 99.77
0.00 0.00 0.00

2 179 14.84 14.91 15.05
-9.47 -9.53 -9.58

3 357 18.53 18.64 18.13
-3.33 -3.43 -3.68

4 536 18.12 18.25 18.58
-4.66 -4.79 -4.79

5 683 80.76 80.40 83.36
-3.58 -3.69 -3.57

6 1430 3.40 3.52 4.10
-95.57 -95.60 -90.86

7 2113 4.26 4.46 4.36
-83.92 -83.03 -86.10

8 2860 95.91 96.13 82.02
-1.33 -1.48 -3.03

Number of velocity nodes 8176 10 958
Number of pressure nodes 8177 16 185
Computational cost 875 s 3271 s
Memory requirement 2.5 MB 4.6 MB

to decrease by a factor of 10−6 within 10 iterations for both pairs using a diagonal
preconditioner.

6.2. Eddy propagation. In the second experiment the domain is an idealized
1200 km×1200 km square basin discretized using a 10 km vertex node spacing unstruc-
tured triangulation T u

h with smoothing (h0 = 5km). The constant depth H = 1.63m
results in a phase speed for gravity waves of approximately 4m s−1. Such a small
equivalent depth is pertinent for the adjustment under gravity of a density-stratified
fluid [6]. The initial Gaussian surface-elevation distribution is centered on a point 600
km from both the south and west walls. By setting b = 5.92×10−11 m−2 the e-folding
radius is 130 km. The β-plane approximation, f = f0 + β y, is used, where f0 and
β are evaluated at 25oN (f0 = 6.16 × 10−5 s−1 and β = 2.07 × 10−11 m−1 s−1). The
radius of deformation at midbasin is thus Rd ≡

√
g H/f0 ≈ 65 km.

The initial symmetric anticyclonic velocity field is taken to be in exact geostrophic
balance f k× u = −g∇ η, and thus

u (x, y, 0) = 2
g

f
a b y e−b (x2 + y2) ,(6.3)

v (x, y, 0) = −2
g

f
a b x e−b (x2 + y2) .(6.4)

By setting a = 0.95m, the initial maximum surface azimuthal velocity is 1m s−1. The
timestep is 30 minutes and thus Cg is approximately 1.5; the results are relatively
insensitive to the precise choice of the timestep.

During the first inertial period (2π/f0 � 28 h 22mn) the initial condition adjusts
to the β-plane balance of the model. After this initial adjustment, the anticyclonic vor-
tex evolves purely westward at an average translation speed of β Rd

2 � 7.5 kmday−1.
The evolution of the flow-speed field and surface elevation is shown in Figure 6.2
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(a) (b)

Fig. 6.2. Isolines of the flow-speed field (row 1) and surface elevation (row 2) after one week
of simulation for the (a) P1 isoP2–P0−3, (b) PNC1 –P1−C pairs. The contour interval is 0.05ms−1

for the flow-speed field and 0.05 m for the surface elevation.

for the PNC1 –P1−C and P1 isoP2–P0−3 element pairs after one week of simulation.
Smooth surface elevations are obtained for both pairs. For the P1 isoP2–P0−3 pair,
noise gradually develops in the flow-speed field during the week of simulation while
results obtained with the PNC1 –P1−C pair are much smoother.

For this experiment δ1 and δ2 are similar to the first test. A GMRES iterative
method is used to solve for (5.15) and residuals are found to decrease by a factor
of 10−6 within 21 and 32 iterations for the PNC1 –P1−C and P1 isoP2–P0−3 pairs,
respectively, using a diagonal preconditioner.

The PNC1 –P1−C element pair is shown to give favorable results not only for the
propagation and dispersion of gravity waves, but also for the simulation of the slowly
propagating Rossby modes.

7. Conclusions. Most popular finite-element pairs result in having more vector
momentum than continuity discretized equations. Consequently, relevant problems
such as wave propagation may be poorly approximated. In this paper several new
pairs are proposed which lead to a good balance. Of these, one pair is shown to
be preferable; it has no pressure modes (assuming a triangulation into corners) and
gives smooth results for two basic equations embedded in the inviscid linear shallow-
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water equations. The latter set of equations is then solved using this new pair. Two
tests are performed: simulation of propagation of gravity waves in a circular basin
and simulation of evolution of an anticyclonic velocity field. In both experiments
the new pair gives better results than those obtained previously, and at much lower
computational and memory requirement costs. It is concluded that this pair is a very
promising choice for the discretization of the nonlinear shallow-water equations with
forcing and varying depth.
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Abstract. The evaluation of nearly singular single layer potentials encountered in boundary
element methods is treated by a new approach. The potential is expressed as a sum of a one-
dimensional integral and a correction term that vanishes for planar surfaces. The small variance of
the second term’s integrand allows the use of a quasi-Monte Carlo quadrature. Numerical results
show that a significant reduction in computational time is obtained over algorithms employing domain
subdivisions.

Key words. numerical integration, potential theory, boundary integral method, Monte Carlo
method
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1. Introduction. In boundary element methods, the solution of a boundary
value problem is expressed in terms of an integral over the boundary S of the original
domain. For potential problems, a solution φ is obtained by solving the Fredholm
integral equation

λ(p)φ(p) +

∫
S

φ(q)G(p, q) dσ = f(p), p ∈ S,(1.1)

where G = 1
4π

1
|p−q| . p = (ξ, η, ζ) ∈ R

3 is called the field point.

Discretization of (1.1) poses the task of evaluating

U =

∫
S

g(q) G(p, q) dσq,(1.2)

called the single layer potential with density g. A number of methods has been
described [4], [10] to deal with integrals where the integrand behaves like the funda-
mental solution of Laplace’s equation. However, usually the assumption that S is of a
particular form or has a certain parametrization is made, and/or the case where the
integral is nearly singular is ill treated. In this paper, we will relax the usual condi-
tions over the parametrization on S, and we also treat the case where U assumes a
moderate to a highly near singular character, as explained below. This is a topic of
interest in the boundary element method, in particular, in higher-order methods.

Let S be defined by a mapping T : P = [a, b]× [c, d] −→ S with the property

T (∂P) = ∂S.(1.3)
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It is useful to classify U according with the order of magnitude of the distance dist(p,S)
between the field point p and the surface S. Thus we say

if dist(p, S) = O(1), U is regular,(1.4)

if 0 < dist(p, S) ≤ o(1), U is nearly singular, and(1.5)

if dist(p, S) = 0, U is singular.(1.6)

We are mainly interested in the case in (1.5). In this case, the integral U above is
regular. However, as the integrand is near a singularity, standard quadrature formulae
are not appropriate. This case appears in the boundary element method, typically in
applications involving bodies with thin components where one part of S is close to
another part of this surface. Moreover, the occurrence of nearly singular integrals is
also associated with more general types of domains, depending on how the surface is
discretized or panelized. A large difference in size between two panels may create the
condition described in (1.5). Recently, it was shown by Luo, Liu, and Berger [7] that
conventional boundary integral methods will not degenerate even when applied to
thin structures with the thickness to length ratio in the micro (10−6) or nano (10−9)
scales. This is true as long as numerical difficulties, such as the calculation of the
nearly singular integrals, are addressed.

2. Semianalytical approach. Integrals of type (1.2), where g is a polynomial,
can be evaluated in closed form when the surface S is a flat polygon (see Newman [8]).
However, for an arbitrary surface S, numerical integration becomes mandatory in the
evaluation of U . Our approach here is to use analytical evaluation to a maximum
degree in this ultimately numerical task. This will sustain the accuracy and efficiency
of an analytical evaluation into the method.

Thus we decompose the surface integral U as

U = Uo + Uc,(2.1)

where Uo is a planar approximation to U in the sense that it is given as an integral
over a flat domain in R

3 and it coincides with U when S is flat. Uc is the correction
due to this approximation. As we will see, the inner integral in Uo will be evaluated
analytically.

A precise expression for Uo and Uc will be given later. Let us first describe the
change of variables defining the auxiliary flat domain.

3. New coordinate systems. The function G presents a weak singularity at
q = (x, y, z) = p, where it is unbounded. The fact that this function’s integral is
finite can be easily proved by using polar coordinates, since the jacobian will cancel
the singularity. This also suggests a way of evaluating U numerically as a regular
integral. Consider a new coordinate system given by

(x̃, ỹ, z̃) = M−1


 x

y
z


 ,

where the field point p is the origin lying on the x̃ỹ-plane, denoted by D. M−1 is a
3× 3 matrix. Using the polar coordinates ρ =

√
x̃2 + ỹ2, θ = arctan(ỹ/x̃) gives

U =
1

4π

∫ 2π

0

∫ R(θ)

0

g(ρ, θ)
ρ√

ρ2 + h2
J̃ dρdθ,(3.1)
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Fig. 1. The domains P, S,D and the transformations T,M , and M−1.

where h = z̃(ρ, θ) and R(θ) is the value of ρ, as a function of θ, at the boundary of S.
J̃ is the jacobian of the transformation M−1, and it is given by J̃ = 1

nD·nS , where nD

and nS are the respective normal vectors to D and S at q. Because D is flat, J̃ = n3,
where n3 is the third component of nS .

With this new setting, we see that as q approaches p, the integrand remains
bounded and approaches the value of gJ̃ at that point. Thus, in our approach, the
integral defining U is represented in the physical three-dimensional space.

There are three domains of interest in our problem: the parameter domain

P = [a, b]× [c, d],

the three-dimensional space R
3 (where S is embedded), spanned by the canonical

basis

C = {x, y, z},
or by the alternative basis

B = {x̃, ỹ, z̃},
and the flat domain

D = span{x̃, ỹ} = span{ρ, θ}
where the integrand is regularized.

The main difficulty associated with evaluating (3.1) is that it is not possible, in
general, to evaluate R, h, and J̃ as functions of (ρ, θ). This is a result of the lack
of restriction on S. Indeed, we assume S can be any parametrized surface with the
property (1.3). Then, the fact that the transformation T : P = [a, b] × [c, d] −→ S
is not, in general, invertible prevents us from evaluating R, h, and J̃ directly as
functions of variables in S or D (see Figure 1) and therefore from using a quadrature
formula where the location of the integration points are predefined. In other words,
the control over the integration points is lost; the relative locations of these points in
P will be altered by the transformation T . Thus our approach is to use a interpolation
quadrature [2] based on linear functions or on splines for computing Uo and a Monte
Carlo method for Uc. We will describe and give details about this approach in the
following sections.
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Fig. 2. The domain D and the surface S.

4. Independence on the field point. We saw that the change of variables
described in the last section, above formula (3.1), provides a regular and simple inte-
grand. However, the new variables are dependent on the field point p. This feature
is inconvenient from the computational point of view if the objective is to evaluate U
for several, say, L field points, as is usual in boundary element methods for numerical
solution of integral equations. Therefore, we will use a similar change of variables, but
independent on the field point. In this way, the matrix of the linear transformation
between C and B is determined once for all computations associated with the surface
S. Moreover, the integration points and certain parts of the integrands are computed
only once. Then consider B = {x̃, ỹ, z̃}, as defined in section 3, but with a fixed
origin O = (O1, O2, O3) ∈ S, which will be a free parameter specified as one finds
appropriate (see Figure 2). The optimum location of O is found by minimizing

max{|z̃| : ((x̃, ỹ, z̃)−O) ∈ S}.
Let us assume g may be expanded in powers of x−ξ, y−η, and z−ζ. In view of this,
for the evaluation of U , it is sufficient to consider Uµνυ :=

∫
S
Pµνυ(p− q) G(p, q) dσq,

where Pµνυ(p− q) = (x− ξ)µ(y − η)nu(z − ζ)υ.
Now define Uµνυ

o as

Uµνυ
o =

1

4π

∫ 2π

0

∫ R(θ)

0

Pµνυ(p− q)
ρ√

ρ2 + bρ+ a
dρdθ,(4.1)

where a = ξ2 + η2 + (z − ζ)2 and b(θ) = −2(ξ cos θ + η sin θ). The value z represents
an average value of z̃ and can be taken as z = O3.

We now have

Uµνυ = Uµνυ
o + Uµνυ

c ,

where

Uµνυ
c =

1

4π

∫ 2π

0

∫ R(θ)

0

Pµνυ(p− q)

{
ρ

r

1

n3
− ρ

r

}
dρdθ,(4.2)

with r = |p− q| and r =
√

(x̃− ξ)2 + (ỹ − η)2 + (z − ζ)2 =
√
ρ2 + bρ+ a.

5. Quadrature of Uo. The objective in this section is to express (4.1) in the
form

Unm
o =

1

4π

∫ 2π

0

F (R(θ), θ) dθ,(5.1)

where F is an exact closed form expression for the inner integral in (4.1), and to
subsequently apply a one-dimensional quadrature to (5.1). This quadrature will be



EVALUATION OF SINGLE LAYER POTENTIALS 85

based on nodes (θi, Fi) obtained from a sample of points (ui, vi) selected in ∂P :=
P1 ∪ P2 ∪ P3 ∪ P4, where

P1 = {(u, v) : v = c}, P2 = {(u, v) : u = b},
P3 = {(u, v) : v = d}, P4 = {(u, v) : u = a}.

Condition (1.3) assures that R is in fact evaluated at the boundary of S. This is
the only place where (1.3) is used. Thus the quadrature nodes (θi, Fi) are obtained
without the knowledge of their exact location. For smooth integrands F , a quadra-
ture based on interpolating cubic splines or Hermite functions [5] can be used. Al-
ternatively, noninterpolating methods could be used, such as the locally corrected
quadrature proposed by Strain [9], where singularities are allowed in the integrand F .

In order to make F (R(θ), θ) explicit, note that

(x, y, z) = M


 x̃

ỹ
z̃


−O,

where M = {Mij} is a 3× 3 matrix. It follows that on D we have




x = M11 ρ cos θ +M12 ρ sin θ −O1,
y = M21 ρ cos θ +M22 ρ sin θ −O2,
z = M31 ρ cos θ +M32 ρ sin θ −O3.

Therefore,

F (R(θ), θ) =

∫ R(θ)

0

(cρ+ d)µ(eρ+ f)ν(hρ+ l)υ
ρ√

ρ2 + bρ+ a
dρ,(5.2)

where d = −ξ −O1, f = −η −O2, l = −ζ −O3, c(θ) = M11 cos θ +M12 sin θ, e(θ) =
M21 cos θ + M22 sin θ, and h(θ) = M31 cos θ + M32 sin θ. Expanding the binomials
in (5.2), we get

F (R(θ), θ) =

µ∑
i=0

ν∑
j=0

υ∑
k=0

(
µνυ

ijk

)
dif j lkcµ−i(θ)eν−j(θ)hυ−k(θ)

× Hµ+ν+υ−i−j−k+1(θ),

where
(
µνυ
ijk

)
:=
(
µ
i

)(
ν
j

)(
υ
k

)
and

Ht(θ) =

∫ R(θ)

0

ρt√
ρ2 + bρ+ a

dρ.(5.3)

The integral (5.3) can be recursively evaluated using [3]

Ht(θ) =
ρt−1

t

√
ρ2 + bρ+ a− (2t− 1)b

2t
Ht−1(θ)− (t− 1)a

t
Ht−2(θ),
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with the starting functions

H0(θ) =




log |2ρ+ b+ 2
√

ρ2 + bρ+ a|
∣∣∣∣∣
ρ=R(θ)

ρ=0

, 4a �= b2,

log |b+ 2ρ|
∣∣∣∣∣
ρ=R(θ)

ρ=0

, 4a = b2,

(5.4)

H1(θ) =
√
ρ2 + bρ+ a

∣∣∣∣∣
ρ=R(θ)

ρ=0

− b

2
H0(θ).(5.5)

6. Quadrature of Uc by quasi-Monte Carlo. The evaluation of expres-
sion (4.2) is more complex than the numerical integration of (4.1). In the case of
Uo, it was possible to separate the variables ρ and θ in order to evaluate the inner
integral analytically. Because n3 is an arbitrary function associated with the given
surface S, the correction component Uc does not permit a similar variable separation.
Thus Uc has to be integrated numerically as a two-dimensional integral. Since Uc
presents the same discretization condition as Uo, namely, the location of the nodes
in the (ρ, θ) variables is arbitrary, this makes the problem more delicate. The ap-
parent solution1 seems to use interpolation in two variables, imitating the procedure
for evaluating (5.1). However, we believe that interpolation provides neither more
efficiency nor more accuracy than a Monte Carlo quadrature. Traditionally, since its
convergence rate is independent of the problem dimension, Monte Carlo quadrature
has been used in high-dimensional integrals as an efficient and robust alternative to
grid-based methods. In what follows we will outline the reasons for using a Monte
Carlo type of quadrature in a low-dimensional (i.e., two-dimensional) integral and
describe the specific approach employed.

Let (ρi, θi)i={1,...,N} be a sequence of points in D. To evaluate (4.2) we use an
integration formula QN of the form

QN (Uc) = A(D)µN (K),(6.1)

where

A(D) =
1

4π

∫ 2π

0

R(θ) dθ,

K = Pµνυ(p− q)

{
ρ

r

1

n3
− ρ

r

}
,

and µN denotes the sample mean of K on D, given as

µN (K) =
1

N

N∑
i=1

K(ρi, θi).

Note that the evaluation of A(D) is intimately related with the numerical integra-
tion of Uo. From (5.1), we see that A(D) is a special case, where F (R(θ), θ) ≡ R(θ).

1Strain’s approach [9] does not seem applicable here because of its restriction that the domain
of integration must be a hypercube.
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Fig. 3. The effect of the partitioning algorithm represented by the location of the integration
nodes in the θ − ρ plane bounded by R(θ). Here Nc = 1, and S is a curved quadrilateral.

As is well known in the theory of Monte Carlo methods, there are basically two
resources for improving the convergence rate of our approximation (6.1) to Uc. One
is to force the nodes to be as uniform as possible, and the other is to reduce somehow
the variance

σ2(K) :=

∫
D

(K −K)2 dρdθ,

where K is the mean of the integrand K.
We will use both means to obtain a suitable algorithm for the computation of

Uc. The particular procedure to achieve this goal in the correction integral will be
described next.

The control variates [1], [6, Chapter 6] form of variance reduction is in fact used
from the beginning in our approach to evaluate the single layer potential as in the
decomposition (2.1). The term

{
ρ

r

1

n3
− ρ

r

}

in K vanishes where the S is flat and, for moderate curvatures in S, presents small
variances.

The other resource that we will use to improve convergence rates is the uni-
formization of the nodes distribution over the domain of integration.

The sequence of the nodes will fill the integration domain more uniformly and less
uncorrelatedly than random nodes characterizing a quasi-Monte Carlo formula. For
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our case, the transformations T and M would void any deterministic choice of points
in P. In order to obtain low-discrepancy nodes, we combine the stratification and the
acceptance-rejection methods [6] into a partitioning algorithm. Thus we divide the
ρ−θ domain in approximately equal sized cells, or subregions, and we accept or reject
the pseudorandom generated points for the formula (6.1) until an equal number of
subnodes Nc are present in each cell. A typical example of the effect of this algorithm
can be seen in Figure 3, where the distribution of the integration nodes in the θ − ρ
plane is represented. In this figure, the bounding curve is R(θ), given for a curved
quadrilateral with equal, straight sides, and the cells are rectangles with one subnode.

7. Numerical results. In this section we present numerical results obtained
from the Monte Carlo-based method described above and compare them with a stan-
dard quadrature employing the Gauss–Legendre formula combined with subdivision
of the integration domain. This subdivision takes place whenever dist(p, S) becomes
small compared with the area of S. All results in this section are believed to have
relative error less than 0.3%.

Let Sc be a curved quadrilateral given by

Sc : (x(u, v), y(u, v), z(u, v)) = T (u, v) = (u, v, 0.01 sinu sin v + 0.01)

and represented in Figure 4. In Figure 5, the dotted line represents a subdivision
method, and the solid line indicates quasi-Monte Carlo. The computing time (on a
UNIX workstation) is plotted as a function of the number L of single layer potentials
computed, each layer potential corresponding to a field point. Thus up to 1000 field
points pi were chosen satisfying the condition dist(pi, S) ≥ 10−2. For L ≈ 28, quasi-
Monte Carlo requires less computational time than a standard subdivision method.
The graph shows monotonically increasing linear functions, and for a large number of
evaluations (1000 field points), we see a factor of 3 difference between the two meth-
ods. This difference is due to the fact that in our field point independent approach,
information such as the location of the integration nodes and parts of the integrands
are reused in all the integrals evaluated. In particular, calls to a subroutine or func-
tion defining the transformation T are made only for the first integral. Furthermore,
the value of A(D) in (6.1) is fixed. Hence the effort to evaluate successive integrals
becomes minimal with the increase of L.

Let us now comment on another example. Suppose now that the surfaces over
which the integration is done are a family of planar quadrilaterals given as

Sε : (x(u, v), y(u, v), z(u, v)) = T (u, v) = (u, v, ε),

where 10−7 ≤ ε ≤ 0.1. In this case, Uc = 0, and the Monte Carlo method is not
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Fig. 5. The results for the surface Sc and for dist(pi, S) ≥ 10−2. The dotted line represents
the subdivision method, and the solid line indicates the quasi-Monte Carlo method.

necessary to use. The integrals are evaluated by one-dimensional quadrature since

U = Uo.

In Figure 6, with the same representations for the dotted and solid line, we see the
computational time as a function of dist(pi, s) = ε, in the range of ε specified above.
Here L = 500, and the field points are distributed uniformly over the x-axis. As can
be seen, the computation of Uo is not affected by the degree of the near singularity,
represented by ε. On the other hand, the use of standard quadratures, even with
domain subdivision, suffers from the necessity of an excessive number of nodes and/or
domain subdivisions.

It should be noted that under certain conditions the algorithm presented here
will not be appropriate in its present form. Although it will provide good results
for the case (1.4) because the integrand will be smooth and well approximated by
polynomials, its efficiency will not be superior to a regular quadrature with a small
number of nodes. Also, for surfaces with large curvature, the contribution from Uc
will be large compared with Uo, and a large number of nodes may be required to
sustain accuracy.

8. Conclusion. A method for computing nearly singular single layer potentials
has been introduced. Restrictions on the parametrization of the integration domain
are relaxed, and the original integral is decomposed in a sum two terms, Uo and
Uc, where the first is an approximation which coincides with the single layer potential
when the surface is planar. The term Uc provides the correction when the surface loses
its planar character. This decomposition not only allows Uo to be evaluated in terms



90 LEANDRO FARINA

0 1 2 3 4 5 6 7 8 9 10

x 10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

dist(p,S)

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
on

ds
)

Fig. 6. The results for Sε and for L = 500. The dotted line represents the subdivision method,
and the solid line indicates the quasi-Monte Carlo method.

of a one-dimensional regular quadrature but also reduces the integrand variance in
Uc, making it viable to apply a two-dimensional quadrature based on pseudorandom
nodes. This latter quadrature also employs a uniformization algorithm to the nodes
distribution in order to improve the formula convergence rate. Also, because the
quadrature of Uc is not grid-based, adaptiveness can be easily incorporated.

Usually, in boundary element methods, integrals like U have to be computed
several times according with different field points. The method described above ex-
plores this fact by reusing information from previous computations. Numerical results
clearly show an economy in computational costs for this approach when compared with
standard quadrature employing domain subdivisions. For surfaces with moderate cur-
vature, previously prohibitive nearly singular integrals where the ratio distance from
the field point to the surface average length reaches 10−7 or less can be dealt with
using the present algorithm without significant increase in the computational cost.

It may be possible to extend this approach to other types of integrands, such as
the double layer potential. In order to achieve this successfully, one needs to efficiently
integrate the strong near singularity that will be present in U .
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Abstract. A class of FETI methods for the mortar approximation of a vector field problem
in two dimensions is proposed. Edge element discretizations of lowest degree are considered. The
method proposed can be employed with geometrically conforming and nonconforming partitions.
Our numerical results show that its condition number increases only with the number of unknowns
in each subdomain and is independent of the number of subdomains and the size of the problem.
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1. Introduction. In this paper, we consider the boundary value problem

Lu := curl (a curlu) +A u = f in Ω,
u · t = 0 on ∂Ω,

(1)

with Ω a bounded polygonal domain in R
2
. Here

curl v :=




∂v

∂x2

− ∂v

∂x1


 , curlu :=

∂u2

∂x1
− ∂u1

∂x2
;

see, e.g., [17]. The coefficient matrix A is a symmetric, uniformly positive definite
matrix-valued function with entries Aij ∈ L∞(Ω), 1 ≤ i, j ≤ 2, and a ∈ L∞(Ω) is a
positive function bounded away from zero. The domain Ω has unit diameter, and t
is the unit tangent to its boundary.

The weak formulation of problem (1) requires the introduction of the Hilbert
space H(curl ; Ω), defined by

H(curl ; Ω) :=
{
v ∈ (L2(Ω))2| curlv ∈ L2(Ω)

}
.

The space H(curl ; Ω) is equipped with the following inner product and graph norm:

(u,v)curl :=

∫
Ω

u · v dx+

∫
Ω

curlu curlv dx, ‖u‖2curl := (u,u)curl.
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The tangential component u · t, of a vector u ∈ H(curl ; Ω) on the boundary ∂Ω,

belongs to the space H− 1
2 (∂Ω); see [17, 8]. The subspace of vectors in H(curl ; Ω)

with a vanishing tangential component on ∂Ω is denoted by H0(curl ; Ω).

For any D ⊂ Ω, we define the bilinear form

aD(u,v) :=
∫
D
(a curlu curlv +A u · v) dx, u, v ∈ H(curl ; Ω).(2)

The variational formulation of (1) is as follows.

Find u ∈ H0(curl ; Ω) such that

aΩ(u,v) =

∫
Ω

f · v dx, v ∈ H0(curl ; Ω).(3)

We discretize this problem using edge elements, also known as Nédélec elements; see
[24]. These are vector-valued finite elements that ensure only the continuity of the
tangential component across the common side of adjacent mesh triangles, as is phys-
ically required for the electric and magnetic fields, which are solutions of Maxwell’s
equations.

In this paper, we consider a mortar approximation of this problem. The com-
putational domain is partitioned into a family of nonoverlapping subdomains, and
independent triangulations are introduced in each subdomain. The weak continuity
of the tangential component of the solution is then enforced by using suitable integral
conditions that require that the jumps across the subdomain inner boundaries are
perpendicular to suitable finite element spaces defined on the edges of the partition.
The mortar method was originally introduced in [9] for finite element approximations
in H1. Mortar approximations for edge element approximations in two and three di-
mensions have been studied in [3] and [4], respectively. There has also been additional
recent work for the case of sliding meshes for the study of electromagnetic fields in
electrical engines; see, e.g., [25, 26].

The applications that we have in mind are mainly problems arising from static
and quasi-static Maxwell equations (eddy current problems); see, e.g., [6, 5]. In this
paper, we consider only the model problem (3), where the dependency on the time
variable or on the frequency has been eliminated, and we generically refer to it as
Maxwell’s equations. A good preconditioner for this model problem is the first step
for the efficient solution of linear systems arising from the edge element approximation
of static problems, and of time- or frequency-dependent problems arising from the
quasi-static approximation of Maxwell’s equations.

The aim of this paper is to build an iterative method of finite element tearing and
interconnecting (FETI) type for a mortar edge element approximation of problem (1).
FETI methods were first introduced for the solution of conforming approximations of
elasticity problems in [15]. In this approach, the original domain Ω is decomposed into
nonoverlapping subdomains Ωi, i = 1, . . . , N . On each subdomain Ωi a local stiffness
matrix is obtained from the finite element discretization of aΩi(·, ·). Analogously, a
set of right-hand sides is built. The continuity of the solution corresponding to the
primal variables is then enforced by using Lagrange multipliers across the interface
defined by the subdomain inner boundaries. In the original FETI algorithm, the
primal variables are then eliminated by solving local Neumann problems, and an
equation in the Lagrange multipliers is obtained. Several preconditioners have been
proposed and studied for its solution; see, e.g., [14, 16, 23, 13, 30, 27, 19, 33].
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Many iterative methods for the solution of linear systems arising from mortar
approximations have been proposed. We cite, in particular, [22, 1, 20, 2, 10, 11, 7,
12, 21, 34] and refer to the references therein for a more detailed discussion.

To our knowledge, the application of FETI-type preconditioners to mortar approx-
imations was first explored in [21, 18] and then tested more systematically in [29]. The
idea is fairly simple and relies on the observation that mortar approximations with
Lagrange multipliers and FETI formulations, where the pointwise continuity across
the substructures is enforced by using Lagrange multipliers, give rise to indefinite lin-
ear systems that have the same form. FETI preconditioners can then be devised for
mortar approximations in a straightforward way; see [29]. In this paper, we apply the
FETI preconditioner introduced in [19] for the case of nonredundant Lagrange multi-
pliers to the mortar approximation originally studied in [3]. Our work generalizes our
previous study of FETI preconditioners for two dimensional conforming edge element
approximations in [33]. As opposed to the H1 case, the generalization of FETI pre-
conditioners to mortar approximations requires some modifications in H(curl ). More
precisely, the coarse components of the preconditioners need to be modified here in
order to obtain a scalable method, and a suitable scaling matrix Q has to be intro-
duced; see section 5. As shown in [29], no modification appears to be necessary for
nodal finite elements in H1. Finally, we note that in this paper we consider only
problems without jumps of the coefficients. For conforming approximations, FETI
methods that are robust with respect to large variations of jumps of the coefficients
have been developed and studied (see [27, 19]), but the case of nodal or edge element
approximations on nonmatching grids still needs to be explored and is left for a future
work.

The outline of the remainder of this paper is as follows. In section 2, we introduce
a partition of the domain Ω and local finite element spaces. In section 3, we consider
the mortar condition, and in section 4, we present our FETI method, in terms of
a projection onto a low dimensional subspace and a local preconditioner. The ex-
pressions for the projection and the preconditioner are then given in section 5, and
some numerical results for geometrically conforming and nonconforming partitions
are presented in section 6.

2. Finite element spaces. We first consider a nonoverlapping partition of the
domain Ω,

FH =
{
Ωi, i = 1, . . . , N |

N⋃
i=1

Ωi = Ω ; Ωk ∩ Ωl = ∅ , 1 ≤ k < l ≤ N

}
,

such that each subdomain Ωi is a connected polygonal open set in R
2
. We remark

that FH does not need to be geometrically conforming. We denote the diameter of
Ωi by Hi and the maximum of the diameters of the subdomains by H:

H := max
1≤i≤N

{Hi}.

The elements of FH are also called substructures. Let ti be the unit tangent to ∂Ωi,
chosen so that, following the direction of ti, Ωi is on the left.

For every subdomain Ωi, we define the set of its open edges that do not lie on
∂Ω by {Γi,j | j ∈ Ii}. We then define the interface Γ, also called the “skeleton” of the
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decomposition, as the union of the edges of FH that do not lie on ∂Ω:

Γ :=

N⋃
i=1

∂Ωi \ ∂Ω =
N⋃
i=1

⋃
j∈Ii

Γi,j .

We also define the local spaces of restrictions of vectors in H0(curl ; Ω) to Ωi:

H�(curl ; Ωi) := {ui ∈ H(curl ; Ωi)| ui · t = 0 on ∂Ω ∩ ∂Ωi}.

For every substructure Ωi, we consider a triangulation Ti,h made of triangles or
rectangles. Let Ei,h be the set of edges of Ti,h. For every edge e ∈ Ei,h, we fix a
direction, given by a unit vector te. The length of the edge e is denoted by |e|. The
local triangulations are assumed to be shape-regular and quasi-uniform, and they do
not need to match across the inner boundaries of the subdomains. We define h as the
maximum of the mesh-sizes of the triangulations.

We next consider the lowest-order Nédélec finite element spaces, originally intro-
duced in [24], defined on each subdomain Ωi as

Xh(Ωi) = Xi := {ui ∈ H�(curl ; Ωi)| ui|t ∈ R(t), t ∈ Ti,h},

where, in the case of triangular meshes, we have

R(t) :=
{[

α1 + α3x2

α2 − α3x1

]
| αk ∈ R

}
.

We recall that the tangential component of a vector ui ∈ Xi is constant on the edges
of the triangulation Ti,h and that the degrees of freedom can be chosen as the values
of the tangential component on the edges

λek(ui) = u
(i)
k := ui · tek |ek , ek ∈ Ei,h.(4)

We next introduce the product space

Xh(Ω) = X :=

N∏
i=1

Xi ⊂
N∏
i=1

H�(curl ; Ωi),

the spaces of tangential vectors

Wh(∂Ωi) =Wi := {(ui · ti) ti restricted to ∂Ωi \ ∂Ω | ui ∈ Xi},

and the product space

Wh(Γ) =W :=

N∏
i=1

Wi.

We note that we have chosen a different definition of the trace spaces than that
employed in [33]. Here, the spaces Wi consist of piecewise constant tangential vectors
on ∂Ωi \ ∂Ω.

Throughout this paper, we will use the following conventions. We will use the
same notation for the vectors in Xi and tangential vectors in Wi. We denote a
generic vector function in Xi using a bold letter with the subscript i, e.g., ui, and
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Fig. 1. Example of a partition of the domain Ω. We show the directions of the subdomain
boundaries, given by the unit vectors {ti}, those of the fine edges on the interface Γ, and the
corresponding values of the degrees of freedom t(i).

the column vector of its degrees of freedom, defined in (4), using the same letter with
the superscript (i), e.g., u(i). Its kth degree of freedom corresponding to the edge ek,

defined in (4), is u
(i)
k . A generic vector in the product space X (or W ) is also denoted

by a bold letter, e.g., u, and the corresponding vector of degrees of freedom by the
same letter, e.g., u. We will use the same notation for the spaces of functions Xi and
Wi and the corresponding spaces of degrees of freedom.

Given the unit vectors ti, the column vectors t
(i) are defined by

t
(i)
k := ti · tek , ek ⊂ ∂Ωi \ ∂Ω, ek ∈ Ei,h.

We will need these tangential vectors in the definition of our FETI method; see section
5. We remark that in case all the edges ek on ∂Ωi have the same direction of the
boundary ∂Ωi, the entries of the vector t(i) are equal to one. Figure 1 shows an
example of a partition, with the directions of the subdomain boundaries and of the
fine edges on the interface Γ, and the corresponding degrees of freedom t(i).

Finally, for i = 1, . . . , N , we define the discrete harmonic extensions with respect
to the bilinear forms aΩi(·, ·) into the interior of Ωi:

Hi : Wi −→ Xi.

We recall that Hiui minimizes the energy aΩi(Hiui,Hiui) among all the vectors of
Xi with tangential component equal to ui on ∂Ωi \ ∂Ω.

3. A mortar condition. The mortar method presented in this section was
originally developed and studied in [3]. We consider the skeleton Γ and choose a

splitting of Γ as the disjoint union of some edges {Γk,j}, which we call mortars. We
note that this partition is not in general unique; see Figure 2 (left) for an example of
decomposition.

A unique set of indices corresponds to this choice, and we denote it by

IM := {m = (k, j) such that Γk,j is a mortar }.
To simplify the notation, we denote the mortars by {Γm| m ∈ IM}. We have

Γ :=

M⋃
i=1

Γ
m
, Γm ∩ Γn = ∅, if m �= n and n,m ∈ IM .
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Fig. 2. An example where the domain is decomposed into three (rectangular) nonoverlapping
subdomains. The skeleton has two partitions (figure on the left): one in terms of mortars (solid
dark line) and the other in terms of nonmortars (long dashed lines). On the right is an example
of discretization of the subdomains by means of triangular grids that do not match at the interfaces
between adjacent subdomains.

For any m in IM , we denote by Wm the space W k,j (m = (k, j) ∈ IM ) given by
W k,j := {(uk · tk) tk restricted to Γk,j | uk ∈ Xk}.

We note that the vectors in W k,j are also the restrictions of vectors in Wk to Γ
k,j .

Before introducing the mortar space, we need to fix a last point. Let Γm be a mortar
edge with m = (k, j) and u ∈ Xh: for almost every x ∈ Γm, there exists an index
l (1 ≤ l ≤ N), l �= k such that x ∈ Γm ∩ ∂Ωl. At this point x we have two fields,
namely, uk and ul. Since the domain decomposition is in general nonconforming, the
value of l depends on x, and we denote by Jm the set of indices l (1 ≤ l ≤ N) such
that Γm ∩ ∂Ωl �= ∅. We then define

u−k(x) := ul(x), x ∈ Γm ∩ ∂Ωl, l ∈ Jm.

The function u−k is defined for almost all x ∈ Γm. In general, it is not the tangential
component at Γm of a field u ∈ H�(curl ; Ωi): it can indeed correspond to tangential
components from different subdomains which share a subset of Γm and live on different
grids.

The equality between u−k ·tk and uk ·tk at Γm becomes too stringent a condition
since the two fields are in general defined on different and nonmatching grids. As
is usually done in nonconforming mortar domain decomposition methods, we impose
these constraints in a weak form by means of suitable Lagrange multipliers. Here, the
Lagrange multiplier space consists of the tangential components of the shape functions
at the mortar edges; see [3].

Remark 3.1. The definition of the mortar space for the edge elements is simpler
than for nodal finite elements. In the nodal case, the space of Lagrange multipliers
cannot be chosen as a space of traces on the mortar edges but only as a suitable
subspace of it. In the edge case, it is not necessary to decrease the dimension of the
multiplier space since the information is associated to edges and not to nodes; see [9]
for more details.

The Lagrange multiplier (mortar) space is now defined by

{v ∈ L2(Γ) | v|Γm ∈Wm, m ∈ IM}.
We remark that this is a space of tangential vectors on Γ. The transmission conditions
at the interface between adjacent subdomains are then weakly imposed by means of
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these Lagrange multipliers. A solution u ∈W is required to satisfy the constraints

∫
Γm
(uk · tk − u−k · tk )v · tk ds = 0, v ∈Wm, m = (k, j) ∈ IM .(5)

The set of transmission conditions can be expressed in matrix form in the following
way.

Let wk
i be the basis function associated to the kth mesh edge of ∂Ωi \ ∂Ω. We

introduce two matrices C and D by

Ckl :=

∫
Γm
(wk

i · ti)(wl
i · ti) ds = δkl |ek|, ek, el ⊂ Γm,

Dkn :=

∫
Γm
(wk

i · ti)(wn
r · ti) ds, ek ⊂ Γm, en ⊂ ∂Ωr, r ∈ Jm,

where Γm = Γi,j . Then the matching conditions (5) have the form

Bu = 0, where B = C −D.

We remark that the entries of C and D depend on the particular choice of degrees of
freedom defined in (4).

The matrix B can also be written as

B =
[
B(1) B(2) · · · B(N)

]
,

where the local matrices B(i) act on vectors in Wi. The entries of B do not belong
in general to {0, 1,−1} as in the conforming case described in [33], and, since we are
working with nonmatching grids, they take into account the edge intersections at the
interfaces.

We conclude this section by recalling an a priori estimate of the approximation
error for the mortar edge element method in two dimensions (see [3] for a proof).

Theorem 3.1. Assume that the exact solution u of (1) is such that ui ∈ H1(Ωi)
2

and curlui ∈ H1(Ωi), and that the data f is such that fi ∈ H1(Ωi)
2. Then the

following estimate holds:

||u− uh||∗,Ω ≤ C

N∑
i=1

hi(||ui||H1(Ωi)2 + ||curlui||H1(Ωi)2 + ||fi||H1(Ωi)2),

where

||u− uh||∗,Ω =
(

N∑
i=1

||u− uh||2L2(Ωi)2
+ ||curl (u− uh)||2L2(Ωi)

) 1
2

.

4. A FETI method. In this section, we introduce a FETI method for the
solution of the linear system arising from the mortar edge element approximation of
problem (3).

We first assemble the local stiffness matrices, relative to the bilinear forms aΩi(·, ·),
and the local load vectors. The degrees of freedom that are not on the interface Γ
belong only to one substructure and can be eliminated in parallel by block Gaussian
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elimination. Let f (i) be the resulting right-hand sides, and let S(i) be the Schur
complement matrices

S(i) : Wi −→Wi,

relative to the degrees of freedom on ∂Ωi \ ∂Ω.
We recall that the local Schur complements satisfy the following property:

u(i)tS(i)u(i) = aΩi(Hiui,Hiui);(6)

see, e.g., [28, 32].
Following [19, 33], we can then write our mortar problem as

Su+Btλ = f,
Bu = 0,

(7)

where

u :=




u(1)

...
u(N)


 ∈W, S := diag{S(1), . . . ,S(N)}, f :=




f (1)

...
f (N)


 .

The vector λ is a Lagrange multiplier relative to the weak continuity constraint
Bu = 0.

We remark that the S(i) are always invertible, and, consequently, there is no
natural coarse space associated to the substructures; we are in a similar case as the
one considered in [13]. We first find u from the first equation in (7) and substitute its
value in the second equation. We obtain the system

Fλ = d,(8)

where

F := B S−1 Bt, d := B S−1 f.

Following [19, 33, 29], we now define a preconditioner. Since we assume that
the coefficients do not have any jump, we do not need to introduce a set of scaling
matrices as is required for problems with coefficient jumps; see, e.g., [31, 32, 19, 33].
We introduce the matrices

R :=
[
R(1) R(2) · · · R(M)

]
, G := QBR,(9)

where R(i) are vectors in W , related to the substructures {Ωi}, and Q is a suitable
invertible matrix that we will specify in the next section. More precisely, we suppose
that R(i) is obtained from a local vector ri ∈Wi on ∂Ωi \ ∂Ω by extending it by zero
on the boundaries of the other substructures. We will make a particular choice of R
for problem (3) in section 5 and specify the dimension M .

Following [13, 33], we define the projection

P := I −G(GtFG)−1GtF

onto the complement of Range(G). This projection is orthogonal with respect to the
scalar product induced by F . Following [19, 33], we next define the preconditioner

M̂−1 := (BBt)−1 BSBt (BBt)−1.
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It can be easily seen that BBt is invertible and is block-diagonal only if the partition
FH is geometrically conforming.

Now we consider a projected conjugate gradient method as in [13, 33].

1. Initialize

λ0 = G(GtFG)−1Gtd

q0 = d− Fλ0

2. Iterate k = 1, 2, · · · until convergence

Project: wk−1 = P tqk−1

Precondition: zk−1 = M̂−1wk−1

Project: yk−1 = Pzk−1

βk = 〈yk−1, wk−1〉/〈yk−2, wk−2〉 [β1 = 0]

pk = yk−1 + βkpk−1 [p1 = y0]

αk = 〈yk−1, wk−1〉/〈pk, Fpk〉
λk = λk−1 + αkpk

qk = qk−1 − αkFpk

The first projection can be omitted; because of the choice of the initial vector
λ0, we have wk−1 = qk−1 after the first projection step. Here we have denoted the
residual at the kth step by qk. In practice, partial or full reorthogonalization may be
required; cf. [16].

The method presented here is equivalent to using the conjugate gradient method
for solving the preconditioned system

PM̂−1P tFλ = PM̂−1P td, λ ∈ λ0 + V,(10)

with

V := Range(P ).(11)

We remark that the matrices S and S−1 do not need to be calculated in practice.
The action of S on a vector requires the solution of a Dirichlet problem on each
substructure, while the action of S−1 requires the solution of a Neumann problem on
each substructure; see [28, Ch. 4].

Remark 4.1. The extension of FETI-type preconditioners to the case of problems
with jump coefficients on nonmatching grids appears to be hard, both for nodal and
Nédélec finite elements. In the conforming case, suitable scaling diagonal matrices are
employed. For each degree of freedom on the subdomain interface (a node for nodal
elements or an edge for Nédélec elements), the corresponding entry is constructed with
the values of the coefficients on the subdomains that share this degree of freedom; see,
e.g., [19, 33]. This can certainly be generalized to the corresponding mortar methods
built on geometrically conforming partitions. However, in the general case, an edge
on the interface may belong only partially to a subdomain, and it is reasonable to
assume that the scaling matrices should also take into account the relative size of the
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intersection of an edge with a subdomain boundary. Presently, it is not clear to the
authors how exactly this can be accomplished, and this generalization is left for a
future work.

5. A particular choice of the matrices R and Q. In this section, we consider
a particular choice of the matrices R and Q in the definition of the FETI algorithm
for problem (3).

We proceed in a similar way as in [33, sect. 5], but we will need to introduce a
suitable matrix Q, different from the identity.

The definition of R is the same as in the conforming case (see [33, sect. 5]) and
is given in terms of local vectors.

Definition 5.1. The local vectors {ri, i = 1, . . . , N} with the corresponding
vectors of degrees of freedom {r(i)} are the unique vectors that satisfy

r(i)tv(i) =
∑

ek⊂∂Ωi\∂Ω
ek∈Ei,h

r
(i)
k v

(i)
k =

∫
∂Ωi\∂Ω

vi · ti ds, vi ∈Wi.

The global vectors R(i) are obtained by extending the local vectors r(i) by zero outside
∂Ωi.

We can easily find that

r
(i)
k = |ek| t(i)k , ek ⊂ ∂Ωi \ ∂Ω.

The vectors ri have then the same direction as the ti and are scaled using the lengths
of the edges of the triangulations Ti,h.

We then define the matrix Q as

Q := (BBt)−1.(12)

Remark 5.1. In the case of a conforming triangulation the matrix Q is a multiple
of the identity; see [33]. For matching grids, we then obtain the same preconditioner
as introduced in [33] for conforming approximations. Here our choice of Q does not
require any additional calculation since (BBt)−1 is also needed for the application of

the preconditioner M̂−1. When Q is applied to a vector, this requires the solution of
a linear system involving BBt. The matrix BBt is block-diagonal only in the case
of conforming partitions. However, it can be shown that if the two meshes across
the interface are not too different, it is strongly diagonally dominant. It is thus well
conditioned, and few iterations of the conjugate gradient method are enough to obtain
the solution.

The idea behind the choice of the matrix Q can be explained in the following
way. In the conforming case, a proof of an upper bound for the condition number
of the operator PM̂−1P tF that is independent of the number of substructures is
possible if certain tangential vectors have a mean value of zero on the boundary of
each substructure. In particular, for the case with no jumps, it is necessary that

u = Bt(BBt)−1Bw

has mean value zero if w ∈W satisfies

µtBw = 0, µ ∈ Range(G);
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see [33, sect. 5]. One can show that this is not satisfied in our more general case but
that this condition holds if a modified matrix G is employed,

G̃ := QBR,

and our numerical results in section 6 confirm our choice of modified coarse space.
It remains to decide how many of the local vectors R(i) need to be considered in

the definition of the matrix R. We introduce GH as the dual graph of the partition
FH . Thus GH has a vertex for each substructure of FH , and there is an edge in
GH between two vertices if the intersection of the boundaries of the corresponding
substructures has positive measure. As in [33], we define the matrix R by

R :=

{ [
R(1) R(2) · · · R(N−1)

]
if GH is two-colorable,[

R(1) R(2) · · · R(N)
]

otherwise .
(13)

The following result can be proven using [33, Lem. 5.2 and Thm. 5.1].
Lemma 5.1. Let R be defined in (13). Then the matrix G has full rank.
Remark 5.2. An analogous FETI method can also be devised for problems in-

volving the bilinear form
∫

Ω

(a divu divv +A u · v) dx, u,v ∈ H(div ; Ω),

discretized with the lowest-order Raviart–Thomas spaces. Here, H(div ; Ω) is the
space of vectors in (L2)2 with divergence in L2. Since, in two dimensions, vectors
in the Raviart–Thomas spaces can be obtained from those in the Nédélec spaces by
a rotation of 90 degrees, the unit outward normal vectors ni to the boundaries ∂Ωi,
instead of the unit tangent vectors ti, have to be employed in the construction of
the local functions ri. All the definitions in this paper remain valid in this case. For
Raviart–Thomas discretizations in three dimensions, an analogous method can also
be defined, and all our definitions remain valid.

6. Numerical results. The purpose of this section is to show that, for problems
without jumps, the FETI method proposed here performs similarly to the correspond-
ing method for conforming approximations; see [33, sect. 6]. In particular, our method
appears to be scalable, its condition number depends only on the number of degrees
of freedom per subdomain, and it is quite insensitive to variations of the ratios of the
coefficients.

In many iterative substructuring methods, an important role is played by the ratio
H/h that measures the number of degrees of freedom per subdomain. In particular,
the condition number of these methods grows only quadratically with the logarithm of
H/h; see, e.g., [28]. This ratio is regarded as a local quantity and can vary greatly from
one subdomain to another. In our numerical results, we always report the maximum
value of this ratio taken over the subdomains.

We consider the domain Ω = (0, 1)2 and assume that the coefficient matrix A is
diagonal and equal to

A =

[
b 0
0 b

]
.

In our first set of results, we consider a family of geometrically conforming par-
titions of Ω, into 2d × 2d substructures of equal size, with d = 1, 2, 3, 4. For a fixed
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Fig. 3. A conforming partition and a checkerboard-type discretization.

Table 1
The FETI method for conforming partitions with h1/h2 = 4/3. Estimated condition number

and number of CG iterations necessary to obtain a relative residual ‖qk‖/‖f‖ less than 10−6 (in
parentheses), versus H/h and h. Case of a = 1, b = 1. The asterisks denote the cases for which we
do not have enough memory to run the corresponding algorithm.

H/h 32 16 8 4

1/h = 32 (1600 el.) - 1.805 (5) 2.941 (9) 2.179 (8)
1/h = 64 (6400 el.) 2.151 (6) 4.045 (11) 3.035 (10) 2.165 (7)
1/h = 128 (25600 el.) 5.314 (12) 4.175 (12) 3.013 (9) *
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Fig. 4. Case with a = 1, b = 1. Estimated condition numbers (asterisk) from Tables 1 (left)
and 3 (right), and least-square second order logarithmic polynomial (solid line) versus ρ = H/h for
the FETI method for conforming (left) and nonconforming (right) partitions.

partition, we consider two kinds of uniform triangulations for the substructures in
such a way that on the interface between two adjacent substructures the meshes do
not match. The ratio between the mesh-sizes of the two triangulations is h1/h2 = 4/3.
Figure 3 shows an example of this checkerboard-type discretization for d = 2.

We first consider the case a = 1 and b = 1. In Table 1, we show the estimated
condition number and the number of iterations to obtain a relative residual ‖qk‖/‖f‖
less than 10−6 as a function of the diameter of the finer mesh and the partition. Here
qk is the kth residual as defined in the algorithmic description given in section 4.
For a fixed ratio H/h, the condition number and the number of iterations are quite
insensitive to the dimension of the fine meshes. In addition, even for nonmatching
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Table 2
The FETI method for conforming partitions with h1/h2 = 4/3. Estimated condition number

and number of CG iterations necessary to obtain relative preconditioned residual (‖qk‖/‖f‖) less
than 10−6 (in parentheses), versus H/h and b. Case of 1/h = 128 and a = 1.

H/h 8 16 32

b=0.0001 3.091 (16) 4.216 (20) 5.364 (18)
b=0.001 3.078 (14) 4.21 (18) 5.358 (16)
b=0.01 3.069 (13) 4.203 (16) 5.353 (15)
b= 0.1 3.044 (11) 4.192 (14) 5.346 (14)
b= 1 3.013 (9) 4.175 (12) 5.314 (12)
b= 10 2.992 (8) 4.114 (11) 5.154 (11)
b= 100 2.939 (9) 3.829 (11) 4.379 (11)
b= 1000 2.501 (7) 2.746 (8) 2.486 (7)
b=1e+04 1.418 (4) 1.493 (4) 1.533 (4)
b=1e+05 1.037 (2) 1.042 (2) 1.044 (2)
b=1e+06 1.06 (2) 1.046 (2) 1.044 (2)
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Fig. 5. A block consisting of five subdomains, employed for building a nonconforming partition.

grids, the ratio H/h appears to play an important role; see also Figure 4.

In Table 2, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 128 and a = 1, and for the partitions into 2d by 2d

substructures with d = 2, 3, 4, the estimated condition number and the number of
iterations are shown as a function of H/h and b. The number of iterations and the
condition number appear to be bounded independently of the ratio of the coefficients.

We then consider some test cases relative to geometrically nonconforming parti-
tions of the domain (0, 1)2. We consider partitions consisting of 2d × 2d equal blocks,
d = 0, 1, 2, 3. A block is made of five nonconforming subdomains and is shown in Fig-
ure 5 together with a possible triangulation. Figure 6 shows a partition for the case
d = 1 (four blocks and twenty subdomains). The number of subdomains is five times
the number of blocks. We then consider uniform triangulations for the subdomains
in each block. The rectangular subdomains have the same mesh.

We first consider a case where the ratio between the mesh sizes of the rectangular
and square subdomains is h1/h2 = 7/5; see Figures 5 and 6 for two examples. In
Table 3, we show the estimated condition number and the number of iterations to
obtain a relative residual ‖qk‖/‖f‖ less than 10−6 as a function of the diameter of the
finer mesh and the ratio H/h. The condition number appears to increase slowly with
H/h and to be quite insensitive to the size of the fine meshes.
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Fig. 6. A nonconforming partition consisting of four blocks.

Table 3
The FETI method for nonconforming partitions with h1/h2 = 7/5. Estimated condition number

and number of CG iterations necessary to obtain a relative residual ‖qk‖/‖f‖ less than 10−6 (in
parentheses), versus H/h and h. Case of a = 1, b = 1.

H/h 20 10 5

1/h = 21 (1832 el.) - 2.728 (8) 2.63 (10)
1/h = 42 (7328 el.) 3.459 (8) 3.23 (11) 2.876 (10)
1/h = 84 (29312 el.) 4.034 (13) 3.619 (12) 2.901 (10)
1/h = 168 (117248 el.) 4.552 (14) 3.619 (12) *

In Table 4, we show some results when the ratio of the coefficients b and a changes.
For a fixed value of 1/h = 84 (29312 elements) and a = 1, and for the partitions into
2d by 2d blocks with d = 1, 2, 3, the estimated condition number and the number of
iterations are shown as a function of H/h and b.

For the same nonconforming partitions, we finally consider a case where the ratio
between the diameters of the meshes of the rectangular and square subdomains is
larger. We choose h1/h2 = 2.8. In Table 5, we show some results when the ratio
of the coefficients b and a changes. For a fixed value of 1/h = 168 (48128 elements)
and a = 1, and for the partitions into 2d by 2d blocks with d = 1, 2, 3, the estimated
condition number and the number of iterations are shown as a function of H/h and b.
In this case, the meshes of adjacent substructures are fairly different, but the condition
numbers and the number of iterations are still quite satisfactory.

To end this section, we give an upper bound for the condition number of the
proposed method, both in the cases of conforming and nonconforming partitions.
Figure 4 shows the estimated condition numbers (asterisk) from Tables 1 (left) and 3
(right) for a = b = 1 as a function of ρ = H/h for different values of n. We have also
plotted the best second-order logarithmic polynomial least-square fits. Our results for
both conforming and nonconforming partitions are consistent with the bound for the
condition number

κ(PM̂−1P tF ) ≤ C

(
1 + log

H

h

)2

,

which was proven in [33, Thm. 5.2] for conforming approximations, and suggest that
this bound is sharp.
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Table 4
The FETI method for nonconforming partitions with h1/h2 = 7/5. Estimated condition number

and number of CG iterations necessary to obtain relative preconditioned residual (‖qk‖/‖f‖) less
than 10−6 (in parentheses), versus H/h and b. Case of 1/h = 84 and a = 1.

H/h 5 10 20

b=0.0001 2.966 (17) 3.667 (20) 4.068 (21)
b=0.001 2.955 (15) 3.663 (18) 4.064 (19)
b=0.01 2.951 (14) 3.658 (16) 4.06 (17
b= 0.1 2.933 (12) 3.651 (14) 4.054 (15)
b= 1 2.901 (10) 3.619 (12) 4.034 (13)
b= 10 2.882 (9) 3.561 (11) 3.93 (12)
b= 100 2.769 (9) 3.214 (10) 3.284 (10)
b= 1000 2.305 (7) 2.197 (7) 2.229 (7)
b=1e+04 1.656 (5) 1.523 (4) 1.54 (4)
b=1e+05 1.173 (3) 1.178 (3) 1.086 (2)
b=1e+06 1.135 (2) 1.115 (2) 1.089 (2)

Table 5
The FETI method for nonconforming partitions with h1/h2 = 2.8. Estimated condition number

and number of CG iterations necessary to obtain relative preconditioned residual (‖qk‖/‖f‖) less
than 10−6 (in parentheses), versus H/h and b. Case of 1/h = 168 and a = 1.

H/h 14 28 56

b=0.0001 5.058 (23) 5.062 (24) 6.275 (24)
b=0.001 5.054 (21) 5.056 (22) 6.27 (23)
b=0.01 5.045 (19) 5.043 (19) 6.258 (21)
b= 0.1 5.026 (16) 5.032 (17) 6.241 (18)
b= 1 4.994 (14) 5.008 (15) 6.205 (16)
b= 10 4.922 (13) 4.977 (14) 6.094 (15)
b= 100 4.833 (12) 4.761 (13) 5.48 (13)
b= 1000 4.448 (11) 3.938 (10) 4.078 (9)
b=1e+04 3.381 (8) 2.669 (6) 2.668 (6)
b=1e+05 2.257 (5) 1.901 (4) 1.906 (3)
b=1e+06 1.947 (3) 1.786 (3) 1.436 (2)
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“Nédélec” Finite Elements for the Discretization of the Maxwell Equations, Technical
report R99031, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris,
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Abstract. This paper contains the main ideas for an AMGe (algebraic multigrid for finite
elements) method based on element agglomeration. In the method, coarse grid elements are formed
by agglomerating fine grid elements. Compatible interpolation operators are constructed which yield
coarse grid basis functions with a minimal energy property. Heuristics based on interpolation quality
measures are used to guide the agglomeration procedure. The performance of the resulting method
is demonstrated in two-level numerical experiments.
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1. Introduction. The algebraic multigrid (AMG) [5], [6], [13], [14], was devel-
oped as a generalization of the standard geometric multigrid to problems that either
had no grid or were posed on unstructured grids where standard geometric multigrid
methods are difficult to apply. The standard AMG method works well for many prob-
lems; however, its performance on some finite element problems is unsatisfactory. The
heuristics used in the standard AMG method are based on properties of M-matrices,
and finite element discretizations can produce non-M-matrices. This deficiency in the
standard AMG method led Brezina et al. [7] to develop the algebraic multigrid for fi-
nite elements (AMGe). This previous paper showed how to use multigrid convergence
theory and the local stiffness matrices for the individual finite elements to produce
interpolation operators superior to those produced by standard AMG. This current
paper uses AMGe ideas to produce not only interpolation operators but coarse grids
(and elements) as well. The coarse elements are based on agglomeration of fine ele-
ments. A key point is the construction of a local, compatible interpolation operator.
The interpolation is local in the sense that degrees of freedom (dofs) in an agglom-
erate interpolate only from other dofs in the same agglomerate. The interpolation is
compatible in that the interpolation to dofs shared by two or more agglomerates is
uniquely defined. In this way, the coarse element matrices are variationally related
to the assembled matrices in a given agglomerated element, and (due to the com-
patibility) the global coarse matrix is variationally obtained from the global fine grid
matrix.

In the remainder of this introductory section, we outline the proposed agglomer-
ation AMGe method. The goal is to solve a system

Au = f ,

where A is the positive definite matrix arising from a finite element discretization. In
the agglomeration AMGe method, we assume that we have access to the individual
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element matrices. Our goal is to produce the components needed for a two-level solver:
a coarse grid, grid transfer operators, and the coarse grid operator. In order to apply
the method recursively (i.e., multigrid as opposed to two-level), individual element
matrices on the coarse level must be produced. These goals are outlined below.

• Given information.
1. A list Df = {d} of the fine grid dofs.
2. A list Ef of fine grid elements {e}, where each element e, by definition,

is a list of dofs, i.e., e = {d1, d2, . . . , dne}. Typically, Ef provides an
overlapping partition of the set Df .

3. The element matrices Ae, i.e., a list of ne × ne real numbers associated
with the dofs of e = {d1, d2, . . . , dne}. Equivalently, one may say that
a quadratic form ae(v, v) = vTe Aeve is given, where v is a vector (or
discrete function) defined on Df restricted to e; i.e.,

ve = v|e =



v(d1)
v(d2)
...

v(dne)


 .

Note that this will be the notation consistently used throughout this
paper, namely, for any subset Ω ⊂ D and a vector v defined on D we
will denote by vΩ = v|Ω the restriction of v to Ω. When it simplifies the
notation, we will sometimes use superscripts instead of subscripts with
the same meaning (restriction to subset).

• Output coarse information.
1. A coarse set of dofs, Dc ⊂ Df .
2. A set of coarse elements Ec = {Ec}, i.e., an overlapping partition of Dc.
3. The coarse element matrices AEc for each Ec ∈ Ec.
4. An interpolation mapping P : Dc 
→ Df such that

P =

[
P fc
I

] }Df \ Dc
}Dc .

To be specific, assume that our “algebraic” elements (i.e., a list of collections {e}
of dofs) come from a finite element triangulation of a three-dimensional (3D) domain
and respective conforming finite element spaces with nodal dofs. To create the coarse
information we propose the following steps.

• Create a set of agglomerated elements E = {E}, where each E = e1 ∪ e2 ∪
· · · ∪ enE , ei ∈ Ef , and E is a connected set. By connected we mean that for
any two elements, ei, ej ∈ E, there exists a connecting path of elements also
in E beginning with ei and ending with ej such that consecutive elements
in the path have nonempty intersection. This is a result of the “topological”
algorithm used in the agglomeration procedure (Algorithm 4.1). Note that
each fine grid element e should belong to a unique agglomerated element.
• Define faces and vertices of the agglomerated elements as follows.

1. Consider all intersections Ei ∩Ej for all pairs of different agglomerated
elements Ei and Ej . An intersection of this type is called a face if it
is a maximal one, i.e., if it is not contained in any other intersection.
This defines the set of faces F = {F}. We will also assume that a list
of boundary faces ∂D will be given, and we will append them to Ef . A
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formal definition of a boundary face is then simply a maximal set of the
type E ∩ ∂D, i.e., it is not a proper subset of any other intersection set
(either of type Ei ∩ Ej or of type Ei ∩ ∂D).

2. Finally, consider all faces F ∈ F as lists of dofs. For each dof d compute
the intersection ∩{F : d ∈ F}. The minimal (nonempty) intersections
define the set of vertices V = {V }.

For true finite element applications the last set of vertices will be disjoint sets; each
vertex may contain more than one dof. This is the case if the underlying problem is a
finite element discretization of a system of PDEs, such as elasticity, for example. For
3D problems, one may refine the above algorithm to create edges of the agglomerated
elements; edges are defined to be maximal intersections of faces. In order to keep the
presentation simple, we will focus mostly on two-dimensional (2D) problems.

At any rate, the above “topological” information (faces and vertices of elements)
is readily provided by most of the finite element grid generators. So one may assume
that this information is given on the fine grid. If not, one can create it as explained
above based on computing, for faces, the maximal intersection sets of the type ei∩ej ,
ei �= ej or of the type ei∩ boundary surface.

In order to generate the same information on a coarse level, it can be advanta-
geous to carry out the intersection sets algorithm by preserving the dimensionality
(or topology) in the following sense. If E is an agglomerated element, one has the
option to represent E either in terms of the dofs of the original elements or in terms
of the faces of the original elements. If the agglomerated elements and the boundary
surfaces ∂D are represented in terms of the faces of the original elements, then all
nonempty intersections of the type Ei ∩ Ej or Ei ∩ ∂D are maximal. This is the
storage (agglomerated elements in terms of faces of elements) that we use in practice.

Definition 1.1 (coarse dofs). Having computed the set of vertices, we define
our (minimal) coarse set of dofs to be those dofs which are contained in a vertex of
an agglomerated element:

Dc = {d ∈ Df : ∃V ∈ V with d ∈ V }.

Note that in practice, one may have to enrich the minimal (vertex) set of coarse dofs
for better performance.

Figure 1 shows the coarse dofs for a 2D scalar problem. Note that for a scalar
problem, vertex and degree of freedom are synonymous.

Definition 1.2 (coarse elements). For each agglomerated element E, we define
a coarse element Ec consisting of dofs contained in a vertex of E, i.e.,

Ec = Dc ∩ E.

For each agglomerated element E (or, equivalently, for each coarse element Ec),
we construct a local interpolation operator PE . This operator maps a vector defined
at coarse dofs in Ec to a vector defined at the fine dofs in E. We require the set of
local interpolation operators be compatible in that if d ∈ E1 ∩E2, then PE1

vEc1 (d) =
PE2vEc2 (d) for all vectors v. In other words, compatibility means that at shared dofs,
the interpolation rules for the agglomerates must agree. Compatibility implies the
following restriction.

Requirement 1.1. For d ∈ Df , let N(d) = ∩{all agglomerated elements E(d)
that contain d}. Then the value v(d) must be interpolated from the dofs at the
vertices of N(d). Note that we assume interpolation is the identity at the vertices.
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Fig. 1. Triangulation of domain Ω into triangular and quadrilateral fine grid elements. Ag-
glomerated elements E1, E2, . . . , E5 and coarse dofs.

Definition 1.3 (interpolation mapping). Having constructed a compatible set of
local interpolation mappings {PE}, define a global mapping P : Dc 
→ D by Pvc|E ≡
PEvEc . Compatibility implies that this uniquely defines P .

Definition 1.4 (coarse element matrices). Assume that a compatible set of
interpolation operators {PE} has been computed. Let AE be the assembled matrix
corresponding to the agglomerated element E = e1 ∪ e2 ∪ · · · ∪ enE defined by

vTEAEwE ≡
nE∑
i=1

vTeiAeiwei for any vE , wE .(1.1)

Then, the coarse element matrix for the coarse element Ec is defined by

AcE ≡ PTEAEPE .(1.2)

Note that the global coarse (stiffness) matrix Ac defined as

Ac = PTAP

can be assembled from the coarse element matrices, i.e., that

vTc A
cwc =

nc∑
i=1

vTEciA
c
EiwEci

.

Indeed, for Ei =
⋃nEi
j=1 e

j
i ,

nc∑
i=1

vTEci
AcEiwEci

=
nc∑
i=1

(PEivEci )
TAEi(PEiwEci

)

=
nc∑
i=1

(Pvc|Ei)TAEi(Pwc|Ei)

=
nc∑
i=1

nEi∑
j=1

(Pvc|eji )
TAeji

(Pwc|eji )

=
nf∑
i=1

(Pvc|ei)TAei(Pwc|ei)
= vTc P

TAPwc.
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We should mention at this point that there are other approaches of constructing
AMG methods that target non-M-matrices. One example is the aggregation based
AMG of Vanek, Mandel, and Brezina [15]. In this method, one constructs aggre-
gates (nonoverlapping partitions of the dofs) and forms a generally unstable (but
simple) tentative prolongator. Finally, a smoothing step is applied in order to get a
better quality interpolation. In Wan, Chan, and Smith [17], a direct approach of con-
structing coarse bases is proposed. The bases are selected by minimizing a quadratic
energy functional while enforcing locality and a partition of unity property. In Man-
del, Brezina, and Vanek [12], this approach was further developed by proposing fast
algorithms for minimizing the quadratic functional. In Chan, Xu, and Zikatanov [9],
the construction of the agglomerated elements is used a posteriori in the sense that
one first selects a coarse grid (as a maximal independent set) and then agglomerated
elements are constructed (based on the dual matrix graph). The agglomerates are sub-
sequently divided into triangles, and the procedure can be recursively applied. The
interpolation weights are computed based on averaging. In that sense, the present
paper substantially differs from [9]. Our agglomeration algorithm is different (the
coarse dofs are selected after the agglomeration is performed), and we assume more
information. Namely, similar to the original AMGe paper [7], we require access to the
individual elements and the respective element matrices on the fine grid. Note that
this information is readily provided by most finite element grid generators. In contrast
to [7] we are able to more systematically generate the input information (elements and
their respective element matrices) on the coarse levels. This allows straightforward
recursive use of the same two-level algorithm.

The remainder of the present paper is organized as follows. In section 2 we con-
sider the construction of the local interpolation mappings based on a minimal energy
principle. Section 3 deals with the energy minimization property of the coarse basis.
In section 4, we specify an algorithm for agglomerating elements, which provides nicely
matched agglomerated elements for structured triangular or quadrilateral meshes. We
also discuss using measures of interpolation quality to guide the agglomeration pro-
cedure yielding semicoarsening for problems with anisotropy. In the final section, the
performance of the resulting method is demonstrated in two-level numerical experi-
ments.

2. The local interpolation mappings. In this section we present an algorithm
for generating the local interpolation mappings in a way that produces coarse grid ba-
sis functions with a quasi-minimal energy property. Most of the proofs in this section
rely on basic properties of Schur complements of symmetric positive semidefinite ma-
trices. A summary of these properties can be found, for example, in [1, section 3.2].
The problems that we target are second-order scalar elliptic problems without the
low-order term as well as elasticity in two and three dimensions.

We begin by defining, for each fine grid dof d, the following sets:

• a neighborhood Ω(d) = ∪{all agglomerated elements E(d) that contain d};
• a minimal set N(d) = ∩{all agglomerated elements E(d) that contain d}.

Note that N(d) can be a vertex, a face, or even an agglomerated element. From
the definition of vertices, each N(d) contains at least one vertex. Note also that there
might be multiple copies of N(d), i.e., N(di) = N(dj) for a di �= dj . We next introduce
the following definition for the boundary of the sets N(d).

Definition 2.1. For any set N(d) different than a face or an agglomerated
element, define the boundary of N(d), denoted ∂N(d), to be the vertices contained in
N(d) (which is a nonempty set). If N(d) is a face of an agglomerated element, define
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∂N(d) as the dofs in N(d) that belong to more than one face. Finally, if N(d) is an
agglomerated element E, define the boundary, ∂E, as the union of all faces of E.

We now describe the construction of the local and compatible interpolation map-
pings. The set of interpolatory coarse dofs dc1, . . . , d

c
p that will be used to interpolate

to d is constructed according to Requirement 1.1. That is, dc1 = d if d belongs to a
vertex; otherwise, the interpolatory coarse dofs are the vertices of the set N(d).

To define the interpolation weights for a dof d we use the following recursive
procedure. The interpolation is the identity at the vertices. Then, for the set N(d)
assume that the interpolation at the dofs on ∂N(d) has already been defined, i.e.,
(Pvc)|∂N(d) is well defined for vc specified at the vertices of N(d). Now extend the

definition of Pvc on N(d) \ (∂N(d)) by considering the neighborhood Ω(d) of all ag-
glomerated elements that contain d. Let AΩ(d) be the assembled matrix corresponding
to all elements contained in that neighborhood. Consider the following two-by-two
block structure of AΩ(d), corresponding to the partitioning (Ω(d) \ ∂N(d)) ∪ ∂N(d),

AΩ(d) =

[
Aii Aib
Abi Abb

] }Ω(d) \ ∂N(d),
}∂N(d).

Here “i” stands for interior, and “b” stands for boundary dofs. Note that {dc1, . . . , dcp} ⊂
∂N(d). The interpolation coefficients wd, dci , i = 1, 2, . . . , p are obtained by solving
the following equation (xc given):

Aiix
i +Aib(Px

c)∂N(d) = 0.

Then the equation corresponding to a dof df in N(d) \ ∂N(d) gives

(xi)df =
(−A−1

ii Aib(Px
c)∂N(d)

)∣∣
df
.

That is, in particular for df = d, and xc = [ 01 ]
}vertices of N(d)\{dci},
}dci , one gets the

interpolatory coefficient

wd, dci =

(
− A−1

ii Aib

(
P

[
0
1

] }vertices of N(d) \ {dci}
}dci

)
∂N(d)

)∣∣∣∣∣
d

.

This approach assumes that Aii is invertible. As the following lemma shows, this
is always the case for symmetric positive semidefinite matrices AΩ(d) if the set of
boundary dofs ∂N(d) is sufficiently rich.

Lemma 2.2. Given a set E, a union of fine elements, partition it into two groups:
“f”-dofs denoted by DE, f and “c”-dofs denoted DE, c. Let AE be the assembled matrix
corresponding to E partitioned as follows:

AE =

[
AE, ff AE, fc
AE, cf AE, cc

]
.

If there exists a basis {di} for the null-space of the assembled, symmetric positive
semidefinite matrix AE, such that {di} restricted to DE, c remain linearly independent,
then AE, ff is invertible.

Proof. Assume that AE, ffx
f = 0. This implies that

[
xf

0

]T
AE

[
xf

0

]
= 0,
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and since AE is positive semidefinite, this implies

AE

[
xf

0

]
= 0.

That is, [x
f

0 ] is in the null-space of AE . Therefore, we can expand it in terms of the
basis of the null-space, i.e., [

xf

0

]
=
∑
i

cidi.

The second block equation implies

0 =
∑
i

cid
c
i .

The assumption that {di} remains linearly independent when restricted to DE, c
means that {dci} are linearly independent. Thus all ci = 0 and xf = 0. That is,
AE, ffx

f = 0 implies xf = 0; hence AE, ff is invertible.
Remark 2.1. For the model case of second-order scalar elliptic equations, Lu ≡

−div(a∇u) = F , a basis of the null-space of AE is

[
1

.

.

.
1

]
, and its restriction onto the

set of coarse dofs is again the constant vector; hence it is linearly independent. The
above lemma shows that the corresponding AE, ff will be invertible.

Remark 2.2. If x is in the null-space of AE , i.e.,

x =

[
xf

xc

]
and AEx = 0,

then

AE, ffx
f +AE, fcx

c = 0.

Thus the previously defined interpolation procedure is exact for vectors in the null-
space of AE .

In showing that the interpolation mappings produce coarse basis functions en-
joying a certain energy minimization property, we rely on the following relationships
between energy minimization and Schur complements.

Remark 2.3. Consider a matrix A with any two-by-two blocking

A =

[
Aff Afc
Acf Acc

]
.

Assume Aff is invertible, and define the Schur complement of A on c as Sc ≡ Acc −
AcfA

−1
ffAfc. If A is symmetric positive semidefinite, then

vTc Scvc = inf
v|c=vc

vTAv.(2.1)

In cases where Aff is not invertible, (2.1) can be used to define the Schur complement.
Note that if A is symmetric positive semidefinite, then so is Sc. Finally, one has the
identity

Av =

[
0
Scvc

]
(2.2)
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for any minimizer v, i.e., for any vector v for which vTc Scvc = vTAv and v|c = vc.
The following lemma is a straightforward consequence of Remark 2.3.

Lemma 2.3. Using the notation of the previous remark, assume Aff is invertible,
and let vc be a null-vector of Sc; then vc can be uniquely extended to the null-space
of A.

We are now ready to show several energy minimization properties of the local
interpolation mappings PE formulated for simplicity for 2D elements.

We first demonstrate an energy minimization property for dofs interior to an
agglomerated element. Let d belong to a unique agglomerated element E. Thus the
neighborhood Ω(d), used to define interpolation, consists of the fine-grid elements
that are contained in E. Then, P = PE is constructed based on the following block-
ordering of AE :

AE =

[
Aii Aib
Abi Abb

] } E \ ∂E,
} ∂E.

The coefficients of PE are obtained by solving the equation (xc given)

AE, iix
i +AE, ib(PEx

c)∂E = 0.

It is equivalent then to say that xi = −A−1
ii Aib(PEx

c) solves the minimization problem

min
x: x|∂E=(PExc)∂E

xTAEx.(2.3)

By definition, PExc|d = − A−1
ii Aib(PEx

c)∂E
∣∣
d
for all d ∈ E that do not belong to a

face of E.
We next show an energy minimization property for dofs on faces; this is used later

to show a global energy minimization property of the coarse grid basis functions. For
every face F , the neighborhood used to define interpolation is E+

F ∪ E−
F , where E

+
F

and E−
F are the two neighboring agglomerated elements that form the face F (one of

them can be ∅ if F is a boundary face).
Lemma 2.4. For every face F = E+

F ∩ E−
F , the interpolation P minimizes the

quadratic form (wF )
T (SE+

F , F
+ SE−

F , F
)wF for wF fixed at the vertices of F , where

SE, F denotes the Schur complement of AE on F .
Proof. Denote E1 = E−

F and E2 = E+
F . Each dof on F which is not a ver-

tex is interpolated from the vertices of F based on the assembled matrix AE1∪E2

corresponding to the domain E1 ∪ E2. To define P on F , one looks at the matrix

AE1∪E2
=

[
Aff Afc
Acf Acc

] }E1 ∪ E2 \ ( vertices of F ),
}( vertices of F ).

Then (Pvc)(df ) = (−A−1
ffAfcv

c)(df ) for any df ∈ F \ ( vertices of F ). Equivalently,
from the equations that define P on F ,

Affw
f +Afcw

c = 0,

one can eliminate the dofs that are on E1 ∪ E2 \ F , thus ending up with the Schur
complement problem

SE1∪E2, Fw
F
∣∣
F\( vertices of F )

= 0, wF =

[
wf

wc

] }F \ ( vertices of F ),
} vertices of F.(2.4)
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Since F is a separator for E1 ∪ E2, one has that SE1∪E2, F = SE1, F + SE2, F . Since
SE1∪E2, F is symmetric semidefinite, (2.4) is equivalent to the following minimization
problem:

inf
wF |vertices of F=wc

(wF )TSE1∪E2, Fw
F .

By definition wF = Pwc solves (2.4) and thus has this equivalent minimization
property.

Throughout the remainder of the paper we will assume the following relations be-
tween the null-spaces of the assembled matrices AE− and AE+

for any two neighboring
agglomerated elements E− and E+ that share a common face F .

Assumption 2.1. For any xE− such that AE−xE− = 0 there is an extension x of
xE− defined on E− ∪ E+ such that AE−∪E+x = 0 and x|E− = xE− . Equivalently,

AE+xE+ = 0 and x|F = xE− |F .
As a corollary of the above assumption, the respective Schur complements SE−; F

and SE+; F of AE− and AE+
on the face F are spectrally equivalent or, equivalently,

have the same null-space.
Actually, the following local estimates hold.
Lemma 2.5. Assume, in addition to Assumption 2.1, that every null-vector v of

AE restricted to a face F of E is uniquely determined from its vertex values vc on
F . Note that this is always the case if the set of coarse dofs on any F is sufficiently
rich (see Lemma 2.2). If we have determined x = PExc first on ∂E and then in the
interior of E as specified above, the local quadratic forms

(PExc)
TAEPExc, inf

x: x|Dc=xc
xTAEx

are spectrally equivalent. That is, there exists a constant ηE such that

inf
x: x|Dc=xc

xTAEx ≤ (PExc)
TAEPExc ≤ ηE inf

x: x|Dc=xc
xTAEx.

In other words, the coarse element matrix AcEc and the Schur complement Sc of AE
on Dc ∩ E are spectrally equivalent.

Proof. To prove the result it is sufficient to show that both matrices have the
same null-space. Assume now that Scxc = 0. For any face F of E one can compute
the Schur complement of Sc on F denoted by Sc, F . It is clear then (see (2.2)) that

Sc, Fxc, F = 0.(2.5)

Our goal is to show that (PE)
TAEPExc = 0, which is equivalent to AE(PExc) =

0. By construction, one has AE(PExc) = 0 in the interior of E. Also, from the
definition of PE for dofs on faces F (see (2.4)) one has

(SE,F + SE+,F ) (PExc)F
∣∣
F\vertices of F = 0.

Here, E+ is the neighboring element to E which shares a common face F with E.
From Assumption 2.1 it follows that SE,F +SE+,F and SE,F have the same null-space.
Therefore, their respective Schur complements on the vertices of F (F ∩Dc), σc, F and
Sc, F will have the same null-space. Then (2.5) implies that σc, Fxc, F = 0. Applying
identity (2.2) (based on Lemma 2.4) yields

(SE,F + SE+,F ) (PExc)F =

[
0

σc, Fxc, F

] } F \ vertices of F,
} vertices of F,
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from which it follows that

(SE,F + SE+,F ) (PExc)F = 0 on F.

Again, the fact that SE,F + SE+,F and SE,F have the same null-space implies that

SE,F (PExc)F = 0 on F.

This shows that (PExc)F is a restriction of a null-vector of AE on F . Assumption 2.1
and the additional assumption we have made that every vector in the null-space of
AE restricted to a face is uniquely determined by its vertex values on that face then
imply that (PExc)∂E is the restriction of a null-vector of AE on ∂E. This together
with the fact that AE (PExc) = 0 in the interior of E finally show that

AE (PExc) = 0 on E.

This completes the proof that PExc is in the null-space of AE , i.e., that xc is in
the null-space of AcEc . The converse is also true. Namely, AcEcxc = 0 implies that

(PExc)
TAEPExc = 0, and since AE is symmetric positive semidefinite, one gets

that AEPExc = 0 or that PExc belongs to the null-space of AE . Therefore, xc =
PExc|vertices of E belongs to the null-space of the Schur complement Sc of AE .

We then have the following global estimate by summing up the local estimates
over the individual agglomerated elements.

Theorem 2.6. The compatible local interpolation mapping P = PE is approxi-
mately harmonic in the sense that its norm in the energy inner product is bounded,
i.e.,

vTc Acvc = (Pvc)
TA(Pvc)

≤∑
E

ηE inf
vE |Dc∩E=vc

vTEAEvE

≤ η inf
v|Dc=vc

vTAv.

The exact harmonic mapping corresponds to the best constant η = 1. As shown in
Lemma 2.5, η = maxE∈E ηE, and thus the individual ηE can be estimated locally. With
this result, a classical two-level Gauss–Seidel iteration (see, e.g., Bank and Dupont [3]
or Bank [2]) will have a convergence factor bounded by γ2 = 1− 1

η .
Remark 2.4. Note that the proof of Theorem 2.6 does not require uniqueness

of the minimizers (hence of P ). Note, however, that we assumed uniqueness on the
faces (see Lemma 2.5). Hence it applies to element matrices coming from 2D and 3D
elasticity. If one assumes a little more (see Assumption 2.2) the uniqueness of P (or
of the minimizers) is guaranteed. Namely, one may assume the following.

Assumption 2.2. If dc is a dof at a vertex and E is an agglomerated element
containing that vertex, the only vector in the null-space of AE and vanishing at dc is
the zero vector.

For the model case of 2D and 3D second-order scalar elliptic equations (of the form
Lu ≡ −div a∇u = f), this assumption holds. However, it may not hold for systems of
PDEs. (It is not true for elasticity problems, for example.) If Assumption 2.2 holds,
PE is defined uniquely at the interior of N(d) (edge, face, or agglomerated element
E) based on a Schur complement of AΩ(d) (to N(d)) by harmonically extending the
values from the boundary of N(d) into its interior. In particular, one has (see (2.3))
that for each E (2.6) holds, wF = PEwc|F , for any face (or edge) F ⊂ E:

wT
c A

c
Ewc = inf

vE |F=wF , for all F⊂E
vTEAEvE .(2.6)
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Remark 2.5. The constants ηE in Lemma 2.5 are computable and can be used
as local measures for interpolation quality in the sense that smaller ηE implies better
interpolation. Theorem 2.6 shows that the local measures imply the approximate
harmonic property of P . More details on how to compute measures of interpolation
quality and their relation with other local constants are found in section 4.

3. Energy minimization properties of coarse basis functions. With the
local interpolation operators defined, one can construct a coarse grid basis function vd
for each d ∈ Dc as follows. Define the coarse grid vector vcd that is one at d and zero
elsewhere, and define vd as this vector interpolated to the fine grid (i.e., vd = Pv

c
d). It

is clear then that it will be zero outside the neighborhood Ω(d) = ∪pi=1Ei of the given
dof d. In this way, vd can be viewed as a basis vector (function) of the interpolated
coarse space. Using finite element terminology, one may also say that vd is a fine grid
vector representation of a coarse-grid basis function.

Lemma 3.1. For the model problem of finite element matrices (before imposing
Dirichlet boundary conditions) coming from second-order scalar elliptic problems (2D
or 3D), the {vd} provide the partition of unity, i.e.,

∑
d∈Dc

vd =




1
...
1


 .(3.1)

Proof. In the case of finite element matrices coming from 2D (or 3D) second-order
scalar elliptic problems, constant vectors are in the null-space of the element matrices.

By Remark 2.2, if vc =

[
1

.

.

.
1

]
∈ Rnc , then v = Pvc =

[
1

.

.

.
1

]
∈ Rn. This holds since

vE = PEvc, Ec for each coarse element Ec (or agglomerated element E). This, in

particular, implies that
∑
d∈Dc vd =

[
1

.

.

.
1

]
∈ Rn.

Corollary 3.2. Consider the model case of finite element matrices (before im-
posing Dirichlet boundary conditions) coming from second-order scalar elliptic prob-
lems (2D or 3D) on quasi-uniform triangulation. Let {vd} be the set of basis functions
generated by the local interpolation operators. Let {wd} be any other potential set of
local basis functions, i.e., a basis function exists for each d ∈ Dc with wd(d) = 1 and
wd = 0 outside of the neighborhood Ω(d). Then the following energy minimization
property of {vd} holds:

∑
d∈Dc

vTd Avd ≤ C
∑
d∈Dc

inf
wd

wT
d Awd.(3.2)

Proof. Applying the approximate harmonic property of PE for each agglomerated
element E (Lemma 2.5), one ends up with the estimate

(vd|E)TAE(vd|E) ≤ ηE inf
wE : w|vertices of E=vd|vertices of E

wT
EAEwE .

Summing up over the agglomerated elements E : E ⊂ Ω(d), where Ω(d) is the union
of all agglomerated elements that contain the vertex d (note that vd is zero outside
Ω(d)), one ends up with the global estimate

vTd Avd ≤ η inf
wd: wd|Dc=vd|Dc

wT
d AΩ(d)wd, η = max

E
ηE .
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Note that wd = 1 at the vertex d and is zero at the remaining vertices, and it is also
zero outside Ω(d), i.e., it is locally supported.

Finally, summing over all d ∈ Dc, one ends up with the desired estimate

∑
d∈Dc

vTd Avd ≤ C
∑
d∈Dc

inf
wd: wd|Dc=vd|Dc

wT
d AΩ(d)wd

= C
∑
d∈Dc

inf
wd: wd|Dc=vd|Dc

wT
d Awd.

Remark 3.1. Theorem 3.2 shows, for the model case of finite element matrices
coming from second-order scalar elliptic equations as well as in the elasticity, that
the coarse basis functions corresponding to the coefficient vectors vd solve the energy
minimization functional as defined inWan, Chan, and Smith [17] up to a multiplicative
constant. Fast algorithms to solve the problem of the energy minimization functional
are proposed and analyzed in Mandel, Brezina, and Vanek [12].

Remark 3.2. For finite element matrices coming from 2D and 3D second-order
scalar elliptic problems on quasi-uniform triangulation, the coarse space produced by
the above algorithm also admits a weak approximation property (or, equivalently,
provides partition of unity—see Lemma 3.1 and also estimate (4.2)) since the element
matrices contain the constants in their null-space. Therefore, the constant is exactly
interpolated from the vertices of the agglomerated elements as the same constant on
the rest of the agglomerated element. That is, with the above minimization property,
the AMGe method can actually become an optimal- (or almost optimal) order MG
method if one can control the local constants ηE from Lemma 2.5 which depend on the
way we agglomerate the elements at every coarsening step. If η gets large, a potential
remedy might be the algebraic multilevel iteration (AMLI) stabilization procedure
(cf. Vassilevski [16]) which is like the W-cycle or even more cycles. Approaches
to rigorously study the convergence of the underlined AMG method can draw on
the existing analytical tools for geometric MG convergence theory for finite element
problems (see, e.g., the book by Bramble [4]). In the present paper we do not deal
with multilevel convergence results.

Remark 3.3. One can actually apply the same interpolation procedure on ag-
glomerated elements using it recursively to fine-grid element matrices coming from a
nonsymmetric elliptic operator like convection-diffusion, e.g., Lu ≡ −div(ε∇u)+b·∇u.
In Figures 2 and 3 a coarse basis function is shown (face and rotated) using four levels
of coarsening procedure for a constant convection field b1 = 1, b2 = −0.5, and ε = 0.1.
Note also that in this case of the convection-diffusion operator the basis functions
computed on the coarse levels by the proposed AMGe method will provide a partition
of unity (as in the symmetric operator case), and hence the coarse spaces will admit
a certain weak approximation property. The same applies for the so-called streamline
diffusion operator Lδu ≡ −div((ε+ δb bT )∇u) + b · ∇u, where δ is a mesh-dependent
parameter.

Remark 3.4. We finally remark that the presented AMGe method can be used in
the so-called “homogenization” procedures to generate averaged coarse problems from
problems on computationally unfeasible highly refined meshes and possibly with os-
cillatory coefficients (cf., e.g., [11] and references therein; see also [10]). The difference
that we see here is that our coarsening procedure is local. We require the solution of
small local problems (involving a few elements) rather than large subdomain solves
in order to compute the effective coarse grid basis functions (or coarse-grid element
matrices).
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Fig. 2. AMGe constructed “minimum energy” coarse basis function for convection-diffusion
operator.

4. Algorithms for element agglomeration. This section introduces the al-
gorithm we have used in selecting the coarse grid agglomerates. The algorithm relies
of the faces and edges of the original elements {e}; to simplify the discussion, we will
focus mainly on 2D elements (i.e., having faces and vertices only). The method is
based on the face-face graph of the fine grid elements (i.e., face f1 and f2 are neighbors
if they share a common vertex) and uses an integer weight w(f) for each face f . The
eliminated faces f will have a weight w(f) = −1.

Algorithm 4.1 (element agglomeration based on the face-face graph).

• initiate. Set w(f) = 0 for all faces f ;
• global search. Find a face f with maximal w(f); set E = ∅;

1. Set E = E∪e1∪e2, where e1∩e2 = f , and set wmax = w(f), w(f) = −1;
2. Increment w(f1) = w(f1) + 1 for all faces f1 such that w(f1) �= −1 and
f1 is a neighbor of f ;

3. Increment w(f2) = w(f2) + 1 for all faces f2 such that w(f2) �= −1, f2
is a neighbor of f , and f2 and f are faces of a common element;

4. From the neighbors of f , choose a face g with a maximal w(g); if w(g) ≥
wmax, set f = g, and go to step (1);

5. If all neighbors of f have smaller weight than wmax, the agglomerated
element E is complete; set w(g) = −1 for all faces of the elements e
contained in E; go to step global search;

This algorithm tends to produce nicely matched agglomerated elements and pro-
duces standard multigrid coarsening (up to boundary effects) for structured grid
problems using linear or bilinear elements. See Figures 4 and 5 for the results of
this procedure applied to a uniform triangular mesh after one and two agglomeration
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Fig. 3. AMGe constructed “minimum energy” coarse basis function for convection-diffusion
operator, rotated.

steps, respectively. The setup cost of the algorithm is linear, i.e., proportional to the
total number of dofs. The algorithm is easily implemented using, for example, double
linked lists.

Figures 6 and 7 show the results of the algorithm for several unstructured prob-
lems. Figures 8, 9, 10, and 11, show fine unstructured grids using triangular elements,
the agglomerated elements are shown in Figures 12, 13, 14, and 15 respectively. The
latter are the actual grids on which the first set of numerical tests was performed.

In three dimensions one has the opportunity to introduce edges. Then one may
construct more refined agglomeration algorithms that exploit this additional topo-
logical information, namely, the edge-edge and edge-face graphs. This information,
however, has not been utilized in the present paper.

It is important to note that the above algorithm does not take into account any
matrix entries while agglomerating the elements. For structured grid problems with
anisotropy, it will produce full-coarsening. To produce semicoarsening for such prob-
lems, one can introduce barriers. This can be implemented by assigning to each face

another (binary) weight a(f) =
{

0, acceptable,
1, unacceptable. To prevent agglomeration through a

face f , one can simply set a(f) = 1, and then in step 4 of Algorithm 4.1 one searches
for a face g, a neighbor to f , which is with a maximal weight w(g), and if a(g) = 1
(i.e., unacceptable), one looks for an acceptable face ga (neighbor to f) such that
w(ga) = w(g). If such a face does not exist, the agglomeration step is terminated and
the agglomerated element E is ready.

The way we have put barriers on the faces is based on the element matrices;
namely, given a face f = e1 ∩ e2, assemble Ae1∪e2 and ask if the dofs on f can be
well interpolated from the rest of the dofs in e1 ∪ e2. If the resulting measure of
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Fig. 4. Agglomerated elements for structured triangular mesh: One step of agglomeration.

interpolation quality is reasonable, we say that the face f is acceptable; otherwise,
we label f as unacceptable by initializing a(f) = 1 to prevent agglomeration of e1
and e2. To implement this approach, one must be able to access the quality of the
interpolation for the dofs on f . A measure of interpolation quality was proposed in
[7]. In our setting, it can be reformulated as follows. Given the interpolation mapping
P defined by interpolating dofs on f from the rest of the dofs in e1 ∪ e2, define the
quadratic form (or matrix) Wff for vectors on f by

vTfWffvf = inf
vc

(v + Pvc)
TAe1∪e2(v + Pvc); v =

[
vf
0

] }dofs on f,
}e1 ∪ e2 \ f.

Then the measure of interpolation quality (denoted by M1 in [7]) is

mP =
1

λmin[D
−1
ffWff ]

,(4.1)

where Dff is, for example, the diagonal of Ae1∪e2 restricted to f . Small mP indicates
good quality interpolation; interpolation well approximates functions with low energy.
In finite element notation, smallmP means that the functions vc from the coarse space
can approximate well the fine-grid functions v in a weighted L2-norm ‖.‖0. To show
this, let m be a bound such that

inf
vc
‖v − vc‖20, e1∪e2 ≤ m ae1∪e2(v, v) for all v : v|Dc = vc|Dc .(4.2)

This is equivalent (letting v = vf + vc above) to

‖vf‖20, e1∪e2 ≤ m inf
vc
ae1∪e2(vf + vc, vf + vc) for all vf : vf |Dc = 0.
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Fig. 5. Agglomerated elements for structured triangular mesh: Two steps of agglomeration.

In vector notation, this becomes

(vf )
TDffvf ≤ m inf

vc
(v + Pvc)

TAe1∪e2(v + Pvc) for all v =

[
vf
0

]

= m (vf )
TWffvf , for all vf .

This, with the best choice of m, leads to the definition (4.1) of the measure mP . It is
clear, from (4.2), that smaller mP corresponds to better interpolation quality.

Remark 4.1. One can actually compute the minimum

vTfWffvf = min
vc

(v + Pvc)
TAe1∪e2(v + Pvc), v =

[
vf
0

] } dofs on f,
} (e1 ∪ e2) \ f.

One has, with A := Ae1∪e2 and vc := tvc for any t ∈ R,

(v + tPvc)
TA(v + tPvc) = vTAv + 2tvTAPvc + t

2(Pvc)
TAPvc.

The minimum with respect to t is achieved for t = − vTAPvc
(Pvc)TAPvc

and equals

vTAv − (vTAPvc)
2

(Pvc)TAPvc
.

Hence,

vTfWffvf = min
vc

(
vTf Affvf −

(vTAPvc)
2

(Pvc)TAPvc

)
, v =

[
vf
0

]
.
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Fig. 6. Agglomerated elements: Rectangular domain with unstructured triangular elements.

In particular, vTfWffvf ≤ vTf Affvf . Here, Aff represents the f -f block of A :=
Ae1∪e2 (see (4.3) below). Note that if there is a vc such that (APvc)|f = 0, then

vTfWffvf = vTf Affvf . The latter is true also for the so-called “optimal” P , i.e., such

that P = −A−1
ffAfc, where Ae1∪e2 is partitioned as follows:

Ae1∪e2 =

[
Aff Afc
Acf Acc

] } dofs on f,
} (e1 ∪ e2) \ f.(4.3)

In that case, mP = 1

λmin[D
−1
ff Aff ]

.

Remark 4.2. Note that if instead of Dff one uses in (4.1) the principal submatrix
Aff of A corresponding to the fine dofs that are not coarse, then mP = 1

1−γ2 , where

γ ∈ [0, 1) stands for the cosine of the abstract angle between the coarse space Vc =
{vc = Pvc} and its hierarchical complement Vf = {vf = [vf0 ]}. The angle is measured
in the energy inner product, i.e.,

(vf )TAe1∪e2v
c ≤ γ

√
(vf )TAe1∪e2vf

√
(vc)TAe1∪e2vc for all vf ∈ Vf , vc ∈ Vc.

For a proof of the relation mP = 1
1−γ2 , see, e.g., Vassilevski [16].

Instead of mP one can use γ as a measure of the interpolation quality. Then small
γ will correspond to small mP and hence to good quality interpolation, whereas γ
close to one will imply large mP and hence poor quality interpolation.

In following example, we will use γ to define a measure for strength on connections
between neighboring elements and thus label faces as acceptable or unacceptable.
Consider two fine elements e1 and e2 sharing a face f as shown in Figure 16. Let iF2 be
an interpolation rule for dof x3 from x1 and x5, and let iF1 be an interpolation rule for
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Fig. 7. Agglomerated elements: Elliptical domain with triangular elements.

Fig. 8. Fine elements: Rectangular domain with 48 unstructured triangular elements.

dof x4 from x2 and x6; these could be constructed as proposed in the previous section.
For 2D scalar elliptic problems with constant coefficients, these are linear interpolants
along the faces F1 and F2 treating x1, x2, x5, and x6 as coarse-grid nodes and x3
and x4 as complementary to the coarse-grid, fine-grid nodes. Then, given a coarse
function vc defined at the nodes x1, x2, x5, and x6, the mapping P fc vc = { iF1

vc, x=x4,
iF2

vc, x=x3

defines a coarse-to-fine prolongation operator.

Let E = e1 ∪ e2, and let AE be the assembled matrix corresponding to E. Given
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Fig. 9. Fine elements: Rectangular domain with 1001 unstructured triangular elements.

Fig. 10. Fine elements: Rectangular domain with 4016 unstructured triangular elements.

a coarse-grid vector vc, let v̂c = P
f
c vc be its representation on the fine-grid. Then the

local fine-grid space is decomposed as P fc vc⊕ v0f , where v0f are the fine-grid functions
which vanish on the coarse-grid. As mentioned, the cosine γ ∈ [0, 1) of the angle
between these components can be used to measure a strength of connection between
e1 and e2 with respect to the given matrix AE (or pair of element matrices Ae1 and
Ae2 that correspond to the pair of elements e1 and e2). Recall that the constant γ is
defined as the best constant in the strengthened Cauchy inequality

aE(v̂c, v
0
f ) ≤ γ

√
aE(v̂c, v̂c)

√
aE(v0f , v

0
f ) for all v̂c, v

0
f .(4.4)

To write this inequality in matrix-vector notation, let

P =

[[
I
0

]
, P fc

]
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Fig. 11. Fine elements: Rectangular domain with 16000 unstructured triangular elements.

Fig. 12. Agglomerated elements: Rectangular domain with unstructured triangular elements.

and ÂE = PTAEP . Consider the following two-by-two blocking of ÂE :

ÂE =

[
AE; ff ÂE; fc

ÂE; cf AE; cc

]
} complementary fine-grid nodes; i.e., x3, x4,
} coarse nodes; i.e., x1, x2, x5, x6.

Note that AE; cc is the resulting coarse matrix corresponding to E. Then the strength-
ened Cauchy inequality (4.4) reads

vTc ÂE; cfv
0
f ≤ γ

√
vTc AE; ccvc

√
v0
f
T
AE; ffv0

f for all vc, v
0
f .

A way to compute γ is to find the largest eigenvalue m = λmax ≥ 1 of the generalized
eigenvalue problem

AE, ccq = λSE, fq,
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Fig. 13. Agglomerated elements: Rectangular domain with unstructured triangular elements.

Fig. 14. Agglomerated elements: Rectangular domain with unstructured triangular elements.

where SE, f is the Schur complement of ÂE on f , i.e.,

SE, f = AE, cc − ÂE; cf (AE; ff )
−1
ÂE; fc.

Then γ =
√
1− 1

m .

Definition 4.1 (strongly connected elements). We call e1 and e2 strongly con-
nected if γ is close to zero, i.e., when the resulting local coarse space is almost or-
thogonal to its complementary (the so-called two-level hierarchical complementary)
space.

Algorithm 4.1 can be modified to agglomerate only strongly connected elements.
One would set a threshold α and label a face f unacceptable if γ > α by initializing
a(f) = 1.
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Fig. 15. Agglomerated elements: Rectangular domain with unstructured triangular elements.
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Fig. 16. Neighboring elements e1 and e2 with a common face f = {x3, x4}; the nodes x1, x2, x5,
and x6 are viewed as coarse-grid nodes.

4.1. Examples of γ. We conclude this section with examples showing that this
definition of strongly connected elements can lead to the correct semicoarsening for
anisotropic problems. Consider the model second-order elliptic bilinear form, which,
restricted to an element e, reads

ae(ϕ,ψ) =

∫
e

(
∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y

)
dx dy.(4.5)

Consider two vertically adjacent rectangular elements (see Figure 17) and bilinear test
functions. Consider the following cases.

(a) Anisotropic elements hx < hy; hx = 0.1hy, γ = 0.8649; hx = 0.01hy, γ =
0.8660. These values of γ indicate that the elements are weakly connected
and one should not agglomerate them.

(b) Anisotropic elements hx > hy; hx = 10hy, γ = 0.1698; hx = 100hy, γ =
0.0173. This example shows that since γ is close to zero, the elements are
strongly connected, and hence one should agglomerate this pair of elements.
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Fig. 17. Neighboring elements e1 and e2; (a) hx < hy, (b) hx > hy.

(c) For comparison, if hx = hy, γ = 0.7746 (or γ2 = 3
5 ).

Thus, this measure correctly leads to coarsening only in the direction of small
mesh size.

5. Numerical experiments. In this section we present some preliminary nu-
merical results that show the potential of the proposed element agglomeration AMGe
method.

We have tested the two-grid method with the coarse-grid obtained using the
agglomeration algorithm described in section 4. After the coarse dofs were selected the
interpolation mapping was constructed as described in section 2. We used one forward
Gauss–Seidel iteration as a presmoother and one backward Gauss–Seidel iteration for
a postsmoothing. The stopping criterion was a relative reduction of the residual
.2-norm by a factor of 10−6.

We tested two sets of problems.
• The Poisson equation discretized on a square domain on four “unstructured”
rectangular grids are shown in Figures 8, 9, 10, and 11, and the respective
grids with agglomerated elements are shown in Figure 12, 13, 14, and 15.
Dirichlet boundary conditions were imposed, and the results are collected in
Table 1.
• The elasticity equation which comes from minimizing the quadratic functional
discretized with square bilinear elements.

∫
Ω

[
1 + ν

2
(∂xu+ ∂yv)

2 +
1− ν
2

(∂xu− ∂yv)2 + 1− ν
2

(∂yu+ ∂xv)
2

]
dxdy.

(5.1)
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Table 1
Two-grid convergence results; unstructured triangular grid; Laplace operator; Gauss–Seidel

smoother.

Grid # 1 2 3 4

# fine elements 48 1 001 4 016 16 016
# coarse elements 20 242 1 016 3 859

# fine dof 35 523 2 085 8 095
# coarse dof 27 281 1 083 3 515
# iterations 7 9 8 8

� 0.159 0.320 0.256 0.260

Table 2
Two-grid convergence results; structured rectangular grid; elasticity operator; Gauss–Seidel

smoother.

Grid # 1 2 3 4

# fine elements 400 900 1600 2500
# coarse elements 118 253 438 673

# fine dof 882 1922 3362 5202
# coarse dof 314 624 1034 1544
# iterations 9 9 9 9

� 0.251 0.245 0.254 0.248

Here ν = 1
3 . Again, Dirichlet boundary conditions were imposed, and these

results are in Table 2.
One notices the similar convergence factors 0 and the number of iterations for

Poisson and elasticity problems.
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Abstract. We introduce a new asynchronous parallel pattern search (APPS). Parallel pattern
search can be quite useful for engineering optimization problems characterized by a small number of
variables (say, fifty or less) and by objective functions that are expensive to evaluate, such as those
defined by complex simulations that can take anywhere from a few seconds to many hours to run. The
target platforms for APPS are the loosely coupled parallel systems now widely available. We exploit
the algorithmic characteristics of pattern search to design variants that dynamically initiate actions
solely in response to messages, rather than routinely cycling through a fixed set of steps. This gives
a versatile concurrent strategy that allows us to effectively balance the computational load across all
available processors. Further, it allows us to incorporate a high degree of fault tolerance with almost
no additional overhead. We demonstrate the effectiveness of a preliminary implementation of APPS
on both standard test problems as well as some engineering optimization problems.

Key words. asynchronous parallel optimization, pattern search, direct search, fault tolerance,
distributed computing, cluster computing
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1. Introduction. We consider solving the unconstrained nonlinear optimization
problem, minimize f(x), where x ∈ R

n and f : R
n → R. The problems of particu-

lar interest to us are defined by computationally expensive computer simulations of
complex physical processes. Such simulations may take anywhere from a few seconds
to many hours of computation on a single processor. In addition, we often cannot
use derivative-based methods to solve these problems because no procedure exists for
the evaluation of the gradient and the function evaluations are not precise enough to
produce an accurate finite-difference gradient.

Pattern search is a class of direct search methods that is popular for solving
the problems described above because no derivative information is required. Fur-
ther, pattern search methods admit a wide range of algorithmic possibilities; see,
e.g., [15, 16, 26]. The dominant computational cost for pattern search methods lies
in the evaluation of the objective function. We can exploit the definition of pattern
search to derive variants that perform multiple independent function evaluations si-
multaneously. We then can take advantage of parallel computing platforms to reduce
the overall computational cost of the search.
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Both the nature of the problems of interest and the features of current distributed
computing environments raise some issues that we address in this work.

The original investigation into parallel direct search methods [7, 25] made two
fundamental assumptions about the parallel computing environment: (1) that the
processors were both homogeneous and tightly coupled and (2) that the amount of
time needed to finish a single evaluation of the objective function was effectively con-
stant. It is time to reexamine these two assumptions. Clearly, given the current vari-
ety of parallel computing platforms, including distributed systems comprising loosely
coupled, often heterogeneous, off-the-shelf commercial components [24], the first as-
sumption is no longer valid. The second assumption may not hold in our case because
we focus on problems defined by the simulations of complex physical processes. Typ-
ically, the simulations themselves are based on iterative numerical techniques and so
the assumption that evaluations of the objective finish in constant computational time
on equivalent processors often does not hold. In fact, the behavior of the simulation
for any given input is difficult to assess in advance since it can vary substantially
depending on a variety of factors.

Because the original assumptions underlying parallel direct search are not valid
for the situations we now face, we can no longer assume that the computation proceeds
in lockstep. A single synchronization step at the end of every iteration, as in [25],
is neither appropriate nor effective when any of the following factors holds: function
evaluations finish in varying amounts of time (even on equivalent processors), the
processors employed in the computation possess different performance characteristics,
or the processors have varying loads. Our goal is to introduce a class of asynchronous
parallel pattern search (APPS) methods that make more effective use of a variety
of computing environments, as well as to devise strategies that accommodate the
variation in completion time for function evaluations. Our approach is outlined in
section 3.

Another consideration we address in this paper is incorporating fault-tolerant
strategies into APPS since one intent is to use this software on large-scale systems. As
the number of individual computers participating in a computation grows, the chance
that one (or more) will fail also grows. If we embark on a lengthy computation, we
want reasonable assurance of producing a final result, even if a subset of processors
fails. Thus, our goal is to design methods that respond to such failures and protect
the solution process. Rather than simply checkpointing intermediate computations to
disk and then restarting in the event of a failure, we are instead considering methods
with heuristics that adaptively modify the search strategy. We discuss the technical
issues in further detail in section 4.

In section 5 we provide numerical results, for both standard and engineering
optimization test problems, that compare a preliminary implementation of APPS
with an implementation of parallel pattern search (PPS) that incorporates a blocking
synchronization point within each iteration. Finally, in section 6 we outline additional
questions to pursue.

Although we are not the first to embark on the design of asynchronous parallel
optimization algorithms, we are aware of little other work, particularly in the area
of nonlinear programming. Approaches to developing asynchronous parallel Newton
or quasi-Newton methods are proposed in [4, 10], though the assumptions underlying
these approaches differ markedly from those we address. Specifically, both assume
that solving the Newton equation at each iteration is the dominant computational
cost of the optimization algorithm because the dimensions of the problems of interest
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are relatively large. A different line of inquiry [23] considers the use of quasi-Newton
methods in the context of asynchronous stochastic global optimization algorithms; we
consider only the problem of identifying local stationary points.

2. Parallel pattern search. Before proceeding to a discussion of APPS, let us
first review some key features of pattern search.

A primary characteristic of pattern search methods is that they sample the func-
tion over a predefined pattern of points, all of which lie on a rational lattice. By
enforcing structure on the form of the points in the pattern, as well as simple rules
on both the outcome of the search and the subsequent updates, we are guaranteed
global convergence to a stationary point [9, 16, 26].

For our purposes, the feature of pattern search that is amenable to parallelism
is that once the candidates in the pattern have been defined, the function values at
these points can be computed independently and, thus, concurrently.

To make this more concrete, consider the following particularly simple version of
a parallel pattern search algorithm. At iteration k, we have an iterate xk ∈ R

n and a
steplength control parameter ∆k > 0. The pattern of p search directions is denoted
by D = {d1, . . . , dp}. Although other choices for D are possible, for our simple variant
we choose D ≡ {e1, . . . , en,−e1, . . . ,−en}, where ej represents the jth unit vector.
Figure 2.1 illustrates an example of this search pattern when n = 2.

�

xk

∆k︷ ︸︸ ︷
❜

❜

❜❜ ✲✛

✻

❄

Fig. 2.1. A simple instance of a pattern for pattern search.

Now that we have selected D, multiple algorithmic options are open to us. An
obvious strategy for concurrent computing is to identify an x+ ∈ {xk + ∆kdi, i =
1, . . . , p} such that f(x+) = min{f(xk+∆kdi), i = 1, . . . , p}. This strategy requires us
to compute f(xk +∆kdi) for all p vectors in the set D. To ensure global convergence
of some subsequence to a stationary point we can accept any point xk + ∆k di for
which f(xk + ∆kdi) < f(xk) [26]. Thus, finding f(x+) = min{f(xk + ∆kdi), i =
1, . . . , p} is in some sense more than is really needed. However, concurrency masks
the computational expense of the stronger acceptance condition.

If none of the points in the pattern reduces the objective, then we set xk+1 = xk
and reduce ∆ by setting ∆k+1 =

1
2∆k; otherwise, we set ∆k+1 = ∆k and xk+1 = x+.

We repeat this process until some reasonable stopping criterion, such as ∆k ≤ tol, is
satisfied [8, 9]. This basic strategy leads us to the algorithm we call parallel pattern
search (PPS), which is given in Figure 2.2.

There still remains the question of what constitutes an acceptable pattern. Fol-
lowing the examples in [16], we borrow the following definition from [6].

Definition 2.1. A set of vectors {d1, . . . , dp} positively spans R
n if any vector

v ∈ R
n can be written as a nonnegative linear combination of the vectors in the set;

i.e., for any v ∈ R
n there exist α1, α2, . . . , αp ≥ 0 such that

v = α1d1 + · · ·+ αpdp.
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Initialization:
• Set the iteration counter k = 0.
• Select a set of search directions D = {d1, . . . , dp}.
• Select a steplength control parameter ∆0.
• Select a stopping tolerance tol.
• Select a starting point x0 and evaluate f(x0).

Iteration:
1. Compute xk +∆kdi and evaluate f(xk +∆kdi), for i = 1, . . . , p, concurrently.
2. Determine x+ and f(x+) such that f(x+) = min { f(xk +∆kdi), i = 1, . . . , p }

(synchronization point).
3. If f(x+) < f(xk), then xk ← x+ and f(xk)← f(x+). Else ∆k ← 1

2
∆k.

4. If ∆k > tol, k ← k + 1, go to step 1. Else, exit.

Fig. 2.2. The PPS algorithm.

We require D to be a positive spanning set for R
n. (This is a bit of a misnomer;

given the definition, it perhaps would be more apt to call it a “nonnegative” spanning
set.) We add the condition that D be composed of rational vectors [16].

3. Asynchronous parallel pattern search. The appeal of the PPS strategy
outlined in Figure 2.2 is that it is straightforward to implement. Unfortunately, ineffi-
ciencies in processor utilization for PPS arise when the objective function evaluations
do not finish in approximately the same amount of time. This may happen for several
reasons. First, the objective function evaluations may be complex simulations that
require different amounts of work depending on the input parameters. Second, the
computational loads on the individual processors may vary. Third, the processors
participating in the calculation may possess different computational characteristics.
When the objective function evaluations take varying amounts of time, those proces-
sors that can finish their share of the computation more quickly wait for the remaining
processors to contribute their results. Fourth, the number of processes we are inter-
ested in executing may not exactly match the number of available processors. Finally,
there is the real risk that either processes or processors may fail during the course
of the computation. For all these reasons, we pursue a more versatile concurrent
strategy, which we call asynchronous parallel pattern search (APPS), that allows us
to effectively balance the computational load across the available processors.

Were we simply interested in load-balancing issues, the master-slave paradigm for
the design of parallel programs would be inviting. Given such a design perspective,
we could localize all decision making to a single process (the master) and devote all
remaining processes (the slaves) to the evaluation of f(xtrial) for various choices of
xtrial determined by the master process. Since we are assuming that the evaluation
of the objective is the dominant computational cost, we would not have to be overly
concerned about the communication bottlenecks that can sometimes occur using such
a paradigm. However, fault tolerance is our other prominent concern. If we localize the
decision making to a single process and the master process fails, we would be unable
to finish the computation. (Recovery in the event that one of the slave processes fails
is easy; once a failure is detected, the master process can simply restart the failed
slave process.)

Such concerns lead us to the peer-to-peer paradigm. We want each process to be
an independent unit, capable of making its own decisions and equipped to respond
intelligently whenever it detects that other processes have failed.
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Initialization:
• Determine my search direction d ∈ D.
• Receive the initial value of the steplength control parameter ∆trial.
• Receive the value of the stopping tolerance tol.
• Receive the starting point xbest and receive (or evaluate) fbest ≡ f(xbest).

Iteration:
1. Compute xtrial ← xbest +∆trial d and evaluate ftrial ≡ f(xtrial).
2. Perform a global reduction to determine f+ (and the associated x+) such that f+ is
the minimum of all ftrial values on all p processes.

3. (a) If f+ < fbest, then
i. ∆trial ← λ ∆trial with λ ∈ {2� | � ∈ Z+} and
ii. {xbest, fbest} ← {x+, f+}.

(b) Else ∆trial ← 1
2
∆trial.

4. If ∆trial > tol, go to step 1. Else, exit.

Fig. 3.1. Peer-to-peer version of (synchronous) PPS.

3.1. Peer-to-peer synchronous PPS. In order to better understand APPS,
let us first consider a peer-to-peer version of synchronous PPS.

For PPS, there are p processes, with each process in charge of a single search
direction in the set D. In Figure 3.1, we show the peer-to-peer version of synchronous
PPS from the perspective of a single process. We drop the subscript i = {1, . . . , p} to
emphasize that each process is only concerned with its own unique direction. In the
initialization, each process determines its search direction and “receives” the values
of ∆trial, tol, and xbest either by reading them from an input file or by receiving them
in a message from another process.

In the main iteration of PPS, the only communication a process has with its peers
is the reduction in step 2, where all the processes participating in the computation
contribute their values for xtrial and ftrial. The reduction operation returns f+, the
minimum value of ftrial over all processes, and x+, the associated point. This reduction
operation is the synchronization point for PPS—the minimum value of ftrial over all
processes cannot be determined until all processes have finished their evaluation of
f(xtrial).

As indicated in step 3(a)i, we may increase ∆trial when a decrease in f is obtained.
We have two possible reasons for doing so. First, we do not want ∆trial to become too
small based on the outcome of a search along a single direction. So if we find a step
that produces decrease in f , but for which ∆trial is smaller than some ∆min > tol,
then we choose the least nonnegative integer � (i.e., � ∈ Z+) such that 2�∆trial > ∆min

(in our implementation we somewhat arbitrarily choose ∆min ≡ 23 · tol). Assuming,
instead, that we ended the search successfully with a choice of ∆trial that satisfies
∆trial > ∆min, we may still choose to expand ∆trial. In our implementation we
double ∆trial (i.e., we choose � = 1) if the same search direction produces at least two
successful iterates in a row. Our reason for this condition is straightforward: if we
have just completed a sequence of reductions in ∆trial to arrive at a steplength that
is sufficiently small to produce descent, it is counterproductive to follow this with an
immediate doubling of ∆trial. However, if the same search direction produces at least
two successful iterates in a row, then this would indicate that the size of the step we
are taking is probably too short, so we double ∆trial in an effort to accelerate the
search along that direction. If neither of the above two situations holds, then we do
not alter ∆trial (i.e., we choose � = 0).



ASYNCHRONOUS PARALLEL PATTERN SEARCH 139

On the other hand, if there is no decrease in f , in step 3(b) we reduce ∆trial by
a factor of one-half.

In step 4, all processes simultaneously check for convergence, each using its own
locally stored, locally updated copy of ∆trial. We note that in a heterogeneous envi-
ronment, there exists the possibility that the processes may not have identical values
for ∆trial because of slight differences in both storage and arithmetic for floating-point
numbers; see [2]. We address this issue in further detail in section 3.3.2.

Iteration:
0. For each new best message in my queue:

(a) If f+ < fbest for an incoming triplet {x+, f+,∆+}, then
i. {xbest, fbest,∆best} ← {x+, f+,∆+}, and
ii. ∆trial ← ∆best.

(b) Else, discard the triplet {x+, f+,∆+}.
1. Compute xtrial ← xbest +∆trial d and evaluate ftrial ≡ f(xtrial).
2. Set {x+, f+,∆+} ← {xtrial, ftrial,∆trial}.
3. (a) If f+ < fbest, then

i. ∆trial ← λ ∆trial with λ ∈ {2� | � ∈ Z+}; ∆+ ← ∆trial;
ii. {xbest, fbest,∆best} ← {x+, f+,∆+}; and
iii. broadcast a nonblocking new best message with the triplet
{xbest, fbest,∆best}.

(b) Else ∆trial ← 1
2
∆trial.

4. If ∆trial > tol, go to step 0. Else broadcast a nonblocking single direction
convergence message with the triplet {xbest, fbest,∆best}.

5. Wait and process each incoming message in my queue until either
(a) enough of the processes report single direction convergence for this same point
or
(b) a better point is received.
In case (a), exit. In case (b), go to step 0.

Fig. 3.2. Peer-to-peer version of APPS.

3.2. Peer-to-peer APPS. The peer-to-peer version of APPS, from the per-
spective of a single process, is given in Figure 3.2. Note that the process’s local values
for xbest, x+, ∆trial, etc., may not always agree with the local values on other processes.
This is in contrast to PPS, where all values except ftrial and xtrial are synchronized.
While PPS relies on a global reduction operation to synchronize all critical values,
APPS relies on nonblocking broadcasts to exchange information between processes.
Descriptions of the individual steps of APPS follow. (The initialization for APPS is
unchanged from that for PPS.) As we examine these steps, keep in mind that at each
step, every process decides what to do next based only on its current local information.

Step 0: Checking for candidates from other processes. Before a process
undertakes a new evaluation of the objective function, it considers any “new best”
messages that may have arrived during the previous function evaluation. The receiving
process considers each incoming triplet {x+, f+,∆+} as a candidate for a new best;
hence the test in step 0(a). To make the procedure robust, we handle tie-breaking
(i.e., the case where f+ = fbest) in a consistent fashion, the details of which are
deferred to section 3.3.2.

Step 1: Evaluating the function. Step 1 is the computational workhorse of
PPS and is equivalent to the same step in synchronous PPS. The one substantive
difference is that in PPS, xbest and ∆trial are identical across all processes. In APPS,
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these values are no longer synchronized; they depend only on the information that is
currently known to the process when it constructs xtrial.

Step 2: Assigning the local candidate. This step does not actually require
any action; it is here to emphasize that, in contrast to PPS, accepting the local trial
point as a possible candidate for the new best does not involve the other processes.
Instead, input from other processes is assessed in step 0, as it becomes available.

Step 3: Assessing the local candidate. If f+, the function value at x+, is
better than fbest, then ∆trial (and ∆+) are increased (using the same strategy given
in section 3.1 for PPS), the process’s triplet {xbest, fbest,∆best} is updated, and a
message is broadcast to the other processes to inform them of this improvement.
Otherwise, the process reduces ∆trial and continues.

Step 4: Checking for convergence along my search direction. There are
two possible outcomes for step 3: either f+ replaces fbest (in which case, ∆trial may be
increased) or fbest is unchanged and ∆trial is reduced. If the second outcome occurs
and ∆trial ≤ tol, this signals that no improvement can be found from the current xbest

along the search direction d that this process owns and thus we may have arrived at a
stationary point [9]. The process then notifies the other processes, by broadcasting a
“single direction convergence” message, that it has converged (within tolerance) along
its search direction.

Step 5: Waiting for a more complete picture of the entire search. The
last step in APPS is the one step where a process may wait in an idle loop. Step 5 is
reached only when a process has converged along its search direction. The idle pro-
cess waits until either one of two things happens: it receives enough single direction
convergence messages to verify global convergence to a stationary point of the objec-
tive function, or another process produces a point with a function value that is lower
than fbest. The details regarding what constitutes “enough” single direction conver-
gence messages are deferred to section 3.3.3, where we discuss the precise measure of
“enough” and how this can be determined.

3.3. Handling messages and exploiting parallelism. Now that we have
discussed the essential logic of APPS, we change it slightly to better handle the
message traffic and to better exploit parallelism.

There are technical considerations underlying the implementation of APPS that
cause us to modify the algorithm slightly from the version presented in Figure 3.2.
In particular, in the discussion above we have referred to a set of p processes, each
of which handles computation, communication, and decision making. However, it is
convenient to split the computation (i.e., the evaluation of the objective function) from
the communication and decision making. One motivation for spawning a separate
process to handle each evaluation of the objective function is that as a consequence
of receiving a new best point from another process, it may be desirable to terminate
an evaluation at some xtrial in order to move to the search to the new xbest. A
second motivation is that it should eliminate the accumulation of a large number of
unprocessed messages, which can cause the message queue to overflow.

We start with a group of APPS agent processes that are in charge of the commu-
nication and decision making. Each evaluation of f(xtrial) is spawned as a separate
process that is subservient to a single APPS agent. The result is a set of APPS agents
working in peer-to-peer mode, with each APPS agent spawning function evaluation
processes as necessary. In contrast with the description of APPS given in Figure 3.2,
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APPS agents now dynamically initiate actions solely in response to messages, rather
than routinely cycling through a fixed set of steps. It should be noted that the APPS
agents require very little processing time, relative to the amount of time devoted to
evaluating f(xtrial). Essentially, each APPS agent lies dormant until the arrival of an
incoming message, which then triggers some action.

The types of incoming messages that an APPS agent receives are categorized as
follows: a “return” from the process it spawned for the evaluation of f(xtrial), a “new
best” message from another APPS agent, a “single direction convergence” message
from another APPS agent, or a “shutdown” message from another APPS agent. We
now investigate in more detail an APPS agent’s reaction to each type of incoming
message.

3.3.1. Handling “return” messages. An APPS agent receives a “return”
message when the process it spawned to evaluate f(xtrial) returns the computed value
ftrial. In Figure 3.3 we show an APPS agent’s actions in response. In the discussions
that follow, we introduce here an additional item to be associated with each point—a
convergence table Π. The convergence table is used to detect a stationary point. It
lists which of the p search directions from x have converged to within tolerance. We
defer a further discussion of how this information is processed to section 3.3.3, where
we discuss an APPS agent’s action in response to a “single direction convergence”
message in more detail.

Return from evaluation of the objective. Receive ftrial.
1. Update xbest and/or ∆trial.

(a) If ftrial < fbest, then
i. ∆trial ← λ ∆trial with λ ∈ {2� | � ∈ Z+},
ii. {xbest, fbest,∆best,Πbest} ← {xtrial, ftrial,∆trial,Πtrial}, and
iii. broadcast a nonblocking new best message with the quadruple
{xbest, fbest,∆best,Πbest}.

(b) Else if xbest is not the point used to generate xtrial, then ∆trial ← ∆best.
(c) Else ∆trial ← 1

2
∆trial.

2. Check for convergence and spawn next objective function evaluation.
(a) If ∆trial > tol, then compute xtrial ← xbest +∆trial d, initialize Πtrial to

FALSE, and spawn a new process to evaluate f(xtrial).
(b) Else update Πbest (to signal convergence to xbest along my direction d) and

broadcast a nonblocking single direction convergence message with the
quadruple {xbest, fbest,∆best,Πbest}.

Fig. 3.3. APPS agent’s response to a return message.

After receiving a return message, an APPS agent first must determine if a new
best point has been identified, as shown in step 1(a). If so, the steplength ∆trial may be
increased (using the same rule as for PPS, given in section 3.1) and {xtrial, ftrial,∆trial,
Πtrial} replaces {xbest, fbest,∆best,Πbest}. The improvement is broadcast to all other
APPS agents.

Upon first inspection, the need for step 1(b) may not be clear. An APPS agent
constructs xtrial using its current values of xbest and ∆trial (step 2(a) in Figure
3.3). While the process spawned by an APPS agent is busy evaluating f(xtrial),
there is always the chance that another APPS agent will broadcast a quadruple
{x+, f+,∆+,Π+} whose value of f+ improves upon the resident value of fbest. As we
shall see in section 3.3.2, when an APPS agent receives such an incoming message,
it replaces {xbest, fbest,∆best,Πbest} with {x+, f+,∆+,Π+}. Before constructing the
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next xtrial, the APPS agent ascertains if, while f(xtrial) was being computed, xbest

was replaced as the result of an incoming message from another APPS agent. If so,
then this new xbest will be used to compute the next xtrial. In this case, the APPS
agent replaces ∆trial with ∆best; using the value of ∆ associated with the best point
retains some scaling information.

In step 1(c), we halve ∆trial after confirming that fbest has not been replaced
either by ftrial or by some f+ contained in a message that arrived from another APPS
agent while f(xtrial) was being computed.

Step 2 in Figure 3.3 checks the value of ∆trial, our measure of progress toward
a solution, and reacts appropriately. If ∆trial is greater than tol, we continue the
search. Otherwise, when ∆trial ≤ tol, the search along the APPS agent’s direction d
has converged to xbest, and this information needs to be broadcast to all APPS agents.

3.3.2. Handling “new best” messages. When an APPS agent receives a
“new best” message from another APPS agent, the first thing to check is whether or
not the incoming quadruple really does contain the best function value seen thus far.

Here we encounter an important caveat of heterogeneous computing [2]. The
comparison of floating-point values (in particular, f ’s and ∆’s) controls the flow of
APPS and we depend on these comparisons to give consistent results across all pro-
cesses. Therefore, we must ensure that values are compared only to a level of precision
available on all processors. In other words, a “safe” comparison declares a equivalent
to b if

| a− b |
max{|a|, |b|} < ε∗mach,(3.1)

where ε∗mach is greater than or equal to the maximum value of machine epsilon across
the values for machine epsilon on all processors participating in the computation. If
both |a| and |b| are below ε∗mach, then they are automatically considered equal and
(3.1) is not evaluated.

The second concern raised by the concurrency of the processes is what to do when
f+ and fbest are equivalent. Currently, APPS uses the following tie-breaking scheme.
If f+ and fbest satisfy (3.1), then compare ∆+ and ∆best and select the candidate
with the larger value of ∆. If ∆+ and ∆best also satisfy (3.1), check next to see if x+

and xbest are the same. Rather than comparing x+ and xbest directly, by computing
some norm of the difference, we use a unique global identifier with which APPS tags
each point. Thus, two points are considered equivalent if and only if their f -values,
∆-values, and unique global identifiers are equivalent. This means that two points
that actually are equal, but were generated via different paths on different processes,
will be considered to be “different” points since their global identifiers do not match.
However, since the purpose of the identification is to break ties in a consistent fashion,
all we need worry about is what to do when both the f -values and the ∆-values are
equivalent but the global identifier is not. In this last case, ties are broken in favor
of the point with the lower global identifier. Since the global identifier of each point
is a unique integer, the resolution is unambiguous. So, whenever we compare f+ and
fbest, the comparison incorporates this tie-breaking strategy.

Now that we can assess “improvement” on fbest in a way that both handles the
vagaries of floating-point representation and breaks ties in a consistent fashion, we
examine in more detail an APPS agent’s actions to a “new best” message, shown in
Figure 3.4.
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New best. Receive {x+, f+,∆+,Π+}.
1. If f+ < fbest, then

(a) If I had converged to xbest along my search direction d, then
i. {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}, ∆trial ← ∆best,
ii. compute xtrial ← xbest +∆trial d, initialize Πtrial to all FALSE, and

spawn a new process to evaluate f(xtrial).
(b) Else if ∆trial < ∆+, then

i. terminate the process evaluating f(xtrial),
ii. {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}, ∆trial ← ∆best,
iii. compute xtrial ← xbest +∆trial d, initialize Πtrial to all FALSE, and

spawn a new process to evaluate f(xtrial).
(c) Else, {xbest, fbest,∆best,Πbest} ← {x+, f+,∆+,Π+}.

2. Else discard {x+, f+,∆+,Π+}.

Fig. 3.4. APPS agent’s response to a new best message.

Assuming improvement on fbest, the first action taken by an APPS agent is to
determine the status of the search along the direction d. There are three possibilities
to consider.

The first possibility, shown in step 1(a), is that at some point the search along d
had converged within tolerance and so the APPS agent is now waiting for incoming
messages to either confirm overall convergence of the search or, as in this case, produce
a new best point (see step 5 in Figure 3.2). When the latter occurs, the incoming
quadruple is accepted and the search is resumed from the new xbest.

The second possibility, shown in step 1(b), is that the search along d is still
in progress, but that the steps along d have become small, i.e., ∆trial < ∆best. If
so, then the search along d has reduced ∆trial—perhaps repeatedly—in an effort to
find improvement on fbest. In this case, it is particularly useful to have an APPS
agent acting independently of the function evaluation process. An APPS agent can
terminate the current evaluation of f(xtrial) before it actually finishes (step 1(b)i)
in favor of starting a new evaluation of the objective based on a new value of xbest

(step 1(b)iii). The question to ask is why we would choose to do so.

In certain cases, the current evaluation of the objective function is terminated in
favor of starting one based on a new best point. Imagine the following scenario. Sup-
pose three APPS agents, A, B, and C, start off with the same value for xbest, generate
their own xtrial’s, and spawn their own evaluations of f(xtrial). Each evaluation of
the objective function takes several hours. The evaluation for Agent A completes first
and there is no improvement, so Agent A reduces its steplength, generates a new trial
point, and spawns a new evaluation of the objective function. A few minutes later,
Agent B’s evaluation finishes and it produces improvement. Agent B broadcasts a
“new best” message to the other APPS agents. Agent A receives this message and
terminates its current evaluation of the objective function in order to move to the
better point. This may save several hours of wasted computing time. However, Agent
C, which is still working on its first evaluation of the objective function, waits for
that to complete before considering a move to the new xbest because the inequality
on ∆trial does not hold in step 1(b) of Figure 3.4.

The third possibility when the incoming value of f+ improves upon the local value
of fbest is to simply accept the incoming quadruple, as shown in step 1(c). This is
exactly the strategy for Agent C outlined in the scenario described above.

The final observation to be made is that if f+ does not improve upon fbest, the
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Single direction convergence. Receive {x+, f+,∆+,Π+}.
1. If f+ < fbest, then go through the steps for a new best message.
2. If f+ = fbest, then

(a) Update Πbest to include any new information contained in Π+.
(b) If I am the temporary master, then check for convergence.

If enough of the other processes have converged (i.e., their associated
directions form a positive spanning set), then
i. report {xbest, fbest},
ii. broadcast a nonblocking shutdown message to the remaining APPS
agents, and

iii. exit.
3. Else discard {x+, f+,∆+,Π+}.

Fig. 3.5. APPS agent’s response to a single direction convergence message.

quadruple {x+, f+,∆+,Π+} is simply discarded; it already has been superseded by
another point and thus is of no interest.

3.3.3. Handling “single direction convergence” messages. Detecting con-
vergence for APPS is a trickier issue than it is for PPS because the APPS agents do not
perform a synchronized test for convergence. Instead, each APPS agent stops spawn-
ing processes to evaluate f(xtrial) when its local value of ∆trial satisfies ∆trial ≤ tol.
Any APPS agent that arrives at this conclusion then waits until either enough other
APPS agents stop at the same best point (we describe “enough” below) or another
APPS agent produces a better point from which to resume the search. Since every
quadruple {xtrial, ftrial,∆trial,Πtrial} which improves upon fbest is broadcast to all
APPS agents, every APPS agent eventually agrees on the best point.

When an APPS agent receives a “single direction convergence” message (see Fig-
ure 3.5), it checks to make sure that this function value and associated point have
been seen before. If not (a distinct possibility since messages may arrive out of order),
then the APPS agent handles the incoming quadruple as if it were part of a “new
best” message.

If the incoming point is the same as the best point we have, i.e., f+ = fbest, then
the APPS agent receiving the message must update its convergence table Πbest to
include any new information regarding the convergence of other search directions to
the same point xbest. Again, timing issues must be taken into account as either the
sending or the receiving APPS agent may have information that has not yet been seen
by the other.

Next, in order to check for convergence of a sufficient number of the p indepen-
dent search directions, it is useful to have a temporary master to avoid redundant
computation. We define the temporary master to be the APPS agent with the lowest
process identification number. While this is usually process 0, it is not necessarily
the case if a fault occurs; we discuss this scenario further in section 4. The tempo-
rary master checks to see if the set of directions along which the search has converged
forms a positive spanning set. If so, it reports to the user the final result of the search,
broadcasts a “shutdown” message, and exits.

Checking for a positive spanning set can be done as follows. We know that
a positive spanning set for R

n must contain at least n + 1 vectors [6]. So if the
convergence table has at least n + 1 entries, it is time for the temporary master to
check for convergence of the overall process. (Every APPS agent knows D, which is
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why it is possible for any APPS agent to serve as temporary master.) Let V ⊆ D be
the candidate for a positive spanning set. We solve n + 1 nonnegative least squares
problems according to the following theorem.

Theorem 3.1. A set V = {v1, v2, . . . , vm} is a positive spanning set if the set
E = {e1, e2, . . . , en, − 1} is in its positive span (where −1 is the vector of all −1’s).

Alternatively, we can check the positive basis by first verifying that V is a spanning
set using, say, a QR factorization with pivoting, and then solving a linear program.

Theorem 3.2 (see Wright [27]). A spanning set V = {v1, v2, . . . , vm} is a positive
spanning set if the maximum of the following linear program is 1.

max t subject to V x = 0, xi ≥ t ∀ i, 0 ≤ t ≤ 1,

where V is a matrix representing the spanning set V.
We make use of Theorem 3.1 since Netlib provides freely available software, due

to Lawson and Hanson [14], for solving nonnegative least squares problems. To make
use of Theorem 3.2 requires software both for QR factorizations and for the solution
of linear programs; the latter is particularly difficult to come by in a freely available,
portable, and easy-to-use format.

3.3.4. Handling “shutdown” messages. The reactions of the other APPS
agents to a “shutdown” message from the temporary master should be clear after the
discussion in section 3.3.3; they are given in Figure 3.6. Again we note the value of
having both an APPS agent and a separate process for evaluating f(xtrial); once the
shutdown message has been received, an APPS agent can immediately terminate the
process evaluating f(xtrial) and exit.

Shutdown. Receive the shutdown message from the temporary master.
1. Terminate the process evaluating f(xtrial) and
2. exit.

Fig. 3.6. APPS agent’s response to a shutdown message.

4. Fault tolerance in APPS. The move toward a variety of computing en-
vironments, including heterogeneous distributed computing platforms, brings with it
increased attention to the fault tolerance of parallel algorithms. The large size, di-
versity of components, and complex architecture of such systems create numerous
opportunities for hardware failures, and our computational experience confirms that
these failures do, in fact, occur.

In addition, the size and complexity of current simulation codes call into question
the robustness of the function evaluations. For example, our experience has been that
it is possible to generate input parameters that are both physically and mathemati-
cally feasible but for which the simulation codes fail to finish successfully. Thus, we
must contend with software failures as well as hardware failures.

A great deal of work has been done in the computer science community with
regard to fault tolerance; however, much of that work has focused on making fault
tolerance as transparent to the user as possible. This often entails strategies such
as checkpointing the entire state of an application to disk or replicating processes.
Fault tolerance has traditionally been used with loosely coupled distributed applica-
tions that do not depend on each other to finish, such as business database applica-
tions. This lack of interdependence is atypical of most scientific applications. While
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checkpointing and replication are adequate techniques for scientific applications, they
incur a substantial amount of unwanted overhead; however, certain scientific applica-
tions have characteristics that can be exploited to derive more efficient and elegant
stratagems for fault tolerance. Algorithm-dependent strategies for incorporating fault
tolerance have already received attention in the scientific computing community; see,
e.g., [21]. These approaches rely primarily on the use of diskless checkpointing, a
significant improvement over traditional approaches. The nature of APPS is such
that we can even further reduce the overhead for fault tolerance and dispense with
checkpointing altogether.

Two important observations should be made regarding fault tolerance in APPS.
First, there are no single points of failure in the APPS algorithm itself. Assuming
initialization is successful, there is just one scenario that requires a single APPS agent
to coordinate efforts among all agents (i.e., the temporary master used to check con-
vergence of the entire search, as shown in Figure 3.5). However, the choice of master is
not fixed. If the APPS agent serving as temporary master should fail while performing
its tasks, another APPS agent steps up to take over. This means the degree of fault
tolerance in APPS is constrained only by the underlying communication architecture.
The current implementation of APPS uses PVM [11], which provides a rich library of
communication and process management procedures needed by the APPS agents. The
one limitation we inherit from PVM is that it executes multiple processes on multiple
processors under the control of a single master PVM daemon. Thus the PVM daemon
introduces a single point of failure within our current implementation of APPS. We
expect HARNESS [1], the successor to PVM, to eliminate this disadvantage. The
second observation to be made is that no checkpointing or replication of processes
is necessary. The APPS agents can be reconfigured dynamically. New APPS agents
require only a small packet of information from any active APPS agent in order to
take over where a failed APPS agent left off. Therefore, we have been able to take
advantage of algorithmic characteristics of pattern search in order to incorporate a
high degree of fault tolerance into APPS with almost no additional overhead.

Having made these two observations, we now describe how fault tolerance is ad-
dressed in APPS. Every APPS agent keeps a record of active and inactive APPS
agents (one per search direction), the available hosts, and a mapping of the active
APPS agents to the available hosts. There are three types of faults with which we
are concerned: (1) the failure of a process evaluating the objective function, (2) the
failure of an APPS agent, and (3) the failure of a host processor. Once again we
note the advantage of maintaining pairs of processes: an APPS agent to handle all
communication (including information from PVM regarding the failure of processes)
that is separate from the processes tasked with the major computations, the evalu-
ations of the objective function. An individual APPS agent uses its record of active
and inactive APPS agents to decide whether or not it is the temporary master and
to determine the other APPS agents with whom it should interact in response to a
failure. The responses to these three scenarios are shown in Figure 4.1.

When a process evaluating f(xtrial) fails, the failure is reported to its master
(i.e., the APPS agent that originally spawned it), and that APPS agent respawns the
evaluation of the objective function at the current trial point. If several (e.g., five)
attempts to evaluate the objective function fail at the same trial point, the APPS
agent that was spawning those evaluations exits, triggering an APPS agent failure
message to be sent to the other APPS agents. The failure of an evaluation could be
handled in different ways for different applications; for instance, attempts to evaluate
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• An APPS agent detects failure of its function evaluation process.
1. If the number of attempts to evaluate f(xtrial) is less than the maximum
number allowed, then respawn a new process to evaluate f(xtrial).

2. Else exit.
• An APPS agent detects failure of another APPS agent.

1. Record the failure.
2. If “my” process number is the lowest among the APPS agents still active,
then assume the responsibility of temporary master.

3. If I am the temporary master, then
(a) Check for convergence. If enough of the other APPS agents report

convergence (i.e., their associated directions form a positive spanning
set), then
i. report {xbest, fbest},
ii. broadcast a nonblocking shutdown message to the remaining
APPS agents, and

iii. exit.
(b) If the directions corresponding to the remaining APPS agents do not

form a positive spanning set, respawn all failed APPS agents on
available host processors.

• An APPS agent detects failure of a host processor.
1. Remove failed host from list of available host processors.
2. Determine all APPS agents residing on the failed host processor and treat
each as a failed APPS agent.

Fig. 4.1. Fault tolerance messages and actions.

the objective function at a certain point could be abandoned without necessarily
terminating the APPS agent.

When an APPS agent fails, all the remaining APPS agents record this failure. If
the APPS agent that failed happened to be serving the role of temporary master, then
another APPS agent must assume this responsibility. We maintain the convention that
the active APPS agent with the lowest process number serves as temporary master.
Once the question of who is temporary master is resolved, the first thing the new
temporary master does is check for convergence since the now defunct APPS agent
may have been in the midst of that check when it failed. If the search has not yet
converged, the temporary master checks whether or not the set of directions owned by
the remaining active APPS agents forms a positive spanning set. If so, then it is still
possible to reliably determine whether or not the algorithm has converged, so nothing
is done. Otherwise, all defunct APPS agents are restarted on the available hosts by the
temporary master. Note that multiple APPS agents may be assigned to a single host.

If a host fails, the defunct host processor is removed from the list of viable hosts.
The APPS agents that were running on the defunct host are regarded individually as
failed APPS agents, which are then handled using the rules stated for APPS agent
failures.

Despite the growing attention to fault tolerance in the parallel computing world,
we are aware of only one other parallel optimization algorithm that incorporates fault
tolerance, FATCOP [3]. FATCOP is a parallel mixed integer program solver that
has been implemented using a Condor-PVM hybrid as the communication substrate.
FATCOP is implemented in a master-slave fashion, which means that there is a sin-
gle point of failure at the master process. This is addressed by having the master
checkpoint information to disk (via Condor), but recovery requires user intervention
to restart the program in the event of a failure. In contrast, once APPS has finished
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initialization, it can recover from the failure of any process of its own creation, includ-
ing the failure of the temporary master. It does so on its own, with no checkpointing
whatsoever.

5. Numerical results. We compare APPS and PPS on several test problems as
well as two engineering problems: a thermal design problem and a circuit simulation
problem.

The tests were performed on the CPlant supercomputer at Sandia National Labs
in Livermore, CA. CPlant is a cluster of DEC Alpha Miata 433 MHz processors. For
our tests, we used 50 processors dedicated to our sole use.

5.1. Standard test problems. We compare APPS and PPS with 8, 16, 24,
and 32 processors on six four-dimensional test problems [20, 5], shown in Table 5.1.

Table 5.1
Six standard test problems.

1 2 3 4 5 6
broyden2a broyden2b chebyquad epowell toint trig vardim

Since the function evaluations are extremely fast, we added extra “busy work” (in
the form of solving a 100 × 101 nonnegative least squares problem) in order to slow
down the processes evaluating f and better simulate the computational behavior of
the optimization problems in which we are interested.

The parameters for APPS and PPS were set as follows. Let n = 4 be the problem
dimension, and let p ∈ {8, 16, 24, 32} be the number of processors. The first 2n search
directions in D are {e1, e2, . . . , en,−e1,−e2, . . . ,−en}. The remaining p−2n directions
are generated randomly (with a different seed for every run) and normalized to unit
length. This construction ensures that D is a positive spanning set. We initialize
∆ = 1.0 and tol = 0.001. We start each of these six problems from the standard
starting point [20, 5].

Before considering the summary results, we discuss the details of two sample
runs (one each for APPS and PPS) given in Table 5.2. Each process reports its own
counts and timings. All times are reported in seconds and are wall clock times. Be-
cause APPS is asynchronous, the number of function evaluations spawned by each
APPS agent varies considerably. Furthermore, the APPS agents sometimes termi-
nate (“break”) processes evaluating f(xtrial). On the other hand, because PPS is
synchronous, every process executes the same number of function evaluations and
there are no breaks. For both APPS and PPS, the initialization time is longer for
Process 0 since it is in charge of spawning all remaining tasks. The idle time varies
from process to process, but is overall lower for APPS than PPS. An APPS agent is
idle only when it has converged along its search direction, but a PPS process may
potentially have some idle time every iteration while it waits for the completion of the
global reduction. The total wall clock time varies from process to process since each
starts and stops at slightly different times. The summary information reports the
mean over all eight processes, except in the case of total time, where the maximum
total time over all eight processes is reported.

Because some of the search directions are generated randomly, every run of APPS
and PPS follows a different path to the solution and generates possibly different
solutions in the case of multiple minima. (The exception is PPS with p = 8. Because
there are no “extra” search directions, the path to the solution is the same for every
run—only the timings differ. The nondeterministic nature of APPS causes us to see
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Table 5.2
Detailed results for epowell on eight processors.

Method Process Function Function Init Idle Total
ID evals breaks time time time

APPS 0 237 66 0.17 0.00 24.72
1 266 70 0.02 0.12 22.36
2 302 89 0.02 0.12 24.32
3 274 77 0.02 0.15 22.31
4 270 62 0.02 0.04 24.56
5 282 81 0.02 0.04 24.58
6 273 59 0.02 0.04 24.59
7 276 61 0.02 0.03 24.55

Summary statistics 272.5 70.6 0.04 0.07 24.72

PPS 0 235 0 0.74 2.55 30.63
1 235 0 0.39 7.23 30.28
2 235 0 0.25 6.74 30.14
3 235 0 0.13 6.94 30.01
4 235 0 0.10 6.36 29.98
5 235 0 0.07 6.51 29.95
6 235 0 0.04 6.23 29.92
7 235 0 0.02 6.26 29.90

Summary statistics 235 N/A 0.22 6.10 30.63

different counts and different timings for every run, even if the search directions for
each run are identical.) Therefore, for each problem in Table 5.1 we report the mean
of the summary statistics from 25 runs; for each individual run we collected the same
summary statistics (except the initialization time) reported in Table 5.2.

The test results are summarized in Table 5.3. These tests were executed in what
should have been a particularly favorable environment for PPS—a cluster of homoge-
neous, dedicated processors. The primary difficulty for PPS is the cost of synchroniza-
tion in the global reduction. In terms of average function evaluations per processor,
APPS and PPS typically required about the same number. In general, for both APPS
and PPS, the number of function evaluations per processor decreased as the number
of processes increased. We expected the idle time for APPS to be less than that for
PPS; and, indeed, the idle time is two orders of magnitude less. Furthermore, the
idle time for PPS increases as the number of processors goes up. APPS was faster
(on average) than PPS in 23 out of 24 cases. The total time (on average) for APPS
either stayed more or less steady or actually decreased as the number of processors
increased. In contrast, the total time (on average) for PPS almost always increased
as the number of processors increased, due to the synchronization penalty incurred
with the addition of more processes.

Comparing APPS and PPS on simple problems is not necessarily indicative of
results for typical engineering problems. The results in sections 5.2 and 5.3 yield
more meaningful comparisons, given the types of problems for which pattern search
is best suited.

5.2. TWAFER: A thermal design problem. In this set of tests, the engi-
neering application is an optimal control problem for a thermal deposition furnace
for silicon wafers. The furnace contains a vertical stack of wafers and several heater
zones. The goal is to choose power settings for the heaters in each of n zones to achieve
a prescribed constant temperature across each wafer and throughout the stack. The
simulation code, TWAFER [12], yields measurements at a discrete collection of points
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Table 5.3
Summary statistics (across 25 runs) for the four-dimensional test problems shown in Table 5.1.

Prob No. Function evals APPS Idle time Total time
no. procs APPS PPS breaks APPS PPS APPS PPS
1 8 40.59 37.00 8.14 0.07 0.95 3.88 4.88

16 41.77 40.12 7.93 0.02 2.04 3.98 6.68
24 38.30 37.36 6.98 0.02 4.68 3.80 9.33
32 36.57 37.92 6.88 0.03 7.81 3.83 12.81

2 8 40.35 37.00 8.28 0.06 0.97 3.84 4.92
16 41.07 39.11 7.38 0.02 2.06 3.95 6.62
24 38.47 39.60 7.20 0.02 4.77 3.77 9.68
32 35.10 36.76 6.23 0.03 7.04 3.72 11.92

3 8 73.06 62.00 16.74 0.05 1.61 6.86 8.11
16 48.33 40.44 9.54 0.02 2.11 4.69 6.92
24 45.67 38.64 9.26 0.02 4.59 4.47 9.39
32 44.34 37.60 9.14 0.04 7.54 4.59 12.56

4 8 272.29 235.00 68.27 0.30 6.64 24.50 30.48
16 139.63 153.04 37.39 0.05 8.04 12.24 24.76
24 139.38 126.96 36.40 0.03 14.10 12.26 28.46
32 98.88 102.64 26.20 0.03 28.07 9.41 41.03

5 8 53.83 41.00 10.97 0.04 1.11 4.99 5.60
16 51.40 39.12 10.47 0.02 1.97 4.91 6.51
24 47.86 36.88 9.24 0.02 4.43 4.69 9.03
32 45.90 33.04 8.70 0.04 6.41 4.81 10.83

6 8 205.39 77.00 51.24 0.05 2.00 18.15 9.97
16 101.46 80.44 25.58 0.02 3.97 8.93 12.83
24 72.44 49.96 17.19 0.02 5.61 6.57 11.63
32 64.09 46.04 15.96 0.03 9.58 6.14 15.51

on the wafers. The objective function f is defined as

f(x) =
N∑
j=1

(Tj(x)− T∗)2 ,(5.1)

where N is the number of discrete temperature measurement points, Tj(x) is the
simulated temperature at the jth point for the power settings defined by x, and T∗ is
the prescribed ideal temperature.

We consider the four- and seven-zone (or variable) problems withN = 40 andN =
400, respectively. For the four-zone problem, the initial guess produced a function
value of 2.26× 106. The initial guess for the seven-zone problem produced a function
value of 7.43× 104. (The initial guess for the seven-zone problem was much closer to
the final solution.)

We used the following settings for APPS and PPS. The first n+1 search directions
are the points of a regular simplex centered about the origin. The remaining p−n−1
points are generated randomly and normalized to unit length. Because the magnitude
of the variables was O(100), we set ∆ = 10.0. Note that it can be quite useful to
choose the initial ∆ based on the magnitudes of the components in x0 as a way to
capture some scaling information about the problem [25]. We chose tol = 0.1, which
corresponds to a level of accuracy that is reasonable in the power settings.

There are some difficulties from the implementation point of view that are quite
common when dealing with simulation codes. Because TWAFER is a legacy code,
it expects an input file with a specific name and produces an output file with a
specific name. The names of these files cannot be changed, and TWAFER cannot be
hooked directly to PVM. As a consequence, we must write a “wrapper” program that
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runs an input filter, executes TWAFER via a system call, and runs an output filter.
Because TWAFER is executed via a system call, APPS has no way of terminating its
execution prematurely. (APPS can terminate the wrapper program, but TWAFER
itself will continue to run, consuming system resources.) Therefore, we allow all
function evaluations to run to completion; that is, we do not allow any breaks.

Another feature of TWAFER is that there are nonnegativity constraints on the
power settings. The solution is known to be strictly positive, and the constraints
play only a minor role in finding the solution. We did not invoke TWAFER at any
point that had one or more negative components; to accomplish this, we use a simple
barrier function that returns a large value (e.g., 1050). This is a classic trick used by
direct search methods for dealing with bound constraints. With the correct choice of
D, pattern search methods that use such a strategy can be shown to have at least one
subsequence of iterates that converge to a Karush–Kuhn–Tucker point [18, 19].

Table 5.4
Summary statistics (across multiple runs) for the four- and seven-zone TWAFER problems.

Problem Method Procs f(x∗) Function Idle Total
evals time time

4 Zone APPS 20 0.67 334.6 0.17 395.94
4 Zone PPS 20 0.66 379.9 44.77 503.88
7 Zone APPS 35 3.30 240.4 71.48 2260.46
7 Zone PPS 35 2.85 202.2 213.90 2306.83

Results for the TWAFER problem are given in Table 5.4. The four-zone results
report the means across all twenty processors over all ten runs. The seven-zone results
report the means across all 35 processors over all nine runs. (We started ten runs
for the seven-zone problem. One of the ten PPS runs failed due to a processor fault.
One of the ten APPS runs experienced several faults and, although it did get the final
solution, the summary data was incomplete.)

Recall that the goal is to choose power settings to achieve a constant temperature
across each wafer and throughout the stack. In Figure 5.1 we show the temperatures
computed by TWAFER at each wafer along a line of discretization points from the
bottom to the top of the furnace. We show results for both the initial settings we were
given for the seven-zone problem and the best and worst settings returned by APPS,
corresponding to function values of 1.48 and 7.74, respectively. (The plots of the
results from the best and worst PPS solutions are indistinguishable from the best and
worst plots for APPS.) Table 5.4 shows that for this problem, on average, PPS yields
slightly better function values than APPS (less than 1/1000th of a percent relative
difference compared to the function value at the starting point) but required more
total time. Figure 5.1 demonstrates that, qualitatively, all the solutions produced
were comparable, particularly given the modest choice of tol = 0.1.

Clearly, the idle time figures prominently in the overall performance of PPS. The
average simulation time is 1.3 seconds for the four-zone problems and 10.4 seconds for
the seven-zone problem. However, when the nonnegativity constraints are violated,
TWAFER is not called, so the execution time is essentially zero since we simply return
1050 after checking the coordinates of xtrial. The relatively high mean idle time for
APPS (for the seven-zone problem) can be traced to a single run for which the idle
time was particularly high for some processors (634 seconds on average across all 35
processors); on the remaining runs, the average APPS idle time per processor was
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Fig. 5.1. TWAFER results for the seven-zone problem using APPS with tol = 0.1. The
solid line represents the simulation output for the best settings found by APPS and the dotted line
represents the simulation output for the worst settings found by APPS. The dashed line represents
the simulation output for the initial settings. The target is a constant temperature of 1300.

lower by several orders of magnitude. We were unable to determine the cause of the
unusually large idle time.

5.3. SPICE: A circuit simulation problem. The problem is to match simu-
lation data to experimental data for a particular circuit in order to determine its char-
acteristics. In our case, we have 17 variables representing inductances, capacitances,
diode saturation currents, transistor gains, leakage inductances, and transformer core
parameters. The objective function is defined as

f(x) =
N∑
j=1

(
V SIM
j (x)− V EXP

j

)2
,(5.2)

where N is the number of time steps, V SIM
j (x) is the simulation voltage at time step

j for input x, and V EXP
j is the experimental voltage at time step j.

The SPICE3 [22] package is used for the simulation. Like TWAFER, SPICE3
communicates via file input and output and so we again use a wrapper program.

The input filter for SPICE is more complicated than that for TWAFER because
the variables for the problem are on different scales. Since APPS has no mechanism for
scaling, we handled this within the input filter by computing an affine transformation
of the variables used to formulate the objective function (5.2). Additionally, all the
variables have upper and lower bounds. Once again, we use a simple barrier function.

The output filter for SPICE is also more complicated than that for TWAFER. The
SPICE output files consist of voltages that are to be matched to the experimental data.
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Fig. 5.2. Spice results using APPS with tol = 0.1. The solid line represents the experimen-
tal output. The dashed line represents the simulation output after optimization. The dotted line
represents the simulation output for the initial point.

The experimental data is two cycles of output voltage measured at approximatelyN =
2700 discrete time steps (see Figure 5.2). The simulation data contains approximately
10 or more cycles, but only the last few complete cycles are used because the early
cycles are not stable. The cycles must be automatically identified so that the data
can be aligned with the experimental data. Furthermore, the time steps from the
simulation may differ from the time steps in the experiment, and so the simulation
data are interpolated (piecewise constant) to match the experimental data. The
function value at the initial point is 465.

The APPS parameters were set as follows. The search directions were generated
in the same way as those for the test problems in section 5.1. We set ∆ = 1.0 (the
affine transformation means the variables are well scaled) and tol is 0.1 (the tolerance
corresponds to a less than 1% change in the circuit parameter). Once again, we do
not allow “breaks” since the function evaluation is called from a wrapper program via
a system call.

The results from APPS and PPS on the SPICE problem are reported in Table 5.5.
In this case, we are reporting the results of single runs; we give results for 34 and 50
processors. The average SPICE run time is approximately 20 seconds; however, once
again we do not differentiate between times when the boundary conditions are violated
and when the SPICE code is actually executed. Increasing the number of processors
by 47% results in a 39% reduction in execution time for APPS but only 4% for PPS.
For both 34 and 50 processors, APPS is faster than PPS and even produces a slightly
better objective value (compared to the starting value of more than 400). At the
solution, two constraints are binding.
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Table 5.5
Results (one run each) for the 17 variable SPICE problem.

Method Procs f(x∗) Function Idle Total
evals time time

APPS 34 26.3 57.5 111.92 1330.55
APPS 50 26.9 50.6 63.22 807.29
PPS 34 28.8 53.0 521.48 1712.24
PPS 50 34.9 47.0 905.48 1646.53

Table 5.6
APPS results for the 17 variable SPICE with a failure approximately every 30 seconds.

Initial Final f(x∗) Total
procs procs time
34 34 27.8 1618.46
50 32 54.2 1041.14

Table 5.6 shows the results of running APPS with faults. In this case, we used
a program that automatically killed one PVM process every 30 seconds. The PVM
processes are the APPS agents and the wrapper programs. The SPICE3 simulation
is executed via a system call, and so continues to execute even if its wrapper termi-
nates; regardless, the SPICE3 program can no longer communicate with APPS and
is effectively dead.

The results are quite good. In the case of 34 processors, every APPS task that
fails must be restarted in order to maintain a positive basis. So, the final number of
APPS processes is 34. The total time is only increased by 21% despite approximately
50 failures; furthermore, this time is still faster than PPS. In the case of 50 processors,
the final number of processors is 32. (Recall that tasks are only restarted if there are
not enough remaining to form a positive basis.) In the case of 50 processors, the
solution time is only increased by 29% with faults, and is once again still faster than
PPS. In this case, however, the quality of the solution is degraded. This is likely due
to the fact that the solution lies on the boundary and some of the search directions
that failed were needed to ensure convergence to a KKT point (see [18, 19]).

6. Conclusions. Our preliminary numerical results make clear that because
APPS dynamically initiates actions solely in response to messages, it is a more effec-
tive method—even in a homogeneous cluster environment—than PPS, where “more
effective” means that APPS requires less total time to return results that are compa-
rable to those returned by PPS. We expect the differences to be even more pronounced
for larger problems (where by “larger” we mean in terms of both the execution time
and the number of variables) and for heterogeneous cluster computing environments.
Unlike PPS, which routinely cycles through a fixed set of steps, APPS does not have
any required synchronizations and, thus, appears to gain most of its advantage by
reducing idle time.

Further, APPS is a fault-tolerant algorithm. We accomplish this by making al-
gorithmic changes to PPS that introduce almost no additional overhead. As we saw
in the results for the SPICE problem solved using 34 processors (section 5.3), APPS
does not suffer much slow-down when faults do occur.

Finally, in forthcoming work, Kolda and Torczon [13] will show that in the un-
constrained case, APPS is globally convergent (even when faults occur) under the
standard assumptions for pattern search [16, 26].

These features duly noted, we are investigating further improvements to the imple-
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mentation of APPS. For instance, in the implementation described here, each APPS
agent is responsible for exactly one process to evaluate the objective function. For
multiprocessor (MPP) compute nodes, this means there will be multiple agents per
node. An alternative implementation of APPS is being developed in which there
is exactly one agent per node, with the single agent managing multiple evaluations
of the objective function. As part of this alternative implementation, the ability to
dynamically add new hosts as they become available (or to re-add previously failed
hosts) also will be incorporated.

Another improvement to the implementation will be the addition of a cache to
store the values of the function at all the points visited by the search in order to avoid
reevaluating the same point more than once. The challenges are to make the recovery
of this information fast and to decide when two points are actually equal. The latter
is especially difficult when we do not know the sensitivity of the function to changes
in each variable.

The importance of positive bases in the pattern also raises several interesting
questions. In general, we might consider the best way to generate the starting basis.
The analysis of pattern search makes clear that the “conditioning” of the positive basis
has an effect on the amount of decrease that may be realized [16]. Our numerical
studies have indicated that the quality of the positive basis can, indeed, affect the
progress of the search. Thus, explicitly monitoring the conditioning of the positive
basis, which changes dynamically, could improve the overall performance of APPS.
Further, supposing that enough failures have occurred so that there is no longer a
positive basis, we may ask if we can easily determine the smallest number of vectors
to add to once again have a positive basis. Our current implementation simply restarts
all failed APPS agents (see Figure 4.1). In general, we desire a pattern that maximizes
the probability of maintaining a well-conditioned positive basis in the event of failures,
without requiring us to keep a large number of processes active when it is neither
necessary nor convenient to do so.

Finally, although the engineering examples used in this work have bound con-
straints, the current version of APPS does not handle constraints in a rigorous fash-
ion. The poor results on the SPICE problem with faults on 50 processors may well
be attributed to this fact since several constraints are active at a known solution.
The analysis for pattern search suggests several algorithmic options we could pursue
[17, 18, 19], but the challenge is to do so in a way that works effectively within the
asynchronous framework we have devised. Future work will explore robust extensions
for handling constraints.
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Abstract. We discuss a class of preconditioning methods for an iterative solution of algebraic
nonsymmetric saddle point problems arising from a mixed finite element discretization of partial
differential equations, in particular the Navier–Stokes equation. We prove that block diagonal and
block triangular preconditioners based on symmetric, positive definite blocks guarantee that the
convergence rate of the method is independent of the mesh parameter h.
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1. Introduction. In many applications one needs to solve a discrete system of
linear equations with a block matrix

M
(
u
p

)
≡
(
A BT

B −C
)(
u
p

)
=

(
f
g

)
,(1.1)

where the matrix block A is positive definite, yet not necessarily symmetric, and C is
nonnegative. Our motivation for considering this kind of problem comes from com-
putational fluid dynamics, precisely, from the linearized discrete mixed finite element
Navier–Stokes equations, where, except in some very simple cases, A is nonsymmet-
ric, while usually it is reasonable to assume that it is positive definite [10]. C can
be zero or positive semidefinite when a stabilized method is applied. Since (1.1) is ill
conditioned with respect to the mesh parameter h, our aim in this paper is to design
and/or analyze block preconditioners for this system, for which an iterative method
converges independently of h.

Block preconditioners for a symmetric matrixM have been considered by many
authors, for example, Bramble and Pasciak [1], [3], Rusten and Winther [27], Silvester
and Wathen [29], and Klawonn [20], [19]. A symmetrized approach has been consid-
ered by D’yakonov [7] and Bramble and Pasciak [2]. Block preconditioned Uzawa-type
methods have also attracted research interest; see, for example, papers by Elman and
Golub [12] or Bramble, Pasciak, and Vassilev [4]. These preconditioners have been
verified in computational tests (see the references listed above and also [9]).

Elman and Silvester [10] were probably the first to analyze how block precondi-
tioners do work in the nonsymmetric case. They analyzed discretizations of the Oseen
equations {

−ν∆u+ (k · ∇)u+∇p = f,
div u = 0,
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which serve as a model of the linearized Navier–Stokes equations and lead to a non-
symmetric system. In papers by Elman, Silvester, and Wathen [13], [14], Elman [11],
Silvester et al. [30], and Golub and Wathen [17], a range of block preconditioning
methods for this kind of problem has been introduced and analyzed. Some of these
methods show very good convergence properties with respect to both h and ν. Of
these, [10], [11], and [30] address diagonal/triangular preconditioners using also inex-
act nonsymmetric solves, while [17] develops a method based on Stokes-like solves with
inexact blocks. Recently, Bramble, Pasciak, and Vassilev studied the inexact Uzawa
algorithm for nonsymmetric saddle point problems [5], exploiting preconditioners for
the symmetric part of A.

Independently, Klawonn and Starke [23] provided a field-of-values analysis of block
triangular preconditioners for the Oseen problem. Their analysis is valid for triangular
block preconditioner with upper diagonal block that is “sufficiently close” to A.

In this paper, based on [24] and [26], we present a new mathematical analysis of
block preconditioning algorithms and propose other approaches as well. Our analysis
is valid for inexact and symmetric block solvers and shows that for diffusion-dominated
Oseen equations, a sufficient preconditioner can be based just on the symmetric part
of the diagonal blocks ofM. We perform our analysis in a discrete H1×L2-like norm
(which is natural for the problem), using a custom inner product derived from the
preconditioner being used.

We focus on block preconditioners built up from preconditioners for symmetric
parts of diagonal blocks of (1.1) and we consider two preconditioning strategies, using
block diagonal or block triangular matrices. The first approach is to symmetrize the
problem. We prove that the resulting system spectral condition number is independent
of the dimension of (1.1), so that the PCG method [16] converges uniformly in h.
However, the numerical experiments that we report on show that this method is
quite computationally intensive (because it uses two or more solves per iteration).
Thus, our second approach relies on applying the GMRES [28] iterative method to
system (1.1) preconditioned by a block triangular matrix. We prove that, under minor
assumptions, the block triangular preconditioner guarantees the GMRES to converge
independently of h.

In the case of the linearized Navier–Stokes equations, block preconditioners dis-
cussed in the paper can be based on symmetric and positive definite preconditioners
for the discrete Laplacian and mass matrices. That gives an application programmer
a great opportunity to reuse, in an efficient way, existing very powerful methods (or
software) like domain decomposition [31] or multigrid [18] methods for these simpler
problems. Using symmetric solvers can also lead to some computational savings. We
believe that in certain cases this may be a robust alternative to custom domain de-
composition preconditioners, such as those proposed by Klawonn and Pavarino [21],
developed for the whole saddle point problem (for a comparison between a 2-level
Schwarz method and block preconditioners based also on 2-level Schwarz methods,
see another paper by Klawonn and Pavarino [22]).

A general drawback of the methods being analyzed in the paper is that their
convergence rate deteriorates when the ellipticity constant of A decreases. Clearly, in
such a case, the symmetric part holds too little information about A. This limits the
application of these methods to flows with reasonably small Reynolds number.

The plan of the remaining sections is as follows. In section 2, we introduce the
framework in which we shall analyze our algorithms. Some useful estimates are also
provided there. Section 3 is devoted to the analysis of preconditioning methods which
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lead to symmetric positive definite systems. In section 4, we analyze a block triangular
preconditioner for the GMRES method. We conclude with section 5, which contains
the results of numerical experiments for the Oseen equation.

2. General assumptions. We consider the saddle point problem (1.1) with ma-
trixM, which arises from a mixed finite element discretization of partial differential
equations, so our framework should reflect the dependence of (1.1) on the mesh pa-
rameter h. For theoretical convenience, we shall carry our analysis in terms of linear
operators rather than in terms of matrices.

Let V̄ , W̄ be real Hilbert spaces with scalar products denoted by ((·, ·)) and (·, ·),
respectively. The norms in these spaces, induced by the inner products, will be
denoted by || · || and | · |. We consider a family of finite-dimensional subspaces indexed
by the parameter h ∈ (0, 1): Vh ⊂ V̄ ,Wh ⊂ W̄ . If Vh,Wh come from the finite element
approximation, the dimension of these subspaces increases for decreasing h.

Let us introduce three continuous bilinear forms, a : V̄ × V̄ → R, b : V̄ × W̄ → R,
c : W̄ × W̄ → R, and assume that a(·, ·) is V̄ -elliptic, i.e.,

∃0 < ν ≤ 1 ∀v ∈ V̄ , a(v, v) ≥ ν||v||2(2.1)

(by analogy to the Oseen equations, we shall call ν the viscosity parameter), and that
c(·, ·) satisfies

∃γ ≥ 0 ∀p ∈ W̄ , c(p, p) ≥ γ|p|2(2.2)

(we allow γ = 0). Notice that a(·, ·) does not need to be symmetric. We shall also
assume that Vh and Wh satisfy the uniform LBB condition (see [15])

∃β > 0 ∀h ∈ (0, 1), ∀p ∈Wh, β|p| ≤ sup
v∈Vh,v �=0

b(v, p)

||v|| .(2.3)

In what follows we consider preconditioners for a family of finite-dimensional
problems (we drop the subscript h for simplicity of notation).

Problem 2.1. Find (u, p) ∈ V ×W such that

M
(
u
p

)
≡
(
A B∗

B −C
)(
u
p

)
=

(
F
G

)
.(2.4)

The operators in (2.4) are

A : V → V, ((Au, v)) = a(u, v) ∀u, v ∈ V,
B : V →W, (Bu, p) = b(u, p) ∀u ∈ V, p ∈W,
C :W →W, (Cp, q) = c(p, q) ∀p, q ∈W,

while the right-hand side F ∈ V,G ∈ W is defined through ((F, v)) ≡ 〈〈f, v〉〉 and
(G,w) ≡ 〈g, w〉, where f, g are given continuous functionals on V̄ , W̄ , and 〈〈·, ·〉〉,
〈·, ·〉 denote the duality pairing in V̄ , W̄ , respectively. B∗ denotes the formal adjoint
operator to B, i.e., (Bu, p) = ((u,B∗p)) ∀u ∈ V , p ∈W .

We introduce two more operators, A0 : V → V and J0 : W → W . We assume
that they are self-adjoint, their inverses are easy to apply, and there exist positive
constants a0, a1, b0, b1, which are independent of h and ν, such that

a0((u, u)) ≤ ((A0u, u)) ≤ a1((u, u)) ∀u ∈ V,(2.5)

b0(p, p) ≤ (J0p, p) ≤ b1(p, p) ∀p ∈W.(2.6)
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In other words, we shall always assume that A0 and J0 define good preconditioners for
the Grammian matrices for the chosen bases in V and W , respectively. For example,
in the case of the linearized Navier–Stokes equations, A0 may be a preconditioner
for the discrete Laplace operator, while J0 may be a pressure mass matrix operator
preconditioner. Thus, the A0 preconditioner may be constructed using very efficient
domain decomposition or multigrid techniques; for J0, instead of domain decomposi-
tion, one can also use very cheap diagonal scaling [33].

For f ∈ V , g ∈W , the energetic norms defined by |||f |||A−1
0

= ((A−1
0 f, f))

1/2 and

|||g|||J−1
0

= (J−1
0 g, g)1/2 are equivalent, with constants independent of h and ν, to

||f || and |g|, respectively. This fact follows directly from (2.5) and (2.6). The product
space V ×W is equipped with the natural scalar product 〈·, ·〉,

〈(
u
p

)
,

(
v
q

)〉
= ((u, v)) + (p, q);

however, we are going to analyze the preconditioned problem using a custom inner
product [·, ·], which is dependent on the preconditioners being used:

[(
u
p

)
,

(
v
q

)]
= ((A0u, v)) + (J0p, q) =

〈(
A0 0
0 J0

)(
u
p

)
,

(
v
q

)〉
.(2.7)

Again, the norms generated by both products are equivalent to one another, with
constants independent of h and ν.

The generic constant “const,” which we shall use later in the paper, is independent
of both the mesh parameter h and the viscosity parameter ν. The following estimates
hold for the operators involved in Problem 2.1.

Lemma 2.1. The norms of A, B, C, A0, J0, M operators and their adjoints in
adequate spaces are bounded independently of h and ν:

||A||V→V , ||B||V→W , ||C||W→W ,

||A∗||V→V , ||B∗||W→V , ||C∗||W→W ,

||A0||V→V , ||J0||W→W , ||M||V×W→V×W , ||M∗||V×W→V×W ≤ const .

Moreover,

||A−1
0 ||V→V , ||J−1

0 ||W→W ≤ const,

||M−1||V×W→V×W ≤ 1

ν
const .

Proof. The norm estimates for A,B,C,A0, J0, A
−1
0 , J

−1
0 and their adjoints follow

from our assumptions on the corresponding bilinear forms and from (2.5), (2.6). Then
the estimate for M and its adjoint follows. The estimate ||M−1||V×W→V×W ≤
1
ν const is another statement of the stability result for saddle point problem solutions
[6]: there exists const > 0, independent of h and ν, such that any solution (u, p) ∈
V ×W of Problem 2.1 satisfies ||u||+ |p| ≤ 1

ν const(||F ||+ |G|).
3. Preconditioners leading to symmetric, positive definite problems.

In this section we are going to extend the results obtained previously for symmet-
ric saddle point problems, e.g., in [7] and [2]. This approach is of normal equations
type, which influences the convergence speed and the computational complexity of the
method, though it has certain interesting advantages, too. The transformed system
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allows for using the conjugate gradients (PCG) method, which is less memory con-
suming than, e.g., GMRES; for fixed ν, the condition number of transformed system
is independent of h. Moreover, the analysis remains valid for A only V 0-elliptic; see
Remark 3.1. As the condition number grows like O(ν−2), the use of these precondi-
tioners is practically limited only to diffusion-dominated flows.

3.1. Block diagonal preconditioner. Using the block diagonal preconditioner

MD =

(
A0 0
0 J0

)
,

we transform system (2.4) into the following one.
Problem 3.1. Find (u, p) ∈ V ×W such that

M−1
D M∗M−1

D M
(
u
p

)
=M−1

D M∗M−1
D

(
F
G

)
.(3.1)

Clearly, the operator P = M−1
D M∗M−1

D M is self-adjoint with respect to the
inner product [·, ·]. The following theorem guarantees P is also well conditioned.

Theorem 3.1. There exist positive constants m0,m1, independent of h, ν, such
that

m0 · ν2 ·
[(
u
p

)
,

(
u
p

)]
≤
[
P
(
u
p

)
,

(
u
p

)]
≤ m1 ·

[(
u
p

)
,

(
u
p

)]
.(3.2)

Proof. Observe that

(3.3)[
P
(
u
p

)
,

(
u
p

)]
= ((A−1

0 (Au+B∗p), Au+B∗p)) + (J−1
0 (Bu− Cp), Bu− Cp)

= |||Au+B∗p|||2
A−1

0
+ |||Bu− Cp|||2

J−1
0
.

In what follows we will use the fact that for a, b ≥ 0, there holds a2 + b2 ≤ (a+ b)2 ≤
2(a2 + b2). Defining f̃ = Au + B∗p and g̃ = Bu − Cp, we obviously have that (u, p)
satisfies {

Au+B∗p = f̃ ,

Bu− Cp = g̃,
(3.4)

so from Lemma 2.1 we obtain[
P
(
u
p

)
,

(
u
p

)]
= |||f̃ |||2

A−1
0

+ |||g̃|||2
J−1
0
≥ const ν2

(||u||2 + |p|2) ,
which yields the lower bound in (3.2). In order to prove the upper bound, we return
to (3.3) and use Lemma 2.1 again.[

P
(
u
p

)
,

(
u
p

)]
=

〈
M∗M−1

D M
(
u
p

)
,

(
u
p

)〉

≤ ||M∗|| · ||M−1
D || · ||M|| ·

〈(
u
p

)
,

(
u
p

)〉

≤ const

[(
u
p

)
,

(
u
p

)]
,

since from Lemma 2.1 it follows that ||M−1
D ||V×W→V×W ≤ const.
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Remark 3.1. From a theoretical point of view it is worth noticing that the V-
ellipticity assumption in Theorem 3.1 on A may be weakened. Indeed, all that is
needed in the proof is that the saddle point problem (3.4) be uniquely solvable and that
the stability estimate holds. According to [15], a sufficient condition is to assume the
LBB condition (2.3) and the V 0-ellipticity of A:

a(u, u) ≥ ν||u||2 ∀v ∈ V 0,(3.5)

where V 0 = {v ∈ V : b(v, p) = 0 ∀p ∈W}.
The above preconditioning technique has been previously investigated in [25] in

the context of micropolar equations.

3.2. Block triangular preconditioner. It is also possible to construct a sym-
metric preconditioner for the operatorM, which is based on a block lower triangular
matrix:

MT =

(
A0 0
B J0

)
.(3.6)

We transform system (2.4) into an equivalent one,

P
(
u
p

)
≡M∗L∗

TK−1
0 LTM

(
u
p

)
=M∗L∗

TK−1
0 LT

(
F
G

)
,

where

L∗
TK−1

0 LT ≡
(
I A−1

0 B
∗

0 −I
)(
A−1

0 0
0 J−1

0

)(
I 0

BA−1
0 −I

)
.

Observe thatM−1
D LT is nothing butM−1

T and that P is symmetric with respect to
the scalar product 〈·, ·〉.

Theorem 3.2. There exist constants 0 < c0 ≤ c1 independent of h and ν, such
that

c0 · ν2

〈(
u
p

)
,

(
u
p

)〉
≤
〈
P
(
u
p

)
,

(
u
p

)〉
≤ c1

〈(
u
p

)
,

(
u
p

)〉

∀(u, p) ∈ V ×W .
Proof. First, we shall prove the lower bound. As in the previous section, the upper

bound will be easy to derive from the boundedness assumptions (see Lemma 2.1). For
(u, p) ∈ V ×W we have

〈
P
(
u
p

)
,

(
u
p

)〉
=

〈
M−1

D LTM
(
u
p

)
, LTM

(
u
p

)〉
(3.7)

and

LTM =

(
A B∗

B(A−1
0 A− I) BA−1

0 B
∗ + C

)
.

Therefore,

〈
P
(
u
p

)
,

(
u
p

)〉
= |||Au+B∗p|||2

A−1
0

+ |||BA−1
0 (A−A0)u+ (BA−1

0 B
∗ + C)p|||2

J−1
0
.

(3.8)
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Defining this time f̃ = Au + B∗p and g̃ = BA−1
0 (A − A0)u + (BA−1

0 B
∗ + C)p we

obviously have that the pair (u, p) satisfies the system

{
Au+B∗p = f̃ ,
Cp−Bu = g̃ −BA−1

0 (Au+B∗p) = g̃ −BA−1
0 f̃ .

(3.9)

From stability estimates for the saddle point problem (see Lemma 2.1), it follows that
the solution (u, p) of (3.9) satisfies

ν · (||u||+ |p|) ≤ const ·(||f̃ ||+ |BA−1
0 f̃ − g̃|) ≤ const ·(|||f̃ |||A−1

0
+ |||g̃|||J−1

0
).(3.10)

This estimate yields the lower bound on the spectrum of P. To get the upper bound
we return to (3.8) and use the estimates from section 2.

Remark 3.2. Observe that the preconditioner discussed here is more costly to
evaluate than the diagonal one: it requires three applications of A−1

0 per inner product,
compared to only one A−1

0 for the diagonal preconditioner analyzed in the previous
subsection.

Remark 3.3. Again, the ellipticity assumption on A in Theorem 3.2 may be
weakened. V 0-ellipticity of A (see (3.5)) is sufficient.

4. Preconditioner for the GMRES method. It is well known that after
symmetrizing the system, its condition number increases; moreover, the symmetrized
preconditioned matrix is quite costly to apply, as it takes at least two preconditioner
solves. This fact is also indicated by numerical experiments (see section 5). There-
fore, rather than symmetrizing the system, we may use an efficiently preconditioned
GMRES method for our problem. If the preconditioner works well enough so that
satisfactory approximation is obtained after few iterations, then the GMRES memory
consumption is less painful, and we can benefit from its better convergence properties.

For k > 0 to be specified later, let us consider the block triangular preconditioner,

MT =

(
k ·A0 0
B −k · J0

)
,

which was previously discussed (with another choice of scaling parameters), e.g., in
[1], [10], [13] and [19], [23]. The convergence rate of the GMRES method for a system

M−1
T M

(
u
p

)
=

(
F
G

)
=M−1

T

(
f
g

)
(4.1)

can be estimated by means of two parameters (see [8]),

c = inf
(u,p) �=0

[
M−1

T M
(
u
p

)
,

(
u
p

)]
[(
u
p

)
,

(
u
p

)] , c̄ = sup
(u,p) �=0

[
M−1

T M
(
u
p

)
,M−1

T M
(
u
p

)]
[(
u
p

)
,

(
u
p

)] .

(4.2)

Recall that [·, ·] is defined by (2.7) and generates the norm in which the residual for
GMRES is measured.

We shall prove that these parameters are bounded independently of h. Since they
are strongly dependent on ν, the preconditioner use is practically limited to diffusion
dominated flows.
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Lemma 4.1. There exists k > 0 such that the symmetric part of A, Asymm =
(A+A∗)/2, together with A∗A−1

0 A, satisfies(((
Asymm − 1

2k
A∗A−1

0 A

)
u, u

))
≥ δ((A0u, u)) ∀u ∈ V(4.3)

for some constant δ ≥ const ·ν. The scaling parameter k can be chosen independently
of h, precisely, k ≥ const ·ν−1.

Proof. Let λ be the smallest eigenvalue of the following generalized eigenproblem:

Asymmu = λA0u,

and let µ be the largest eigenvalue of another generalized eigenproblem,

A∗A−1
0 Au = µA0u.

From (2.1) it follows that λ ≥ const ν, while from Lemma 2.1 we have µ ≤ const.
Then (((

Asymm − 1

2k
A∗A−1

0 A

)
u, u

))
≥
(
λ− µ

2k

)
((A0u, u)),

and for k ≥ const ·ν−1 ≥ µ
λ , (4.3) holds with δ = λ

2 . This gives the estimate δ ≥
const ·ν.

Remark 4.1. The scaling requirement is similar to that of Bramble and Pasciak
[1] for the triangular preconditioner in the symmetric case. In the general case, the
scaling parameter k would need to be computed from (rough) estimates of the above
eigenvalues. In practice, however, the scaling is usually not essential for the con-
vergence. For example, in our numerical experiments (see section 5) there was no
significant difference between scaled and unscaled preconditioner convergence.

Theorem 4.2. For any fixed ν > 0 and for k as in Lemma 4.1, the convergence
rate of the GMRES for (4.1) is independent of h, precisely,

c ≥ const ·ν2, c̄ ≤ const .

Proof. Our aim is to estimate the quantities c, c̄ in (4.2) independently of h. Since

(
kA0 0
0 kJ0

)
· M−1

T =

(
I 0

1
kBA

−1
0 −I

)
,

then [
M−1

T M
(
u
p

)
,

(
u
p

)]
=

1

k
((Au, u)) +

1

k2
((A−1

0 Au, B
∗p))

+
1

k2
((A−1

0 B
∗p, B∗p)) + (Cp, p).

From (2.2) we estimate

[
M−1

T M
(
u
p

)
,

(
u
p

)]
≥ 1

2k2
|||Au+B∗p|||2

A−1
0

+
1

k

(((
Asymm − 1

2k
A∗A−1

0 A

)
u, u

))

+
1

2k2
|||B∗p|||2

A−1
0
.
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Obviously, |||Au + B∗p|||2
A−1

0

≥ 0 and |||B∗p|||2
A−1

0

= (BA−1
0 B

∗p, p) ≥ const(J0p, p),

the latter from (2.6) and the LBB condition; see [1]. Therefore, for k and δ as in
Lemma 4.1, we can conclude that[

M−1
T M

(
u
p

)
,

(
u
p

)]
≥ const ν2

[(
u
p

)
,

(
u
p

)]
.

In order to estimate c̄, observe that[
M−1

T M
(
u
p

)
,M−1

T M
(
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p
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=

〈(
A0

J0

)
M−1

T M
(
u
p

)
,M−1

T M
(
u
p
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)
,

(
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.

As k ≥ const ·ν−1, then using estimates from section 2 and the factorization

M−1
T =

(
I

1
kJ

−1
0

)(
I 0
B −I

)(
1
kA

−1
0

I

)
,

we have that ||M−1
T ||, ||(M−1

T )∗|| ≤ max{1, 1
k2 } · const ≤ const, and finally

[
M−1

T M
(
u
p

)
,M−1

T M
(
u
p

)]
≤ const

[(
u
p

)
,

(
u
p

)]
,

which completes the proof.

5. Numerical experiments. We implemented certain preconditioners consid-
ered in this paper and examined their applicability in the iterative solution of a non-
symmetric saddle point problem. The test problem was to solve the Oseen equations
in a rectangle Ω = (−1, 1)× (−1, 1){

−ν∆u+ (k · ∇)u+∇p = f,
div u = 0,

with homogeneous Dirichlet boundary conditions on u. The function k(·, ·) was defined
as in [10], [23], as a simple vortex,

k(x, y) =

(
2y(1− x2)
−2x(1− y2)

)
.

For the right-hand side vector in our experiments, we always took a random vector
with elements uniformly distributed between (−1, 1). We discretized the equation
using popular Q2–Q1 Taylor–Hood rectangular finite elements; see [6]. The mesh was
uniform in both directions, with nx inner pressure nodes along the x-axis and ny
inner pressure nodes in y-direction, so there were approximately twice as many inner
nodes in each direction for each component of the discrete velocity. In all experiments
presented below, nx = ny. To keep the pressure in L2

0, we added to the system a
discretized condition

∫
p = 0 using the Lagrange multipliers.

All algorithms were implemented on an unloaded Linux PC, using PETSc 2.0.29
library subroutines for the iterative solvers and additive Schwarz preconditioners [32].
We performed our tests in three different solver/preconditioner configurations.
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Table 5.1
Iteration counts for different solvers and preconditioning strategies: results for A0 = Laplacian,

J0 = mass matrix. Wall clock time (seconds) in parentheses.

nx DOF1 GMRES/diag GMRES/triang CG/symm
10 1202 38 (0.4) 21 (0.2) 45 (0.7)
20 4182 39 (1.5) 21 (0.9) 46 (2.8)
40 15542 40 (8.0) 21 (3.8) 49 (12.8)
80 59862 39 (47.3) 21 (17.7) 49 (56.1)

Table 5.2
Timings relative to GMRES/triang for different solver/preconditioner strategies reported in

Tables 5.1 and 5.3.

nx GMRES/diag GMRES/triang CG/symm
“best” 20 1.7 1.0 3.1

40 2.1 1.0 3.4
80 2.7 1.0 3.2

ASM 20 1.4 1.0 2.3
40 1.4 1.0 1.9
80 1.7 1.0 1.6

1. CG/symm: the symmetrized preconditioned conjugate gradient method with
the block diagonal preconditioner; see section 3.1.

2. GMRES/triang: the GMRES method with the block triangular precondi-
tioner; see section 4.

3. GMRES/diag: the GMRES method with the block diagonal preconditioner.

To compare the overall efficiency of the preconditioners, we report both the itera-
tion counts and the wall clock times (in seconds) needed to reduce the initial residual
by a factor of 106. We used a restarted version of GMRES, with restart after every
30 iterations.

Two simplifications to GMRES algorithms have been made, which, as it turns
out in the preliminary set of experiments, hardly influences the convergence rate of
the methods. Our GMRES algorithm minimizes the Euclidean norm of the residual,
instead of the energy norm analyzed in section 4. For the same reason we always used
k = 1 (see Theorem 4.2). All this makes the GMRES algorithm cheaper.

Except for the last set of experiments, we restrict ourselves to the case where the
viscosity parameter ν = 1. The influence of ν on the convergence rate will be reported
at the end of this section. As it has been indicated in the above theorems and will be
confirmed in Table 5.5 as well, the performance of our preconditioner deteriorates for
small values of the viscosity parameter ν. This is the reason that we focus mainly on
diffusion dominated flow.

First, we conducted experiments under the best available circumstances, that is,
we used as the preconditioners A0 = Laplacian, J0 = mass matrix. Notice that, in
contrast to [11] and [23], we restricted ourselves only to symmetric preconditioners.
We refer to the above choice of preconditioners as the “best” preconditioners, since
in this case we exactly solve the symmetric part of the relevant diagonal operators.
Our results are presented in Tables 5.1 and 5.2 and Figure 5.1.

Next, we tested the same methods using inexact preconditioners forA0, J0, namely,
the 1-level additive Schwarz method (ASM) with standard black-box decomposition

1DOF = the total number of degrees of freedom.
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Fig. 5.1. The growth of iterations as a function of the problem size for different solvers and
preconditioning strategies. Left: A0 = Laplacian, J0 = mass matrix. Right: additive Schwarz
preconditioners (fixed number of subdomains, small overlap, no coarse grid).

Table 5.3
Iteration counts for different solvers and preconditioning strategies: The results for additive

Schwarz preconditioners. (Timings in parentheses.)

nx DOF GMRES/diag GMRES/triang CG/symm
10 1202 63 (1.0) 51 (0.7) 73 (1.7)
20 4182 128 (6.0) 76 (4.2) 128 (9.8)
40 15542 127 (23.1) 77 (16.3) 113 (31.6)
80 59862 183 (155.0) 108 (91.8) 130 (146.7)

into 6 rectangular subdomains with small and fixed overlap (2 nodes) provided by
PETSc. The results are presented in Tables 5.2 and 5.3 and Figure 5.1.

The experiments confirm theoretical results, showing that the number of iterations
reflects the quality of the preconditioning blocks being used. This may be seen very
clearly from the experiments with “best” solvers and implicitly from those for the
inexact solvers (Figure 5.1). For ν = 1, the number of iterations is moderate and,
with “best” solvers, virtually independent of the mesh size. As one could expect,
the triangular preconditioner is most effective, being usually more than two times
faster than diagonal preconditioners. The CG/symm combination is even slower than
GMRES/diag.

According to [31], for the ASM preconditioning blocks, with fixed number of
subdomains, small overlap, and no coarse grid, the number of iterations in Table 5.3
should increase as the square root of nx, and this is approximately what we actually
see. Theorems 3.1 and 4.2 ensure that the convergence rate would be fully independent
of nx if a 2-level ASM were used.

Another experiment (Table 5.4) shows the performance of our preconditioners
when the number of subdomains is scaled with the problem size, so that

√
N/nx

remains constant. As compared to [21, Table 1], the number of iterations of the
GMRES/triang method is quite similar to a 1-level overlapping ASM for the whole
system (1.1), despite the fact that our decomposition might suffer from subdomain
bad aspect ratios (we did not have control over the shape of the subdomains). This
indicates that a block 1-level ASM preconditioner may be an alternative to 1-level



168 PIOTR KRZYŻANOWSKI

Table 5.4
Iteration counts for different solvers and preconditioning strategies: the results for additive

Schwarz preconditioners with number of subdomains scaled with problem size, so that
√
N/nx = 4.

(Note: full GMRES used.)

√
N nx DOF GMRES/diag GMRES/triang CG/symm

1 4 279 34 21 40

2 8 823 66 51 96

4 16 2775 95 62 108

8 32 10135 165 124 139

10 40 15543 221 147 184

Table 5.5
Iteration counts for varying mesh size nx and viscosity ν with preconditioning blocks A0 =

Laplacian, J0 = mass matrix.

GMRES/diag GMRES/triang CG/symm
ν 1.0 0.1 0.02 1.0 0.1 0.02 1.0 0.1 0.02
nx
16 38 111 > 300 21 76 255 43 42 116
32 40 102 > 300 22 73 > 300 48 41 117
64 40 105 > 300 22 73 > 300 48 37 115

ASM designed in [21] for the full system, although it seems that 1-level ASM for the
full system is still a bit cheaper. More comparisons of this type have recently been
made in a paper by Klawonn and Pavarino [22].

Finally, we examined the behavior of our methods for decreasing values of the
viscosity parameter ν. They confirm that symmetric-block-based preconditioners are
competitive to those using nonsymmetric A solves only if the symmetric part domi-
nates in A; for small ν, the convergence rate deteriorates very quickly, as indicated in
Table 5.5.
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Abstract. In numerical solutions of fluid flow, vorticity can be generated by truncation errors.
We analyze this phenomenon for linearized equations and give conditions for preventing it. The Lax–
Wendroff method that meets these constraints is essentially unique, although there are two distinct
interpretations, and also turns out to have optimal properties regarding stability and truncation
error. The extension of the scheme to unstructured grids is given, together with some discussion of
practical problems to which these schemes might bring improvement.
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1. Introduction. Much of computational fluid dynamics (CFD) is based on
the analysis of simple “model problems.” To an astonishing extent, the solution of
problems governed by hyperbolic equations is based on analysis of the one-dimensional
linear advection equation ut+aux = 0. However, neither this nor the multidimensional
ut+�a·∇u = 0 really reflects the richness of fluid behavior, capturing merely advection
and some aspects of wave propagation but ignoring, for example, all phenomena
associated with vorticity, which are of vital importance in many three-dimensional
situations.

The simplest model problem to combine wave propagation and vorticity is the
system wave equation. We will write this in two space dimensions in the matrix form,
using a notation corresponding to acoustic waves in a fluid that is stationary in the
mean, with pressure p∗ and velocity �u∗ = (u∗, v∗); thus

∂tu+ cLu = 0.(1)

Here u = (p∗/(ρc2), u∗/c, v∗/c) ≡ (p, u, v, ), c is the sound speed in the mean flow,
and

L =




0 ∂x ∂y

∂x 0 0

∂y 0 0


 .(2)

Restriction to two dimensions is merely for economy of notation; all of the analysis
at the PDE level extends very straightforwardly to three dimensions, as does the
numerical analysis on Cartesian grids. We study the wave equation in system rather
than scalar (∂ttu = c2∇2u) form for two reasons: first, because this is the form of
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the wave equation that is hidden inside the Euler equations, whether in their two-
dimensional unsteady or in their three-dimensional supersonic steady forms [1], and
second, because the scalar form automatically implies vanishing vorticity, whereas the
interaction of the waves with vorticity is one of the aspects we want to study.

Here the interaction is very simple, as befits a model problem. We easily deduce
from (1), (2), if c is a constant, that

∂tζ = 0, where ζ = ∂xv − ∂yu.

In other words, there is no interaction, and any initial distribution of vorticity is
preserved. Maintaining this independence at the discrete level will be one of our
objectives. In section 6, however, we consider more general, variable coefficient, prob-
lems, for which vorticity is created by the interaction of waves with density gradients.
In this case, there is a very satisfying discrete parallel.

It is a trivial modification to change the notation so that (1), (2) describe Maxwell’s
equations, and the constraint of invariant vorticity becomes one of invariant (and
vanishing) divergence of the magnetic field. The two cases differ, however, when
nonconstant coefficients are involved, a case that will be treated in due course. The
analysis also applies to the divergence constraint in magnetohydrodynamics and to
maintaining the div-curl identity when using a velocity-vorticity formulation of the
Navier–Stokes equations.

We study fully discrete schemes because of our personal conviction that transient
hyperbolic problems are most naturally treated by such methods. More specifically, we
study Lax–Wendroff schemes because the Taylor expansion of the evolution operator
seems to be the most general technique available, applicable to the wave equation
for any order of accuracy. However, Lax–Wendroff schemes are ambiguous in more
than one dimension. For example, if we look to discretize ut + �a · ∇u = 0 to second-
order accuracy on the standard nine-point stencil, we have only six constraints on the
nine coefficients and hence three degrees of freedom. There are even more degrees
of freedom in discretizing a system of equations. One reason for the rise of finite-
element and finite-volume methodologies is that by working within a more disciplined
framework some of the ambiguity is removed, hopefully without at the same time
losing valuable options.

In the early stages of the present analysis we consider mainly regular rectangular
grids with uniform spacing h in both x and y. We do not impose any particular
interpretation on the discrete solution uni,j : the values could represent cell-averaged
quantities as in a cell-centered finite-volume scheme, or nodal values as in a vertex-
centered finite-difference scheme. One point of interest is that by initially taking a
simple finite-difference viewpoint, the formulae that emerge as having distinguished
properties are precisely those that have dual interpretations as each of the above.
Subsequently, however, we find that only the finite-volume interpretation generalizes
to unstructured grids but that the particular form of finite-volume scheme to emerge
is not the one most commonly encountered.

In section 2 of the paper, we recall some simple formulae of the finite-difference
calculus and some elementary properties of the wave equation. In section 3 we place
constraints on the scheme such that some discrete measure of vorticity is preserved
and in section 4 show that requiring an adjoint property on a minimal stencil results
in a unique version of the Lax–Wendroff scheme, although one having two distinct
implementations. In section 5 we analyze the stability and truncation error of this
scheme. In section 6 we show that if the waves are being propagated in a uniformly
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Fig. 1. Grid definition.

moving medium, then any vorticity present in the initial conditions will be propagated
numerically according to the scalar version of our Lax–Wendroff method.

In section 7 we turn to irregular grids, and we find that there is still a measure of
vorticity that is conserved, and in section 8 generalize further to the case of a problem
with variable coefficients, although still linear. In this case the argument can be made
global to yield a discrete Kelvin theorem.

2. Properties of the exact and discrete solution operators.

2.1. Discrete notation. As stated in the introduction, we concentrate at first
on simple finite-difference formulations on uniform grids. These can be manipulated
using a calculus that is almost as transparent as that of the differential operators. We
exploit this simplicity to remove ambiguity from the finite-difference formulae by re-
quiring certain algebraic properties. Then we ask what interpretations are compatible
with the formulae.

We adopt a uniform square grid, such that the spacing in the x and y directions
is h and the time step is ∆t, with uni,j a discrete approximation located at (x, y, t) =
(ih, jh, n∆t). The standard discrete differencing and averaging operators are defined
by

δx()·,· = ()·+ 1
2 ,· − ()·− 1

2 ,·, µx()·,· = 1
2{()·+ 1

2 ,· + ()·− 1
2 ,·},

δy()·,· = ()·,·+ 1
2
− ()·,·− 1

2
, µy()·,· = 1

2{()·,·+ 1
2

+ ()·,·− 1
2
},

where it is understood that the result of any operator is located halfway between
the two input points. Then the product ∆ox()i,j ≡ µxδx()i,j is a central difference
1
2{()i+1,j − ()i−1,j} located at the grid point i, j, and the product µyδx()i,j , which
features frequently in what follows, involves four points (i ± 1

2 , j ± 1
2 ) of a square

centered at i, j.
The points with integer coordinates will be called cells, those with one integer and

one half-integer coordinate edges, and those with two half-integer coordinates vertices.
The variables stored at cells will be (p, u, v). The same variables stored at vertices will
be distinguished by primes where necessary. The variables stored at vertical edges
will be (P,U) and those stored at horizontal edges (Q,V ), where both P and Q are
approximations to the pressure. In a finite-volume interpretation the edge quantities
are the fluxes (see Figure 1).
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If it is recognized that each application of the above operators changes the center-
ing of the mesh values to a different set of grid points, then arbitrarily long products of
operators are allowed and all multiplications commute. It is simple to prove analogues
of differential identities. For example, using 〈·, ·〉 to denote an inner product,

〈p, δxU〉 ≡
∑
i,j

h2pi,j

(
Ui+ 1

2 ,j
− Ui− 1

2 ,j

)

= −
∑
i,j

h2 (pi+1,j − pi,j)Ui+ 1
2 ,j

≡ −〈δxp, U〉

and a similar argument leads to 〈p, µxU〉 = 〈µxp, U〉. Thence we have

〈p, µxδxu〉 ≡ 〈p,∆oxu〉 = −〈∆oxp, u〉, etc.

Also we can combine cell and vertex values; for example,

〈p, µyδxu′〉 ≡
∑
i,j

1
2h

2pi,j(u
′
i+ 1

2 ,j+
1
2
− u′i− 1

2 ,j+
1
2

+ u′i+ 1
2 ,j− 1

2
− u′i− 1

2 ,j− 1
2
)

= −
∑
i,j

1
2h

2 (pi+1,j+1 − pi,j+1 + pi+1,j − pi,j)u′i+ 1
2 ,j+

1
2

= −〈µyδxp, u′〉.

Thus inner products are meaningful provided each term has the same centering.
Such products may be called compatible. Matrix-valued operators will be a useful
way to describe schemes, and obey the usual rules of matrix multiplication, provided
each matrix has compatible entries.

2.2. Symmetry of solutions. An obvious property of (1), (2) is that because
it involves only the divergence and gradient operators, then any solution remains a
solution under an arbitrary translation or rotation of the (x, y)-plane. Clearly this
cannot be true of the discrete solution, but we should insist on the weaker condition
that the solution remains a solution under any translation or rotation that maps the
grid onto itself.

This will ensure that all truncation errors are symmetric functions of the wave
numbers kx, ky; it would also be a desirable property (minimizing the anisotropy of
the scheme) if the leading terms depended only on (k2

x + k2
y).

2.3. Power series form. A formal solution to the initial-value problem for (1)
is

u(t) = e−cLtu(0).(3)

Let e−cLt be represented by its power series, separating the odd and even terms,

e−cLt = 1−
p=∞∑
p=1

(cLt)2p−1

(2p− 1)!
+

q=∞∑
q=1

(cLt)2q

(2q)!
.

We can easily verify that

L(L2 −∇2) = 0,

which implies that

Lp+2 = ∇2Lp, p ≥ 1.(4)
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Then we can write

u(t) =

[
1− (cLt)

p=∞∑
p=0

t2p(c2∇2)p

(2p+ 1)!
+ (cLt)2

q=∞∑
q=0

t2q(c2∇2)q

(2q + 2)!

]
u(0).(5)

Truncating each sum at its first term will lead to a second-order Lax–Wendroff
method. For extension to higher order it is useful to note that each term beyond
the third merely represents continued applications of the Laplacian, either to L or to
L2. The structure of L is that its first row represents a divergence and its first column
a gradient. As for L2, we have

L2 =



∂2
x + ∂2

y 0 0

0 ∂2
x ∂x∂y

0 ∂x∂y ∂2
y


 ,

which displays the Laplacian and the grad-div operator. Most of these operators are
ambiguous on the usual nine-point stencil of Lax–Wendroff schemes, and it is that
ambiguity we seek to resolve.

2.4. Conservation form. In the cell-centered finite-volume method, discrete
conservation is ensured by drawing a control volume around the grid point of interest
and writing the update as an integral around this volume. In the generic case of a
vector U of conserved variables, with fluxes F,G in the (x, y)-directions, respectively,
one has

h2
[
Un+1 −Un

]
+ h∆t [δxF

∗ + δyG
∗] = 0,

where F∗,G∗ are numerical fluxes evaluated from some formula to be determined. In
the present case we can write, with ν = c∆t/h and following the notation of Figure 1,

pn+1 − pn + ν[δxU + δyV ] = 0,(6)

un+1 − un + νδxP = 0,(7)

vn+1 − vn + νδyQ = 0.(8)

It will usefully restrict the schemes to require that they can be written in this form.
A second-order scheme of the Lax–Wendroff type follows from taking U, V, P,Q to be
estimates halfway through the time step. However, we will find subsequently that it
is a rather special type of conservation form that emerges from the analysis.

3. Preservation of discrete vorticity. We will now require that some discrete
measure of vorticity is preserved during a time step. There are two simple measures.

3.1. Centered vorticity. First define the “centered vorticity”

ζ∆1 = µxδxv − µyδyu = Z1u,(9)

where Z1 = [0,−µyδy, µxδx], and require that ζn+1
∆1

= ζn∆1
, so that

0 = Z1(un+1 − un)

= −νZ1[δxU + δyV, δxP, δyQ]

= νδxδy(µyP − µxQ).
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i-2       i-1          i         i+1          i+2
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Fig. 2. The stencil for Richtmyer’s version of Lax–Wendroff.

This measure of vorticity will therefore be preserved if the pressures assigned
to the edges have the property that µyP = µxQ, and this is ensured if we take
P = µxr,Q = µyr, where r is some quantity defined in cells. For consistency, it should
be some local mean of the pressure, and to obey the symmetry principle (section 2.2)
it must be evaluated by a symmetrical operator such as [1 +α(δ2x + δ2y) +βδ2xδ

2
y]. The

smallest possible stencil comes from taking simply r = p, and hence

P = µxr = µxp, Q = µyr = µyp,

which corresponds to the simplest form of central differencing used in cell-centered
finite-volume schemes, for example, [2]. However, this would lead to an uncondi-
tionally unstable scheme. Averaging just in the coordinate directions, as for the
well-known Lax–Friedrichs difference scheme, leads to taking α = 1

4 , β = 0.
To obtain second-order accuracy P,Q should be evaluated halfway through the

time step, and to preserve vorticity we need to derive them from an r that has been
evaluated halfway through the time step, so that r = p+ 1

2∆t∂tp = p− 1
2c∆tdiv�u.

On the most compact available stencil, and maintaining stability as for the Lax–
Friedrichs scheme, this leads to

r = [1 + 1
4 (δ2x + δ2y)]p− 1

2ν[µxδxu+ µyδyv]

and hence, with P = µxr,Q = µyr, (7), (8) become

un+1 = un − νµxδx{[1 + 1
4 (δ2x + δ2y)]p− 1

2ν[µxδxu+ µyδyv]},(10)

vn+1 = un − νµyδy{[1 + 1
4 (δ2x + δ2y)]p− 1

2ν[µxδxu+ µyδyv]}.(11)

If we update the pressure with the same standard central-differences, together with
a four-point averaging of p to give stability, we recover Richtmyer’s form of the Lax–
Wendroff method, usually written as a two-step scheme [3] (see also [4, pp. 360–
365]). Its vorticity-preserving property does not seem to have been previously noticed.
However, in other respects, it is less desirable. The stencil is shown in Figure 2 and
can be seen to involve only points of one “parity” (value of (i+ j)(mod2)). Therefore
the method suffers from “odd-even decoupling.” We do not consider this method
further but turn to an alternative definition of discrete vorticity.

3.2. Compact vorticity. Next let us define the “compact vorticity”

ζ∆2 = µyδxv − µxδyu = Z2u.(12)
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Following the previous argument, we can preserve this if

0 = Z2(un+1 − un)

= −νZ2[δxU + δyV, δxP, δyQ]

= νδxδy(µxP − µyQ),

and the condition µxP = µyQ will be met if we take P = µyr
′, Q = µxr

′, where r′ is
some quantity defined at vertices. The only way to define a consistent local pressure
while retaining a nine-point stencil is to take

r′ = µxµyp.(13)

In that case we have

P = µxµ
2
yp, Q = µ2

xµyp.(14)

To obtain second-order accuracy, r′ must now be updated to halfway through the
time step. The simple formula

r′ = µxµyp− 1
2ν[µyδxu+ µxδyv]

is the unique symmetrical formula to achieve this without enlarging the stencil, lead-
ing to

P = µyr
′ = µxµ

2
yp− 1

2ν[µ2
yδxu+ µxµyδyv],(15)

Q = µxr
′ = µ2

xµyp− 1
2ν[µyµxδxu+ µ2

xδyv].(16)

3.3. Two remarks on implementation. We insert here an important observa-
tion relating to the construction of nonlinear “limited” schemes that avoid nonphysical
overshoots [5]. We do not attempt a thorough discussion of this issue in the present
paper, because the objectives for such schemes are still unclear. For example, there
is no maximum principle because waves may focus and increase in strength. How-
ever, we do note that any limiting applied to the intermediate quantity r′ will still
leave the vorticity exactly preserved. The limiter for such a scheme must, however,
be centered on a vertex and therefore depend on values in the four neighboring cells.
Schemes that are based, like most upwind schemes in current use, on one-dimensional
reconstruction and interpolation cannot preserve vorticity in any of the above senses.

Our second remark deals with the application of boundary conditions, for exam-
ple, to simulate the generation of acoustic waves by a moving boundary. In most
finite-volume schemes one would derive from the boundary condition some expres-
sion for the unknown pressure at an interface (say, P , in Figure 1) in terms of the
known normal velocity (say, U , for a vertical boundary). This would be incorrect.
The correct procedure is to obtain vertex pressure p′ in terms of given vertex veloc-
ities u′. If the condition is applied in this way one can easily show that vorticity at
nodes adjacent to the wall is preserved; for any other procedure a vortical layer will
be produced.

4. Construction and properties of evolution operator. We collect the re-
sults of section 3.2 into a prescription for the matrix operator that will update the
solution, so that if

un+1 = un −M∆u
n,(17)
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certain elements of the matrix M∆ are already uniquely determined by insisting that
the velocities are updated with second-order accuracy while preserving the discrete
vorticity (12). We have in fact, from (7), (8), (15), (16),

M∆ =




?? ?? ??

νµxµ
2
yδx

1
2ν

2µ2
yδ

2
x

1
2ν

2µxµyδxδy

νµ2
xµyδy

1
2ν

2µxµyδxδy
1
2ν

2µ2
xδ

2
y


 .

The adjoint property divh = −grad∗
h requires that this matrix be symmetric,

hence

M∆ =




?? νµxµ
2
yδx νµ2

xµyδy

νµxµ
2
yδx

1
2ν

2µ2
yδ

2
x

1
2ν

2µxµyδxδy

νµ2
xµyδy

1
2ν

2µxµyδxδy
1
2ν

2µ2
xδ

2
y




and only the 1, 1 element remains open. This can be determined by noting that the
flux U , say, is implied by the above formula to be

U = µxµ
2
yu = µy(µxµyu) = µyu

′,

where u′ = µxµyu is an average evaluated at the vertices, as in (13). To update this
to (n + 1

2 )∆t we need to add a term − 1
2∆t∂xp which can only be − 1

2νµyδxp. By
considering V also, we finally arrive at

M∆ =




1
2ν

2(µ2
yδ

2
x + µ2

xδ
2
y) νµxµ

2
yδx νµ2

xµyδy

νµxµ
2
yδx

1
2ν

2µ2
yδ

2
x

1
2ν

2µxµyδxδy

νµ2
xµyδy

1
2ν

2µxµyδxδy
1
2ν

2µ2
xδ

2
y


 .(18)

The scheme represented by this matrix has been uniquely determined by the require-
ments of conservation, vorticity preservation, symmetry of the solution under grid
transformations, adjoint symmetry of the discrete operator, and second-order accu-
racy. Again, however, it is not a new scheme. It can be recognized by noting that
M∆ can be factored as

M∆ = νL∆[µxµyI − 1
2νL∆],(19)

where

L∆ =




0 µyδx µxδy

µyδx 0 0

µxδy 0 0


 ,(20)

and therefore can be written as a two-step scheme. The operation

u′ = [µxµyI − 1
2νL∆]un(21)

gives a provisional solution at the vertices. The operation

un+1 = un − νL∆u
′(22)
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Fig. 3. (left) The rotated Richtmyer scheme. In the first step, symbolized by white arrows, data
from the cells are used to create a half time-step solution at the vertices. In the second step (black
arrows) integration round the vertices updates the central cell. (right) Ni’s cell-vertex scheme. In
the first step (white arrows) we integrate around the cells to obtain a “cell-residual.” In the second
step (black arrows) these are distributed to the vertices.

completes the update by integrating around the vertices. This is in fact the ver-
sion of Lax–Wendroff known as the rotated Richtmyer scheme (see, e.g., [5, p. 125]).
It is shown schematically on the left of Figure 3; comparing with Figure 2 we see
the reason for the name. The original motivations for this scheme were compact-
ness, computational economy, and stability. In the nonlinear case, as in all two-step
Lax–Wendroff schemes, one avoids any multiplication by the Jacobian matrices. The
vorticity-preserving property does not seem to have been previously noticed.

The second step of the method is of course a leapfrog scheme. Usually the dis-
sipative first step is desirable to enhance stability, especially in the nonlinear case.
However, we could, if we wished, construct the “pure” leapfrog method,

un+1 = un−1 − 2νL∆u
n,(23)

and it is clear that this scheme would also be vorticity-preserving. So indeed would a
multistage method of Runge–Kutta type [2] in which each stage employed the operator
L∆.

4.1. Duality. Since both factors of M∆ depend only on L∆ they commute, and
so the scheme may also be written as

un+1 − un = −ν[µxµyI − 1
2νL∆]L∆u

n.(24)

In this form it is Ni’s cell-vertex scheme [7], in which the variables are usually thought
of as located at vertices of a grid, defining a bilinear interpolant over a square element.
The first step L∆ is to integrate ∂xF + ∂yG over this element and the second step
is to distribute this to the nodes of the element. It is easy to check that if some cell
variable q is distributed to the nodes in the four ways shown in Figure 4, the updates
to the vertices are, respectively,

µxµyq, µyδxq, µxδyq, δxδyq.

Ni’s scheme was devised in the context of solving steady-state aerodynamic problems.
If the transients are not required to be accurately resolved, one may consider variants
of the form

un+1 − un = −ν[µxµyI − 1
2ν

′L′
∆]L∆u

n,
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Fig. 4. Distribution strategies.

where ν′ and L′
∆ may not be the same as ν and L∆. Such a scheme will not in general

preserve vorticity.
However, vorticity is preserved by those schemes in which L′

∆ = L∆; smoother
solutions are obtained by taking ν small and ν′ large such that νν′ ≤ 1 (see [8] and
the next section).

4.2. Energy conservation and stability. At the PDE level, we have in two
dimensions the classical energy invariance

d

dt

∫ ∫
1
2 (p2 + u2 + v2)dxdy =

∫ ∫
(p∂tp+ u∂tu+ v∂tv)dxdy

= −〈p,div(u, v)〉 − 〈(u, v)T , gradp〉
= −〈1,div(pu, pv)〉
= 0.

This proof turns on the relationship div = −grad∗, where ()∗ denotes the adjoint
operator.

To obtain stability in the discrete case we will require analogous discrete proper-
ties. In fact, the choices for F∗,G∗ derived above utilize discrete definitions (div)h
and (grad)h which actually possess an adjoint relationship through the summation-
by-parts formulae in section 2.1. In the following section we use this fact to prove
energy stability of the scheme.

5. Stability and truncation error.

5.1. Stability. In this section, we consider a slight generalization of the update
operator, taking

M∆ = νµxµyL∆ − 1
2qL

2
∆,(25)

where q is a parameter controlling the numerical dissipation. All schemes of this
family preserve vorticity in the sense of section 3.2. In general they are first-order
accurate unless q = ν2. Denoting Fourier transforms of u,M∆, L∆ by û, M̂∆, L̂∆ we
write the stability condition as

û∗[I − M̂∗
∆][I − M̂∆]û ≤ û∗û,

where ()∗ denotes the Hermitian operator. We write

L̂∆ = 2i




0 α β

α 0 0

β 0 0


 ,
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where α = cos ( 1
2kyh) sin ( 1

2kxh), β = cos ( 1
2kxh) sin ( 1

2kyh), and kx, ky are the wave

numbers; note that L̂∗
∆ = −L̂∆. Then, abbreviating also cx = cos ( 1

2kxh), cy =
cos ( 1

2kyh) so that µ̂xµ̂y = cxcy, we have

[I − M̂∗
∆][I − M̂∆] = [I + νcxcyL̂∆ + 1

2qL̂
2
∆][I − νcxcyL̂∆ + 1

2qL̂
2
∆]

= [I + (q − ν2c2xc
2
y)L̂2

∆ + 1
4q

2L̂4
∆].

After carrying out the multiplications, we have

û∗[I − M̂∗
∆][I − M̂∆]û = ‖û‖2 − 4[(q − ν2c2xc

2
y)− q2(α2 + β2)][(α2 + β2)|p̂|2 + |αû+ βv̂|2]

so that the stability condition is

(α2 + β2)q2 ≤ q − ν2c2xc
2
y(26)

for all modes.
Lemma 1. The scheme is stable if

ν2 ≤ q ≤ 1.(27)

Proof. Necessity of the left inequality follows from considering kx = ky = 0, and
necessity of the right inequality from kxh = π, ky = 0. Sufficiency follows from noting

α2 + β2 = 1− (1− c2x)(1− c2y)− c2xc2y ≤ 1− c2xc2y
so that

(α2 + β2)q2 − q + ν2c2xc
2
y ≤ (1− c2xc2y)q2 − q + ν2c2xc

2
y

= (ν2 − q)c2xc2y + q(q − 1)(1− c2xc2y) ≤ 0.

As well as the special choice q = ν2 leading to the second-order scheme, one may
note other stable choices. Taking q = 1 gives a Lax–Friedrichs scheme, and q = ν gives
a scheme that reduces to the first-order upwind scheme if the data is one-dimensional.
It may be conjectured that this latter scheme will have an important role to play in
the development of nonlinear, “limited” methods. Finally, the parameter q may be
identified with the product νν′ mentioned in the previous section.

In the appendix we use Fourier analysis to estimate the rate of vorticity production
by comparable schemes which have not been designed to preserve it. In particular, an
expression is given for the vorticity production by the standard one-step Lax–Wendroff
method.

5.2. Truncation error. The amplification factor that results from applying the
operator L∆ to an arbitrary Fourier mode is, using the above notation, 2i

√
α2 + β2

and hence the amplification factor of the operator 1−M∆ is, for q = ν2,

g = 1− 2iνµ̂xµ̂y
√
α2 + β2 − 2ν2(α2 + β2).

This has a modulus given by

|g|2 = 1− 4ν2(1− c2xc2y)(α2 + β2) + 4ν4(α2 + β2)2.

Expanding this as a Taylor series in kx, ky leads to

|g| = 1− h4

8
ν2(1− ν2)(k2

x + k2
y)2 +O(h6),(28)
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which is isotropic to leading order. The amplification error over a number of time
steps proportional to h−1 (that is, over some fixed time independent of the grid) is
O(h3).

The phase error is given by the ratio of numerical to exact propagation speeds

arg g

1
2

√
k2
x + k2

yh
= 1− h2

8
(1− ν2)(k2

x + k2
y)− h2

24

k2
xk

2
y

k2
x + k2

y

+O(h4),(29)

which is O(h2) and is not isotropic.

6. Including advection. If the linearization is not with respect to a stationary
flow but with respect to a uniform flow with velocity (u0, v0), the differential operator
becomes

LQ =
1

c



u0∂x + v0∂y c∂x c∂y

c∂x u0∂x + v0∂y 0

c∂y 0 u0∂x + v0∂y


 ,(30)

from which we may easily deduce that vorticity is a convected quantity,

(∂t + u0∂x + v0∂y)(∂xv − ∂yu) = 0.(31)

6.1. Discrete vorticity advection. This is very simply achieved. Define

LQ∆ =




Q∆ µyδx µxδy

µyδx Q∆ 0

µxδy 0 Q∆


 ,(32)

where Q∆ is any discrete operator consistent with (u0∂x+v0∂y)/c that maps between
the cell center and cell vertex meshes. Then the evolution of vorticity ζ∆2

under a
first-order application of this operator is given by

ζn+1
∆2
− ζn∆2

= Z2u
n+1 − Z2u

n

= −νZ2[Q∆I + L∆]u′

= −νZ2Q∆u
′

= −νQ∆Z2u
′

= −νQ∆ζ
′
∆2
.(33)

A Lax–Wendroff scheme defined by

un+1 − un = −νLQ∆[µxµyI − 1
2νL

Q
∆]un

will lead to

ζn+1
∆2
− ζn∆2

= −νQ∆[µxµyI − 1
2νQ∆]ζn∆2

,(34)

so that ζ∆2
is transported by the Lax–Wendroff version of Q∆.



182 K. W. MORTON AND P. L. ROE

6.2. Stability with advection. For consistency in our choice of difference op-
erators we will take Q∆ above to be

Q∆ =
1

c
(u0µyδx + v0µxδy)(35)

so that the Fourier symbol of the update operator becomes

L̂Q∆ = 2i



γ α β

α γ 0

β 0 γ


 ,(36)

where γ = Mxα + Myβ and Mx = u0/c,My = u0/c are Mach numbers of the undis-
turbed flow in the (x, y)-directions.

In this section we use an alternative analysis in terms of the eigenvalues of the
evolution operator, exploiting the fact that only powers of the first-order operator are
involved. Suppose that L̂Q∆ has an eigenvalue 2iκ. Then the Fourier symbol of the
second-order update operator

I − νµxµyLQ∆ + 1
2q(L

Q
∆)2

has an eigenvalue

1− 2iνµ̂xµ̂yκ− 2qκ2,

and this has modulus less than unity if

κ2q2 ≤ q − ν2c2xc
2
y.(37)

Now, κ is actually equal to either γ or γ ±
√
α2 + β2 so that in either case

κ2 ≤ γ2 + 2|γ|
√
α2 + β2 + α2 + β2.

Using the fact that |γ| ≤ |M |
√
α2 + β2 we obtain

κ2 ≤ (|M |+ 1)2(α2 + β2)

so that from (37) the stability condition becomes

(1 + |M |)2(α2 + β2)q2 ≤ q − ν2c2xc
2
y(38)

for all modes, which may be compared with (26). From the analysis of that equation
it follows that the necessary and sufficient condition for stability of all modes in the
presence of advection is

ν2 ≤ q ≤
(

1

1 + |M |
)2

.(39)
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Fig. 5. Cell and vertex numbering for a quadrilateral mesh.

7. Irregular grids. We now turn our attention to irregular grids. Our aim is
to find some measure of vorticity that is exactly preserved. More significantly, if that
measure can be expressed as a line integral around some small control volume, and if
many such control volumes can be united to make a large control volume, there will
be a global conservation principle for circulation.

This is where the two interpretations of our scheme diverge. In the cell-centered
finite-volume approach the velocities are piecewise constant within each cell so that
circulation will be evaluated by a rectangle rule. In a vertex-centered finite-difference
interpretation, velocities vary bilinearly within each element so that circulation will
be evaluated by a trapezium rule. Even on a re-entrant path on a square grid these
are equivalent so that both interpretations lead to a circulation-preserving scheme.
On irregular grids the measures of circulation are different and it is not obvious that
any correspondence exists.

In fact, we have only been able to prove preservation of circulation for the cell-
centered finite-volume scheme, and have come to suspect rather strongly that there
is no such result for the vertex-centered finite-difference method.

7.1. Quadrilateral cells. Suppose the square cells of Figure 1 are distorted to
give the quadrilaterals of Figure 5, and the solution is updated by a two-step scheme
as in (21), (22) with the intermediate quantities u ′ held at the vertices of the quadri-
laterals. To calculate the update we suppose that u ′ is bilinearly interpolated over
each quadrilateral from the vertex values. Then we show that a natural generalization
of the discrete vorticity Z2u is exactly preserved.

With the cell and vertex numbering of Figure 5, the update to the cell average
uα is obtained by integrating Lu ′ over the quadrilateral Ωα of measure Vα and by
applying Gauss’s theorem to obtain a line integral around the perimeter of the cell.
Thus for u we obtain

un+1
α − unα = −c∆t

Vα

∫
Ωα

∂xp
′dΩ = −c∆t

Vα

∮
∂Ωα

p ′dy

= − c∆t
2Vα

[(p ′
1 − p ′

3)(y2 − y4) + (p ′
2 − p ′

4)(y3 − y1)],(40)
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where the integrals along each edge are given exactly by use of the trapezoidal rule.
Similarly for v we obtain

vn+1
α − vnα = −c∆t

Vα

∫
Ωα

∂yp
′dΩ =

c∆t

Vα

∮
∂Ωα

p ′dx

=
c∆t

2Vα
[(p ′

1 − p ′
3)(x2 − x4) + (p ′

2 − p ′
4)(x3 − x1)].(41)

The change in discrete vorticity at vertex 1 is then obtained by integrating the
change in ∂xv − ∂yu over an appropriate region and again turning this into a line
integral of the form

∆Γ =

∮
[(vn+1 − vn)dy + (un+1 − un)dx],(42)

where (u, v) are constant in each quadrilateral and the line integral represents the
circulation. Preservation of vorticity can be ensured by appropriately choosing a path
for the line integral. We choose the part of the line in cell Ωα to run from the midpoint
of the side (1, 2) to the centroid and then to the midpoint of side (1, 4). In fact, since
(u, v) are constant along this path, the integral is the same for any path joining the
midpoints of the sides, but making it go through the centroid ensures that the control
volumes can be joined together. The contribution to (42) at vertex 1 from (40) and
(41) is then, after some crucial cancellation,

∆Γ1,α = 1
2 [(vn+1

α − vnα)(y4 − y2) + (un+1
α − unα)(x4 − x2)]

=
c∆t

4Vα
(p ′

2 − p ′
4)[(y4 − y2)(x3 − x1)− (x4 − x2)(y3 − y1)]

= 1
2c∆t(p

′
2 − p ′

4),(43)

because the quantity in square brackets on the line above (43) is just 2Vα. It is now
clear that as we add the contributions from cells Ωα,Ωβ ,Ωγ , and Ωδ, which meet
at the vertex 1, they all cancel. Thus there is no change in the circulation around
the contour chosen, and so the discrete vorticity defined by (42) and (43) is exactly
preserved.

7.2. Mixed meshes. Suppose we have a mesh in which any combination of
triangles and quadrilaterals meets at every vertex. Again we define the vorticity at
that vertex through (42). Then, with the numbering of Figure 6, the line integrals
for the update in triangular cell Ωα can be computed as in (40), (41) to give

(
u

v

)n+1

α

−
(
u

v

)n
α

= − c∆t
2Vα

[
p ′

1

(
y2 − y3
x3 − x2

)
+ p ′

2

(
y3 − y1
x1 − x3

)
+ p ′

3

(
y1 − y2
x2 − x1

)]

=
c∆t

2Vα

[
(p′2 − p′1)

(
y1 − y3
x3 − x1

)
+ (p′3 − p′1)

(
y2 − y1
x1 − x2

)]
.(44)

It is also clear that the area of the triangle is given by

Vα = 1
2 [x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]

= − 1
2 [y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)].(45)
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Fig. 6. Cell and vertex numbering for a mixed mesh.

Hence the vorticity change computed from all the triangular cells meeting at vertex
1 is in the form of a line integral,

∮
[(vn+1 − vn)dy + (un+1 − un)dx]

= c∆t
∑
(α)

1

2Vα
[(vn+1

α − vnα)∆yα + (un+1
α − unα)∆xα],(46)

into which the u and v updates are substituted from (44).

As in the quadrilateral case, we choose the line integrals to go from the midpoints
of edges to the centroids of each triangle. Thus in cell Ωα we have ∆xα = 1

2 (x3 +
x1)− 1

2 (x2 + x1) = 1
2 (x3 − x2). As a result, the contribution from Ωα to the update

of circulation around vertex 1 may be written

∆Γ1,α =
c∆t

4Vα
[{(p′2 − p′1)(y3 − y1) + (p′3 − p′1)(y1 − y2)} (x3 − x2)

+ {(p′2 − p′1)(x1 − x3) + (p′3 − p′1)(x2 − x1)} (y3 − y2)]

=
c∆t

4Vα
[p′2 {(y3 − y1)(x3 − x2) + (x1 − x3)(y3 − y2)}
+p′3 {(y1 − y2)(x3 − x2) + (x2 − x1)(y3 − y2)}]

=
c∆t

2
(p′2 − p′3).(47)

Since this is of exactly the same form as (43) the total update to the circulation
around vertex 1 vanishes, and since the control volumes for any set of contiguous
vertices can be merged into one large control volume as in Figure 7, the circulation
around that remains unchanged also.

If cells with more than four vertices are considered, their contribution involves
the values of p′ at vertices that are not common to two cells and which therefore do
not cancel. It seems that meshes made from a mixture of quadrilaterals and triangles
are the most general for which this particular result holds.
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Fig. 7. Contour for defining circulation.

7.3. Three-dimensional unstructured grids. In three dimensions the circu-
lation around some closed surface is the vectorial quantity

�Γ =

∫ ∫
�u× d�n,(48)

which evolves, for the three-dimensional version of (1), according to

∂t�Γ = −
∫ ∫

c ∇p× d�n,(49)

and this vanishes if c is constant.
For finite-volume schemes, it is possible to show that a discrete version of (48)

remains invariant for grids that are arbitrary combinations of tetrahedra and hexahe-
dra if a suitable control volume is chosen around each vertex. This is constructed as
shown in Figure 8 . For tetrahedral cells, one constructs the six planes defined by one
edge and the midpoint of the opposite edge, thereby dissecting the tetrahedron into
four hexahedra, one associated with each vertex. For hexahedral cells, one creates
eight small hexahedra by constructing the three bilinear surfaces that bisect pairs of
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Fig. 8. Elements of a mixed three-dimensional unstructured grid, showing a tetrahedral cell
(left) and a hexahedral cell (right) with the subvolume corresponding to one vertex cut away.
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opposite faces. The control volume around any given vertex is the union of subcells so
constructed. An appropriate measure for the circulation around this control volume is

�ΓV =
∑

�ucell�ncell,(50)

where the sum is over all cells meeting at V , �ucell is the constant velocity associated
with that cell, and �ncell is the “integrated normal”

∫ ∫
�ndS over the boundary between

the subvolume of the cell associated with V and the remainder of the cell. (Recall
that �ncell depends only on the perimeter of that boundary and not on the surface
spanning it; we choose a particular surface only to ensure that the control volumes
fill the whole space.) We now sketch a proof that this circulation remains constant.

After some rather lengthy algebra, the contribution made by some cell α to the
circulation around V can be written as a sum over a certain set of edges. Think
of the cells meeting at V as defining some irregular polyhedron. The edges of this
polyhedron that divide α from its neighbors may be called the boundary of α with
respect to V and for the kind of grid considered will be either a triangle or a (probably
nonplanar) hexahedron. Suppose that it is a hexahedron whose vertices have position
vectors r1, r2, r3, r4, r5, r6. The relationship is

∆�ΓV,α =
c∆t

4

j=6∑
j=1

(pj + pj+1)(rj+1 − rj).(51)

From this equation it is clear that if c is a constant, the sum over the boundaries of
all cells surrounding V will vanish, because every edge appears twice with opposite
sign. If c is not a constant, then the sum becomes a consistent discretization of
− ∫ ∫ c∇p × �ncell, and hence the circulation around any assembly of these control
volumes depends only on a surface summation. Noting that the formulae remain valid
when the hexahedra are degenerate, in particular when they degenerate to tetrahedra,
completes the outline of the proof.

8. Variable coefficients. As an example of how the techniques of the present
paper may be extended to problems with variable coefficients, we consider the case of
acoustic waves in a fluid of variable density ρ. Then the system (1) is replaced by

∂tp+ ρa2(∂xu+ ∂yv) = 0, ∂tu+ (1/ρ)∂xp = 0, ∂tv + (1/ρ)∂yp = 0,(52)

and the change in vorticity, ζ = ∂xv − ∂yu, is given by

∂tζ = −∂x(1/ρ)∂yp+ ∂y(1/ρ)∂xp

= [ρxpy − ρypx]/ρ2.(53)

This represents the barotropic effect through which an inviscid flow may acquire
vorticity, unless the pressure and density gradients are parallel. The integral version
of this effect is Kelvin’s theorem,

∂tΓ =

∮
dp

ρ
,(54)

where Γ =
∮
�u · �ds is the circulation around some given contour.

Now let us consider the update of the velocities on the quadrilateral mesh of
Figure 5 with an appropriate modification of (40) and (41). In fact, let us take Rα as
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the constant value of 1/ρ in cell Ωα so that these update formulae need to be modified
only by a factor Rα. The resulting change in the discrete vorticity Z2u at vertex 1 is
given by replacing c by Rα in (43) and summing over the cells. The result is

Z2(un+1 − un) = 1
2∆t[Rα(p ′

2 − p ′
4) +Rβ(p ′

4 − p ′
6)

+Rγ(p ′
6 − p ′

8) +Rδ(p
′
8 − p ′

2)].(55)

Moreover, it is clear that the same argument applies on the mixed grid of Figure 6,
and that if we merge any set of contiguous control volumes as in Figure 7, then a
discrete version of Kelvin’s theorem applies to such circuits of arbitrary size.

To relate this to the local formula (53), we note that (55) can be rearranged to
give

1
4∆t{(Rα −Rγ)[(p ′

2 − p ′
4) + (p ′

8 − p ′
6)] + (Rβ −Rδ)[(p ′

4 − p ′
6) + (p ′

2 − p ′
8)]

+ (Rα −Rβ +Rγ −Rδ)(p ′
2 − p ′

4 + p ′
6 − p ′

8)}.(56)

Now if the mesh in Figure 5 is roughly rectangular, Rα−Rγ is a difference of R in the
NW direction while (p ′

2−p ′
4)+(p ′

8−p ′
6) is an averaged difference of p ′ in the roughly

orthogonal NE direction; and Rδ −Rβ is a difference of R in the NE direction while
(p ′

4 − p ′
6) + (p ′

2 − p ′
8) is an averaged difference of p ′ in the NW direction. Thus the

first line of (56) will be close to zero when the gradients of R and p ′ are parallel,
matching the behavior of (53). The second line of (56) is a product of crossed second
derivatives of R and p ′ and will normally be two orders smaller.

This example demonstrates how properties of vorticity preservation in the dif-
ferential system, even those that hold in the presence of variable coefficients, can
still be reflected in our discrete schemes. With appropriate control volumes they still
hold for three-dimensional unstructured grids, as in section 7.3. The case of variable
coefficients in Maxwell’s equations is actually easier, because the coefficients appear
inside the derivative, meaning that the magnetic field remains curl-free in an arbitrary
nonresistive medium. Our method will mimic this precisely.

9. Concluding discussion. A great step forward in CFD was the casting of
discrete representations into conservation form by Lax and Wendroff [9]. This ensured
that any shock waves captured by the scheme would be in some sense “correct” and
greatly extended the range of application of numerical methods. Conservation of
derived quantities seems to have received much less attention since the early work of
Arakawa [10] and Jesperson [11] on schemes that conserve total energy and enstrophy.
In particular, there seems to have been little exploration of the conservation of local
derivative quantities such as vorticity which is the object of study in this paper.

By starting with the simplest case of linear problems on square grids treated
by Lax–Wendroff methods, we have been able to reduce the number of candidate
schemes. In fact, insisting on conservation of the primary quantities and the deriva-
tives, together with symmetry and compactness properties, makes the scheme essen-
tially unique. We have analyzed the stability of the scheme and find that either with
or without advective terms it is stable up to the largest time steps that the CFL
condition allows.

Expressing the update operator as the product of two commuting factors allows
just two interpretations, depending on the order of their execution. One interpretation
is as a cell-centered finite-volume scheme, whereas the other is as a vertex-centered
finite-difference scheme. On irregular grids the operators no longer commute, and
the two interpretations are different. We show that the finite-volume interpretation



VORTICITY-PRESERVING SCHEMES 189

continues to preserve vorticity, but it is a finite-volume scheme of a somewhat non-
traditional kind. There is a unique flux through each interface, but it may not be
evaluated by reference only to the pair of cells that it separates; it must be found
by averaging the fluxes at its two end points and therefore involves four cell states.
Apparently this is the price to be paid for incorporating the additional conservation
properties.

Whether this price will buy worthwhile benefits remains to be seen. In [12] a
number of alternative nine-point schemes are given, some of which have attractive
properties, but they are not vorticity-preserving. These schemes are designed by
approximating the exact evolution operator for the PDE (using the bicharacteristics of
the wave equation in this case) and then projecting onto piecewise constant functions.
Unfortunately these approximations to the evolution operator destroy the vorticity
preservation. On the other hand the schemes generated in the present paper can be
regarded as evolution Galerkin methods in which Taylor expansions in time are used
to approximate the evolution operator; this has the advantage of preserving vorticity.
For the schemes in [12] the changes in vorticity can be estimated and shown to be
quite substantial relative to other truncation error terms. Vorticity production by a
general class of schemes, which includes the standard one-step Lax–Wendroff method,
is presented briefly in the appendix.

Moreover, there is one rather substantial practical problem to which the current
approach might be relevant. This is the appearance in many shock-capturing codes
of anomalous solutions, such as the “carbuncle” that often appears ahead of blunt
bodies in supersonic flow computations, first reported in [13] and recently investigated
thoroughly in [14]. Closely related to this is “Quirk’s phenomenon” [15] that produces
an odd-even decoupling in response to small mesh perturbations, and the kinks that
sometimes appear in reflected Mach stems [15, 16]. It seems very probable that
these are truly weak solutions, even entropy-satisfying weak solutions, of the Euler
equations, even though not usually observed in practice.1

Very often, perhaps always, these anomalous solutions are marked by the presence
of nonphysical vorticity; in the carbuncle this accumulates into two massive counter-
rotating vortices. Robinet et al. [17] note a marked correspondence between the Quirk
phenomenon and a previously overlooked form of shock instability involving resonance
between vortical and acoustic modes. It is therefore a reasonable speculation that a
method based to some extent on the control of vorticity might be less prone to produc-
ing anomalous solutions, and might even avoid them altogether. At the moment they
are usually eliminated by adding numerical dissipation in a somewhat indiscriminate
manner.

But as stated earlier, we regard the present paper merely as a beginning and hope
to present various extensions, both theoretical and practical, in future publications.
Some extensions are very easy, such as the consideration of Maxwell’s equations or
ideal MHD, where the differential constraint involves the divergence rather than the
curl. We have begun to consider higher-order extensions and consistent finite-element
versions. We have not yet seriously thought about fully nonlinear problems or moving
meshes, both of which are necessary steps to take if these ideas are indeed to have

1The carbuncle phenomenon can be created in a wind tunnel. One inserts a thin splitter-plate
ahead of the tip of the body. A Schlieren photograph of the resulting flow appears as Plate 272 in
[18]. Quite possibly the vorticity created by the boundary layer on the plate is responsible, but the
high Reynolds number limit of this flow is a valid solution of the Euler equations. We conjecture that
anomalous Euler solutions result from the systematic creation of vorticity due to truncation error.
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practical impact on complex problems. Neither have we ourselves yet conducted
any numerical experiments, although we plan on doing so soon. In the meantime
we are grateful to Professor Alain Lerat who has had some experiments carried out
in his laboratory when the second author was visiting there [21]: these confirm the
predictions of the analysis. For initial data representing a stationary vortex they show
substantial vorticity losses in a variety of alternative schemes applied to the linear
acoustic system. For the present scheme, such initial data are of course perfectly
preserved. Moreover, when the fully nonlinear Euler equations are used, the initial
data are almost perfectly preserved by the rotated Richtmyer scheme, which is a
natural generalization of our scheme to this problem.

As a final remark, we wish to draw to the attention of our readers the work of
Hyman and Shashkov (see [19, 20] and the references cited therein) with which our
analysis has many points of similarity. They construct discrete operators on logically
rectangular meshes that obey discrete analogues of the major vector identities, such
as CURL × GRAD = 0, which is another way of expressing what we do here. The
starting points, and the style, of the two analyses are quite different, and although our
results are less specific in one sense, being limited to the single identity above, they are
more general in the sense of extending to (some) unstructured and multidimensional
grids. An extended comparison of the two approaches may well prove profitable.

Appendix. Vorticity production by a general scheme. We consider a class
of schemes that include Lax–Wendroff schemes and compute the vorticity that they
generate. The schemes are written as (only the velocity updates are needed)

un+1 = un − νδxP − νδyQ′,(57)

vn+1 = vn − νδxP ′ − νδyQ,(58)

where

P = [a+ (1− a)µ2
y]µxp

n − 1
2ν[b+ cµ2

y]δxu
n − 1

2νdµxµyδyv
n,

Q = [a+ (1− a)µ2
x]µyp

n − 1
2ν[b+ cµ2

x]δyv
n − 1

2νdµxµyδxu
n,

P ′ = −eδxvn,
Q′ = −eδyun.

Such a scheme is properly centered in time, and hence second-order accurate, if

b+ c = 1, d = 1, e = 0;

a particular case is a = 1, c = 0, which corresponds to the standard one-step Lax–
Wendroff scheme. For the compact vorticity of (12), in general we have

ζn+1 − ζn = ν
{
µxδxδyP − µyδxδyQ+ µxδ

2
yQ

′ − µyδ2xP ′}
= ν

{
µ2
xδxδy[a+ (1− a)µ2

y]pn − µ2
yδxδy[a+ (1− a)µ2

x]pn

− 1
2ν[b+ cµ2

y]µxδ
2
xδyu

n + 1
2νdµxµ

2
yδ

2
xδyu

n

− 1
2νdµ

2
xµyδxδ

2
yv
n + 1

2ν[b+ cµ2
x]µyδxδ

2
yv
n

−eµxδ3yun + eµyδ
3
xv
n
}

= ν
{
a(µ2

x − µ2
y)δxδyp

n − 1
2νbδxδy(µxδxu

n − µyδyvn)

+ 1
2ν(d− c)µxµyδxδy(µyδxu

n − µxδyvn)− e(µxδ3yun − µyδ3xvn)
}
.
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This formula displays four different mechanisms for vorticity production. For all of
their contributions to vanish, we require

a = 0, b = 0, c = d, e = 0,

and the unique second-order scheme meeting these constraints has

a = b = e = 0, c = d = 1.(59)

If we now take Fourier transforms, we have, with the notation of section 5.1,

ζ̂n+1 − ζ̂n = ν
{
a(s2y − s2x)(−4sxsy)p̂n

− 1
2νb(−4sxsy)(2icxsxû

n − 2icysy v̂
n)

+ 1
2ν(d− c)(−4sxsy)cxcy(2icysxû

n − 2icxsy v̂
n)

−e(−8icxs
3
yû
n + 8icys

3
xv̂
n)
}
.

As the mesh size h approaches zero, the left-hand side tends to h times the vorticity,
cx, cy → 1, sx → kxh/2, sy → kyh/2, and hence

ζ̂n+1 − ζ̂n
h

� i
h2

2

[
ν2(b+ c− d)kxky(kxû

n − ky v̂n) + eν(k3
xû

n − k3
y v̂
n)
]

+
h3

4
aν(k2

x − k2
y)kxkyp̂

n.(60)

This shows that most first-order members of the family produce vorticity at a rate
proportional to h2, unless b+ c = d and e = 0. It also shows that most second-order
members will produce vorticity at a rate proportional to h3 unless a = 0; note that
the standard Lax–Wendroff scheme has a = 1. Finally, if also b = 0 and c = d, there
is no vorticity production. This corresponds to the single-parameter family studied
in section 5.1.
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Abstract. Quality metrics for structured and unstructured mesh generation are placed within
an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based
on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating
mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally
invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from
the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh
quality metrics are defined. The singular value decomposition is used to study relationships between
metrics. Equivalence of the element condition number and mean ratio metrics is proved. The
condition number is shown to measure the distance of an element to the set of degenerate elements.
Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly,
with specific examples given. Two combined metrics, shape-volume and shape-volume orientation,
are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are
extended to nonsimplicial elements. A series of numerical tests verifies the theoretical properties of
the metrics defined.
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1. Introduction. Mesh quality metrics for assessing the results of a meshing
process have been in use almost since the beginning of meshing. Metrics are or can be
used in a number of ways. First, metrics can serve as mesh requirement specifications
prior to mesh creation. Element volume, shape, and orientation in various parts of the
geometric domain can be specified in advance of meshing to enable the mesh generator
to select proper algorithms and concentrate on the most difficult areas. Second, mesh
improvement techniques such as smoothing, optimization, and edge swapping depend
heavily on the use of quality metrics. Third, metrics often serve as a quality control
mechanism. Given a mesh, is it of sufficient quality that it can be passed on to the
consumer? Nonadaptive, a priori meshing of complex geometries is difficult, especially
with nonsimplicial elements. As a result, mesh quality is not assured. Consumers of
meshes for adaptive purposes should also be interested in quality metrics because
h-adaptive mesh refinement will rarely improve initial mesh quality. R-type adaptive
procedures, in which mesh nodes are moved, can also make good use of mesh quality
metrics. Given these uses, mesh quality metrics will be needed for the foreseeable
future.
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For the most part, mesh quality metrics are based on geometric criteria. For
example, does a given element possess positive volume and a good shape? Element
volume, aspect ratio, skew, angles, stretching, and orientation are common geomet-
ric quality metrics. Surprisingly, a mathematical theory of geometric mesh quality
metrics has not been developed until now. Such a theory should include a discussion
of what a mesh quality metric is, what properties it should possess, a capability for
analyzing and classifying various metrics, including a way to show how metrics are
related and a means of identifying redundant metrics. This attempt at such a theory
is based on element Jacobian matrices and an algebraic framework that uses matrix
norm, trace, and determinant. A crucial feature introduced in this theory is the idea
that metrics don’t exist in a vacuum but need to be referenced to an ideal element.
The metric then measures the deviation from the ideal. The ideal may vary from
one application to another. For example, some applications can do well with isotropic
elements while others may need anisotropic elements with particular orientations. We
thus construct our theory for arbitrary reference elements.

We do not attempt a comprehensive survey of all the work that has been done
on metrics but refer the reader to the early work of Robinson on quality metrics
for quadrilaterals [22], [23], [24], the distortion measure of Oddy [20], the “flatness”
measure of Ives [11], the summary of tetrahedral measures in [6], [21], the measures
in Canann, Tristano, and Staten [3], and the paper [7]. The work reported here is an
extension of the ideas of the author presented in [13], [14], [8], [15], and [16] in which
the use of matrices, norms, and the condition number for mesh quality measures were
introduced.

2. Preliminary observations. For both structured and unstructured meshes
we can refer to mesh nodes and mesh elements. A mesh element is a geometric object
topologically equivalent to some geometrically regular object such as a cube/square,
tetrahedron/triangle, wedge, or pyramid. The boundary of the element is defined in
terms of mesh nodes with given spatial coordinates.1 Given a mesh element we define
an element quality metric as follows.

Definition. An element quality metric is a scalar function of node positions
that measures some geometric property of the element.

If a three-dimensional element has K nodes with coordinates xk ∈ R3, k =
0, 1, . . . ,K − 1, then we denote a mesh quality metric by f̂ | R3K → R.

A host of mesh quality metrics have been defined over the years. Many of the
metrics are redundant. Others may lack one or more of the following properties of
quality metrics (also given in Table 1).

Definitions. A metric is dimension-free if its definition in three dimensions is
an unambiguous, natural generalization of its definition in two dimensions; otherwise
it is dimension-specific. Example: Volume metrics are dimension-free while angle
metrics are dimension-specific.

A metric is element-free if its definition on one element type is an unambigu-
ous, natural generalization of its definition on another element type; otherwise it is
element-specific. Example: Maximum angle is element-free on two-dimensional ele-
ments while the ratio of quadrilateral diagonal lengths is element-specific.

A metric on a fixed element type is domain-general if it is meaningful over a wide
range of possible shapes of the element; otherwise it is domain-specific. Example:
Aspect ratio is domain specific. Although aspect ratio may be defined for any quadri-

1In this paper attention is restricted to linear elements having no midside nodes.
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lateral [24] it is not meaningful for any shape of quadrilateral. The minimum angle of
a quadrilateral is domain-general.

A metric on a fixed element type is versatile if it is sensitive to more than one
distortion mode (e.g., skew and aspect ratio); otherwise it is specialized. Example:
Tetrahedral shape measures are versatile while skew is specialized. Versatile metrics
are useful when one does not need to know the specific mode of distortion.

A metric is scale-free if its value does not depend on the volume of the element;
otherwise it is scale-sensitive. A metric is orientation-free if its value does not depend
on the orientation of the element in space; otherwise it is orientation-sensitive. Exam-
ple: Rectangle aspect ratio is scale-free and orientation-free. Volume is orientation-
free, but scale-sensitive.

A metric is unitless if it has no units. Example: Aspect ratio and skew are unitless
while volume is not. Unitless measures do not depend upon the physical units of the
problem (such as length in feet vs. meters).

A metric is referenced if it incorporates an explicit comparison to a reference
element, which may determine volume, shape, or orientation; otherwise it is unref-
erenced. Example: Aspect ratio h/(sw) is referenced to a rectangle with aspect ratio
s > 0. By necessity, referenced metrics are unitless.

Table 1
Quality metric property summary.

Property Restricted metric General metric
Dimension dimension-specific dimension-free

(n = 2 vs. n = 3) (e.g., only applies to n = 2) (applies to both n = 2 and n = 3)
Element type element-specific element-free

(e.g., tri or quad) (e.g., only defined for quad) (e.g., both tri and quad)
Domain domain-specific domain-general

(e.g., shape of quad) (e.g., rectangles only) (e.g., all quads)
Versatility specialized versatile

(# qualities measured) (only one) (e.g., volume-shape orientation)
Element size scale-sensitive scale-free
(or volume) (size-dependent) (size-invariant)
Orientation orientation-sensitive orientation-free

(orientation-dependent) (orientation-invariant)
Units has-units unitless

(of metric) (dimensional) (nondimensional)
Reference unreferenced referenced

(ideal element) (implicit ideal) (explicit ideal)

Before proceeding, we make a few general comments. First, many of the proposi-
tions noted have trivial proofs, which are omitted. Proofs are given for less straight-
forward results. Second, although many of the ideas presented in this paper can be
generalized, we prefer to remain concrete since the meshing application demands it.
Accordingly, we work over the field of real numbers, with objects in two or three di-
mensions (n = 2 or n = 3). We will work primarily with simplicial elements in mind
and concentrate on three dimensions since this is more difficult than two dimensions.
Most results we present hold in both two and three dimensions, even though only
one case or the other is presented. Differences are noted. Extension of our results to
nonsimplicial elements is given in section 14. We rely heavily on results from linear
algebra to develop the theory of metrics. It is important to keep in mind that our
emphasis differs from that of numerical linear algebra. The matrices with which we
work are 2 × 2 or 3 × 3, so efficiency of computation is not the main issue. Instead,
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the issue is to define algebraic metrics having the desired properties and to show how
they are related.

Various sets of matrices are used extensively in our presentation. LetMn be the
set of all n × n real matrices. Let M+

n be the set of all n × n real matrices with
positive determinant. The boundary of this latter set is ∂M+

n , the set of all n × n
singular matrices. Let In be the n× n identity matrix and O the n× n zero-matrix.
Let Z(n) be the set of all matrices inM+

n whose determinant is unity. Let SO(n) be
the set of all n×n orthogonal matrices with determinant 1. Let D(n) be the set of all
n× n nonsingular diagonal matrices and U(n) the set of all n× n nonsingular upper
triangular matrices. Let SR(n) be the set of all n × n nonsingular matrices of the
form ρΘ, where ρ > 0 and Θ ∈ SO(n). Each of these sets forms one of the classical
matrix groups. Recognition of these groups is important because we rely heavily upon
the closure, identity, and inverse properties of these matrix groups throughout this
exposition.

Consider the affine map associated with a tetrahedron. Let xk ∈ R3, k = 0, 1, 2, 3,
be the coordinates of the four vertices of the tetrahedron in physical space. Let ξk,
with 0 ≤ ξk ≤ 1 and ξ0+ ξ1+ ξ2+ ξ3 = 1, be four logical space coordinates and define
the mapping from logical space to physical space by

x(ξ) =
∑

ξk xk

with x ∈ R3.
This can be explicitly written as

x = (1− ξ1 − ξ2 − ξ3)x0 + ξ1 x1 + ξ2 x2 + ξ3 x3,

giving

x = A0 u0 + x0

with x = (x, y, z)t, u0 = (ξ1, ξ2, ξ3)
t, and

A0 =


 x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0


 .

Written in this form, one sees that x is an affine map which takes points u0 in the
right tetrahedron with node coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) to
points in a tetrahedron in physical space with the four nodes xk. The vector x0

controls translation of the element while the matrix A0 controls volume, shape, and
orientation of the element. We refer to A0 as the Jacobian matrix because the columns
xk − x0 of the matrix form the Jacobian of the affine map with respect to the logical
variables, i.e., Aij = dxi/dξj . The Jacobian matrix has units of length and is, in
general, nonsymmetric. The formulation above also applies to triangular elements on
a surface, provided the surface has a well-defined normal at every point.

3. Geometric significance of the Jacobian matrix. The Jacobian matrix of
an element is important because it is well-defined for both n = 2 and n = 3. Basing
element metrics on the Jacobian matrix thus makes it easy to devise metrics that
are dimension-free. Furthermore, the Jacobian matrix contains information relating
to the volume, shape, and orientation of an element. This can be understood more
clearly by performing the QR factorization of the Jacobian matrix. The factorization
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decomposes the Jacobian matrix into several matrices with clear geometric interpre-
tations. These matrices will be used to build mesh quality metrics in sections 9, 10,
11, 12, and 14.

Let A be the Jacobian matrix and λij = [A
tA]ij be the elements of the “metric

tensor.” Let α = det(A). It is assumed that 0 <| A |<∞ and α ≥ 0. Elements with
α < 0 are inverted and will not be considered.

Proposition 3.1. Let A be the n = 2 or n = 3 Jacobian matrix. Then one can
decompose A as follows:

A = RU = µRS = µRQD = RQ∆,

where
• R ∈ SO(n) defines “orientation,”
• U = µS with U ∈ U(n) and Uii > 0,
• µ is a nonnegative scalar,
• S = QD with S ∈ U(n), S11 = 1, and S defines “shape,”
• Q ∈ U(n) has unit column vectors, and defines “skew,”
• D,∆ ∈ D(n) defines “aspect ratio.”

Proof. We explicitly construct the factorizations for n = 2 and n = 3, as they are
needed for computation of the various metrics to be defined later. For n = 2,

R =
1√
λ11

(
A11 −A21

A21 A11

)
,

U =

( √
λ11 λ12/

√
λ11

0 α/
√
λ11

)
,

µ =
√

λ11,

S =

(
1 λ12/λ11

0 α/λ11

)
,

Q =

(
1 λ12/

√
λ11λ22

0 α/
√
λ11λ22

)
,

D =

(
1 0

0
√

λ22/λ11

)
,

∆ =

( √
λ11 0
0

√
λ22

)
.

For n = 3, let xξk , k = 1, 2, 3, be the kth column vector of A.

R =

(
xξ1√
λ11

,
λ11xξ2 − λ12xξ1√
λ11 | xξ1 × xξ2 |

,
xξ1 × xξ2
| xξ1 × xξ2 |

)
,
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U =



√
λ11

λ12√
λ11

λ13√
λ11

0
|xξ1×xξ2 |√

λ11

λ11λ23−λ12λ13√
λ11|xξ1×xξ2 |

0 0 α
|xξ1×xξ2 |


 ,

µ =
√

λ11,

S =



1 λ12

λ11

λ13

λ11

0
|xξ1×xξ2 |

λ11

λ11λ23−λ12λ13

λ11|xξ1×xξ2 |
0 0 α√

λ11|xξ1×xξ2 |


 ,

Q =



1 λ12√

λ11λ22

λ13√
λ11λ33

0
|xξ1×xξ2 |√
λ11λ22

λ11λ23−λ12λ13√
λ11λ33|xξ1×xξ2 |

0 0 α√
λ33|xξ1×xξ2 |


 ,

D = diag

(
1,

√
λ22√
λ11

,

√
λ33√
λ11

)
,

∆ = diag(
√

λ11,
√

λ22,
√

λ33).

The orientation matrix R rotates the first column vector of A to the x-axis (and,
for n = 3, rotates the second column vector to the x-y plane). The volume matrix U
contains volume and shape information about the element, but not orientation. The
scale factor µ is the length of the first column vector in the Jacobian matrix. The
shape matrix S contains length ratio and skew information. The length ratio matrix D
gives the ratio of element edge lengths while the skew matrix Q contains information
about the angles in the element. The matrices R, S, Q, and D have units of (length)0

while U, ∆, and µ have units of (length)1.

Orientation, volume, shape, length ratio, and skew are a complete list of the ele-
ment properties embodied in the Jacobian matrix. Other properties such as curvature
or relationships between adjacent elements are not contained in this matrix.

4. Multiple Jacobian matrices. To obtain the Jacobian matrix A0 of the
affine map in the previous section we replaced ξ0 with 1 − ξ1 − ξ2 − ξ3. A0 is thus
referenced to the node at x0. One could just as well refer to any of the four nodes in the
tetrahedron, giving four Jacobian matrices per tetrahedral element. Let k = 0, 1, 2, 3
and let

Ak = (−1)k
(

ek+1,k ek+2,k ek+3,k

)

be the kth Jacobian matrix, where ek,� = xk − x� with k �= " and " = 0, 1, 2, 3
(note that e�,k = −ek,�). Node k has three attached edge vectors, ek+1,k, ek+2,k,
and ek+3,k, where the indices are taken modulo four. The (−1)k factor ensures that
αk > 0 according to the right-hand-rule.
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Definitions. Let xk be the nodes of a simplicial element εn. Let the centroid of
the element be

xc =
1

n+ 1

∑
k

xk.

Element translation. Let x̃k be the corresponding nodes of the element translated
in space by a vector b. Then x̃k = xk + b and the centroid of the translated element,
x̃c, is x̃c = xc + b.

Element scaling. Let x̃k be the corresponding nodes of an element uniformly
scaled by ρ > 0 about the centroid. Then x̃k = xc + ρ(xk − xc) and the centroid is
x̃c = xc.

Element rotation. Let x̃k be the corresponding nodes of the element rotated about
its centroid. Then, if the rotation is given by Θ ∈ SO(n), x̃k = xc +Θ(xk − xc) and
the centroid of the rotated element is x̃c = xc.

Element scaling and rotation. Let x̃k be the corresponding nodes of the scaled
and rotated element. Then x̃k = xc +B(xk − xc) where B ∈ SR(n) and the centroid
is preserved.

Proposition 4.1. The Jacobian matrices Ak transform under element trans-
lation, scaling, rotation, or both scaling and rotation as Ãk = Ak (translation),
Ãk = ρAk (uniform scaling), Ãk = ΘAk (rotation), and Ãk = BAk (scaling and
rotation).

Proposition 4.2. If Ak is given, the nodal coordinates are known relative to one
another but not relative to the origin of the coordinate system.

The fact that Ak is not invariant to k would appear to be a serious obstacle to
using the Jacobian matrix as a basis for measuring element quality because metrics
based on Ak will vary with k.2 This difficulty will be addressed in the next section
but first we show how the four Jacobian matrices are related.

Let M ∈ Z(n) be the following constant matrix

M =


 1 1 1
−1 0 0
0 −1 0


 .

Proposition 4.3. The set I3,M,M2,M3 is a cyclic group under matrix multi-
plication.

Proposition 4.4. The four Jacobian matrices are related to one another by
Ak = A0 M

k. This can be verified by a direct calculation.3

Proposition 4.5. The Jacobian determinant αk is invariant to k.

Proof. This follows directly from Proposition 4.4 since the determinant of M
equals 1.

The result in Proposition 4.5 is to be expected since the volume of a tetrahedron
is one-sixth of the Jacobian determinant [9], and hence αk cannot depend on k.

2The matrices R,U, S,Q,D, and ∆ in the factorization of A are also not invariant to k.
3For n = 2,

M =

( −1 −1
1 0

)
.
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5. A nodally invariant Jacobian matrix. In this section we exhibit a weighted
Jacobian matrix that is nodally invariant.4 We consider linear transformations be-
tween certain simplicial elements. Figure 1 illustrates the situation in two dimensions.
Three triangular elements are shown in the figure: the logical triangle, the reference
triangle, and the physical triangle. The physical triangle is the triangle defined by
an element of the mesh. The reference triangle is the ideal triangle one wants to
obtain (for example, an equilateral triangle). The logical triangle is constructed by
placing one node at the origin and the other nodes at unit lengths along Cartesian
axes. The physical triangle has three Jacobian matrices Ak, defined in the previous
section. Similarly, the reference triangle has three Jacobian matrices Wk, computed
in the same manner. The logical triangle also has three Jacobian matrices, In, M ,
and M2, corresponding to k = 0, 1, 2. The three triangles can be related via the three
matrices Wk, Tk = AkW

−1
k , and Ak. The matrix Wk is taken to have the same units

as Ak (length); therefore Tk is unitless.

Logical element Reference element Physical element

❅
❅

❅
❅

❅
❅

✡
✡

✡
✡✡

❏
❏

❏
❏❏

❆
❆

❆
❆

❆
❆

❆

✂
✂
✂
✂
✂
✂
✂✂

✲ ✲

✲

Wk AkW
−1
k

Ak

Fig. 1.

Proposition 5.1. Given any tetrahedron with Jacobian matrices Ak, k =
0, 1, 2, 3, let Tk be the linear transformation that takes Wk to Ak. Assume det(Wk) �=
0. Then Tk = A0 W

−1
0 , that is, Tk is independent of k.

Proof. By definition, TkWk = Ak. Proposition 4.4 applies to the matrices Wk.
Thus Wk =W0 M

k. Since Ak = A0 M
k, we have the stated result.

The matrix T = AW−1 between the reference and physical elements does not
depend on which node one chooses to compute; therefore one may use T (instead of
A) to define nodally invariant element quality measures.

A consequence of the nodal invariance of T is that, unlike geometrically based
tetrahedral metrics [21], we do not use all the edges of the tetrahedron, but only three
(however, we also use three edges of the reference element).

From here on, then, we suppress the subscripts k, with the understanding that A
and W must be computed with respect to the same node. This implies a one-to-one
correspondence between the nodes of the reference element and the physical element.
The matrix W is not only useful for making T nodally invariant but, as will be seen,
it permits the construction of referenced quality metrics. Because W is derived from

4Some of the results of this section were foreshadowed in [19].
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an ideal reference element, it is reasonable to assume that w = det(W ) > 0.
The following associated derived matrices are useful in a theory of quality metrics:

T t, T−1, T−t, adj(T ), T tT (the metric matrix), (T tT )−1, and TT tT .

6. Algebraic mesh quality measures. We have shown that, given W , the
nodally invariant Jacobian matrix T can be computed using any node of a simplicial
element. The Jacobian matrix A was factored into four matrices controlling orienta-
tion, volume, skew, and length ratio. We now turn to the question of how to build
mesh quality metrics from these matrices. Determinant, trace, and norm are the most
useful means to convert matrices to scalar quantities.

Definition. Let τ = det(T ) = det(AW−1) = det(A)det(W−1) = α/w.
Proposition 6.1. α and τ are invariant to element rotation because det(ΘT ) =

det(T ).
Another useful means to convert a matrix to a scalar is the trace function.
Definition.

trace(T ) =
∑
i

Tii.

Proposition 6.2. trace(T ) is a linear map from Mn to the real numbers, i.e.,
trace(ρT ) = ρ trace(T ) and trace(T1 + T2) = trace(T1) + trace(T2).

The matrix inner product B · C, defined in terms of the trace, is trace(BtC).
For example, At ·W−1 = trace(T ). The inner product leads to the Frobenius matrix
norm

| T |2 = trace(T tT ).

The Frobenius norm is the sum of the squares of the matrix elements. The Frobenius
norm is preferred for mesh quality metrics because (1) it is less expensive to compute
than the p-norms and (2) many well-known mesh quality measures can be written in
terms of the Frobenius norm. For some of the results in this paper it is necessary to
use the 2-norm, which we will denote by | T |2. The 2-norm of T is the square-root
of the maximum eigenvalue of T tT .

Definition. Let f | Bi ∈ Mn, i = 0, . . . , I → R, be a continuous function from
sets of real matrices to the real numbers. Then f is an algebraic mesh quality metric
if (1) the matrices Bi are constructed from Ak, Wk, or factorizations thereof; (2)
the matrices Bi are converted to scalars by means of the matrix norm, determinant,
or trace; and (3) f is invariant to the element node at which the matrices are com-
puted. The algebraic metric f is referenced if the domain of f is restricted to weighted
matrices that make use of W or factorizations thereof.

Let A be the set of all algebraic mesh quality metrics.
Examples of algebraic metrics are given in Table 2. They are inspired by the

sources cited, but these sources did not pose the metrics in terms of the Jacobian
matrix, nor were they explicitly referenced.

Algebraic mesh quality metrics are, in general, no more expensive to compute
than geometrically based metrics, especially if the Frobenius norm is used.

An advantage of the algebraic metrics is that, using matrix theory and linear
algebra, they are in general easier to analyze than are nonalgebraic metrics.

Proposition 6.3. Assume det(W ) and |W |> 0. Then (1) τ = 0 if and only if
α = 0, (2) τ > 0 if and only if α > 0, (3) | T |= 0 if and only if | A |= 0, and (4)
| T |> 0 if and only if | A |> 0.

Let f({Bi}) be shorthand for f(B1, B2, . . . , BI).
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Table 2
Examples of algebraic mesh quality metrics.

Algebraic metric Comments/source

trace(T )

T ·B with B some constant matrix

| T |2 Laplace

| T tT |2 Liao [17]

τ2 Volume [4]

| adj(T ) |2 Jacquotte and Cabello [12]

τ | T−1 |2 Winslow [2]

| T |2 /τ Tinico-Ruiz and Barrera-Sanchez [1]

τ−4/3{| T tT |2 −(1/3) | T |4} Oddy et al. [20]

τ2/3 | T−1 |2 Nondimensional Winslow

τ−2/3 | T |2 Mean ratio−1 [18]

| T | | T−1 | Condition number [16]

Definition. f is scale-invariant if f({ρBi}) = f({Bi}) for ρ > 0.
Example. For n = 3, τ−2/3 | T |2 is scale-invariant, while for n = 2 it is not.
Let Θ ∈ SO(n). From the definition of the Frobenius norm it is easy to show that

| TΘ |=| T | and | ΘT |=| T |, i.e., the Frobenius norm is invariant to rotations of the
element. Because of this property, many natural algebraic metrics are orientation-free.

Definition. Let f be an algebraic metric. Then f is orientation-invariant if
f({Θ1 BiΘ2}) = f({Bi}) for Θ1,Θ2 ∈ SO(n).5

Examples.

f(T ) =| T |,
f(T ) = det(T ).

Definition. f is scale and orientation-invariant if f({H1BiH2}) = f({Bi}),
where H1, H2 ∈ SR(n).

Example. κ(T ) =| T | | T−1 |.
Definition. f is positive if f({Bi}) > 0 for all Bi �= O.
Example. f(T ) =| T |.
Definition. f is even if f({−Bi}) = f({Bi}). f is odd if f({−Bi}) = −f({Bi}).
Example. trace(T ) is odd, | T | is even, and det(T ) is odd when n is odd and

even when n is even.
Definition. f is transpose-invariant if f({Bt

i}) = f({Bi}).
Example. f(T ) =| T |.
Since norm, determinant, and trace are all invariant to matrix transpose, the

majority of mesh quality metrics are transpose-invariant. An example of a metric
that is not transpose-invariant is f(T ) =| T − C |, where C is an arbitrary constant
matrix.

Definition. The conjugate metric of f({Bi}) is f∗({Bi}) = f({B−t
i }). Note

that f∗∗ = f .
Example. For n = 3, µ(T ) = τ−2/3 | T |2 has conjugate µ∗(T ) = τ2/3 | T−1 |2.

Thus the mean ratio metric is conjugate to the modified Winslow metric.
Definition. f is self-conjugate if f∗ = f .

5f is left orientation-invariant if f({Θ1Bi} = f({Bi}). Example: f(T ) =| T tT − I |.
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Examples.

f(T ) = κ(T ) =| T | | T−1 |,
f(T ) = τ−2/3 | T |2 +τ2/3 | T−1 |2 .

7. Singular values. In this section we show that algebraic mesh quality metrics
may be expressed in terms of singular values and that this provides a useful tool in
analyzing properties of such metrics.

The singular value decomposition of a matrix T says there exists Θ,Φ ∈ SO(n)
such that

T = ΘtDΦ,

where D = diag(σ1, σ2, σ3) ∈ D(n). The singular values σk(T ), k = 1, 2, 3, are real
and positive. They are related to the eigenvalues of T tT by σk(T ) =

√
λk(T tT ).

Hence | T |2=
√
λmax = σmax.

Let σ(T ) = (σ1, σ2, σ3)
t ∈ R3 be the vector of singular values of T. Let λ(T tT ) =

(λ1, λ2, λ3)
t ∈ R3 be the vector of eigenvalues of T tT . Then σ(T ) and λ(T ) map

T ∈Mn to vectors in R3.
Proposition 7.1. For τ > 0, Ψ ∈ SO(n), and ρ > 0,

σ(T t) = σ(T ),

σ(ΨT ) = σ(T ),

σ(ρT ) = ρ σ(T ),

σk(T
−1) = 1/σk(T ),

σk(T
tT ) = σ2

k(T ).

Proposition 7.2.

| T |2 =
∑
k

σ2
k(T ) =

∑
k

λk(T
tT ),

τ =
∏
k

σk(T ) =

√∏
k

λk(T tT ).

Thus τ = 0 if and only if σmin = 0.
One can express algebraic metrics f(T ) as functions of the singular values f̃(σ(T )).

Note that f̃(σ) maps a vector in R3 to a scalar. Thus f = f̃ ◦σ maps T to a scalar, i.e.,
it is the composition of the two maps. For example, if f̃(σ) =| σ |2, then f(T ) =| T |2.
Some other examples are

| T tT |2 =
∑
k

σ4
k =

∑
k

λ2
k,

| T |4 = | σ |4=
(∑

k

λk

)2

,

| adjT |2 =
∑
l

∏
k �=�

σ2
k =

∑
�

∏
k �=�

λk,

| T−1 |2 =
∑
k

(1/σk)
2 =

∑
k

1/λk.
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Given f(T ), the corresponding function f̃(σ) always exists because the SVD of T
always exists. Thus, algebraic mesh quality metrics may always be expressed in terms
of singular values. On the other hand, given some arbitrary function f̃ of σ, there may
not correspond an algebraic mesh quality metric f(T ). For example, f̃(σ) =

∑
k sinσk

cannot be derived from a mesh quality metric.
Proposition 7.3. f(T ) = trace(T ) gives rise to a linear function f̃ of its

singular values of the form f̃(σ) = t·σ. The vector t has components t� =
∑
k Θ�,kΦ�,k.

Definition. f is homogeneous of degreem if for ρ > 0, f({ρBi}) = ρm f({Bi}).
Metrics with no such property are inhomogeneous.

Examples. f(T ) = τ is homogeneous of degree n. f(T ) = trace(T ) and | T | are
homogeneous of degree 1. | T |2 +τ2 is inhomogeneous for both n = 2, 3.

Proposition 7.4. Let f(T ) be homogeneous of degree m. Then the product f∗f
is homogeneous of degree 0, i.e., scale-invariant.

Example. f(T ) =| T |2 gives (f∗f)(T ) = κ2(T ).
Definition. Let AmH ⊂ A be the set of all homogeneous algebraic metrics of

degree m.
Proposition 7.5. Let f1 ∈ AmH and f2 ∈ A�H . Then f1 f2 ∈ Am+�

H . From this
we observe that we can generate metrics having any degree of homogeneity.

Proposition 7.6. Let f1 ∈ AmH and f2 ∈ AmH . Then f1 + f2 ∈ AmH .

Definition. Let Ã be the set of functions f̃(σ) derived from the set A of algebraic
mesh quality metrics. Let ÃmH ⊂ Ã be the set of functions in Ã that are homogeneous
of degree m.

Proposition 7.7. If f ∈ AmH , then f̃ ∈ ÃmH .
Proof. If f({ρBi}) = ρm f({Bi}), then by definition

f̃(σ({ρBi})) = ρm f̃(σ({Bi})).
However, Proposition 7.1 then implies

f̃(ρσ) = ρm f̃(σ).

Proposition 7.8. If f is positive, so is f̃ . If f is even/odd, so is f̃ . If f is
self-conjugate, so is f̃ .

Singular values can be used to prove two important identities which hold for
Frobenius norms of 3× 3 matrices:6

Proposition 7.9.

| T tT |2 +2 τ2 | T−1 |2 ≡ | T |4,
3 | T |2 | T tT |2 − | T |6 +6 τ2 ≡ 2 | TT tT |2 .

These identities give the following bounds for T3×3:

| adjT | ≤ | T tT | ≤ | T |2,
| TT tT |2 − 1

2
| T |6 ≤ 3τ2 ≤ | TT tT |2 + 1

2
| T |6 .

6The corresponding identities for T2×2 are

| T |2 ≡ 1

2
| T − T t |2 + trace(T 2),

| T |4 ≡ | T tT |2 +2τ2.
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One can also relate κ(T tT ) to κ(T ) using singular values:

κ2(T tT ) ≡ κ4(T ) + 4κ2(T )− 2(τ−2 | T |6 + τ2 | T−1 |6).

Singular values have an important application in analyzing the equivalence of certain
quality metrics.

8. Shape measures and equivalences. Tetrahedral shape measures for de-
tecting distorted elements abound in the literature [6]. The list of measures includes
such well-known quantities as the radius ratio [9], mean ratio [18], solid angle, and
several aspect ratios [21].

A tetrahedral shape measure is formally defined in [6] as
“. . . a continuous function that evaluates the quality of a tetrahe-
dron. It must be invariant under translation, rotation, reflection,
and uniform scaling of the tetrahedron. It must be maximum for the
regular tetrahedron and it must be minimum for a degenerate tetra-
hedron. There is no local maximum other than the global maximum
for a regular tetrahedron and there is no local minimum other than
the global minimum for a degenerate tetrahedron. For the ease of
comparison, it should be scaled to the interval [0,1], and be 1 for the
regular tetrahedron and 0 for a degenerate tetrahedron.”

This definition was used to show that mean ratio and radius ratio are shape
measures while minimum dihedral angle and edge ratio are not [6].

Shape measures are clearly mesh quality metrics but, in general, they are not
algebraic mesh quality metrics. One exception is the mean ratio shape measure η,
whose definition is given in [18]:

η(T ) =
3τ2/3

| T |2 .

Definition. Let a, b, c be elements in a set. Recall that an equivalence relation
∼ on this set holds if

• a ∼ a for any a,
• a ∼ b if b ∼ a,
• a ∼ b and b ∼ c implies a ∼ c.
Definition (see Liu and Joe [18]). Let M1 and M2 be tetrahedral shape measures.

Then M1 ∼M2 if there exist constants 0 < c1 ≤ c2 and 0 < p ≤ q such that

c1M
p
1 ≤M2 ≤ c2M

q
1 .

The equivalence is strong if p = q. We use the notation M1 � M2 for strong equiva-
lence.

Informally, equivalent shape metrics sense the same shape distortions, grow large
together, and grow small together. The original motivation for introducing the idea
of equivalences was to reduce the list of shape measures to some manageable number.
For example, the shape measures radius ratio, mean ratio, and sine of solid angle are
equivalent [18].

Definition. The definition of shape measure equivalence can be generalized to
include all positive algebraic mesh quality measures. The definition for the latter is
the same as the former, except the phrase “tetrahedral shape measures” is replaced by
“positive algebraic mesh quality measures.”
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Proposition 8.1. | T |2�| T tT | and neither is a shape measure.
Proof. From a well-known equivalence that can be found in [10],

| T |2 ≤ | T | ≤ √n | T |2,

we have

| T tT |2 ≤ | T tT | ≤ √n | T tT |2,

that is,

σ2
max(T ) ≤ | T tT | ≤

√
nσ2

max(T ).

From Proposition 7.2 one can show

σ2
max(T ) ≤ | T |2 ≤ nσ2

max(T );

thus,

1

n
| T |2≤ | T tT | ≤ √n | T |2 .

Proposition 8.2. Let ν > 0 be given and M be an algebraic mesh quality mea-
sure. Then Mν �M . Strong equivalence thus does not force homogeneous metrics to
have the same degree of homogeneity.

Proposition 8.3. Let ν > 0. Then M1 ∼M2 if and only if Mµ
1 ∼M2.

The statement that if two metrics are equivalent, then it does not matter which
one is used is an exaggeration. For example,

κ(A)/κ(W ) ≤ κ(T ) ≤ κ(A)κ(W )

shows the strong equivalence of κ(A) and κ(T ), yet the weight matrix W is a critical
factor in assessing the quality of an element.

Metrics with the same degree of homogeneity need not be equivalent. For example,
for n = 3, τ2 and | T |6 are homogeneous of degree 6 but are not equivalent.

Proposition 8.4. f1 ∼ f2 if and only if f̃1 ∼ f̃2.
Proposition 8.5. Using singular values, κ2(T ) � κ(T tT ), since

1

3
κ2(T ) ≤ κ(T tT ) ≤ κ2(T ).

Proposition 8.6. Let κ2(T ) = | T |2 | T−1 |2. Then κ ∼ κ2.
Proof. Using the first line of the proof of Proposition 8.1, one can readily show

that

κ2 ≤ κ ≤ nκ2.

Proposition 8.7. For n = 3, let µ(T ) = τ−2/3 | T |2 with conjugate µ∗(T ) =
τ2/3 | T−1 |2. Then µ ∼ µ∗ ∼ κ.

Proof. Let 0 < λ1 ≤ λ2 ≤ λ3 be the eigenvalues of T
tT .

Part A. µ ∼ κ.

µ =
1 + λ2/λ1 + λ3/λ1

[(λ2/λ1)(λ3/λ1)]1/3
.
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Therefore,

(λ3/λ1)
1/3 ≤ µ ≤ 3 (λ3/λ1)

2/3,

κ
1/3
2 ≤ µ ≤ 3κ2/3

2 ,

(κ/3)1/3 ≤ µ ≤ 35/3 (κ/3)2/3.

Part B. µ∗ ∼ κ.

µ∗ = [(λ2/λ3)(λ1/λ3)]
1/3(1 + λ3/λ2 + λ3/λ1).

Therefore,

(λ3/λ1)
1/3 ≤ µ∗ ≤ 3λ3/λ1,

κ
2/3
2 ≤ µ∗ ≤ 3κ2

2,

(κ/3)2/3 ≤ µ∗ ≤ 27 (κ/3)2.

Then by the definition of equivalences, µ ∼ µ∗.
For n = 2, the corresponding scale-invariant metric is µ =| T |2 /τ . In this case

it is easy to show that µ = µ∗ = κ.
We began this section by giving the definition of a tetrahedral shape measure.

The definition is vague on the definition of a degenerate element. In the next section
we fix this and define algebraic shape metrics.

9. Algebraic shape metrics and the condition number. We formalize the
definition of a degenerate element by first defining a degenerate matrix.

Definition. Let B ∈ M+
n ∪ ∂M+

n . Then B is degenerate if B is singular but
nonzero (i.e., | B |> 0 with det(B) = 0). B is nondegenerate if detB > 0, i.e.,
B ∈ M+

n . Let DG(n) be the set of degenerate n × n matrices. The set of singular
matrices ∂M+

n then consists of DG(n) plus the zero matrix.
Definition. A simplicial element εn is degenerate if and only if the matrices Ak,

k = 0, 1, . . . ,K − 1, are degenerate. Sliver elements are “near-degenerate” elements.
Proposition 9.1. εn is degenerate if and only if the matrix T is degenerate.
Proof. If εn is degenerate, then Ak is degenerate for all k. Since T = AkW

−1
k ,

τ = det(T ) = αk/wk = 0. Hence T is singular. Suppose T = O. Then O = AkW
−1
k ,

which gives Ak = O and | Ak | = 0. But since Ak is degenerate, its norm must
be strictly positive. To avoid this contradiction we must have | T | > 0, i.e., T is
degenerate. The proof in the other direction is similar.

As a reminder, we assume here and in subsequent sections that α ≥ 0, 0 < | A |
<∞ and that W is nondegenerate.

We return to the factorization of the Jacobian matrix discussed in section 3. As
observed, the Jacobian matrix contains the following information: skew (Q), length
ratio (D), shape (S), volume (U), and orientation (R). It should therefore be possible
to define algebraic mesh quality metrics for each of these geometric quantities. In this
section we will consider algebraic shape metrics. Let

A = µRS,

W = µWRWSW .

The shape of A will equal the shape of W if S = SW . The shape of an element
is a measure of element skew and aspect ratio, relative to the reference shape. We
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adapt the Dompierre definition of shape measures to the algebraic setting.7

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
shape metric if

• the domain of f is restricted to the matrix T ,
• f is scale and orientation invariant,
• 0 ≤ f(T ) ≤ 1 for all T ,
• f(T ) = 1 if and only if T ∈ SR(n),8
• f(T ) = 0 if and only if T is degenerate.
Proposition 9.2. Algebraic shape metrics are invariant to uniform scalings and

rotations of the physical element.
Proof. Uniform scalings and rotations of an element mean that Ak → BAk, where

B ∈ SR(n). Then T = AkW
−1
k → BT . But by definition, f(BT ) = f(T ).

Proposition 9.3. f(T ) = n/κ(T ) is an algebraic shape metric.
Proof. The first criterion is immediate. Second, because T is nodally invariant, f

is invariant to the node at which it is computed. Observe that

κ2(T ) =
∑
i

∑
j

λi
λj

with λi the eigenvalues of T
tT . Setting ∂κ/∂λi = 0 to find the extremum, one finds

that n ≤ κ < ∞; hence 0 ≤ f ≤ 1. If f = 1, then κ = n, i.e., λi = λj for all
i, j. Therefore, by the singular value decomposition, T = λiΘ, i.e., T ∈ SR(n).
If T ∈ SR(n), then κ = n, so f = 1. This proves f meets the third and fourth
requirements. Fifth, if T is degenerate, then λ1 = 0 and so κ → ∞ and f = 0.
Finally, if f = 0, then κ→∞, and so λ1 = 0 and λ3 > 0, so T is degenerate.

Similarly, one can prove 3/µ(T ) and 3/µ∗(T ) are algebraic shape metrics.9

The distinguishing property of the condition number is given in the following
well-known result stated in Proposition 9.4 (see [5, pp. 33–34] for proof).

Proposition 9.4. Let X and Y be 3 × 3 matrices with X nonsingular and
X + Y singular. Let

d ≡ min {| Y |2 / | X |2: X + Y singular}
be the distance between X and the set of singular matrices. The distance between X
and the set of singular matrices is 1/κ2(X).

Proposition 9.5. f = 3/κ is an equivalent measure of the minimum distance
to the set of singular matrices.

Proof. From Proposition 8.6, κ2 ∼ κ, i.e.,

κ2 ≤ κ ≤ 3κ2,

we have

f

3
≤ d ≤ f,

7In our definition we do not say anything about the metric lacking local minimae or maximae.
The property is related to the convexity of f with respect to T . This condition, while highly desirable,
is probably too restrictive in most cases, i.e., if added to the definitions, there will be no function
that can satisfy all of the requirements. Numerical results in section 13 show that the metrics we
suggest do not possess local extremae with respect to some parameters, but perhaps not all.

8This requirement forces S = SW when f = 1.
9Note that for n = 3 the Winslow metric τ | T−1 |2 is not a shape metric because it is not

scale-invariant. From the definition in section 12, it is not a shape-volume metric either. This may
explain why three-dimensional Winslow smoothing of structured grids has had only limited success.
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i.e., f goes to zero if and only if d goes to zero.
Corollary. Since DG is a subset of the singular matrices, f also measures the

distance to degenerate matrices and thus the distance to degenerate elements.

10. Algebraic metrics for skew and length ratio. The algebraic shape met-
rics, as defined in the previous section, are invariant to the node at which they are
computed. Unfortunately, the elegant way in which this is achieved by using the ma-
trix T cannot be done for properties such as skew and length ratio. To create nodally
invariant skew metrics, we can define functions that use matrices at all of the nodes.10

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
skew metric if

• the domain of f consists of the matrices Xk = QkQ
−1
Wk

, k = 0, 1, . . . ,K − 1,
in the decompositions of Ak and Wk,

• 0 ≤ f({Xk}) ≤ 1 for all matrices Xk,
• f({Xk}) = 1 if and only if Xk = In for all k,
• f({Xk}) = 0 if and only if Xk is degenerate for at least one k.
Proposition 10.1. Algebraic skew metrics are invariant to uniform scalings and

rotations of the physical element.
Proof. Under such an element transformation, Ak → BAk, where B ∈ SR(n).

Then Qk = skewAk → skewBAk = Qk. Thus Xk is unchanged under element scaling
and rotation.

Proposition 10.2. If Xk = QkQ
−1
Wk

, then f =
∏
k

n
κ(Xk)

is an algebraic skew
metric.

Proof. By construction, f is nodally invariant because it uses all nodes, so f is
an algebraic metric. The remainder of the proof relies on the facts about n/κ noted
in Proposition 9.3. If f = 1, then for all k, Xk ∈ SR(n), i.e., Qk can differ from QWk

only by a rotation and scaling. But since these two matrics are both skew matrices,
we must have Qk = QWk

, hence Xk = In. If f = 0, then det(Xk) = 0 for some k.
Furthermore,

√
n | Xk | = | Xk || QWk

| ≥ | XkQWk
| = | Qk | =

√
n > 0. Hence

| Xk | = 1 and Xk is degenerate.
Proposition 10.3. f = mink{ n

κ(Xk)
} is an algebraic skew metric.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
length ratio metric if

• the domain of f consists of the matrices Xk = DkD
−1
Wk

, k = 0, 1, . . . ,K − 1,
in the decompositions of Ak and Wk,

• 0 ≤ f({Xk}) ≤ 1 for all Xk,
• f({Xk}) = 1 if and only if Xk = In for all k,
• f({Xk}) = 0 if and only if Xk is degenerate for at least one node.
Proposition 10.4. Algebraic length ratio metrics are invariant to scalings and

rotations of the element.
Proposition 10.5. By this definition, f =

∏
k n/κ(Xk) and f = mink n/κ(Xk)

are algebraic length ratio metrics.
Proof. The proof is similar to that of Proposition 10.2.

11. Algebraic metrics for volume and orientation. Roughly speaking, the
orientation of an element is a measure of its orientation in space relative to the ori-
entation of a reference element. Orientation is defined in terms of the matrix R in
Proposition 3.1.

10Shape metrics can also be defined in this way, using Xk = SkS
−1
Wk

. Then if f is orientation-

invariant, f({Xk}) = f({µRXkR−1
W µ−1

W }) = f({AkW−1
k
}) = f(T ).
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For the definition of an orientation metric, let three diagonal matrices Ψ� ∈ SO(3),
" = 1, 2, 3, be defined as follows:

Ψ�ij =




1, i = j = ",
−1, i = j �= ",
0, i �= j.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
orientation metric if

• the domain of f is restricted to matrix X0 = R0R
−1
W0

,
• 0 ≤ f(X0) ≤ 1 for all X0,
• f(X0) = 1 if and only if X0 = In,
• f(X0) = 0 if and only if X0 = −In when n = 2, and X0 = Ψ

� for some "
when n = 3.

The matrix R0 is the orientation matrix in the factorization of A0. It is assumed
that det(R0) = 1 so that inverted elements are not considered. Algebraic orientation
metrics are nodally invariant because the nodes on which they depend are specified
(i.e., k = 0). However, they critically depend on the node-numbering scheme of the
element (i.e., which node is numbered zero).

Proposition 11.1. Algebraic orientation metrics are invariant to uniform scal-
ings of the physical element.

Proof. The proof is immediate since uniform scaling does not affect R0 and thus
X0.

Proposition 11.2. f(X0) = 1 + (trace(X0) − n)/4 is an algebraic orientation
metric. So is f(X0) = 1− 1

8 | X0 − In |2.
Proof. Consider the first statement. SinceX0 ∈ SO(n), | Xii | ≤ 1. Then we must

have n− 4 ≤ trace(X0) ≤ n, which gives 0 ≤ f(X0) ≤ 1. Suppose f(X0) = 1. Then
traceX0 = n, which forces X0 = In. Suppose traceX0 = 0. Then traceX0 = n − 4,
which, for n = 2, forces X0 = −I2 and, for n = 3, forces X0 = Ψ

�. The proof of the
second statement is similar.

The volume of an element depends both on edge lengths and element skew. A
referenced volume metric is defined below.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume metric if

• the domain of f is restricted to the matrix T ,
• f is orientation-invariant,
• f is homogeneous of degree n,
• 0 ≤ f(T ) <∞ for all T ,
• f(T ) = 1 if and only if T ∈ Z(n),
• f(T ) = 0 if and only if T is degenerate.

A value of f greater (less) than one means the physical element has volume greater
(less) than the volume of the reference element. Since element volume is unbounded,
the upper limit of f is unbounded.

Proposition 11.3. f(T ) = det(T ) is an algebraic mesh volume metric.
If f(T ) = 1, then Ak = HWk, where H ∈ Z(n). Therefore the volume of the

element is the same as the reference element, but the shape may differ.

12. Combination metrics. Combinations of the various metrics are often more
useful than single metrics. Below we define algebraic volume-shape metrics.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume-shape metric if



ALGEBRAIC MESH QUALITY METRICS 211

• the domain of f is restricted to the matrix T ,
• f is orientation-invariant,
• 0 ≤ f(T ) ≤ 1 for all T ,
• f(T ) = 1 if and only if T ∈ SO(n),
• f(T ) = 0 if and only if T is degenerate or det(T )→∞.
Proposition 12.1. Algebraic volume-shape metrics are invariant to rotations of

the physical element.
If the requirement that f be homogeneous of degree n is included in the definition

of a volume-shape metric, we cannot find specific examples. For example, adding the
homogeneity requirement in one attempt resulted in a discontinuous function, which
is not allowed under the definition of an algebraic metric.

Proposition 12.2. Define

f(T ) = min(τ, 1/τ)n/κ(T ).

Then f(T ) is an algebraic volume-shape metric.
Proof. f is continuous because limτ→1 f is the same whether one approaches from

above or below. Suppose τ ≤ 1. Since det(T ) ≤ 1 and det(T )n/κ(T ) ≤ 1 for any
T , f(T ) = 1 forces det(T ) = 1 and n/κ(T ) = 1. Thus T ∈ Zn ∩ SR(n) = SO(n).
Similarly, if det(T ) > 1, T ∈ SO(n). If f = 0, then either τ = 0, τ → ∞, or
n/κ(T ) = 0. Since | T | > 0, T is degenerate or τ →∞.

f in the previous proposition is homogeneous of degree n when τ < 1 and homo-
geneous of degree −n when τ > 1.

It is possible in a similar manner to define and give examples of combined shape-
orientation and volume-orientation metrics. However, we skip forward to the follow-
ing volume-shape orientation metric which is potentially useful in adaptive meshing
schemes because it simultaneously measures element size, skew, aspect ratio, and
degree of alignment (say, with a flow-field).

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume-shape orientation metric if

• the domain of f is restricted to the matrices T and X0 = R0R
−1
W0

,
• 0 ≤ f(T,X0) ≤ 1 for all T and X0,
• f(T,X0) = 1 if and only if T = In = X0,
• f(T ) = 0 if and only if T is degenerate or X0 = −In for n = 2 and X0 = Ψ

�

for " = 1, 2, or 3.
Proposition 12.3. Let g(T ) = n/κ(T ), h(X0) = 1 +

1
4 (trace(X0)− n), and

f(T,X0) = min(τ, 1/τ) g(T )h(X0).

Then f(T,X0) is an algebraic volume-shape orientation metric.
Proof. Suppose τ ≤ 1. Since det(T ) ≤ 1, n/κ(T ) ≤ 1, and h(X0) ≤ 1 for any T ,

f(T ) = 1 forces det(T ) = 1, n/κ(T ) = 1, and h(X0) = 1. Thus T ∈ Zn∩SR(n)∩In =
In. Similarly, if det(T ) > 1, T = In. If f = 0, then either det(T ) = 0, n/κ(T ) = 0,
or h(X0) = 0. Since | T | > 0, T is degenerate and X0 = In for n = 2 and X0 = Ψ

�

for " = 1, 2, or 3.
Table 3 summarizes the metrics described so far (SC stands for scale, O for

orientation, SK for skew, and AR for aspect ratio).

13. Numerical examples. We have given general definitions of algebraic met-
rics for simplicial elements including shape, skew, length ratio, volume, orientation,
and combinations thereof. Using the specific examples given in sections 9, 10, 11,
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Table 3
Summary of algebraic metrics for simplicial elements.

Metric Invariants Noninvariants Example

Shape SC, O SK, AR n/κ(T )

Skew SC, O, AR SK
∏
k
n/κ(QkQ

−1
Wk

)

Length-ratio SC, O, SK AR
∏
k
n/κ(DkD

−1
Wk

)

Orientation SC, SK, AR O 1 + (trace(X0)− n)/4
Volume O, SK, AR SC det(T )

Relative size O, SK, AR relative SC min(τ, 1/τ)

Volume-shape O SK, AR, relative SC min(τ, 1/τ)n/κ(T )

Volume-shape orientation none all min(τ, 1/τ)n/κ(T )[1 +
(trace(X0)− n)/4]

Test one Test two Test three

❅
❅

❅
❅

❅
❅

✟✟✟✟✟✟

✡
✡

✡
✡

✡
✡

✡
✡

✡✡

✟✟✟✟✟✟❍
❍❍❍❍❍❍❍

❉
❉
❉
❉
❉
❉❉

θ

1

1

θ

30

1

2

75 30

1

"

Fig. 2. Triangle geometry for three test cases.

and 12, we illustrate the behavior of these metrics with several test cases shown in
Figure 2.

In the first test (see Figure 3) the metrics are plotted vs. the included angle of a
triangular physical element with sides of unit length emanating from the origin. The
first side lies on the x-axis, while the second side is oriented by a variable included
angle. The reference triangle is the unit equilateral triangle with base on the x-axis.
Figure 3 shows that all the metrics except volume vary between zero and unity, as
desired. Shape and length ratio peak when the included angle matches the 60 degree
angle of the reference triangle. The skew curve is not plotted, because it is nearly
identical to the shape plot (because the relative lengths of sides of the physical triangle
are the same as the reference triangle). The volume metric (p1-size) peaks at 1.15
when the included angle is 90 degrees, i.e., the area of the physical triangle is 1.15
times the area of the reference triangle. The orientation of the physical triangle was
varied by an angle from the x-axis. The results for the orientation metric in Figure
3 show a cosine curve, which agrees with theory. The combined shape and volume
metric (p1-ss) is similar to the shape metric, but less smooth and with lower values.

In the second test (Figure 4), the same physical triangle was used except that the
length of the second side was increased to 2, the base of the triangle made an angle
of 30 degrees with the x-axis, and the reference triangle was an isosceles triangle
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Fig. 3. Unit equilateral reference triangle, included angle varied.

Fig. 4. Isosceles reference triangle, included angle varied

(perhaps describing some desired anisotropy in the mesh), with base 1 and height 2.
As the included angle was varied from 0 to 180 degrees, the angle shown in the plots
varied from 30 to 210 degrees. The metrics ranged between zero and unity, peaking
around 105 degrees for shape and 120 degrees for volume. The skew curve again
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Fig. 5. Isosceles reference triangle, second side length varied.

overlaid the shape curve.

In the third test (Figure 5), the physical triangle had a unit length base which
made an angle of 30 degrees with the x-axis. The included angle between the first and
second sides was 75 degrees. The length of the second side was varied from 0 to 3.
The reference triangle was the same as in the second test. The shape and skew curves
differed from each other somewhat because of the differences in lengths between the
physical and reference triangles. In general, however, shape, skew, and length ratio
followed the same trend as one another, peaking when the second length matched
the reference triangle. Volume varied linearly with the variation in the length of the
second side, as expected.

In our opinion, shape, volume, and combined shape-volume are the most valuable
of the metrics. Skew varies nearly the same as shape while length ratio is misleading
because it is not the ratio of element width to breadth but rather the ratio of the
lengths of consecutive sides. Orientation may be of use provided element nodes can
be numbered in a consistent manner.

14. Nonsimplicial element metrics. Nonsimplicial elements such as quadri-
laterals, hexahedra, and wedges fail to obey Propositions 4.4, 4.5, and 5.1.11 There is
no single nodally invariant matrix T which can represent all the geometric properties
of nonsimplicial elements. To build algebraic quality metrics for such elements we
can resort to the technique used in section 10, in which multiple matrices are used in
the definition of the metric. Nonsimplicial elements for which Jacobian matrices Ak
can be defined may be treated as follows. Choose a reference element and compute
the reference weight matrices Wk. Let Tk = AkW

−1
k , k = 0, 1, . . . ,K − 1, be the

11Pyramids and other three-dimensional elements having more than three edges meeting in a node
are still more problematic since the Jacobian matrix fails to exist.
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weighted matrix, where K is the number of nodes in the element. The matrices are
factored as Ak = RkUk = RkQk∆k and similarly for Wk. Basic assumptions are that
αk = det(Ak) ≥ 0, 0 < | Ak | <∞, and that Wk is nondegenerate for all k. The Wk

should be self-consistent, i.e., computed from an element that exists.
Shape and volume metrics are defined for nonsimplicial elements, with the others

left to the reader.
Definition. Let f be an algebraic mesh quality metric. Then f is a nonsimplicial

algebraic shape metric if
• the domain of f is the complete set of matrices Tk = AkW

−1
k , k = 0, 1, . . . ,K−

1,
• f is scale- and orientation-invariant,
• 0 ≤ f({Tk}) ≤ 1 for all Tk,
• f({Tk}) = 1 if and only if Tk ∈ SR(n) for all k,
• f({Tk}) = 0 if and only if Tk is degenerate for some k.
Proposition 14.1. f({Tk}) = mink{n/κ(Tk)} is an algebraic shape metric for

nonsimplicial elements. So is K/
∑
k(κ(Tk)/3)

2.
If the definition of a volume metric given for simplicial elements in section 11 is

directly extended to nonsimplicial elements, the metric

f({Tk}) = min
k
{det(Tk)}

fails to satisfy the requirements because f = 1 does not force Tk ∈ Z(n) for all k.
Other attempts to fix this also fail. We thus redefine algebraic volume metrics as
follows.

Definition. Let f be an algebraic mesh quality metric. Then f is an algebraic
volume metric if

• the domain of f is restricted to the matrices Tk, k = 0, 1, 2, . . . ,K − 1,
• f is orientation-invariant,
• 0 ≤ f({Tk}) ≤ 1 for all Tk,
• f({Tk}) = 1 if and only if Tk ∈ Z(n) for all k,
• f({Tk}) = 0 if and only if Tk is degenerate for all k (or if det(Tk) → ∞ for

all k).
Proposition 14.2. f({Tk}) = (1/K)

∑
kmin(τk, 1/τk) is an algebraic volume

metric for nonsimplicial elements.
For simplicial elements, if the value of the volume metric is say, 1/2, then either

the physical element has half or twice the volume of the reference element.
The definition of volume-shape metrics given in section 12 readily extends to the

nonsimplicial case.
Proposition 14.3. f({Tk}) = (1/K)

∑
kmin(τk, 1/τk) mink{n/κ(Tk)} is an

algebraic volume-shape metric for nonsimplicial elements.
Figure 6 shows how such metrics vary for a quadrilateral element referenced to

a unit square. The quadrilateral is a symmetric trapezoid, with a unit length base
oriented in agreement with the reference element. The angle of the two vertical sides
with respect to the base side was varied from 60 to 165 degrees.

15. Summary and conclusions. A theory of algebraic mesh quality metrics
was proposed based on element Jacobian matrices. Jacobian matrices can be de-
composed into geometrically meaningful factors representing element volume, orien-
tation, and shape. The factor matrices are node-dependent and thus cannot be used
to construct algebraic mesh quality measures unless all are used in a symmetric way.
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Fig. 6. Square reference quadrilateral, trapezoid physical element.

However, for simplicial elements one can define a single nodally invariant matrix T
using the Jacobian matrices Wk of a reference element. We emphasize the point that
mesh quality metrics should be explicitly referenced to a logical element. Thus, for
example, shape metrics may be referenced to an isosceles, equilateral, or right-angled
simplicial element, depending on the application. We list the properties which must
be satisfied by an algebraic mesh quality metric. An algebraic definition of mesh
quality metrics permits relatively easy analysis of the properties of a metric, for ex-
ample, in terms of its singular values. Abstract definitions of metrics are given in
terms of precise requirements for algebraic shape, length ratio, skew, volume, orienta-
tion, volume-shape, and volume-shape orientation metrics. The abstract definitions
are slightly subjective, especially in the range and domain of the metrics, but are
largely noncontroversial. The requirements in the abstract definitions clearly must
be satisfied by any algebraic metric purporting to be of a particular type. Specific
examples for each type of metric are given. The examples, for the most part, are con-
spicuous in that they are new. Few traditional metrics (even were they referenced)
will qualify under the definitions given, with the notable exceptions of mean ratio and
determinant. Shape, volume, and volume-shape metrics for simplicial elements can be
posed in terms of the nodally invariant matrix T while the other metrics must use a
set of nodally dependent matrices. Examples of volume-shape metrics are difficult to
construct due to the large number of requirements they must satisfy. Volume-shape
metrics are critical to adaptive meshing, and it is significant that a rigorous definition
and example has been provided. Except for volume, the metrics are scaled between
zero and unity for ease of comparison. Multiple Jacobian matrices are needed in the
definitions of metrics for nonsimplicial elements due to the lack of an analogy to the
matrix T . The rigorous definitions given for the various types of metrics have made it
clear that it is not, in general, easy to devise metrics having all the right properties;
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this is especially true for nonsimplicial element metrics. For example, to obtain the
proper behavior for a volume metric for nonsimplicial elements, we sacrificed the ho-
mogeneity requirement. The difficulties encountered suggest that one reason why so
many mesh quality metrics have been defined in the past is that few metrics satisfy all
of the requirements. Although the metric definitions given require metrics to satisfy
rigorous criteria to qualify being a metric of a particular type, there remains some
freedom to define alternative metrics. Redundant metrics can be eliminated by in-
vestigating possible equivalences via singular values. It was shown that the algebraic
shape metric, condition number, measures the distance to the set of degenerate ele-
ments. Not all geometric properties of potential interest can be given in terms of an
algebraic metric. For example, nonalgebraic metrics based on solid angle or length-
to-width ratios cannot be expressed as algebraic metrics. However, there seems to
be little need for these additional metrics since, for example, solid-angle-based shape
metrics are equivalent to the algebraically based mean ratio shape metric.

Future work may include extending the theory to higher-order finite elements
having midside nodes as a means to measuring element curvature. Development of
connections between algebraic element quality metrics and effects upon analysis error,
efficiency, and robustness should be pursued. Finally, the metrics given are likely
candidates for objective functions in mesh smoothing and optimization techniques.
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Abstract. In this work we extend the sampling method to the case of non-self-adjoint Sturm–
Liouville problems generated by complex-valued potentials and boundary conditions. It is shown that
the function which is recovered by sampling on the real line extends analytically into the complex
plane. A direct connection with polynomial approximation is established.
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1. Introduction. We would like to extend the sampling method to the com-
putation of eigenvalues of regular non-self-adjoint Sturm–Liouville problems defined
by



−y′′(x, µ) + q(x)y(x, µ) = µ2y(x, µ), 0 ≤ x ≤ π,
a1y(0, µ) + a2y

′(0, µ) = 0,
b1y(π, µ) + b2y

′(π, µ) = 0,

where q ∈ L1(0, π), ai, bi, q ∈ C, |a1|+ |a2| �= 0, and |b1|+ |b2| �= 0.

It is well known that eigenvalues, if they exist, are in general nonreal and scattered
in the complex plane, which makes the task of computing them very arduous; see [3].
Classical methods relying on tracking the number of zeros of the eigenfunctions, such
as the Prufer method, cannot deal with a complex potential. Thus new methods
evaluating the miss-distance function by Cauchy-type integrals were developed for
computing eigenvalues in the complex plane; see [4].

We recall that the sampling method (see [2]) is basically an interpolation of the
characteristic function whose zeros are the eigenvalues. We show that although in
the non-self-adjoint case this function is complex valued, it is still in a Paley–Wiener
space; see [1] and [7]. Thus we need to interpolate a complex-valued function defined
on the complex plane. This immediately raises a new question: Should we need a two-
dimensional sampling strategy, or should we sample on the real line only and then use
an analytic extension to reach those roots situated far from the real line? Surprisingly,
we shall see that the latter alternative is sufficient. The fact that only a few values are
needed to interpolate the characteristic function with computable error bounds (see
[2]) makes the sampling method very attractive. The actual code or algorithm is very
simple and consists of only a few lines. A discussion on the computational aspects of
the spectral theory of Sturm–Liouville problems and a comparison between existing
codes can be found in [5] and [6].
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2. The characteristic function. We recall that the sampling method is basi-
cally a shooting data processing. If y(x, µ) denotes the solution of the initial value
problem defined by

{ −y′′(x, µ) + q(x)y(x, µ) = µ2y(x, µ),
y(0, µ) = a2 and y′(0, µ) = −a1, 0 ≤ x ≤ π,

then the characteristic function is simply defined by the second boundary condition

∆(µ) := b1y(π, µ) + b2y
′(π, µ),(2.1)

and thus all zeros of ∆ are the eigenvalues. We now study the analytic decomposition
of ∆. The variation of parameters yields

y(x, µ) = a2 cos(xµ)− a1 sin(xµ)

µ
+

∫ x

0

sin((x− t)µ)
µ

q(t)y(t, µ)dt,(2.2)

which implies that

y′(x, µ) = −a2µ sin(xµ)− a1 cos(xµ) +

∫ x

0

cos((x− t)µ)q(t)y(t, µ)dt.

Thus we deduce from (2.1) that

∆(µ) = b1

[
a2 cos(πµ)− a1 sin(πµ)

µ

]
+ b2 [−a2µ sin(πµ)− a1 cos(πµ)]

+ b1

∫ π

0

sin((π − t)µ)
µ

q(t)y(t, µ)dt+ b2

∫ π

0

cos((π − t)µ)q(t)y(t, µ)dt.(2.3)

In order to find the roots of ∆, we need to approximate the last two integrals. To this
end we use standard iterative methods to approximate the solution of the Volterra
equation (2.2) as

y(x, µ) :=

∞∑
n=0

yn(x, µ),

where

y0(x, µ) = a2 cos(xµ)− a1 sin(xµ)

µ

and

yn(x, µ) =

∫ x

0

sin((x− t)µ)
µ

q(t)yn−1(t, µ)dt.

With the help of

|sin(z)|
|z| ≤ c

1 + |z| exp (|Im z|) and |cos(z)| ≤ exp (|Im z|)(2.4)



SAMPLING 221

we successively obtain the following estimates:

|y0(x, µ)| ≤
(
|a2|+ |a1| cx

1 + x |µ|
)

exp (x |Imµ|) ,

|y1(x, µ)| ≤
∫ x

0

∣∣∣∣ sin((x− t)µ)(x− t)µ
∣∣∣∣ (x− t) |q(t)| |y0(t, µ)| dt

≤
(
|a2|+ |a1| cx

1 + x |µ|
)∫ x

0

c (x− t) |q(t)|
1 + (x− t) |µ|dt exp (x |Imµ|)

≤
(
|a2|+ |a1| cx

1 + x |µ|
)

cx

1 + x |µ|
∫ x

0

|q(t)| dt exp (x |Imµ|) ,

which leads to

|y2(x, µ)| ≤ cx

1 + x |µ|
∫ x

0

|q(t)| |y1(t, µ)| dt exp (x |Imµ|)

≤
(
|a2|+ |a1| cx

1 + x |µ|
)

cx

1 + x |µ|
∫ x

0

ct

1 + t |µ| |q(t)|
∫ t

0

|q(η)| dηdt exp (x |Imµ|)

≤
(
|a2|+ |a1| cx

1 + x |µ|
)(

cx

1 + x |µ|
)2 ∫ x

0

|q(t)|
∫ t

0

|q(η)| dηdt exp (x |Imµ|)

≤
(
|a2|+ |a1| cx

1 + x |µ|
)(

cx

1 + x |µ|
)2(

1

2

∫ x

0

|q(t)| dt
)2

exp (x |Imµ|) .

The successive integrations yield

|yn(x, µ)| ≤ cx

1 + x |µ|
∫ x

0

|q(t)| |yn−1(t, µ)| exp ((x− t) |Imµ|) dt

≤
(
|a2|+ |a1| cx

1 + x |µ|
)

1

n!

(
cx

1 + x |µ|
∫ x

0

|q(t)| dt
)n

exp (x |Imµ|) .

Thus we recover the well-known exponential growth in µ,

|y(x, µ)| ≤
(
|a2|+ |a1| cx

1 + x |µ|
)

exp

(
cx

∫ x

0

|q(t)| dt
)

exp (x |Imµ|) ,(2.5)

and the integrals appearing in (2.3) can be estimated:

∣∣∣∣
∫ π

0

sin((π − t)µ)
µ

q(t)y(t, µ)dt

∣∣∣∣ ≤ cπM(q)

1 + π |µ| exp (π |Imµ|)(2.6)

and similarly

∣∣∣∣
∫ π

0

cos((π − t)µ)q(t)y(t, µ)dt
∣∣∣∣ ≤M(q) exp (π |Imµ|) ,(2.7)

where

M(q) :=

(
|a2|+ |a1| cπ

1 + π |µ|
)∫ π

0

|q(t)| exp
(
ct

∫ t

0

|q(η)| dη
)
dt.
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Observe that the upper bound in (2.7) is not square integrable on the real line if
a2 �= 0. In order to have a faster decay in µ, we use the difference y(x, µ) − y0(x, µ)
instead of y(x, µ),

|y(x, µ)− y0(x, µ)| ≤ cπM(q)

1 + π |µ| exp (x |Imµ|) ,(2.8)

and so we can recast (2.7) as

∣∣∣∣
∫ π

0

cos((π − t)µ)q(t) (y(t, µ)− y0(t, µ)) dt
∣∣∣∣ ≤ cπM(q)

1 + π |µ|
∫ π

0

|q(t)| dt exp (π |Imµ|) .
(2.9)

This leads to a first practical decomposition of ∆,

∆(µ) = b1

[
a2 cos(πµ)− a1 sin(πµ)

µ

]
− b2 [a2µ sin(πµ) + a1 cos(πµ)]

+ a2b2

∫ π

0

cos((π − t)µ) cos(tµ)q(t)dt− a1b2
∫ π

0

cos((π − t)µ) sin(tµ)
µ

q(t)dt

+ b1

∫ π

0

sin((π − t)µ)
µ

q(t)y(t, µ)dt+ b2

∫ π

0

cos((π − t)µ)q(t) (y(t, µ)− y0(t, µ)) dt
= G(µ) + S(µ),

where after a few algebraic simplifications

G(µ) = cos(µπ)

[
a2b1 + b2

(
−a1 + a2

∫ π

0

cos2 (tµ) q(t)dt− a1
2

∫ π

0

sin(2tµ)

µ
q(t)dt

)](2.10)

+
sin(πµ)

µ

[
−a1b1 + b2

(
−a2µ2 +

1

2
a2µ

∫ π

0

sin (2tµ) q(t)dt− a1
∫ π

0

sin2 (tµ) q(t)dt

)]

and

S(µ) := b1

∫ π

0

sin((π − t)µ)
µ

q(t)y(t, µ)dt+ b2

∫ π

0

cos((π − t)µ)q(t) (y(t, µ)− y0(t, µ)) dt.

Thus using (2.6) and (2.9) we obtain the following.
Proposition 1. Assume that q ∈ L1(0, π), ai, bi, q ∈ C, |a1| + |a2| �= 0, and

|b1|+ |b2| �= 0; then S(µ) ∈ PWπ.
The above proposition allows us to recover the function S by the Whittaker–

Shannon–Kotelnikov (W.S.K.) theorem (see [7]):

S(µ) =
∑
n∈Z

S(n)
sin(π(µ− n))
π(µ− n) ,(2.11)

where the sampling values S(n),

S(n) := ∆(n)−G(n),

are computed by evaluating (2.1) and (2.10) at the integers only.



SAMPLING 223

We now analyze the truncation error due to replacing S by a finite sum:

SN (µ) :=

N∑
n=−N

S(n)
sin(π(µ− n))
π(µ− n) .(2.12)

∆(µ) = G(µ) + S(µ)

= G(µ) +
N∑

n=−N
S(n)

sin(π(µ− n))
π(µ− n) +

∑
|n|>N

S(n)
sin(π(µ− n))
π(µ− n)

= G(µ) + sin(πµ)

N∑
n=−N

(−1)
n
S(n)

π(µ− n) + sin(πµ)
∑

|n|>N

(−1)
n
S(n)

π(µ− n)

= G(µ) + sin(πµ)

N∑
n=−N

(−1)
n
S(n)

π(µ− n) + sin(πµ)
∑

|n|>N

(−1)
n
S(n)

π(µ− n) .

Observe that y(π, µ) is an even function of µ, and thus S(−n) = S(n), which further
simplifies the above sums:

∆(µ) = G(µ) + µ sin(πµ)
2

π

(
S(0)

2µ2
+

N∑
n=1

(−1)
n
S(n)

(µ2 − n2)

)
+ µ sin(πµ)

2

π

∑
n>N

(−1)
n
S(n)

(µ2 − n2)

= G(µ) +
sin(πµ)

QN (µ)
PN (µ) + TN (µ),

where PN and

QN (µ) = πµ

N∏
n=1

(
1− µ

2

n2

)

are polynomials of degree 2N and 2N + 1, respectively, and observe that the only

zeros of the entire function sin(πµ)
QN (µ) are {n ∈ Z : |n| ≥ N + 1}, and furthermore

sin(πµ)

QN (µ)
→ 1 as N →∞.

It is readily seen that if K is a compact set of the complex plane not containing large
integers, i.e., {n ∈ Z : |n| > N}∩K = ∅, then the truncation error TN is bounded by

sup
µ∈K
|TN (µ)| ≤ 2

π

√∑
n>N

|S(n)|2 sup
µ∈K

∣∣∣∣∣∣µ sin(πµ)

√∑
n>N

1

(µ2 − n2)2

∣∣∣∣∣∣ .

Since |S(µ)| = o(µ−1), the convergence of
∑
n≥0 |S(n)|2 implies that supµ∈K |TN (µ)|

→ 0 as N →∞, and thus we can use the approximation provided by

∆N (µ) := G(µ) +
2

π

sin(πµ)

QN (µ)
PN (µ) = 0(2.13)

to compute the roots of ∆(µ) in the complex plane. Uniform convergence implies that
∆N (µ)→ 0 as N →∞, and so the roots of ∆N approximate the roots of ∆(µ).
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Proposition 2. Let q ∈ L1 (0, π) and K be a compact set in the complex plane;
then supµ∈K |∆N (µ)−∆(µ)| → 0 as N →∞.

It is true that the integrals in the function G (2.10) may not be easy to compute.
Can we avoid computing the Fourier transforms appearing in G? Observe that if
q ∈ L2(0, π), then sinµπ

∫ π
0

sin (2tµ) q(t)dt is square integrable for µ ∈ R since it is
the Fourier transform of q. It is also an entire function, and its exponential growth is
given by (2.4)

∣∣∣∣sinµπ
∫ π

0

sin (2tµ) q(t)dt

∣∣∣∣ = O (exp (3π |Im (µ)|)) ,

and thus sinµπ
∫ π
0

sin (2tµ) q(t)dt ∈ PW3π, and similarly we obtain

cosµπ

∫ π

0

cos tµ
sin(tµ)

µ
q(t)dt, sinµπ

∫ π

0

sin2 tµ

µ
q(t)dt ∈ PW3π.

The last remaining integral needs a different treatment, namely,
∫ π

0

cos2 (tµ) q(t)dt =
1

2

∫ π

0

cos (2tµ) q(t)dt+
1

2

∫ π

0

q(t)dt,

and we obviously have cosµπ
∫ π
0

cos (2tµ) q(t)dt = O (exp (3π |Im (µ)|)) and

cosµπ

∫ π

0

cos (2tµ) q(t)dt ∈ L2(−∞,∞).

Thus we deduce again that

cosµπ

∫ π

0

cos (2tµ) q(t)dt ∈ PW3π.

The remaining term 1
2

∫ π
0
q(t)dt cosµπ is easy to compute and can be included in G.

Hence a simpler decomposition follows if we assume that q ∈ L2 (0, π) instead of q ∈
L1 (0, π).
Proposition 3. Assume that q ∈ L2(0, π), ai, bi, q ∈ C, |a1| + |a2| �= 0, and

|b1|+ |b2| �= 0; then

∆(µ) := G1(µ) + S1(µ),

where

G1(µ) =

(
b1a2 − a1b2 + a2b2

1

2

∫ π

0

q(t)dt

)
cos(πµ)− a2b2µ sin(πµ)

and S1 ∈ PW3π.
Here the cost of the simplification is that we need three times more sampling

points since the step size is 1
3 instead of 1. There is a further interesting simplification

that will be crucial for computing purposes. In the Dirichlet case, e.g., a2 and b2 are
nil; then ∆ simplifies since G1(µ) = 0.

We now summarize the main points of the above results. In the case where we
are working with Proposition 1 then we use the space PWπ, step size = 1, and an
approximation of ∆ is given by

∆N (µ) = cos(πµ)F (µ) + sin(πµ)H(µ) + PN (µ) sin (πµ) /QN (µ) ,
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where F, H are Fourier transforms, PN is a polynomial, sin (πµ) /QN (µ) is an entire
function whose zeros are {n ∈ Z : |n| ≥ N + 1} and converges to 1. If the functions
F and H are too difficult to evaluate, then one could use Proposition 2 where the
approximation takes place in PW3π

∆N (µ) := α cos(πµ) + βµ sin(πµ) + PN (µ) sin (3πµ) /QN (µ) = 0,

where α and β are constants and sin (3πµ) /QN (µ) is an entire function which con-
verges to 1.

3. Examples. We examine the simplest case corresponding to the Dirichlet case.
Indeed if

a1 = b1 = 1 and a2 = b2 = 0,

then the characteristic function given by (2.10) and Proposition 1 reduces to

∆(µ) = − sin(πµ)

µ
+ S(µ)

and the approximation of S takes place in PWπ. The approximation is then given by
(2.13):

∆N (µ) = − sin(πµ)

µ
+

sin(πµ)

πµ
S(0) +

2

π

N∑
n=1

(−1)
n
µS(n)(

µ2

n2 − 1
)
n2

=
sin(πµ)

QN (µ)
PN (µ),

where QN (µ) = πµ
∏N
n=1(1 − µ2

n2 ). Recall that by Weiestrass factorization theorem

sin(πµ) = πµ
∏∞
n=1(1− µ2

n2 ) and so

sin(πµ)

QN (µ)
=

∞∏
n=N+1

(
1− µ

2

n2

)

is an entire function whose zeros are on the real line. As N → ∞, sin(πµ)
QN (µ) → 1, and

hence the roots of ∆ are given by the zeros of P∞, which is easily approximated by
PN .

Example 1. We first use a simple example where the eigenvalues are known
explicitly:

{ −y′′(x, µ) + (3− 2 ∗ I)y(x, µ) = µ2y(x, µ),
y(0, µ) = y(π, µ) = 0.

In this case the eigenvalues are µ2
n = n2 +3−2∗ I for n = 1, 2, . . . . With y(0, µ) = 0,

y′(0, µ) = 1 as the initial condition, the differentials equation is integrated numer-
ically with a precision set to 18 digits to obtain the sampling values y(π, k) for
k = 0, 1, 2, . . . , N. We take N = 40 points and the first values are

y(π, 0) = 10.7815379571786450− 78.7057658098574994I,

y(π, 1) = −2.28608041879586698− 39.1205731809301484I.
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The eigenvalues recovered by sampling are

4.00003111717821601051991966308 − 1.99995630575529639819724572781 I,

7.00020415383248385277010781390 − 2.00005566013450791458225612574 I,

12.0003903429675005170565889891 − 2.00034519870090869988786521175 I,

19.0005970464290353078305095522 − 2.00077065990212781950361361780 I,

28.0008423525810897596390603744 − 2.00132257563575617803649420352 I,

39.0011346624930893603247695753 − 2.00200187649082302965135588239 I,

52.0014783447654438781250342532 − 2.00281169618094049802155568651 I,

67.0018763658267596640742005207 − 2.00375609827967449078811868294 I,

84.0023312782996431293319871345 − 2.00483992142792735550573825192 I,

103.002845627286097740490509496 − 2.00606882376279286512889315078 I,

124.003422145727431374175552802 − 2.00744937463174049995231167498 I,

147.004063869575074687705643450 − 2.00898916902019403419998191386 I,

172.004774223145911487445315787 − 2.01069696401739624124997161145 I,

199.005557096490311130210787364 − 2.01258284203464213961310821954 I,

228.006416925844106609459696430 − 2.01465840758091206280168705720 I,

259.007358784156163462276731506 − 2.01693702628413351810004800925 I,

292.008388487393450375570917784 − 2.01943411721639214958855268524 I,

327.009512722481837776995205256 − 2.02216751330479599084081286372 I,

364.010739203550170513890628230 − 2.02515790726803844928875212095 I,

403.012076865750658116479837384 − 2.02842941655628881677158484946 I,

444.013536105766688513644616683 − 2.03201027041381449354704384775 I,

487.015129092379495203933220687 − 2.03593377958589039272979572489 I,

532.016870142744277866900760369 − 2.04023930873273916778679293748 I,

579.018776270959125667140357693 − 2.04497428481852989708954698491 I,

628.020867743401633305290970954 − 2.05019516914577455160595707222 I,

679.023169216528429899625105277 − 2.05597216277800623413497762467 I,

732.025710414210372806855146181 − 2.06238972678415360078680949880 I,

787.028528750096158821102514385 − 2.06955634863290581981925582067 I,

844.031670084519487171335885001 − 2.07760666357156325197017114644 I,

903.035194427283001931231561258 − 2.08671794634586700764929149364 I,

964.039178015836629772491222236 − 2.09712267893604281880833318005 I,

1027.04372452022541842428825941 − 2.10913763046657280175309056235 I,

1092.04897423716660334716365461 − 2.12320755284286097962586266121 I,

1159.05512832247592966699044141 − 2.13998094253638631110493760923 I,

1228.06248491900554027005930304 − 2.16045594713350696275741061248 I,

1299.07151545248446236867754423 − 2.18627368426740600808999256538 I,

1372.08302621526274679428398151 − 2.22040297317179885376881098781 I,

1447.09856674083155001476891695 − 2.26903023187311908899339984643 I,

1524.12169914317648693422943990 − 2.34853043854368569267552025463 I,

1603.16306237476881378326095606 − 2.53152963523985402245355840608 I.

Observe that the precision on the last 3 eigenvalues deteriorates. Although we
evaluated ∆ on the small set µ ∈ {0, 1, . . . , 40}, we have recovered all the eigenvalues
up to 1603− 2I; see Figure 1.

Example 2. Consider by the following example:

{ −y′′(x, µ) + (1 + I)x2y(x, µ) = µ2y(x, µ),
y(0, µ) = y(π, µ) = 0.
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Fig. 1. The eigenvalues when q(x) = 3− 2I.

The first values of y(π, n) are computed with the same precision as previously:

y(π, 0) = −30.0194706498185406 + 76.7008318167070961I,
y(π, 1) = −22.3863633586727145 + 31.8682226573447697I,
y(π, 2) = −2.64524868593933849− 4.08802765222044812I.

The polynomial P40 is easily factored and the eigenvalues are given by µ2
n:

3.29253037825943601596867687809+1.36632084628037852259220558655*I,

7.55934410143874839356684029135+3.05050755362608645207883714464*I,

12.3408421150254241854985713087+3.59194317093833780714293144087*I,

19.2651371680320693733196765612+3.50329090722762858791667705990*I,

28.2688247053416851502952013831+3.43560053370828196477751781983*I,

39.2750946834316762649570963510+3.39572923480482837241129814250*I,

52.2793839856433889856205908903+3.37121167635693801412242664588*I,

67.2822026002188346591998175950+3.35561341445895745136095390597*I,

84.2841102728951751078269094230+3.34552449836996791448784753725*I,

103.285450312128415699438155443+3.33904366406027612120531704486*I,

124.286423757722412736910588494+3.33505837193087094508063602670*I,

147.287150889041087373630006356+3.33288996603419795032708046613*I,

172.287706118871959236503471586+3.33211050348722059823590983364*I,

199.288136988681506832586572371+3.33244371842929364250935479801*I,

228.288474685593763430633784664+3.33370916386452896480688558308*I,

259.288740043679755686191437388+3.33578954127871107401292199048*I,

292.288947074511241288307635854+3.33861103233429450553327338156*I,

327.289105096996969683611664530+3.34213123137761314807034400174*I,

364.289220040454918278616868688+3.34633171420510740002752388090*I,

403.289295240261827964727565710+3.35121357171289675695360109194*I,

444.289331888580153121356639146+3.35679496567974679685691770136*I,

487.289329293256090054635381932+3.36311014438980555314836391379*I,

532.289284808827018900856035124+3.37020975220170691041324735695*I,

579.289193989785253647074016795+3.37816211061365866944365896078*I,

628.289049605915489613261968037+3.38705606335841537336424927432*I,

679.288842465198419391422191127+3.39700479351993937533821580180*I,

732.288558118692501189449830682+3.40815216955141510314990510260*I,
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787.288179391664247960717905984+3.42068158514385139540949304562*I,

844.287679123652095024874502221+3.43482821186760605745143092907*I,

903.287023268197191205711806008+3.45089984621597911838037436493*I,

964.286159451355571564987371247+3.46930340656725306330552137688*I,

1027.28501392766321993385486814+3.49059496673576521878753578240*I,

1092.28347283002434782727284039+3.51555190297238020372008460264*I,

1159.28135621021468994770225772+3.54530966130896483842231064423*I,

1228.27836136536422690944574066+3.58160594382394663019250161305*I,

1299.27393766588942806766218238+3.62728628033340094539060165642*I,

1372.26696926830263340704927922+3.68745740327327333471564892036*I,

1447.25478880843818305788161984+3.77263663648478767674925779622*I,

1524.22894351618947865743660277+3.91007105114086717378638998354*I,

1603.13915280328851611418157527+4.21360415942128687293484359992*I.

The characteristic function can be reduced to a hypergeometric series ∆(µ) =

cWhittakerM( µ2

4
√

1+I
, 1

4 , π
2
√

1 + I). Since its zeros are not known explicitly we can,

for example, check the validity of the numerical results by evaluating ∆ (µn) numeri-
cally; for example,

µ2 ∆(µ)
3.292530378 + 1.366320846280 ∗ I −0.000129911013565507− 0.0000337654876381 ∗ I
103.2854503 + 3.339043664060 ∗ I −0.000080009701487999 + 0.0003554960921802 ∗ I
679.28884246 + 3.39700479352 ∗ I −0.000140099029306098 + 0.0004554926139912 ∗ I.

This shows that N sampling values on the real line are enough to approximate N
eigenvalues in the complex plane; see Figure 2. It is also clear that the precision
improves as we take more sampling points.

Fig. 2. Eigenvalues when q(x) = (1 + I)x2.
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Abstract. The fast marching method published by Sethian [Proc. Natl. Acad. Sci. USA, 93
(1996), pp. 1591–1595] is an optimally efficient algorithm for solving problems of front evolution
where the front speed is monotonic. It has been used in a wide variety of applications such as
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imaging [R. Malladi and J. Sethian, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 9389–9392]. It has
also been a valuable tool for the implementation of modern level set methods where it is used to
efficiently compute the distance to the front and/or an extended velocity function.

In this paper, we improve upon the second order fast marching method of Sethian [SIAM Rev.,
41 (1999), pp. 199–235] by constructing a second order approximation of the interface generated
from local data on the mesh. The data is interpolated on a single box of the mesh using a bicubic
approximation. The distance to the front is then calculated by using a variant of Newton’s method
to solve both the level curve equation and the orthogonality condition for the nearest point to a given
node. The result is a second order approximation of the distance to the interface which can then be
used to produce second order accurate initial conditions for the fast marching method and a third
order fast marching method.
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1. Introduction. The fast marching method published by Sethian [12] is an
optimally efficient algorithm for solving general problems of front evolution where
the front speed is monotonic. It has been used in a wide variety of applications
such as robotic path planning [7], crack propagation [15, 16], seismology [14], pho-
tolithography [10], and medical imaging [8]. It has also been a valuable tool for the
implementation of modern level set methods where it is used to efficiently compute
the distance to the front and/or an extended velocity function. The fast marching
method can trace its roots back to graph theoretical results first published by Dijk-
stra [4], and a review of the fast marching method can be found in Sethian’s review
article [13].

The fast marching method, presented in [12], was first order accurate, using a first
order approximation of the derivatives. In [13], a second order fast marching method
is constructed by using corresponding higher order approximations of the derivatives.
For one to achieve higher order methods, the initial data must be more accurate.
This is possible if the initial distance to the front is given explicitly, but it is more
complicated if the initial front is given as a level curve of a function on the mesh, as
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commonly arises in applications of the level set method. The method for initializing
the fast marching data in [13] uses first order accurate linear interpolation limiting
the global error to second order at best.

The level set method is a numerical method which has gained significant pop-
ularity in recent years for solving complex problems of evolving interfaces, particu-
larly where the topology of the interface may change. The key advantages of the
method are that it can change topology without special cases, can propagate sharp
corners and cusps in the interface, and is easily extendible to any number of spatial
dimensions. This compares with marker particle-type methods (see, e.g., [5]), where
topology changes require collision detection and interface surgery, and the mesh itself
requires node point redistribution for stability (and also smooths sharp edges formed
by the flow). On the other hand, the interface is known only implicitly in a level set
formulation, while it is known explicitly for a marker particle method. The results
of this paper offer a way to close this latter gap between the two types of interface
representations. Both methods have their uses, and a complete comparison between
these two methods is beyond the scope of this paper. For a complete discussion of
the level set method and reinitialization, see [9, 11].

One common application of the fast marching method is for implementing reini-
tialization within the framework of the level set method. Reinitialization, introduced
in [3], is where the signed distance map to the zero level set of a function is com-
puted. One common criticism of the level set method is its purported problem with
mass conservation. Reinitialization techniques, such as those given in [3] and [18],
are well known to have difficulty preserving mass. This is primarily due to the poor
accuracy around the zero level set.

In this paper, we improve upon the second order fast marching method of Sethian
[13] by constructing a second order approximation of the interface generated from lo-
cal data on the mesh. The data is interpolated on a single box of the mesh using a
bicubic approximation. The distance to the front is then calculated by using a vari-
ant of Newton’s method to solve both the level curve equation and the orthogonality
condition for the nearest point to a given node. The result is a second order approx-
imation of the distance to the interface which can then be used to produce second
order accurate initial conditions for the fast marching method and a third order fast
marching method. We show with computed examples that the method appears to
be second order accurate locally around the zero level set, can be used to build a
globally third order accurate fast marching method, preserves mass markedly better
during reinitialization than existing methods, and easily generalizes to any number of
spatial dimensions—all without increasing the computational complexity of the fast
marching method.

In section 2, we describe the fast marching method as presented in [12, 13]. In
section 3 we describe the bicubic interpolation and how it is used to construct a
second order approximation to the distance map. We also give the formulation for
implementing a third order accurate fast marching method. In section 4 we compare
the new bicubic approximation method with the second order method in [13] with a
series of examples. Finally, in section 5 we summarize our results, discuss how this
local approximation can be used for velocity extensions, and briefly describe a current
application in crack propagation where this method is already successfully in use.

2. The fast marching method. The fast marching method is an optimal
method for solving an equation of the form
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‖∇φ‖ = 1/F (x),(2.1)

where F (x) is a monotonic speed function for an advancing interface. If φ−1(0)
represents the initial interface, and φ solves (2.1), then φ−1(t) gives the location of
the interface evolving with normal velocity F (x) > 0 at time t. The advantage of
this method over the original level set method is that the entire evolution of the front
is computed in one pass over the mesh with an operation count of O(N logN) for
N mesh points. It is also advantageous over other front tracking algorithms in that
it uses techniques borrowed from hyperbolic conservation laws to properly advance
fronts with sharp corners and cusps. We present here a basic description of the
method; the interested reader is referred to [11, 12, 13].

In the fast marching method, (2.1) is solved numerically by using upwind finite dif-
ferences to approximate ∇φ. The use of upwind finite differences indicates a causality,
or a direction for the flow of information propagating from the initial contour φ−1(0)
outward to larger values of φ. This causality means that the value of φ(x) depends
only on values of φ(y) for which φ(y) ≤ φ(x). Thus, if we solve for the values of φ in
a monotonically increasing fashion, then the upwind differences are always valid and
all the mesh points are eventually computed. This sequential procession through the
mesh points is maintained by a heap sort which controls the order in which the mesh
points are computed.

To begin, the mesh points are separated into three disjoint sets: the set of accepted
pointsA, the set of tentative points T , and the set of distant pointsD. The mesh points
in the set A are considered computed and are always closer to the initial interface than
any of the remaining mesh points. The mesh points in T are all potential candidates
to be the next mesh point to be added to the set A. The mesh points in T are always
kept sorted in a heap sort so that the best candidate is always easily found. The mesh
points in D are considered too far from the initial interface to be possible candidates
for inclusion in A. Thus, if x ∈ A, y ∈ T , and z ∈ D, then φ(x) < φ(y) < φ(z).
Figure 2.1 shows the relationship between the different sets of mesh points.

To describe the main algorithm for the fast marching method, we will use the
notation for discrete derivatives given by

φi,j = φ(xi,j),

D+
x φi,j =

1

∆x
(φi+1,j − φi,j),

D−
x φi,j =

1

∆x
(φi,j − φi−1,j),

D+
y φi,j =

1

∆y
(φi,j+1 − φi,j),

D−
y φi,j =

1

∆y
(φi,j − φi,j−1),

where ∆x, ∆y are the space step sizes in the x and y directions, respectively. One of
the key components in the fast marching method is the computation of the estimate
of φ for points in T . Suppose, for example, mesh points xi−1,j , xi,j+1 ∈ A and
xi,j ∈ T . Given the values of φi−1,j , φi,j+1, we must estimate the value of φi,j . This
is accomplished by looking at the discretization of (2.1) given by

(D−
x φi,j)

2 + (D+
y φi,j)

2 =
1

F 2
i,j

.(2.2)
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Fig. 2.1. Illustration of the sets A, T , and D.

Equation (2.2) reduces to a quadratic equation in φi,j given by

(
1

∆x2
+

1

∆y2

)
φ2
i,j − 2

(
φi−1,j

∆x2
+
φi,j+1

∆y2

)
φi,j +

φ2
i−1,j

∆x2
+
φ2
i,j+1

∆y2
− 1

F 2
= 0.(2.3)

The new estimate for φi,j is given by the largest of the two roots of (2.3). The
remaining configurations and the resulting quadratic equations can be derived in a
similar fashion.

Note that (2.2) is a first order approximation of (2.1). The general second and
third order approximations of (2.1) requires the use of switches determined by which
points are in A:

(2.4) max

(
D−
x φi,j + sx,−1

∆x

2
D−
x D

−
x φi,j + sx,−1sx,−2

∆x2

6
D−
x D

−
x D

−
x φi,j ,

−D+
x φi,j + sx,1

∆x

2
D+
xD

+
x φi,j + sx,1sx,2

∆x2

6
D+
xD

+
xD

+
x φi,j , 0

)2

+ max

(
D−
y φi,j + sy,−1

∆y

2
D−
y D

−
y φi,j + sy,−1sy,−2

∆y2

6
D−
y D

−
y D

−
y φi,j ,

−D+
y φi,j + sy,1

∆y

2
D+
y D

+
y φi,j + sy,1sy,2

∆y2

6
D+
y D

+
y D

+
y φi,j , 0

)2

=
1

F 2
i,j

,

where the switches are

sx,k =

{
1, xi+k,j ∈ A,
0 otherwise,

sy,k =

{
1, xi,j+k ∈ A,
0 otherwise.
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Now the fast marching method can be assembled as an algorithm:
1. Initialize all the points adjacent to the initial interface with an initial value;

put those points in A. A discussion about initialization follows in section 3.
All points xi,j /∈ A but are adjacent to a point in A are given initial estimates
for φi,j by solving (2.4). These points are tentative points and put in the set
T . All remaining points unaccounted for are placed in D and given initial
value of φi,j = +∞.

2. Choose the point xi,j ∈ T which has the smallest value of φi,j and move it
into A. Any point which is adjacent to xi,j (i.e., the points xi−1,j , xi,j−1,
xi+1,j , xi,j+1) which is in T has its value φi,j recalculated using (2.4). Any
point adjacent to xi,j and in D has its value φi,j computed using (2.4) and
is moved into the set T .

3. If T �= ∅, go to step 2.
The algorithm presented in [12] is first order accurate and can be recovered from (2.4)
by taking all the switches s•,• = 0. The second order accurate method presented in
[13] can also be recovered from (2.4) by taking all the switches s•,±2 = 0.

3. Locally second order approximation of the level set function. In [13],
it is shown that the fast marching method behaves as a globally second order accurate
method. However, it is also noted in [13] that the method is only first order accurate
in the set of nodes immediately adjacent to the initial front. This does not destroy
the global accuracy because as the mesh shrinks, so too does the size of the region of
first order accuracy. To achieve a fully second order accurate fast marching method,
we must ensure that the initial data is at least second order accurate. Furthermore,
we can also get a globally third order accurate fast marching method by virtue of
having at least second order initial data.

The underpinning of this higher degree of accuracy around the initial front is
the use of a bicubic interpolation function p which is a second order accurate local
representation of a level set function φ (i.e., p(x) ≈ φ(x)). The interpolation function
p(x) can serve many purposes including second order accuracy for the distance to
the zero level set, subgrid resolution of the shape of the interface, as well as subgrid
resolution of the level set function φ(x) itself.

3.1. The bicubic interpolation. We begin with a description of the bicubic
interpolation for a level set function given on a rectangular mesh. The approximation
is done locally in a box of the mesh bounded by grid points; call them xi,j , xi+1,j ,
xi,j+1, and xi+1,j+1, as in Figure 3.1.

A bicubic interpolation p(x) of a function φ(x) is a function

p(x) = p(x, y) =

3∑
m=0

3∑
n=0

am,nx
myn(3.1)

which solves the following set of equations:

p(xk,	) = φ(xk,	),

∂p

∂x
(xk,	) =

∂φ

∂x
(xk,	),

∂p

∂y
(xk,	) =

∂φ

∂y
(xk,	),

∂2p

∂x∂y
(xk,	) =

∂2φ

∂x∂y
(xk,	)
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Fig. 3.1. Sample portion of the mesh where a bicubic interpolation is used.

for k = i, i + 1; � = j, j + 1. This gives sixteen equations for the sixteen unknown
coefficients am,n. Solving for the am,n makes p(x, y) a bicubic interpolating function
of φ(x, y) on the rectangle bounded by the corners xi,j , xi+1,j , xi,j+1, and xi+1,j+1.

Since φ is known only on the mesh points, the values for the derivatives of φ
must be approximated. We use second order finite difference approximations for the
derivatives of φ:

∂φ

∂x
(xm,n) ≈ 1

2∆x
(φ(xm+1,n)− φ(xm−1,n)),

∂φ

∂y
(xm,n) ≈ 1

2∆y
(φ(xm,n+1)− φ(xm,n−1)),

∂2φ

∂x∂y
(xm,n) ≈ 1

4∆x∆y
(φ(xm+1,n+1)− φ(xm−1,n+1)

− φ(xm+1,n−1) + φ(xm−1,n−1))

for m = i, i+ 1 and n = j, j + 1. Thus, construction of the interpolant p requires all
the points shown in Figure 3.1. The observant reader will note that the accuracy of
this method is restricted to second order by our use of second order approximations
for the derivatives of φ. In principle, higher order local approximations can be made
using higher order finite difference approximations and using a larger set of grid points
around the box where the interpolant is used.

One useful property of this local interpolation method is that interpolations in
neighboring boxes match smoothly along their common edge. To see this, consider
two interpolations p(x, y) and q(x, y) interpolating in two adjacent boxes as depicted
in Figure 3.2. To show continuity, we must show p(xi, y) = q(xi, y) for yj ≤ y ≤
yj+1. Now, p(xi, y) and q(xi, y) are both cubic polynomials in y. Furthermore, by

construction, p(xi, yj) = q(xi, yj), p(xi, yj+1) = q(xi, yj+1), ∂p
∂y (xi, yj) = ∂q

∂y (xi, yj),
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xi-1,j xi,j

xi-1,j+1

p(x,y) q(x,y)

xi,j+1

xi+1,j

xi+1,j+1

Fig. 3.2. Two neighboring bicubic interpolants.

and ∂p
∂y (xi, yj+1) = ∂q

∂y (xi, yj+1). These four conditions uniquely determine the cubic

polynomial along the common edge; hence p(xi, y) ≡ q(xi, y).
We can go one step further by noting that ∂p

∂x (xi, y) and ∂q
∂x (xi, y) are also cu-

bic polynomials in y and by construction, ∂p
∂x (xi, yj) = ∂q

∂x (xi, yj),
∂p
∂x (xi, yj+1) =

∂q
∂x (xi, yj+1), ∂2p

∂x∂y (xi, yj) = ∂2q
∂x∂y (xi, yj), and ∂2p

∂x∂y (xi, yj+1) = ∂2q
∂x∂y (xi, yj+1). As

above, these four equations uniquely determine the cubic polynomial ∂p
∂x (xi, y) ≡

∂q
∂x (xi, y).

If we differentiate the two results p(xi, y) ≡ q(xi, y), ∂p
∂x (xi, y) ≡ ∂q

∂x (xi, y) with

respect to y, we get the additional equations ∂p
∂y (xi, y) ≡ ∂q

∂y (xi, y), ∂2p
∂x∂y (xi, y) ≡

∂2q
∂x∂y (xi, y). Therefore, the combined bicubic interpolation over two adjacent boxes is

at least C(1).
The approximation p(x, y) is now a local subgrid representation of the level set

function φ inside the box and can be used as an initializer for a fast marching or
velocity extension method.

3.2. Reinitialization. Reinitialization is the construction of the distance map
to the zero level set of a given level set function ψ. Thus, given ψ(x), we want to
construct φ(x) such that φ−1(0) = ψ−1(0) and ‖∇φ‖ = 1. Reinitialization was first
introduced in [3], where it was shown to improve the stability of the level set method.
It continues to play a crucial role in many level set applications, for example, narrow-
band level set methods [1], incompressible fluid flow [18], and computer-aided design
[6], to name a few.

One of the main drawbacks of using reinitialization in level set methods is the
difficulty in maintaining the original position of the interface, often leading to break-
down in conservation of area/volume. This problem surfaced in the original method
proposed in [3] and persists today as observed in [17]. To overcome this problem
with the level set method, different solutions have been proposed. Adalsteinsson and
Sethian [2] used velocity extensions constructed with the fast marching method to
drastically reduce or even eliminate the need for reinitialization in level set method
applications. However, their velocity extension method is only first order accurate in
a neighborhood of the interface. Sussman and Fatemi [17] proposed a mass correc-
tion procedure which artificially enforces mass conservation by modifying the front
velocity. While this method forces mass conservation by construction, it comes at the
price of modifying the original front velocity with a nonphysical correction term.

In this paper, we focus on reinitialization because it is a stepping stone to ini-
tializing the more general fast marching method, and also because it is important
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to the level set method on its own. The method for reinitialization we present here
using bicubic interpolation has two very important properties that previous reinitial-
ization techniques lack: very good front location preservation and, consequently, very
good mass conservation. This will be demonstrated by showing that repeated reini-
tializations do not significantly degrade the location of the interface compared with
existing first order methods. In the next section we will describe how this method of
reinitialization can be used to solve more general fast marching method applications.

Given a function ψ(x), we want to construct φ(x) such that φ−1(0) = ψ−1(0)
and ‖φ‖ = 1. We begin by passing through the mesh to locate all rectangles bounded
by nodes which are not all of the same sign, indicating that the zero level set passes
through that rectangle. Suppose the rectangle is bounded by the nodes xi,j , xi+1,j ,
xi,j+1, xi+1,j+1 as in Figure 3.1. Using the values of ψ at these nodes, we construct
the bicubic interpolation function p(x) as described above.

Now, let x0 be a point in the rectangle where we wish to compute the distance
to the set ψ−1(0) ≈ p−1(0). Let y be a point in p−1(0) nearest to x0; then it follows
that

p(y) = 0,(3.2)

∇p(y)× (x0 − y) = 0.(3.3)

Equation (3.2) is a requirement that y must be on the zero contour of p and (3.3) is
a requirement that the normal to the zero contour, given by ∇p(y), must be aligned
with the line through the points x0, y.

To solve (3.2)–(3.3), we employ a variant of Newton’s method to simultaneously
solve the pair of conditions. We compute a sequence of iterates xk with initial point
x0. The update for the iterates is given by

δ1 = −p(xk)
∇p(xk)

∇p(xk) · ∇p(xk)
,(3.4)

xk+1/2 = xk + δ1,(3.5)

δ2 = (x0 − xk)− (x0 − xk) · ∇p(xk)

∇p(xk) · ∇p(xk)
∇p(xk),(3.6)

xk+1 = xk+1/2 + δ2.(3.7)

This method takes advantage of the orthogonality of the solution sets for (3.2) and
(3.3). Equation (3.4) is the Newton step for the function g1(t) = p(xk + t∇p(xk)).
This step moves in the direction of ∇p, and hence holds the value of the left side of
(3.3) approximately fixed. Equation (3.6) is the Newton step for the function g2(t) =
k · (∇p(xk)× (x0 − (xk + t(k×∇p(xk))))). This step moves in the direction normal
to ∇p, and hence holds the value of p approximately fixed. Figure 3.3 illustrates this
algorithm.

We found the number of iterations required to obtain convergence using this two-
step Newton’s method was half the standard Newton step or less, but we do not
believe the convergence rate differs from the standard Newton iteration. Should this
method prove more generally useful, a more complete study of this method will be
undertaken by the author.

For the results presented in section 4, we used the convergence criterion

√
‖δ1‖2 + ‖δ2‖2 < 10−3∆x∆y,
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p(x) = 0

∇ p(x)×(x0-x) = 0
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Fig. 3.3. Example of solution sets for (3.2) and (3.3).

where ∆x, ∆y are the space step sizes in the x and y directions, respectively. For
nearly all evaluations, two or three iterations are necessary to meet the criterion. The
distance to the front from the point x0 is now given by φ(x0) = ±‖x0 − x∞‖, where
the sign of φ(x0) is taken to be the same as that of p(x0).

The above process gives more than just the distance to the zero level set of p; it
also gives the location of the nearest point, x∞. This will have important consequences
later when we discuss the application of this method to velocity extensions and the
general fast marching method.

Reinitialization now proceeds by using the above process to calculate the distance
to the zero contour from each of the nodes xi,j , xi+1,j , xi,j+1, xi+1,j+1, i.e., each of
these nodes plays the role of x0 above. Now, some of these nodes will be involved
in multiple interpolation procedures, so the final value taken for φ at those nodes is
the minimum of all computed distances to the front. To initialize the fast marching
method to complete reinitialization, all nodes whose distance values are constructed
using the bicubic interpolation are placed in the set A of accepted points.

The modified Newton iteration will not always converge. Divergence generally
can happen when there is no solution for the pair of equations inside the box formed
by the nodes xi,j , xi+1,j , xi,j+1, xi+1,j+1. In this event, the calculated distance is
taken to be infinite. The iteration rarely requires more than five iterations, and hence
twenty iterations is taken to be the maximum before divergence is determined.

3.3. Application to general fast marching method. The above construc-
tion was designed to solve the problem of reinitialization. To apply this method for
more general fast marching methods, note that the initialization of the general fast
marching method requires two components: the local front speed F and the initial
distance to the front φ. The front speed is determined by the application, and the
above process produces the initial distance to the front. Thus, the initial value for a
point adjacent to the initial front for the general fast marching method solving (2.1)
is φ/F . The same set of initially accepted points A are used for general fast marching
as for reinitialization.

The fast marching method is also used to construct extension velocity fields for
the level set method [2]. Extended velocity fields are used in the level set method
when the front velocity F is defined only on the zero level set. In order to advance
the level set method, a value of F must exist for the entire domain of the level set
function φ, not just at the zero contour. The extended velocity field Fext is a speed
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function defined on the domain of the level set function which satisfies the conditions

Fext

∣∣
φ−1(0)

= F
∣∣
φ−1(0)

,(3.8)

∇Fext · ∇φ = 0,(3.9)

where φ is again the signed distance to the front. The solution of (3.9) is accomplished
using a technique based on the fast marching method; for details, see [2]. In this
application, the speed function Fext must be initialized in the same way as for the
fast marching method. In this case, the actual location on the front nearest a given
node in the mesh is useful, because we can now set Fext(x

0) = F (x∞). This solves
(3.9) because Fext is now constant on a line between x∞ and x0, which means that

∇Fext ⊥ (x∞ − x0).

But by construction,

(x∞ − x0) ‖ ∇φ(x∞).

Therefore,

Fext(x
0) · ∇φ(x∞) = 0.

Solving (3.9) at the remainder of the nodes is done using fast marching where the
heap sort sorts points according to their φ value.

4. Results. In this section, we demonstrate the advantages of this new method
for initializing the fast marching method.

4.1. Accuracy of the local distance map. The first test of this method is to
show that the initialization method is second order accurate in a neighborhood of the
initial zero level set. To test this, we show that the error in the computed distance
function to a given zero level set is second order accurate. We measure the error
in only those points which are computed via the bicubic interpolation method and
exclude all points which are subsequently computed by the fast marching method.

The tests were conducted on three initial contours, which are shown in Figure 4.1.
We see in Table 4.1 that the initialization method presented in [13] behaves as a
first order approximation, and the bicubic interpolation method shows second order
convergence as shown in Table 4.2 for smooth functions. Note that for test cases with
corners or cusps (the second two examples), the bicubic interpolation also reduces to
first order due to the local discontinuity in the derivatives of the level set function.

The computational cost of the new initialization method compared with the old
method increased by 20% for an 80 × 80 mesh, down to less than a 4% increase for
the 320× 320 mesh. This is expected because the more refined the mesh, the quicker
the iterative step converges on average, and the overall computational cost of the
initialization procedure is O(N) with the number of nodes N compared with the fast
marching method which increases in cost by O(N logN).

4.2. Order of accuracy of the fast marching method. Since we now have
an initialization procedure which is second order accurate, we should in theory be
able to build a third order fast marching method as given in (2.4). For comparison
purposes, Table 4.3 shows the results of applying the second order method from [13]
with first order initialization. Table 4.4 shows the error measurements for the third
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Fig. 4.1. Three test cases for the new method.

Table 4.1
Error measurements for linear initialization method.

Test case Mesh size L1 error L2 error L∞ error
20× 20 8.93× 10−3 1.05× 10−2 1.43× 10−2

40× 40 1.41× 10−3 1.81× 10−3 3.67× 10−3

Circle 80× 80 3.71× 10−4 4.87× 10−4 1.19× 10−3

160× 160 1.02× 10−4 1.36× 10−4 2.93× 10−4

320× 320 2.47× 10−5 3.14× 10−5 6.97× 10−5

20× 20 7.71× 10−3 2.04× 10−3 5.40× 10−2

40× 40 5.93× 10−4 2.58× 10−3 1.12× 10−2

Square 80× 80 1.43× 10−4 8.91× 10−4 5.56× 10−3

160× 160 3.50× 10−5 3.11× 10−4 2.76× 10−3

320× 320 9.58× 10−7 2.10× 10−5 4.59× 10−4

20× 20 7.60× 10−3 1.73× 10−2 9.14× 10−2

40× 40 1.70× 10−3 4.82× 10−3 4.57× 10−2

Disks 80× 80 5.71× 10−4 2.73× 10−3 3.92× 10−2

160× 160 1.31× 10−4 8.10× 10−4 1.43× 10−2

320× 320 3.01× 10−5 2.39× 10−4 6.23× 10−3

Table 4.2
Error measurements for bicubic initialization.

Test case Mesh size L1 error L2 error L∞ error
20× 20 5.73× 10−4 9.29× 10−4 1.81× 10−3

40× 40 5.68× 10−5 7.17× 10−5 1.41× 10−4

Circle 80× 80 6.07× 10−6 7.25× 10−6 1.36× 10−5

160× 160 6.34× 10−7 8.03× 10−7 1.96× 10−6

320× 320 9.38× 10−8 1.20× 10−7 2.74× 10−7

20× 20 1.00× 10−2 2.01× 10−2 4.94× 10−2

40× 40 1.55× 10−3 3.98× 10−3 1.33× 10−2

Square 80× 80 3.82× 10−4 1.39× 10−3 6.57× 10−3

160× 160 9.49× 10−5 4.88× 10−4 3.26× 10−3

320× 320 1.30× 10−5 1.81× 10−4 2.79× 10−3

20× 20 5.74× 10−3 1.80× 10−2 1.41× 10−1

40× 40 2.00× 10−3 7.29× 10−3 7.63× 10−2

Disks 80× 80 3.46× 10−4 1.43× 10−3 1.70× 10−2

160× 160 1.11× 10−4 1.04× 10−3 2.36× 10−2

320× 320 2.04× 10−5 2.68× 10−4 8.47× 10−3

order method. This method appears to be third order from the error measurements
for the circle example. Note that the higher rate of convergence does not apply to the
second two test cases because the exact solution is not smooth. We show them only
to illustrate how the method behaves for more difficult problems.
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Table 4.3
Error measurements for linear initialization method.

Test case Mesh size L1 error L2 error L∞ error
20× 20 2.65× 10−2 4.33× 10−2 1.68× 10−1

40× 40 4.17× 10−3 5.02× 10−3 1.78× 10−2

Circle 80× 80 1.03× 10−3 1.30× 10−3 9.79× 10−3

160× 160 1.60× 10−4 2.29× 10−4 5.07× 10−3

320× 320 3.27× 10−5 5.47× 10−5 2.57× 10−3

20× 20 5.40× 10−2 6.58× 10−2 2.05× 10−1

40× 40 9.76× 10−3 1.32× 10−2 2.72× 10−2

Square 80× 80 4.53× 10−3 6.58× 10−3 1.50× 10−2

160× 160 2.17× 10−3 3.30× 10−3 7.93× 10−3

320× 320 2.06× 10−3 4.04× 10−3 1.60× 10−2

20× 20 3.27× 10−2 7.28× 10−2 3.53× 10−1

40× 40 1.30× 10−2 3.26× 10−2 2.09× 10−1

Disks 80× 80 4.12× 10−3 2.00× 10−2 2.71× 10−1

160× 160 2.66× 10−3 1.59× 10−2 2.60× 10−1

320× 320 2.21× 10−3 1.43× 10−2 2.52× 10−1

Table 4.4
Error measurements for bicubic initialization.

Test case Mesh size L1 error L2 error L∞ error
20× 20 8.23× 10−3 1.13× 10−2 3.27× 10−2

40× 40 1.00× 10−3 1.68× 10−3 8.56× 10−3

Circle 80× 80 1.76× 10−4 3.20× 10−4 4.71× 10−3

160× 160 2.73× 10−5 6.88× 10−5 2.38× 10−3

320× 320 4.38× 10−6 1.48× 10−5 1.19× 10−3

20× 20 4.28× 10−2 6.15× 10−2 1.35× 10−1

40× 40 8.48× 10−3 1.17× 10−2 2.55× 10−2

Square 80× 80 3.80× 10−3 5.52× 10−3 1.29× 10−2

160× 160 1.79× 10−3 2.67× 10−3 6.62× 10−3

320× 320 2.32× 10−4 9.13× 10−4 4.30× 10−3

20× 20 9.85× 10−3 2.62× 10−2 1.61× 10−1

40× 40 5.16× 10−3 1.79× 10−2 1.94× 10−1

Disks 80× 80 3.50× 10−3 1.74× 10−2 2.60× 10−1

160× 160 2.43× 10−3 1.45× 10−2 2.54× 10−1

320× 320 2.20× 10−3 1.40× 10−2 2.44× 10−1

4.3. Conservation of mass. One common criticism of the level set method
concerns the conservation properties of the method. The primary source of variation
in mass is due to the process of reinitialization. In some applications of the level
set method, such as narrow band methods, for example, frequent reinitializations are
used. Repeated reinitializations eventually lead to problems in mass conservation. In
Figure 4.2, we show that after twenty reinitializations, the location of the zero level
set, and hence the measured value of the area bounded by the zero level set, is very
well preserved. Table 4.5 shows the calculated area of the center circle after repeated
reinitializations for both the old linear method and the new bicubic method.

4.4. Extension to higher dimensions. Another advantage of the initialization
method presented in this paper concerns the extension to higher dimensions. The
linear initialization method used does not easily extend to higher dimensions. The
method presented in this paper is easily extended to any number of dimensions. For
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Fig. 4.2. Deviation after twenty reinitializations.

Table 4.5
Conservation of mass during reinitialization.

Method Area after 10 reinits Area after 20 reinits % error after 20
Exact 0.778683 0.778683
Linear 0.742338 0.713886 −8%
Bicubic 0.778822 0.779032 0.04%

Table 4.6
Error measurements for first order fast marching.

Mesh size L1 error L2 error L∞ error
20× 20× 20 4.49× 10−2 5.39× 10−2 1.22× 10−1

40× 40× 40 2.47× 10−2 2.90× 10−2 8.04× 10−2

80× 80× 80 1.31× 10−2 1.53× 10−2 5.42× 10−2

N dimensions, we use an N -cubic interpolant

p(x1, . . . , xN ) =

3∑
k1=0

· · ·
3∑

kN=0

ak1,...,kN

N∏
	=1

xk�	 .

The iterative procedure given by (3.4)–(3.7) is still valid in this higher dimensional
framework. We employed this method to reinitialize a sphere in R

3 and used the
second order fast marching method to get a second order accurate method including
near the zero level set. Table 4.6 shows the errors from the original first order method
from [12]. Table 4.7 shows the bicubic initialization method using second order fast
marching. Table 4.8 shows the third order fast marching method results.
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Table 4.7
Error measurements for bicubic initialization method, second order fast marching.

Mesh size L1 error L2 error L∞ error
20× 20× 20 5.00× 10−3 6.36× 10−3 3.91× 10−2

40× 40× 40 1.66× 10−3 2.05× 10−3 2.54× 10−2

80× 80× 80 4.84× 10−4 5.87× 10−4 1.39× 10−2

Table 4.8
Error measurements for bicubic initialization method, third order fast marching.

Mesh size L1 error L2 error L∞ error
20× 20× 20 2.15× 10−3 2.91× 10−3 2.16× 10−2

40× 40× 40 3.74× 10−4 6.25× 10−4 1.22× 10−2

80× 80× 80 6.62× 10−5 1.37× 10−4 6.12× 10−3

5. Conclusion. In this paper, we have presented a new interpolation method for
initializing the fast marching method. This new method makes higher order accurate
fast marching methods possible. Furthermore, the new method extends to higher
dimensions much more readily than the old first order method. The new method
is more accurate than existing methods and the additional cost is minimal. The
additional accuracy also significantly improves the mass conservation of the level set
method.

The additional accuracy has already proven useful in practice. We have used this
new technique to do both reinitialization and front evolution using fast marching for
fatigue crack growth modeling in three dimensions [16]. In this work, this higher order
fast marching method is used in three different ways. First, reinitialization is used to
construct the signed distance from the crack front. This is required to be as accurate
as possible to obtain accurate crack front velocity values. Second, after the crack
front velocities are obtained through a finite element calculation, the velocities are
extended using the velocity extension method described above. Third, the crack front
is advanced using the fast marching method and the extended velocity values. All
three steps make use of the bicubic interpolation scheme. This approach is different
than most uses of the level set method and is taken because the velocity calculation
is by far the most expensive part of the process. By using the fast marching method
instead of the level set method, arbitrarily large time steps can be taken to advance
the front.

The application presented in [16] limits the crack to a single plane in a three-
dimensional solid, and hence all the fast marching applications are done on a two-
dimensional domain. When the crack front is allowed to move in arbitrary nonplanar
directions, the fast marching method will be done in a three-dimensional domain. In
that case, this higher order interpolation method will be critical because the refine-
ment of the level set mesh will by necessity be much coarser than for two dimensions.

The bicubic interpolation presented here will produce at best a third order ac-
curate fast marching method. Higher order fast marching methods are possible by
using biquintic interpolation. The construction of the interpolant will require a larger
stencil of nodes than shown in Figure 3.1 to approximate the additional derivative
conditions, and the finite difference derivative approximations will require additional
points to obtain sufficient accuracy. For initialization of the fast marching method,
the iterative scheme (3.4)–(3.7) for computing the distance to the zero level set re-
mains the same. The fast marching method would also have to be modified to be
higher order by adding more terms and more switches.



244 DAVID L. CHOPP

There is a limit to the order of accuracy of the fast marching method. It is
interesting to note that in one dimension, the fast marching method reduces to a
backward difference formula method. These methods are known to be stable only
for order less than seven. Convergence of the second and higher order fast marching
methods is still not proven, and there is some question about their behavior in very
dense meshes. The convergence of the higher order methods and their relationship to
backward difference formulas is the subject of future research.
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Abstract. In this paper a new family of mixed finite volume methods is analyzed for the
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1. Introduction. In this article we propose a unified framework for the analysis
of a family of cell-centered finite volume schemes for the approximation of the Dirichlet
problem for the reaction-diffusion operator Lu = −div (µ∇u) + σu on a polygonal
domain Ω ⊂ R

2. The novel approach is based on the dual mixed discretization of the
differential problem by the lowest-order Raviart–Thomas (RT) finite element space
[35] on a given triangulation Th of Ω.

Introducing the auxiliary flux variable J = µ∇u and denoting by uh and Jh the
RT approximations of u and J , the linear system associated with the dual mixed
discretization is of the form

(
A BT

−B C

)(
J

u

)
=

(
0

f

)
,(1.1)

where J and u are the vectors of the degrees of freedom for Jh and uh. The dual
mixed formulation provides the interelement continuity of the normal traces of Jh
and yields the same order of accuracy for both uh and Jh (see [35, 12, 36, 34]).

This is quite desirable in practical applications where there is the need of providing
a good approximation of a vector field as it enters other equations as an input datum.
See, for example, [15, 16] for the case of the semiconductor problem.

However, two kind of difficulties arise when dealing with system (1.1).
First, the solution procedure can be quite expensive since the matrix acting on

uh, obtained after eliminating the flux unknowns from the first equation of (1.1), is
full. Moreover, such a matrix, although symmetric and positive-definite, is not in
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general an M-matrix. (See [32] for an example in the one-dimensional case, and see
[27] and [12, Remark 5.4, p. 195] in the special case where problem (1.1) arises from
semiconductor device simulation.) This can be a serious drawback, especially in those
applications where a discrete maximum principle is required (see, e.g., [39], [12, pp.
193–195]).

The usual way to circumvent the first difficulty is to resort to the hybridization of
the mixed formulation, introducing Lagrange multipliers λh for uh at the interelement
boundaries. The matrix of the resulting system on λh, in the case when σ = 0, is
symmetric and positive-definite and turns out to be an M-matrix provided that Th is
a weakly acute triangulation (see [12, p. 194]). However, to preserve the M-matrix
property when σ �= 0, it is necessary to change the RT finite element space for Jh
[27].

An alternative approach that has been the object of several researches in the
recent literature is to perform a lumping of the matrix A through some suitable
quadrature formula.

Concerning the use of rectangular grids, this strategy was first proposed in [32]
and was further investigated in [33] in the case when µ = 1. Theoretical and imple-
mentation issues that link “nodal” finite elements, mesh-centered finite differences,
and mixed-hybrid finite elements have been addressed in [22, 23]. In [31] a theoretical
analysis shows that under appropriate smoothness assumptions, the quadrature error
(in the evaluation of A and f) does not spoil the accuracy of the mixed method with
exact integration.

Passing to triangular elements, similar conclusions have been drawn in [9, 10],
where a quadrature formula to diagonalize the matrix A is proposed and examined
in the case of the Laplace operator on triangular grids. An extension of this latter
lumping procedure has been carried out in [2] and [39] in the case of a diffusion problem
with nonconstant coefficients, and in [40, 29] in the case of the convection-diffusion
operator with a zero-order term. In particular, in [2] the case of piecewise constant
diffusion coefficients is considered with only one harmonic average of µ computed
over each triangle. We instead analyze in the present paper a family of averages, all
characterized by being piecewise constant over the dual tessellation of the domain.
Moreover, we also include in the analysis the zero-order term.

In the previous works [39, 40, 29] the philosophy is the same as in this paper but
with two main differences. In the previous works, on the one hand, only a stability
analysis was performed on u in a suitable mesh-dependent H1-seminorm, and on the
other hand, only one particular choice of the average of µ was considered, namely, the
one corresponding to (8.3) in section 8. In the present work we carry out a complete
error analysis for the mixed finite volume formulation in the standard mixed finite
element norm.

The case of an elliptic problem where µ is a symmetric, positive-definite tensor
has been studied in [5, 14], where RT mixed finite elements of lowest degree with
numerical integration are considered on both rectangular and logically rectangular
grids. Another numerical scheme on this subject has been proposed in [4], where an
expanded mixed finite element method capable of handling the case of a discontinuous
full tensor µ and general shape elements and geometry is derived. It can be checked
that in the special case of a reference equilateral triangle and RT finite elements of
lowest degree, the quadrature rule proposed in [4] to diagonalize the mass matrix
yields the same result as the lumping formula of [9], which is at the basis of the
discrete formulation proposed in the present article. However, the resulting method
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in [4] gives a ten-point finite difference stencil, while our method gives a four-point
finite difference stencil. Moreover, the error analyses in [4] and in the present paper
yield similar orders of convergence and superconvergence properties.

The common feature of the approaches based on a lumping procedure is that
the mixed formulation using RT finite elements of lowest degree can be interpreted
as a finite volume method acting on the primal unknown uh. This connection has
also been recently investigated in [20], where cell-centered finite difference schemes
are constructed on triangular grids of regular shape (equilateral and isosceles right
triangles). In this respect we also mention [45], where finite difference schemes on
triangular cell-centered grids are derived under the assumption of weakly acute trian-
gulation. In this case, and using the harmonic average of µ along the Voronoi edge,
the methods of [45] and of the present paper coincide, although the error analysis in
[45] is carried out only in the case when µ = 1.

In the present paper, we provide a unified framework for a family of cell-centered
finite volume schemes derived from the dual mixed formulation of the differential
problem (see section 2). With this aim, the dual tessellation Lh associated with Th
is first introduced in section 3. Notice that Th is required to be only a Delaunay
triangulation, while previous schemes in the literature assume that Th must be a
weakly acute triangulation (see [13, 27, 8, 45]). The Delaunay property allows for the
presence of obtuse triangles in the mesh, while in a weakly acute triangulation all the
angles are required to be ≤ π/2. Next, the RT discretization of the reaction-diffusion
problem is considered in section 4, and the finite volume schemes are derived in section
5.

The methods are based on the combined use of a piecewise constant approximation
α of α ≡ µ−1 over Lh and of the quadrature formula proposed in [9]. The resulting
discretization is a cell-centered finite volume scheme where the degrees of freedom for
uh are picked up at the circumcenters of each element of Th, while the interelement
fluxes are computed using the values of uh at the circumcenters of two neighboring
triangles of Th.

An abstract framework for the error analysis of the Galerkin discretization with
numerical integration of saddle-point problems including zero-order terms is provided
in section 6. The results of this section, based on the use of the Strang lemma, are
a nontrivial extension to the case of an elliptic operator with zero-order term of the
analysis carried out in [12, Chapter 2]. The abstract theory of section 6 is then used
in section 7 to prove the (optimal) O(h) convergence of the new family of methods
with respect to the H(div; Ω)×L2(Ω)-norm that is the standard norm for the analysis
of dual mixed methods. We emphasize that the convergence analysis covers the case
of both smooth and piecewise smooth coefficients.

The results of section 7 allow us to conclude that, provided α is a suitable average
of α, it is no longer necessary to resort to the modified RT finite element space
introduced in [27]. We also emphasize that the derivation of the novel methods,
as well as their convergence analysis, allows us in every respect to call them “mixed
finite volume schemes” or, equivalently, “mixed finite element schemes with numerical
integration.”

Section 8 deals with the computational details of the novel mixed finite schemes.
Three choices of α are first considered; two averages are suitable approximations of
the harmonic average of µ (see [7]), while the third one is the trapezoidal rule. The
accuracy of the resulting discretization schemes is then examined and compared on two
sets of numerical examples with both smooth and discontinuous diffusion coefficient
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µ.

2. The continuous problem and its dual mixed formulation. Let Ω be a
bounded convex polygonal domain in R

2 with boundary ∂Ω, and denote by n the unit
outward normal vector to ∂Ω. We consider the second-order elliptic model problem
with homogeneous Dirichlet boundary conditions

{ −div (µ∇u) + σu = f in Ω,
u = 0 on ∂Ω.

(2.1)

For any open set S ⊂ R
d (d = 1, 2), |S| and χS will denote, respectively, the d-

dimensional Lebesgue measure of S and the characteristic function of S, while (·, ·)0,S
will be the inner product in L2(S). Norms and seminorms for the spaces Wm,p(Ω)
will be denoted by ‖·‖m,p,Ω and |·|m,p,Ω, respectively, with p = 2 omitted. Moreover,

we shall denote henceforth by Hm(Ω) the spaces Wm,2(Ω). In particular, H0(Ω) ≡
L2(Ω), and H1

0 (Ω) is the Sobolev space of functions of H1(Ω) with vanishing traces
on ∂Ω (see [1, 25]).

In (2.1), the diffusion coefficient µ ∈ L∞(Ω) is such that 0 < µ0 ≤ µ ≤ µ1 almost
everywhere (a.e.) in Ω, the absorption coefficient σ ∈ L∞(Ω) is nonnegative, and the
source term f is a given function in L2(Ω).

Using the Lax–Milgram lemma, it is immediate to check that the primal formu-
lation associated with problem (2.1) admits a unique solution u ∈ H1

0 (Ω).
Let us introduce the Hilbert space

H(div; Ω) = {τ ∈ [L2(Ω)
]2 ∣∣ div τ ∈ L2(Ω)}(2.2)

and define the strictly positive function α = µ−1 ∈ L∞(Ω) such that 0 < α0 ≤ α ≤ α1

a.e. in Ω. Thanks to the regularity of u, µ, σ, and f , the vector field

J = µ∇u(2.3)

(henceforth denoted as the flux) turns out to belong to H(div; Ω).
Let V = H(div; Ω) and Q = L2(Ω), and define the bilinear forms




a(J, τ) = (αJ, τ)0,Ω =

∫
Ω

αJ · τ dΩ : V × V �→ R,

b(τ , u) = (u, div τ)0,Ω =

∫
Ω

udiv τ dΩ : Q× V �→ R,

c(u, v) = (σu, v)0,Ω =

∫
Ω

σuv dΩ : Q×Q �→ R.

(2.4)

Then the dual mixed formulation of (2.1) reads




Find J ∈ V and u ∈ Q such that

a(J, τ) + b(τ , u) = 0 ∀τ ∈ V,

−b(J, v) + c(u, v) = (f, v)0,Ω ∀v ∈ Q.
(2.5)

The existence and uniqueness of (J, u) will be addressed in section 6.
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DT

Ll ρT

Fig. 1. Primal triangulation Th with the corresponding lumping regions Ll (left), mesh param-
eters (right).

3. Geometry and notations. In view of the finite element discretization of
problem (2.5), we introduce on the domain Ω a triangulation Th and denote by T the
generic triangle of Th, by hT the diameter of T , and by h the maximum of hT over
Th.

Definition. Th is a Delaunay triangulation if, for every T ∈ Th, the circumcircle
of T contains no other vertices than those belonging to T (cf. [19]).

We assume henceforth that Th is a Delaunay triangulation. Moreover, we shall
indicate by Nh and Mh the total number of edges and triangles of Th, respectively.
Throughout the article, any geometrical entity will always be understood as being
an open bounded subset of R

d. For any couple of neighboring triangles Ti and Tj
of Th, let lij be the common edge, and let λij be its corresponding numbering, with
1 ≤ λij ≤ Nh for any i, j = 1, . . . ,Mh. For brevity, we will write in this section l
instead of lij .

We also consider the dual tessellation Lh of Th and denote its elements by “lump-
ing regions” (see Figure 1, left). The lumping region Ll corresponding to edge l is
obtained by joining the common vertices and the two circumcenters Ci and Cj (see
Figure 1, left). We also set Ll,Tk = Ll ∩ Tk for k = i, j. From now on we assume the
following regularity constraint on Th:

DT

ρT
≤ K ∀T ∈ Th,(3.1)

where DT and ρT are the diameters of the circumscribed and inscribed circles of
triangle T , respectively, and K is a suitable constant (see Figure 1, right). Inequality
(3.1) immediately implies that

DT ≤ KρT ≤ KhT ∀T ∈ Th,(3.2)

from which it follows that, for an arbitrary triangulation Th,

hLl ≤ D ≤ Kh ∀Ll ∈ Lh,

where D = max
T

DT (see Figure 2).

4. RT finite element discretization. Let us consider the Galerkin approxi-
mation of (2.5). For any integer k ≥ 0 we denote by Pk the space of polynomials
of degree ≤ k in the space variables x, y and define for k ≥ 1 the space of vector
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TjCj

Tj

Ti
Ci

Ti

Ci

Cj

Fig. 2. Geometrical dimensions (left) and a lumping region for an obtuse triangle.

polynomials Dk = (Pk−1)
2 ⊕ xPk−1, where x = (x, y)

T
. Then we introduce the RT

finite element space of lowest order [35]

Vh = {τh ∈ V | τh|T ∈ D1,∀T ∈ Th} ,
Qh = {vh ∈ Q | vh|T ∈ P0,∀T ∈ Th} .

(4.1)

The finite element discretization of (2.5) reads




Find Jh ∈ Vh and uh ∈ Qh such that

a(Jh, τh) + b(τh, uh) = 0 ∀τh ∈ Vh,
−b(Jh, vh) + c(uh, vh) = (f, vh)0,Ω ∀vh ∈ Qh.

(4.2)

For any ψ
h
∈ Vh and qh ∈ Qh, we associate with b(ψ

h
, qh) an operator Bh from Vh

into Q′
h (see [12, p. 51] for more details) and identify its kernel as the subspace Vh of

Vh given by

Ker(Bh) ≡ Vh = {ψ
h
∈ Vh | b(ψh, qh) = 0 ∀qh ∈ Qh}.(4.3)

Existence and uniqueness of the solution (Jh, uh) of (4.2) are ensured by the fact that
a(·, ·) is coercive on Ker(Bh) and positive-semidefinite on Vh (i.e., a(ψ

h
, ψ

h
) ≥ 0 for

all ψ
h
∈ Vh), c(·, ·) is a continuous, symmetric, and positive-semidefinite bilinear form

on Qh × Qh and that the spaces Vh and Qh satisfy the inf-sup condition (see [12,
Prop. 2.11] and [36, Thm. 10.4 and Remark 10.8, pp. 572-573]).

From previous notation it turns out that Nh = dimVh, Mh = dimQh; let us
introduce a basis on these spaces, namely, {τ i}Nhi=1 for Vh and {vi}Mh

i=1 for Qh. Next,
we denote

aij = a(τ j , τ i), bij = b(τ j , vi), cij = c(vj , vi), fi = (f, vi)

and define the matrices A = (aij) ∈ R
Nh×Nh , B = (bij) ∈ R

Mh×Nh , C = (cij) ∈
R
Mh×Mh and vectors f = (fi) ∈ R

Mh , J = {Φi} ∈ R
Nh , u = {ui} ∈ R

Mh , where Φi
and ui are the degrees of freedom for Jh and uh (the fluxes of Jh across each edge of
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Th and the values of uh over each element T ∈ Th, respectively). Eliminating J from
the first equation in (1.1), we end up with the following linear system on uh:

(C +BA−1BT )u = f .(4.4)

Solving (4.4) can be quite expensive since the matrix W ≡ C +BA−1BT is full (due
to the presence of A−1); moreover, W is symmetric and positive-definite, but it is not
in general an M-matrix (see [12, Remark 5.4, p. 195] and [32, 26]).

To circumvent these two difficulties, we construct in the next section, starting
from (4.2), a family of cell-centered finite volume schemes characterized by a reduced
computational cost and the same accuracy as the original mixed formulation.

5. A family of finite volume methods. For any Tk ∈ Th and for any inte-
grable function ϕ, define its mean value as

ϕk =
(ϕ, 1)0,Tk
|Tk| ∀Tk ∈ Th, ϕ ∈ L1(Tk).(5.1)

Taking vh equal to the characteristic function χk of triangle Tk in the second equation
of (4.2), we obtain

−
∑

j∈adj(Tk)

Φλkj + ukσk|Tk| = fk|Tk| ∀Tk ∈ Th,(5.2)

where adj(Tk) is the index set of the elements surrounding triangle Tk. Clearly, (5.2)
is a genuine finite volume discretization for (2.1), provided that we are able to express
each flux Φλkj , j ∈ adj(Tk), in terms of the nodal values uk and uj only. With this
aim, let us consider the first equation in (4.2) and denote by lij an edge of Th and
by Ti, Tj the couple of elements of Th such that ∂Ti ∩ ∂Tj = lij (see Figure 2, left).
Let also nlij be the unit outward normal vector to ∂Ti (i.e., nlij is positively oriented
from Ti towards Tj).

Taking τh = τλij in the first equation in (4.2) and noting that div τλij |Ti = 1/|Ti|
and div τλij |Tj = −1/|Tj |, we get

∫
Ti

αJh · τλij dT +

∫
Tj

αJh · τλij dT + ui − uj = 0.(5.3)

For any Tk ∈ Th let i, j ∈ {1, 2, 3} be the local numbering of the edges of triangle Tk;
we then introduce the following exact and approximate bilinear forms restricted over
Tk:

aTk(τ j , τ i) =
(
ατ j , τ i

)
0,Tk

=

∫
Tk

ατ j · τ i dT,

aTkh (τ j , τ i) = αli
(
τ j , τ i

)
h,0,Tk

= δij
dk,i
|li| ,

(5.4)

where δij is the usual Kronecker symbol, dk,i is the distance between Ck and the edge
li, and αli is a suitable average of α over Lli .

Remark 5.1. For each edge li the distance dk,i is computed using the formula

dk,i =
(
ti × (xCk − x1,i)

) · nz, i = 1, 2, 3,(5.5)

where the symbol “×” denotes the vector product, nz is the unit vector orthogonal to
the (x, y) plane, xCk is the coordinate vector of Ck, x1,i is the coordinate vector of
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Fig. 3. Distance of a triangle edge from the circumcenter. Acute triangle (left) and obtuse
triangle (right).

the first vertex of the edge, and ti is the unit tangent vector to edge li according to a
counterclockwise orientation. From (5.5) it follows that the distance dk,i has actually
a sign, being positive when the edge li is opposite to an acute angle (Figure 3, left)
and negative when the angle is obtuse (Figure 3, right).

The construction of the piecewise constant function α addressed in the introduc-
tion will be fully discussed in sections 7.2 and 8; here we just emphasize the two basic
properties of the average: (i) α is constant on each lumping region; (ii) α is some
average of the restriction of α to a suitable subset of each lumping region.

We notice that in the case when α = 1, the approximate bilinear form aTh coincides
with the quadrature formula proposed in [9], where it is shown that the quadrature
error is O(hT ). We let (J∗

h, u
∗
h) ∈ (Vh×Qh) be henceforth the couple of discrete func-

tions that are solutions of the dual mixed system (4.2) in presence of some quadrature
error.

Using (5.4) in (5.3) and recalling that αlij is constant over all the lumping region
Llij , we end up with the following equation for the approximate interelement flux
Φ∗
h,λij

:

Φ∗
h,λij = α−1

lij

(
u∗j − u∗i
dij

)
|lij |, dij = di,λij + dj,λij .(5.6)

Equation (5.6) holds for any edge lij in the interior of Ω; if lij lies on the boundary
∂Ω, it is understood that the value u∗j is set equal to the average of the Dirichlet
datum for u over lij and that dij is the distance between the circumcenter of Ti and
lij (see [11]).

Substituting the exact fluxes Φλkj in (5.2) with the corresponding approximations
(5.6), we finally obtain the family of cell-centered finite volume schemes in the new
unknown u∗h:



∑
j∈adj(Tk)

α−1
lkj

(
u∗k − u∗j
dkj

)
|lkj |+ u∗kσk|Tk| = fk|Tk| ∀Tk ∈ Th,

u∗j = 0 ∀lkj ∈ ∂Ω.
(5.7)

The set of linear algebraic equations (5.7) can be written in matrix form as

W ∗u∗ = f∗,(5.8)
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where the ith component of f∗ is fi|Ti| and

W ∗
ij =




∑
k∈adj(Ti)

α−1
lik

|lik|
dik

+ σi|Ti| if i = j,

−α−1
lij

|lij |
dij

if i �= j

(5.9)

for i = 1, . . . ,Mh and j ∈ adj(Ti).
Lemma 5.2. Assume that Th is a Delaunay triangulation. Then the matrix

W ∗ in (5.8) is a symmetric, positive-definite, and irreducibly diagonally dominant
M-matrix.

Proof. We first notice that the Delaunay property for Th implies that the quantity
dij in (5.7) is positive. As a consequence, W ∗

ii > 0 and W ∗
ij ≤ 0 in (5.9) for i =

1, . . . ,Mh and j ∈ adj(Ti). The expressions (5.9) show that W ∗ is a symmetric
matrix with at most four nonzero entries on each row. Let si denote the sum of the
entries of each row i of W ∗; then

si =




σi|Ti| if ∂Ti ∩ ∂Ω = ∅,
∑

j∈adj(Ti)

lij /∈∂Ω

α−1
lij

|lij |
dij

+ σi|Ti| if ∂Ti ∩ ∂Ω �= ∅.

We see that the sum of the entries of the rows corresponding to boundary triangles
is strictly positive, while it is nonnegative for the rows corresponding to internal
triangles. Thus W ∗ is a symmetric, positive-definite, irreducibly diagonally dominant
M-matrix (see [43, Corollary 1, p. 85]).

Remark 5.3. The M-matrix property ensures that system (5.8) is uniquely solv-
able and that the family of finite volume schemes (5.7) enjoys a discrete maximum
principle (see [17, 37]). In particular, provided f ≥ 0, the discrete solution u∗h turns
out to be nonnegative.

The M-matrix property is very desirable in applications. As an example, consider
the case where (2.1) is the linearized current continuity equation for semiconductor
device simulation using the drift-diffusion or energy-balance transport models (see
[13, 26, 39, 29]). In such a case, the unknown u (after a suitable scaling) has the
physical meaning of a concentration, and therefore it must be a nonnegative function.

Notice that the M-matrix property guarantees that the solution is oscillation-free
even if the ratio ‖σ‖∞,Ω/µ0 is arbitrarily large. This issue is also the case with a
Galerkin finite element method, where it is well known that the performance of the
method can be enhanced by lumping the mass matrix associated with the zero-order
term.

Remark 5.4 (extension to the three-dimensional case). Let us briefly comment
about the extension of the finite volume formulation of the present paper to the case
where Ω is a polygonal domain in R

3.
The extension is straightforward if Ω is of the form Ω = Ωxy × (0, H) with Ωxy ⊂

R
2 and H > 0, and Th is a partition of Ω into prisms with three vertical edges parallel

to the z-axis and two horizontal faces in the (x, y)-plane. We refer to [3] for the
definition and to [30] for the use of mixed approximations with RT finite elements on
prismatic triangulations.

The extension of the mixed finite volume method proposed in this paper to the case
where Th is a decomposition of Ω into simplices is less straightforward. In particular,
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if the finite element mesh is made of tetrahedra, a condition for devising a consistent
diagonalization of the mass matrix has been provided in [10, sect. 4] in the case of the
Laplace operator. This condition is necessary and sufficient for a mesh element to be
an orthocentered tetrahedron and, in particular, is satisfied if regular tetrahedra are
employed in the discretization. Under such an assumption, the present mixed finite
volume scheme can also be formulated in three dimensions.

In the case of a general three-dimensional triangulation the method of the present
paper, as well as the related approaches proposed in [9, 10, 2], cannot be extended, as
pointed out in [42].

In the following sections we are going to
(i) analyze the convergence in the H(div; Ω)× L2(Ω)-norm of the finite volume

methods (5.7); and
(ii) consider a special choice of the average α which extends to the two-dimensional

case the generalized finite element methods proposed in [7].

6. Abstract theory of the saddle-point problem. In this section we set
up an abstract framework for the error analysis of Galerkin methods with numerical
quadratures to approximate saddle-point problems of the form




Find J ∈ V and u ∈ Q such that

a(J, τ) + b(τ , u) = 〈g, τ〉 ∀τ ∈ V,
−b(J, q) + c(u, q) = 〈f, q〉 ∀q ∈ Q.

(6.1)

In (6.1), V and Q are Hilbert spaces with scalar products (·, ·)V and (·, ·)Q, the norms
‖·‖V and ‖·‖Q, g ∈ V ′, f ∈ Q′ are given, and 〈·, ·〉 denotes the duality pairing between
V ′ and V or Q′ and Q. The bilinear forms a(·, ·), b(·, ·), and c(·, ·) are assumed to
fulfill all the requirements for (6.1) to admit a unique solution (see [12, Ch. 2, Thm.
1.2 and Prop. 2.11]).

In particular, defining the linear operator B : V → Q′ by 〈Bλ, q〉Q′×Q = b(λ, q)
for every λ ∈ V , we assume that a(·, ·) is positive-semidefinite over V and coercive
over Ker(B), b(·, ·) satisfies the inf-sup condition, and c(·, ·) is symmetric and positive-
semidefinite over Q. Problem (2.5) is clearly a special instance of (6.1) provided that
g = 0, 〈f, q〉 = (f, q)0,Ω, and the forms a(·, ·), b(·, ·), and c(·, ·) are defined as in (2.4).

Concerning the approximation of (6.1) with the Galerkin method, error estimates
and analysis can be found in [12, sect. II.2.4] and [36, Ch. 3, sect. 11]. Hereafter,
we shall generalize these results to the case where the bilinear forms a(·, ·), b(·, ·), and
c(·, ·) and the duality brackets 〈·, ·〉 are replaced by suitable approximations ah(·, ·),
bh(·, ·), ch(·, ·), and 〈·, ·〉h through the use of numerical quadratures. This leads us
to considering the following Galerkin problem with numerical quadrature associated
with (6.1):




Find Jh ∈ Vh and uh ∈ Qh such that

ah(Jh, τh) + bh(τh, uh) = 〈g, τh〉h ∀τh ∈ Vh,
−bh(Jh, qh) + ch(uh, qh) = 〈f, qh〉h ∀qh ∈ Qh.

(6.2)

The family of finite volume schemes (5.7) can be recovered setting into (6.2) g = 0,
bh(·, ·) = b(·, ·), and
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ah(Jh, τh) =
∑
Tk∈Th

aTkh (Jh, τh),

ch(uh, vh) =
∑
Tk∈Th

σk (uh, vh)0,Tk ,(6.3)

〈f, qh〉h =
∑
Tk∈Th

fk (qh, 1)0,Tk .

(See section 5 for the definitions of all the discrete forms.)

As previously done in section 4, we associate with bh(·, ·) an operator B̂h : Vh →
Q′
h whose kernel is the subspace V̂h of Vh given by

Ker(B̂h) ≡ V̂h = {τh ∈ Vh | bh(τh, qh) = 0 ∀qh ∈ Qh } .(6.4)

Moreover, following [12, pp. 46–47] and denoting by B̂t
h the transpose of B̂h, we

consider for every ε > 0 and for every p̄h ∈ (Ker(B̂t
h))

⊥ the equation in the unknown

p0h ∈ Ker(B̂t
h),

ε (p0h, qh)Q + ch(p0h, qh) = −c(p̄h, qh) ∀qh ∈ Ker(B̂t
h),(6.5)

and we assume henceforth that there exists γ0 > 0 such that

γ0‖p0h‖Q ≤ ‖p̄h‖Q ∀p̄h ∈
(
Ker(B̂t

h)
)⊥

.(6.6)

The next proposition ensures the existence and uniqueness of the solution to
problem (6.2). It makes the counterpart to the case of numerical integration of the
corresponding result given in section 4 and extends to the case σ ≥ 0 the result in
[12, Proposition 2.15].

Proposition 6.1. Assume that there exist positive constant A, B, and C such
that

|ah(ψh, τh)| ≤ A‖ψh‖V ‖τh‖V ∀ψ
h
, τh ∈ Vh,

|bh(ψh, qh)| ≤ B‖ψh‖V ‖qh‖Q ∀ψ
h
∈ Vh, qh ∈ Qh,

|ch(qh, rh)| ≤ C‖qh‖Q‖rh‖Q ∀qh, rh ∈ Qh.

(6.7)

Suppose also that ah(·, ·) is coercive on Ker(B̂h), that is,

ah(λh, λh) ≥ a0‖λh‖20,Ω ∀λh ∈ V̂h,(6.8)

that bh satisfies the inf-sup condition independently of h, i.e., there exists k0 > 0 such
that

sup
τh∈Vh

bh(τh, qh)

‖τh‖V
≥ k0‖qh‖Q,(6.9)

and that ch(·, ·) is a symmetric positive-semidefinite bilinear form on Qh × Qh sat-
isfying (6.6). Then, problem (6.2) has a unique solution and there exists a positive
constantM, independent of h and depending only on A, C, 1/a0, 1/k0, and 1/γ0 such
that

‖Jh‖V + ‖uh‖Q ≤M (‖g‖h + ‖f‖h) ,(6.10)
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where

‖g‖h = sup
τh∈Vh

〈g, τh〉h
‖τh‖V

, ‖f‖h = sup
qh∈Qh

〈f, qh〉h
‖qh‖Q .(6.11)

We shall check later on conditions (6.7)1 and (6.8). We merely notice that in
the problem at hand (6.7)2 trivially holds taking B = 1 and that (6.9) is automati-
cally satisfied by the RT finite element space. Moreover, using the Cauchy–Schwarz
inequality, it is immediate to check that (6.7)3 holds taking C = ‖σ‖∞,Ω. Finally,

condition (6.6) trivially holds since Ker(B̂t
h) = Ker(Bt

h) = {∅}.
We are in position to state the first main result of the section, which extends to

the case σ ≥ 0 [12, Proposition 2.16] and [36, Thm. 11.2].
Theorem 6.2. Let (J, u) be the solution of problem (2.5), and let (Jh, uh) be the

solution of problem (6.2). Assume that the hypotheses of Proposition 6.1 are satisfied;
then the following a priori error bound holds:

‖J − Jh‖V + ‖u− uh‖Q ≤ (1 +M(A+ B)) inf
wh∈Vh

‖J − wh‖V

+(1 +M(B + C)) inf
rh∈Qh

‖u− rh‖Q

+M sup
vh∈Vh

[ |a(J, vh)− ah(J, vh)|
‖vh‖V

+
|b(vh, u)− bh(vh, u)|

‖vh‖V

]

+M sup
qh∈Qh

[ |b(J, qh)− bh(J, qh)|
‖qh‖Q +

|c(u, qh)− ch(u, qh)|
‖qh‖Q

]

+M
[

sup
vh∈Vh

|〈g, vh〉 − 〈g, vh〉h|
‖vh‖V

+ sup
qh∈Qh

|〈f, qh〉 − 〈f, qh〉h|
‖qh‖Q

]
.

(6.12)

Proof. It is a nontrivial extension of the proof of [12, Proposition 2.11] which holds
in the case of exact integration. For any couple of functions (J̃h, ũh) ∈ (Vh×Qh), let
us consider the following problem, which is completely equivalent to problem (6.2):




ah(J̃h − Jh, τh) + bh(τh, ũh − uh) = ah(J̃h, τh) + bh(τh, ũh)− 〈g, τh〉
+ 〈g, τh〉 − 〈g, τh〉h ∀τh ∈ Vh,

−bh(J̃h − Jh, qh) + ch(ũh − uh, qh) = −bh(J̃h, qh) + ch(ũh, qh)− 〈f, qh〉
+ 〈f, qh〉 − 〈f, qh〉h ∀qh ∈ Qh.

Therefore, it turns out that the couple (J̃h− Jh, ũh− uh) ∈ (Vh×Qh) is the solution
of a problem in the form (6.2) with right-hand side G = G1 + G2 ∈ V ′

h and F =
F1 + F2 ∈ Q′

h (see [12] for a precise definition of these spaces) given by

G1 : τh → ah(J̃h, τh) + bh(τh, ũh)− 〈g, τh〉, G2 : τh → 〈g, τh〉 − 〈g, τh〉h,
F1 : qh → −bh(J̃h, qh) + ch(ũh, qh)− 〈f, qh〉, F2 : qh → 〈f, qh〉 − 〈f, qh〉h.
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Using the stability estimate (6.10), we get

‖J̃h − Jh‖V + ‖ũh − uh‖Q ≤ M
(

sup
vh∈Vh

∣∣∣ah(J̃h, vh) + bh(vh, ũh) − 〈g, vh〉
∣∣∣

‖vh‖V

+ sup
qh∈Qh

∣∣∣−bh(J̃h, qh) + ch(ũh, qh) − 〈f, qh〉
∣∣∣

‖qh‖Q + sup
vh∈Vh

|〈g, vh〉 − 〈g, vh〉h|
‖vh‖V

+ sup
qh∈Qh

|〈f, qh〉 − 〈f, qh〉h|
‖qh‖Q

)
.

(6.13)

Let us label the first two terms in the right-hand side of (6.13) by E1, E2; next,
notice that since Vh ⊂ V and Qh ⊂ Q, we have 〈g, vh〉 = a(J, vh) + b(vh, u) and
〈f, qh〉 = −b(J, qh) + c(u, qh). Concerning E1, we have

E1 = sup
vh∈Vh

∣∣∣ah(J̃h, vh) + bh(vh, ũh)− a(J, vh)− b(vh, u)
∣∣∣

‖vh‖V
.(6.14)

Add and subtract ah(J, vh) and bh(vh, u) in (6.14); this can be done since ah(·, ·) and
bh(·, ·) are well defined on V and Q. Then, using the triangular and Cauchy–Schwarz
inequalities and the continuity of ah and bh, we get

E1 ≤ sup
vh∈Vh

|a(J, vh)− ah(J, vh)|
‖vh‖V

+A‖J − J̃h‖V + sup
vh∈Vh

|b(vh, u)− bh(vh, u)|
‖vh‖V

+ B‖u− ũh‖Q.

A completely analogous procedure on E2 yields, adding and subtracting bh(J, qh) and
ch(u, qh),

E2 ≤ sup
qh∈Qh

|b(J, qh)− bh(J, qh)|
‖qh‖Q + B‖J − J̃h‖V + sup

qh∈Qh

|c(u, qh)− ch(u, qh)|
‖qh‖Q

+ C‖u− ũh‖Q.

Concluding, we obtain

‖J̃h − Jh‖V + ‖ũh − uh‖Q ≤M(A+ B)‖J − J̃h‖V +M(B + C)‖u− ũh‖Q +ME ,

where E gathers all the other consistency error terms. Using the triangular inequality

‖J − Jh‖V + ‖u− uh‖Q ≤ ‖J − J̃h‖V + ‖J̃h − Jh‖V + ‖u− ũh‖Q + ‖ũh − uh‖Q,

we finally get

‖J−Jh‖V +‖u−uh‖Q ≤ (1+M(A+B))‖J− J̃h‖V +(1+M(B+C))‖u− ũh‖Q+ME ,

from which, taking the infimum on J̃h ∈ Vh and ũh ∈ Qh, estimate (6.12) fol-
lows.

In view of the error analysis, the following corollary can be derived from Theorem
6.2.
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Corollary 6.3. Under the same hypotheses as in Theorem 6.2, we have

‖J − Jh‖V + ‖u− uh‖Q ≤ (1 +M(2(A+ B) + γ + β)) inf
wh∈Vh

‖J − wh‖V

+(1 +M(2(B + C) + β + δ)) inf
rh∈Qh

‖u− rh‖Q

+M inf
wh∈Vh

sup
vh∈Vh

|a(wh, vh)− ah(wh, vh)|
‖vh‖V

+M inf
rh∈Qh

sup
vh∈Vh

|b(vh, rh)− bh(vh, rh)|
‖vh‖V

+M inf
wh∈Vh

sup
qh∈Qh

|b(wh, qh)− bh(wh, qh)|
‖qh‖Q +M inf

rh∈Qh
sup
qh∈Qh

|c(rh, qh)− ch(rh, qh)|
‖qh‖Q

+M
[

sup
vh∈Vh

|〈g, vh〉 − 〈g, vh〉h|
‖vh‖V

+ sup
qh∈Qh

|〈f, qh〉 − 〈f, qh〉h|
‖qh‖Q

]
,

where γ, β, and δ are the constants of continuity of a(·, ·), b(·, ·), and c(·, ·), respec-
tively.

Proof. The proof follows by rewriting (J, u) in the right-hand side of (6.12) as
(J − wh + wh, u− rh + rh), respectively, where wh and rh are the same functions as
those with respect to the infima in (6.12).

We conclude the section with the error estimate that establishes the O(h) con-
vergence of the family of mixed finite volume schemes (5.7).

Theorem 6.4. Assume that the solution (J, u) of problem (2.5) is such that
(J, u) ∈ (H1(Ω))2×H1(Ω) and divJ ∈ H1(Ω). Then there exist two positive constants
C1 and C2, depending on u, J , α, σ, and f but independent of h, such that, for h
sufficiently small, the solution (Jh, uh) of problem (6.2) satisfies

‖J − Jh‖V + ‖u− uh‖Q ≤ h (C1 + C2h) .(6.15)

We emphasize that Theorem 6.4 holds irrespectively of the choice of the average
αlkj in (5.7), the only requirement being that

min
x∈Llkj

(α(x)) ≤ αlkj ≤ max
x∈Llkj

(α(x)) ∀Llkj ∈ Lh.(6.16)

The proof of Theorem 6.4 is carried out in the next section.

7. Error analysis of the mixed finite volume methods. To prove (6.15)
we must first check the basic assumptions of Theorem 6.2 in the case of the family
of mixed finite volume methods (5.7) and then give an estimate of the extra terms
coming from numerical integration.

7.1. Analysis of the approximate bilinear form. In this section we check
continuity and coercivity on Ker(B̂h) of the approximate bilinear form ah(·, ·) in (6.3).

Lemma 7.1. There exist positive constants A and a0, independent of h, such that

|ah(ph, qh)| ≤ A‖ph‖V ‖qh‖V ∀p
h
, q

h
∈ Vh,

ah(wh, wh) ≥ a0‖wh‖20,Ω, ∀wh ∈ V̂h.
(7.1)

Proof. To prove (7.1), let us pick up a triangle Tk ∈ Th and set p
h
|Tk =

∑3
i=1Piτ i,

q
h
|Tk =

∑3
i=1Qiτ i, wh|Tk =

∑3
i=1Wiτ i, and γki = dk,i/|li|, where Pi, Qi, and Wi

are the fluxes of p
h
, q

h
, and wh across edge li and dk,i is the distance between the



MIXED FEM WITH NUMERICAL INTEGRATION 259

circumcenter Ck of Tk and edge li (see section 5). We also let RTk = ∪i = 1, 3Lli .
Notice that here we will use a local numbering of the edges and the related quan-
tities. Moreover, for brevity, the subscript k will be always dropped. The element
approximate bilinear form aTh (·, ·) can be written as

aTh (ph, qh) =

3∑
i=1

αliPiQiγi.

Notice that, using (3.1), we have

max
i=1,3
|γi| ≤ DT

ρT
≤ K,

which holds both for acute and obtuse triangles. Therefore, since α is an average of
α,

|aTh (ph, qh)|‖α‖∞,RT

3∑
i=1

|Pi||Qi| ≤ K‖α‖∞,Ω

3∑
i=1

|Pi||Qi|.(7.2)

Let x = FT (x̂) = BT x̂ + x0 be the usual affine mapping between the reference unit

triangle T̂ and T . Let also ĥ =
√
2 be the diameter of T̂ , and let JT = det(BT )

denote the (constant) Jacobian matrix of the transformation. Given any vector-valued

function ψ̂ ∈ (H1(T̂ ))2, we associate with ψ̂ the function ψ defined on T by

ψ =
1

JT BT ψ̂ ◦ F
−1
T ≡ Pψ̂(x̂),

where P(·) is the Piola mapping (see, e.g., [35, (3.17)] or, for a different definition,
[12, (1.45)] and is such that∫

l̂i

ψ̂ · n̂dŝ =
∫
li

ψ · nds, i = 1, 3,(7.3)

as can be easily checked by taking ϕ̂ = χ(l̂i) in formula (3.19) of [35]. Then take

ψ̂ ∈ D1 ∀x̂ ∈ T̂ , i.e., ψ̂ =
∑3

i=1Ψ̂iτ̂ i; clearly, each edge flux Ψ̂i can be identified with a

continuous linear functional on the space (L2(T̂ ))2, denoted as Li(ψ̂) and with norm

‖Li‖L(D1;R) = sup
ψ̂∈D1

ψ̂ 
=0

∣∣∣∣
∫
l̂i

ψ̂ · n̂dŝ
∣∣∣∣

‖ψ̂‖0,T̂
, i = 1, 3,

where, as usual, L(V;W) is the set of linear continuous functionals from V into W.
It can be checked that maxi=1,3 ‖Li‖L(D1;R) =

√
6, so that we get

3∑
i=1

|P̂i||Q̂i| ≤
3∑
i=1

‖Li‖2L(D1;R)‖p̂h‖0,T̂ ‖q̂h‖0,T̂ ≤ 18‖p̂
h
‖0,T̂ ‖q̂h‖0,T̂ .(7.4)

Next, we recall that for any function ψ̂ ∈ (L2(T̂ ))2 the following result holds (cf.
formula (3.21) in [35] with l = 0):

‖ψ̂‖0,T̂ ≤ ‖B−1
T ‖|JT |1/2‖ψ‖0,T ,(7.5)
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where ‖ · ‖ is the spectral matrix norm. Using (7.3), (7.4), (7.5), standard scaling
arguments (see, e.g., [34, p. 86]) and (3.1), we finally obtain

|aTh (ph, qh)| ≤ 36K3‖α‖∞,Ω‖ph‖H(div;T )‖qh‖H(div;T ),(7.6)

from which, summing over all the triangles of Th and using the Cauchy–Schwarz
inequality, the estimate (7.1)1 follows with A = 36K3‖α‖∞,Ω. The proof of (7.1)2 is
straightforward; for any function wh such that wh|T ∈ (P0)

2 we have

aTh (wh, wh) ≥ inf
x∈RT

(α)

3∑
i=1

W 2
i γi ≥ α0

3∑
i=1

W 2
i γi,(7.7)

where α0 = infΩ(α) and Wi is the flux of wh across edge li. In [9] it has been

proved that
∑3

i=1W
2
i γi = (wh, wh)0,T = ‖wh‖20,T , so that, summing (7.7) over all the

triangles in Th and using the Cauchy–Schwarz inequality, we finally get (7.1)2 with

a0 = α0 and V̂h =
{
w ∈ (L2(Ω))2 |w|T ∈ (P0)

2 ∀T ∈ Th
}
.

Recalling that the conditions in Proposition 6.1 about bh and ch have already been
assessed, Theorem 6.2 applies for the convergence analysis of the family of generalized
Galerkin methods (5.7).

7.2. Analysis of the quadrature error. In this section we deal with the
quadrature errors occurring in the approximate linear and bilinear forms in the fi-
nite volume schemes (5.7). For this, we set g = 0 and bh(·, ·) = b(·, ·). Moreover, to
avoid resorting to an interpolation-free approach (see [18], [36, pp. 132–133]) or to
some suitable projection operator (see [34, sect. 3.5]), we require an extra regularity
for the problem coefficients than asked for in section 2, i.e., assume henceforth that
µ, σ, and f are given functions in W 1,∞(Ω). We shall come back to the issue of
coefficient regularity in Remark 7.4. Finally, throughout the section we denote by C
a positive constant whose value is not necessarily the same at each occurrence.

We recall the interpolation estimate (see [36, formula (16.19)])

|v −Πv|m,∞,T ≤ C
hk+1
T

ρmT
|v|k+1,∞,T ,(7.8)

where v ∈ W k+1,∞(T ) for k ≥ 0, C is a positive constant, and Πv : T → R is the
local interpolation operator of v associated with the finite element space Pk.

For any T ∈ Th, we denote by Π0,T the local P0-interpolation operator of σ such
that Π0,Tσ = σ(CT ). Using (7.8) with m = 0, k = 0 and letting Cc be a positive
constant yields

|c(rh, qh)− ch(rh, qh)| ≤
∑
T∈Th
|σ −Π0,Tσ|0,∞,T

(∫
T

|rh||qh|dT
)

≤
∑
T∈Th

CchT |σ|1,∞,T ‖rh‖0,T ‖qh‖0,T ≤ Cch|σ|1,∞,Ω‖rh‖Q‖qh‖Q

so that the quadrature error for c(·, ·) can be estimated as

sup
qh∈Qh

|c(rh, qh)− ch(rh, qh)|
‖qh‖Q ≤ Cch|σ|1,∞,Ω‖rh‖Q.(7.9)

In a similar way we obtain

sup
qh∈Qh

|〈f, qh〉 − 〈f, qh〉h|
‖qh‖Q ≤ Cf |Ω|1/2h|f |1,∞,Ω.(7.10)
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Let us now give a bound for the quadrature error associated with ah(·, ·). With
this aim, let p

h
and q

h
be any two functions in Vh. Using the same notation as in

section 7.1, for any T ∈ Th we set p
h
|T =

∑3
i=1Piτ i and q

h
|T =

∑3
i=1Qiτ i. Then we

recall two approximation results that will be useful in the forthcoming analysis. The
first one is an immediate consequence of Theorem 15.3 in [36] with k = m = 0 and
p = q =∞.

Lemma 7.2. Let Ŝ be an open subset of R
2, and let Π̂ be a linear and continuous

mapping from W 1,∞(Ŝ) to L∞(Ŝ) which satisfies Π̂p̂ = p̂,∀p̂ ∈ P0(Ŝ). For any open

set S that is affine-equivalent to the set Ŝ, let ΠS be defined by ΠSv = Π̂v̂ ◦ F−1 for
all functions v̂ ∈W 1,∞(Ŝ) and v ∈W 1,∞(S) such that v = v̂ ◦F−1, where F : Ŝ �→ S

is an invertible affine mapping such that F (Ŝ) = S. Then there exists a constant C

(depending on Π̂ and Ŝ) such that

‖v −ΠSv‖∞,S ≤ ChS |v|1,∞,S ∀v ∈W 1,∞(S),(7.11)

where hS = diam S.
The second result has been proved in [9]:∣∣∣∣
(
p
h
, q
h

)
0,T
−
(
p
h
, q
h

)
h,0,T

∣∣∣∣ ≤
(

hT

2
√
6
+
h2
T

48

)
‖p

h
‖H(div;T )‖qh‖H(div;T ).(7.12)

Let ΠTα = α̃T be a suitable average of the function α over T satisfying Lemma
7.2. For instance, we can take α̃T equal to the value of α at the centroid of T . The
quadrature error aT (p

h
, q
h
)− aTh (ph, qh) can then be split as

aT (p
h
, q
h
)− aTh (ph, qh) = E1(ph, qh) + E2(ph, qh) + E3(ph, qh),

where

E1(ph, qh) =
(
αp

h
, q
h

)
0,T
−
(
α̃T ph, qh

)
0,T

=

∫
T

(α− α̃T )ph · qhdT,

E2(ph, qh) =
(
α̃T ph, qh

)
0,T
−
(
α̃T ph, qh

)
h,0,T

=

∫
T

α̃T ph · qhdT −
3∑
i=1

α̃TPiQiγi,

E3(ph, qh) =
(
α̃T ph, qh

)
h,0,T
− aTh (ph, qh) =

3∑
i=1

(α̃T − αli)PiQiγi.

Using (7.11) and the Cauchy–Schwarz inequality, we get

|E1(ph, qh)| ≤ ChT |α|1,∞,T ‖ph‖H(div;T )‖qh‖H(div;T ),

while (7.12) yields

|E2(ph, qh)| ≤ α̃T

(
hT

2
√
6
+
h2
T

48

)
‖p

h
‖H(div;T )‖qh‖H(div;T ).

Recalling that α̃T and αli are averages of α over T ⊂ RT and Lli ⊂ RT , respec-
tively, we can immediately conclude that

|E3(ph, qh)| ≤
(
max
x∈RT

(α)− min
x∈RT

(α)

) 3∑
i=1

|Pi| |Qi| |γi|

≤ |α|1,∞,RT
DT

3∑
i=1

|Pi| |Qi| |γi ≤ 36K4|α|1,∞,RT
hT ‖ph‖H(div;T )‖qh‖H(div;T ),
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where we have used (3.2) and (7.6) with α = 1.
Gathering the previous estimates and overestimating the norms on local sets with

the same norms over Ω yields ∀T ∈ Th
|aT (p

h
, q
h
)− aTh (ph, qh)|

≤
(
(C + 36K4)|α|1,∞,Ω + ‖α‖∞,Ω

(
1

2
√
6
+

h

48

))
h‖p

h
‖H(div;T )‖qh‖H(div;T ).

Letting

Φ = Φ(h, Th, α) =
(
(C + 36K4)|α|1,∞,Ω + ‖α‖∞,Ω

(
1

2
√
6
+

h

48

))
,

summing over all the mesh triangles, and using the Cauchy–Schwarz inequality finally
gives

sup
q
h
∈Vh

|a(p
h
, q
h
)− ah(ph, qh)|
‖q

h
‖V ≤ Φh‖p

h
‖H(div;Ω).(7.13)

Taking, in (7.9), rh equal to the L2-projection of u, we get

sup
qh∈Qh

|c(rh, qh)− ch(rh, qh)|
‖qh‖Q ≤ Cch|σ|1,∞,Ω‖u‖Q.(7.14)

Analogously, taking, in (7.13), p
h
equal to the RT-interpolant to J of lowest degree

πhJ and recalling that (see [36, p. 583])

‖πhJ‖V ≤ C (h|J |1,Ω + ‖divJ‖0,Ω) ,

we get

sup
q
h
∈Vh

|a(p
h
, q
h
)− ah(ph, qh)|
‖q

h
‖V ≤ CΦh (h|J |1,Ω + ‖divJ‖0,Ω) .(7.15)

From Corollary 6.3, using the estimates (7.14), (7.10), and (7.15), letting

M = max ((1 +M(2(A+ B) + γ + β)), (1 +M(2(B + C) + β + δ))) ,

and denoting by Ck, k = 1, 3, some positive constants, we finally obtain the conver-
gence result (6.15):

‖J − Jh‖V + ‖u− uh‖Q ≤Mh [|u|1,Ω + |J |1,Ω + |divJ |1,Ω]
+ C1Φh (h‖J‖1,Ω + ‖divJ‖0,Ω)
+ C2h|σ|1,∞,Ω‖u‖Q + C3h|Ω|1/2|f |1,∞,Ω.

(7.16)

Remark 7.3. We remark that the O(h) convergence proved above for the mixed
finite volume methods (5.7) is optimal and that it has been obtained without giving
up the M-matrix property of the schemes. This feature, together with the reduced
computational cost, makes the novel methods quite attractive and competitive with
respect to the standard dual mixed approaches with exact integration [27, 26] and to
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dual mixed schemes with numerical integration recently proposed for the approximation
of problem (2.1) in the case σ = 0 [9, 10]. Finally, the genuine finite volume flavor of
the novel methods allows for the basic conservation properties (mass and interelement
fluxes) to be satisfied, even in the presence of jumps in the coefficient of the problem
(as happens, for instance, in porous media flows governed by Darcy’s law [20]) or steep
internal/boundary layers in the scalar unknown u (as happens in semiconductor device
simulation using the drift-diffusion model [24, 28, 31, 39]). Numerical evidences of the
accuracy and stability of the new formulation will be exhibited in the next section.

Remark 7.4. The error estimate (6.15) has been obtained under stringent regu-
larity assumptions on the problem coefficients. This is quite a standard situation when
trying to derive a convergence result (see, e.g., [3, sect. 7]). However, a more careful
analysis reveals that the convergence result (6.15) still holds under the sole assump-
tion that the coefficients µ, σ and the right-hand side f be locally smooth functions.
Actually, assuming that µ|T , σ|T and f |T belong to W 1,∞(T ) for all T ∈ Th and using
the same arguments as above, one can prove the following analogue of (7.16):

‖J − Jh‖V + ‖u− uh‖Q ≤Mh


|u|1,Ω +

(∑
T∈Th
|J |21,T

)1/2

+

(∑
T∈Th
|divJ |21,T

)1/2



+ C1Φ̃h


h
(∑
T∈Th
|J |21,T

)1/2

+ ‖divJ‖0,Ω



+ C2hmax
T∈Th
|σ|1,∞,T ‖u‖Q + C3h|Ω|1/2max

T∈Th
|f |1,∞,T ,

where

Φ̃ = (C + 36K4)max
T∈Th
|α|1,∞,T + max

T∈Th
‖α‖∞,T

(
1

2
√
6
+

h

48

)
.

8. Numerical results. In this section we are going to validate numerically the
family of mixed finite volume methods introduced in the present paper. With this
aim we first need to characterize the choice of the average α of the inverse diffusion
coefficient α. Being that this matter is one-dimensional, we restrict our attention on
the affine-equivalent interval I = [0, h] for any h > 0.

The obvious candidate for α is the mean value of α over I. Since we are interested
in the inverse of α (see (5.7)) and α = µ−1, it follows that

α−1 =




∫ h

0

µ−1(x)dx

h




−1

≡ HI(µ),(8.1)

where HI(µ) denotes the harmonic average of µ over the interval I.
Use of harmonic averaging for the diffusion coefficient µ is quite natural in mixed

methods (see [7, 12]) and has been proved in one dimension to provide better results
than the mean value, in particular when µ exhibits sharp variations on I or is even
discontinuous. Typical instances of such behavior are flows in porous media (see [20]
and the references cited therein) or electron and hole carrier flow in a semiconductor
device (see [24, 13]).
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It is clear that, except in trivial cases, the evaluation of (8.1) cannot be carried
out. This, of course, demands for the use of a suitable quadrature formula. With this
aim, define for any function φ : I → R

+ the exponential interpolant to φ as

Πeφ(x) = exp {Π1 [ln(φ(x))]} = φ0

(
φh
φ0

) x
h

, x ∈ I,(8.2)

where φ0 = φ(0), φh = φ(h), and Π1φ is the P1-interpolant to φ. The quadrature
formula approximating (8.1) can then be defined as

α−1 ,




∫ h

0

Πeµ
−1(x)dx

h




−1

=
ln(1/µh)− ln(1/µ0)

1/µh − 1/µ0

=

(
ln(µ0)− ln(µh)

µ0 − µh

)
µ0µh,(8.3)

which clearly satisfies (6.16). Assuming α ∈W 1,∞(I), it is easy to prove the following
bound for the interpolation error:

‖α−Πeα‖∞,I ≤ Ch
αM
αm
|α|1,∞,I ,

where αM and αm are the maximum and the minimum values of α over I, respectively.
We remark that (8.3) is exact if µ = eax+b, a, b ∈ R, x ∈ I, as typically happens in
the numerical approximation of the drift-diffusion semiconductor device equations
(see [8, 13, 39]).

In this latter application the mixed finite volume scheme (5.7) with the quadrature
(8.3) can be regarded as a two-dimensional generalization of the classical exponen-
tially fitted Scharfetter–Gummel method [41]. The resulting scheme can be proved
to recover the exact solution (u, J) at the nodes of the dual mesh when µ = eax+by,
a, b ∈ R, x, y ∈ Ω, σ = 0, f = 0, and suitable Dirichlet–Neumann boundary con-
ditions are assumed in problem (2.1) (see for the proof [40] and [44], respectively,
in the case of triangles and rectangles). This nice property is a special instance of
the “patch-test” (see [36, Chap. V, sect. 34] and [23]) and turns out to be a sound
indication for good behavior of a numerical scheme to deal with advection-dominated
flow problems, as previously remarked in [44, 38].

Our second choice for α−1 is the harmonic average of the piecewise constant
extension to µ over I

α−1 ,




∫ x

0

µ−1
0 dx+

∫ h

x

µ−1
h dx

h




−1

=
µ0µh

µhx/h+ µ0(1− x/h) ,(8.4)

where it is assumed that I represents the segment connecting the circumcenters of
two neighboring triangles T and T ′ so that x is the intersection between I and the
edge common to T and T ′. The average (8.4) seems to be quite promising in the
presence of discontinuities of µ.
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The last choice that we consider for α−1 employs linear interpolation for µ. This
leads to the trapezoidal quadrature formula

α−1 ,

∫ h

0

Π1µ(x)dx

h
=

µ0 + µh
2

.(8.5)

Let us now deal with the numerical experiments. We henceforth assume that in
(2.1) Ω is the unit square. Two test problems with available exact solutions have
been considered; in the first test case five unstructured grids of triangular elements
have been employed with average mesh sizes of 2−k for k = 3, . . . , 7. For the second
test problem, which is of one-dimensional nature, eight grids of rectangular elements
have been used with mesh sizes of 2−k in the x-direction for k = 3, . . . , 10. When
applied to this example, the mixed finite volume scheme (5.7) reduces to a five-point
difference scheme with a special average of the diffusion coefficient.

Suitably accurate integration formulae have been used to evaluate the L2(Ω) and
H(div; Ω) norms of the discretization errors u−uh and J−Jh. Precisely, a symmetric
formula using 10 nodes on each element of the triangular grid has been employed in
the first test case, while the nine-point Simpson formula has been adopted on each
element in the quadrilateral grid in the second test case. We emphasize that all the
numerical results presented below have been obtained using the midpoint quadrature
formula to approximate the right-hand side in (5.2). In all the reported figures the
symbols have the following meaning: “*” refers to the scheme using the average (8.5),
“o” refers to the use of the average (8.3), and “�” refers to use of the average (8.4).

Test case 1. This test problem basically aims at checking the theoretical conver-
gence properties of the novel method. Therefore, we take as exact solution the smooth
function

u(x, y) = 16xy(x− 1)(y − 1)

such that ‖u‖∞,Ω = 1. The diffusion coefficient µ is

µ(x, y) =

(
µa + µb

2

)(
1 +

µb − µa
µa + µb

tanh(K(y − x))
)
,

where µb > µa > 0 and K is a suitable constant. Notice that for µb/µa - 1 and
K - 1, µ tends to a step function with jump equal to µb−µa across the main diagonal
of the unit square.

The first set of numerical results refers to the case µa = 1, µb = 10, and K = 2.
The maximum values of |J | and divJ are 36.05 and 129.6, respectively. Figures 4(a)
and 4(b) show the L2-norm and the discrete L∞-norm of the error u− uh, this latter
norm being evaluated as

‖u− uh‖∞,C = max
Tk∈Th

|u(xCk)− uk|.

Linear convergence with respect to the mesh size h is clearly observed for all of the
considered averages in the case of the L2-norm, while second-order convergence is
exhibited by the method when the discrete L∞-norm is used to measure convergence.
This appears to be a (nodal) superconvergence of the mixed finite schemes and is to
be ascribed to the special choice of the point of measurement of the convergence (i.e.,
the circumcenter of the triangle) which coincides with the center of the stencil of the
method.
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Fig. 4. Discretization error u − uh for test case 1: (a) L2-norm, µa = 1, µb = 10, K = 2;
(b) discrete L∞-norm, µa = 1, µb = 10, K = 2.
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Fig. 5. Test case 1: (a) L2-norm of the discretization error J − Jh, µa = 1, µb = 10, K = 2;
(b) graph norm of the discretization error U − Uh = (u− uh, J − Jh), µa = 1, µb = 10, K = 2.

Figures 5(a) and 5(b) show the L2-norm of the discretization error J − Jh and
the graph norm of the error U − Uh ≡ (u− uh, J − Jh) defined as

‖U − Uh‖V×Q =
(
‖u− uh‖20,Ω + ‖J − Jh‖2H(div;Ω)

)1/2

.

Linear convergence is clearly observed for all of the three averages.
The second set of numerical results refers to the case µa = 1, µb = 1000, and

K = 100. The maximum values of |J | and divJ are 4000 and 16308.8, respectively
(clearly much bigger than in the previous case). Figures 6(a) and 6(b) show that
linear convergence in the L2-norm is exhibited by all of the considered averages, while
the schemes appear to be second-order accurate in the discrete L∞-norm. Linear
convergence is also observed for the discretization errors J−Jh and U−Uh, as shown
in Figures 7(a) and 7(b), respectively.

Test case 2. In the second test case, taken from [7], we check the performances of
the three averages introduced in this section when the diffusion coefficient µ is discon-
tinuous. With this aim, we consider the simple one-dimensional problem −(µu′)′ =
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Fig. 6. Discretization error u− uh for test case 1: (a) L2-norm, µa = 1, µb = 1000, K = 100;
(b) discrete L∞ -norm, µa = 1, µb = 1000, K = 100.
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Fig. 7. Test case 1: (a) L2-norm of the discretization error J − Jh, µa = 1, µb = 1000,
K = 100; (b) graph norm of the discretization error U −Uh = (u− uh, J − Jh), µa = 1, µb = 1000,
K = 100.

M−1 on the interval (0, 1) with u(0) = u(1) = 0, where

M =
µaβ

2

2
, β =

(
3

4µb
+

1

4µa
− γ
)
, µ(x) =

{
µa, 0 ≤ x < 0.5,

µb, 0.5 ≤ x ≤ 1,

again having µb > µa > 0 and having set γ = (1 + 3µa/µb)/(4(µa + µb)). The exact
solution of this latter problem reads

u(x) =
1

M



− x2

2µa
+ βx, 0 ≤ x < 0.5,

− x2

2µb
+ γx+

1

2µb
− γ, 0.5 ≤ x ≤ 1,

(8.6)

J(x) =
1

M
(βµa − x) , x ∈ [0, 1],(8.7)

and is such that ‖u‖∞,Ω = 1. Notice that the exact solution u, although continuous,
does not belong to H2(0, 1).

Next we analyze a two-dimensional boundary value problem of the form (2.1) but
with Dirichlet–Neumann boundary conditions, having as exact solution the function
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Fig. 8. Discretization error u−uh for test case 2: (a) L2-norm, µa = 1, µb = 100; (b) discrete
L∞-norm, µa = 1, µb = 100.
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Fig. 9. Test case 2: (a) L2-norm of the discretization error J − Jh, µa = 1, µb = 100;
(b) graph norm of the discretization error U − Uh = (u− uh, J − Jh), µa = 1, µb = 100.

(8.6). Homogeneous Dirichlet data have been assumed for u along the vertical sides
x = 0 and x = 1, while vanishing fluxes have been imposed for J on the rest of the
boundary of Ω. The values of the diffusion coefficient µ are µa = 1 and µb = 100,
respectively.

We show in Figures 8(a) and 8(b) the L2-norm and the discrete L∞-norm of the
error u− uh, this latter norm being evaluated as

‖u− uh‖∞,h = max
Tk∈Th

|u(xBk)− uk|,

where xBk is the centroid of the element Tk. Linear convergence with respect to h
is observed for all of the considered averages, except for the case of the convergence
order in the discrete L∞-norm of the method using the average (8.4), which proves
to be quadratic with respect to h. This appears to be a (nodal) superconvergence of
the scheme and is to be ascribed to the choice of the average which is exact if µ is
a piecewise constant function as in the present case. The second-order convergence
of the mixed finite volume method using the average (8.4) on quadrilaterals is in
agreement with the theoretical results obtained in the literature for the RT finite
element of lowest order (see [6, 3, 22, 21]).

Figures 9(a) and 9(b) show the L2-norm of the discretization error J − Jh and
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the graph norm of the error U − Uh. Linear convergence is clearly observed for all
of the three averages; notice that the curve of the L2-norm of J − Jh is not shown
for the method using the average (8.4) since in this test case the scheme furnishes
the exact solution for J (due to the combination of the choice of the average and the
fact that the flux is contained in the approximation space). We also point out that
the quantity divJh computed by all of the three schemes is exact (up to the roundoff
error) since the right-hand side f is equal to a constant.

Acknowledgments. The authors gratefully thank the anonymous referees for
helping them improve this article.
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Abstract. In this article, we discuss a parallel implementation of efficient algorithms for compu-
tation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop
an approach to the Driscoll–Healy algorithm using polynomial arithmetic and present experimental
results on the accuracy, efficiency, and scalability of our implementation. The algorithms were im-
plemented in ANSI C using the BSPlib communications library. We also present a new algorithm
for computing the cosine transform of two vectors at the same time.
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1. Introduction. Discrete Legendre transforms (DLTs) are widely used tools
in applied science, commonly arising in problems associated with spherical geome-
tries. Examples of their application include spectral methods for the solution of
partial differential equations, e.g., in global weather forecasting [3, 9], shape analysis
of molecular surfaces [16], statistical analysis of directional data [18], and geometric
quality assurance [17].

A direct method for computing a discrete orthogonal polynomial transform such
as the DLT transform for N data values requires a matrix-vector multiplication of
O(N2) arithmetic operations, though several authors [2, 28] have proposed faster
algorithms based on approximate methods. In 1989, Driscoll and Healy introduced an
exact algorithm that computes such transforms in O(N log2N) arithmetic operations
[13, 14, 15]. They implemented the algorithm and analyzed its stability, which depends
on the specific orthogonal polynomial sequence used.

Discrete polynomial transforms are computationally intensive, so for large prob-
lem sizes the ability to use multiprocessor computers is important, and at least two
papers discussing the theoretical parallelizability of the algorithm have already been
written [19, 32]. We are, however, unaware of any parallel implementation of the
Driscoll–Healy algorithm at the time of writing.

In this paper, we derive a new parallel algorithm that has a lower theoretical
time complexity than those of [19, 32], and we present a full implementation of this
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algorithm. Another contribution is the method used to derive the algorithm. We
present a method based on polynomial arithmetic to clarify the properties of orthogo-
nal polynomials used by the algorithm and to remove some unnecessary assumptions
made in [13, 14, 15].

The remainder of this paper is organized as follows. In section 2, we describe some
important properties of orthogonal polynomials and orthogonal polynomial trans-
forms, and we present a derivation of the Driscoll–Healy algorithm. In section 3, we
introduce the bulk synchronous parallel (BSP) model and describe a basic parallel
algorithm and its implementation. In section 4, we refine the basic algorithm by
introducing an intermediate data distribution that reduces the communication to a
minimum. In section 5, we present results on the accuracy, efficiency, and scalability
of our implementation. We conclude with section 6 and two appendices describing
a generalization of the algorithm and the precomputation of the data needed by the
algorithm.

2. The Driscoll–Healy algorithm.

2.1. Orthogonal polynomials. A sequence of polynomials p0, p1, p2, . . . is said
to be an orthogonal polynomial sequence on the interval [−1, 1] with respect to the
weight function ω(x), if deg pi = i, and

∫ 1

−1
pi(x)pj(x)ω(x)dx = 0 for i �= j,
∫ 1

−1
pi(x)

2ω(x)dx �= 0 for i ≥ 0.

The weight function ω(x) is nonnegative and integrable on (−1, 1).
Let x0, . . . , xN−1 be a sequence of distinct real numbers called sample points, and

let f0, . . . , fN−1 be a sequence of real values. Then there exists a unique polynomial
f of degree less than N such that

f(xj) = fj , j = 0, . . . , N − 1.(2.1)

This polynomial can be obtained by Lagrangian interpolation.
The expansion transform corresponding to the orthogonal polynomial sequence

{pk} computes the coefficients ck in the expansion

f =

N−1∑
k=0

ckpk,(2.2)

where f is a polynomial given by function values fj in the sample points xj . (Note that
we do not require any special relation between the sample points and the orthogonal
polynomials.) The inverse expansion transform evaluates f at the sample points xj ,
and this can be done by straightforward substitution:

fj =

N−1∑
k=0

ckpk(xj), j = 0, . . . , N − 1.(2.3)

In matrix-vector notation, the latter transform can be written as f = Pc, where
f = (f0, . . . , fN−1) and c = (c0, . . . , cN−1) are column vectors, and the matrix P
is defined by Pjk = pk(xj). The matrix P is invertible, and P−1 represents the
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expansion transform. In general, P need not be orthogonal, and hence its inverse and
transpose need not be the same.

Example 2.1 (discrete Chebyshev transform (DChT)). The Chebyshev polyno-
mials of the first kind are the sequence of orthogonal polynomials defined recursively
by

Tk+1(x) = 2x · Tk(x)− Tk−1(x), T0(x) = 1, T1(x) = x.(2.4)

These are orthogonal with respect to the weight function ω(x) = π−1(1 − x2)− 1
2 on

[−1, 1], and they satisfy Tk(cos θ) = cos kθ for all real θ.
The DChT is the expansion transform for the Chebyshev polynomials at the Cheby-

shev points. The Chebyshev points are the roots of TN , and they are given by

xNj = cos
(2j + 1)π

2N
, j = 0, . . . , N − 1.(2.5)

We denote the Chebyshev transform by a tilde. More specifically, the coefficient of Tk
in the Chebyshev expansion of a polynomial f is denoted by f̃k.
The inverse Chebyshev transform can straightforwardly be written as

fj =

N−1∑
k=0

f̃kTk(x
N
j ) =

N−1∑
k=0

f̃k cos
(2j + 1)kπ

2N
, j = 0, . . . , N − 1.(2.6)

Furthermore, it can be shown that the Chebyshev transform itself is given by

f̃k =
εk
N

N−1∑
j=0

fjTk(x
N
j ) =

εk
N

N−1∑
j=0

fj cos
(2j + 1)kπ

2N
, k = 0, . . . , N − 1,(2.7)

where

εk =

{
1 if k = 0,
2 if k > 0.

(2.8)

In this work, we will study a slightly more general transform which includes
weights. Given an orthogonal polynomial sequence {pk}, a sequence of sample points
x0, . . . , xN−1, and a sequence of numbers w0, . . . , wN−1 called sample weights, we
define the discrete orthogonal polynomial transform of a data vector (f0, . . . , fN−1) to
be the vector of sums (f̂0, . . . , f̂N−1), where

f̂k = f̂(pk) =

N−1∑
j=0

wjfjpk(xj).(2.9)

The matrix of the discrete orthogonal polynomial transform (2.9) for the special case
with sample weights 1 is PT .

Example 2.2 (discrete cosine transform (DCT)). The DCT, or DCT-II in the
terminology of [35], is the discrete orthogonal polynomial transform for the Chebyshev
polynomials, with sample weights 1 and with the Chebyshev points as sample points.
Thus, the matrix representing the DCT is PT . Since the matrix representing the
DChT is P−1, the DCT is the inverse transpose of the DChT. The relation is even
closer: by comparing (2.9) for the DCT with (2.7) for the DChT we see that the DChT
is equivalent to a DCT followed by a multiplication of the kth coefficient by εk

N .
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A DCT can be carried out in O(N logN) arithmetic operations using a fast
Fourier transform (FFT) [1, 35] or using the recent algorithm of Steidl and Tasche
[33]. Such an O(N logN) algorithm is called a fast cosine transform (FCT). This
also provides us with a fast Chebyshev transform (FChT). We use an upper bound of
the form αN log2N + βN for the number of floating point operations (flops) for one
FChT of size N , or its inverse. The lower order term is included because we are often
interested in small size transforms, for which this term may be dominant.

Example 2.3 (DLT). The Legendre polynomials are orthogonal with respect to
the uniform weight function 1 on [−1, 1], and they may be defined recursively by

Pk+1(x) =
2k + 1

k + 1
x · Pk(x)− k

k + 1
Pk−1(x), P0(x) = 1, P1(x) = x.(2.10)

The Legendre polynomials are one of the most important examples of orthogonal
polynomials, as they occur as zonal polynomials in the spherical harmonic expansion of
functions on the sphere. Our parallel implementation of the Driscoll–Healy algorithm,
to be described later, focuses on the case of Legendre polynomials. For efficiency
reasons, we sample these polynomials at the Chebyshev points. In this paper, we
call the discrete orthogonal polynomial transform for the Legendre polynomials, with
sample weights 1/N and with the Chebyshev points as sample points, the DLT.

One of the important properties of orthogonal polynomials we will use is the
following lemma.

Lemma 2.4 (Gaussian quadrature). Let {pk} be an orthogonal polynomial se-
quence for a nonnegative integrable weight function ω(x), and let zN0 , . . . , z

N
N−1 be

the roots of pN . Then there exist numbers w
N
0 , . . . , w

N
N−1 > 0, such that for any

polynomial f of degree less than 2N we have

∫ 1

−1
f(x)ω(x)dx =

N−1∑
j=0

wNj f(z
N
j ).

The numbers wNj are unique and are called the Gaussian weights for the sequence
{pk}.
Proof. See, e.g., [10, Theorem 6.1].
Example 2.5. The Gaussian weights for the Chebyshev polynomials with weight

function π−1(1− x2)− 1
2 are wNj = 1/N . So for any polynomial f of degree less than

2N we have

1

π

∫ 1

−1

f(x)dx√
1− x2 =

1

N

N−1∑
j=0

f(xNj ),(2.11)

where xNj = cos (2j+1)π2N are the Chebyshev points.
Another property of orthogonal polynomials that we will need is the existence

of a three-term recurrence relation, such as (2.4) for the Chebyshev polynomials and
(2.10) for the Legendre polynomials.

Lemma 2.6 (three-term recurrence). Let {pk} be an orthogonal polynomial se-
quence for a nonnegative integrable weight function. Then {pk} satisfies a three-term
recurrence relation

pk+1(x) = (Akx+Bk)pk(x) + Ckpk−1(x),(2.12)

where Ak, Bk, Ck are real numbers with Ak �= 0 and Ck �= 0.
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Proof. See, e.g., [10, Theorem 4.1].
The Clebsch–Gordan property follows from, and is similar to, the three-term

recurrence.
Corollary 2.7 (Clebsch–Gordan). Let {pk} be an orthogonal polynomial se-

quence with a nonnegative integrable weight function. Then for any polynomial Q of
degree m we have

pk ·Q ∈ spanR{pk−m, . . . , pk+m}.
Proof. Rewrite the recurrence (2.12) in the form x · pk = A−1

k (pk+1 − Bkpk −
Ckpk−1), and use induction on m.

Iterating the three-term recurrence also gives a more general recurrence between
polynomials in an orthogonal polynomial sequence. Define the associated polynomials
Ql,m, Rl,m for the orthogonal polynomial sequence {pl} by the following recurrences
on m, which are shifted versions of the recurrence for pl. See, e.g., [4, 5].

Ql,m(x) = (Al+m−1x+Bl+m−1)Ql,m−1(x) + Cl+m−1Ql,m−2(x),
Ql,0(x) = 1, Ql,1(x) = Alx+Bl,
Rl,m(x) = (Al+m−1x+Bl+m−1)Rl,m−1(x) + Cl+m−1Rl,m−2(x),
Rl,0(x) = 0, Rl,1(x) = Cl.

(2.13)

Lemma 2.8 (generalized three-term recurrence). The associated polynomials sat-
isfy degQl,m = m, degRl,m ≤ m− 1, and for l ≥ 1 and m ≥ 0,

pl+m = Ql,m · pl +Rl,m · pl−1.(2.14)

Proof. Equation (2.14) follows by induction on m with the case m = 1 being the
original three-term recurrence (2.12).

In the case where the pl are the Legendre polynomials, the associated polynomials
should not be confused with the associated Legendre functions, which in general are
not polynomials.

2.2. Derivation of the Driscoll–Healy algorithm. The Driscoll–Healy algo-
rithm [13, 14] allows one to compute orthogonal polynomial transforms at any set of
N sample points, in O(N log2N) arithmetic operations. The core of this algorithm
consists of an algorithm to compute orthogonal polynomial transforms in the special
case where the sample points are the Chebyshev points and the sample weights are
1/N . For simplicity we restrict ourselves to this special case, and, furthermore, we
assume that N is a power of 2. In Appendix A, we sketch extensions to more general
problems.

Using the relation

f · pl+m = Ql,m · (f · pl) +Rl,m · (f · pl−1),(2.15)

derived from the three-term recurrence (2.14), we may formulate a strategy for com-
puting all the polynomials f · pl, 0 ≤ l < N , in log2N stages.

• At stage 0, compute f · p0 and f · p1.
• At stage 1, use (2.15) with l = 1 and m = N/2− 1 or m = N/2 to compute

f · pN
2
= Q1,N2 −1 · (f · p1) +R1,N2 −1 · (f · p0),

f · pN
2 +1

= Q1,N2
· (f · p1) +R1,N2 · (f · p0).• In general, at each stage k, 1 ≤ k < log2N , similarly as before, use (2.15)

with l = 2q(N/2k)+1, 0 ≤ q < 2k−1, and m = N/2k−1 or N/2k, to compute
the polynomial pairs
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f · p N
2k
, f · p N

2k
+1; f · p 3N

2k
, f · p 3N

2k
+1; · · · ; f · p (2k−1)N

2k

, f · p (2k−1)N

2k
+1

.

The problem with this strategy is that computing a full representation of each
polynomial f ·pl generates much more data at each stage than is needed to compute the
final output. To overcome this problem, the Driscoll–Healy algorithm uses Chebyshev
truncation operators to discard unneeded information at the end of each stage. Let
f =

∑
k≥0 bkTk be a polynomial, of any degree, written in the basis of Chebyshev

polynomials, and let n be a positive integer. Then the truncation operator Tn applied
to f is defined by

Tnf =

n−1∑
k=0

bkTk.(2.16)

The important properties of Tn are given in Lemma 2.9.
Lemma 2.9. Let f and Q be polynomials. Then the following hold.

1. T1f =
∫ 1
−1 f(x)ω(x)dx, where ω(x) = π

−1(1− x2)− 1
2 .

2. If m ≤ n, then TmTn = Tm.
3. If degQ ≤ m ≤ n, then Tn−m(f ·Q) = Tn−m[(Tnf) ·Q].
Proof. Part 1 follows from the orthogonality of Chebyshev polynomials, as T1f

is just the constant term of f in its expansion in Chebyshev polynomials. Part 2 is
a trivial consequence of the definition of truncation operators. For part 3 we assume
that f =

∑
k≥0 bkTk is a polynomial and that degQ ≤ m ≤ n. By Corollary 2.7, Tk ·Q

is in the linear span of Tk−m, . . . , Tk+m, so Tn−m(Tk ·Q) = 0 for k ≥ n. Therefore,

Tn−m(f ·Q) = Tn−m

∑
k≥0

bkTk ·Q

 = Tn−m

(
n−1∑
k=0

bkTk ·Q
)

= Tn−m[(Tnf)·Q].

As a corollary of part 1 of Lemma 2.9, we see how we can retrieve the discrete
orthogonal polynomial transform from the f · pl’s computed by the strategy above by
using a simple truncation.

Corollary 2.10. Let f be the unique polynomial of degree less than N such that
f(xNj ) = fj, 0 ≤ j < N . Let {pl} be an orthogonal polynomial sequence. Then

f̂l = T1(f · pl), 0 ≤ l < N,
where the f̂l form the discrete orthogonal polynomial transform of f of size N with
respect to the sample points xNj and sample weights 1/N .
Proof. This follows from the definition of discrete orthogonal polynomial trans-

forms, the Gaussian quadrature rule (2.11) for Chebyshev polynomials applied to the
function f · pl, and Lemma 2.9,

f̂l =
1

N

N−1∑
j=0

f(xNj )pl(x
N
j ) =

1

π

∫ 1

−1

f(x)pl(x)√
1− x2 dx = T1(f · pl).

The key property of the truncation operators Tn is the “aliasing” property (part 3
of Lemma 2.9), which states that we may use a truncated version of f when computing
a truncated product of f and Q. For example, if we wish to compute the truncated
product T1(f · pl) with l,deg f < N then, because deg pl = l, we may apply part 3 of
Lemma 2.9 with m = l and n = l + 1 to obtain

f̂l = T1(f · pl) = T1[(Tl+1f) · pl].
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Thus we need to know only the first l + 1 Chebyshev coefficients of f to compute f̂l.
The Driscoll–Healy algorithm follows the strategy described at the start of this

section, but it computes truncated polynomials

ZKl = TK(f · pl)(2.17)

for various values of l and K, instead of the original polynomials f · pl. The input is
the polynomial f , and the output is f̂l = T1(f · pl) = Z1l , 0 ≤ l < N .

Each stage of the algorithm uses truncation operators to discard unneeded infor-
mation, which keeps the problem size down. Instead of using the generalized three-
term recurrence (2.15) directly, each stage uses truncated versions. Specifically, (2.15)
with m = K − 1,K and part 3 of Lemma 2.9 with m = K and n = 2K imply the
following recurrences for the ZKl :

ZKl+K−1 = TK [Z2Kl ·Ql,K−1 + Z2Kl−1 ·Rl,K−1],(2.18)

ZKl+K = TK [Z2Kl ·Ql,K + Z2Kl−1 ·Rl,K ].(2.19)

The algorithm proceeds in log2N +1 stages, as shown in Algorithm 2.1. The organi-
zation of the computation is illustrated in Figure 2.1.

Algorithm 2.1 Polynomial version of the Driscoll–Healy algorithm.

INPUT (f0, . . . , fN−1): Polynomial defined by fj = f(xNj ); N is a power of 2.

OUTPUT (f̂0, . . . , f̂N−1): Transformed polynomial with f̂l = T1(f · pl) = Z1
l .

STAGES
0. Compute ZN0 ← f · p0 and ZN1 ← TN (f · p1).
k. for k = 1 to log2N − 1 do

K ← N
2k

for l = 1 to N − 2K + 1 step 2K do
(a) Use recurrence (2.18) and (2.19) to compute new polynomials.

ZKl+K−1 ← TK
(
Z2K
l ·Ql,K−1 + Z2K

l−1 ·Rl,K−1

)
ZKl+K ← TK

(
Z2K
l ·Ql,K + Z2K

l−1 ·Rl,K
)

(b) Truncate old polynomials.
ZKl−1 ← TKZ2K

l−1

ZKl ← TKZ2K
l

log2N . for l = 0 to N − 1 do

f̂l ← Z1
l

2.3. Data representation and recurrence procedure. To complete our de-
scription of the Driscoll–Healy algorithm, we still need to specify how to represent
the polynomials in the algorithm and to describe the methods used to multiply two
polynomials and to apply the truncation operators TK . This is done in the following
subsections.

2.3.1. Chebyshev representation of polynomials. Truncation of a polyno-
mial requires no computation if the polynomial is represented by the coefficients of its
expansion in Chebyshev polynomials. Therefore, we use the Chebyshev coefficients
zln defined by

ZKl =

K−1∑
n=0

zlnTn(2.20)
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4 6 8
stage 4: output

stage 3

stage 2

stage 1

stage 0

1

4

8

2

16

K

0 2 l10 12 14

Fig. 2.1. Computation of the truncated polynomials ZKl for N = 16. Each bar represents the

polynomials ZKl for one value of l. The height of the bar represents the initial number of Chebyshev
coefficients. At each stage, the number of coefficients is reduced as indicated by the gray scales.

to represent all the polynomials ZKl appearing in the algorithm. Such a representation
of a polynomial is called the Chebyshev representation.

The input polynomial f of degree less thanN is given as the vector f = (f0, . . . , fN−1)
of values fj = f(xNj ). This is called the point-value representation of f . In stage 0,

we convert ZN0 = TN (f · p0) = f · p0 and ZN1 = TN (f · p1) to their Chebyshev rep-
resentations. For f · p0 this can be done by a Chebyshev transform on the vector of
function values with the input values multiplied by the constant p0. For f · p1 we also
use a Chebyshev transform of size N , even though f · p1 may have degree N , rather
than N − 1. This poses no problem, because applying part 4 of Lemma 2.11 from the
next subsection with h = f · p1 and K = N proves that f · p1 agrees with ZN1 at the
sampling points xNj . Stage 0 becomes the following.

Stage 0. Compute the Chebyshev representation of ZN0 and ZN1 .
(a) (z00 , . . . , z

0
N−1)← Chebyshev(f0p0, . . . , fN−1p0)

(b) (z10 , . . . , z
1
N−1)← Chebyshev(f0p1(xN0 ), . . . , fN−1p1(x

N
N−1))

Stage 0 takes a total of 2αN log2N + 2βN + 2N flops, where the third term
represents the 2N flops needed to multiply f with p0 and p1.

2.3.2. Recurrence using Chebyshev transforms. To apply the recurrences
(2.18) and (2.19) efficiently, we do the following.

1. Apply inverse Chebyshev transforms of size 2K to bring the polynomials
Z2Kl−1, Z

2K
l into point-value representation at the points x2Kj , 0 ≤ j < 2K.

2. Perform the multiplications and additions.
3. Apply a forward Chebyshev transform of size 2K to bring the result into

Chebyshev representation.
4. Truncate the results to degree less than K.

This procedure replaces the polynomial multiplications in the recurrences (2.18)
and (2.19) by a slightly different operation. Because the multiplications are made in
only 2K points, whereas the degree of the resulting polynomial could be 3K − 1, we
must verify that the end result is the same. To describe the operation formally, we
introduce the Lagrange interpolation operators Sn for positive integers n. For any
polynomial h, the Lagrange interpolation polynomial Snh is the polynomial of degree
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less than n which agrees with h at the points xn0 , . . . , x
n
n−1. The important properties

of Sn are given in Lemma 2.11.
Lemma 2.11. Let g and h be polynomials. Then the following hold.
1. If deg h < n, then Snh = h.
2. Sn(g · h) = Sn((Sng) · (Snh)).
3. Let m ≤ n. If deg h ≤ m+ n, then Tn−mh = Tn−mSnh.
4. If deg h = n, then Snh = Tnh.
Proof. Parts 1 and 2 are easy. To prove part 3 assume that deg h ≤ m + n. By

long division, there is a polynomial Q of degree at most m such that h = Snh+Tn ·Q.
Applying Tn−m and using part 3 of Lemma 2.9, we obtain

Tn−mSnh = Tn−mh− Tn−m[Tn ·Q] = Tn−mh− Tn−m[(TnTn) ·Q] = Tn−mh,

since TnTn = 0. For part 4 we note that degSnh < n, and we use part 3 with m = 0
to obtain Snh = TnSnh = Tnh.

From the recurrences (2.18) and (2.19) and part 3 of Lemma 2.11 with m = K
and n = 2K, it follows that

ZKl+K−1 = TK [S2K(Z2Kl ·Ql,K−1) + S2K(Z2Kl−1 ·Rl,K−1)],(2.21)

ZKl+K = TK [S2K(Z2Kl ·Ql,K) + S2K(Z2Kl−1 ·Rl,K)].(2.22)

These equations are exactly the procedure described above. The inner loop of stage
k of Algorithm 2.1 becomes the following.

(a) Compute the Chebyshev representation of ZKl+K−1 and ZKl+K .

(zl+K−1
0 , . . . , zl+K−1

K−1 ; zl+K0 , . . . , zl+KK−1)

← RecurrenceKl (z
l−1
0 , . . . , zl−1

2K−1; z
l
0, . . . , z

l
2K−1)

(b) Compute the Chebyshev representation of ZKl−1 and ZKl .

Discard (zl−1
K , . . . , zl−1

2K−1) and (zlK , . . . , z
l
2K−1)

Algorithm 2.2 describes in detail the recurrence procedure, which takes 4(α · 2K
log2 2K + β · 2K) + 12K = 8αK log2K + (8α+ 8β + 12)K flops.

2.4. Early termination. At late stages in the Driscoll–Healy algorithm, the
work required to apply the recursion amongst the ZKl is larger than that required
to finish the computation using a naive matrix-vector multiplication. It is then more
efficient to use the vectors ZKl computed so far directly to obtain the final result, as
follows.

Let qnl,m and rnl,m denote the Chebyshev coefficients of the polynomials Ql,m and
Rl,m, respectively, so that

Ql,m =

m∑
n=0

qnl,mTn, Rl,m =

m−1∑
n=0

rnl,mTn.(2.23)

The problem of finishing the computation at the end of stage k = log2(N/M),

when K = M , is equivalent to finding f̂l = zl0 for 0 ≤ l < N , given the data zln,
zl−1n , 0 ≤ n < M , l = 1,M + 1, 2M + 1, . . . , N −M + 1. Our method of finishing
the computation is to use part 1 of Lemma 2.12, which follows. Part 2 of this lemma
can be used to halve the number of computations in the common case, where the
polynomial recurrence (2.12) has a coefficient Bk = 0 for all k.
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Algorithm 2.2 Recurrence procedure using the Chebyshev transform.

CALL RecurrenceKl (f̃0, . . . , f̃2K−1; g̃0, . . . , g̃2K−1).

INPUT f̃ = (f̃0, . . . , f̃2K−1) and g̃ = (g̃0, . . . , g̃2K−1): First 2K Chebyshev coefficients of input

polynomials Z2K
l−1 and Z2K

l ; K is a power of 2.

OUTPUT ũ = (ũ0, . . . , ũK−1) and ṽ = (ṽ0, . . . , ṽK−1): First K Chebyshev coefficients of output

polynomials ZKl+K−1 and ZKl+K .

STEPS
1. Transform f̃ and g̃ to point-value representation.

(f0, . . . , f2K−1)← Chebyshev−1(f̃0, . . . , f̃2K−1)
(g0, . . . , g2K−1)← Chebyshev−1(g̃0, . . . , g̃2K−1)

2. Perform the recurrence.
for j = 0 to 2K − 1 do

uj ← Ql,K−1(x
2K
j ) gj +Rl,K−1(x

2K
j ) fj

vj ← Ql,K(x
2K
j ) gj +Rl,K(x

2K
j ) fj

3. Transform u and v to Chebyshev representation.
(ũ0, . . . , ũ2K−1)← Chebyshev(u0, . . . , u2K−1)
(ṽ0, . . . , ṽ2K−1)← Chebyshev(v0, . . . , v2K−1)

4. Discard (ũK , . . . , ũ2K−1) and (ṽK , . . . , ṽ2K−1).

Lemma 2.12.
1. If l ≥ 1 and 0 ≤ m < M , then

f̂l+m =

m∑
n=0

1

εn
(zlnq

n
l,m + zl−1n rnl,m).(2.24)

2. If pl satisfies a recurrence of the form pl+1(x) = Alxpl(x) + Clpl−1(x), then

qnl,m = 0 if n−m is odd, and
rnl,m = 0 if n−m is even.

Proof. Applying TM−m to both sides of (2.15) and using part 3 of Lemma 2.9
with n = M gives ZM−m

l+m = TM−m(ZMl ·Ql,m + ZMl−1 ·Rl,m). Truncating again, now

using T1, we see that f̂l+m = Z1l+m is the constant term of the Chebyshev expansion

of ZMl ·Ql,m + ZMl−1 ·Rl,m. To find this constant term expressed in the Chebyshev

coefficients of ZMl , Z
M
l−1 and of Ql,m, Rl,m, we substitute the expansions (2.20) and

(2.23) and rewrite the product of sums by using the identity Tj ·Tk = 1
2 (T|j−k|+Tj+k).

For the second part, we assume that pl satisfies the given recurrence. Then Ql,m is
odd or even according to whether m is odd or even, and Rl,m is even or odd according
to whether m is odd or even, which can be verified by induction on m. This implies
that the Chebyshev expansion of Ql,m must contain only odd or even coefficients,
respectively, and the reverse must hold for Rl,m.

Assuming that the assumptions of part 2 of the lemma are valid, i.e., each term
of (2.24) has either qnl,m = 0 or rnl,m = 0, and that the factor 1/εn has been absorbed
in the precomputed values qnl,m and rnl,m, the total number of flops needed to compute

f̂l+m is 2m+ 1.

2.5. Complexity of the algorithm. Algorithm 2.3 gives the sequential Driscoll–
Healy algorithm in its final form. The total number of flops can be computed as
follows. Stage 0 takes 2αN log2N + (2β + 2)N flops. Stage k invokes N/(2K) times
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the recurrence procedure, which has cost 8αK log2K+(8α+8β+12)K flops, so that
the total cost of that stage is 4αN log2K + (4α + 4β + 6)N flops. Adding the costs
for K = N/2, . . . ,M gives 2αN [log22N − log22M ] + (2α+ 4β + 6)N [log2N − log2M ]
flops. In the last stage, output values have to be computed for m = 1, . . . ,M − 2, for
each of the N/M values of l. This gives a total of N

M

∑M−2
m=1 (2m + 1) = NM − 2N

flops. Summing the costs gives

TDriscoll−Healy =N [2α(log22N − log22M) + (4α+ 4β + 6) log2N(2.25)

− (2α+ 4β + 6) log2M +M + 2β].

Algorithm 2.3 Driscoll–Healy algorithm.

INPUT f = (f0, . . . , fN−1): Real vector with N a power of 2.

OUTPUT f̂ = (f̂0, . . . , f̂N−1): Discrete orthogonal polynomial transform of f .

STAGES
0. Compute the Chebyshev representation of ZN0 and ZN1 .

(a) (z00 , . . . , z
0
N−1)← Chebyshev(f0p0, . . . , fN−1p0)

(b) (z10 , . . . , z
1
N−1)← Chebyshev(f0p1(xN0 ), . . . , fN−1p1(x

N
N−1))

k. for k = 1 to log2
N
M

do

K ← N
2k

for l = 1 to N − 2K + 1 step 2K do
(a) Compute the Chebyshev representation of ZKl+K−1 and ZKl+K

(zl+K−1
0 , . . . , zl+K−1

K−1 ; zl+K0 , . . . , zl+KK−1)

← RecurrenceKl (z
l−1
0 , . . . , zl−1

2K−1; z
l
0, . . . , z

l
2K−1)

(b) Compute the Chebyshev representation of ZKl−1 and ZKl .

Discard (zl−1
K , . . . , zl−1

2K−1) and (zlK , . . . , z
l
2K−1)

log2
N
M

+ 1. Compute the remaining values.
for l = 1 to N −M + 1 step M do

f̂l−1 ← zl−1
0

f̂l ← zl0
for m = 1 to M − 2 do

f̂l+m ← zl0q
0
l,m + zl−1

0 r0l,m + 1
2

∑m

n=1
(zlnq

n
l,m + zl−1

n rnl,m)

The optimal stage at which to halt the Driscoll–Healy algorithm and complete the
computation using Lemma 2.12 depends on α and β and can be obtained theoretically.
The derivative of (2.25) as a function of M equals zero if and only if

M ln2 2− 4α lnM = (2α+ 4β + 6) ln 2.(2.26)

In our implementation α = 2.125 and β = 5; thus the minimum is M = 128.
In practice, the optimal choice of M will depend not only on the number of flops
performed, but also on the architecture of the machine used. The machine-tuned
basic linear algebra subprograms (BLAS) exploit the memory hierarchy of a computer,
and using the BLAS may cause a shift in the optimal value for M . For example,
early termination can be implemented by using a level 2 BLAS operation for matrix-
vector multiplication, which is more efficient than the level 1 vector operations of a
straightforward implementation of the Driscoll–Healy algorithm. This will increase
the optimal value for M .

3. The basic parallel algorithm and its implementation. We designed our
parallel algorithm using the BSP model, which provides a simple and effective way of
developing portable parallel algorithms. The BSP model does not favor any specific
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computer architecture, and it includes a simple cost function that enables us to choose
between algorithms without actually having to implement them.

In the following subsections, we give a brief description of the BSP model, and
then we present the framework in which we develop our parallel algorithm, including
the data structures and data distributions used. This leads to a basic parallel algo-
rithm. From now on we concentrate on the DLT instead of the more general discrete
orthogonal polynomial transform.

3.1. The BSP model. In the BSP model [34], a computer consists of a set of
p processors, each with a private memory, connected by a communication network
that allows processors to access the memories of other processors. In the model,
algorithms consist of a sequence of supersteps. In the variant of the model we use, a
superstep is either a number of computation steps or a number of communication steps.
Global synchronization barriers (i.e., places of the algorithm where all processors must
synchronize with each other) precede and/or follow a communication superstep. Using
supersteps imposes a sequential structure on parallel algorithms, and this greatly
simplifies the design process.

A BSP computer can be characterized by four global parameters: p, the number
of processors; s, the computing speed in flop/s; g, the communication time per data
element sent or received, measured in flop time units; and l, the synchronization time,
also measured in flop time units. Algorithms can be analyzed by using the parameters
p, g, and l; the parameter s just scales the time. In this work, we are able to avoid
all synchronizations at the end of computation supersteps. Therefore, the time of a
computation superstep is simply w, the maximum amount of work (in flops) of any
processor. The time of a communication superstep is hg+ l, where h is the maximum
number of data elements sent or received by any processor. The total execution
time of an algorithm (in flops) can be obtained by adding the times of the separate
supersteps. This yields an expression of the form a + bg + cl. For further details
and some basic techniques, see [6]. BSPlib [21] is a standard library which enables
parallel programming in BSP style. Available implementations are the Oxford BSP
toolset [22] and the Paderborn University BSP library [8].

3.2. Data structures and data distributions. At each stage k, 1 ≤ k ≤
log2

N
M , the number of intermediate polynomial pairs doubles as the number of expan-

sion coefficients halves. Thus, at every stage of the computation, all the intermediate
polynomials can be stored in two arrays of size N . We use an array f to store the
Chebyshev coefficients of the polynomials Z2Kl and an array g to store the coefficients
of Z2Kl+1 for l = 0, 2K, . . . , N − 2K with K = N/2k in stage k. We also need some

extra work space to compute the coefficients of the polynomials Z2Kl+K and Z2Kl+K+1.
For this we use two auxiliary arrays, u and v, of size N .

The data flow of the algorithm (see Figure 3.1) suggests that we distribute all
the vectors by blocks, i.e., assign one block of consecutive vector elements to each
processor. This works well if p is a power of two, which we will assume from now
on. Since both N and p are thus powers of two, each processor obtains exactly N/p
elements. For the general case, the block distribution is defined as follows.

Definition 3.1 (block distribution). Let f be a vector of size N . We say that f is
block distributed over p processors if, for all j, the element fj is stored in Proc(j div b)
and has local index j′ = j mod b, where b = 
N/p� is the block size.

The precomputed data required to perform the recurrence of stage k are stored
in two-dimensional arrays Q and R, each of size 2 log2(N/M)×N . Each pair of rows
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Fig. 3.1. Main data structure and data distribution in the parallel fast Legendre transform
(FLT) algorithm for p = 4. Arrays f and g contain the Chebyshev coefficients of the polynomials
Z2K
l and Z2K

l+1, which are already available at the start of the stage. Arrays u and v contain Z2K
l+K

and Z2K
l+K+1, which become available at the end of the stage. Arrays g and v are not depicted. Each

array is divided into four local subarrays by using the block distribution.
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Fig. 3.2. Data structure and distribution of the precomputed data needed in the recurrence with
N = 64, M = 8, and p = 4. Data are stored in two-dimensional arrays Q and R; one such array is
shown. Each pair of rows in an array stores the data needed for one stage k.

in Q stores data needed for one stage k by

Q[2k − 2, l + j] = Ql+1,K−1(x2Kj ),(3.1)

Q[2k − 1, l + j] = Ql+1,K(x
2K
j )

for l = 0, 2K, . . . , N − 2K, j = 0, 1, . . . , 2K − 1, where K = N/2k. Thus polynomials
Ql+1,K−1 are stored in row 2k− 2, and polynomials Ql+1,K are stored in row 2k− 1.
This is shown in Figure 3.2. The polynomials Rl+1,K−1 and Rl+1,K are stored in
the same way in array R. Note that the indexing of the implementation arrays
starts at zero. Each row of Q and R is distributed by the block distribution, i.e.,
Q[i, j],R[i, j] ∈ Proc(j div N

p ), so that the recurrence is a local operation.
The termination coefficients qnl,m and rnl,m for l = 1,M+1, 2M+1, . . . , N−M+1,

m = 1, 2, . . . ,M − 2, and n = 0, 1, . . . ,m are stored in a two-dimensional array T of
size N/M × (M(M − 1)/2 − 1). The coefficients for one value of l are stored in row
(l− 1)/M of T. Each row has the same internal structure: the coefficients are stored
in increasing order of m, and coefficients with the same m are ordered by increasing
n. (This format is commonly used to store lower triangular matrices.) By part 2 of
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Fig. 3.3. Data structure and distribution of the precomputed data for termination with N = 64,
M = 8, and p = 4. The coefficients qnl,m and rnl,m are stored in a two-dimensional array T. In the

picture, qn denotes qnl,m, and rn denotes rnl,m.

Lemma 2.12, either qnl,m = 0 or rnl,m = 0 for each n and m, so we need to store only
the value that can be nonzero. Since this depends on whether n−m is even or odd,
we obtain an alternating pattern of qnl,m’s and r

n
l,m’s. Figure 3.3 illustrates this data

structure.
The termination stage can be kept local ifM ≤ N/p. This requires that each row

of T is assigned to one processor, namely, to the processor that holds the subvectors
for the corresponding value of l. Each column of T is in the block distribution,
i.e., T[i, j] ∈ Proc(i div N

pM ). As a result, the N/M rows of T are distributed in
consecutive blocks of rows.

3.3. The basic parallel algorithm. To formulate our basic parallel algorithm,
we introduce the following conventions and subroutines.
Processor identification. The total number of processors is p. The processor

identification number is s with 0 ≤ s < p.
Supersteps. Labels indicate a superstep and its type: (Comp) computation su-

perstep, (Comm) communication superstep, and (CpCm) subroutine containing both
computation and communication supersteps. Global synchronizations are stated ex-
plicitly. Supersteps inside loops are executed repeatedly, though they are numbered
only once.
Indexing. All the indices are global. This means that array elements have a

unique index which is independent of the processor that owns it. This enables us to
describe variables and gain access to arrays in an unambiguous manner, even though
the array is distributed and each processor has only part of it.
Vectors and subroutine calls. All vectors are indicated in boldface. To specify part

of a vector we write its first element in boldface, e.g., fj; the vector size is explicitly
written as a parameter.
Communication. Communication between processors is done by using

gj ← Put(pid, n, fi).

This operation puts n elements of vector f , starting from element i, into processor
pid and stores them there in vector g starting from element j.
Copying a vector. The operation

gj ← Copy(n, fi)

denotes the copy of n elements of vector f , starting from element i, to a vector g
starting from element j.
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Subroutine name ending in 2. Subroutines with a name ending in 2 perform an
operation on two vectors instead of one. For example,

(fi,gj)← Copy2(n,uk,vl)

is an abbreviation for

fi ← Copy(n,uk)

gj ← Copy(n,vl).

FChT. The subroutine

BSP FChT(s0, s1, p1, sign, n, f)

replaces the input vector f of size n by its Chebyshev transform if sign = 1, or by its
inverse Chebyshev transform if sign = −1. A group of p1 processors starting from
processor s0 work together; s1 with 0 ≤ s1 < p1 denotes the processor number within
the group. The original processor number equals s = s0 + s1. For a group of size
p1 = 1, this subroutine reduces to the sequential FChT.

Truncation. The subroutine

f ← BSP Trunc(s0, s1, p1, n,u)

truncates two polynomials of degree less than n which are stored as vectors f and u of
length n. The subroutine copies the first half of u into the second half of f . A group
of p1 processors starting from processor s0 work together, similar to the BSP FChT
operation. For a group of size p1 = 1, the subroutine reduces to a sequential truncation
of one or more complete polynomials. In Figure 3.1, the truncation operation is
depicted by arrows. Algorithm 3.1 describes subroutine BSP Trunc2 which carries out
two truncation operations simultaneously. In doing so, we save one synchronization.

Algorithm 3.1 Truncation procedure for the FLT.

CALL (f ,g)← BSP Trunc2(s0, s1, p1, n,u,v).

DESCRIPTION
if p1 = 1 then

1Comp Sequential truncation.
(fn

2
,gn

2
)← Copy2(n

2
,u,v)

else
2Comm Parallel truncation.

if s1 <
p1
2
then

(fs1 n
p1

+n
2
,gs1

n
p1

+n
2
)← Put2(s0 + s1 +

p1
2
, n
p1
,us1

n
p1
,vs1

n
p1

)

Synchronize
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Algorithm 3.2 Basic parallel algorithm for the FLT.

CALL BSP FLT(s, p,N,M, f).

ARGUMENTS
s: Processor identification; 0 ≤ s < p.
p: Number of processors; p is a power of 2 with p < N .
N : Transform size; N is a power of 2 with N ≥ 4.
M : Termination block size; M is a power of 2 with M ≤ min(N/2, N/p).
f = (f0, . . . , fN−1): Real vector of size N (block distributed).

OUTPUT f ← f̂ .

DESCRIPTION
1Comp Stage 1: Initialization.

for j = sN
p
to (s+1)N

p
− 1 do

gj ← xNj fj
uj ← (Q[0, j] · xNj +R[0, j]) · fj
vj ← (Q[1, j] · xNj +R[1, j]) · fj

2CpCm Stage 1: Chebyshev transform.
BSP FChT2(0, s, p, 1, N, f ,g)
BSP FChT2(0, s, p, 1, N,u,v)

3CpCm Stage 1: Truncation.
(f ,g)← BSP Trunc2(0, s, p,N,u,v)

for k = 2 to log2
N
M

do

K ← N
2k

p1 ← max( p

2k−1 , 1)

s0 ← (s div p1)p1
s1 ← s mod p1

4Comp Stage k: Copy.

(u
sN

p
,v

sN
p
)← Copy2(N

p
, f

sN
p
,g

sN
p
)

for l = s0
N
p
to (s0 + 1)N

p
− 2K

p1
step 2K

p1
do

5CpCm Stage k: Inverse Chebyshev transform.
BSP FChT2(s0, s1, p1,−1, 2K,ul,vl)

6Comp Stage k: Recurrence.

for j = s1
N
p
to s1

N
p
+ 2K

p1
− 1 do

a1← Q[2k − 2, l + j] · vl+j +R[2k − 2, l + j] · ul+j
a2← Q[2k − 1, l + j] · vl+j +R[2k − 1, l + j] · ul+j
ul+j ← a1
vl+j ← a2

7CpCm Stage k: Chebyshev transform.
BSP FChT2(s0, s1, p1, 1, 2K,ul,vl)

8CpCm Stage k: Truncation.
(f ,g)← BSP Trunc2(s0, s1, p1, 2K,ul,vl)

9Comp Stage log2
N
M

+ 1: Termination.

for l = sN
p
to (s+1)N

p
−M step M do

fl ← Terminate(l,M, fl,gl)

The basic parallel algorithm for the FLT is presented as Algorithm 3.2. At each
stage k ≤ log2(N/M) of the algorithm, there are 2k−1 independent problems. For
k ≤ log2 p, there are more processors than problems, so the processors will have to
work in groups. Each group of p1 = p/2k−1 > 1 processors handles one subvector
of size 2K, K = N/2k; each processor handles a block of 2K/p1 = N/p vector
components. In this case, the l-loop has only one iteration, namely, l = s0 ·N/p, and
the j-loop has N/p iterations, starting with j = s1 ·N/p, so that the indices l+j start
with (s0 + s1)N/p = s ·N/p and end with (s0 + s1)N/p+N/p− 1 = (s+ 1)N/p− 1.
Interprocessor communication is needed, but it occurs only in two instances:
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• inside the parallel FChTs (in supersteps 2, 5, 7); see section 4;
• at the end of each stage (in supersteps 3, 8).

For k > log2 p, the length of the subvectors involved becomes 2K ≤ N/p. In
that case, p1 = 1, s0 = s, and s1 = 0, and each processor has one or more complete
problems to deal with, so that the processors can work independently and without
communication. Note that the index l runs only over the local values sN/p, sN/p+2K,
. . ., (s+ 1)N/p− 2K instead of over all values of l.

The original stages 0 and 1 of Algorithm 2.3 are combined into one stage and then
performed efficiently as follows. First, in superstep 1, the polynomials ZN1 , ZNN/2, and

ZNN/2+1 are computed directly from the input vector f . This is possible because the

point-value representation of ZN1 = TN (f · P1) = TN (f · x) needed by the recurrences
is the vector of fj · xNj , 0 ≤ j < N ; see subsection 2.3.1. In superstep 2, polyno-

mials ZN0 = f , ZN1 = g, ZNN/2 = u, and ZNN/2+1 = v are transformed to Chebyshev
representation; then, in superstep 3, they are truncated to obtain the input for stage 2.

The main loop works as follows. In superstep 4, the polynomials Z2Kl , with
K = N/2k and l = 0, 2K, . . . , N − 2K, are copied from the array f into the auxiliary
array u, where they are transformed into the polynomials Z2Kl+K in supersteps 5–7.

Similarly, the polynomials Z2Kl+1 are copied from g into v and then transformed into the

polynomials Z2Kl+K+1. Note that u corresponds to the lower value of l, so that in the
recurrence the components of u must be multiplied by values from R. In superstep 8,
all the polynomials are truncated by copying the first K Chebyshev coefficients of
Z2Kl+K into the memory space of the last K Chebyshev coefficients of Z2Kl . The same

happens to polynomials Z2Kl+K+1 and Z
2K
l+1.

The termination procedure, superstep 9, is a direct implementation of Lemma 2.12
using the data structure T described in subsection 3.2. Superstep 9 is a computation
superstep, provided the condition M ≤ N/p is satisfied. This usually holds for the
desired termination block size M . In certain situations, however, one would like to
terminate even earlier, with a block size larger than N/p. This extension is discussed
in [23].

4. Improvements of the parallel algorithm.

4.1. FChT of two vectors, FChT2. The efficiency of the FLT algorithm de-
pends strongly on the FCT algorithm used to perform the Chebyshev transform.
There exists a substantial amount of literature on this topic and many implementa-
tions of sequential FCTs are available; see, e.g., [1, 29, 30, 33]. Parallel algorithms or
implementations have been less intensively studied; see [31] for a recent discussion.

In the FLT algorithm, the Chebyshev transforms always come in pairs, which led
us to develop an algorithm that computes two Chebyshev transforms at the same time.
The new algorithm is based on the FCT algorithm given by Van Loan [35, Algorithm
4.4.6] and the standard algorithm for computing the FFTs of two real input vectors
at the same time (see, e.g., [29]). The new algorithm employs a complex FFT, which
is advantageous in the sequential case because as a separate module the complex
FFT can easily be replaced, for instance, by a newer, more efficient FFT. Even in
the parallel case, where the parallel FFT module needs to be modified to reduce the
communication cost of the FLT, we can still make use of the techniques developed for
the parallel complex FFT and reuse parts of the FFT code; see subsection 5.4.

The Chebyshev transform is computed as follows. Let x and y be the input
vectors of length N . We view x and y as the real and imaginary parts of a complex
vector (x + i y). The algorithm has three phases. Phase 1, the packing of the input
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data into an auxiliary complex vector z of length N , is a simple permutation:{
zj = (x2j + i y2j),
zN−j−1 = (x2j+1 + i y2j+1), 0 ≤ j < N/2.(4.1)

In phase 2, the complex FFT creates a complex vector Z of length N :

Zk =

N−1∑
j=0

zje
2πijk
N , 0 ≤ k < N.(4.2)

This phase takes 4.25N log2N flops if we use a radix-4 algorithm [35]. Finally, in
phase 3 we obtain the Chebyshev transform by

(x̃k + iỹk) =
εk
2N

(e
πik
2N Zk + e

−πik
2N ZN−k), 0 ≤ k < N.(4.3)

The value ZN in (4.3) is defined as ZN = Z0 by periodic extension of (4.2). Phase 3
is efficiently performed by computing the components k and N−k together and using
symmetry properties. The cost of phase 3 is 10N flops. The total cost of the FChT2
algorithm is thus 4.25N log2N + 10N , giving an average α = 2.125 and β = 5 for a
single transform.

The verification that (4.1)–(4.3) indeed produce the Chebyshev transform is best
made in two steps. First, we prove that

e
πik
2N Zk =

N/2−1∑
j=0

[(x2j + iy2j)e
πik(4j+1)

2N + (x2j+1 + iy2j+1)e
−πik(4j+3)

2N ],(4.4)

and

e−
πik
2N ZN−k =

N/2−1∑
j=0

[(x2j + iy2j)e
−πik(4j+1)

2N + (x2j+1 + iy2j+1)e
πik(4j+3)

2N ].(4.5)

Second, we add (4.4) to (4.5) and multiply the result by εk
2N to obtain the desired

equality (2.7).
The inverse Chebyshev transform is obtained by inverting the procedure described

above. The phases are performed in the reverse order, and the operation of each phase
is replaced by its inverse. The cost of the inverse FChT algorithm is the same as that
of the FChT algorithm.

Efficient parallelization of this algorithm requires breaking open the parallel FFT
inside the FChT2 and merging parts of the FFT with the surrounding computations.
We explain this process in the following subsection.

4.2. Parallel FFT within the scope of the parallel FChT2. The FFT is
a well-known method for computing the discrete Fourier transform (4.2) of a com-
plex vector of length N in O(N logN) operations. It can concisely be written as a
decomposition of the Fourier matrix FN ,

FN = AN · · ·A8A4A2PN ,(4.6)

where FN is an N ×N complex matrix, PN is an N ×N permutation matrix corre-
sponding to the so-called bit reversal permutation, and the N × N matrices AL are
defined by

AL = IN/L ⊗BL, L = 2, 4, 8, . . . , N,(4.7)
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which is shorthand for a block-diagonal matrix diag(BL, . . . , BL) with N/L copies of
the L×L matrix BL on the diagonal. The matrix BL is known as the L×L butterfly
matrix.

This matrix decomposition naturally leads to the radix-2 FFT algorithm [11, 35].
In a radix-2 FFT of size N , the input vector z is permuted by PN and then multiplied
successively by all the matrices AL. The multiplications are carried out in log2N
stages, each with N/L times a butterfly computation. One butterfly computation
modifies L/2 pairs (zj , zj+L/2) at distance L/2 by adding a multiple of zj+L/2 to zj
and subtracting the same multiple.

Parallel radix-2 FFTs have already been discussed in the literature; see, e.g., [25].
For simplicity, we restrict ourselves in our exposition to FFT algorithms where p ≤√
N . This class of algorithms uses the block distribution to perform the short distance

butterflies with L ≤ N/p and the cyclic distribution to perform the long distance
butterflies with L > N/p. Figure 4.1(a) gives an example of the cyclic distribution,
which is defined as follows.

Definition 4.1 (cyclic distribution). Let z be a vector of size N . We say that
z is cyclically distributed over p processors if, for all j, the element zj is stored in
Proc(jmod p) and has local index j′ = j div p.

Using such a parallel FFT algorithm, we obtain a basic parallel FChT2 algorithm
for two vectors x and y of size N .

1. PACK vectors x and y as the auxiliary complex vector z by permuting them,
using (4.1).

2. TRANSFORM vector z using an FFT of size N .
(a) Perform a bit reversal permutation in z.
(b) Perform the short distance butterflies of size L = 2, 4, . . . , N/p.
(c) Permute z to the cyclic distribution.
(d) Perform the long distance butterflies of size L = 2N/p, 4N/p, . . . , N .
(e) Permute z to the block distribution.

3. EXTRACT the transforms from vector z and store them in vectors x and y.
(a) Permute z to put components j and N − j in the same processor.
(b) Compute the new values of z using (4.3).
(c) Permute z to block distribution, and store the result in vectors x and y.

The time complexity of this basic algorithm will be reduced by a sequence of
improvements as detailed in the following subsections.

4.2.1. Combining permutations. By breaking open the FFT phase inside the
parallel FChT2 algorithm, we can combine the packing permutation (1) and the bit
reversal (2(a)), thus saving one complete permutation of BSP cost 2Np g+ l. The same

can be done for (2(e)) and (3(a)).

4.2.2. Increasing the symmetry of the cyclic distribution. We can elim-
inate permutation (2(e))/(3(a)) completely by restricting the number of processors
slightly further to p ≤√N/2 and permuting the vector z in phase (2(e)) from block
distribution to a slightly modified cyclic distribution, the zig-zag cyclic distribution,
shown in Figure 4.1(b) and defined as follows.

Definition 4.2 (zig-zag cyclic distribution). Let z be a vector of size N . We
say that z is zig-zag cyclically distributed over p processors if, for all j, the element
zj is stored in Proc(jmod p) if jmod2p < p and in Proc(−jmod p) otherwise, and
has local index j′ = j div p.

In this distribution, both the components j and j + L/2 needed by the butterfly
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Fig. 4.1. (a) Cyclic distribution and (b) zig-zag cyclic distribution for a vector of size 32
distributed over four processors.

operations with L > N/p and the components j and N − j needed by the extract
operation are in the same processor; thus we avoid the permutation (2(e))/(3(a))
above, saving another 2Np g + l in BSP costs.

4.2.3. Reversing the stages for the inverse FFT. To be able to apply the
same ideas to the inverse transform we perform the inverse FFT by reversing the
stages of the FFT and inverting the butterflies, instead of taking the more common
approach of using the same FFT algorithm but replacing the powers of e

2πi
N by their

conjugates. Thus we save 6Np g+3l, both in the Chebyshev transform and its inverse.

4.2.4. Reducing the number of flops. Wherever possible we take pairs of
stages A2LAL together and perform them as one operation. The butterflies have the
form B2L(I2 ⊗ BL), which is a 2L × 2L matrix consisting of 4 × 4 blocks, each an
L/2 × L/2 diagonal submatrix. This matrix is a symmetrically permuted version of
the radix-4 butterfly matrix [35]. This approach gives both the efficiency of a radix-
4 FFT algorithm and the flexibility of treating the parallel FFT within the radix-2
framework; for example, it is possible to redistribute the data after any number of
stages and not only after an even number. The radix-4 approach reduces α from 2.5 to
2.125. An additional benefit of radix-4 butterflies is better use of the cache memory:
34 flops are performed on a quadruple of data, instead of 10 flops on a pair of data.
Thus 8.5 flops are carried out per data word loaded into the cache, instead of five
flops. This effect may be even more important than the reduction in flop count.

Since we do not use the upper half of the Chebyshev coefficients computed in the
forward transform, we can alter the algorithm to avoid computing them. This saves
4N flops in (4.3).

4.3. Main loop. The discussion that follows is only relevant in the parallel part
of the main loop, i.e., stages k ≤ log2 p, so we will restrict ourselves to these stages.
Recall that in these stages a group of p1 = p/2k−1 > 1 processors handles only one
subproblem of size 2K = 2N/2k corresponding to l = s0

N
p .

4.3.1. Modifying the truncation/copy operation. It is possible to reorga-
nize the main loop of the FLT algorithm such that the end of stage k and the start
of stage k+1 are merged into one, more efficient procedure. The current sequence of
operations is as follows.

1. Permute from zig-zag cyclic to block distribution in stage k.
2. Truncate at the end of stage k.
3. Copy at the beginning of stage k + 1.
4. Permute from block to zig-zag cyclic distribution in stage k + 1.

In the new approach, we aim at removing permutations 1 and 4 by keeping the
data in the zig-zag cyclic distribution of stage k during part of stage k + 1 as well.
In the following discussion, we treat only operations on the arrays f and u because
the operations on g and v are similar. The values of K and p1 used in the discussion
are those of stage k. Now assume that the second half of the 2K elements of fl has
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been discarded. Recall that the second half of ul has not even been computed; see
subsection 4.2.4. Therefore, fl and ul are now in the zig-zag cyclic distribution of
K elements (instead of 2K) over p1 processors. The new sequence of operations,
illustrated in Figure 4.2, is as follows.

1. Prepare a working copy of the data needed at stage k + 1.
(a) Copy vector ul of size K into vector ul+K.
(b) Copy vector fl of size K into vector ul.

2. Redistribute the data needed at stage k + 2.
(a) Put the first K/2 elements of vector ul into vector fl in the zig-zag cyclic

distribution over the first p1
2 processors.

(b) Put the first K/2 elements of vector ul+K into vector fl+K in the zig-zag
cyclic distribution over the next p1

2 processors.

The synchronization at the end of the redistribution can be removed by buffering
and delaying the communications until the next synchronization. The new approach
reduces the BSP cost of the truncation/copy operation from 6Np g + 3l to N

p g.

communicatecommunicate

copycopy

u15u7u0f15

fl

f7f0 ul+K

fl+Kfl

ul

(1a)

(2a)

(1b)

f15f0

(2b)

u7u0f0 f7

proc. 3proc. 1

proc. 0 proc. 2

Fig. 4.2. New truncation/copy operation of vectors fl and ul for K = 16 and p1 = 4.

As a result, vectors ul and ul+K contain all the data needed at stage k + 1,
and vectors fl and fl+K contain half the data needed at stage k + 2; stage k + 1
will produce the other half. We now verify that the operations on ul and ul+K

at the start of stage k + 1 remain local and hence do not require communication.
The first operation is the inverse of operation (4.3), which acts on an array of size
K. The pairs (ul+j , ul+K−j) and (ul+K+j , ul+2K−j) involved in this operation are
indeed local. After that, the long distance butterflies of the inverse FFT have to be
performed, and then the short distance ones have to be performed. The short distance
butterflies, of size L ≤ K/(p1/2), will be done after a suitable redistribution as in
the original algorithm, using the block distribution over p1/2 processors. The long
distance butterflies operate on pairs (ul+j , ul+j+L/2) and (ul+K+j , ul+K+j+L/2) with

L ≥ 4K/p1. The restriction p ≤ √N/2 implies p1 ≤
√
K and hence 2p1 ≤ 2K/p1,

which means that the period of the zig-zag cyclic distribution over p1 processors does
not exceed the minimum butterfly distance. As a result, the pairs involved are local.

4.3.2. Moving the bit reversal to the precomputation. Another major
improvement is to avoid the packing/bit reversal permutation (1)/(2(a)) in the FChT2
just following the recurrence and its inverse preceding the recurrence, thus saving
another 4Np g + 2l in communication costs. This is done by storing the recurrence

coefficients permuted by the packing/bit reversal permutation. This works because
one permutation is the inverse of the other, so that the auxiliary vector z is in the
same ordering immediately before and after the permutations.
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4.4. Time complexity. After all the improvements, the total communication
and synchronization cost is approximately (5Np log2 p)g + (2 log2 p)l. Only two com-
munication supersteps remain: the zig-zag cyclic to block redistribution inside the
inverse FFT, which can be combined with the redistribution of the truncation, and
the block to zig-zag cyclic redistribution inside the FFT. To obtain this complexity,
we ignored lower order terms and special cases occurring at the start and the end of
the algorithm.

The total cost of the optimized algorithm without early termination is

TFLT,par ≈ 4.25
N

p
log22N +

(
5
N

p
log2 p

)
g + (2 log2 p) l.(4.8)

5. Experimental results and discussion. In this section, we present results
on the accuracy and scalability of the implementation of the Legendre transform
algorithm. We implemented the algorithm in ANSI C using the BSPlib library [21].
Our programs are completely self-contained, and we did not rely on any system-
provided numerical software such as BLAS, FFTs, etc. Nonetheless, we used an
optimized FFT package [27] to illustrate how to optimize the computation supersteps
of the code; see section 5.4. We tested our programs using the Oxford BSP toolset [22]
implementation of BSPlib running on two different machines:

1. a Cray T3E with up to 64 processors, each having a theoretical peak speed
of 600 Mflop/s, with double precision (64-bit) accuracy of 1.0× 10−15;

2. an IBM RS/ 6000 SP with up to 8 processors, each having a theoretical peak
speed of 640 Mflop/s, which uses the more common IEEE 754 floating point arithmetic
with double precision accuracy of 2.2× 10−16.

To make a consistent comparison of the results, we compiled all test programs
using the bspfront driver with options -O3 -flibrary-level 2 -bspfifo 10000

-fcombine-puts (on the IBM we had to add the option -fcombine-puts-buffer

256K,8M,256K) and measured the elapsed execution times on exclusively dedicated
CPUs using the system clock.

5.1. Accuracy. We tested the accuracy of our implementation by measuring the
error obtained when transforming a random input vector f with elements uniformly
distributed between 0 and 1. The relative error is defined as ||̂f∗ − f̂ ||2/||̂f ||2, where
f̂∗ is the FLT and f̂ is the exact DLT (computed by (2.9), using the stable three-term
recurrence (2.10) and quadruple precision); || · ||2 indicates the L2-norm.

Table 5.1 shows the relative errors of the sequential algorithm for various problem
sizes using double precision except in the precomputation of the last column, which is
carried out in quadruple precision. This could not be done for the Cray T3E because
quadruple precision is not available there. Note, however, that it is possible to pre-
compute the values on another computer. The results show that the error of the FLT
algorithm is comparable with the error of the DLT provided that the precomputed
values are accurate. Therefore, it is best to perform the precomputation in increased
precision. This can be done at little extra cost because the precomputation is done
only once and its cost can be amortized over many FLTs. See [19, 20] for a discussion
of other techniques that can be used to obtain more accurate results.

The errors of the parallel implementation are of the same order as in the sequential
case. The only part of the parallel implementation that differs from the sequential
implementation in this respect is the FFT, and then only if the butterfly stages cannot
be paired in the same way. Varying the termination block size between 2 and 128 also
does not significantly change the magnitude of the error.
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Table 5.1
Relative errors for the sequential FLT algorithm. (QP indicates that the precomputation is

carried out in quadruple precision.)

N Cray T3E IBM SP (IEEE 754)
DLT FLT DLT FLT FLT-QP

512 7.0× 10−14 1.4× 10−12 7.7× 10−14 4.3× 10−12 1.5× 10−14

1024 3.5× 10−13 2.1× 10−11 3.0× 10−13 3.1× 10−11 2.3× 10−13

8192 1.2× 10−11 5.4× 10−9 1.3× 10−11 3.5× 10−9 1.3× 10−11

65536 2.7× 10−10 5.5× 10−7 2.7× 10−10 9.4× 10−8 1.6× 10−10

Table 5.2
Execution time (in ms) of various sequential Legendre transform algorithms.

Cray T3E IBM SP
N DLT FLT FLT FLT DLT FLT FLT FLT

M = N
2

M = 64 M = 2 M = N
2

M = 64 M = 2

16 0.013 0.028 −− 0.078 0.018 0.016 −− 0.041
32 0.050 0.053 −− 0.187 0.046 0.030 −− 0.100
64 0.219 0.114 −− 0.436 0.182 0.069 −− 0.239
128 1.199 0.328 0.328 1.027 0.729 0.186 0.186 0.560
256 5.847 1.394 1.123 2.576 3.109 0.612 0.549 1.297
512 23.497 5.712 3.340 6.034 12.483 2.231 1.568 3.013
1024 93.702 21.559 8.525 14.147 49.917 8.141 3.966 6.889

5.2. Efficiency of the sequential implementation. We measured the effi-
ciency of our optimized FLT algorithm by comparing its execution time with the
execution time of the direct DLT algorithm (i.e., a matrix-vector multiplication). Ta-
ble 5.2 shows the times obtained by the direct algorithm and the FLT with various
termination values: M = N/2 is the maximum termination value that our program
can handle, and the resulting algorithm is similar to the seminaive algorithm [12];
M = 64 is the empirically determined value that makes the algorithm perform best
for N ≤ 8192 on the Cray T3E and for N ≤ 16384 on the IBM SP (for larger values
of N , the choice M = 128 gives slightly better results); M = 2 yields the pure FLT
algorithm without early termination.

The results show that for the choice M = N/2 the behavior of the FLT is similar
to that of the DLT. On the other extreme, the pure FLT algorithm with M = 2
becomes faster than the DLT algorithm at N = 128. Choosing the optimum value
M = 64 further improves the performance of the FLT. This optimum is close to the
theoretical optimum M = 128 calculated in section 2.4.

Another advantage of the FLT is its reduced need of storage space for the pre-
computed data. While the DLT must store O(N2) precomputed values, the FLT
needs to store only O(N logN) precomputed values. Furthermore, these values can
be computed in only O(N log2N) operations using Algorithm B.1, which is presented
in Appendix B. Table 5.3 lists the storage and precomputation requirements for
the DLT and the FLT for various input sizes, assuming a precomputation cost of
4N(N − 2) for the direct transform and 12.75N log22N + 76.25N log2N for the fast
transform; cf. (B.3).

5.3. Scalability of the parallel implementation. We tested the scalability of
our optimized parallel implementation using our optimized sequential implementation
as basis for comparison.

Tables 5.4 and 5.5 show the execution times on the Cray T3E for up to 64 proces-
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Table 5.3
Storage and precomputation requirements for the direct and FLT algorithms.

Storage space (in words) Precomputation cost (in flops)
N DLT FLT (M = 2) DLT FLT (M = 2)
16 256 96 896 8, 144
64 4, 096 640 15, 872 58, 656
256 65, 536 3, 584 260, 096 365, 056
1024 1, 048, 576 18, 432 4, 186, 112 2, 086, 400

Table 5.4
Execution times (in ms) for the FLT algorithm on a Cray T3E for M = 2 (top) and M = 64

(bottom).

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
512 6.04 6.30 3.65 2.36 1.82 2.16 −− −−
1024 14.15 14.42 8.18 4.19 3.23 2.71 −− −−
8192 206.61 205.30 103.47 52.96 27.66 15.61 9.48 9.10
65536 4515.10 4518.30 2325.80 1180.00 569.47 244.02 126.74 67.17
512 3.37 3.58 2.29 1.67 −− −− −− −−
1024 8.53 8.84 5.34 3.28 2.47 −− −− −−
8192 151.49 155.10 77.50 40.64 21.69 12.93 8.48 8.26
65536 3670.10 3732.80 1932.00 970.58 469.07 194.77 102.26 54.60

sors and the IBM SP for up to eight processors, respectively. The tables list timing
results for the sequential and parallel algorithms with p <

√
N and M = 2, 64. The

table for the Cray starts at a lower value of N because on the Cray parallelism is
already advantageous for much smaller problem sizes. In general, the Cray T3E de-
livers better scalability than the IBM SP, but the execution on the IBM SP is faster.
Qualitatively, this is in accordance with the BSP parameters for these machines given
in Table 5.6: the parameters g and l are smaller for the Cray T3E, which means rel-
atively faster communication and synchronization, whereas the parameter s is larger
for the IBM SP, which means faster computation.

The BSP parameters presented in Table 5.6 reflect the way we implemented the
communication subroutines of our programs. Our implementations divide the com-
munication supersteps into three phases. In phase 1, the data are locally rearranged
in such a way that the elements to be sent to the same processor are packed together.
In phase 2, packets of data are exchanged between the processors. In phase 3, the data
are unpacked locally so that the elements get to their final destination. This scheme
generally saves communication time for regular communication patterns, because the
overhead of sending corresponding address information together with the actual data
is drastically reduced. Furthermore, we implemented the communication subroutines
using hpputs (high performance put operations that dispense with the use of buffers).
Therefore, the l and g values of Table 5.6 were measured for large data packets sent
by using hpputs. For more details, see [23, Appendix A].

Figure 5.1 shows the behavior of our algorithm in terms of flop rate per processor:

F (N, p) =
4.25N log22N + 34.5N log2N

p · T (N, p) .(5.1)

Here, the numerator represents the number of flops of the basic sequential FLT al-
gorithm with only the two main terms included and without optimizations such as
early termination. This gives a convenient reference count for the FLT, similar to the
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Table 5.5
Execution times (in ms) for the FLT algorithm on an IBM SP for M = 2 (top) and M = 64

(bottom).

N seq p = 1 p = 2 p = 4 p = 8
8192 83.71 85.36 60.51 53.96 73.26
16384 233.89 242.91 134.45 99.67 102.77
32768 840.56 865.57 449.76 229.25 187.90
65536 2159.20 2201.80 1193.90 625.40 353.87
8192 56.85 57.81 48.18 47.30 70.93
16384 176.97 179.74 107.79 83.52 96.70
32768 640.49 651.51 359.49 187.04 168.59
65536 1729.30 1747.60 1016.10 540.95 314.75

Table 5.6
BSP parameters measured using a modified version of the program bspbench from the package

BSPEDUpack [7].

Cray T3E (s = 34.9 Mflop/s) IBM SP (s = 202 Mflop/s)
p g l g l

(flops) (µs) (flops) (µs) (flops) (µs) (flops) (µs)
2 1.14 0.0328 479 13.72 82.2 0.407 215203 1066
8 2.14 0.0613 1377 39.48 92.0 0.456 868640 4300
64 3.05 0.0876 3861 110.88 −− −− −− −−

common count of 5N log2N for the FFT. Furthermore, T (N, p) denotes the execution
time of the parallel FLT algorithm. Ideally, the flop rates should be high and remain
constant with an increase in p. As already pointed out, in absolute numbers, the IBM
SP delivers more Mflops per second, but the Cray T3E maintains better flop rates as
a function of p.

Normalizing F (N, p) against the flop rate of the sequential algorithm, F seq(N)
(the entry labeled “seq” in Figure 5.1), gives the absolute efficiency of a parallel
algorithm:

Eabs(N, p) =
F (N, p)

F seq(N)
.(5.2)

The absolute efficiency can be used as a measure of the scalability of the parallel
algorithm. Ideally, Eabs(N, p) = 1. As a rule of thumb, efficiencies larger than 0.8
are considered very good, while efficiencies of 0.5 are reasonable. From the nearly
horizontal lines of F (N, p) for large N , it is clear that the algorithm scales very well
asymptotically (i.e., when N is large). The experimental results also show that on
the Cray T3E with up to 64 processors a size of N ≥ 8192 already gives reasonable to
very good efficiencies, whereas on the IBM SP with up to eight processors, N must
at least be equal to 32768. Note that on the Cray T3E, efficiencies larger than one
are observed for N ≥ 16384. This is a well-known phenomenon related to cache size.

The DLT is often used as part of a larger spherical harmonic transform. This
means that, in practical applications, many independent FLTs of small size will be
performed by a group of processors that could be only slightly larger than the number
of transforms. For this reason, it is important that the FLT algorithm scales well for
small N and p. Indeed, our algorithm already delivers reasonable to good efficiencies
on the Cray T3E with up to eight processors for N as small as 512; on the IBM SP,
larger problem sizes are needed.
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Fig. 5.1. Mflop/s rate per processor of the FLT algorithm with termination parameter M = 64.

5.4. Further optimizations. It is easy to modify our FLT algorithm to enable
the use of complete FFTs instead of our own butterfly routines. In this subsection, we
discuss the necessary modifications and demonstrate the possible gains by comparing
our plain implementation with an optimized version that uses Ooura’s FFT package
fft4g.c [27]. This competitive FFT is on average 2.6 times faster than our butterflies
and our FFT.

The sequential stages of our parallel algorithm involve complete FFTs, provided
we do not move the bit-reversal permutation to the precomputation; see section 4.3.2.
These FFTs can readily be replaced by highly optimized versions. Similarly, the
short distance butterflies of the parallel stages can be replaced by a local bit-reversal
permutation followed by a complete local FFT of size N/p. In stages 2 to log2 p, the
extra permutation can be moved to the precomputation, so that it comes for free. (It
is even possible to skip the extra permutation of the first stage; see [23, Section 2.3.2].)

Figure 5.2 shows the effect on the Cray T3E of optimizing the computation su-
persteps of the FLT algorithm. For small N , the main savings are already obtained
by terminating early, while for large N they are achieved by using complete, faster
FFTs. We also observe that computation is dominant for large values of N/p, which
leaves in principle plenty of room for improvement of the FLT by optimizing the com-
putation supersteps. For small N/p, however, such optimization will not have much
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Fig. 5.2. Gains achieved by optimizing the computational supersteps of the parallel FLT. Verti-
cal bars represent the time of an FLT of length N executed on p processors of a Cray T3E, normalized
with respect to our plain implementation withM = 2. The first bar of each triple represents the plain
implementation with M = 2; the second bar represents the plain implementation optimized by early
termination with M = 64; and the third bar represents the highly optimized version (with M = 64
and Ooura’s FFT). Each bar is split into three parts, representing computation, communication,
and synchronization time.

effect because the dominant cost is that of communication and synchronization; we
believe that these costs have already been reduced to the minimum.

Optimizing the FFTs of the sequential stages and the short distance butterflies
of the parallel stages already covers most of the O(N log2N) computation operations
of the algorithm. The only parts not yet optimized are as follows: the recurrence
and pack/extract operations of the FChTs, with a total of O(N logN) flops, which
can be carried out using level 1 BLAS; the O(NM) termination routine which can be
based on level 2 BLAS; and the long distance butterflies with a total of O(N log2 p)
flops. Since p� N/p in practice, the long distance butterfly stages have a relatively
small cost; if, however, p ≈ N/p, this cost becomes significant. Fortunately, the long
distance butterfly stages in the zig-zag cyclic distribution can also be carried out using
FFTs at the expense of an extra O(N log p) flops and some local permutations. To
do so, we first need to permute the vector to move the even elements to the front and
then apply to both vector halves the method described in [23, sections 2.4 and 2.6],
which performs cyclically distributed long distance butterflies using FFTs.

6. Conclusions and future work. As part of this work, we developed and
implemented a sequential algorithm for the DLT, based on the Driscoll–Healy algo-
rithm. This implementation is competitive for large problem sizes. Its complexity
O(N log2N) is considerably lower than the O(N2) matrix-vector multiplication algo-
rithms which are still much in use today for the computation of Legendre transforms.
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Its accuracy is similar, provided the precomputation is performed in increased preci-
sion. The new algorithm is a promising approach for compute-intensive applications
such as weather forecasting.

The main aim of this work was to develop and implement a parallel Legendre
transform algorithm. Our experimental results show that the performance of our par-
allel algorithm scales well with the number of processors for medium to large problem
sizes. The overhead of our parallel program consists mainly of communication, and
this is limited to two redistributions of the full data set and one redistribution of half
the set in each of the first log2 p stages of the algorithm. Two full redistributions are
already required by an FFT and an inverse FFT, indicating that our result is close to
optimal. Our parallelization approach was first to derive a basic algorithm that uses
block and cyclic data distributions and then to optimize this algorithm by removing
permutations and redistributions wherever possible. To facilitate this we proposed a
new data distribution, which we call the zig-zag cyclic distribution.

Within the framework of this work, we also developed a new algorithm for the
simultaneous computation of two Chebyshev transforms. This is useful in the context
of the FLT because the Chebyshev transforms always come in pairs, but such a double
FChT also has many applications in its own right, as does the corresponding double
FCT. Our algorithm has the additional benefit of easy parallelization. Our FFT,
FChT, and FLT programs will be made available in the public domain as the package
BSPFTpack, which can be obtained through the same Webpage as BSPEDUpack [7].

We view the present FLT as a good starting point for the use of fast Legendre
algorithms in practical applications. However, to make our FLT algorithm directly
useful in such applications, further work must be done: an inverse FLT must be de-
veloped; the FLT must be adapted to the more general case of the spherical harmonic
transform where associated Legendre functions are used (this can be done by chang-
ing the initial values of the recurrences of the precomputed values and multiplying
the results by normalization factors); and alternative choices of sampling points must
be made possible. Lesur and Gubbins [26] have studied the accuracy of the gener-
alization of the FLT to the spherical harmonic transform, and they found numerical
instabilities for higher order transforms. Future research should investigate how tech-
niques such as precomputation in quadruple precision and our method of truncation
improve the accuracy in the general case. Driscoll, Healy, and Rockmore [15] have
already shown how a variant of the Driscoll–Healy algorithm may be used to compute
Legendre transforms at any set of sample points (see Appendix A), though the set of
points chosen affects the stability of the algorithm.

Appendix A. Related transforms and algorithms.

The derivation of the Driscoll–Healy algorithm given in section 2 depends only
on the properties of truncation operators Tn given in Lemma 2.9 and on the exis-
tence of an efficient algorithm for applying the truncation operators. In particular,
Lemmas 2.9 and 2.11 hold as stated when the weight function ω(x) = π−1(1 − x2) 1

2

is changed, when the truncation operators are defined using a polynomial sequence
which is orthogonal with respect to the new weight function and which starts with
the polynomial 1, and when the Lagrange interpolation operators are defined using
the roots of the polynomials from the sequence. In theory, this can be used to develop
new algorithms for computing orthogonal polynomial transforms, though with differ-
ent sample weights wj . In practice, however, the existence of efficient Chebyshev and
cosine transform algorithms makes these the only reasonable choice in the definition
of the truncation operators. This situation may change with the advent of other fast
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transforms.

Theoretically, the basic algorithm works, with minor modifications, in the follow-
ing general situation. We are given operators T rn for 1 ≤ n ≤ r such that the following
hold.

1. T rn is a mapping from the space of polynomials of degree less than 2r to the
space of polynomials of degree less than n.

2. If m ≤ n ≤ r, then T nmT rn = T rm.
3. If degQ ≤ m ≤ n ≤ r, then T rn−m(f ·Q) = T nn−m [(T rn f) ·Q].

The problem now is, given an input polynomial f of degree less than N , to compute
the quantities T N1 (f · pl) for 0 ≤ l < N , where {pl} is a sequence of orthogonal
polynomials. This problem may be treated using the same algorithms as in section 2,
but with the truncation operators Tn replaced by T rn , where r ≤ N depends on the
stage of the algorithm. Using r = N retrieves our original algorithm. The generalized
algorithm uses the quantities ZKl = T NK (f · pl), and the recurrences in this context
are

ZKl+K−1 = T 2KK [Z2Kl ·Ql,K−1 + Z2Kl−1 ·Rl,K−1],(A.1)

ZKl+K = T 2KK [Z2Kl ·Ql,K + Z2Kl−1 ·Rl,K ],(A.2)

cf. (2.18) and (2.19).

This generalization of our approach may be used to derive the original algorithm
of Driscoll and Healy in the exact form it was presented [13, 14], which uses the cosine
transforms in the points cos(jπ/K). For more details, see [24].

Driscoll, Healy, and Rockmore [15] describe another variant of the Driscoll–Healy
algorithm that may be used to compute the Legendre transform of a polynomial
sampled at the Gaussian points, i.e., at the roots of the Legendre polynomial PN .
Their method replaces the initial Chebyshev transform used to find the polynomial ZN0
in Chebyshev representation by a Chebyshev transform taken at the Gaussian points.
Once ZN0 has been found in Chebyshev representation, the rest of the computation is
the same.

The Driscoll–Healy algorithm can also be used for input vectors of arbitrary size,
not only powers of two. Furthermore, at each stage, we can split the problem into an
arbitrary number of subproblems, not only into two. This requires that Chebyshev
transforms of suitable sizes are available.

Appendix B. The precomputed data.

In this appendix we describe algorithms for generating the point values ofQl,m, Rl,m
used in the recurrence of the FLT algorithm and for generating the coefficients qnl,m, r

n
l,m

used in its termination stage.

Lemma B.1. Let l ≥ 1, j ≥ 0, and k ≥ 1. Then the associated polynomials
Ql,m, Rl,m satisfy the recurrences

Ql,j+k = Ql+k,jQl,k +Rl+k,jQl,k−1,(B.1)

Rl,j+k = Ql+k,jRl,k +Rl+k,jRl,k−1.(B.2)

Proof. The proof is by induction on j. The proof for j = 0 follows immediately
from the definition (2.13), since Ql+k,0Ql,k + Rl+k,0Ql,k−1 = 1 · Ql,k + 0 = Ql,k and
similarly for Rl,k. The case j = 1 also follows immediately from the definition. For
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j > 1, we have

Ql+k,jQl,k +Rl+k,jQl,k−1 = [Ql+k+j−1,1Ql+k,j−1 +Rl+k+j−1,1Ql+k,j−2]Ql,k
+ [Ql+k+j−1,1Rl+k,j−1 +Rl+k+j−1,1Rl+k,j−2]Ql,k−1

= Ql+k+j−1,1 [Ql+k,j−1Ql,k +Rl+k,j−1Ql,k−1]
+Rl+k+j−1,1 [Ql+k,j−2Ql,k +Rl+k,j−2Ql,k−1]

= Ql+k+j−1,1Ql,k+j−1 +Rl+k+j−1,1Ql,k+j−2
= Ql,k+j ,

where we have used the case j = 1 to prove the first and last equality and the induction
hypothesis for the cases j − 1, j − 2 to prove the third equality. In the same way we
may show that Ql+k,jRl,k +Rl+k,jRl,k−1 = Rl,k+j .

This lemma is the basis for the computation of the data needed in the recurrences
of the Driscoll–Healy algorithm. The basic idea of the Algorithm B.1 is to start with
polynomials of degree 0, 1, given in only one point, and then repeatedly double the
number of points by performing a Chebyshev transform, adding zero terms to the
Chebyshev expansion, and transforming back, and also double the maximum degree
of the polynomials by applying the lemma with j = K − 1,K and k = K.

Algorithm B.1 Precomputation of the point values.

INPUT N : a power of 2.

OUTPUT Ql,m(x
2k

j ), Rl,m(x
2k

j ) for 1 ≤ k ≤ log2N , 0 ≤ j < 2k, m = 2k−1, 2k−1 − 1, and

l = 1, 2k−1 + 1, . . . , N − 2k−1 + 1.

STAGES
0. for l = 1 to N do

Ql,0(0)← 1, Rl,0(0)← 0, Ql,1(0)← Bl, Rl,1(0)← Cl
k. for k = 1 to log2N do

K ← 2k−1

for m = K − 1 to K do
for l = 1 to N −K + 1 step K do

(q0l,m, . . . , q
K−1
l,m

)← Chebyshev(Ql,m(x
K
0 ), . . . , Ql,m(x

K
K−1))

(r0l,m, . . . , r
K−1
l,m

)← Chebyshev(Rl,m(x
K
0 ), . . . , Rl,m(x

K
K−1))

(qKl,m, . . . , q
2K−1
l,m

)← (0, . . . , 0)

if m = K then qKl,m ← AlAl+1 · · ·Al+m−1/2
m−1

(rKl,m, . . . , r
2K−1
l,m

)← (0, . . . , 0)

(Ql,m(x
2K
0 ), . . . , Ql,m(x

2K
2K−1))← Chebyshev−1(q0l,m, . . . , q

2K−1
l,m

)

(Rl,m(x
2K
0 ), . . . , Rl,m(x

2K
2K−1))← Chebyshev−1(r0l,m, . . . , r

2K−1
l,m

)

for l = 1 to N − 2K + 1 step 2K do
for j = 0 to 2K − 1 do

Ql,2K(x
2K
j )← Ql+K,K(x

2K
j )Ql,K(x

2K
j ) +Rl+K,K(x

2K
j )Ql,K−1(x

2K
j )

Rl,2K(x
2K
j )← Ql+K,K(x

2K
j )Rl,K(x

2K
j ) +Rl+K,K(x

2K
j )Rl,K−1(x

2K
j )

Ql,2K−1(x
2K
j )← Ql+K,K−1(x

2K
j )Ql,K(x

2K
j ) +Rl+K,K−1(x

2K
j )Ql,K−1(x

2K
j )

Rl,2K−1(x
2K
j )← Ql+K,K−1(x

2K
j )Rl,K(x

2K
j ) +Rl+K,K−1(x

2K
j )Rl,K−1(x

2K
j )

Note that deg Rl,m ≤ m − 1, so the Chebyshev coefficients rnl,m with n ≥ m are
zero, which means that the polynomial is fully represented by its first m Chebyshev
coefficients. In the case of the Ql,m, the coefficients are zero for n > m. If n =
m, however, the coefficient is nonzero, and this is a problem if m = K. The Kth
coefficient which was set to zero must then be corrected and set to its true value,
which can be computed easily by using (2.13) and (2.4).
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The FLT algorithm requires the numbers

Ql,K(x
2K
j ), Ql,K−1(x2Kj ), Rl,K(x

2K
j ), Rl,K−1(x2Kj ), 0 ≤ j < 2K,

for l = r · 2K + 1, 0 ≤ r < N
2K , for all K with M ≤ K ≤ N/2. After the m-loop in

stage k = log2K +1 of Algorithm B.1, we have obtained these values for l = rK +1,
0 ≤ r < N/K. We need only the values for even r, so the others can be discarded.
The algorithm must be continued until K = N/2, i.e., k = log2N .

The total number of flops of the precomputation of the point values is

Tprecomp, point = 6αN log22N + (2α+ 12β + 12)N log2N.(B.3)

Comparing with the cost (2.25) of the Driscoll–Healy algorithm itself and considering
only the highest order term, we see that the precomputation costs about three times
as much as the Driscoll–Healy algorithm without early termination. This one-time
cost, however, can be amortized over many subsequent executions of the algorithm.

Parallelizing the precomputation of the point values can be done most easily by
using the block distribution. This is similar to our approach in deriving a basic parallel
version of the Driscoll–Healy algorithm. In the early stages of the precomputation,
each processor handles a number of independent problems, one for each l. At the
start of stage k, such a problem involves K points. In the later stages, each problem
is assigned to one processor group. The polynomials Ql,K , Ql,K−1, Rl,K , Rl,K−1, and
Ql+K,K , Ql+K,K−1, Rl+K,K , Rl+K,K−1 are all distributed in the same manner, so
that the recurrences are local. The Chebyshev transforms and the addition of zeros
may require communication. For the addition of zeros, this is caused by the desire
to maintain a block distribution while doubling the number of points. The parallel
precomputation algorithm can be optimized following similar ideas as in the optimized
main algorithm.

The precomputation of the coefficients qnl,m, r
n
l,m required to terminate the Driscoll–

Healy algorithm early, as in Lemma 2.12, is based on the following recurrences.
Lemma B.2. Let l ≥ 1 and m ≥ 2. The coefficients qnl,m satisfy the recurrences

qnl,m =
1

2
Al+m−1(qn+1l,m−1 + q

n−1
l,m−1) +Bl+m−1qnl,m−1 + Cl+m−1qnl,m−2 for n ≥ 2,

q1l,m = Al+m−1(q0l,m−1 +
1

2
q2l,m−1) +Bl+m−1q1l,m−1 + Cl+m−1q1l,m−2,

q0l,m =
1

2
Al+m−1q1l,m−1 +Bl+m−1q0l,m−1 + Cl+m−1q0l,m−2,

subject to the boundary conditions q0l,0 = 1, q0l,1 = Bl, q
1
l,1 = Al, and q

n
l,m = 0 for

n > m. The rnl,m satisfy the same recurrences but with boundary conditions r
0
l,1 = Cl

and rnl,m = 0 for n ≥ m.
Proof. These recurrences are the shifted three-term recurrences (2.13) rewritten

in terms of the Chebyshev coefficients of the polynomials by using the equations
x · Tn = (Tn+1 + Tn−1)/2 for n > 0 and x · T0 = T1.

For a fixed l, we can compute the qnl,m and rnl,m by increasing m, starting with
the known values for m = 0, 1, and finishing with m = M − 2. For each m, we need
to compute only the qnl,m with n ≤ m and the rnl,m with n < m. The total number of
flops of the precomputation of the Chebyshev coefficients in the general case is

Tprecomp, term = 7M2 − 16M − 15.(B.4)



302 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

When the initial values Bl are identically zero, the coefficients can be packed in
alternating fashion into array T, as shown in Figure 3.3. In that case the cost is
considerably lower, namely, 2.5M2 − 3.5M − 12.

The precomputed Chebyshev coefficients can be used to save the early stages in
Algorithm B.1. If we continue the precomputation of the Chebyshev coefficients two
steps more and finish with m =M instead of m =M −2, we then can switch directly
to the precomputation of the point values at stage K = M , just after the forward
Chebyshev transforms.

Parallelizing the precomputation of the Chebyshev coefficients is straightforward,
since the computation for each l is independent. Therefore, if M ≤ N/p, both the
termination and its precomputation are local operations.
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A LOCAL SPACE-TIME ADAPTIVE SCHEME IN SOLVING
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Abstract. We describe a local space-time adaptive refinement and derefinement method for
solving systems of parabolic partial differential equations. Solutions are calculated on local space-
time meshes using a domain decomposition finite element algorithm in space and an extrapolation
algorithm in time. An a posteriori spatial error estimate controls a local spatial refinement strategy
and an a posteriori temporal error estimate monitors temporal refinement and order of the integra-
tion. A multiplicative Schwarz algorithm is used to coordinate solutions between overlapping grids.
We use nearly minimal fine meshes which follow the dynamics of the problems in an efficient manner.

Key words. local AMR scheme, domain decomposition, extrapolation methods, multiplicative
Schwarz algorithm

AMS subject classification. 65Y20

PII. S1064827500315360

1. Introduction. Adaptive local refinement methods have been effectively used
to solve a wide range of systems of partial differential equations [1, 3, 4, 5, 6, 7, 15, 16,
17, 18, 19]. Two basic strategies are structured and unstructured mesh refinement.
Structured methods are further divided into cellular and noncellular methods, where
cellular means that the fine mesh is aligned with the coarse mesh (see Figure 1a) and
noncellular mesh means that the fine mesh can be skewed with respect to the coarse
mesh (see Figure 1b).

Berger and Oliger [5] developed a noncellular overlapping uniform grid algorithm
which allows alignment of fine grids with evolving dynamic structures. However,
the data transition between coarse and fine grids is complicated. Multiple levels of
overlapping refined grids, as shown in Figure 1b, require complicated data structures
and data transition as well. Additionally, when using implicit methods in time, grids
must not cross domain boundaries.

Arney and Flaherty [3] use cellular meshes to form fine grids with piecewise poly-
gonal shapes. Data transition between fine and coarse grids is simplified with cellular
refinement. However, the data structure is still complicated, since the refined grids are
generally not rectangles. Thus, information associated with each node has to include
pointers to the nodes above and below the node in the mesh. Further complications
arise if high-order elements are used.

Moore and Flaherty [16] use rectangular meshes which are aligned with the coarse
mesh to form overlapping patches. The problem is solved on the patches using a
Schwarz alternating algorithm. The data structure is simplified in this case, but more
work is required due to the large overlap between the rectangular meshes and over-
refinement resulting from grids aligned with domain boundaries rather than solution
features (see Figure 1a).

Another approach is to use unstructured meshes with triangular elements. These
methods are more economical than the structured mesh methods in the sense that a

∗Received by the editors October 18, 1999; accepted for publication (in revised form) October 31,
2000; published electronically June 19, 2001.
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Fig. 1. Cellular and noncellular overlapping grids.

minimum region required for local solution is created. But the data structures are
even more complicated, and so more memory is needed.

Domain decomposition methods have also become popular. The classical Schwarz
alternating method has been extended to more than two subdomains and additive and
multiplicative Schwarz methods have been developed [8, 11, 13, 21]. The methods
have been widely used to solve elliptic partial differential equations as well as some
simple, linear parabolic partial differential equations [11, 9, 10, 13]. The advantage
of these methods is that each subdomain can be sent to a separate processor with
communications needed only at the interfaces.

All the methods mentioned above use uniform time stepping when applied to
solving parabolic partial differential equations. Herein, we develop a local space-time
adaptive mesh refinement procedure coupled with a domain decomposition multiplica-
tive Schwarz algorithm on structured meshes which has the advantage of using simple
spatial grids, nearly minimal spatial overrefinement, and a variable time step over the
spatial regions. By nearly minimal spatial overrefinement, we mean that the spatial
overrefinement and resolution procedure are performed only in the regions that cover
and are nearly as large as the regions that require a resolution as indicated by a pos-
terior error estimator. Examples in section 5 show that our methods automatically
create fine spatial meshes and small time steps (or fine space-time meshes) in regions
of high activity based on the error estimates. Coarse spatial meshes and large time
steps (or coarse space-time meshes) are used in regions of low activity.

Note: For clarity, we sometimes separate spatial meshes and time steps from
space-time meshes as we did in the last paragraph.

In section 2, the model problem is defined and the underlying space discretization
algorithm is presented. In section 3, we discuss the one- and two-level overlapping
domain decomposition and the multiplicative Schwarz algorithm. We will give a de-
tailed description of the local adaptive mesh refinement (AMR) procedure in section 4.
Some examples that show the effectiveness of the method are presented in section 5.
Concluding remarks are given in section 6.

2. The model problem and discretization. Consider systems of nonlinear
parabolic equations of the form

ut + f(t, x, y, u, ux, uy) = [D1(t, x, y, u)ux]x + [D2(t, x, y, u)uy]y(1)
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for (x, y) ∈ Ω, t > 0, together with the initial conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,(2)

and the mixed boundary conditions

u(t, x, y) = gD(t, x, y), (x, y) ∈ ∂ΩD, t > 0,(3)

D1uxη
1 +D2uyη

2 = gN (t, x, y), (x, y) ∈ ∂ΩN , t > 0,(4)

where (η1, η2) is the unit outer normal of ∂Ω and ∂ΩD
⋃
∂ΩN = ∂Ω, and Ω =

[xl, xr] × [yl, yr]. The system is assumed to be well posed, i.e., D1, D2 are positive
definite.

We solve the mixed boundary value problem (1)–(4) using a Galerkin finite ele-
ment method with a hierarchical polynomial basis of degree p ≥ 1 in space coupled
with a variable-order, variable-step extrapolation method in time.

The Galerkin form of (1)–(4) is to find u ∈ H1
E such that

(ut, v) +A(u, v) + (f, v) =

∫
∂ΩN

vT gNds ∀v ∈ H1
0 , t > 0,(5)

A(u, v) = A(u0, v) ∀v ∈ H1
0 , t = 0,(6)

where

(v, u) =

∫
Ω

v(t, x, y)Tu(t, x, y)dxdy

and

A(u, v) = (D1ux, vx) + (D2uy, vy).

As usual, the Sobolev space H1(Ω) consists of functions having square integrable
first partial derivatives. The subscripts E and 0 further restrict this space to functions
that satisfy (3) and a homogeneous version of (3), respectively.

Introduce partitions

Ωx = {xl = x0 < x1 < · · · < xnx = xr},

Ωy = {yl = y0 < y1 < · · · < yny = yr}
of Ω into m = nxny elements. Let

hx =
xr − xl
nx

, hy =
yr − yl
ny

, h =
√
h2
x + h2

y, and ∆h = Ωx × Ωy.

We approximate H1(Ω) by a finite-dimensional subspace Sp,h of piecewise polynomi-
als of degree p, p ≥ 1, defined on ∆h. The finite element Galerkin approximation
U(t, x, y) ∈ Sp,hE to u(t, x, y) ∈ H1

E(Ω) is obtained by solving

(Ut, V ) +A(U, V ) + (f, V ) =

∫
∂ΩN

V T gNds ∀V ∈ Sp,h0 , t > 0,(7)

A(U, V ) = A(u0, V ) ∀V ∈ Sp,h0 , t = 0.(8)

A hierarchical basis is constructed for Sp,h with rectangular elements using the tensor
products of Legendre polynomials. We refer to Szabo and Babuska [20] for details.
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3. Domain decomposition and multiplicative Schwarz methods.

3.1. One- and two-level decompositions with small overlap. Let ∆H be
a coarse mesh or H-level subdivision of Ω and let {Ωi}Mi=1 be the elements of ∆H

with M = NxNy, where Nx and Ny are the number of subdivisions in the x- and
y-directions, respectively. We further divide each coarse element Ωi into smaller
rectangles of lengths hx and hy, where hx = Hx

r , hy =
Hy
r , and r is an integer (we

take r = 3). The mesh ∆h with h =
√
h2
x + h2

y is called the fine mesh or h-level

subdivision of Ω. To obtain an overlapping decomposition, we extend each coarse
element Ωi = (xi, xi+1) × (yi, yi+1) to a slightly larger extended element Ωexti =
(xi, xi+1 + h̃x)× (yi, yi+1 + h̃y), where

h̃x =

{
hx if xi+1 < xr,
0 if xi+1 = xr,

h̃y =

{
hy if yi+1 < yr,
0 if yi+1 = yr.

We also require that Ωexti ⊃ Ωexti

⋂
∂ΩN , i.e., the Neumann boundary is included in⋃

i Ω
ext
i .
The purpose of creating {Ωexti }Mi=1 is to form overlapping subdomains of Ω. Using

the extended elements, we can always form four overlapping subdomains as follows:
Let m = (k − 1)Nx + j, the element number with 1 ≤ k ≤ Ny and 1 ≤ j ≤ Nx.

Define

Ω̃1 =
{⋃

Ωextm ; k, j are odd
}
, Ω̃2 =

{⋃
Ωextm ; k is odd and j is even

}
,

Ω̃4 =
{⋃

Ωextm ; k, j are even
}
, Ω̃3 =

{⋃
Ωextm ; k is even and j is odd

}
.

Then we have

4⋃
i=1

Ω̃i =

M⋃
i=1

Ωexti .

Each Ω̃i is a union of disjoint extended elements, as illustrated in Figure 2 shown
with their fine element structures. For convenience, each extended element Ωexti with
its fine element structure is called a local grid. Thus, Ω̃1 consists of 16 local grids, Ω̃2

and Ω̃3 both have 12, and Ω̃4 has 9 local grids. The overlaps between different Ω̃i’s
have a width of one fine element. For each Ω̃j , 1 ≤ j ≤ J (here J = 4), we define

Vj = {v ∈ V h; v(x, y) = 0, (x, y) �∈ Ω̃j} ⊂ V h

with V h = Sp,h0 . If we denote Sp,H0 by V0, then we have the following two decompo-
sitions of V h:

V h = V1 + · · ·+ VJ

and

V h = V0 + V1 + · · ·+ VJ ,

which will be referred to as the one-level and two-level uniformly overlapping decom-
positions of V h, or as the decomposition without and with the coarse mesh space,
respectively.
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Ω̃1 Ω̃2 Ω̃3 Ω̃4

Fig. 2. Partition of the entire domain into overlapping subdomains.

We have eliminated the condition

Distance
(
∂Ωexti

⋂
Ω, ∂Ωi

⋂
Ω
)
≥ cH ∀i, c > 0,(9)

proposed by Cai [9] and therefore achieved smaller overlaps between the local grids.
The systems are made smaller, and in most cases the computational speed is increased
[22]. The experiments also showed that the size of the overlap affects neither the
accuracy of the solution nor the convergence of the multiplicative Schwarz algorithm.

3.2. Multiplicative Schwarz algorithms. We briefly describe the multiplica-
tive Schwarz algorithm based on the two decompositions of V h as described in sec-
tion 3.1. We assume a set of triplets {Wi, Pi, wi|i = 1, 2, . . . ,m}, where Wi are some
subspaces of a normed linear space W , Pi are mappings from W to Wi, and wi ∈Wi.
The multiplicative Schwarz algorithm can be described as follows:

Multiplicative Schwarz {Wi, Pi, wi}.
Given an initial guess u0 ∈W ,

for n = 0, 1, . . . , nmax;

for i = 1, . . . ,m;

un+ i
m = un+ i−1

m + (wi − Piu
n+ i−1

m ).

Remark 1. For linear problems, we have

un+1 = Eun + g,

where

E = (I − Pm) · · · (I − P1),

and

g = (I − Pm) · · · (I − P2)w1 + (I − Pm) · · · (I − P3)w2 + · · ·+ wm.

The convergence rate of the multiplicative Schwarz algorithm is thus determined
by the spectral radius of the operator E.

Remark 2. Let w be a fixed element in Sp,HE . The Schwarz algorithm can be
extended to the more general case where space W is replaced by w + W and the
mappings Pi are defined as Pi : w+W →Wi. We will use the extended version of it.

The parabolic system is solved by dividing the time interval into several smaller
ones. To apply the multiplicative Schwarz algorithm on interval [tj , tj+1], we take W
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to be gD + V h, Wi to be the subspace Vi of V
h, and wi ∈ Wi to be the solution of

the ODE system

(ut, v) +A(u, v) + (f, v) =

∫
∂ΩN

⋂
Ω̃i

vT gNds ∀v ∈ Vi, tj < t ≤ tj+1,(10)

with the initial condition u = u(tj) for t = tj . When tj = 0, u(0) is the solution from
(8). The mapping Pi : gD + V h → Vi is defined by

A(gD + u, v) = A(Pi(gD + u), v) ∀v ∈ Vi, ∀u ∈ V h.(11)

The ODE systems are solved independently in the interior of the local grids. While
the projections Pi involve the information from the local grid boundaries, the mul-
tiplicative Schwarz algorithm merges the two sets of systems and passes information
from grid to grid throughout the entire domain.

With a chosen base time step, ∆tj = tj+1 − tj , on the entire domain, we solve
the ODE systems (10) in the interior of each small local grid using the extrapolation
method [12]. A variable time step and a variable integration order are used based on
an a posteriori error estimate. Fine temporal meshes match fine spatial meshes in a
consistent manner as shown in section 5. The examples in section 5 also show the
commanding advantage, in terms of efficiency, of our adaptive space-time meshes over
the adaptive space meshes with uniform time steps. For a detailed description of the
time integration procedure, please refer to [22].

In applying the multiplicative Schwarz algorithm, we can use either the one-level
or two-level decomposition. In general, the two-level decomposition requires fewer
iterations than one-level decomposition, since the solution on the coarse grid improves
the initial guess for the solutions on the fine grid and smooths the solution from the
overlapping subdomains. Table 1 in section 5 compares the number of iterations via
the two different ways of decomposition.

4. Local adaptive mesh refinement (AMR) procedure.

4.1. Local AMR procedure. We start with a uniform grid in space and a base
time step. The spatial grid is divided into some overlapping subgrids and the systems
(10)–(11) are solved on each subgrid. Time steps are adaptively refined or derefined
based on an a posteriori temporal error estimate on each subgrid independent of one
another. The maximum of the local time steps is used for the next base time step.

At the end of each base time step, an a posteriori spatial error estimate is per-
formed elementwise. A dichotomy principle of Babuska, Theorems 3.1 and 4.1 in [2],
is used for the error estimate, which says that errors in finite element solutions in two
space dimensions computed with odd-degree polynomials arise mainly near element
edges, while those computed with even-degree approximations arise mainly in element
interiors. Elements having “high” error are grouped into different error sets, called
photo-clusters, using Berger and Oliger’s nearest neighbor algorithm [5] with a prede-
fined distance λ (we take λ = 2h). We use a linked list to store these photo-clusters.
A list iterator is used to build up such a list. The first photo-cluster is created by
adding the first high-error element to it. Then we check the next high-error element; if
it is within the predefined distance from the first cluster, we will add it to the cluster.
Otherwise, we will create the second photo-cluster with this element in it. Follow such
a procedure; if an error element is “far” from any of the constructed photo-clusters,
a new photo-cluster is created and added to the list. If the error element is within
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Fig. 3. Cluster that intersects domain boundaries.

a distance λ from two different photo-clusters, the two photo-clusters will be com-
bined into one. By dividing the error elements into different photo-clusters, spatially
distinct phenomena are separated.

For each photo-cluster, we form a local rectangle, called a cluster, using Berger
and Oliger’s procedure [5]. Each cluster is enlarged by increasing the length of its
two sides so that the region between the enlarged and original clusters provides a
buffer (we take the buffer-size to be 0.9h) and artificial internal boundary conditions
will be prescribed at low-error degrees of freedom, and thus fine-grid errors will not
significantly propagate through the buffer. If we choose an appropriate λ and buffer
zone (say, λ > 2∗buffer-size), the different clusters will not overlap. Hence the solution
procedure over different clusters will be independent.

Clusters may be skewed with respect to the coordinate axes. Thus, for each
cluster, a second rectangle is formed, which we call a megagrid. The megagrid contains
the cluster and is aligned with the coordinate axes. Its sides also overlap the grid-lines
of the parent megagrid (the base grid is considered as a megagrid too). If the cluster
intersects the parent megagrid boundaries, we take only the part inside the parent
megagrid, as shown in Figure 3. The megagrids contain the information from the
parent megagrid and pass the information to their clusters.

To keep the resolution region to a minimum we check the efficiency of each cluster
which is measured by the ratio of the number of high-error elements to the total
number of elements in the cluster. The cluster is considered as inefficient if the ratio
is less than 0.3. Those clusters with six elements or less are assumed to be efficient.
If the cluster is inefficient, we bisect it along the major side, then apply Berger and
Oliger’s procedure on each of the two parts separately to form two new clusters. This
procedure is performed recursively until all the clusters are efficient. Figure 4a shows
one example of such a case.

We refine each megagrid by a factor of 3, interpolate the data field on the refined
megagrid, and decompose the megagrid into small rectangular grids. Those local grids
that don’t intersect any of the clusters in the megagrid are discarded to maximize the
efficiency. This results in a piecewise polygonal region, as shown in Figure 4b, which
is called a polygrid. The multiplicative Schwarz algorithm is then applied on the
polygrid.

In some cases, different megagrids may overlap. But the polygrids within these
intersecting megagrids are independent of each other, as shown in Figure 5. Since
the re-solution process is on the polygrids, such procedures on different polygrids are
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(a) (b)

Fig. 4. Cluster bisectioning and fine grids formation.

Fig. 5. Grids formation for overlapping megagrids.

independent of each other.

Each local grid is small with a maximum size of 4×4 and a minimum size of 3×3.
If the mesh is fine enough, the refined polygrids will cover and possibly be slightly
larger than the regions flagged with high error. Thus, a nearly minimal overrefinement
and resolution is achieved. So our method has the advantage of both structured
noncellular mesh and unstructured mesh methods. Since the megagrids are aligned
with the problem domain and properly nested, the data structure is much simpler and
data transition between megagrids is much easier. Compared to structured cellular
grid methods, where solutions are computed over either the entire problem domain as
in [3] or overlapping rectangular patches with large overlaps as in [16], we solve the
problem on a smaller refined region with the same simplicity of data storage and data
transition. Furthermore, the methods presented here enable us to solve the entire
problem by solving many very small problems independently. It is therefore best
suited for parallel computation. My next paper [23] will focus on issues of parallel
computation using the methods provided here.

We use a recursive local AMR and derefinement procedure. A top level description
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Procedure. Solve(tstart, tend, εsp, εt).
begin

t = tstart
choose a base time step ∆t
generate the base grid G (also a polygrid)
decompose G to form local grids
initialize the solution field u = u(t) on G
do while(t < tend)

begin
t← t+∆t
LocalAMR(G, t, ∆t, εsp, εt)

end
end

Fig. 6. Description of the solution procedure.

Procedure. LocalAMR(G, t, ∆t, εsp, εt).
begin

Schwarz(G, t, ∆t, εt)
spatial error estimate
if any error indicator > εsp then

begin
group error points into different clusters
form and refine rectangular megagrids
do data transition and interpolation
form polygrids for resolution
update solution field outside the polygrids
for j := 1 to number of polygrids do

begin
LocalAMR(polygrid(j), t, ∆t, εsp, εt)

end
end

end

Fig. 7. Recursive local AMR procedure on polygrid G.

of these procedures is presented in the following three algorithms, Figures 6–8. In the
first algorithm, Solve, an initial base time step is chosen which will be modified
when the program starts. A root grid which is also a polygrid is generated and
will be refined adaptively. Initial solution is projected to the root grid with a L2

projection. A domain decomposition procedure is performed to generate a finite
number of subdomains (4 or 5 for two-dimensional problems) as well as a number of
small local grids which are mostly in the size of 4 × 4 with a few smaller sizes near
the megagrid boundaries. The solution proceeds from initial time, tstart, to the final
time, tend.

The second algorithm, LocalAMR, receives a solution from the algorithm Schwarz
for one base time step and then performs an elementwise spatial error estimate. The
elements with high error are grouped into different clusters. A polygrid is formed for
each cluster and the solution procedure is repeated on each polygrid. The solution is
updated before the resolution so that the solution outside the polygrids will not be
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Procedure. Schwarz(polyG, t, ∆t, εt).
begin

for i := 1 to number of local grids of polyG do
begin

solve the ODE systems (10), local time steps are
modified based on the tolerance εt
store the solutions to wi

end
do start the iteration

begin
for i := 1 to number of local grids of polyG do

begin
solve the projection equations (11) to get Piu
update the solution field using wi, Piu

end
estimate the error from the Schwarz algorithm
while(error > εt) continue the iteration

end
choose the new ∆t for the next base time step

end

Fig. 8. Multiplicative Schwarz algorithm.

lost.

The algorithm Schwarz is called on each polygrid. It solves the ODE systems
(10) and stores the solutions on each local grid. A temporal error estimator controls
the local time steps that are refined or derefined automatically. This procedure is
described in a previous paper [22] in more detail. Then the projection equations (11)
are solved on each local grid and the multiplicative Schwarz procedure is performed
on the polygrid. We prescribe a temporal error tolerance that is a factor of at least
100 less than the prescribed spatial error tolerance. Thus temporal error will not
affect the spatial refinement.

Alternatively, we may form the polygrids without creating clusters. To do this,
we form a megagrid for each photo-cluster. The megagrid contains the photo-cluster
with a chosen buffer zone and is aligned with the coordinate axes. We then refine the
megagrid by a factor of three and interpolate the data field on the refined megagrid.
We decompose the megagrid to get a list of small local grids. For each local grid on
the list, we check if there is an error element inside or with a distance less than γ
from it, where γ is the buffer size chosen as the mesh size of the parent megagrid. If
not, we remove this local grid from the list. By going over all the local grids on the
list, we end up with a polygrid. Example 5.3 uses this procedure for the refinement.
The pseudo-Pascal algorithm, Figure 9, describes this process.

Arney and Flaherty [3], Moore [15], and Moore and Flaherty [16] used a scheme
that performed spatial refinement for each fine time step. This significantly increased
the overhead of their methods, since spatial refinement is one of the most expensive
procedures. We have improved this by performing spatial refinement once per base
time step. This increases efficiency significantly. Grid changes is generally insignificant
within one base time step. Therefore, such a strategy is very effective.

Spatial derefinement is performed if the spatial error is too small. For a given
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Procedure. PolygridMaker(Megagrid MG, List<errNode> &Eset)
begin

remove := 1
for i := 1 to number of local grids of MG do

begin
for j := 1 to number of error points in Eset do

begin
if distance( err point(j), grid(i) ) < γ) do

begin
remove := 0
break

end
end

if(remove) remove grid(i)
end

end

Fig. 9. An alternative procedure of generating polygrid.

local grid, if the estimated error on each of the m (9 ≤ m ≤ 16) elements inside the
grid is less than βεsp (we choose β = 0.3), we delete the lower left 3× 3 fine elements
(see Figure 2), and a coarse element is returned. The remaining three or four fine
elements on the right-most column of this local grid are deleted only if the errors on
the elements of the neighbor local grid to the right are all less than βεsp. The same
is true for the three or four elements on the top-most row of the local grid and the
neighbor local grid on the top. By going through all the local grids, we have formed
some polygrids which are used for the next level of integration.

4.2. Data structures. We keep track of the data fields and grid structures by
maintaining an extended tree structure of the megagrids with sibling pointers. We
choose to store the megagrids because of their simple structures. Data transition
between different levels of megagrids are simple since they are all aligned with the
coordinate axes and properly nested. A polygrid within a megagrid is stored as a
list of local grids. A local grid is composed of m (9 ≤ m ≤ 16) elements and lists
of nodes and edges. Finite element procedure and time integration are performed on
local grids. Intergrid information is propagated through the multiplicative Schwarz
algorithm. The base grid ∆h (which is also a megagrid and a polygrid) is the root of
the tree. The megagrids created by the first level of refinement process are considered
the offspring of the base grid and are said to be at the first level of the tree. Since
LocalAMR is recursive, the tree structure continues, with a megagrid at level i having
a parent coarse megagrid at level i− 1 and possible finer offspring megagrids at level
i + 1 for each megagrid. We define pointers to its parent, to its first son, and to its
next sibling megagrid. Information at a parent level megagrid is passed to its sons
through interpolation. Sibling megagrids at the same level have polygrids which are
independent of each other. The tree structure grows if further refinement is needed
and shrinks if derefinement is performed.

The data structure as well as the major objects such as grid, megagrid, and poly-
grid are easily manipulated by using the object-oriented programming language C++.
Iterators are used for the many linked lists defined in the program. The use of iterators
makes adding or deleting elements easier when constructing clusters and polygrids.
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Fig. 10. Surfaces and corresponding spatial meshes for Example 5.1 at t = 0.1, 0.5, and 1.0.

5. Numerical examples. We demonstrate the performance of our adaptive
local space-time refinement procedure by applying our methods to three examples.
The code is written in C++ and was run on a family of IBM RS6000 machines.

Example 5.1. Consider the forced heat conduction equation

ut + f(x, y) = uxx + uyy, 0 ≤ x, y ≤ 1, 0 ≤ t ≤ tf ,(12)
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Fig. 11. Number of time steps used in each region for Example 5.1 on 0 ≤ t ≤ 0.1.

with f(t, x, y), the initial and boundary conditions specified so that the exact solution
is

u(t, x, y) = 1.0− tanh[10(x+ y − t+ 0.1)].(13)

We solved this problem for 0 ≤ t ≤ 1. A 9× 9 base spatial mesh with a uniform
polynomial order 1 and an initial base time step of ∆t = 0.1 are used. For the
automatic error control, we use a spatial tolerance of 0.1 and a temporal error tolerance
of 0.001. Surface plots and the adaptive meshes at t = 0.1, 0.5, and 1.0 are given in
Figure 10. To get a better view of the surface plots, we rotated the coordinate plane
135o clockwise. Figure 11 shows the number of time steps used in each spatial region
for 0 ≤ t ≤ 0.1 and a base time step ∆t = 0.1. As can be seen from these figures, one
large time step 0.1 and a very coarse spatial mesh are used in most of the domain. A
fine mesh and a large number of time steps (9 in this case) are used only in a small
fraction of the domain where changes are most rapid. Note that the time steps are
not evenly divided. They are chosen automatically by the integration routine. The
CPU times for the solution on 0 ≤ t ≤ 0.1, with the same error tolerances, are 157.52
seconds with our space-time adaptive procedure and 1087.17 seconds using a spatially
local adaptive procedure with uniform time stepping, a significant improvement in
terms of computational efficiency.

Example 5.2. Consider the forced heat conduction equation (12) with f(t, x, y)
and the initial and boundary condition so that the exact solution is

u(t, x, y) = 0.8e−80[(x−r(t))2+(y−s(t))2],

where

r(t) = 0.5 + 0.25 sinπt

and

s(t) = 0.5 + 0.25 cosπt.

The solution is a cone initially centered at (0.5, 0.75) that rotates in a circle centered
at (0.5, 0.5) with a radius of 0.25 in a clockwise direction. The problem is solved on
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Fig. 12. Spatial meshes and surface plots in Example 5.2 for t = 0.1, 0.3, 0.8, and 1.0.
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Table 1
Convergence of multiplicative Schwarz algorithm.

# of iteration H1 error # of iteration H1 error # of iteration H1 error
1 0.829172 5 0.13051 9 0.0457369
2 0.420594 6 0.0936745 10 0.0412026
3 0.271475 7 0.0695346 11 0.039111
4 0.185898 8 0.0544481 12 0.0382874

13 0.0380543

(a) On one-level decomposition.

# of iteration H1 error
1 0.148836
2 0.0396165
3 0.034211

(b) On two-level decomposition.

0 ≤ t ≤ 1 with an initial spatial grid of 21× 21 and base time step of 0.1. The spatial
error tolerance is 0.1 and the temporal error tolerance is 0.001. The grids and the
surface plots at t = 0.1, 0.3, 0.8, and 1.0 are shown in Figure 12. The H1 errors at 0.1,
0.3, 0.8, and 1.0 are 0.0204886, 0.0206745, 0.02065328, and 0.0204843, respectively.

To demonstrate the convergence of the multiplicative Schwarz algorithms, we
solve the problem for one base time step of 0.1 starting at t = 0.7 using both one- and
two-level decompositions. A 15× 15 spatial grid and uniform elements of order 3 are
used. Table 1 shows that the two-level algorithm needs many fewer iterations than
the one-level method. The one-level algorithm takes 20m 0.26s CPU time, while the
two-level algorithm takes 18m 20.09s, which is 90% of that needed for the one-level
algorithm. Thus, the two-level algorithm is also slightly faster.

Example 5.3. Consider the combustion problem in Kapila [14]:

ut −D(1 + α− u)e−
δ
u = uxx + uyy, (x, y) ∈ Ω, t > 0,(14)

u(0, x, y) = 1, (x, y) ∈ Ω,(15)

u(t, x, 1) = 1, 0 ≤ x ≤ 1, t > 0, u(t, 1, y) = 1, 0 ≤ y ≤ 1, t > 0,(16)

ux(t, x, 0) = 0, 0 ≤ x ≤ 1, t > 0 uy(t, 0, y) = 0, 0 ≤ y ≤ 1, t > 0,(17)

where

D =
Reδ

αδ

is the Damkohler number, δ is the activation energy, α is the heat release, and R is
the reaction rate. The temperature increases slowly with a hot spot forming at the
origin. After some time, ignition occurs and the temperature at (0, 0) jumps rapidly.
A sharp reaction front forms and propagates toward the boundaries x = 1 and y = 1
where boundary layers form.

We solve (14)–(17) with α = 1, δ = 20, and R = 5. An initial spatial grid
of 9 × 9 and base time step of 0.1 with uniform element of order 1 is used. Spa-
tial and temporal tolerances are chosen to be 0.1 and 0.001. Surface plots at t =
0.25, 0.28, 0.29, 0.30, 0.32, 0.35 are shown in Figure 13. Figure 14 shows the refined
spatial grids at t = 0.28, 0.30, 0.32, and 0.35. The number of time steps used for one
base time step are shown in Figure 15.
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Fig. 13. Surface and contour plots of Example 5.3 at t = 0.25, .28, .29, .30, .32, and.35.

From these plots, we conclude that the temperature increases slowly from t = 0 to
t = 0.28, where very coarse spatial mesh and time steps are used. At about t = 0.28,
ignition occurs, the temperature at the origin increases rapidly to 2, and a sharp
reaction front forms and propagates toward the Dirichlet boundaries x = 1 and y = 1.
The space-time meshes follow the evolution process closely. We also note that, when
the reaction front is close to the Dirichlet boundaries x = 1 and y = 1, the spatial
mesh is fine near these boundaries since the spatial gradient is large there. But the
changes with time become slow except at the corner (1, 1). Thus, large time steps
are used near these boundaries. Smaller time steps are used only near the corner as
indicated in the plots for 0.34 ≤ t ≤ 0.35.
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Fig. 14. Spatial mesh used for Example 5.3 at t = .29, .30, .32, and .35.

We run this example from t = 0.0 to t = 0.35 with local space-time adaptive
meshes and get a CPU time of 5 hours and 1763 seconds. We also run the example on
the same interval with the same spatial and temporal error tolerances but with local
adaptive spatial mesh and uniform time stepping; the CPU time is 51 hours and 3354
seconds, which is almost ten times longer. In most part of the domain, one step is
enough to advance one base time step if our algorithm is used, while dozens of steps
are needed if uniform time stepping is used.

6. Concluding remarks. An adaptive local space-time mesh refinement pro-
cedure was described for solving parabolic partial differential equations in two space
dimensions. The test problems showed that fine time steps are used in regions with fine
spatial meshes. The fine meshes follow the dynamics of the physical problems. The
test problems given are all on rectangular domains, but the methods can be generalized
to any domain with piecewise linear boundaries. Thus, with an appropriate mapping,
we can generalize the method to solving any two-dimensional parabolic problem on an
arbitrary domain. We will also generalize the methods to three-dimensional problems
with some trivial changes. Since one of the most important benefits of domain de-
composition methods is the ease with which the code can be run on parallel machines,
an effort is being made in making the code running parallel.
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Fig. 15. Number of time steps used for Example 5.3 start at t = .28, .29, .31, and .34 with a
base step 0.01.
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Abstract. The set of equilibrium points of a bimatrix game is the union of polytopes that
are not necessarily disjoint. Knowledge of the vertices of these polytopes (extreme equilibria) is
sufficient to identify all equilibria. We present an algorithm that enumerates all extreme equilibria
by exploiting complementary slackness optimality conditions of two pairs of parameterized linear
programming problems. The algorithm is applied to randomly generated problems of size up to
29× 29 when both dimensions are equal, and up to 700× 5 when the second dimension is fixed. The
number of extreme equilibria grows exponentially with problem size but remains moderate for the
instances considered. Therefore, the results could be useful for further study of refinements of Nash
equilibria.

Key words. bimatrix game, extreme equilibrium, implicit enumeration, two-person nonzero-
sum game
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1. Introduction. A bimatrix game (or two-person nonzero-sum game in strate-
gic form) may be stated as follows: given a pair of m × n payoff matrices A and B,
Player I attempts to maximize his payoff xtAy by selecting the probability vector x in
R
m, and simultaneously, Player II attempts to maximize his payoff xtBy by choosing

the probability vector y in R
n.

It is well known that there is always at least one equilibrium point (see Nash
[18]) in such a game, i.e., a pair of strategies (x̂, ŷ) that simultaneously solve the two
parameterized linear programs

(P1) subject to

max
x

xtAŷ

(s.t.) xt1 = 1,
x ≥ 0,

and (P2)

max
y

x̂tBy

s.t. 1ty = 1,
y ≥ 0,

where 0 and 1, respectively, denote vectors whose components are all equal to zero
and one. The strategy x̂ is thus a best response to ŷ, as it is an optimal solution of
(P1); and ŷ is a best response to x̂, as it is an optimal solution of (P2). Hence at
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an equilibrium point neither player has an incentive to change his strategy unless the
other player does so.

Linear programming duality theory yields the equivalent dual programs

(D1)
min
α

α

s.t. 1α ≥ Aŷ, and (D2)
min
β

β

s.t. β1t ≥ x̂tB,

where α and β are dual variables in R.
There are two classical and equivalent necessary and sufficient optimality con-

ditions in linear programming theory and thus two equilibrium conditions in our
framework. Both of these conditions require primal and dual feasibility: the pair of
strategies (x̂, ŷ) together with scalars α̂ and β̂ must satisfy

(x̂, β̂) ∈ X = {(x, β) ∈ R
m+1 : xtB ≤ β1t, xt1 = 1, x ≥ 0},

(ŷ, α̂) ∈ Y = {(y, α) ∈ R
n+1 : Ay ≤ 1α, 1ty = 1, y ≥ 0}.

The first optimality condition consists in the equality of primal and dual objective
function values

x̂tAŷ = α̂ and x̂tBŷ = β̂.(1.1)

This means that the values of the dual variables must be equal to the payoffs. The
second optimality condition is the complementary slackness condition

x̂t(1α̂−Aŷ) = 0 and (β̂1t − x̂tB)ŷ = 0.(1.2)

Equivalence of optimality conditions (1.1) and (1.2) appears when substituting x̂t1
and 1tŷ by 1.

There may be one, many, or an infinite number of equilibrium points. Indeed,
for a given strategy ŷ, the set of optimal responses of Player I, i.e., the set of optimal
solutions of (P1), denoted X(ŷ), is either a singleton or a polytope. The symmetric
observation holds for (P2), where the set of optimal solutions is denoted Y (x̂). In fact,
the set E of all equilibrium points is the union of a finite number of polytopes called
maximal Nash subsets [14]. Different equilibria possess different characteristics which
make them unequally attractive. Identification of all equilibria of a bimatrix game
would ease further refinement and classification of them. Discussion of equilibrium
refinements can be found in Kohlberg [7] and in Van Damme [19], [20].

The contribution of this paper is to present a new algorithm that enumerates
all vertices of every maximal Nash subset of a bimatrix game. Knowledge of these
extreme equilibria allows identification of all equilibrium points.

The key feature of the algorithm is that it enumerates only a subset of the vertices
of the polyhedraX and Y . To this effect, the complementary slackness conditions (1.2)
of the primal and dual problems are exploited while the enumeration proceeds, and
this allows early pruning of many branches of the search tree. Nondegeneracy of
the bimatrix game is not required in order to show that the proposed algorithm
enumerates in finite time all extreme equilibria.

The paper is organized as follows. The next section briefly reviews previous work
on enumeration of equilibrium points of bimatrix games. Section 3 presents a detailed
description of an algorithm that enumerates all extreme equilibria. Numerical results
for much larger problems than those previously solved are presented in section 4.
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2. Previous work on enumeration of equilibria. The classical algorithm to
find a single equilibrium point of a bimatrix game is that of Lemke and Howson [9].
It is a path-following method designed primarily for nondegenerate games, but it can
also be applied to degenerate games after a slight perturbation. Aggarwal [1] shows
that this algorithm cannot be directly modified to enumerate all extreme equilibria,
as some of them may be inaccessible to the path.

A complete listing of equilibrium points is impossible, as their number may be
infinite, since Nash subsets are polytopes. However, given the vertices of all maximal
Nash subsets (the extreme equilibria), one can fully describe the nonconvex set E of
all equilibria. Let Sx be a set containing any number of extreme strategies of Player I,
and let x̂ be a convex combination of these strategies. Vorob’ev [23] shows that if ŷ
solves (P2) for each extreme strategy of Sx, then (x̂, ŷ) is an equilibrium point. Let
Y (x) denote the set of optimal solutions of (P2) for x̂ = x. The set E is obtained by
considering the union of such sets Sx over all possible subsets of extreme strategies of
Player I:

E =
⋃

Sx⊆{x:(x,y)∈V }

{
conv(Sx)× ∩

x∈Sx
Y (x)

}
,

where V is the set of all extreme equilibria, and conv(Sx) denotes the convex envelope
of Sx.

From symmetry we can also obtain the following characterization of E:

E =
⋃

Sx⊆vert(X), Sy ⊆vert(Y ), Sx×Sy⊆E
conv(Sx)× conv(Sy),

which shows that the equilibrium condition need only be checked for extreme points
of X and Y , expressed by the conditions under the

⋃
sign. See Winkels [24] and

Jansen [6] for additional information.
In order to obtain all equilibrium points, it is therefore sufficient to find all extreme

equilibria. The problem addressed in this paper is to enumerate all of them. Only a
few algorithms are designed to do so. We briefly present their main ideas. The first
one is due to Vorob’ev [23] and was later simplified by Kuhn [8], in which extreme
equilibria are characterized in terms of square submatrices of the payoff matrices.

Mangasarian [11] suggests enumerating all vertices of X and Y (using Balinski’s
algorithm [2]) and then checking for each pair of vertices x of X and y of Y if the
bilinear optimality condition xt(A + B)y = α + β is satisfied. Mills [15] and Man-
gasarian and Stone [12] show that this condition is equivalent to (1.1). Winkels [24]
proposes an algorithm which differs from the previous one only in the optimality
test: it consists in checking the complementary slackness conditions (1.2). Mukhame-
diev [17] enumerates all vertices of a linear maxmin problem derived from the above
mentioned bilinear optimality condition.

Another algorithm consists in enumerating each of the (2n − 1)(2m − 1) possible
supports (the sets of pure strategies that are assigned a positive probability) and then
checking for equilibria. For a given support, the set of equilibria can either be empty,
a singleton, or a polytope. In this last case, all vertices of that polytope must be
enumerated. Different implementations are discussed in Dickhaut and Kaplan [3] and
in McKelvey and McLennan [13].

Von Stengel [22] is currently exploring an algorithm that enumerates the vertices
of X only while directly computing the complementary vertices of Y (if they exist).
This is advantageous if one player has much less pure strategies than the other.
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All these methods rely more or less directly on enumeration of all vertices of
polyhedra. The number of such vertices typically increases exponentially with prob-
lem size and can be high even for low dimensional polyhedra. Moreover, important
computational difficulties arise when degeneracy is encountered, i.e., when there are
multiple basic representations of the same vertex. See Von Stengel [21] for equivalent
definitions of degeneracy. For more information on computation of equilibria in finite
games, the reader can refer to the recent surveys of McKelvey and McLennan [13],
and Von Stengel [21].

Note that ifX and Y are nondegenerate, it follows from the facts that (i) Dyer’s [4]
vertex enumeration algorithm for polyhedra is polynomial in input size and number
of vertices, and (ii) the equilibrium conditions can be checked in polynomial time,
that a similar property holds for Mangasarian’s algorithm [11], after substitution of
the vertex enumeration routine. We do not know if such a property holds for the
algorithm proposed in this paper.

3. Enumeration method. Enumeration of all extreme equilibria is done through
exploration of a search tree. To each node of the tree correspond two linear subprob-
lems whose feasible regions are derived from X and Y . They differ through conversion
of inequalities into equalities. Two types of branching rules govern these conversions.

The first type of rule relies on an equivalent formulation of the complementary
slackness condition (1.2). At an equilibrium point, the feasibility conditions insure

that the vectors x̂ and ŷ are nonnegative and that x̂tB ≤ β̂1t and Aŷ ≤ 1α̂. Therefore,
condition (1.2) can be written through the m+n complementary slackness conditions

x̂i = 0 or Ai·ŷ = α̂ and ŷj = 0 or x̂tB·j = β̂,(3.1)

where Ai· denotes the ith row of A and B·j denotes the jth column of B for i =
1, 2, . . . ,m and j = 1, 2, . . . , n. The first type of branching rule splits the current
node of the tree through two branches. In one branch, a pure strategy is forced to be
played with probability zero (a variable is fixed to zero), and in the second, a pure
strategy is forced to have maximum payoff, so it is a best response (a slack variable is
fixed to zero). This rule is invoked by the algorithm until all complementary slackness
conditions (3.1) are forced to be satisfied and thus for all nodes whose depth in the
search tree is less than or equal to m+ n.

When the depth of the current node exceeds m+n, the second type of branching
rule is used. At such a node, all complementary slackness conditions (3.1) are guar-
anteed to be satisfied by the first type of branching rule, and thus any solution of the
current converted equalities is necessarily an equilibrium point. This branching rule
consists in splitting the current node through as many branches as there are strictly
positive variables and slack variables of X and Y corresponding to the equilibrium
point. In each branch the variable or slack variable is fixed to zero. All degenerate
solutions are reached, possibly several times, and thus elimination of duplicates is
required.

Backtracking occurs when conversion of inequalities into equalities reduces the
feasible region to the empty set. Let us now introduce more formal definitions in
order to fully describe the algorithm.

3.1. Notation. As discussed above, every new branch is obtained by converting
a single inequality ofX or Y to an equality. In order to efficiently select which inequal-
ity to take, we introduce the following linear programming problems, parameterized
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in the objective functions

P (y) ≡ max
(x,β)∈X

xtAy − β,

Q(x) ≡ max
(y,α)∈Y

xtBy − α.

Problem P (y) is an aggregation of the primal and dual problems (P1) and (D2),
and Q(x) is an aggregation of (P2) and (D1). Indeed, the constraints appearing in
the definition of X and Y are those of the primal and dual problems. Moreover,
the objective functions xtAy − β and xtBy − α are the sum of the primal and dual
objective functions. Therefore, it is likely that an optimal solution of P (y) solves
(P1) and (D2), and one of Q(x) solves (P2) and (D1). The search for equilibria is
done through the feasible regions X and Y , and thus any objective functions could
be used. The intuitive motivation behind this choice of objective functions is to guide
the algorithm toward equilibrium points.

At each node of the search tree is associated a pair of current subproblems P̃ and
Q̃ that are identical to P and Q, except that some of the inequality constraints or
nonnegativity constraints are converted to equalities. The depth of the root node is
as follows.

1. At each node, one of the three following cases occurs as follows:
(i) Either P̃ or Q̃ is infeasible.
(ii) Both P̃ and Q̃ are feasible, but there is not enough information to obtain

an equilibrium point. (The depth of the current node is less than or equal
to m+ n.)

(iii) Both P̃ and Q̃ are feasible and there is sufficient information to deduce
an extreme equilibrium point. (The depth of the current node is greater
than m+ n.)

In the first case, the current node is discarded. In the two other cases, the current
node is split into others through new branches. The subproblems of the new nodes
are identical to the current ones except for one additional constraint converted into
an equality in either P̃ or Q̃, chosen according to the branching rules. Thus for each
new branch, only one of the two subproblems needs to be checked for feasibility.

In the first type of branching rule, the selected pair of complementary inequalities
to be converted into equalities corresponds to the largest complementary product
xi(α − Ai·y) or (β − xtB·j)yj , where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Of course,
the pair of inequalities must be chosen among those that were not already converted
in P̃ or Q̃.

A node is not only characterized by the pair of current subproblems P̃ and Q̃.
One of the two vectors x or y is also associated to each node. This vector describes a
feasible strategy for the current subproblem that does not differ from its predecessor in
the tree. We now introduce the notation that specifies which constraint is converted.
This notation will be used when formally defining both types of branching rule. Given
the current subproblems P̃ and Q̃, we define

P i to be P̃ in which the constraint xi ≥ 0 is converted to xi = 0,
Pj to be P̃ in which the constraint xtB·j ≤ β is converted to xtB·j = β,

Qj to be Q̃ in which the constraint yj ≥ 0 is converted to yj = 0, and

Qi to be Q̃ in which the constraint Ai·y ≤ α is converted to Ai·y = α,
where i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.
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3.2. Algorithm EEE (enumeration of extreme equilibria). The algorithm
is now briefly stated, followed by a more intuitive discussion of several important steps
and a proof of its validity.
Step a. Initialization.
Initialize the set of nodes to be explored to T = {(x, P,Q)}, where x is set to an
arbitrary feasible value (typically, x = ( 1

m ,
1
m , . . . ,

1
m )). Go to Step b.

Step b. Selection of a node.
If the set T of nodes to be explored is empty, then stop. Otherwise, choose and remove
a node N from T . Either N = (x, P̃ , Q̃) or N = (y, P̃ , Q̃). In the first case go to Step
c; in the second case, go to Step d.
Step c. Direct feasibility test (Q̃).
If Q̃(x) is infeasible, then go to Step b; otherwise, choose (ỹ, α̃) that solves Q̃(x) and
(x̃, β̃) that solves P̃ (ỹ). If the depth of the current node is not greater than m + n,
go to Step e; otherwise, go to Step f.
Step d. Direct feasibility test (P̃ ).
If P̃ (y) is infeasible, then go to Step b; otherwise, choose (x̃, β̃) that solves P̃ (y) and
(ỹ, α̃) that solves Q̃(x̃). If the depth of the current node is not greater than m + n,
go to Step e; otherwise, go to Step f.
Step e. Dichotomous branching.
Let

τi =




x̃i(α−Ai·ỹ) if the variable xi of P̃ is not forced to be null, and

the constraint Ai·y ≤ α of Q̃ is not fixed at equality,
−1 otherwise,

πj =




(β − x̃tB·j)ỹj if the variable yj of Q̃ is not forced to be null,

the constraint xtB·j ≤ β of P̃ is not fixed at equality,
−1 otherwise,

and then select the indices ı̃ and ̃ that maximize the values τi and πj (ties are broken
arbitrarily) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. In the case where τı̃ ≥ π̃, add

(ỹ, P ı̃, Q̃) and (x̃, P̃ , Qı̃)

to T , and in the case where τı̃ < π̃, add

(x̃, P̃ , Q̃) and (ỹ, P̃, Q̃)

to T . Go to Step b.
Step f. Polychotomous branching.
The solution (x̃, ỹ) is an equilibrium strategy since the complementary slackness con-
ditions are satisfied. Record it on the list of equilibria if not already there, and add
to T all nodes corresponding to a strictly positive variable or slack variable. These
nodes are in the four sets

{(ỹ, P i, Q̃) : x̃i > 0}, {(x̃, P̃ , Qi) : Ai.ỹ < α},
{(x̃, P̃ , Qj) : ỹj > 0}, and {(ỹ, Pj , Q̃) : x̃tB.j < β}.

Go to Step b.
We now discuss each step of the enumeration method. The initialization step

places the original bimatrix game into the set of nodes to be explored, together with
a feasible strategy for Player I, and sets the depth of this node to one.
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The order in which the nodes are chosen from the set T (in Step b) is not important
since all of them must eventually be selected to ensure that no extreme equilibria are
missed. Our implementation uses a depth-first strategy.

Steps c and d are the backtracking steps. In each of them, only one subproblem
among P̃ and Q̃ is checked for feasibility, as only one problem differs in its feasible
region from its predecessor (identification of the modified problem is done through
the vector x or y associated to the node). When the feasible region is nonempty,
these steps end with a feasible strategy (x̃, ỹ). The parameterized linear programs are
solved by a Simplex algorithm, and so the solutions are vertices of the polyhedra X
and Y . (This might not be so with an interior point algorithm.) In order to reduce
the number of pivots, the optimal bases found when solving P̃ and Q̃ are kept in
memory and reused at the next node.

The last two steps define the branching structure of the algorithm. New nodes are
added to the search tree. Step e is invoked when the depth of the current node in the
search tree is less than or equal to m+n (i.e., when at least one of the complementary
conditions is not forced to be satisfied). It follows that τı̃ and π̃ will not both be
equal to −1. Based on the complementary slackness conditions, two new branches
are created: one in which either a variable x̃ı is fixed at 0 or a constraint xtB·̃ ≤ β

is replaced by xtB·̃ = β, and the other in which either a variable y̃ is fixed at 0 or a
constraint Aı̃·y ≤ α is replaced by Aı̃·y = α. Figure 3.1 summarizes this dichotomous
branching rule using the above notation for the subproblems.

✪
✪

✪
✪

✪✪❡
❡

❡
❡

❡❡
(ỹ, P ı̃, Q̃)

xı̃=0

(·, P̃ , Q̃)

Aı̃·y=α

(x̃, P̃ , Qı̃)

or

✪
✪

✪
✪

✪✪❡
❡

❡
❡

❡❡
(x̃, P̃ , Q̃)

y̃=0

(·, P̃ , Q̃)

xtB·̃=β

(ỹ, P̃, Q̃)

Fig. 3.1. Dichotomous branching rule.

Step f is reached only when the depth of the current node in the search tree
is greater than m + n. The corresponding current solution (x̃, ỹ) is necessarily an
extreme equilibrium strategy since all the complementary conditions are satisfied,
and feasibility is ensured by Steps c and d. A new branch is created for each strictly
positive variable or slack variable of the current solution of P̃ and Q̃. This implies
that any equilibria found in the subtree rooted at the current node will differ from
(x̃, ỹ).

An important aspect of either of these two branching rules is that every new
branch obtained from the current node has one additional inequality constraint con-
verted into an equality, thus reducing the size of one subproblem of each branch.
This reduction ensures that every branch of the tree will eventually terminate with
an infeasible subproblem, even when degeneracy is encountered. In the degenerate
case, it is possible that the same equilibrium is obtained at more than one node of
the enumeration tree, but it is recorded only once.

Theorem 3.1. Algorithm EEE enumerates in finite time all extreme equilibrium
points of a bimatrix game.

Proof. Let (x̂, ŷ) be an extreme equilibrium point, and let α̂ and β̂ be the payoffs

x̂tAŷ and x̂tBŷ, respectively. The point ŝ = (x̂, ŷ, α̂, β̂) is a vertex of X × Y . We
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define the following sets of indices indicating binding constraints at that point:

Ix = {i : x̂i = 0}, Jy = {j : ŷj = 0}, Iy = {i : Ai·ŷ = α}, Jx = {j : x̂tB·j = β}.
Clearly, the point ŝ belongs to the set

S =

{
(x, β, y, α) ∈ X × Y : xi = 0 ∀i ∈ Ix; yj = 0 ∀j ∈ Jy;

Ai·y = α ∀i ∈ Iy; xtB·j = β ∀j ∈ Jx;
}
.

Suppose that the set S is not a singleton, i.e., that there is an s′ in S such that s′ �= ŝ.
For a given ε, consider the point sε = s′ + ε(ŝ− s′). If ε ∈ [0, 1], then convexity of S
implies that sε belongs to S. Recall that ŝ is a vertex of X×Y ; therefore, for ε > 1, sε
does not belong to X×Y nor to S. It follows that there must be a binding constraint
at the point ŝ that is free at s′. Since S is defined through all binding constraints at
ŝ, s′ cannot belong to S. Therefore, the set S consists of the singleton {(x̂, β̂, ŷ, α̂)}.

Furthermore, the complementary slackness conditions (3.1) ensure that these sets
of indices satisfy Ix∪Iy = {1, 2, . . . ,m} and Jx∪Jy = {1, 2, . . . , n}. If the equilibrium
point is nondegenerate, then these pairs of sets are disjoint, i.e., Ix ∩ Iy = ∅ and
Jx ∩ Jy = ∅. In the degenerate case, multiple basic representations imply nonempty
intersections.

Consider a current node of the enumeration tree where the extreme equilibrium
point (x̂, ŷ) has not yet been detected by the algorithm. If the depth is less than or
equal to |Ix| + |Iy| + |Jx| + |Jy| (this sum is equal to m + n in the nondegenerate
case), the branching rules select a variable ı̃ or ̃ in such a way that a new branch of
this node will necessarily impose one of the following constraints:

xı̃ = 0, where ı̃ ∈ Ix, or y̃ = 0, where ̃ ∈ Jy, or
Aı̃·y = α, where ı̃ ∈ Iy, or xtB·̃ = β, where ̃ ∈ Jx.

If (x̂, ŷ) is an extreme equilibrium of the problem of the predecessor’s node, then it
is also one for the current problem as addition of this constraint does not render the
current problem infeasible.

There will therefore be a node of depth |Ix|+ |Iy|+ |Jx|+ |Jy|+1 containing the
constraints appearing in the set S. At that node, Step e of the algorithm discovers
the extreme equilibrium (x̂, ŷ).

The number of constraints and variables in the sets X and Y are finite. In
the enumeration tree, each node contains a problem that has one more variables or
slack variables fixed at 0 than its predecessor, and thus, in view of the constraints
appearing in (P1), every branch of the tree is bound to end up with an infeasible
problem. Therefore, the number of nodes is finite.

Moreover, processing each node is done in finite time as it basically reduces to
the resolution of two parameterized linear programs bounded in size by P and Q. It
follows that the algorithm is finite.

We now illustrate the algorithm EEE on a small example and then on a slightly
larger but degenerate example.

3.3. A small example. Consider Nash’s [18] 2× 2 example

A =

[
1 −10
10 −1

]
, B =

[
1 10
−10 −1

]
.

Even though this example contains dominated strategies (see e.g., Luce and Raiffa [10])
and could be solved directly by inspection, it is analyzed here to illustrate the steps
of the algorithm.
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At the initialization step, the problems

P (y) = max
x≥0,β

(y1 − 10y2)x1 + (10y1 − y2)x2 − β
s.t. x1 + x2 = 1,

x1 − 10x2 ≤ β,
10x1 − x2 ≤ β,

Q(x) = max
y≥0,α

(x1 − 10x2)y1 + (10x1 − x2)y2 − α
s.t. y1 + y2 = 1,

y1 − 10y2 ≤ α,
10y1 − y2 ≤ α,

together with xt = ( 1
2 ,

1
2 ), constitute the first node placed into the stack T . This

node is selected in Step b and removed from T . Step c solves Q( 1
2 ,

1
2 ), obtaining

ỹ1 = 0, ỹ2 = 1, and then solves P (0, 1), getting x̃1 = 0, x̃2 = 1. At the end of this
step, x̃t = ỹt = (0, 1), α̃ = β̃ = −1, and the slack variables associated with the
constraints Aỹ ≤ 1α̃ and x̃tB ≤ β̃1t are both (9, 0).

The branching step selects the index ı̃ = 1. The stack T now contains two
nodes, one in which the constraint x1 = 0 is added to P̃ (with feasible starting point
ỹt = (0, 1) for Q̃), and the other in which the constraint A1·y = α is added to Q̃ (with
feasible starting point x̃t = (0, 1) for P̃ ).

Figure 3.2 displays the complete search tree generated by the algorithm. Selection
of the nodes in Step b is done following a depth-first strategy. The circled numbers
indicate the order in which the nodes are selected.

✐1

✐2

✐3
P

✐4

✐5

✐6
Q

✐7

✐8
Q

✐9
P

✐10
P

✐11
Q

✐12
P

✐13
Q

✦✦✦✦✦✦
x1=0

✦✦✦✦✦✦
x2=0

✦✦✦✦✦✦

y1=0

✦✦✦✦✦✦

y2=0

❛❛❛❛❛❛
A1·y=α

❛❛❛❛❛❛
A2·y=α

❛❛❛❛❛❛
xtB·1=β

❛❛❛❛❛❛
xtB·2=β

✘✘✘✘✘✘✘✘✘✘
A1·y=α ✡

✡
x2=0 ❏

❏
xtB·1=β


y2=0

Fig. 3.2. Search tree.

We discuss a few important nodes of the search tree. At the third node, sub-
problem P̃ is found to be infeasible as the constraint x1 + x2 = 1 is violated by the
added constraints x1 = x2 = 0. Step d detects this infeasibility and backtracks to
Step b. The stack T now only contains the problems corresponding to the nodes 4
and 13.

At the seventh node, an equilibrium point is found since all complementary condi-
tions are satisfied, and the current subproblems P̃ and Q̃ are both feasible. Although
this point x̃t = ỹt = (0, 1) was obtained at the first node of the search tree, it is
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recorded only as an equilibrium point at this deeper node. This reduces the time
spent in checking if a point is an equilibrium or not. Therefore, the time required to
find a first equilibrium could be reduced, but this is not our goal. In Step e, a total
of four new nodes are added to the stack T . One corresponds to the strictly positive
slack variable of the constraint A1·ỹ = y1 − 10ỹ2 ≤ α̃, a second to x̃2 ≥ 0, another to
the slack variable of the constraint x̃tB·1 = x̃1 − 10x̃2 ≤ β, and a last one to ỹ2 ≥ 0.
Each of these nodes yields infeasible problems which are detected in either Step c or
d. The stack T now contains the problems corresponding to the nodes 12 and 13; all
other nodes are completely processed.

At the thirteenth node, subproblem Q̃ is found to be infeasible. Indeed the
addition of y1−10y2 = α to nine times y1+y2 = 1 violates the constraint 10y1−y2 ≤ α.
Step c detects this infeasibility and backtracks to Step b. The stack T is now empty,
thus ending execution of the algorithm.

The use of the complementary slackness conditions is the key to the efficiency of
the algorithm. For example, consider node 13. As mentioned above, the complemen-
tary condition A1·y = α obtained from the branching rule allows immediate pruning
of the branch. If that rule was replaced by x1 = 0 versus x1 > 0, then pruning of the
branch is not immediately possible since there is a vertex (xt, β) = (1, 0, 10) of the
set X that satisfies the constraint x1 > 0. That point is therefore a candidate for an
extreme equilibrium strategy. Under this weakened branching rule, node 13 should
be further investigated. For larger problems, this significantly reduces the number of
nodes visited by the algorithm.

3.4. A degenerate example. Winkels’s [24] 6×2 example is next discussed to
illustrate how algorithm EEE behaves when degeneracy occurs:

At =

[
1 1 3 3 5

2
5
2

3 3 1 1 5
2

5
2

]
, Bt =

[
1 0 −2 4 −1 6
2 −1 2 −1 6 −1

]
.

The first node of depth greater than m + n = 8 where both subproblems are
feasible is the nineteenth. To reach that node, the first branching rule converted eight
complementary slackness conditions into

x1 = x2 = x3 = x4 = 0, A5·y = A6·y = α, and xtB·1 = xtB·2 = β.

The extreme equilibrium point obtained by solving the current subproblems is

x̃t = (0, 0, 0, 0, 1
2 ,

1
2 ), ỹt = ( 3

4 ,
1
4 ), α̃ = 5

2 ,

(Aỹ − 1α̃)t = (1, 1, 0, 0, 0, 0), (x̃tB − β̃1t) = (0, 0), β̃ = 5
2 .

Both alternatives of the complementary slackness condition x̃3 = 0 or A3·ỹ = α̃ are
satisfied. (The same is true for x̃4 = 0 or A4·ỹ = α̃.) The solution is therefore
degenerate. Figure 3.3 displays the subtree rooted at node 19, obtained with the
second branching rule.

A second extreme equilibrium point is obtained at node 20:

x̃t = (0, 0, 0, 0, 1
2 ,

1
2 ), ỹt = ( 1

4 ,
3
4 ), α̃ = 5

2 ,

(Aỹ − 1α̃)t = (0, 0, 1, 1, 0, 0), (x̃tB − β̃1t) = (0, 0), β̃ = 5
2 .

The same extreme equilibrium is found at node 27 but is not recorded again. Nodes
21 to 26 and 28 to 37 are discarded through the infeasibility criterion of Steps c or d.
Processing of these nodes is rapid since infeasibility is detected in the first phase of
the Simplex algorithm. All twelve equilibria were obtained with 417 nodes.
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y1=0

y2=0

Fig. 3.3. Search tree.

4. Numerical results. We have shown that the algorithm EEE enumerates
all extreme equilibria of bimatrix games. However, the size of the instances that
can be solved and the precision to which computations are made depend on the
implementation and on the computers on which the experiments are made. The
algorithm is coded in C, and the CPLEX library is used to solve the parameterized
linear programs P̃ and Q̃. Computational experiments are made on a SPARC station
SS20/514MP under Solaris 2.4-27 using double precision floating point arithmetic.

The entries in Table 4.1 are mean values (µ) and standard deviations (σ) for
ten randomly generated problems where the coefficients of the matrices A and B
are drawn from a uniform distribution over the real interval [0, 10]. This process is
unlikely to produce degenerate bimatrix games. Note that algorithm EEE may be
inefficient for degenerate games (as illustrated by the fact that it requires 417 nodes
for Winkels’s small example discussed above). Indeed, the same equilibrium will be
found many times at a level greater than n+m. The columns time and nodes are the
average computing times in seconds and average total number of nodes explored in
the search tree. The equilibrium columns display the average total number of extreme
equilibria and the average number of the node at which the first extreme equilibrium
point is detected.

The total number of extreme equilibrium points does not increase very rapidly.
It remains almost stable for large problems with m fixed at 5. This is due in part
to the large number of dominated strategies inherent to such randomly generated
games. That number goes down when both dimensions are close. When m = n,
there appears to be an exponential growth in the number of extreme equilibria, but it
remains, however, moderate. The average node at which the first extreme equilibria
is detected is fairly large as the method only checks for equilibria at nodes of depth
greater than m+ n. The logarithm of the execution times is plotted on the graphs of
Figure 4.1.

It appears that the time required when m = n grows exponentially with n. For
large values of n, some of the problems were difficult to solve, yielding large standard
deviations. One of the ten problems generated for n = 21 was very difficult and
required 2140 seconds and 272034 nodes. Whenm is fixed at 5, 10, or 15, the execution
time seems to grow asymptotically towards an exponential since the logarithm of the
computational times approaches linearity for large values of n. It also appears that
the time spent by the algorithm at each node is roughly proportional to the product
of m and n.
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Table 4.1
Results of algorithm EEE on randomly generated problems.

m = 5
Time Nodes Equilibrium

n (sec) total first
100 µ 81.3 11189 19.6 484.8

σ 33.0 4808 10.6 307.8
200 µ 400.1 34864 27.2 1436.0

σ 186.0 16202 12.9 1187.9
300 µ 1190.0 71865 34.2 2224.0

σ 429.8 26301 14.1 1909.5
400 µ 2303.6 105576 38.6 1659.2

σ 861.5 40074 15.0 528.9
500 µ 3992.6 147541 41.6 2948.6

σ 1421.3 53457 17.7 2466.4
600 µ 6523.2 199437 47.6 4989.8

σ 2631.5 79950 15.2 3733.7
700 µ 10060.4 263500 47.8 4246.6

σ 2656.8 71379 9.3 2955.1

m = 10
Time Nodes Equilibrium

n (sec) total first
30 µ 59.0 11138 45.2 205.4

σ 26.7 4781 18.7 131.6
50 µ 143.2 23599 63.2 219.0

σ 109.0 15561 32.1 288.4
70 µ 696.0 86059 105.4 549.2

σ 275.2 34126 43.5 515.6
90 µ 1641.5 166143 155.8 944.0

σ 659.7 66673 66.3 687.9
110 µ 3108.8 278523 182.0 739.2

σ 1290.0 115584 83.2 869.6
130 µ 5822.0 452405 222.6 3483.2

σ 1717.3 130085 75.3 4606.8
150 µ 9583.3 677202 266.0 1122.6

σ 2817.4 192742 69.5 1439.8

m = 15
Time Nodes Equilibrium

n (sec) total first
10 µ 10.7 2768 20.2 89.0

σ 8.1 2015 12.9 41.9
20 µ 73.7 12970 58.6 173.0

σ 41.9 6889 28.5 125.2
30 µ 330.1 50118 126.0 198.8

σ 195.1 28996 77.9 141.5
40 µ 1150.3 143245 222.8 508.4

σ 683.7 83440 122.6 689.1
50 µ 3252.4 345908 355.8 666.4

σ 1745.6 174208 127.8 591.7
60 µ 6898.2 674661 491.6 1194.2

σ 2961.0 274986 171.1 1254.7
70 µ 13671.3 1196031 666.5 1028.0

σ 5803.0 504102 227.6 1165.2

m = n
Time Nodes Equilibrium

n (sec) total first
5 µ 0.2 96 3.2 16.6
σ 0.0 20 1.1 5.1

9 µ 1.6 541 8.4 38.2
σ 1.2 403 6.3 20.4

13 µ 9.5 2323 18.0 80.4
σ 6.2 1471 11.0 55.2

17 µ 83.4 15421 61.4 238.8
σ 78.6 12648 33.9 190.6

21 µ 705.7 97725 204.4 475.8
σ 671.9 85925 144.1 470.4

25 µ 2427.6 280202 441.3 452.4
σ 1190.5 133640 226.8 586.6

29 µ 16216.0 1444924 1254.5 1597.6
σ 11214.7 921033 679.6 3731.4

Figure 4.2 suggests that the total execution time of algorithm EEE is polynomial
in the total number of extreme equilibria. The figure displays the logarithm of the
execution times on the y-axis and the logarithm of the total number of extreme
equilibria on the x-axis for the randomly generated games of Table 4.1 where m = n.

When m and n differ significantly, analysis of dominated strategies prior to the
execution of algorithm EEE can improve computational time for problems generated
as above. We used McKelvey and McLennan’s [13] package GAMBIT v0.94 to solve
various instances. Computational results are summarized in Table 4.2, where a single
instance corresponds to each line. Problems are randomly generated as above and
solved by EEE, then dominated strategies are identified and removed, and, finally,
EEE is executed again on these smaller games.

The first five columns display characteristics of the instances considered and of
the execution of EEE, as in the other tables. The columns ElimDom are derived
from the strongly dominated strategy removal routine of the GAMBIT package. The
columns m′ and n′ indicate the size of the resulting reduced bimatrix game. The last
columns detail execution of the algorithm EEE on these smaller instances, where the
bracketed entries are the sum of the execution times of EEE and ElimDom.
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Fig. 4.1. Logarithm of the execution times of algorithm EEE.
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Fig. 4.2. Logarithm of the execution times of algorithm EEE versus logarithm of the number
of equilibria.

Enumeration of all extreme equilibria using GAMBIT’s EnumMixed procedure
is possible in reasonable time (less than three hours) only for the smallest instances
considered. For example, the time required for that procedure (excluding that of
ElimDom), for the problem where the dimensions are reduced from 100× 5 to 17× 5,
is 70.6 seconds, and the time required for the one reduced from 200 × 5 to 29 × 5
is 1803.5 seconds. However, for the next instance, the one where the size is reduced
from 300×5 to 47×5, the time required is more than 17.5 hours. This computational
time is more than 1700 times longer than the 36.1 seconds required by algorithm EEE
on the same reduced game.

A significant gain in computing time occurs when there is an important difference
between the dimensions and when the largest dimension is not too high. For such
randomly generated games that contain many dominated strategies, it appears that
their identification and removal prior to the execution of the algorithm EEE reduces
the total computational time.

The alternative straightforward approach consisting in enumerating in a first step
all vertices of the polyhedra X and Y and then checking for equilibrium may be
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Table 4.2
Games with dominated strategies.

Equil Algorithm EEE ElimDom Algorithm EEE
m n total time(sec) nodes time(sec) m′ n′ time[tot](sec) nodes
5 100 11 42.7 6824 54.7 5 17 2.5 [57.2] 1117
5 200 13 281.4 21584 335.1 5 29 7.6 [343.0] 2487
5 300 35 1182.2 71286 1132.2 5 47 36.1 [1168.3] 9461
5 400 45 2652.5 127514 2498.9 5 53 53.9 [2552.8] 13101
5 500 55 4291.7 169048 4612.7 5 57 71.2 [4683.9] 17861
5 600 45 5857.9 190022 7923.3 5 55 62.4 [7985.7] 15247
5 700 47 9823.4 257690 12601.4 5 61 81.8 [12683.2] 18003
10 30 37 53.1 12405 12.8 10 23 34.6 [47.4] 9258
10 50 95 331.7 53945 49.6 10 34 140.2 [189.8] 28503
10 70 115 678.4 100443 117.3 10 48 298.9 [416.2] 57073
10 90 239 2245.9 256877 195.7 10 63 857.8 [1053.5] 129368
10 110 313 4400.8 450717 316.0 10 71 1907.3 [2223.3] 263828
10 130 307 6595.2 569323 496.8 10 76 2112.5 [2609.3] 262707
10 150 209 6131.0 477901 733.6 10 84 1637.2 [2370.8] 203327
15 40 111 814.1 117412 80.5 15 39 875.6 [956.1] 110597
15 50 255 3001.9 360150 124.5 15 45 2109.9 [2234.4] 264109
15 60 399 8853.0 946564 193.5 15 53 7047.5 [7241.0] 767941
15 70 553 18828.4 1775200 306.2 15 62 15370.0 [15676.2] 1447174

efficient for small problems. However, the number of vertices grows much more rapidly
than the number of nodes visited by algorithm EEE. Table 4.3 displays the mean and
the standard deviation of the number of nodes required by the search tree as well
as the number of vertices of the polyhedron Y for ten problems randomly generated
as above. Computational times, including those of the GAMBIT package, are also
reported.

Table 4.3
Comparison of algorithms in terms of times, nodes and vertices.

Algorithm EEE Fukuda GAMBIT
Time Nodes Time Vertices Time

m = n (sec) (sec) of Y (sec)
9 µ 1.6 541 .9 499 57.4
σ 1.2 403 .6 204 82.1

10 µ 3.0 856 3.9 1084 590.9
σ 1.6 444 1.0 175 464.4

11 µ 4.3 1248 15.2 2411 4848.3
σ 1.6 442 5.3 811 3401.9

12 µ 7.0 1899 56.2 4803
σ 3.0 763 22.6 1517

13 µ 9.5 2323 260.5 8737
σ 6.2 1471 154.6 4852

14 µ 18.0 4197 1620.9 22731
σ 7.9 1626 895.4 8852

15 µ 28.0 6313 9501.0 50874
σ 15.2 3369 6896.2 24298

Fukuda’s [5] state-of-the-art implementation in C of the double description method
of [16] is used for vertex enumeration. The number of vertices of Y grows much more
rapidly than the number of nodes visited by algorithm EEE. Computational time
required for enumerating all vertices follows their number. Even if another algorithm
or a different implementation were used, the time would quickly exceed that required
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by algorithm EEE. Moreover, vertex enumeration of Y is only the first step of the
straightforward approach. Thus it does not appear that this approach is competitive.

In a second step (as long as the first one), all vertices of the polyhedron X should
be enumerated, and a final step would verify complementary conditions for each pair of
vertices. This approach does not seem reasonable even for midsized problems, e.g., the
average number of vertices for the 15×15 problems is over 5×104 for both polyhedra,
and thus approximately 2.5 × 109 equilibrium conditions should be checked. (These
conditions require the knowledge of slack variables.) Moreover, additional difficulties
arise in vertex enumeration procedures when degeneracy is encountered. Table 4.3
shows that algorithm EEE is more than 1000 times faster than GAMBIT for a
problem of size 11×11, and that factor grows with problem size. For those problems,
GAMBIT’s procedure for eliminating dominated strategies always took less than 2.1
seconds for each instance considered; thus the most computational time is needed for
the extreme equilibria enumeration procedure.

In conclusion, the proposed algorithm allows enumeration of all extreme equilib-
rium points of substantially larger bimatrix games than done by previous ones. The
key to the efficiency of the algorithm is the systematic use of complementary slackness
conditions in the branching rule. This allows joint use of information concerning the
polyhedra X and Y , unlike vertex enumeration based procedures that treat them as
two distinct entities.
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Abstract. New finite difference methods using Cartesian grids are developed for elliptic in-
terface problems with variable discontinuous coefficients, singular sources, and nonsmooth or even
discontinuous solutions. The new finite difference schemes are constructed to satisfy the sign prop-
erty of the discrete maximum principle using quadratic optimization techniques. The methods are
shown to converge under certain conditions using comparison functions. The coefficient matrix of the
resulting linear system of equations is an M-matrix and is coupled with a multigrid solver. Numerical
examples are also provided to show the efficiency of the proposed methods.
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1. Introduction. Many important practical problems lead to partial differen-
tial equations (PDEs) whose solutions or derivatives have discontinuities across some
interfaces within the solution domains. In this paper, we propose a class of numeri-
cal methods that preserve the discrete maximum principle for the interface problems
defined below:

(βux )x + (βuy )y − κ(x, y) u = f(x, y), (x, y) ∈ Ω = Ω+ ∩ Ω−,(1.1)

with a boundary condition on ∂Ω, where β ≥ βmin > 0, κ ≥ 0, and f are piecewise
continuous but may have a jump discontinuity across some smooth curve Γ in the
domain Ω; see Figure 1(a) for an illustration. The source term f can also contain
singular sources as reflected in the following jump conditions:

[u]
∣∣∣
X∈Γ

= w(s), [βun]
∣∣∣
X∈Γ

= v(s),(1.2)

where X = (X,Y ) is a point on the interface Γ, s is the arc-length parameterization
of the interface Γ, and the jump is defined as the difference of the limiting values of
two different sides of the interface, for example,

[u]
∣∣∣
X∈Γ

= lim
x→X,X∈Ω+

u(x) − lim
x→X,X∈Ω−

u(x),

where x = (x, y) ∈ Ω. The interface Γ can be arbitrary, but it is assumed to be a
smooth closed curve1 lying in Ω. In the case that κ is continuous and w(s) ≡ 0, the
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1We impose some conditions on β, κ, and Γ for simplicity, especially for theoretical discussions.

Nevertheless, most of these conditions can be relaxed when we apply the algorithms discussed in this
paper.
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(a) (b)

Fig. 1.1. (a) A diagram of a rectangular domain Ω = Ω+ ∪Ω− with an immersed interface Γ.
The coefficient β(x) may have a jump across the interface. (b) A diagram of the local coordinates
in the normal and tangential directions, where θ is the angle between the x-axis and the normal
direction.

interface problem can be written as the boundary value problem below:

∇ · (β∇u(x))− κu(x) = f(x) +

∫
Γ

v(s)δ2(x−X(s))ds,

with a given boundary condition on ∂Ω,

where δ2 is the two-dimensional Dirac delta function; the second term at the right-
hand side is a distribution which satisfies∫∫

Ω

∫
Γ

v(s)δ2(x−X(s))Ψ(x)ds dx =

∫
Γ

v(s)Ψ(X(s))ds(1.3)

for any arbitrary smooth function Ψ(x, y). The discussion of the existence and the
regularity of the solution can be found, for example, in [2, 3]. In general, if β, κ, and
f are piecewise smooth in Ω, w = 0, and v is continuous along Γ, then the solution
to the interface problem exists and is in H1(Ω).

There are several numerical methods in the literature designed for the interface
problems discussed in this paper. We just mention a few here: the finite element
methods using body fitting grids [3]; the fast solvers based on integral equations for
piecewise constant coefficients including the fast multipole method; the first order
ghost fluid method [11]. In this paper, our new methods are based on the immersed
interface method (IIM) [7, 8].

The IIM is a second order finite difference method based on Cartesian grids for
interface problems in which the jump conditions across the interface are known. The
IIM gives sharp solutions (no smear-out) across the interfaces since the jump con-
ditions are enforced. Generally the IIM uses only local information, specifically, the
PDEs, the jump conditions, the interface, and the underlying grid. The IIM has been
successfully coupled with evolution schemes such as the particle approach and the
level set method for moving interface and free boundary problems.

For an interface problem with a variable coefficient that has discontinuity across
the interface, the resulting linear system of equations from the original IIM is not
symmetric positive definite. While it is stable for one-dimensional and certain two-
dimensional problems [6], the stability of the algorithm depends on the choice of one
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or more extra grid points in addition to the standard five-point stencil [5]. In other
words, it is not always guaranteed that the original IIM will converge and satisfy the
maximum principle. Many efficient linear solvers may not work or may work poorly
for the linear system of equations derived from the original IIM.

In this paper, we will develop new methods for arbitrary β(x, y) using direct finite
difference discretization. The new methods satisfy the sign property that guarantees
the discrete maximum principle. The sign property is enforced through a constrained
quadratic optimization problem. The coefficient matrix of the resulting linear sys-
tem of equations is diagonally dominant and its symmetric part is negative definite.
Such a matrix is an M-matrix that guarantees some iterative methods such as the
SOR method converge. Two specific schemes using the optimization approach are
discussed. One is a first order method that uses the standard five-point stencil. The
other one is a second order method that uses a standard nine-point stencil. The con-
vergence of the methods is warranted if the solution to the optimization problem exists
and certain bounds are satisfied. The existence of the solution to the optimization
problem is proved for the first order method and verified numerically for the second
order method.

The idea in this paper actually was proposed and tested by Z. Li (1993) and
S. Moskow and F. Santosa (1996–1997). However, due to various reasons, it has never
been written up and published.

The paper is organized as follows. In section 2, we lay down some theoretical
fundamentals for interface problems that are needed in deriving the new methods.
We derive the new methods using optimization techniques in section 3. Convergence
analysis for the first order and second order methods is given in section 4 and 5,
respectively. The numerical results are presented in section 6.

2. Preliminaries.

2.1. The local coordinates. Given a point (x∗i , y
∗
j ) on the interface, it is con-

venient to use the local coordinates in the normal and the tangential directions:

ξ = (x− x∗i ) cos θ + (y − y∗j ) sin θ, η = −(x− x∗i ) sin θ + (y − y∗j ) cos θ,(2.1)

where θ is the angle between the x-axis and the normal direction, pointing to the
direction of a specified side, say, the + side in Figure 1(b). We use the superscripts −
or + to denote the limiting values of a function from one side or the other. Under the
local coordinates, the limiting differential equation approaching the interface from a
particular side, for example, from the − side, can be written

β− (u−ξ ξ + u−η η) + β−
ξ u

−
ξ + β−

η u
−
η − κ− u− = f−.(2.2)

In a neighborhood of the point (x∗i , y
∗
j ), the interface Γ can be parameterized as

ξ = χ(η), with χ(0) = 0, χ′(0) = 0.(2.3)

The curvature of the interface at (x∗i , y
∗
j ) is χ′′(0).

2.2. The interface relations. Let u(x, y) be the solution to (1.1) and (1.2). Let
(x∗i , y

∗
j ) be a point on the interface. We have derived the following interface relations

in [7, 8] that represent the limiting quantities of the solution of (1.1)–(1.2) and its
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derivatives from one side of the interface in terms of the other.

u+ = u− + w, u+
ξ = ρ u−ξ +

v

β+
, u+

η = u−η + w′,

u+
ξ ξ =

(
βξ

−

β+
− χ′′

)
u−ξ +

(
χ′′ − βξ

+

β+

)
u+
ξ +

βη
−

β+
u−η −

βη
+

β+
u+
η

+ (ρ− 1)u−η η + ρu−ξ ξ − w′′ +
[f ]

β+
+

[κ]u− + κ+ [u]

β+
,

u+
η η = u−η η + (u−ξ − u+

ξ )χ′′ + w′′,

u+
ξ η =

βη
−

β+
u−ξ −

βη
+

β+
u+
ξ +

(
u+
η − ρu−η

)
χ′′ + ρ u−ξ η +

v′

β+
,

(2.4)

where ρ = β−/β+. These interface relations are used in deriving the new finite
difference methods in the next section.

3. The algorithm description. We assume the domain Ω is a rectangle, say,
[a, b]× [c, d]. We take a uniform grid with

xi = a + ih, yj = a + jh, i = 0, 1, . . . ,m, j = 0, 1, . . . , n,

where h = (b − a)/m and h = (d − c)/n. The discussions are easily generalized to
the cases in which the spatial step sizes are different in each direction. Our goal is to
develop a finite difference equation of the form

ns∑
k=1

γk Ui+ik,j+jk − κij Uij = fij + Cij(3.1)

at any grid point (xi, yj), where ns is the number of grid points in the finite difference
stencil, and Uij is the solution to the linear system of equations (3.1) and an approx-
imation to the solution u(x, y) of (1.1) and (1.2) at (xi, yj). The sum over k involves
a finite number of points neighboring (xi, yj). So each ik, jk will take values in the
set {0,±1,±2, . . . }. The coefficients γk and the indices ik, jk, and ns will depend on
(i, j), so these should really be labeled γijk, etc., but for simplicity of notation we will
concentrate on a single grid point (xi, yj) and drop these indices.

The local truncation error at a grid point (xi, yj) is defined as

Tij =

ns∑
k=1

γk u (xi+ik , yj+jk)− κij u(xi, yj)− f(xi, yj)− Cij .(3.2)

We say (xi, yj) is a regular grid point if all the grid points in the standard five-point
stencil are in the same side of the interface. At regular grid points, we use the standard
five-point (ns = 5) central finite difference scheme with Cij = 0. The local truncation
error at regular grid points is O(h2).

We need to determine formulas of the form (3.1) for irregular grid points around
which the standard five-point stencil contains grid points from both sides of the inter-
face. First we choose a point (x∗i , y

∗
j ) on the interface Γ near the grid point (xi, yj).

Usually, we take (x∗i , y
∗
j ) either as the orthogonal projection of (xi, yj) on the inter-

face or the intersection of the interface and one of the axes. We then expand each
u(xi+ik , yj+jk) about (x∗i , y

∗
j ) under the local coordinates,

u(xi+ik , yj+jk) = u(ξk, ηk) = u± + ξku
±
ξ + ηku

±
η +

1

2
ξ2ku

±
ξξ + ξkηku

±
ξη +

1

2
η2
ku

±
ηη + O(h3),
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where the + or − sign is chosen depending on whether (ξk, ηk) lies on the + or − side
of Γ. If we do this expansion at each point involved in the finite difference equation
(3.1), then the local truncation error Tij can be expressed as a linear combination of
the values u±, u±ξ , u±η , u±ξξ, u

±
ξη, u±ηη as the following:

Tij = a1 u
− + a2 u

+ + a3 u
−
ξ + a4 u

+
ξ + a5 u

−
η + a6u

+
η + a7 u

−
ξ ξ + a8 u

+
ξ ξ

+ a9 u
−
η η + a10 u

+
η η + a11 u

−
ξ η + a12 u

+
ξ η − κ−u− − f− − Cij + O(h).

The quantities f±, κ±, β± are the limiting values of the functions at (x∗i , y
∗
j ) from

the + side or − side of the interface. The coefficients aj depend only on the position
of the stencil relative to the interface. They are independent of the functions u, κ,
and f . If we define the index sets K+ and K− by

K± = {k : (ξk, ηk) is on the ± side of Γ},
then the aj are given by

a1 =
∑

k∈K−
γk, a2 =

∑
k∈K+

γk, a3 =
∑

k∈K−
ξkγk,

a4 =
∑

k∈K+

ξkγk, a5 =
∑

k∈K−
ηkγk, a6 =

∑
k∈K+

ηkγk,

a7 =
1

2

∑
k∈K−

ξ2kγk, a8 =
1

2

∑
k∈K+

ξ2kγk, a9 =
1

2

∑
k∈K−

η2
kγk,

a10 =
1

2

∑
k∈K+

η2
kγk, a11 =

∑
k∈K−

ξkηkγk, a12 =
∑

k∈K+

ξkηkγk.

(3.3)

Using the interface relations (2.4), we eliminate the quantities from one side, say, the
+ side, using the quantities from the other side, say, the − side, and collect terms to
get an expression of the form

Tij =

(
a1 +

a8 [κ]

β+
+ a2

)
u− +

{
a3 + a8

(
βξ

−

β+
− χ′′

)
+ a10χ

′′ + a12
βη

−

β+

+ ρ

(
a4 + a8

(
χ′′ − βξ

+

β+

)
− a10χ

′′ − a12
βη

+

β+

)
− βξ−

}
u−ξ

+

{
a5 + a6 + a8

(
βη

−

β+
− βη

+

β+

)
+ a12(1− ρ)χ′′ − βη−

}
u−η

+
{
a7 + a8ρ− β−} u−ξ ξ +

{
a9 + a10 + a8 (ρ− 1)− β−} u−η η

+ {a11 + a12ρ} u−ξ η − κ−u− − f− + (T̂ij − Cij) + O(h),

(3.4)

where

T̂ij = a2 w + a12
v′

β+
+

(
a6 − a8 βξ

+

β+
+ a12χ

′′
)
w′

+ a10 w
′′ +

1

β+

(
a4 + a8(χ′′ − βξ

+

β+
)− a10χ

′′ − a12
βη

+

β+

)
v(3.5)

+ a8

{
[f ]

β+
+
κ+ w

β+
− w′′

}
.
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We want to make the magnitude of the truncation error as small as possible by
choosing γk’s so that some of coefficients of u−, u−ξ , u−η , . . . vanish:

a1 + a2 + a8
[κ]

β+
= 0,

a3 + ρa4 + a8
βξ

− − ρβξ+ − [β]χ′′

β+
+ a10

[β]χ′′

β+
+ a12

βη
− − ρβη+

β+
= βξ

−,

a5 + a6 − a8
[βη]

β+
+ a12(1− ρ)χ′′ = βη

−,

a7 + a8 ρ = β−,

a9 + a10 + a8 (ρ− 1) = β−,
a11 + a12 ρ = 0.

(3.6)

Once the γk’s are chosen, we set Cij = T̂ij , where T̂ij is given by (3.5). If we use a
six-point stencil and equations (3.6) hold, then this leads to the original IIM [7].

3.1. An optimization approach. In order to obtain finite difference schemes
that satisfy the discrete maximum principle, see section 6.5 of Morton and Mayers
[12] for the definition. We need to impose the sign restriction on the coefficients γk’s
in (3.1)

γk ≥ 0 if (ik, jk) �= (0, 0), γk < 0 if (ik, jk) = (0, 0),(3.7)

along with several equations in (3.6). At regular grid points, the standard central
finite difference scheme satisfies the sign restriction and the equations in (3.6). So we
will concentrate our discussion only on an irregular grid point (xi, yj). We form the
following constrained quadratic optimization problem to determine the coefficients of
the finite difference scheme

min
γ

{
1

2
‖γ − g‖22

}
subject to(3.8)

Aγ = b, γk ≥ 0 if (ik, jk) �= (0, 0), γk < 0 if (ik, jk) = (0, 0),(3.9)

where γ = [ γ1, γ2, . . . , γns ]T is the vector composed of the coefficients of the finite
difference scheme, g ∈ Rns , and Aγ = b is the system of linear equations that
contains several or all equations in (3.6). Naturally we want to choose {γk} in such
a way that they become the coefficients of the standard five-point central difference
scheme if β+ = β− is a constant. This can be done by selecting the vector g as

gk =
βi+ik,j+jk

h2
if (ik, jk) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1) } ;

gk = −4βi,j
h2

if (ik, jk) = (0, 0); gk = 0 otherwise.

(3.10)

There are two parameters in the optimization algorithm (3.8)–(3.9) that are to
be determined. The first one is the set of grid points (xik , yjk), whose total number
is ns, involved in the finite difference scheme. The second one is the set of equations
from (3.6), which is used as the equality constraint in (3.9). The solution {γk} to the
constrained optimization problem is the coefficients of the finite difference scheme at
the particular irregular grid point. We will discuss a first, as well as a second, order
method in this paper.
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3.2. The first order method. In this section we describe the first order method.
Note that Aiγ = bi, 1 ≤ i ≤ 3, the first three equations in (3.6) represent the leading
terms in (3.4), and the last three equations Alγ = bl, 4 ≤ l ≤ 6 in (3.6) are one order
higher in terms of h than the first three equations. To obtain a first order method, it
is sufficient to select the first three equations as the equality constraints. Moreover,
since the O(h2) terms have little effect on the convergence order, we neglect them to
get simplified equality constraints

a1 + a2 + a8
[κ]

β+
= 0, a3 + ρa4 = βξ

−, a5 + a6 = βη
−(3.11)

for the first three equations. We take ns = 5, and the standard five-point stencil

{(i1, j1), (i2, j2), (i3, j3), (i4, j4), (i5, j5)} = {(−1, 0), (0, 0), (1, 0), (0,−1), (0, 1)} .
Thus, the optimization problem (3.8) is written as

min
γ

{
1

2
‖γ − g‖22 +

6∑
l=4

wl (Alγ − bl)2
}

subject to (3.11) and

γk ≥ 0 if (ik, jk) �= (0, 0), γk < 0 if (ik, jk) = (0, 0),

(3.12)

where wl are predefined weights for l = 4, 5, 6 (we often simply take wl = 0). It will
be shown in section 4 that the resulting finite difference scheme is of first order.

3.3. The second order method. In order to get a second order method, we
require all six equations in (3.6) to be satisfied plus the sign restriction (3.7) for the
optimization problem. Therefore ns ≥ 6. In the conforming finite element method for
interface problems with a uniform triangulation [10], a nonstandard nine-point stencil
is used for the second order method and the stiffness matrix is symmetric positive
definite. Since we do not require symmetry in the linear system of the finite difference
equations described in this paper, we expect that for the standard nine-point stencil
(ns = 9) the optimization problem has solutions. We will see this through numerical
verifications in section 5. Moreover, we prefer to use the standard nine-point stencil
so that the resulting linear system of equations is block tridiagonal and a multigrid
solver DMGD9V (developed for the standard nine point stencil) can be used.

3.4. Solving the optimization problems. There are several commercial and
educational software packages that are designed to solve constrained quadratic opti-
mization problems, for example, the QP function in Matlab; the QL program using
Fortran computer language developed by Schittkowski [13]; and the IQP Fortran code
from Port managed by Lucent Technologies. The information about these software
packages can be found through the Internet.

Most of the quadratic optimization solvers require users to provide an initial
guess, lower and upper bounds, and other information. We take the initial guess as
the vector g, and the lower and upper bounds as

0 < γk <
βmax

h2
if (ik, jk) �= (0, 0); −4βmax

h2
< γk < 0 if (ik, jk) = (0, 0),

where βmax is an estimation of the upper bound of the coefficient β(x, y).
In case that the optimization solver fails to give a solution, we can either increase

the number of grid points or switch to a first order scheme that satisfies the discrete
maximum principle, such as the smoothing method, without affecting global accuracy.
If the optimization solver fails to return a feasible solution, it may mean either the
curvature or the jump in β is too large relative to the underlying grid.
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4. Convergence analysis for the first order method.

4.1. Existence of the solution to the optimization problem. In this sub-
section, we assume that β(x, y) is piecewise constant in the solution domain although
the method itself does not have such a restriction; see Example 6.1. We first show
that the constrained optimization problem (3.12) has a solution and then show that
the resulting finite difference scheme is of first order.

Since we use the standard five-point stencil (ns = 5), the stencil at an irregular
grid point (xi, yj) is composed of (xi+ik , yj+jk) with

(ik, jk) = { (i− 1, j), (i, j), (i + 1, j), (i, j − 1), (i, j + 1) }(4.1)

corresponding to k = 1, 2, 3, 4, 5. Since the linear system of equations is obtained
from the Taylor expansion at (x∗i , y

∗
j ), a point on the interface, we need only use

the limiting value of β(x, y) at (x∗i , y
∗
j ), which we denote as β+ and β−, respectively.

Assuming κ = 0 in (1.1), we can eliminate γ2 from the first equation in (3.11) to get

γ2 = −
5∑

k=1,k �=2

γk.(4.2)

The equality constraints from a3 + ρa4 = 0 and a1 + a2 = 0 in (3.11) with high
order terms of h being neglected and the inequality constraints of the optimization
problem are the following:

5∑
k=1,k �=2

(
ξk
β± −

ξ2
β±

)
γk = 0,

5∑
k=1,k �=2

(ηk − η2) γk = 0,(4.3)

γk ≥ 0, k = 1, 3, 4, 5,(4.4)

where β± takes either β+ or β− depending on which side of the interface the grid
point (xi+ik , yj+jk) is. We will prove the following theorem.

Theorem 4.1. Let (x∗i , y
∗
j ) be a point on a smooth interface Γ that satisfies

|x∗i − xi|+ |y∗j − yj | <
√

2h.(4.5)

Assume that the interface Γ cuts through the axes at no more than two points within
[xi − h, xi + h] × [yj − h, yj + h], and the tangent line at (x∗i , y

∗
j ) separates the grid

points in the five-point stencil in the same way as the interface does. Then there is at
least one set of solutions γk > 0, k = 1, 3, 4, 5, that satisfies (4.3).

Proof. Without loss of generality, and for simplicity for indexing, we assume that
x∗i −xi ≥ 0, y∗j −yj ≥ 0, the angle between the x-axis and the normal direction θ is in
the interval [ 0, π/2). There are two different cases depending on which side the grid
point (xi, yj+1) is. We will prove one of the cases as shown in Figure 4.1 in which the
condition (4.5) is assumed. The proof of the other case is technically similar and will
be omitted. From Figure 4.1, it is easy to see that

ξ1 < 0, ξ3 > 0, ξ4 ≤ 0, ξ5 ≥ 0,

η1 ≥ 0, η3 ≤ 0, η4 < 0, η5 > 0.
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Fig. 4.1. A diagram of the geometry at an irregular grid point if h is sufficiently small.

With such a geometry, the two equations (4.3) are(
ξ1
β− −

ξ2
β−

)
γ1 +

(
ξ3
β+
− ξ2
β−

)
γ3 +

(
ξ4
β− −

ξ2
β−

)
γ4 +

(
ξ5
β+
− ξ2
β−

)
γ5 = 0,

(4.6)

(η1 − η2) γ1 + (η3 − η2) γ3 + (η4 − η2) γ4 + (η5 − η2) γ5 = 0.

Introduce the parameters αij as in the following:

α11 = −
(
ξ1
β− −

ξ2
β−

)
> 0, α13 =

ξ3
β+
− ξ2
β− > 0,

α14 = −
(
ξ4
β− −

ξ2
β−

)
≥ 0, α15 =

ξ5
β+
− ξ2
β− ≥ 0,

α23 = −(η3 − η2) ≥ 0, α21 = (η1 − η2) ≥ 0,

α24 = −(η4 − η2) > 0, α25 = (η5 − η2) > 0.

We can rewrite the equations (4.6) as2

α13γ3 − α11γ1 = α14γ4 − α15γ5, α23γ3 − α21γ1 = −α24γ4 + α25γ5.(4.7)

We are ready to prove the theorem by distinguishing the following cases.
• α23 = 0. In this case, we also have α21 = 0. We choose

γ5 =
β+

h2
> 0, γ4 =

α25

α24
γ5 > 0,

γ1 =
2β−

h2
+
|α14γ4 − α15γ5 |

α11
> 0, γ3 =

1

α13
(α11γ1 + α14γ4 − α15γ5) > 0.

• α14 = 0. In this case, we also have α15 = 0. We choose

γ1 =
β−

h2
> 0, γ3 =

α11

α13
γ1 > 0,

γ4 =
2β−

h2
+
|α23γ3 − α21γ1 |

α24
> 0, γ5 =

1

α25
(α24γ4 + α23γ3 − α21γ1) > 0.

2It is also easy to show that α23 = α21 and α24 = α25.
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• α11

α21
=
α13

α23
= τ > 0. We choose

γ4 =
β−

h2
> 0, γ5 =

α14 + τα24

α15 + τα25
γ4.

With such choice of γ4 and γ5, we have

α14γ4 − α15γ5 = −τα24γ4 + τα25γ5.

Then we choose

γ1 =
2β−

h2
+
|α14γ4 − α15γ5|

α11
, γ3 =

1

α13
(α11γ1 + α14γ4 − α15γ5) .

• α11

α13
>

α21

α23
. This is one of the general cases. Consider the following two

functions:

g1(γ4, γ5) = α14γ4 − α15γ5, g2(γ4, γ5) = −α24γ4 + α25γ5.

In the first quadrant of the γ4-γ5 plane, there are three different regions where g1 > g2,
g1 = g2, and g1 < g2, respectively. Choose a point γ∗4 > 0, γ∗5 > 0 in the first quadrant
of the γ4-γ5 plane in such a way that g1 < g2. Let γ∗1 , γ∗2 be the solution to the system
of equations (4.7) with γ4 and γ5 being substituted by γ∗4 and γ∗5 ; since α11

α13
> α21

α23
,

we can conclude that γ∗1 > 0 and γ∗2 > 0.

• α11

α13
<

α21

α23
. The proof is almost exactly the same as the previous case except

we choose γ∗4 > 0, γ∗5 > 0 such that g1 > g2. This completes the proof.
Corollary 4.2. From the proof of the existence of the optimization problem, we

can conclude that

|γk| ≤ C

h2
, k = 1, 2, . . . , 5,

and there is at least one of γk from each side of the interface such that

|γk| ≥ C̄

h2
,

where the constants are O(1) and independent of the grid points involved but depend
on the coefficient β.

These results of the corollary imply the condition (4.12) in Theorem 4.4 in the
next subsection.

4.2. Convergence proof of the first order method. We need the following
lemma which is a generalization of Theorem 6.1 and Theorem 6.2 of Morton and May-
ers [12] for multiple subregions Ji.

Lemma 4.3. Given a finite difference scheme Lh defined on a discrete set of
interior points JΩ for a Dirichlet elliptic PDE, assume the following conditions hold:

1. JΩ can be partitioned into a number of disjoint regions

JΩ = J1 ∪ J2 ∪ J3 ∪ · · · ∪ JNΩ
, Ji ∩ Jk = ∅ if i �= k.(4.8)

2. The truncation error of the finite difference scheme at a grid point p satisfies

|Tp| ≤ Ti ∀p ∈ Ji, i = 1, 2, . . . , NΩ.(4.9)
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3. There exists a nonnegative mesh function φ defined on ∪NΩ
i=1Ji satisfying

Lhφp ≥ Ci > 0 ∀p ∈ Ji, i = 1, 2, . . . , NΩ.(4.10)

Then the global error of the approximate solution Uij from the finite difference scheme
at mesh points is bounded by

||Eh||∞ ≤
(

max
A∈J∂Ω

φA

)
max

1≤i≤NΩ

{
Ti
Ci

}
,(4.11)

where Eh is the difference of the exact solution of the differential equation and the
approximate solution of the finite difference equations at the mesh points, and J∂Ω is
the set that contains the boundary points.

The proof of this lemma is trivial and is omitted.

Theorem 4.4. Let u(x, y) be the exact solution to (1.1) and (1.2) with κ = 0
and a Dirichlet boundary condition. Assume that (1) u(x, y) has piecewise continuous
second order derivatives; (2) h is sufficiently small; (3) at all irregular grid points,
the following is true:

|γk| ≤ C1

h2
, k = 1, 2, . . . , 5, and

∑
ξk≥0

γkξk ≥ C2

h
.(4.12)

Then we have the following error estimate for Uij, the solution of the finite difference
equations obtained from the first order optimization method

‖u(xi, yj)− Uij‖∞ ≤ Ch,(4.13)

where C = O(1) depends on the underlying grid and the interface, f , u, and the
coefficient β.

Proof. If h > 0 is sufficiently small, we have proved that the optimization problem
has solutions. Consider the solution to the following interface problem:

∇ · β∇φ = 1,

[φ] = 0, [βφn] = 1, φ∂Ω = 1.
(4.14)

From the results in [2, 3], we know that the solution φ exists, and it is unique and
piecewise continuous. Therefore the solution is also bounded. Let

φ̄(x, y) = φ(x, y) +

∣∣∣∣ min
(x,y)∈Ω

φ(x, y)

∣∣∣∣ .(4.15)

Then φ̄(x, y) ≥ 0 and still satisfies the differential equation and the jump conditions
in (4.14). We define the discrete finite difference operator as

Lhu(xi, yj) =

ns∑
k

γk u(xi+ik , yj+jk).(4.16)

Let (xi, yj) be an irregular grid point. If h is small enough, then we know that γk is
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bounded by C/h2. Therefore we have

Lhφ̄(xi, yj) =

ns∑
k

γk φ̄(xi+ik , yj+jk)

= (a1 + a2)φ̄− +

(
a3 + ρa4 − a8

[β]χ′′

β+

)
φ̄−
ξ

+

(
a5 + a6 − a8

[βη]

β+
+ a12(1− ρ)χ′′

)
φ̄−
η +

∑
ξk≥0

γkξk + O(1)

=
∑
ξk≥0

γkξk + O(1),

where ak are defined in (3.3). Note that a8βχ
′′/β, a8βη/β, and a12(1−ρ)χ′′ are O(1)

provided that γk ≤ C1/h
2. Thus from (4.12), the comparison function φ̄ satisfies

Lhφ̄(xi, yj) =




1 + O(h2) if (xi, yj) is a regular grid point,

∑
ξk≥0

γkξk ≥ C1

h
+ O(1) if (xi, yj) is an irregular grid point.

At a regular grid point we have

|Tij |
Lhφ̄(xi, yj)

≤ C2h
2

1
= C2h

2.(4.17)

At an irregular grid point we have

|Tij |
Lhφ̄(xi, yj)

≤ C3

C1/h
=
C3

C1
h.(4.18)

From Lemma 4.3, we conclude the global error then satisfies

‖u(xi, yj)− Uij‖∞ ≤
(

max
(x,y)∈∂Ω

φ(x, y)

)
max

{
C3

C1
, C2h

}
h ≤ Ch.

Remarks. Although the theorem is proved for the case κ = 0, we should be able
to claim that the condition (4.12) is also true when κ ≥ 0 and so is the theorem,
since κ ≥ 0 increases the diagonal dominance of the resulting linear system of equa-
tions. When κ < 0, the original differential equation may not be well-posed, and the
condition may not be satisfied.

5. Convergence of the second order method. In this section we first show
the existence of the solution to the optimization problem numerically and then argue
that the resulting finite difference scheme is of second order.

5.1. Numerical verification of the existence of the solution to the op-
timization problem. We again assume that κ = 0 in (1.1) (see the remarks in the
previous section), and h is small enough so that the interface behaves like a straight
line relative to the underlying grid. Under these conditions, those terms that contain
χ′′ in (3.6) are high order terms compared to those in a3 and ρa4 in terms of h and
therefore can be neglected. For the second order method, if we scale the system of
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equations (3.6), then β−
ξ and β−

η in the second and third equations in (3.6) are high

order terms compared with β− in the fourth and fifth equations in (3.6) in terms of
h, therefore we can simply set β−

ξ = β−
η = 0 as long as h is sufficiently small.

Conjecture 5.1. Let (xi, yj) be an irregular grid point, and let (x∗i , y
∗
j ) be

its orthogonal projection on the interface. Then the optimization problem defined in
(3.8)–(3.9) has solutions. The solution of the coefficients {γk} also satisfies∣∣∣∣ γkβ−

∣∣∣∣ ≤ C

h2
, k = 1, . . . , 9.(5.1)

Furthermore there are γk’s from each side of the interface such that∣∣∣∣ γkβ−

∣∣∣∣ ≥ C1

h2
,(5.2)

and thus
∑
ξk≥0

γkξk ≥ C2

h
(5.3)

provided that maxξk≥0 { ξk} ≥ C3 h for some C3 > 0. The constants are O(1) which
depend on the coefficient β.

Numerical verification of Conjecture 5.1. First we shift and scale the prob-
lem in the following way:

x̄ =
x− xi
h

, ȳ =
y − yj
h

, γ̄k =
γk
h2
.

For simplicity, we will use the same notation without bars. The nine-point stencil
then corresponds to the square −1 ≤ x, y ≤ 1. With the local coordinates (2.1), we
can just consider the case that the orthogonal projection is in the first quadrant.

Given any point (x∗, y∗) on the interface, and an angle θ

0 ≤ x∗ ≤ 1, 0 ≤ y∗ ≤ 1− x∗, 0 ≤ θ <
π

2
.(5.4)

The tangent line of the interface at (x∗, y∗),

(x− x∗) cos θ + (y − y∗) sin θ = 0,(5.5)

is a good approximation to the interface if h > 0 is sufficiently small so that χ′′ h2 is
negligible.

The interface cuts the square −1 ≤ x, y ≤ 1 into two parts. We denote the side
which contains the origin as − side and the other half as + side. We also scale the
coefficient β either as β− = 1, β+ = 1/ρ, or β+ = 1, β− = ρ. The optimization
problem is

min
γ

1

2

9∑
k=1

(γk − gk)
2

subject to

Aγ = b, γk ≥ 0 if (ik, jk) �= (0, 0); γk < 0 if (ik, jk) = (0, 0),

where

gk = β± if (ik, jk) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1) } ;

gk = −4 if (ik, jk) = (0, 0); gk = 0 otherwise,
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and Aγ = b is the following system of equations from (3.6):

a1 + a2 = 0, a3 + ρa4 = 0, a5 + a6 = 0,

a7 + a8 ρ = β−, a9 + a10 + a8 (ρ− 1) = β−, a11 + a12 ρ = 0.

To solve the optimization problem numerically, we use a uniform grid:

ri = i∆r, ∆r =
1

M
, i = 0, 1, . . . ,M, θj = j ∆θ, ∆θ =

π

2N
, j = 0, 1, . . . , N,

ρk = 10−N1+k∆ρ, ∆ρ =
N2 + N1

L
, k = 0, 1, . . . , L.

The projection then is x∗i = ri cos θj , y
∗
i = ri sin θj excluding those y∗i > 1− x∗i that

are outside of the five-point stencil. Define

γmax(ρ) = max
ri,θj

max
1≤k≤9

|γk|
β− = max

ri,θj

|γ5|
β− , γmin(ρ) = min

ri,θj

|γ5|
β− ,

Smin(ρ) = min
ri,θj ,max

ξk≥0
{ξk}≥C3h

∑
ξk≥0

ξkγk.

Our numerical results show that the solution to the optimization problem always
exits. Figure 5.1 summarizes the numerical verification results for Conjecture 5.1. In
Figures 5.1(a) and (b), the dashed line is γmax(ρ) and it is bounded by |γk|h2 ≤ 10.
The solid line is γmin(ρ) and |γ5|h2 ≥ 1. If β− = β+, we will have γ5h

2 = 4 exactly
as we can see from Figure 5.1. Figures 5.1(a) and (b) confirm the inequalities (5.1)
and (5.2).

In Figures 5.1(c) and (d), we plot hSmin(ρ)/C2, where

C2 =
max {β−/β+, β−/β+}

max { 1, β−} max { 1, β+} .(5.6)

This constant was found by numerical experiments. The minimum of
∑

ξk≥0 γkξk is
taken in all cases except for the point (1, 0) where the interface actually is x = 1. In
this case, the grid point touches the interface and the finite difference scheme is the
standard centered scheme using the five-point stencil with possible nonzero correction
Cij for the jump in the solution and the flux. In Figures 5.1(a) and (b), we have

∑
ξk≥0

γkξk ≥ 0.01C2

h
if max

ξk≥0
{ξk} ≥ C3h.

Thus the numerical verification confirms the inequalities (5.1)–(5.3). We have tried
different grid sizes and all the results showed the same conclusions. The ratio ρ of the
jump in β ranges from 10−9 to 1010, which should cover most applications.

The complete theoretical proof of the theorem is still an open problem. Although
we are able to prove the conjecture for special values of ρ, for example, ρ ≥ 1, we
omit those proofs due to the space limitation.

5.2. Convergence analysis of the second order method. Parallel to the
convergence result for the first order method, we have the following theorem.

Theorem 5.1. Let u(x, y) be the exact solution to (1.1) and (1.2) with κ ≥ 0
and a Dirichlet boundary condition. Assume (1) the optimization problem (3.8)–(3.9)
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Fig. 5.1. Numerical verification of Conjecture 5.1 with m = n = L = 60, N1 = 9, and N2 = 10.
(a) Plots of γmax(ρ) (dash-dotted line) and γmin(ρ) (solid line) versus ρ in log scale with β+ = 1,
β− = ρ. (b) The same plots as (a) with β− = 1, β+ = 1/ρ. (c) Plot of Smin(ρ), whose minimum is
0.0111, with β+ = 1, β− = ρ. (d) Plot of Smin(ρ), whose minimum again is 0.0111, with β− = 1,
β+ = 1/ρ.

with the six-equation constraint (3.6) using the standard nine-point stencil has a set
of solutions {γk} at every irregular grid point; (2) u(x, y) has piecewise continuous
third order derivatives; (3) h is sufficiently small; (4) the following is true:

|γk| ≤ C1

h2
and

∑
ξk≥0

γkξk ≥ C2

h
.(5.7)

Then we have the following error estimate for Uij, the solution of the finite difference
scheme obtained from the second order method

‖u(xi, yj)− Uij‖∞ ≤ Ch2,(5.8)

where the constant C depends on the underlined grid and interface, as well as u, f ,
and β.

Proof. If (5.7) is true, then we know that

Lhφ̄(xi, yj) ≥




1 + O(h2) if (xi, yj) is a regular grid point,

∑
ξk≥0

γkξk ≥ C1

h
+ O(1) if (xi, yj) is an irregular grid point,
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where φ̄(x, y) is defined in (4.15). Note that at some regular grid points, Lhφ̃(xi, yj)
can be very large, but it is nonnegative. Thus, the first inequality above still holds.
Therefore at a regular point we have

|Tij |
Lhφ̄(xi, yj)

≤ C3h
2

1
.

At an irregular grid point where (5.7) is satisfied, we have

|Tij |
Lhφ̄(xi, yj)

≤ C4h

C2/h
=
C4

C2
h2

since the truncation error is bounded by

|Tij | ≤ C4h

for some constant C4 that depends on the second derivatives of the solution on each
side of the interface. Thus, from Lemma 4.3, we have proved the quadratic conver-
gence.

Remarks. We have numerically verified that equation (5.7) holds as long as
maxξk≥0 {ξk} > C3h. The second condition in (5.7) may be violated when the in-
terface is very close to a grid point involved in the stencil other than (xi, yj) and
almost parallel to a grid line in the neighborhood of (xi, yj). In this case, the finite
difference scheme actually is very close to the standard finite difference scheme using
the five-point stencil with a correction term to the right-hand side. This fact can be
stated in the following theorem (the proof of the theorem is given in the appendix).

Theorem 5.2. If the conditions (1)–(3) in Theorem 5.1 are satisfied and either
(5.7) or

max
ξk≥0
{ξk} ≤ C5h

1+σ with C5 > 0 and σ > 0(5.9)

is true, then

‖u(xi, yj)− Uij‖∞ ≤ Ch2,(5.10)

where the constants depend on the underlying grid and the interface, u, f , and β.

6. Numerical results. We have performed a number of numerical experiments
for both the first order and the second order methods. The results agree with our
analysis in sections 4 and 5. The computations are done using either Sun’s Ultra-1
workstations or IBM SP2 machines. The code has not been parallelized. The linear
system of equations is solved using the multigrid method DMGD9V developed by
de Zeeu [4]. The interface is a closed curve in the solution domain and is expressed in
terms of the periodic cubic spline interpolation as in [8]. The implementation of the
methods is sequential and not optimized. In this section, the following notations are
used: m and n with m = n are the number of grid lines in the x- and y-directions; n1

is the number of control points used in the cubic spline interpolation to represent the
interface Γ; ncoarse and nfinest are the number of the coarsest and finest grid lines,
respectively, when the multigrid solver DMGD9V is used; nl is the number of levels
used for the multigrid method.
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Table 6.1
The comparison of the grid refinement analysis of the first and second order methods for Ex-

ample 6.1 with b = 10, C = 0.1, and ncoarse = 6. First and second order convergence are confirmed.

The first order method The second order method

nfinest n1 nl ‖ En ‖∞ order ‖ En ‖∞ order

42 40 4 5.0184 10−3 4.8638e 10−4

82 80 5 1.7610 10−3 1.5652 1.4476e 10−4 1.7484

162 160 6 1.4726 10−3 0.2628 3.0120 10−5 2.2649

322 320 7 5.3827 10−4 1.4650 8.2255 10−6 1.8726

642 640 8 2.6156 10−4 1.0459 2.0599 10−6 1.9975

Table 6.2
The grid refinement analysis of the second order method for Example 6.1 with ncoarse = 9.

Second order convergence is confirmed.

b = 1000, C = 0.1 b = 0.001, C = 0.1

nfinest n1 nl ‖ En ‖∞ order ‖ En ‖∞ order

34 40 3 5.1361 10−4 9.3464

66 80 4 8.2345 10−5 2.7598 2.0055 2.3204

130 160 5 1.8687 10−5 2.1878 5.8084 10−1 1.8280

258 320 6 4.0264 10−6 2.2394 1.3741 10−1 2.1031

514 640 7 9.430 10−7 2.1059 3.5800 10−2 1.9514

6.1. The grid refinement analysis.
Example 6.1. This example is the same as the Example 2 in [7]. The interface is

the circle x2 + y2 = 1
4 within the computation domain −1 ≤ x, y ≤ 1. The equations

are

(βux)x + (βuy)y = f(x, y) + C

∫
Γ

δ(:x− :X(s)) ds,(6.1)

with f(x, y) = 8 (x2 + y2) + 4 and

β(x, y) =

{
x2 + y2 + 1 if x2 + y2 ≤ 1

4 ,

b if x2 + y2 > 1
4 .

Dirichlet boundary conditions are determined from the exact solution

u(x, y) =




r2 if r ≤ 1
2 ,(

1− 1
8 b
− 1
b

)
/4 +

(
r4
2 + r2

)
/b + C log(2r)/b if r > 1

2 .
(6.2)

In this example, we have variable and discontinuous coefficients. Tables 6.1 and
6.2 show the results of the grid refinement analysis using the first and second order
methods for different choices of b and c. The maximum error over all grid points,

‖ En ‖∞ = max
i,j
| u(xi, yj)− Uij |,

is presented. The order of convergence is computed from

order =

∣∣∣∣ log (‖ En1
‖∞/‖ En2

‖∞)

log(n1/n2)

∣∣∣∣ ,
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Table 6.3
The grid refinement analysis of the second order method for Example 6.2 with ncoarse = 9;

second order convergence is confirmed.

β+ = 1000, β− = 1 β+ = 1, β− = 1000

nfinest n1 nl ‖ En ‖∞ order ‖ En ‖∞ order

34 40 3 1.8322 10−1 8.0733 10−3

66 80 4 3.5224 10−3 5.9574 3.0371 10−3 1.4739

130 160 5 4.5814 10−5 3.0090 7.1981 10−4 2.1238

258 320 6 1.4240 10−5 1.7049 1.6876 10−4 2.1162

514 640 7 3.1501 10−6 2.1887 2.7407 10−5 2.6371

which is the solution of the equation

‖ En ‖∞ = C horder

with two different n’s.
As explained in [9], for interface problems, the errors usually do not decline

monotonously. Instead it depends on the relative location of the grid and the in-
terface. However, the average of the orders approaches 1 and 2 for the first and
second order methods in Tables 6.1 and 6.2. Compared with the result in [7], the new
second order method gives a slightly better result. Notice that as the parameter b gets
smaller, the solution in the outside of the interface becomes larger and the problem
becomes harder to solve. But our second order method still converges quadratically.

Example 6.2. In this example, the coefficients of the differential equation are
κ = 0 and β is piecewise constant, β− and β+. The jumps [u] in the solution, [βun]
in the flux, and [f ] in the source term are chosen so that the following function is the
exact solution:

u(x, y) =

{
x2 − y2 if x2 + 4y2 ≤ 1,

sin(x) cos(y) if x2 + 4y2 > 1.
(6.3)

Unlike Example 6.1, the solution in this example is discontinuous and independent of
the coefficient β. Table 6.3 shows the results of the grid refinement analysis using the
second order method. Again we see clearly second order convergence. Figure 6.1(a)
plots the solution which is composed of two pieces.

Compared with the original IIM, the advantages of the new methods, especially
the second order method, are the following: (a) The SOR method always converges for
the new methods since the resulting linear system of equations is diagonally dominant.
The system obtained from the original IIM, however, does not have this property. As
the result, an iterative method including the SOR and the multigrid DMGD9V either
does not converge or has significantly more iterations. (b) When both old and new
methods converge, the errors of the solution obtained from the new methods are more
evenly distributed; see, for example, Figure 6.1(b).

6.2. Algorithm efficiency analysis. A natural concern about the new meth-
ods proposed in this paper is how much extra cost is needed in solving the quadratic
optimization problem at each irregular grid point. In Figure 6.2(a), we plot the per-
centage of the computational time used in the interface treatment versus the ratio of
the jump in the coefficients log(β+/β−). The interface in polar coordinates is

r = r(θ) =
1

2
+ 0.1 sin(5θ), 0 ≤ θ ≤ 2π.(6.4)
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(a) (b)

Fig. 6.1. (a) The solution of Example 6.2 with jumps in the solution as well as in the normal
derivatives. The parameters are β+ = 1, β− = 100, and nfinest = 82. (b) The error plot with the
same parameters. The error distribution is better than that obtained from the original immersed
interface method.

(a) (b)

Fig. 6.2. (a) Plot of percentage of the CPU time used for dealing with interfaces versus
log(β+/β−). (b) The domain of the test example.

For this interface, the curvature is quite large; see Figure 6.2(b). The cost for dealing
with the irregular grid points includes solving the quadratic optimization problem,
interpolating the cubic spline, indexing the irregular grid points, and finding (x∗i , y

∗
j ).

For regular problems, the multigrid solver is as fast as the fast Poisson solver using
FFT.3 Therefore the multigrid method that we used is indeed a fast solver but it
does depend on the jump in β. In all our simulations, the cost for dealing with the
irregular grid points near or on the interface is less than 10%. The ratio may increase
when a better multigrid solver is used; see [1], for example. When β− = β+, the finite
difference coefficients become the standard five-point stencil scheme and the cost for
the interface treatment reaches its minimum.

The CPU time used in the entire solution process depends on the geometry and
the jump in the coefficient β. Table 6.4 lists some statistics for Example 6.2 on an IBM

3Generally the fast Poisson solver using FFT can only be used for constant coefficients.
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Table 6.4
CPU time for Example 6.2 with different parameters using an IBM SP2 machine. The outputs

vary with machines and time.

nfinest n1 nl ncoarse β− β+ CPU time (s)
130× 130 160 5 9 10 1 0.03
258× 258 320 6 9 1 1 0.03
258× 258 320 6 9 1 100 0.05
258× 258 320 6 9 1 10000 0.06
258× 258 320 6 9 100 1 0.06
258× 258 320 6 9 10000 1 3.29
514× 514 640 7 9 1 1000 0.15
514× 514 640 7 9 1000 1 0.35

SP2 machine. In this example, when β− < β+, the CPU time is just a little more than
that needed for one fast Poisson solver. When ρ = β−/β+ > 1 gets bigger, we see the
CPU time grows slowly. The DMGD9V cannot return a solution in reasonable time
when ρ > 106 with a 258 × 258 grid; see the remarks below. Generally we see that
the second order method converges very fast if DMGD9V does work for the interface
problem.

Remark 6.1. The linear system of equations using the finite difference methods
proposed in this paper is irreducible and diagonally dominant. The multigrid solver
DMGD9V is designed for systems of equations with standard nine-point stencil. The
method requires the system of equations to have positive/negative symmetric part
and works well for problems with large variation in the coefficients. So it is natural
that we choose to use DMGD9V. The multigrid method converges very fast for the
system of equations obtained from our algorithms, if it converges. However, we do
observe occasionally that the multigrid stops before it returns a convergent result. In
these cases, we still can make the multigrid method work by changing some built-in
parameters such as the number of maximum iterations on the coarse grid, the number
of smoothing operations, etc. Other DMGD9V users4 have had similar experiences.
We are currently working with L. Adams of the University of Washington to develop
better multigrid methods for elliptic and parabolic interface problems.

7. Conclusions. In this paper, we have proposed two finite difference methods
that preserve the discrete maximum principles for elliptic interface problems. The
methods have been shown to converge provided that the solution to the optimiza-
tion problem exists and certain bounds are satisfied, which is proved for the first
order method and numerically verified for the second order method. The methods
can be easily generalized to parabolic interface problems. We would strongly recom-
mend the second order method over the first order method. A Fortran package for a
single closed interface and a Dirichlet boundary condition is available upon request
(zhilin@math.ncsu.edu).

Appendix. Complete proof of Theorem 5.2. At an irregular grid point, if
(5.7) is true, then we know that

Lhφ̄(xi, yj) =
∑
ξk≥0

γkξk + high order terms ≥ C2

h
,

4Private communication with Dr. X. Wu from Caltech and Exxon Company.
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where φ̄(x, y) is defined in (4.15) in section 4. If (5.7) is violated but (5.9) is true,
then all the grid points from the other side of the interface other than (xi, yj) are
very close to the interface. For the nine-point stencil, this can happen only when the
interface is very close to one of the grid lines, x = xi−1, or x = xi+1, or y = yj−1, or
y = yj+1. Without loss of generality, we assume that the interface cuts the grid line
y = yj at x∗i , where xi < x∗i ≤ xi+1, xi+1 − x∗i ≤ C5h

1+σ. The normal direction is
nearly parallel to the x-axis. Since maxξk≥0 {ξk} ≤ C5h

1+σ, we know that (xi+1, yj),
(xi+1, yj−1), and (xi+1, yj+1) are only three grid points in the nine-point stencil that
are on the different side from (xi, yj). Since there is no interface involved in the y-
direction, we can decompose the equations (3.6) in the x- and y-directions. In the
y-direction, assuming (xi, yj) is on the − side, we have

βi,j− 1
2
u(xi, yj−1)− (βi,j− 1

2
+ βi,j+ 1

2
)u(xi, yj) + βi,j+ 1

2
u(xi, yj+1)

h2
= (βuy)y + O(h2),

which is the standard three-point difference scheme.

The equations in the x-direction are

ã1 + ã2 = β−
x , ã3 + ρã4 = 0, ã7 + ã8 ρ = β−,

where we use ãi to represent those terms in x-directions in ai’s in (3.6). We define a
function

ψx
ij(x) =




(x∗i − xi)(xi − x)

γ
(2)
ij h

3
if x ≤ x∗i ,

(xi+1 − x∗i )(x− xi+1)

γ
(8)
i+1,jh

3
if x > x∗i ,

(A.1)

where γ
(2)
ij is the coefficient of the finite difference scheme centered at (xi, yj) cor-

responding to the grid point (xi−1, yj); γ
(8)
i+1,j is the coefficient of the finite differ-

ence scheme centered at (xi+1, yj) corresponding to the grid point (xi+2, yj). No-
tice that ψx

ij(xi) = ψx
ij(xi+1) = 0 and ψx

ij(xj) > 0 for j �= i, i + 1 and that
ψx
ij(x) ≤M ∀ (x, y) ∈ Ω. More important, we can easily derive

Lhψ
x
ij(xi, yj) =

x∗i − xi
h2

(1 + O(C6h
σ)),(A.2)

Lhψ
x
ij(xi+1, yj) =

xi+1 − x∗i
h2

(1 + O(C7h
σ)).(A.3)

The high order terms are due to the fact that Lh may not be exactly the standard
five-point finite difference scheme, although it is close. Therefore when all ξk ≥ 0 is
very small, x∗i − xi is close to h and Lhψ

x
ij(xi, yj) ≥ 1−C8h

σ

h .

Similarly we can construct such ψx
ij(x) or ψy

ij(y) at the few irregular grid points
where (5.9) holds. Define the comparison function as

φ̃(x, y) = φ̄(x, y) +
∑

ψx
ij(x) +

∑
ψy
ij(y),
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where φ̄ is the same as defined in (4.15). Then

Lhφ̃(xi, yj) ≥




1 + O(h2) if (xi, yj) is a regular grid point,

∑
ξk≥0

γkξk ≥ C2

h
+ O(1) if (5.7) is true,

1− C8h
σ

h
if max

ξk≥0
{ξk} ≤ C5h

1+σ, with σ > 0.

Note that at some regular grid points, Lhφ̃(xi, yj) can be very large but it is non-
negative. Thus, the first inequality above still holds. Therefore at a regular point we
have

|Tij |
Lhφ̃(xi, yj)

≤ C3h
2

1
.

At an irregular grid point where (5.7) is satisfied, we have

|Tij |
Lhφ̃(xi, yj)

≤ C4h

C2/h
=
C4

C2
h2

since the truncation error is bounded by

|Tij | ≤ C4h

for some constant C4 that depends on the third derivatives of the solution on each
side of the interface. At an irregular grid point where (5.9) is true, we also have

|Tij |
Lhφ̃(xi, yj)

≤ C4h

(1− C8hσ)/h
=

C4

1− C8hσ
h2.

Thus from Lemma 4.3, we have again proved the quadratic convergence.
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methods. The conferences have built a reputation for the relaxed atmosphere that
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ties to listen to so many exciting, often still unpolished, ideas. This development of
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community to have the best contributions collected as papers in a special issue of
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by Judith Vogel (with Daniel Szyld) and Michiel Hochstenbach.
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• 6 papers related to preconditioning,
• 6 related to eigenvalue computation,
• 3 on multigrid techniques,
• 2 on nonlinear problems,
• and 1 with a new variant of an iterative method (TQMR).

This shows that preconditioning continues to attract much research attention,
with many more challenging problems left open rather than being solved. Eigen-
value computation continues to gain more attention after initial emphasis in these
conferences on linear systems.
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we did and that it will help many of us make further progress in research. We thank
all the authors for their efforts to get their papers ready under often very tight time
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Above all, we are indebted to Tom Manteuffel and Steve McCormick for organizing
such excellent conferences.
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FQMR: A FLEXIBLE QUASI-MINIMAL RESIDUAL METHOD
WITH INEXACT PRECONDITIONING∗
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Abstract. A flexible version of the QMR algorithm is presented which allows for the use of a
different preconditioner at each step of the algorithm. In particular, inexact solutions of the precon-
ditioned equations are allowed, as well as the use of an (inner) iterative method as a preconditioner.
Several theorems are presented relating the norm of the residual of the new method with the norm of
the residual of other methods, including QMR and flexible GMRES (FGMRES). In addition, numer-
ical experiments are presented which illustrate the convergence of flexible QMR (FQMR), and show
that in certain cases FQMR can produce approximations with lower residual norms than QMR.

Key words. Krylov subspace methods, flexible preconditioning, inner-outer iterations

AMS subject classification. 65F10

PII. S106482750037336X

1. Introduction. The quasi-minimal residual (QMR) method [11] is a well-
established Krylov subspace method for solving large systems of non-Hermitian linear
equations of the form

Ax = b,(1)

where the n×n matrix A is assumed to be nonsingular. The algorithm makes use of a
three-term recurrence, and thus, unlike some other Krylov methods for non-Hermitian
systems, e.g., GMRES [23], storage requirements are fixed and known a priori.

The strength of Krylov subspace methods is most apparent when a preconditioner
is used. For a general introduction to these methods see, e.g., [17], [22]. In the case
of right preconditioning, one solves the equivalent linear system

AM−1(Mx) = b

with some appropriate preconditioner M . The matrix AM−1 is never formed explic-
itly. Instead, when z = M−1v is required, one solves the corresponding system

Mz = v.(2)

In an analogous manner, left preconditioning consists of solving M−1Ax = M−1b.
In this paper we present a flexible version of QMR, where the matrix M in (2)

can vary from one iteration to the next. Let us denote by Mi the preconditioner
used at the ith iteration. The need to allow for a variable preconditioner arises, e.g.,
when the solution of (2) is not obtained exactly (say, by a direct method), but is
approximated by the use of a second (inner) iterative method. This is the case, e.g.,
when the preconditioner used is some version of multigrid, such as in [10].

∗Received by the editors June 7, 2000; accepted for publication (in revised form) December 21,
2000; published electronically July 10, 2001.

http://www.siam.org/journals/sisc/23-2/37336.html
†Department of Mathematics, Temple University (038-16), 1805 N. Broad Street, Philadelphia,

PA 19122-6094 (szyld@math.temple.edu). The work of this author was supported by the National
Science Foundation grant DMS-9973219.

‡Richard Stockton College, Pomona, NJ 08240 (judith.vogel@stockton.edu).

363



364 DANIEL B. SZYLD AND JUDITH A. VOGEL

In recent years, several authors worked on the idea of preconditioning with a
different matrix at each outer iteration of a Krylov subspace method [1], [16], [20], [21],
[25]; see also [6], [14], [15] for other instances of inner-outer iterations. Preconditioning
of this form is referred to as flexible preconditioning, also known as variable or inexact
preconditioning. Our approach to a flexible version of QMR, which we call FQMR,
is similar to that of Saad for FGMRES [21]. In addition, we were influenced by ideas
presented by Golub and Ye for inexact conjugate gradients [16].

The new FQMR method, in the same way as the other inexact methods just
mentioned, is not strictly speaking a Krylov subspace method. This is because the
minimization at each step is done over a subspace which is not in general a Krylov
subspace; also cf. [7]. Nevertheless, the convergence theory developed by Eiermann
and Ernst [9] applies to these methods as well.

We emphasize that FQMR can be used whenever FGMRES is used, with the
advantage that FQMR has a fixed low memory requirement.

FQMR is not intended as an alternative to QMR when the latter works well
but rather as an option when no fixed preconditioner is available, as in [10] and in
[18], or when the preconditioner can be improved from one step to the next with
newly available information; cf. [2]. Nevertheless, we have found in our numerical
experiments that FQMR can produce approximations with lower residual norms than
QMR.

In the next section we briefly review the QMR method and present the new
flexible version. We describe several properties of this new version, including the
quasi-minimization property over a certain subspace. In section 3 we present our
main theorem relating the residual norm of FQMR with that of FGMRES, in a way
analogous to the well-known relation between QMR and GMRES. As a corollary we
obtain a new relation between the residual norm of FGMRES and that of QMR.

The same techniques are used in section 4 to obtain bounds for the FQMR resid-
ual norm. As is to be expected, these bounds are in terms of how inexactly each
preconditioned step is solved. In a similar way new bounds for the FGMRES residual
norm are obtained.

Finally, in section 5 numerical experiments are reported which describe the conver-
gence behavior of FQMR using several different iterative methods as flexible precon-
ditioners. Furthermore, a comparison is made between FQMR and the corresponding
version of QMR with fixed preconditioner. This comparison shows that in many cases
the maximal attainable accuracy of FQMR, i.e., the minimum relative residual norm,
is better than that of QMR.

2. The FQMR algorithm. We begin this section by first considering the stan-
dard QMR algorithm with a fixed right preconditioner M ; for full details see [11],
[17], or [22]. An analogous description can be given for QMR with fixed left precon-
ditioning. Let x0 be the initial guess and let r0 = b − Ax0 be the initial residual.
In QMR, the two-sided Lanczos algorithm is used to construct biorthogonal bases
corresponding to the Krylov subspaces generated by AM−1 and (AM−1)H , namely,

Km(AM−1, r0) = span{r0, AM−1r0, . . . , (AM−1)m−1r0}
and

Km((AM−1)H , r0) = span{r0,M
−HAHr0, . . . , (M

−HAH)m−1r0}.
Let the basis vectors for Km(AM−1, r0) and Km(M−HAH , r0) be {v1,v2, . . . ,vm}
and {w1,w2, . . . ,wm}, the columns of Vm and Wm, respectively. The approximation
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to the solution of (1) at the mth QMR iteration is of the form

xm = x0 + M−1Vmym, ym = arg min
y
‖‖r0‖e1 − Tm+1,my‖,(3)

where Tm+1,m is the (m+1)×m tridiagonal matrix of recurrence coefficients associated
with two-sided Lanczos, namely,

Tm+1,m =




α1 β1

γ1
. . .

. . .

. . .
. . . βm−1

γm−1 αm
γm




;

see Algorithm 2.1 below. In (3) and throughout the paper the norm is the 2-norm.
By the construction of the two-sided Lanczos, the following relation holds:

AM−1Vm = Vm+1Tm+1,m,(4)

from which it follows that

rm = b−Axm

= r0 −AM−1Vmym(5)

= Vm+1(‖r0‖e1 − Tm+1,mym).(6)

This establishes that QMR produces the approximation xm in such a way as to
minimize the norm of the second factor of the residual (6); see (3). Thus, a quasi-
minimization of the residual norm takes place. One can see from (5) that the residual
at the mth step is of the form r0 − AM−1v with v ∈ Km(AM−1, r0). Relation (4)
can be rewritten

AZQm = V Q
m+1Tm+1,m,(7)

where ZQm = M−1Vm. We use superscripts Q and FQ to distinguish the vectors and
matrices generated by QMR and FQMR, respectively. Correspondingly, rewriting (3),
the approximate solution is of the form

xm = x0 + ZQmym, ym = arg min
y
‖‖r0‖e1 − Tm+1,my‖.

Relation (4) illustrates that the action of AM−1 on a vector v of the Krylov subspace

is in Km+1(AM−1, r0) a basis of which are the columns of V Q
m+1, while relation (7)

will be useful in comparing QMR with FQMR. With this background in place, we
present the following algorithm for FQMR.

Algorithm 2.1 (FQMR).

Given x0, form r0 and choose r̂0 such that 〈r0, r̂0〉 	= 0

set v1 = r0/‖r0‖ and w1 = r̂0/〈r̂0,v1〉
set β0 = γ0 = 0 and v0 = w0 = 0

For i = 1, 2, . . .

Set zi = M−1
i vi(8)
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Compute: Azi and M−H
i AHwi(9)

αi = 〈Azi,wi〉
ṽi+1 = Azi − αivi − βi−1vi−1(10)

w̃i+1 = M−H
i AHwi − ᾱiwi − γi−1wi−1

γi = ‖ṽi+1‖
vi+1 = ṽi+1/γi(11)

βi = 〈vi+1, w̃i+1〉
wi+1 = w̃i+1/β̄i

xi = x0 + ZFQi yi, where yi = arg min
y
‖‖r0‖e1 − Ti+1,iy‖(12)

and ZFQi = [z1, . . . , zi]

In this algorithm, ᾱi and β̄i stand for the conjugate of the complex numbers αi and
βi, respectively. Note that the above algorithm represents a theoretical rendition of
FQMR and not a full description of its implementation. In the actual implementation
of FQMR the minimization in (12) is solved by performing a QR factorization of
Ti+1,i. Using Givens rotations, this factorization of Ti+1,i is easily updated from that

of Ti,i−1, thus eliminating the need to save and construct ZFQi = [z1, . . . , zi] at each
step.

If we replace Mi with M , a fixed preconditioner, the above algorithm reduces
to the standard QMR method. Thus, implementation of FQMR requires only a
slight modification of the code for QMR, and this is one of the strengths of this new
algorithm.

Let us discuss the variable preconditioned step (8) in some detail. If the precondi-
tioned equations Mz = v are solved approximately by a second iterative solver, then
we can write (8) in terms of M−1 and εi, where εi is the error associated with the
inner solve at step i. Thus, for this case we write

zi = M−1
i vi = M−1vi + εi.(13)

This description of flexible preconditioning is used in [16] for investigating inexact
conjugate gradient.

A consequence of flexible preconditioning is the relation

AZFQm = V FQ
m+1Tm+1,m,(14)

where ZFQm is the matrix whose ith column is zi, the vector constructed by FQMR
in (8); cf. (7). Let us denote by K̂m the subspace spanned by the columns of ZFQm ,
which, in general, is not a Krylov subspace. Consequently, relation (14) cannot be
simplified into a form similar to relation (4) since the action AM−1

i on a vector v of
the Krylov subspace is no longer in the span of the columns of Vm+1. Using (14),
however, we can still display a quasi-minimization property held by xm over this new
K̂m, and this is why the convergence theory in [9] applies to FQMR. The proof is
identical to the one for QMR as we show in what follows. For an arbitrary vector in
the space x0 + K̂m, i.e., of the form z = x0 + ZFQm y, for some y ∈ C

m, we have the
following identities

b−Az = b−A(x0 + ZFQm y) = r0 −AZFQm y

= V FQ
m+1(‖r0‖e1 − Tm+1,my).
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Now, since xm is chosen to minimize the norm of ‖r0‖e1 − Tm+1,my, we see that

FQMR maintains the quasi-minimal residual property over the affine space x0 + K̂m.
We remark that FQMR with left preconditioning does not follow an analogous

construction. For flexible left preconditioning, relation (14) no longer holds, and
therefore xi cannot be updated as in (12).

Another noteworthy observation is that FQMR, by construction, maintains the
three-term recurrence of QMR. However, in so doing, there is a loss of the global
biorthogonality held by the bases generated by QMR. However, a local biorthogonal-
ity property is maintained, as shown in the following theorem. That is, consecutive
Lanczos vectors constructed by the flexible two-sided Lanczos process are biorthogo-
nal. We note, however, that for the results of this theorem to hold, we are assuming
that at each step of the outer iteration the matrix Mi is the same matrix used in (8)
and in (9). Theoretically this is a logical assumption, and in some cases this is also
true in practice, but in general this assumption does not necessarily hold.

Theorem 2.2. If the two-sided Lanczos vectors are defined at steps 1, . . . , k + 1
in Algorithm 2.1, i.e., if 〈vi,wi〉 	= 0 for i = 1, . . . , k + 1, then

〈vk+1,wk〉 = 0 and 〈wk+1,vk〉 = 0.(15)

Proof. We first note that ‖vi‖ = 1 for all i by the choice of γi−1. Likewise
〈vi,wi〉 = 1 for all i by the choice of γi−1 and β̄i−1. We prove (15) by induction. For
k = 0 the result is obvious since v0 = w0 = 0. Assume that (15) holds for i ≤ k − 1;
then

〈ṽk+1,wk〉 = 〈AM−1
k vk,wk〉 − αk〈vk,wk〉 − βk−1〈vk−1,wk〉

= 〈AM−1
k vk,wk〉 − αk = 0

and

〈w̃k+1,vk〉 = 〈M−H
k AHwk,vk〉 − ᾱk

= 〈M−H
k AHwk,vk〉 − 〈AM−1

k vk,wk〉
= 〈M−H

k AHwk,vk〉 − 〈vk,M−H
k AHwk〉 = 0.

3. FQMR and FGMRES. Generalized minimal residual (GMRES) [23] is an-
other successful Krylov subspace method for solving non-Hermitian systems of linear
equations. Like QMR, GMRES can be implemented with a flexible preconditioner,
and the flexible version is called FGMRES [21]. In this section we establish a rela-
tionship between FQMR and FGMRES which is reminiscent of a relationship held by
QMR and GMRES [19]. As a precursor to the statement of this relationship, we give
a brief summary of GMRES with a fixed right preconditioner; see [17], [22], or [23]
for a full description.

At the mth iteration, preconditioned GMRES produces an approximation xm to
the solution of (1) in x0 + Km(AM−1, r0) in such a way as to minimize the norm of
the residual over Km(AM−1, r0), i.e.,

xm = x0 + arg min
z∈Km(AM−1,r0)

‖ r0 −AM−1z‖.

This minimization is accomplished by constructing an orthonormal basis for
Km(AM−1, r0) using the Arnoldi method [17]. In the Arnoldi method the basis vec-
tors, {v1,v2, . . . ,vm}, are formed recursively by orthogonalizing a new vector, v̂i+1,
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in Ki+1(AM−1, ‖r0‖) against the previous vectors v1,v2, . . . ,vi in Ki(AM−1, ‖r0‖)
and then normalizing it, so that vi+1 = v̂i+1/‖v̂i+1‖. Thus,

vi+1 =
1

hi+1,i

(
AM−1vi −

i∑
k=1

hk,ivk

)
,(16)

where the coefficients hk,i, k = 1, . . . , i+ 1, are appropriately chosen to orthogonalize
and normalize vi+1. From (16) we get the relation

AM−1Vm = Vm+1Hm+1,m,(17)

where Hm+1,m is the upper-Hessenberg matrix whose nonzero entries are the coeffi-
cients hk,i, k = 1, . . . , i + 1, from (16), i = 1, . . . ,m.

With this groundwork in place, we can now establish that GMRES computes the
approximation xm = x0 + Vmym such that

ym = arg min
y
‖r0 −AM−1Vmy‖ = arg min

y
‖r0 − Vm+1Hm+1,my‖

= arg min
y
‖‖r0‖e1 −Hm+1,my‖.(18)

Observe that while in (3) QMR only minimizes the norm of a factor of the residual,
in (18) we have that GMRES minimizes the norm of the actual residual, since Vm+1

is unitary.
We end this introduction of GMRES by pointing out that when the preconditioner

changes from step to step, i.e., when one uses Mi instead of M in (16), we have
FGMRES [21]. In what follows, we use superscripts G and FG to distinguish the
vectors and matrices generated by GMRES and FGMRES, respectively.

Let zi = M−1
i vi, and let ZFGm be the matrix with columns z1, . . . , zm; then the

following relation analogous to (17) holds for FGMRES:

AZFGm = V FG
m+1Hm+1,m.(19)

When QMR and GMRES are implemented with fixed preconditioning, we have
the following result due to Nachtigal [19], where κ2 denotes the condition number
using the 2-norm; see also [17], [22].

Theorem 3.1. If rGm denotes the GMRES residual at step m and rQm denotes the
QMR residual at step m, then

‖rQm‖ ≤ κ2(V
Q
m+1)‖rGm‖,(20)

where V Q
m+1 is the matrix whose columns are the basis vectors generated by QMR.

This inequality works out nicely since V G
m+1 constructed by GMRES and V Q

m+1

constructed by QMR are both a basis for the same Krylov subspace. When flexible
preconditioning is used, this is no longer the case. To avoid confusion, let us denote
by vFQi+1 and vFGi+1 the vectors computed by FQMR in (11) and by FGMRES in (16),
respectively. We can, however, prove a relation similar to (20) for FGMRES and
FQMR, but to do so we first need the following lemma relating ZFGm and ZFQm , the
basis of the subspaces constructed by FGMRES and FQMR, respectively; see (19)
and (14).

Lemma 3.2. Let zFGi be the ith column of ZFGm satisfying (19). Likewise, let zFQi
be the ith column of ZFQm satisfying (14). If εFQi is the ith error vector defined by

zFQi = M−1vFQi + εFQi(21)
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and if εFGi is the ith error vector defined by

zFGi = M−1vFGi + εFGi ,(22)

then

zFGi ∈ Sm, i = 1, . . . ,m,(23)

where

Sm = span{zFQi , (M−1A)
j
εFQi , (M−1A)

j
εFGi ; i = 1, . . . ,m, j = 0, . . . ,m− 1}.

Proof. We show (23) by induction on m. For m = 1, since vFG1 = vFQ1 = r0/‖r0‖,
we have zFG1 = M−1vFG1 +εFG1 = M−1vFQ1 +εFG1 = zFQ1 −εFQ1 +εFG1 ∈ S1. Assuming
that (23) holds for n ≤ m, then

zFGm+1 = M−1vFGm+1 + εFGm+1

= M−1( 1
hm+1,m

)

(
AzFGm −

m∑
k=1

hk,mv
FG
k

)
+ εFGm+1

= ( 1
hm+1,m

)

(
M−1AzFGm −

m∑
k=1

hk,mM−1vFGk + hm+1,mε
FG
m+1

)

= ( 1
hm+1,m

)

(
M−1AzFGm −

m∑
k=1

(hk,mz
FG
k − hk,mε

FG
k ) + hm+1,mε

FG
m+1

)
,

where the first and last equalities follow from (22) and the second equality follows
from the definition of vFGm+1.

By the induction hypothesis and the observation that Sr ⊆ St for r ≤ t, we have
that zFGi ∈ Sm+1 for i ≤ m . By the definition of Sm+1, εFGi ∈ Sm+1 for i ≤ m + 1.
Therefore, all that remains to be shown is that the first term M−1AzFGm ∈ Sm+1.
Again by the induction hypothesis, we know that zFGm ∈ Sm; hence, there are scalars
ai, bi,j , ci,j , i = 1, . . .m, j = 0, . . . ,m− 1, such that

zFGm =

m∑
i=1

aiz
FQ
i +

m−1∑
k=0

(
m∑
i=1

bi,k(M
−1A)

k
εFQi

)
+

m−1∑
k=0

(
m∑
i=1

ci,k(M
−1A)

k
εFGi

)
,

and therefore

M−1AzFGm =

m∑
i=1

ai(M
−1A)zFQi +

m−1∑
k=0

(
m∑
i=1

bi,k(M
−1A)

k+1
εFQi

)

+

m−1∑
k=0

(
m∑
i=1

ci,k(M
−1A)

k+1
εFGi

)
.

Since (M−1A)
j
εFGi ∈ Sm+1 and (M−1A)

j
εFQi ∈ Sm+1 for j = 0, . . . , (m + 1) − 1,

i = 1, . . . ,m+1 by definition of Sm+1, all that remains to be shown is (M−1A)zFQi ∈
Sm+1 for i = 1, . . . ,m. Solving in (10) for Azj and multiplying through by M−1 gives

(M−1A)zFQi = γiM
−1vFQi+1 + αiM

−1vFQi + βi−1M
−1vFQi−1.(24)
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Next, solving (21) for M−1vFQi and substituting this into (24) gives

(M−1A)zFQi = γiz
FQ
i+1−γiεFQi+1+αiz

FQ
i −αiεFQi +βi−1z

FQ
i−1−βi−1ε

FQ
i−1 ∈ Sm+1.

(25)
We can now prove our main result.
Theorem 3.3. Assume that V FQ

m+1, the matrix satisfying (14), is of full rank.
Let rFQm and rFGm be the residuals obtained after m steps of the FQMR and FGMRES

algorithms, respectively, and let EFQm = [εFQ1 , . . . , εFQm ] and EFGm = [εFG1 , . . . , εFGm ],

where εFQi and εFGi are the error vectors in (21) and (22), respectively. Then there

exist vectors yFQk ,yFGk ∈ R
m, k = 1, . . . ,m− 1, such that the following holds:

‖rFQm ‖ ≤ κ2(V
FQ
m+1)

[
‖rFGm ‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖+

m−1∑
k=0

‖A(M−1A)
kEFGm yFGk ‖

]
.

Proof. Step 1. Consider the set defined by

R = {r : r = V FQ
m+1t; t = βe1 − Tm+1,my; y ∈ C

m}.

Let ym denote the vector y that minimizes ‖βe1 − Tm+1,my‖, and denote by tm =

βe1 − Tm+1,1ym. Then by definition we have rFQm = V FQ
m+1tm. By hypothesis, V FQ

m+1

is of full rank. Therefore, there is an (m + 1) × (m + 1) nonsingular matrix S such

that Wm+1 = V FQ
m+1S is unitary. Then for any element of the set R,

r = Wm+1S
−1t , t = SWH

m+1r,

and, in particular, rFQm = Wm+1S
−1tm, which implies

‖rFQm ‖ ≤ ‖S−1‖‖tm‖.(26)

From (3), it follows that the norm ‖tm‖ is the minimum of ‖βe1− Tm+1,my‖ over all
vectors y, and therefore

‖tm‖ = ‖SWH
m+1r

FQ
m ‖ ≤ ‖SWH

m+1r‖ ≤ ‖S‖‖r‖ for all r ∈ R.(27)

Step 2. We now consider

rFGm = r0 −AZFGm yFGm , where yFGm minimizes ‖r0 −AZFGm y‖.(28)

By Lemma 3.2 there exists vectors yz, yFQk , yFGk ∈ R
m; k = 0, . . . ,m− 1, such that

rFGm = r0 −AZFQm yz −
m−1∑
k=0

A(M−1A)
kEFQm yFQk −

m−1∑
k=0

A(M−1A)
kEFGm yFGk

= r0 − V FQ
m+1Tm+1,myz −

m−1∑
k=0

A(M−1A)
kEFQm yFQk −

m−1∑
k=0

A(M−1A)
kEFGm yFGk .

By rearrangement of terms,

r0 − V FQ
m+1Tm+1,myz = rFGm +

m−1∑
k=0

A(M−1A)
kEFQm yFQk +

m−1∑
k=0

A(M−1A)
kEFGm yFGk .
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Let r̂ = V FQ
m+1(‖r0‖e1 − Tm+1,myz); then

‖r̂‖ = ‖V FQ
m+1(‖r0‖e1 − Tm+1,myz)‖ = ‖r0 − V FQ

m+1Tm+1,myz‖

≤ ‖rFGm ‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖+

m−1∑
k=0

‖A(M−1A)
kEFGm yFGk ‖.(29)

Since r̂ ∈ R, by (27),

‖tm‖ ≤ ‖S‖‖r̂‖.(30)

Hence, by (26), (29), and (27),

‖rFQm ‖ ≤ ‖S−1‖‖tm‖

≤ ‖S−1‖‖S‖
[
‖rFGm ‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖+

m−1∑
k=0

‖A(M−1A)
kEFGm yFGk ‖

]

and since κ2(V
FQ
m+1) = κ2(S) = ‖S−1‖‖S‖, the theorem follows.

We comment that as εi goes to 0, the bound on ‖rFQm ‖ in Theorem 3.3 is reduced.
However, we cannot know how sharp this bound is due to the existence of vectors
yFQk ,yFGk in the right-hand side of the inequality.

By considering exact solutions of the preconditioned equations (13), i.e., if εi = 0
in (13), or equivalently if Mi = M for all i, then FQMR and FGMRES are reduced to
QMR and GMRES with fixed preconditioners and Theorem 3.3 reduces to Theorem
3.1. There are two other special situations, which we want to highlight. If EFGm = 0,

i.e., εFQi = 0 for all i, then FGMRES reduces to GMRES, and we have the following
corollary.

Corollary 3.4. Let V FQ
m+1, EFQm , and rFQm be as described in Theorem 3.3, and

let rGm be the residual obtained after m steps of the GMRES algorithm. Then there

exists vectors yFQk ∈ R
m, k = 1, . . . ,m− 1, such that the following holds:

‖rFQm ‖ ≤ κ2(V
FQ
m+1)

(
‖rGm‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖

)
.

Likewise, if EFQm = 0, i.e., εFQi = 0 for all i, then the following corollary, which is
a new result for FGMRES, is also established.

Corollary 3.5. Let V Q
m+1, EFGm , and rFGm be as described in Theorems 3.1 and

3.3, and let rQm be the residual obtained after m steps of the QMR algorithm. Then
there exists vectors yFGk ∈ R

m, k = 1, . . . ,m− 1, such that the following holds:

‖rQm‖ ≤ κ2(V
Q
m+1)

(
‖rFGm ‖+

m−1∑
k=0

‖A(M−1A)
kEFGm yFGk ‖

)
.

We end this section with a comment on the hypothesis in Theorem 3.3 that V FQ
m+1

be of full rank. This implies that the subspace K̂m has dimension m, i.e., that at each
step we are minimizing over increasingly larger subspaces. Note that this hypothesis
implies that the subspaces K̂m are nested, and this is precisely the assumption made
in [9] for the convergence proofs.



372 DANIEL B. SZYLD AND JUDITH A. VOGEL

4. Bounds on residual norms. Using the same techniques used in Lemma
3.2 and Theorem 3.3, we provide bounds on the norm of the residual of FQMR in
terms of the norm of the residual of QMR. The following lemma relates ZFQm to ZQm,
the matrices whose columns are the basis of the subspaces generated by FQMR and
QMR, respectively; see (14) and (7). We first establish an auxiliary lemma.

Lemma 4.1. Let zFQi be the ith column of ZFQm , and let zQi be the ith column of

ZQm. If ε
FQ
i is the ith error vector defined by (21), then

zQi ∈ Sm, i = 1, . . . ,m,(31)

where Sm = span{zFQi , (M−1A)
j
εFQi ; i = 1, . . . ,m, j = 0, . . . ,m− 1}.

Proof. We show (31) by induction on m. For m = 1, we have zQ1 = M−1vQ1 =

M−1vFQ1 = zFQ1 − εFQ1 ∈ S1. Assuming that (31) holds for n ≤ m, then

zQm+1 = M−1vQm+1

= M−1( 1
γm

)(AzQm − αmv
Q
m − βm−1v

Q
m−1)

= ( 1
γm

)(M−1AzQm − αmM−1vQm − βm−1M
−1vQm−1)

= ( 1
γm

)(M−1AzQm − αmz
Q
m − βm−1z

Q
m−1),

where the first and last equalities follow from the relation (2), and the second equality

follows from the definition of vQm+1; see (10). By the induction hypothesis and the

observation that Sr ⊆ St for r ≤ t, we have that zQi ∈ Sm+1 for i ≤ m . Therefore,
all that remains to be shown is that M−1AzQm ∈ Sm+1. Again by the induction
hypothesis, we know that zQm ∈ Sm; hence, there are scalars ai, bi,j , i = 1, . . .m, j =
0, . . . ,m− 1, such that

zQm =

m∑
i=1

aiz
FQ
i +

m−1∑
k=0

(
m∑
i=1

bi,k(M
−1A)

k
εFQi

)
,

and therefore

M−1AzQm =

m∑
i=1

ai(M
−1A)zFQi +

m−1∑
k=0

(
m∑
i=1

bi,k(M
−1A)

k+1
εFQi

)
.

Since (M−1A)
j
εFQi ∈ Sm+1 for j = 0, . . . , (m + 1) − 1, i = 1, . . . ,m + 1, all

that remains to show is (M−1A)zFQi ∈ Sm+1 for i = 1, . . . ,m, but this follows from
(25).

Using Lemma 4.1, we now present the following theorem.
Theorem 4.2. Assume that V FQ

m+1, the matrix satisfying (14), is of full rank. Let
rFQm and rQm be the residuals obtained after m steps of the FQMR and QMR algorithms,

respectively, and let EFQm = [εFQ1 , . . . , εFQm ], where εFQi are the error vectors defined by

(21). Then there exists vectors yFQk ∈ R
m, k = 1, . . . ,m− 1, such that the following

holds:

‖rFQm ‖ ≤ κ2(V
FQ
m+1)

(
‖rQm‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖

)
.

Proof. Step 1 of the proof is identical to Step 1 of the proof of Theorem 3.3.
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Step 2. Consider

rQm = r0 −AZQmy
Q
m, where yQm minimizes ‖r0 −AZQmy‖.(32)

By Lemma 4.1 there exists vectors yz, yFQk , k = 0, . . . ,m− 1, such that

rQm = r0 −AZFQm yz −
m−1∑
k=0

A(M−1A)
kEFQm yFQk

= r0 − V FQ
m+1Tm+1,myz −

m−1∑
k=0

A(M−1A)
kEFQm yFQk .

By rearrangement of terms,

r0 − V FQ
m+1Tm+1,myz = rQm +

m−1∑
k=0

A(M−1A)
kEFQm yFQk .

Let r̂ = V FQ
m+1(‖r0‖e1 − Tm+1,myz) = r0 − V FQ

m+1Tm+1,myz; then

‖r̂‖ ≤ ‖rQm‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖.

Since r̂ ∈ R, by (27)

‖tm‖ ≤ ‖S‖‖r̂‖.(33)

Hence, by (26) and (33) we obtain

‖rFQm ‖ ≤ ‖S−1‖‖tm‖ ≤ ‖S−1‖‖S‖
(
‖rQm‖+

m−1∑
k=0

‖A(M−1A)
kEFQm yFQk ‖

)
,

and since κ2(V
FQ
m+1) = κ2(S) = ‖S−1‖‖S‖, the theorem follows.

Using identical techniques as in Lemma 4.1 and Theorem 4.2 one can prove the
following new result relating the norm of the residuals associated with GMRES and
FGMRES.

Theorem 4.3. Assume that V FG
m+1, the matrix satisfying (19), is of full rank.

Let rFGm and rGm be the residuals obtained after m steps of the FGMRES and GMRES
algorithms, respectively, and let EFGm = [εFG1 , . . . , εFGm ], where εFGi are the ith error
vectors given by (22). Then there exists vectors yFGk ∈ R

m, k = 1, . . . ,m − 1, such
that the following holds:

‖rFGm ‖ ≤ κ2(V
FG
m+1)

(
‖rGm‖+

m−1∑
k=0

‖A(M−1A)
kEFGm yFGk ‖

)
.

5. Numerical experiments. To illustrate the behavior of FQMR we performed
several numerical experiments. We begin by considering a set of examples from [21]
given by a finite difference discretization of the partial differential equation

−∆u + γ(xux + yuy) + βu = f(34)
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on a unit square, where f is such that the exact solution to the discretized equation
Ax = b is xH = (1, . . . , 1). The parameters γ and β are chosen in one case to
make the system indefinite (γ = 10 and β = −100) and in another to have a highly
nonsymmetric matrix (γ = 1000 and β = 10). For γ 	= 0, A is non-Hermitian, and
it is appropriate to use FQMR. The mesh is chosen as in [21] of equal size in both
dimensions (32 nodes), and the corresponding matrix is thus of order 1024.

In our experiments, we ran FQMR preconditioned with the standard QMR method
(FQMR-QMR), FQMR preconditioned with QMR which, in turn, is preconditioned
with ILU(0) (FQMR-QMR(ILU(0))), and FQMR preconditioned with CGNE (FQMR-
CGNE); see, e.g., [17], [22] for descriptions of these preconditioners. When possible,
each of these was run with an outer relative residual norm tolerance of 10−7 and
an inner relative residual tolerance ranging from 10−1 to 10−6. In all of our experi-
ments, our stopping criteria uses the 2-norm in computing the relative residual norm
‖rk‖/‖r0‖, which is consistent with our theoretical analysis. Our FORTRAN code
is derived from the existing code for QMR taken from [12], and ILU(0) and CGNE
are taken from [3]. Our experiments were run on a DEC-alpha machine; however, for
easy comparisons with runs on other machines, in our tables and figures we report
number of operations and not computer times. The trends observed in our tables and
figures are very similar to those one would observe using CPU times.

Table 1
FQMR-QMR. β = −100, γ = 10, out. tol. = 10−7.

Inner tol. Out. it. Avg. inner it. Oper.

10−1 15 97 1.70×108
10−2 5 110 6.47×107
10−3 3 124 4.35×107
10−4 2 131 3.06×107
10−5 2 158 3.70×107
10−6 2 183 4.28×107

Table 2
FQMR-QMR. β = 10, γ = 1000, out. tol. = 10−7.

Inner tol. Out. it. Avg. inner it. Oper.

10−1 10 122 1.43×108
10−2 4 149 7.00×107
10−3 3 171 6.02×107
10−4 2 204 4.77×107
10−5 2 230 5.39×107
10−6 2 248 5.80×107

Tables 1 and 2 display the results of FQMR-QMR, Tables 3 and 4 display the
results of FQMR-QMR(ILU(0)), and Tables 5 and 6 display the results of FQMR-
CGNE. We list the average number of inner iterations needed to reach the inner
tolerance, the exact number of outer iterations needed to reach the outer tolerance,
and the number of operations used to complete the solution. In Tables 3 and 4, we
point out that, for an inner tolerance of 10−1, FQMR cannot achieve full accuracy
in the outer iteration; thus for this case, QMR(ILU(0)) is not a good preconditioner.
For these tables we list the outer tolerance separately at each step. We remark that
a more efficient implementation of FQMR-QMR is possible where steps (8) and (9)
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Table 3
FQMR-QMR(ILU(0)). β = −100, γ = 10.

Out. tol. Inner tol. Out. it. Avg. inner it. Oper.

10−4 10−1 126 31 5.96×108
10−7 10−2 43 36 2.31×108
10−7 10−3 30 38 1.74×108
10−7 10−4 35 40 2.09×108
10−7 10−5 13 37 7.28×107
10−7 10−6 11 39 6.44×107

Table 4
FQMR-QMR(ILU(0)). β = 10, γ = 1000.

Out. tol. Inner tol. Out. it. Avg. inner it. Oper.

10−3 10−1 64 31 3.03×108
10−7 10−2 8 36 4.37×107
10−7 10−3 3 59 2.67×107
10−7 10−4 2 78 2.34×107
10−7 10−5 2 103 3.08×107
10−7 10−6 2 123 3.70×107

Table 5
FQMR-CGNE. β = −100, γ = 10, out. tol. = 10−7.

Inner tol. Out. it. Avg. inner it. Oper.

10−1 10 636 4.69×108
10−2 10 729 5.38×108
10−3 8 775 4.57×108
10−4 7 729 3.77×108
10−5 2 565 8.35×107
10−6 2 669 9.89×107

Table 6
FQMR-CGNE. β = 10, γ = 1000, out. tol. = 10−7.

Inner tol. Out. it. Avg. inner it. Oper.

10−1 15 512 5.67×108
10−2 4 209 6.42×107
10−3 3 289 6.21×107
10−4 2 278 4.02×107
10−5 2 423 6.26×107
10−6 2 441 6.52×107

of Algorithm 2.1 are performed with a single call to QMR, but we have not used this
feature here.

As it can be observed, reducing the inner tolerance produces a better precondi-
tioner, and the overall convergence is improved. As is to be expected, the average
number of inner iterations increases. An important observation comes from looking
at the progression of total number of operations as the inner tolerance decreases from
10−1 to 10−6. For our given outer tolerance of 10−7, the amount of required operations
in relation to the inner tolerance will decrease to a point and then begin to increase.
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Table 7
FQMR-QMR: β = −100, γ = 10, outer tol.= 10−4.

Inner tol. Matrix dimension Out. it. Inner it. Operations

10−1 1024 5 96 5.63×107
10−1 4096 5 187 4.38×108
10−1 10000 5 276 1.58×109
10−1 40000 5 1055 2.41×1010
10−2 1024 2 113 3.88×107
10−2 4096 8 828 3.10×109
10−2 10000 3 1134 3.88×109
10−2 40000 3 1527 2.09×1010
10−3 1024 2 124 2.91×107
10−3 4096 2 249 4.38×108
10−3 10000 3 1181 4.05×109
10−3 40000 2 2294 2.09×1010

This phenomenon is consistent with the behavior of other inner-outer methods; see
e.g., [5], [24]. In Tables 1, 2, 4, and 6, the smallest amount of work was achieved for
an inner tolerance of 10−4; in Table 5 the smallest amount of work was achieved for
an inner tolerance of 10−5; while in Table 3 an inner tolerance of 10−6 yielded the
least amount of work. This demonstrates that the inner iterative method need not, in
every case, be solved to the fullest precision in order to have a good preconditioner;
see [4] for other examples of this occurrence. Thus, for a given flexible preconditioner
and a specific outer residual norm tolerance, we can find an optimal choice of inner
tolerance for minimizing work. It can be observed that this optimal choice is problem
dependent. Note also that choosing an inner tolerance equal to the outer one, say,
10−7 in most of our cases, would imply only one outer iteration. This is equivalent to
just running the inner iterative method.

We next give the results of our experiments with larger matrices A. We solve the
indefinite problem, β = −100, γ = 10, using FQMR-QMR with varying grid sizes of
32, 64, 100, and 200, giving us matrices of dimension 1024, 4096, 10000, and 40000,
respectively. Table 7 records the results for an outer tolerance of 10−4. We give the
results for each of the matrix sizes using the inner tolerances 10−1, 10−2, and 10−3.
We point out that for the total number of outer iterations there is little or no change.
Thus, the increase in the work per variable is wholly a result of an increase in the
number of inner iterations.

We present now several figures which display that in many cases the maximum
attainable accuracy of FQMR is better than that of the corresponding QMR. By this
we mean the smallest possible relative residual norm. Figure 1 shows the maximum
attainable accuracy of FQMR-QMR(ILU(0)) and QMR(ILU(0)) for the indefinite
problem, β = −100, γ = 10. Here FQMR-QMR(ILU(0)) was able to achieve a relative
residual norm of 10−7, while QMR(ILU(0)) terminated at 10−4. This observation is
typical of all our experiments with FQMR. One particularly strong example of this
behavior is observed for the matrix created with β = −1000.1 and γ = 10.0. The
convergence curves of QMR and FQMR-QMR for this matrix are shown in Figure 2.
Notice that while QMR stagnates at 10−2, we achieve a relative residual norm of 10−9

using FQMR-QMR for the same number of operations. FQMR-QMR can achieve an
even lower relative residual norm if we allow for additional work. A value of 10−15 is
reached in 7.42× 108 operations.
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Fig. 1. FQMR convergence: β = −100, γ = 10, inner tol. = 0.01.
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Fig. 2. FQMR convergence: β = −1000.1, γ = 10.

In Table 8, we further confirm these findings by recording achievable relative
residual norms of FQMR and QMR for other choices of the matrix A. Notice that
even when QMR performs well, i.e., it successfully converges to an appropriately small
relative residual norm before reaching a plateau, FQMR can be shown to perform
better by reaching an even smaller value. The ability to reach a lower relative residual
norm by using a flexible preconditioner was observed both in the case of breakdown
and stagnation. At the present time, we do not have a full explanation for this
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Table 8
Comparison of achievable residual norms for FQMR-QMR and QMR.

β γ Res. norm - QMR Res. norm - FQMR-QMR

-1000 10 10−8 5.2 ×10−15

1000 10 10−8 6.1× 10−15

100 10 10−13 1.42 ×10−15

-100 10 10−11 1.64× 10−15

10 1000 10−12 5.9× 10−15

Table 9
FQMR-QMR: Sherman1 matrix. Out. tol. = 10−7.

Inner tol. Out. it. Avg. inner it. Oper.

10−1 111 98 1.07×109
10−2 10 148 1.47×108
10−3 4 189 7.50×107
10−4 2 180 3.56×107
10−5 2 272 5.40×107
10−6 2 327 6.28×107

phenomenon.

We comment that there are of course several ways of going beyond the point where
QMR stagnates, for example, by using iterative refinement or restarting QMR. Also, if
one uses the coupled two-term recurrences version of QMR, the maximum attainable
residual norm is better than with the three-term recurrence version of QMR used
here; see [13].

To emphasize the robustness of the new FQMR method, we ran FQMR on two
matrices whose structure is different from the previous examples. These are the Sher-
man1 matrix and the Sherman5 matrix from [8]. They are the first and fifth matrices
from the Sherman collection, respectively. Both represent oil reservoir simulations,
with Sherman1 coming from a black oil simulation with shale barriers on a 10 ×10×10
grid with one unknown per grid point, and Sherman5 coming from a fully implicit
black oil simulator on a 16 × 23 × 3 grid with three unknowns per grid point. The
Sherman1 matrix is of dimension 1000 and has 3750 nonzeros, and the Sherman5
matrix is of dimension 3312 and has 20793 nonzeros.

Table 9 displays the convergence behavior of FQMR-QMR for the Sherman1 ma-
trix, and Table 10 displays the convergence behavior of FQMR-QMR for the Sherman5
matrix. Notice that for both of these matrices the convergence behavior of FQMR-
QMR remains comparable to what we have seen in all of the previous examples.
Tables 9 and 10, also, display a consistency with our other examples in that the total
work required for solving these problems with an outer tolerance of 10−7 reaches a
minimum when the inner tolerance is 10−4 for Table 9 and 10−5 for Table 10. Thus,
once more we see an optimal preconditioner for our implementation is achieved when
using a less precise inner iteration.

To emphasize the property that we have observed in FQMR of achieving a lower
relative residual norm than QMR, we display full convergence results of both QMR
and FQMR-QMR on the Sherman5 matrix in Figure 3. Here QMR can achieve a
tolerance of only 2.0 ×10−8, while FQMR-QMR reaches 3.5 ×10−16. Therefore, once
again, FQMR can outperform QMR when an extremely low residual norm is required.
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Table 10
FQMR-QMR: Sherman5 matrix.

Out. tol. Inner tol. Out. it. Avg. inner it. Oper.

10−2 10−1 15 138 8.89×108
10−3 10−2 2 570 4.09×108
10−7 10−3 16 2495 1.70×1010
10−7 10−4 3 1475 1.90×109
10−7 10−5 2 1832 1.57×109
10−7 10−6 2 2069 1.77×109
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Fig. 3. QMR vs. FQMR-QMR: Sherman5 matrix.

6. Conclusions. We have formulated a flexible version of QMR for the solu-
tion of large sparse non-Hermitian nonsingular systems of linear equations. This new
method, FQMR, converges to the solution of the linear system, as long as the new
vectors generated at each step are linearly independent of the previous ones. The-
oretical bounds on the norm of the residual at each step were given. These bounds
are (as is to be expected) not as good as those obtained using the same precondi-
tioner at each step. The advantage is that the variable preconditioner can be less
onerous. Furthermore, there is the potential of great gains in cases of an adaptive
preconditioner. One of the advantages of FQMR over FGMRES is the fact that the
low memory requirements are fixed from the beginning.

Using the methodology developed to produce the mentioned bounds, we have also
contributed to the analysis of FGMRES [21].

Numerical experiments of the type found in [21] illustrate the convergence be-
havior of FQMR and demonstrate that FQMR is capable of attaining lower residual
norms than the standard QMR with three-term recurrence. Other experiments pre-
sented show a similar behavior.
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ON PRECONDITIONING NEWTON–KRYLOV METHODS
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Abstract. Solidifying flow equations can be used to model industrial metallurgical processes
such as casting and welding, and material science applications such as crystal growth. These flow
equations contain locally stiff nonlinearities at the moving phase-change interface. We are developing
a three-dimensional parallel simulation tool for such problems using a Jacobian-free Newton–Krylov
solver and unstructured finite volume methods. A segregated (distributed, block triangular) precon-
ditioning strategy is being developed for the Newton–Krylov solver. In this preconditioning approach
we are only required to approximately invert matrices coming from a single field variable, not ma-
trices arising from a coupled system. Additionally, simple linearizations are used in constructing our
preconditioning operators. The preconditioning strategy is presented along with the performance of
the methods. We consider problems in phase-change heat transfer and the thermally driven incom-
pressible Navier–Stokes equations separately. This is a required intermediate step toward developing
a successful preconditioning strategy for the fully coupled physics problem.

Key words. Newton–Krylov methods, preconditioning, solidifying flow

AMS subject classifications. 65H10, 65M50, 76T05

PII. S1064827500374303

1. Introduction. Numerical simulation of solidifying flow equations plays an
important role in the analysis of industrial metallurgical processes such as casting and
welding and material science applications such as crystal growth. These flow equations
contain locally stiff nonlinearities at the moving phase-change interface. The typical
equation set is a combination of the incompressible Navier–Stokes equations and an
energy equation which includes phase-change and latent heat evolution. Examples of
numerical solutions to solidifying flow equations are [VCM87, Dan89].

There are many challenges to numerically integrating the equations of solidifying
flow. We focus here on fixed-grid approaches, although moving mesh methods can
also be used. In constructing a solution algorithm one must choose a set of dependent
variables. In most applications temperature is used as the dependent variable for the
energy equation, whereas we use total enthalpy [KKL99]. One may chose to iteratively
converge the heat transfer phase-change evolution within a time step as in [VCM87]
or approximately linearize this coupling within a time step using an “effective heat
capacity” method as in [Dan89]. Additionally, one may choose a segregated solution
procedure to couple the flow equations and the energy equation within a time step, as
is done in [VCM87], or one can solve this system with a Newton based approach, as
is done in [Dan89]. Note that while [Dan89] has demonstrated the applicability of a
Newton based approach to solidifying flow, the more modern Jacobian-free Newton–
Krylov (JFNK) approach was not applied in that study. However, the convergence of
a Newton based approach applied to solidifying flow has been established in [Dan89].
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Our algorithmic approach will use total enthalpy as a dependent variable, accu-
rately capturing the latent-heat exchange within a time step [KKL99]. We employ
a fully coupled Newton–Krylov method to integrate the system in a Jacobian-free
approach [CJ84, BS90]. We have recently had success using this approach for bound-
ary value problems involving coupling between fluid flow and phase-change or finite
rate chemistry [Kno98, KMK96]. We use the “effective heat capacity” method and a
segregated flow solver approach to precondition our outer Newton–Krylov solver. In
this study, the scalar elliptic systems which arise in the preconditioner will be approx-
imately inverted using low-complexity multilevel methods [KR00, MKR00, KM00].

Our equation system is comprised of a continuity equation,

∇ · u = 0,(1.1)

a set of momentum equations,

∂[ρu]

∂t
+∇ · (ρluu)−∇ · (ν∇u) = −∇P + ρgβ(T − Tref )− α(εs)u,(1.2)

and an energy equation for total mixture enthalpy,

∂[ρH]

∂t
+∇ · ([ρH]u)−∇ · (κ(εs, T )∇T ) = 0.(1.3)

Here the mixture density and volumetric enthalpy are

[ρ] = εsρs + (1− εs)ρl, [ρH] = εsρshs + (1− εs)ρlhl.(1.4)

The subscript s indicates solid, and the subscript l indicates liquid. The phase en-
thalpies and total enthalpy are

hs = Cp,sT, hl = Cp,lT + L, H = CpT + (1− εs)L.(1.5)

ρ is density, u is velocity, T is temperature, P is pressure, εs is the solid volume
fraction, κ is the thermal conductivity, ν is the kinematic viscosity, α is a solid-liquid
friction coefficient, β is the thermal expansion coefficient, g is the gravity vector,
Cp is the mixture heat capacity (Cp = εsCp,s + (1 − εs)Cp,l), and L is the latent
heat of fusion. Tref is the temperature around which the density is linearized for the
Boussinesq approximation. The functional form for the mixture thermal conductivity
is

κ(εs, T ) = εsκs(T ) + (1− εs)κl(T ).(1.6)

The solid phase, assumed to be stationary in this model, has the ability to absorb
momentum from the fluid. The drag (friction) at the solid-liquid interface is modeled
as a loss term in the momentum equations, although an artificially increased viscosity
has also been used for this purpose [Dan89]. For simplicity of presentation we have
also ignored the effects of solute transport and solutal buoyancy effects, which are
important for alloys.

In section 2 we outline our proposed solution algorithm. It is this section which
will isolate the two individual components of our preconditioning strategy to be stud-
ied in this paper. In section 3 we study separate components of the algorithm as
applied to phase-change heat transfer and thermally driven incompressible flow. It
is this section which contains our new results and lays the foundation for the fully
coupled preconditioning strategy. Conclusions are given in section 4.
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2. Solution algorithm. We use a JFNKmethod with segregated solution method
(only scalar inversions) as a preconditioner. We have recently applied a similar ap-
proach to time dependent reaction-diffusion systems [MKR00]. Much of the material
in this section is not new; however, we include it for completeness. Newton’s method
requires the solution of the linear system

Jkδwk = −F(wk), wk+1 = wk + Skδwk,(2.1)

where J is the Jacobian matrix, F(w) is the nonlinear system of equations, w is the
state vector, S is a damping scalar, and k is the nonlinear iteration index. The Newton
iteration continues until ||F(wk)||2/||F(w0)||2 falls below a specified tolerance. We
will use 1.0 × 10−6 for this tolerance. When using a Krylov method to solve (2.1)
(we are using GMRES [SS86]), the action of the Jacobian is only required in the
form of matrix-vector products which can be approximated with finite differences
[CJ84, BS90]. The right preconditioned form of this approximation, where v is a
general Krylov vector, is

JP−1v ≈ [F(w + εP−1v)− F(w)] / ε,(2.2)

where P is our preconditioning matrix. In this study ε, the perturbation parameter,
is given by

ε =
1

N ||v||2
N∑

m=1

b|wm|,(2.3)

where N is the linear system dimension and b is a constant whose magnitude is within
a few orders of magnitude of the square root of machine roundoff (b = 10−5 for this
study), and wm is the mth component of w.

In the JFNK method only the matrix P is formed, and only the matrix P is
iteratively inverted. There are two important decisions to make regarding P.

1. What linearization should be used to form P?
2. What linear iterative method should be used to solve Py = v?

It is in answering these questions where our approach becomes novel in its application
to solidifying flow problems.

Additionally, we use an inexact Newton method, where the required linear con-
vergence tolerance on a given nonlinear iteration is proportional to the nonlinear
residual,

‖ Jkδwk + F(wk) ‖2< γ ‖ F(wk) ‖2 .(2.4)

For this work we use a constant γ = 5.0× 10−3.
As indicated above, we allow for damping in each Newton iteration. This damping

limits the maximum change inw to a fixed percent per Newton iteration. This process
allows for an increase in nonlinear residual but prevents thermodynamic variables from
becoming unphysical (i.e., becoming negative). Our expression for the damping scalar,
S, is

S = min[1,mini(f ∗ wi/δwi)],(2.5)

where f is a user supplied fraction for a 20 percent allowed change, f = 0.2. Only
the thermodynamic variables in w are used to evaluate S. It can be seen that S
approaches unity as the Newton method produces updates which are small.
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Next our preconditioning strategy is described. First, we present the strategy in
general, and in the next section we present specifics. Our segregated preconditioning
strategy can be viewed as belonging to a broader class of lower block triangular
preconditioners, examples of which include [ES96, Kla98]. However, it is most closely
related to the recent preconditioning methods put forth for thermally driven flows in
[PT01]. The relationship between these approaches will be discussed more at the end
of this section.

We are interested in time accurate simulation and expect, for the most part, to
integrate with time steps which respect the advective time scales. This allows us to
perform a simple Picard-type linearization of advection in the preconditioner without
a significant increase in outer GMRES iterations. When evaluating the precondition-
ing operator, the advecting velocity is evaluated at the previous nonlinear iteration
level. This is similar to the approach used in [ES96], except that in our approach
the nonlinearity of the advection operator is treated with an outer Newton–Krylov
iteration. This simplified linearization applied in the preconditioner should not be
viewed as restricting the application of the method to some limited range of Reynolds
numbers. It may be viewed as restricting the time step to some small multiple (say,
10) of the explicit advection stability limit. However, in practice, it has worked well
on steady-state problems [KR00, KM00]. Within a time step we expect that stiff-
ness will come from phase-change, solid-liquid friction, pressure-velocity (or stream
function–vorticity) coupling, thermal body forces, and possibly the conduction and
viscous operators. In this study we focus on constructing effective preconditioning for
phase-change and stream function–vorticity–thermal body force coupling separately.
These methods will form the foundation of a total preconditioning strategy. Again,
we feel that the convergence of a Newton based method on the complete problem
can be inferred from the success of [Dan89]. Our goal is to construct an effective
preconditioning strategy for a more modern JFNK approach.

Consider a two-dimensional (2D) Newton system where the dependent variables
are u, v, P, andH in each control volume withw = [u, v, P,H]T , δwk = [δu, δv, δP, δH]T ,
and F(wk) = [Fu, Fv, FP , FH ]

T , in matrix form




Juu Juv JuP JuH
Jvu Jvv JvP JvH
JPu JPv 0 0
JHu JHv 0 JHH







δu
δv
δP
δH


 = −




Fu
Fv
FP
FH


 .

Here Juu =
∂Fu
∂u (this submatrix has a dimension equal to the number of finite vol-

umes), and Fu is the nonlinear function for the u momentum equation. The system
has been written in block form, blocked by a conservation equation. The precondi-
tioning “process” requires the mapping of a vector in a similar manner:

[δu, δv, δP, δH]T = P−1(−[Fu, Fv, FP , FH ]T ).(2.6)

P, however, has only to approximate J. Assuming a Picard linearization for the
advecting velocity, Juv = Jvu = JHu = JHv = 0, and the preconditioner will be




Puu 0 PuP PuH
0 Pvv PvP PvH

PPu PPv 0 0
0 0 0 PHH







δu
δv
δP
δH


 = −




Fu
Fv
FP
FH


 .



PRECONDITIONING FOR SOLIDIFYING FLOWS 385

Puu is an approximation to Juu, formed by a Picard linearization, not a Newton
linearization. It is a linear convection diffusion operator with a diagonal contribution
from the time derivative. We need to approximate the action of P−1 on a vector. The
first step of the preconditioning process is to approximately invert the phase-change
heat transfer problem:

PHHδH = −FH .

We will focus on this step and the formation of PHH in the next section. Incorporating
approximate phase-change effects into PHH is one of the main contributions of this
paper. PHH is a linear convection diffusion operator with a diagonal contribution
from the time derivative, as well as phase-change. With δH, we are left with a
pressure-velocity coupling problem, given by


 Puu 0 PuP

0 Pvv PvP
PPu PPv 0




 δu

δv
δP


 = −


 Fu − PuHδH

Fv − PvHδH
FP


 .

Solutions to this problem can be obtained in a number of ways. For example, a
few passes of the segregated SIMPLE algorithm [Pat80] could be used. In fact, the
SIMPLE algorithm has recently been used as a smoother for a multigrid (MG) pre-
conditioner inside a JFNK method [PT01]. As is shown in [PT01], the SIMPLE
algorithm effectively puts the above linear system in lower block triangular form with
a required outer iteration. This can also be seen in [Wes92], where SIMPLE is dis-
cussed as an MG smoother. The performance of the SIMPLE algorithm as a solver is
well documented in the enginering community, although frequently several iterations
are required for convergence. When used as a preconditioner to JFNK, only a few
iterations of the segregated solver are employed.

The philosophy behind our segregated preconditioner is the same as in [MKR00].
One can use an operator split, or a segregated, solution method (a non-Newton ap-
proach) as a preconditioner to an outer JFNK solver. The resulting preconditioner
will have a block triangular form with an outer iteration. The individual blocks are
only approximately inverted in each outer iteration of the preconditioner. This is a
different approach to producing a lower block triangular preconditioner as compared
to [ES96], although the resulting preconditioners are similar. Further investigation
of the similarities between these approaches is clearly warranted, but it is out of the
scope of current study.

In the next section we will apply a segregated (block triangular) preconditioner
to a time dependent thermally driven flow problem and compare its performance to
a coupled MG based preconditioner.

3. Algorithm specifics. We have described our JFNK method and our pre-
conditioning philosophy as applied to solidifying flow. In this section we give specific
examples of algorithm application and performance, considering the phase-change
heat conduction problem and thermally driven incompressible flow separately.

3.1. The phase-change heat conduction problem. In this subsection we ig-
nore fluid flow, assume constant density, heat capacity, and thermal conductivity, and
focus on JFNK as applied to the phase-change heat conduction problem. Our initial
work on this problem is detailed in [KKL99]. Here we focus on significant improve-
ments to the formation of the preconditioner, and we demonstrate the applicability of
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the JFNK algorithm to a problem with multiple phase transitions. Additionally, we
will briefly describe the method used for time step control on phase change problems.
As stated, we use total enthalpy as a dependent variable, and thus we need to express
temperature as a function of enthalpy, T = T (H), to perform implicit conduction.
Given our assumptions, a one-dimensional (1D) version of the energy equation is

∂H

∂t
− κ

ρ

∂

∂x

[
∂T (H)
∂x

]
= 0(3.1)

with H = CpT + (1− εs)L. An implicit discrete version of this equation is

FH,i =
Hn+1
i −Hn

i

∆t
− κ

ρ∆x2
[T (Hn+1

i+1 )− 2T (Hn+1
i ) + T (Hn+1

i−1 )] = 0,(3.2)

where the diffusion operator is approximated with second order centered differences.
For a pure material (Stefan problem, isothermal solidification) with a melting

temperature Tm, the function T (H) is given by

T (H) =




H/Cp, H < CpTm,

Tm, CpTm ≤ H ≤ CpTm + L,

(H − L)/Cp, H > CpTm + L,

where εs = 1 − H−CpTm
L . With this function one can evaluate the nonlinear residual

given a guess for Hn+1
i . For a more complex multicomponent system, such as a

binary eutectic alloy (nonisothermal solidification), the function T (H) becomes more
complex:

T (H) =




H/Cp, H < CpTeut,

Teut, CpTeut ≤ H ≤ CpTeut + (1− εs,eut)L,

(H − (1− εs)L)/Cp, CpTeut + (1− εs,eut)L ≤ H ≤ CpTl + L,

(H − L)/Cp, H > CpTl + L,

where Teut is the eutectic temperature, Tl is the liquidus temperature, and εs,eut is
the solid volume fraction at Teut. The region of nonisothermal solidification (Teut <
T < Tl) is referred to as the “mushy zone,” where solid and liquid can coexist. In
the “mushy zone,” one must simultaneously satisfy the energy balance, the phase
diagram, and a local scale model. In this region a small nonlinear system must be
solved to extract T as a function of H.

The local scale model is a subgrid model used to account for solute diffusion in
the solid. For example, if the Schiel local scale model (no solute diffusion in the solid)
is being used, then the two-equation nonlinear system becomes

CpT + (1− εs)L−H = 0,

εs +

(
Tf − Tl
Tf − T

)−(1−k)
− 1.0 = 0.(3.3)
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Solutions to this system must be found in each finite volume in the “mushy zone.”
(k, Tf , Tl, and H are known.) We are solving for T and εs, using a local Newton
method.

Next we need to form a preconditioning matrix,M, which is an approximation to
J. In this subsection we refer to the preconditioning operator asM, not P. We do this
to symbolize that we are only considering the phase-change heat conduction problem.
The Jacobian for the constant property Stefan problem (isothermal solidification) is
easy to form analytically [KR90].

Ji,i−1 =
∂Fi

∂Hi−1
= − κ

ρ∆x2
T ′(Hi−1),

Ji,i =
∂Fi
∂Hi

=
1

∆t
+ 2

κ

ρ∆x2
T ′(Hi),

Ji,i+1 =
∂Fi

∂Hi+1
= − κ

ρ∆x2
T ′(Hi+1).(3.4)

Here, T ′ is the derivative of the temperature function with respect to enthalpy for
the Stefan problem, given by

T ′(H) =




1/Cp, H < CpTm,

0, CpTm ≤ H ≤ CpTm + L,

1/Cp, H > CpTm + L.

Forming the Jacobian is not as simple for alloys (nonisothermal solidification). The
simplest approximation, which we call M1, results from assuming a constant value,
T ′(H) = 1/Cp, for all values of enthalpy when evaluating the preconditioning matrix
M. This is equivalent to ignoring phase change in the preconditioner and precondi-
tioning only heat conduction. Thus each row of the preconditioning matrix becomes

Mi,i−1 = − κ

ρCp∆x2
,

Mi,i =
1

∆t
+ 2

κ

ρCp∆x2
,

Mi,i+1 = − κ

ρCp∆x2
.(3.5)

This preconditioning matrix is used in [KKL99]. Here we also consider a simple
improvement to this preconditioning matrix obtained by using the “effective heat ca-
pacity” approach [Dan89]. In the effective heat capacity approach the time derivative
of enthalpy is transformed into a time derivative of temperature. The effective heat
capacity, dHdT , is evaluated at the previous time step.

(
dH

dT

)n
∂T

∂t
− κ

ρ

∂

∂x

[
∂T

∂x

]n+1

= 0,

(
dH

dT

)n
=

Hn −Hn−1

Tn − Tn−1
.(3.6)

In evaluating the improved preconditioner, M2, T ′(H)n+1 = (T (Hn+δH)−T (Hn))/δH.
For both M1 and M2 five passes of symmetric Gauss–Seidel (SGS) are used to ap-
proximate M−1.
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Before studying algorithm performance we briefly describe the time step control
used to follow solidification fronts which we have borrowed from [RK99]. Assume that
our nonlinear parabolic equation can be expressed as a hyperbolic equation, i.e.,

∂H

∂t
− κ

ρ

∂

∂x

[
∂T (H)
∂x

]
= 0(3.7)

as

∂H

∂t
+ Vf

∂H

∂x
= 0.(3.8)

We are motivated to make this assumption since many nonlinear parabolic problems,
such as radiation diffusion [RK99] and phase-change heat transfer produce a solution
with a hyperbolic character (a transporting front). Here Vf is the effective velocity
with which the solidification front moves. If one can approximately evaluate Vf , then
it can used to set a time step which does not allow the front to propagate more than
one mesh spacing in one time step. We use

Vf =
‖ ∂H

∂t ‖1
‖ ∂H

∂x ‖1
, ∆t = C

∆x

Vf
,(3.9)

evaluated on the discrete solution at the previous time step, and we choose C ≤ 1.
We have found this method for choosing the time step for solidification problems a
robust way to maintain temporal accuracy.

As a first model problem we consider a 1D binary eutectic problem, which has been
adapted from [SV96], in the region 0 ≤ x ≤ 0.4. This problem is done in dimensional
form with Cp = 1000 J

kgK , L = 4.0 × 105 J
kg , ρ = 2400 kgm3 , and κ = 100 W

mK . The
liquidus temperature, at an initial solute concentration of 5.0 percent, is Tl = 904.2 K.
The eutectic temperature is Teut = 821.2 K, and the melting temperature of the pure
solvent is Tf = 921.2 K. The slope of the liquidus line is ml = 3.4, and the partition
coefficient is k = 0.15. The initial condition for temperature is 905.2 K. At time
equal to zero, the left boundary is set to a temperature of 621.2 K, and solidification
proceeds. The accuracy of the solution to this problem was demonstrated in [KKL99].
Here we demonstrate the efficiency gained from the improved preconditioner (M2).

Table 1 presents results for different fixed time step sizes with the Scheil local
scale model, with nx (the number of finite volumes)= 100 . We can see that M2
performs significantly better than M1. Tables 2 and 3 present results for a 2D version
of this problem on different grids using a variable time step with C = 0.25. For this
problem 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.4. The temperature on all four boundaries is
set to 621.2 K. Again, M2 is significantly better than M1. We see the impact on
the 2D problem being greater than on the 1D problem. This is because there is a
larger fraction of grid cells in the solidification front. Comparing Tables 2 and 3 for
the 60 × 60 grid, M2 has reduced the required GMRES iterations by a factor of five
and has reduced the CPU time by a factor of four. It should be mentioned that over
the course of the 2D simulation the variable time step increased by nearly two orders
of magnitude.

Figure 1 shows the solution of the 1D problem at three different times. It is
normalized to show the effect of phase change on the enthalpy field. In these plots
temperature is equal to T

621.2 , and enthalpy is equal to
H

621.2Cp
. With this normal-

ization temperature is equal to enthalpy in the solidified region. In the pure liquid
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Table 1
Algorithm performance as a function of time step size and preconditioning matrix on the binary

alloy problem; nx = 100, time = 500.

Precond. Number of GMRES its. CPU
and Newton its. per time

time step per time step Newton it.

M1, ∆t=1.0 2.8 8.1 22
M2, ∆t=1.0 2.4 1.5 8.3
M1, ∆t=2.5 3.3 10.7 12.6
M2, ∆t=2.5 3.0 2.2 4.8
M1, ∆t=5.0 3.7 12.0 7.7
M2, ∆t=5.0 3.6 2.9 3.2

Table 2
Algorithm performance as a function of grid dimension on the 2D binary alloy problem; M2,

C = 0.25, time = 150.

Grid Number Number of GMRES its. CPU
dim. of Newton its. per time

time steps per time step Newton it.

30x30 43 3.67 3.0 1
40x40 45 4.67 3.3 2.5
50x50 47 5.33 4.5 5.7
60x60 50 5.0 5.2 10.7

Table 3
Algorithm performance as a function of grid dimension on the 2D binary alloy problem; M1,

C = 0.25, time = 150.

Grid Number Number of GMRES its. CPU
dim. of Newton its. per time

time steps per time step Newton it.

30x30 43 4.33 17.0 3.25
40x40 45 4.67 18.4 7.3
50x50 47 5.67 21.3 22.5
60x60 50 5.0 25.6 40.8

region temperature is equal to enthalpy plus L
621.2Cp

. Note that M1 ignores the jump

in the enthalpy field, while M2 attempts to incorporate it.
Finally, consider a material which goes through both a solid-liquid phase trans-

formation and then a solid-solid phase transformation. For a pure material (Stefan
problem, isothermal solidification) with two phase transitions we have the following
function:

T (H) =




H/Cp, H < CpTm,2;

Tm,2, CpTm,2 ≤ H ≤ CpTm,2 + L2;

(H − L2)/Cp, CpTm,2 + L2 ≤ H ≤ CpTm,1 + L2;

Tm,1, CpTm,1 + L2 ≤ H ≤ CpTm,1 + L2 + L1;

(H − L2 − L1)/Cp, H > CpTm,1 + L1 + L2.

Here Tm,1 > Tm,2. Phase transition 1 occurs at temperature Tm,1 with latent heat
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Fig. 1. Normalized solutions of temperature, enthalpy, and solid fraction for the 1D binary
alloy problem at t = 100, 250, and 500.
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Fig. 2. Solution of the two phase transition Stefan problem; temperature (top) and enthalpy
(bottom).

L1. Simulation of this problem will result in the propagation of two sharp fronts.
We consider a 2D model problem with an initial temperature of 3.0, Tm,1 = 2.0,
Tm,2 = 1.0, L1 = L2 = 1.0, and κ = Cp = ρ = 1.0. At time equal to zero the boundary
conditions are a zero applied temperature. Figure 2 depicts the temperature and
enthalpy solution at time equal to 0.5. We see the two fronts in the enthalpy solution.
The results of Table 4 show that the improved preconditioner (M2) makes a positive
impact on this problem as well, decreasing the required CPU time by as much as a
factor of two.

3.2. Prototype flow solver. In this subsection we demonstrate algorithmic
performance of our distributed preconditioner on a thermally driven incompressible
flow problem. We consider a time dependent version of the natural convection model
problem in stream function (ψ), vorticity (ω), and temperature (T ) form [Dav83].
Here the pressure-velocity coupling has been transfromed into a stream function–
vorticity coupling. The boundary conditions on the ω equation are a function of ψ,
and the source term for the ψ equation is ω. This is a stiff coupling, and our pre-
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Table 4
Algorithm performance as a function of grid dimension and preconditioner on 2D two-phase

transition Stefan problem; time = 0.5 and dt = 0.01.

Grid Number Number of GMRES its. CPU
dim. of Newton its. per time

time steps per time step Newton it.

30x30, M1 50 3.33 3.75 1.5
30x30, M2 50 2.76 1.5 1.0
60x60, M1 50 4.67 7.0 21.5
60x60, M2 50 3.67 2.0 10.9

conditioning strategy must contain an iteration on this coupling to be effective. The
Newton–Krylov method is used for the solution of the fully coupled system (including
implicit advection).

∇2ψ = ω,(3.10)

∂ω

∂t
+∇ · (,V ω)− 1

Re
∇2ω =

Gr

Re2
∇xT,(3.11)

∂T

∂t
+∇ · (,V T )− 1

Re Pr
∇2T = 0(3.12)

with ,V = ux̂ + vŷ, u = ∂ψ
∂y , and v = −∂ψ

∂x . Here Re is the Reynolds number, Gr is

the Grashof number, and Pr is the Prandtl number. As in [Dav83], we use Re = 1
and Pr = 0.71. Note that in this nondimensionalization the maximum velocity is
proportional to Gr. Thus, for large Gr, convection will dominate diffusion even
for Re = 1. We use centered differences in space and forward differences in time.
Time step size will be such that the explicit limit based on advection is not severely
violated. This choice of time step is motivated by time accuracy not stability. The
preconditioner employs a Picard linearization for the advection terms in (3.11) and
(3.12), and P−1 results from an approximate inverse of a segregated system. Note
that (3.10) has no time derivative and is therefore purely elliptic. A low-complexity
MG method [KR00, MKR00, KM00] is used to solve the separate (scalar) elliptic
problems. Our preconditioning system is


 Pψψ Pψω 0

Pωψ Pωω PωT
0 0 PTT




 δψ

δω
δT


 = −


 Fψ

Fω
FT


 .

Here Pψψ = ∇2, Pψω is the source term coupling in (3.10), and Pωψ results from
boundary condition on (3.11) being a function of ψ. The coupling from Pψω and
Pωψ can be represented as a 2 x 2 matrix at each finite volume. The two parabolic
operators are

PTT =
I

∆t
+ ,V n · ∇ − 1

Re Pr
∇2

and

Pωω =
I

∆t
+ ,V n · ∇ − 1

Re
∇2,
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where ,V n is the velocity at the previous Newton step.
The approximation to


 δψ

δω
δT


 = −P−1


 Fψ

Fω
FT




proceeds as follows.
Step 1. One MG V-cycle on

PTT δT = −FT .
Step 2. This step requires the solution of

[
Pψψ Pψω
Pωψ Pωω

] [
δψ
δω

]
= −

[
Fψ

Fω − PωT δT

]
,

which is similar to pressure-velocity coupling, since it has an elliptic constraint. With
F̄ω = Fω − PωT δT , step 2 proceeds in three separate steps (a,b,c).

2a. Solve [
0 Pψω

Pωψ 0

] [
δψ∗

δω∗

]
= −

[
Fψ
F̄ω

]
,

which is a 2× 2 matrix at each control volume.
2b. Next, approximately solve

Pωωδω
∗∗ = F̄ω − Pωψδψ

∗,

Pψψδψ
∗∗ = Fψ − Pψωδω

∗,

which requires two separate MG solves, each only one V-cycle.
2c. Finally, solve

[
0 Pψω

Pωψ 0

] [
δψ
δω

]
= −

[
Fψ − Pψψδψ

∗∗

F̄ω − Pωωδω
∗∗

]
,

which is again a 2 x 2 matrix at each control volume. Thus approximating the action
of P−1 on a vector requires three separate (scalar) MG V-cycles and two sweeps of a
block 2 × 2 matrix on the fine grid. The 2 × 2 matrix solves which incorporate the
stiff stream function–vorticity coupling in the preconditioner (and their placement) is
crucial to the performance of this approach. As in [KR00, MKR00], the MG here uses
piecewise constant restriction and prolongation and a Galerkin coarse grid operator.
SGS is used as the smoother. We have also used a coupled MG method for this
problem. Here the smoother is a block SGS, where the block is a 3 × 3 matrix
coupling the unknowns at a cell [KR00, KM00].

Our model problem is a fixed number of time steps for a simulation with Gr =
1.0 × 106. The initial conditions are a steady-state solution for Gr = 1.0 × 103. We
take a fixed number of constant time steps and collect performance data. Since we
wish to have the same advective Courant number (u ∆t

∆x ) on each grid, the time step
is reduced as the grid is refined. Figure 3 shows the steady-state temperature for
Gr = 1.0× 103 and Gr = 1.0× 106.
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Fig. 3. Temperature solution of natural convection problem; Gr = 1.0×103 (top) and 1.0×106
(bottom).

Table 5
Algorithm performance as a function of preconditioner on the 2D natural convection problem;

40× 40 grid, dt = 1.0e− 4, time = 2.0e− 3 (20 time steps).

Precond. Number Number of GMRES its. CPU
method of Newton its. per time

time steps per time step Newton it. norm.

MG dist. 20 3.9 2.5 1.0
MG coup. 20 3.4 2.4 1.1
ILU(0) 20 4.0 37.0 2.8

The performance on 40 × 40, 80 × 80, and 160 × 160 grids is given in Tables 5
through 7. In the nondimensionalization of this problem the maximum “effective”
Reynolds number is equivalent to the peak velocity. For the problem considered
this is approximately 1000 at the end of the simulation. Both algorithmic and CPU
scalings are good for the MG methods. The coupled MG results in the fewest Krylov
iterations per Newton iteration, while the segregated MG method produces the lowest
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Table 6
Algorithm performance as a function of preconditioner on the 2D natural convection problem;

80× 80 grid, dt = 5.0e− 5, time = 2.0e− 3 (40 time steps).

Precond. Number Number of GMRES its. CPU
method of Newton its. per time

time steps per time step Newton it. norm.

MG dist. 40 3.0 2.8 6.2
MG coup. 40 3.2 2.5 8.1
ILU(0) 40 4.0 78.0 65.1

Table 7
Algorithm performance as a function of preconditioner on the 2D natural convection problem;

160× 160 grid, dt = 2.5e− 5, time = 2.0e− 3 (80 time steps).

Precond. Number Number of GMRES its. CPU
method of Newton its. per time

time steps per time step Newton it. norm.

MG dist. 80 3.0 3.1 57.5
MG coup. 80 3.6 2.8 94.6

Table 8
Algorithm performance as a function of preconditioner on the 2D natural convection problem;

80× 80 grid, dt = 2.0e− 4, time = 2.0e− 3 (10 time steps).

Precond. Number Number of GMRES its. CPU
method of Newton its. per time

time steps per time step Newton it. norm.

MG dist. 10 4.0 4.4 2.7
MG coup. 10 4.0 3.6 3.2

CPU times. Both MG methods outperform an ILU(0) preconditioner. Note that both
the coupled MG and ILU(0) preconditioners are approximately inverting a 3N × 3N
matrix, while the segregated MG method is approximately inverting three N × N
matrices. For interest, Table 8 presents data for the 80 × 80 grid using a time step
which is four times larger than that of Table 6. We can see that the CPU savings,
for using a time step which is four times larger, are slightly better than a factor of
two. We mention that this segregated preconditioner has previously been shown to
perform well for a steady-state version for this problem with Gr = 1.0 × 107 on a
320× 320 grid [KM00] (a maximum Reynolds number of approximately 5000). Also,
results in [PT01] have shown a similar segregated preconditioner to perform well on
the lid-driven cavity problem at a Reynolds number of 10,000.

4. Conclusions. We have presented a model set of equations for solidifying
flow and have presented a JFNK method for the solution of these equations. We
have discussed a segregated solution procedure as a preconditioner, and we have
studied specific issues of algorithmic performance on the phase-change heat conduction
problem and thermally driven incompressible flow separately. These results will form
the foundation of a preconditioning strategy for the fully coupled problem

In the phase-change heat conduction problem, a preconditioner which incorpo-
rated the effective heat capacity method was shown to be superior to a preconditioner
which only used heat conduction. Comparing Tables 2 and 3 for the 60 × 60 grid,
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the effective heat capacity preconditioner reduced the required GMRES iterations by
a factor of five and reduced the CPU time by a factor of four. Additionally, the
JFNK method was shown to perform well on a problem which contained two phase
transitions.

In the thermally driven incompressible flow problem, a segregated preconditioner
using a low-complexity MG on each equation was presented. The relationship to other
block triangular preconditioners for the Navier–Stokes equations was briefly discussed.
The segregated preconditioner was compared to a coupled MG based preconditioner.
The segregated preconditioner was shown to be competitive in terms of outer GMRES
iterations while being superior in terms of CPU perfromance. The CPU advantage
of the segregated preconditioner was shown to grow with increasing problem size,
growing to nearly a factor of two on the 160× 160 grid.

Acknowledgment. The authors would like to thank Mike Pernice for his dis-
cussions on block triangular preconditioners for the Navier–Stokes equations.
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Abstract. Globalized inexact Newton methods are well suited for solving large-scale systems
of nonlinear equations. When combined with a Krylov iterative method, an explicit Jacobian is
never needed, and the resulting matrix-free Newton–Krylov method greatly simplifies application
of the method to complex problems. Despite asymptotically superlinear rates of convergence, the
overall efficiency of a Newton–Krylov solver is determined by the preconditioner. High-quality pre-
conditioners can be constructed from methods that incorporate problem-specific information, and for
the incompressible Navier–Stokes equations, classical pressure-correction methods such as SIMPLE
and SIMPLER fulfill this requirement. A preconditioner is constructed by using these pressure-
correction methods as smoothers in a linear multigrid procedure. The effectiveness of the resulting
Newton–Krylov-multigrid method is demonstrated on benchmark incompressible flow problems.

Key words. Newton–Krylov methods, multigrid preconditioning, pressure-correction smoothers

AMS subject classifications. 65H10, 65F10, 65N55

PII. S1064827500372250

1. Introduction. Efficient solution of the steady-state incompressible Navier–
Stokes equations

(uu)x + (uv)y − 1
Re∆u+ px = f1,

(uv)x + (vv)y − 1
Re∆v + py = f2,

ux + vy = 0,

(1.1)

where Re is the Reynolds number, has been a problem of central importance in com-
putational science and engineering since its inception. Methods for solving (1.1) can
also be leveraged to solve the systems of nonlinear equations that arise when an
implicit method is used to solve the unsteady incompressible Navier–Stokes equa-
tions. Early efforts were constrained by limited memory capacity and were often
based on strategies that involved solving a series of simplified and lower-dimensional
problems. The simplifications generally arose from application of operator-splitting
strategies, and solutions of individual equations were often built from iterative meth-
ods based on line solves. Pressure-correction algorithms such as SIMPLE [29] and
SIMPLER [28] are typical of these approaches. While frugal in their use of mem-
ory, these methods lack theoretical foundations and converge slowly. Moreover, these
convergence rates degrade with increasing problem size. Despite these drawbacks,
pressure-correction methods are still in widespread use in production engineering
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codes. Consequently, there is great interest in exploring strategies for accelerating
the convergence of pressure-correction methods while minimizing changes in software
and data structures.

Recent decades have seen considerable progress in the development of new ap-
proaches for solving large-scale nonlinear problems, in particular, globalized inexact
Newton methods [11, 12, 13]. The major shortcoming of classical Newton methods is
the need to solve a large-scale system of linear equations at each iteration. Inexact
Newton methods address this by using an iterative method to solve this system of
equations to less than full accuracy. Inexact Newton methods can be considerably
more expensive than the classical pressure-correction techniques, but rapid increases
in both the speed and capacity of computing resources make it practical to consider
inexact Newton methods for incompressible flow problems. At the same time, the
desire to address new classes of problems sometimes makes it necessary to consider
these methods.

Since their introduction, inexact Newton methods have been successfully applied
to a large variety of nonlinear problems: integral equation descriptions of equilibrium
states of liquid surfaces [3], multiphase flow in porous media [9, 43], radiation-diffusion
problems [32, 27, 5], reacting flows [20, 21, 35], aerodynamics calculations [7, 6],
and incompressible flow problems [25, 19, 22, 23]. While by no means exhaustive,
these applications represent a cross-section of preconditioning strategies currently
in use. Incomplete LU (ILU) factorizations [26, 33] are popular choices, but they
require information about the Jacobian that may be difficult to determine in a matrix-
free inexact Newton method. Depending on the amount of element fill-in that is
allowed, ILU preconditioners can have high storage requirements. Calculating an
ILU preconditioner can also be computationally expensive, and this cost is multiplied
by the number of times the preconditioner is updated during the nonlinear solution
process.

A notable trend reflected in this list of applications of Newton–Krylov methods
is the use of multigrid methods as preconditioners [43, 32, 5, 22, 23]. While multi-
grid methods are highly efficient solvers on their own, they also serve as excellent
preconditioners, and their use in this context makes the performance and robustness
of the multigrid method less sensitive to the selection of components such as inter-
grid transfers and coarse grid solvers. Multigrid methods can be tailored to specific
problems by selection of an appropriate smoother; it has been known for some time
that SIMPLE can be used as a multigrid smoother [36, 37], and it has recently been
demonstrated that SIMPLER can also be used as a smoother in a multigrid proce-
dure [30]. In contrast to prior work on Newton–Krylov-multigrid (NK-MG) methods
[22, 23], pressure-correction methods work directly on the primitive variable formu-
lation (1.1) and so are readily extendible to problems in three dimensions. Also in
contrast to prior work applying Newton–Krylov methods to incompressible flow prob-
lems [25], a multigrid preconditioner represents a considerable savings in storage and
setup time over an ILU-based preconditioner. The combination of an NK-MG method
with a pressure-correction smoother may also be regarded as a means for accelerating
the convergence of the pressure-correction scheme; however, patterns of use of the
pressure-correction methods must be reexamined in order to use them effectively in
this context.

This paper is organized as follows. First, some notation is introduced. Following
this, the relevant algorithmic components are described in section 3. The effectiveness
of combining Newton–Krylov methods with multigrid preconditioners equipped with
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pressure-correction smoothers is examined in section 4. These results are summarized
and some conclusions are drawn in section 5.

2. Notation. Pressure-correction methods have traditionally been developed for
staggered grid discretizations [29, 28], and that convention is adhered to in this work.
In this arrangement of variables, originally presented in [18], the domain is divided into
a number of cells, with the horizontal component of velocity centered on vertical cell
faces, vertical components of velocity centered on horizontal cell faces, and pressure
located at cell centers. A second-order centered discretization of the Navier–Stokes
equations (1.1) on a staggered grid produces a set of nonlinear equations F (u, p) = 0,
which may be written in block matrix form as

F (u, p) = Q[u]
(
u
p

)
−
(
f
0

)
,(2.1)

where

Q[u] =
(
Q[u] ∇h
∇h· 0

)
.

In this,

Q[u] =

(
Q1[u] 0
0 Q2[u]

)
(2.2)

is the discrete momentum operator, ∇h is a discrete gradient operator, ∇h· is a
discrete divergence operator,

u =

(
u
v

)

is the discrete velocity field, and

f =

(
f1

f2

)

represents the body force.
Implicit methods for solving the time dependent version of the Navier–Stokes

equations can be accommodated with a few minor modifications. If a backward Euler
method is used to discretize the time derivative, the discrete momentum operator
becomes

Q[u] =

(
Q1[u] + u/∆t 0

0 Q2[u] + v/∆t

)
,

and the set of nonlinear equations to be solved at each time step is

F (u, p) = Q[u]
(
u
p

)
− 1

∆t

(
un

0

)
−
(
f
0

)
,

where un is the velocity at the previous time step.

3. Algorithms. This section describes the basic ingredients that are used to
construct the NK-MG method. The discussion begins with a description of the inexact
Newton method that will be used. This is followed by a discussion of classical pressure-
correction methods and their use as smoothers in the multigrid preconditioner.
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3.1. Inexact Newton methods. Newton’s method for solving a system of non-
linear equations

F (x) = 0

requires, at the kth step, the solution of the linear Newton equation

F ′(xk) sk = −F (xk),(3.1)

where xk is the current approximate solution and F ′ is the Jacobian matrix of the
system. Once the Newton step sk is determined, the current approximation is updated
via

xk+1 = xk + sk.

This process is continued until a satisfactory solution is found, which is usually judged
by making ‖F (xk)‖ or ‖sk‖ (or both) sufficiently small. Traditionally, Newton’s
method was considered to be inappropriate for the solution of large-scale systems of
nonlinear equations because of the high computational and storage costs of solving
(3.1). However, Newton’s method will still converge even if (3.1) is not solved exactly;
indeed, under some circumstances an exact solution of (3.1) is undesirable. This can
be seen by noting that (3.1) is obtained from a linearization of F (xk) = 0 around xk,
which is valid only in a neighborhood of xk. If the solution of (3.1) produces an sk
that is too large, there may be poor agreement between F and its local linear model,
and the effort expended to accurately compute sk may be wasted. Examples that
illustrate this behavior appear in [13, 35].

Newton iterative methods relax the requirement to solve (3.1) exactly to an in-
exact Newton condition [11]

‖F (xk) + F ′(xk) sk‖ ≤ ηk‖F (xk)‖,(3.2)

in which the “forcing term” ηk ∈ (0, 1) can be specified either statically or dynamically
[13] to enhance efficiency and convergence. The optimal choice of ηk is somewhat
problem-specific; see, for example, [35] for some comparative studies. Nevertheless,
superlinear and even quadratic convergence of the inexact Newton method can be
obtained under certain choices of the forcing terms [11, 13]. In this work, an initial ηk
is dynamically determined using a slight modification of the strategy from [13] labeled
Choice 1. There, safeguards that prevent ηk from getting too small too quickly are
disabled once ηk drops below a certain threshold. In this work, these safeguards are
retained throughout the computation.

There are many ways to compute an inexact Newton step sk that satisfies (3.2),
and the efficiency of an inexact Newton method is strongly affected by this choice.
Krylov subspace methods [15] are especially well suited for this purpose since they
require only matrix-vector products F ′(xk)v. This further specialization of inexact
Newton methods leads to the class of methods referred to as Newton–Krylov methods.
The matrix-vector products needed in a Newton–Krylov method may be approximated
with finite differences of function values

F ′(xk)v ≈ F (xk + εv)− F (xk)

ε
,(3.3)

and so the Jacobian F ′ never needs to be explicitly formed. Because the Jacobian
matrix is neither formed nor stored, this approach is frequently referred to as a
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matrix-free Newton–Krylov method. While this greatly reduces storage requirements
and simplifies implementation, the differencing parameter ε must be chosen carefully.
Furthermore, some information about the Jacobian is still needed to construct a pre-
conditioner. Finally, a matrix-free Newton–Krylov method generally requires more
nonlinear iterations than a Newton–Krylov method that uses the Jacobian directly.

Among Krylov subspace methods, GMRES [34] is generally preferred, since it
minimizes the residual at every iteration. Unfortunately, in order to enforce this,
the work and storage requirements per iteration grow linearly with the number of
iterations. In practice, this is dealt with by restarting the method, which can po-
tentially slow down convergence or even cause divergence if restarting is done too
frequently. Alternatives such as BiCGSTAB [38] and transpose-free QMR [14] can be
used; however, they do not share the minimum residual property and, when used in
a matrix-free Newton–Krylov method, are generally not as robust as GMRES [24],
provided a sufficiently large restart value is used.

Finally, another traditional objection to using Newton’s method for large-scale
problems is the need to find a good initial approximation x0. Newton’s method (and
its inexact counterpart) can fail to converge if x0 is not chosen carefully. Fortunately,
classical strategies for improving the likelihood of convergence from a poor initial
approximation also apply to inexact Newton methods [12]. The backtracking global-
ization strategy given in Algorithm Inexact Newton Backtracking (INB) from [12] is
employed in this work.

Algorithm 3.1 (INB [12]).

Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), and 0 < θmin < θmax < 1 be given.

For k = 0, 1, . . . (until convergence) do:

Choose initial ηk ∈ [0, ηmax] and sk such that

‖F (xk) + F ′(xk) sk‖ ≤ ηk‖F (xk)‖.
While ‖F (xk + sk)‖ > [1− t(1− ηk)] ‖F (xk)‖ do:

Choose θ ∈ [θmin, θmax].

Update sk ←− θsk and ηk ←− 1− θ(1− ηk).

Set xk+1 = xk + sk.

In this, backtracking is invoked when the trial Newton iterate xk + sk fails to
adequately reduce ‖F‖. This is determined by comparing the actual reduction in
‖F‖,

‖F (xk)‖ − ‖F (xk + sk)‖,

with the predicted reduction

‖F (xk)‖ − ηk‖F (xk)‖ = (1− ηk)‖F (xk)‖.

If the actual reduction exceeds some fraction t of the predicted reduction, then the
step is accepted. The value t = 10−4 is used to judge sufficient reduction, leading to
acceptance of a step that produces even minimal reduction in ‖F‖. If this criterion is
not met, the step is damped by a factor θ that is chosen to minimize a quadratic that
interpolates ‖F‖ in the direction of sk. Backtracking safeguard values θmin and θmax

provide bounds on the step reduction and are given by 0.1 and 0.5, respectively. Once
the Newton step is damped, the predicted reduction in ‖F‖ is then approximated by
noting
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‖F (xk + θsk)‖ ≈ ‖F (xk) + θF ′(xk)sk‖
≤ θ‖F (xk) + F ′(xk)sk‖+ (1− θ)‖F (xk)‖
≤ (1− θ(1− ηk))‖F (xk)‖.

This leads to the adjustment in the forcing term indicated in Algorithm INB, which
is used either in the next pass through the backtracking loop or as an initial value in
the selection of the forcing term for the next Newton iteration.

3.2. Pressure-correction methods. The pressure-correction methods SIM-
PLE and SIMPLER can be used to incorporate information that is specific to the
incompressible Navier–Stokes equations into the preconditioner. These methods are
described in this section. In the following, the dependence of the momentum transport
operator (2.2) on u is suppressed.

3.2.1. SIMPLE. The SIMPLE algorithm, introduced in [29], begins by approx-
imately solving the momentum equations, and then uses the discretized form of the
continuity equation to derive an equation whose solution is used both to update the
pressure field and to correct the velocity field so that mass is conserved. To begin
with, the discrete momentum transport operator Q is updated to reflect the cur-
rent approximate solution u(n) to the momentum equations. The resulting linearized
momentum equations can then be solved to determine an intermediate velocity field
u(n+ 1

2 ) using the current approximate pressure field p(n):

Qu(n+ 1
2 ) = f −∇hp(n).(3.4)

The resulting velocity field u(n+ 1
2 ) does not satisfy the continuity equation, and the

residual of this equation is used to compute a correction δp to the pressure field whose
gradient is also used to correct u(n+ 1

2 ).
To derive an equation for δp, let

D = diagQ,(3.5)

and introduce the approximations

u(n+ 1
2 ) ≈ D−1Qu(n+ 1

2 ) = D−1(f −∇hp(n)),
u(n+1) ≈ D−1Qu(n+1) = D−1(f −∇hp(n+1)).

(3.6)

Subtracting these equations and changing the approximation to equality leads to

δu ≡ u(n+1) − u(n+ 1
2 ) = −D−1∇hδp,(3.7)

where δp = p(n+1)−p(n). Applying the discrete divergence operator to these equations
gives

∇h · (u(n+1) − u(n+ 1
2 )) = ∇h ·D−1∇hδp.

Finally, requiring ∇h · u(n+1) = 0 leads to

Sδp = ∇h · u(n+ 1
2 ),(3.8)

where

S = −∇h ·D−1∇h(3.9)
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is symmetric. Equation (3.8) is a generalized Poisson equation which must be solved
for the pressure correction δp. Since the intended correction (3.7) should be 0 at
locations where the velocity field is specified, (3.8) is supplemented with homogeneous
boundary conditions at these locations. In particular, for problems where the velocity
field is specified at the boundaries, δp is determined only up to an additive constant,
and S is positive semidefinite. Summarizing, we have the following algorithm.

Algorithm 3.2 (SIMPLE).

Determine u(n+ 1
2 ) by solving (3.4).

Find the pressure correction δp from (3.8).
Calculate the velocity corrections δu using (3.7).
Update the pressure

p(n+1) = p(n) + δp

and the velocities

u(n+1) = u(n+ 1
2 ) + δu.

Remark 3.1. In practice the pressure update is damped by a factor α ∈ (0, 1]:

p(n+1) = p(n) + αδp.

Remark 3.2. SIMPLEC is a variation that replaces the entries in the diagonal
matrices Di with absolute rowsums from Qi [39]. This variation is used in this work.

Remark 3.3. Observe that

(
u(n+1)

p(n+1)

)
=

(
u(n)

p(n)

)
+

(
I −D−1∇h
0 αI

)(
Q 0
∇h· S

)−1

r(n),(3.10)

where I is an identity operator of the appropriate dimension and

r(n) =

(
f
0

)
−Q

(
u(n)

p(n)

)

is the residual of the system. This representation can be derived by employing the
notion of transforming smoothers; see [42, 41].

Remark 3.4. When SIMPLE is used as a solver, the inversion in (3.10) is not
computed exactly. This practice is followed when using SIMPLE as a smoother: the
momentum equations are approximately solved with five sweeps of the point Gauss–
Seidel method, and the pressure correction equation is solved with twenty sweeps
of point Gauss–Seidel. These values were empirically determined to strike a good
balance between cost and effectiveness of the preconditioner.

3.2.2. SIMPLER. SIMPLER is a variation due to Patankar [28]. It is similar
to SIMPLE, but it determines p(n+1) from u(n) and uses a separate potential field φ
to enforce continuity in a manner similar to projection methods [8, 2].

As with SIMPLE, each cycle begins with an update of the momentum transport
operator (2.2) to reflect the latest approximate solution u(n). For the next iteration
the pressure and velocity field should satisfy

Qu(n+1) = f −∇hp(n+1).
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To determine an equation for p(n+1), introduce the splitting Q = D− (L+U), where
D is again given by (3.5) and −(L+U) are the off-diagonal elements of Q. It follows
that

u(n+1) = D−1(f + (L+U)u(n+1) −∇hp(n+1))

≈ D−1(f + (L+U)u(n) −∇hp(n+1)).(3.11)

Taking the divergence of both sides of (3.11), requiring that ∇h ·u(n+1) = 0, changing
the approximation to equality, and rearranging terms lead to

Sp(n+1) = −∇h ·D−1(f + (L+U)u(n)),(3.12)

where S is again given by (3.9).
Once the updated pressure field is known, the updated velocity field is found by

first solving

Qu(n+ 1
2 ) = f −∇hp(n+1)(3.13)

and then correcting u(n+ 1
2 ) so that the updated velocity field conserves mass. This is

done using the gradient of an auxiliary variable φ. To determine an equation for φ,
the following ansatz is made for the correction:

u(n+1) = u(n+ 1
2 ) −D−1∇hφ.(3.14)

An equation for φ is then determined by requiring that ∇h · u(n+1) = 0:

0 = ∇h · u(n+1)

= ∇h · u(n+ 1
2 ) + Sφ,(3.15)

where S is again given by (3.9). Summarizing, we have the following algorithm.
Algorithm 3.3 (SIMPLER).
Determine p(n+1) by solving (3.12).

Determine u(n+ 1
2 ) by solving (3.13).

Determine φ by solving (3.15).

Correct u(n+ 1
2 ) using (3.14).

Remark 3.5. The correction (3.14) may be described in terms of a projection:

u(n+1) = u(n+ 1
2 ) +D−1∇hS−1∇h · u(n+ 1

2 )

=
(
I+D−1∇hS−1∇h·)u(n+ 1

2 )

≡ Pu(n+ 1
2 ).

From (3.9) it follows that P
2 = P. Thus P is actually a projection (though it is not

an orthogonal projection with respect to the standard inner product).

3.2.3. Alternative description. In order to employ SIMPLER as either a pre-
conditioner or a smoother in a linear multigrid method, the method must be recast in a
form that operates on residuals, analogous to (3.10). To derive such a representation,
observe that

(
u(n+ 1

2 )

p(n+1)

)
=M−1

(
f

−∇h ·D−1(f + (L+U)u(n))

)
,(3.16)
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where

M =

(
Q ∇h
0 S

)
.

The residual r(n) may be partitioned into components r1, r2 that correspond, respec-
tively, to the momentum and continuity equations. Then note that

Qu(n) +∇hp(n) + r1 = f

so that

D−1(f + (L+U)u(n)) = u(n) +D−1∇hp(n) +D−1r1.

Thus (3.16) may be rewritten as

(
u(n+ 1

2 )

p(n+1)

)
=M−1

[(
f
0

)
−
(

0 0
∇h· −S

)(
u(n)

p(n)

)
−
(

0 0
∇h ·D−1 0

)
r(n)

]

=M−1

[(
f
0

)
+ (M−Q)

(
u(n)

p(n)

)
−
(

0 0
∇h ·D−1 0

)
r(n)

]

=

(
u(n)

p(n)

)
+M−1

(
I 0

−∇h ·D−1
I

)
r(n).

Finally, add the projection step to obtain the complete update:

(
u(n+1)

p(n+1)

)
=

(
P 0
0 I

)(
u(n+ 1

2 )

p(n+1)

)

=

(
P 0
0 I

)[(
u(n)

p(n)

)
+M−1

(
I 0

−∇h ·D−1
I

)
r(n)

]
.

Now note that

Pu(n) = u(n) +D−1∇hS−1∇h · u(n)

= u(n),

provided that each iterate u(n) is calculated to accurately satisfy the continuity equa-
tion. Thus(

u(n+1)

p(n+1)

)
=

(
u(n)

p(n)

)
+

(
P 0
0 αI

)
M−1

(
I 0

−∇h ·D−1
I

)
r(n),(3.17)

where a damping factor α ∈ (0, 1] has been included as in Remark 3.1.
Remark 3.6. Remark 3.4 also applies to (3.17).
Remark 3.7. In order to satisfy the condition Pu(n) = u(n), it is necessary to

compute the action of P to high accuracy. In light of (3.15), it is apparent that

‖∇h · u(n+1)‖ = ‖∇h · u(n+ 1
2 ) + Sφ‖,

so that accurate computation of the action of P can be accomplished by solving
(3.15) to a tight absolute tolerance; here an absolute tolerance of εabs = 10

−10 was
used. Since S is symmetric and positive semidefinite, a preconditioned conjugate
gradient method can be used. The preconditioner was a multigrid method composed
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of volume-averaged restriction, piecewise constant prolongation, symmetric Gauss–
Seidel smoothing, V(1,1) cycles, and a Galerkin coarse grid version of (3.9). This
latter choice was made necessary by the fact that D is not conveniently available
on the coarser grids, and was made easy to implement because of the choices made
for intergrid transfers. The semidefiniteness was treated by requiring φ to have a 0
average value, which amounts to a least-squares projection against the null space of
S. These choices led to a highly efficient solver with convergence rates of less than
0.1 that were observed to be independent of grid size.

3.3. Multigrid preconditioners with pressure-correction smoothers. Solv-
ing the Newton equations (3.1) with a preconditioned iterative method requires com-
puting the action of the inverse of a preconditioner M ,

z =M−1r,(3.18)

at every iteration of the linear solver. In this, r is some vector in the Krylov subspace
generated by the Jacobian F ′(xk), M , and the initial residual F (xk). In a matrix-free
Newton–Krylov method, constructingM can be a challenge since the matrix entries of
the Jacobian are not available. A good choice for solving the Navier–Stokes equations
is

M = Q[uk],

where uk is the current Newton approximation to the velocity field. This captures
most of the important features of the Jacobian. Moreover, Q[uk] is readily available
since it is generally formed and stored at the beginning of each nonlinear iteration so
that it can be used in (2.1) to evaluate F . Alternatively, it is possible to construct
M from a lower-order discretization of the Navier–Stokes system. This entails a
higher setup cost since it requires a rediscretization, but it can also lead to a system
(3.18) that is easier to solve. This does not sacrifice accuracy in the solution, since
convergence of the overall procedure is determined by ‖F‖, which is based on a higher-
order discretization.

Once M is chosen, a means for approximating the action of its inverse (3.18)
is needed. Multigrid methods [4, 41] provide an efficient means for performing this
operation. These approaches compute the solution to a problem discretized on a given
grid by approximately solving related problems on coarser grids. The following is a
recursive version of a V-cycle, where the h is used to indicate different grid levels and
hc denotes the coarsest grid that is used.

Algorithm 3.4 (MG-V(h, Mh, zh, rh)).

If h = hc then:

Solve Mhzh = rh.

else

Presmooth zh ←− zh +B(rh −Mhzh) ν1 times.

Restrict r2h = I2h
h (r

h −Mhzh).

Set z2h = 0.

MG-V(2h, M2h, z2h, r2h).

Correct zh = zh + Ih2hz
2h.

Postsmooth zh ←− zh +B(rh −Mhzh) ν2 times.

A multigrid algorithm is constructed by supplying the following components:

• a grid coarsening strategy,
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• a restriction operation I2h
h to transfer the problem from a fine grid to a coarser

grid,
• a prolongation operation Ih2h to transfer the problem from a coarse grid to a
finer grid,
• a coarse grid operator M2h,
• a coarse grid solver for solving the problem on the coarsest grid, and
• a smoother B that effectively reduces high frequency components of the error.

Grid coarsening is readily achieved by defining each coarse cell to be a union of
underlying fine cells. Restriction and prolongation of both velocity and pressure on a
staggered grid are accomplished via bilinear interpolation; these are rather standard
choices [40]. While coarse grid operators M2h can be computed using a Galerkin
coarse grid approximation [44], for simplicity they are determined here by recomputing
M2h = Q[u2h

k ] on the coarser grid. The solution on the coarsest grid hc is obtained
with a fixed number of sweeps of the smoother. Finally, the action of the smoother
B is given by either (3.10) or (3.17), once again with Q fixed at the current inexact
Newton approximation.

One additional consideration is required when SIMPLER is used as a smoother.
While the projection P is used to ensure ∇h ·uh = 0 to machine accuracy on each grid
level, the interpolated coarse grid correction Ih2hu

2h does not satisfy this constraint.
An additional application of the projection P must be applied to the coarse grid
correction, so that the velocity portion of the coarse grid correction becomes

uh = uh + PIh2hu
2h.

4. Numerical evaluations. The combination of multigrid methods, Newton–
Krylov methods, and pressure-correction methods offer a wide range of algorithmic
choices. Since these combinations embed iterative methods within iterative methods,
it is difficult to predict the most effective combination. Numerical experimentation
is necessary to help determine which combinations merit further investigation. This
section illustrates effective combinations of these approaches. Except where noted,
all reported execution times were measured on a MIPS R10000 processor with a 1
MB L2 cache running at 195 Mhz using the MipsPro 7.2 Fortran compiler and level
2 optimization. Solutions to steady-state problems were obtained using NITSOL [31]
on a 128 × 128 grid using an initial approximation x0 = 0 and a GMRES restart
value of 100. Such a large restart value is too large for practical computation and is
used here only to study the behavior of the preconditioner without the influence of
restarting. The nonlinear iterations were terminated when ‖F (xk)‖ ≤ 10−6‖F (x0)‖.

4.1. Flow in a lid driven cavity. The driven cavity problem is a classic dif-
ficult fluid dynamics benchmark problem. The governing equations consist of the
incompressible Navier–Stokes equations (1.1) defined on the unit square Ω = [0, 1]2

with boundary conditions

u = 1, v = 0, y = 1,

u = v = 0 elsewhere on ∂Ω.

In applying the NK-MG method to this problem, convergence difficulties were encoun-
tered when the preconditioner was based on the same second-order differences used
to discretize the problem. Consequently, all results reported here use a first-order
upwind discretization to construct the operator used by the preconditioner. Solutions
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Fig. 4.1. Sensitivity of multigrid preconditioner to variation in pressure damping factor for
Reynolds numbers 1000, 5000, and 10,000.

for Reynolds numbers up to 10,000 were obtained on a 128×128 grid and were within
10% of results published elsewhere [17].

The sensitivity of the performance of the multigrid preconditioners to the pressure
damping factor α was investigated. The results for V(1,1) cycles and 2 grid coarsenings
are summarized in Figure 4.1; results for larger numbers of pre- or postsmoothing
sweeps and for more grid coarsenings are qualitatively similar.

In general, SIMPLER smoothing allowed larger values for the damping factor α.
Increasing α beyond those shown in Figure 4.1 caused the inexact Newton method to
fail to converge in 200 iterations. Sensitivity to α increased as the Reynolds number
was increased. For Re = 1000, performance varies by around 25%, excluding the
result obtained for SIMPLER smoothing with α = 0.175. For this case, backtrack-
ing was invoked four times, twice as many as the other cases tested. At Re = 5000
performance with SIMPLE smoothing varied by 95%, whereas performance with SIM-
PLER smoothing varied by 50%; at Re = 10, 000 the variations were 112% and 87%,
respectively.

While multigrid preconditioning with SIMPLE smoothing produced solutions in
less CPU time than when SIMPLER smoothing was used, this was the result of a
larger number of less expensive iterations. This is due to the need to compute P to
high accuracy: profiling showed that the net cost of this operation was around 20% of
the calculation. Note that, by doing so, the preconditioner takes on all the responsibil-
ity for enforcing continuity. This is in contrast to the SIMPLE-based preconditioners,
where the corrections that are designed to drive the velocity field to conserve mass are
not computed with very high accuracy, and the outer Newton iteration is responsible
for enforcing ∇ · u = 0. Some consequences of this division of labor are illustrated
in Table 4.1, which compares the number of times the preconditioner was applied
for the optimal value of α determined above. At lower Reynolds numbers, multigrid
preconditioning with SIMPLE smoothing outperforms SIMPLER smoothing by a sub-
stantial margin. This gap narrows at Re = 10, 000, however, as the total number of
applications of the SIMPLER-based multigrid preconditioner grows at a slower rate.

SIMPLER smoothing in the multigrid preconditioner also appears to scale better
with problem size. This is illustrated in Table 4.2, which shows the usual figures-of-
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Table 4.1
Number of applications of multigrid preconditioner (NPRE) and CPU times (T) for different

smoothers.

SIMPLE SIMPLER
Re NPRE T NPRE T

1000 107 82 96 217
5000 283 233 166 393

10,000 834 719 333 826

Table 4.2
Algorithmic scaling for different smoothers, Re = 10, 000. NNI: number of nonlinear iterations;

NLI: total number of linear iterations; NBT: number of backtracks; T: CPU time in seconds.

SIMPLE SIMPLER
32× 32 64× 64 128× 128 32× 32 64× 64 128× 128

NLI 623 535 808 305 288 305
NNI 32 23 24 31 30 28

NBT 7 6 6 7 6 6
T 31 108 719 47 187 826

merit for evaluating the performance of an inexact Newton method. These results
were obtained with the optimal value for α found above. As problem size increases,
multigrid with SIMPLE smoothing requires fewer nonlinear iterations but an increas-
ing number of linear iterations than when SIMPLER smoothing is used. While many
factors contribute to the peformance of a globalized Newton–Krylov method as prob-
lem size increases, the final arbiter is CPU time. In this regard, the CPU time for the
case of SIMPLER scales more favorably, owing to the fact that NLI is nearly constant
as problem size is increased.

Finally, performance of the linear solver is examined. When a variable forcing
term is used, it is difficult to simply characterize the performance of the linear solver.
Table 4.3 summarizes some performance statistics for the linear solver over the entire
inexact Newton solve. The minimum number of iteration counts occurs early in the
computation, when a conservative value for the forcing term is used. During the
course of the iteration, a more aggressive value for the forcing term is attempted,
generally leading to a higher iteration count for solving the Newton equations. The
maximum values always occurred in the last or next-to-last Newton iteration. Overall,
the performance of the linear solver with SIMPLER smoothing is better than when
SIMPLE smoothing is used, allowing a smaller restart value to be used. However,
this is offset by the higher cost per iteration.

4.2. Buoyancy driven flow. Natural convection in an enclosed cavity is a stan-
dard benchmark problem that is frequently used to test different numerical schemes
and solution methods [10]. The governing equations consist of the incompressible
Navier–Stokes equations (1.1) coupled to an energy transport equation,

(uT )x + (vT )y − 1

RePr
∆T = 0,

together with a body force on the fluid that, under the Boussinesq approximation, is
proportional to the temperature

f =

(
0

Ra
Re2PrT

)
,



A NEWTON–KRYLOV-MULTIGRID METHOD 411

Table 4.3
Performance statistics for solving the Newton equations with multigrid preconditioning and

pressure-correction smoothers. The preconditioner is a V(1,1) cycle with two grid coarsenings.

SIMPLE SIMPLER
Re Min Avg Max Min Avg Max

1000 1 7.5 22 1 6.4 21
5000 1 22.6 65 1 9.4 37

10,000 1 33.7 164 1 10.9 72

Table 4.4
Performance of NK-MG with SIMPLE-based smoothers. Multigrid preconditioning used a

V(ν1,ν2) cycle and three grid coarsenings.

V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)
NLI 285 221 193 155 133
NNI 19 18 18 19 16

NBT 4 3 3 3 2
T 313 308 329 368 400

where Pr is the Prandtl number and Ra is the Rayleigh number. Following [25], Re
is fixed at 1, Pr is fixed at 0.71, and the Rayleigh number is varied. The problem is
defined on the unit square Ω = [0, 1]2 with boundary conditions

u = v = 0 on ∂Ω,

T (0, y) = 0, T (1, y) = 1, y ∈ [0, 1],
Ty(x, 0) = Ty(x, 1) = 0, x ∈ [0, 1].

The additional transport equation is readily accommodated by the SIMPLE and
SIMPLER smoothers. Five sweeps of the point Gauss–Seidel method are applied
to the discretized energy equation prior to solving the momentum equations. The
updated temperature field is then incorporated as a source term before solving the
equation governing the vertical component of momentum.

Results for Ra = 100, 000 using SIMPLE smoothing in the multigrid precon-
ditioner are summarized in Table 4.4, which contains the usual figures-of-merit for
evaluating a Newton–Krylov method. Use of a multigrid preconditioner reduces both
the number of nonlinear iterations and the number of backtracking steps that were
needed. Reducing the number of backtracking steps when employing a variable forc-
ing term is particularly desirable, since each backtracking step increases the forcing
term and delays onset of superlinear convergence behavior. In general, V(2,1) cy-
cles in the preconditioner seem to provide a performance “sweet spot.” Use of more
pre- and/or postsmoothing sweeps decreases NLI, but these reductions are not always
enough to offset the resulting higher cost of the preconditioner. Finally, note that use
of a multigrid preconditioner improves the performance of GMRES to the extent that
a smaller restart value can be used. Thus the high-quality multigrid preconditioner
has an additional benefit of reducing the storage costs associated with the Newton–
Krylov method. Similar results were obtained for Rayleigh numbers ranging from
20,000 to 500,000.

Results for the same problem that were obtained with the SIMPLER-based pre-
conditioners are summarized in Table 4.5, which reports the same figures-of-merit
that appear in Table 4.4. Here only two grid coarsenings were used. Note that the
SIMPLER-based preconditioners generally require fewer linear iterations than their
SIMPLE-based counterparts. Yet, as observed for the driven cavity problem, the CPU
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Table 4.5
Performance of the inexact Newton method with SIMPLER-based preconditioners. Column

labels are the same as for Table 4.4.

V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)
NLI 191 179 178 155 223
NNI 20 19 22 18 20

NBT 3 3 5 3 4
T 464 552 676 790 1418
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Fig. 4.2. Convergence histories for SIMPLE, SIMPLER, and the NK-MG methods using these
pressure-correction solvers as smoothers. V(2,1) cycles are used with SIMPLE smoothing, while
V(1,1) cycles are used with SIMPLER smoothing.

times are somewhat higher. Another interesting trend to note is that, while increasing
the number of pre- or postsmoothing sweeps generally decreases the total number of
linear iterations, it also increases the total execution time. This reflects the tradeoff
between the cost and effectiveness of the preconditioner. Both of these observations
can be attributed to the cost of enforcing ∇h · u = 0 in the preconditioner.

Next, the performance of the NK-MG method using different smoothers is com-
pared with stand-alone versions of the pressure-correction methods. Figure 4.2 shows
this comparison for Ra = 20, 000. The NK-MG method with SIMPLE smoothing is
nine times faster than SIMPLE as a stand-alone solver; the NK-MG method with
SIMPLER smoothing is nearly seven times faster than SIMPLER as a solver. With
SIMPLE smoothing, the largest number of linear iterations taken in an inexact New-
ton step was 27, so these same results could be obtained by storing only a maximum
of 27 Krylov subspace basis vectors. Using a smaller restart value of 10 increases the
solution time by roughly a third. On the other hand, when SIMPLER smoothing was
used, the largest number of linear iterations taken in an inexact Newton step was 46;
using a smaller restart value of 10 increases the solution time by almost 15%.

Dynamic selection of forcing terms as described in [13] employs a safeguard that
prevents ηk from getting too small too quickly. More specifically, Choice 1 from [13]
uses the safeguard

ηk ← max{ηk, η(1+
√

5)/2
k−1 } if η(1+

√
5)/2

k−1 > threshold.(4.1)
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Fig. 4.3. Convergence histories and forcing terms of the NK-MG method with and without
safeguard (4.1). When the threshold is set to 0, the safeguard is never disabled. SIMPLE smoothing
is on the left, while SIMPLER smoothing is on the right.

The motivation for this safeguard is that it is possible to request too much accuracy in
the solution of the Newton equations, which can happen, for example, when there is
serendipitously good agreement between the linear model and the nonlinear function.
This safeguard is disabled once the forcing term drops below the threshold value.
The choice of a threshold value is somewhat arbitrary, and the implementation of
Algorithm INB in NITSOL allows a user to specify this while supplying a default
value of 0.1 [31]. The safeguard can be retained by using a threshold value of 0.

While previous studies of the performance of Newton-GMRES with dynamic se-
lection of forcing terms [13, 35, 31] disabled this safeguard, it was found that, when
using a multigrid preconditioner, doing so sometimes led to undesirable behavior, as
illustrated in Figure 4.3. These plots show the final stages in the solution of the
buoyancy-driven flow problem at Ra = 1, 000, 000. The top two plots show ‖F (xk)‖,
while the bottom two plots show the corresponding ηk. The bottom plots show that,
with the safeguard disabled at a threshold of 0.1, a very small value for ηk is generated.
For SIMPLE smoothing, the linear solver fails to converge in 100 iterations. Further,
sufficient reduction in ‖F‖ is not achieved, which triggers backtracking, increases the
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forcing term, and delays convergence of the nonlinear iterations. (The increase in
η that is seen on the last iteration when the safeguard is retained is the result of a
second safeguard implemented in NITSOL to prevent unnecessary work in reducing
‖F‖ beyond the requested tolerance [31].) When SIMPLER smoothing is used, back-
tracking is not triggered, but when (4.1) is disabled, a smaller η is produced in the
next to last iteration. While this saves one nonlinear iteration over the case where
(4.1) is retained, overall it results in 49 more linear iterations and a higher overall
cost to solve the problem.

4.3. Unsteady thermal convection. The issues that are important in a time
dependent simulation are somewhat different than was the case for the steady-state
case. One major difference is that unlike the steady-state case, there will usually be
a very good initial guess for the Newton iteration. This means that globalization
strategies are not as important as they were for steady-state problems. For the set
of runs shown in this section, SIMPLE was used as the smoother in a multigrid
preconditioner, point Gauss–Seidel relaxation was replaced by red-black Gauss–Seidel
relaxation, and V(4,2) cycles were used. All of the tests were run over ten time steps
using a constant time step size. The test problem is the threee-dimensional analogue
of the natural convection problem described in section 4.2. The problem is defined on
the unit square Ω = [0, 1]3 with boundary conditions

u = v = w = 0 on ∂Ω,

T (0, y, z) = 0, T (1, y, z) = 1, y, z ∈ [0, 1],
Ty(x, 0, z) = Ty(x, 1, z) = 0, x, z ∈ [0, 1],
Tz(x, y, 0) = Tz(x, y, 1) = 0, x, y ∈ [0, 1].

Before presenting the numerical results, the structure of the computer program
that is used is described. The package PETSc [1] is used to implement the inexact
Newton solver that was described in section 3.1. In order to define the grid, the pack-
age SAMRAI [16] is used. SAMRAI is an object oriented framework for implementing
structured adaptive mesh refinement (SAMR). Although adaptive mesh refinement is
not used for the work presented in this paper, it is a feature that will be vital in future
work.

In order to use PETSc to solve nonlinear systems that are defined on SAMRAI
grids, either the data must be copied into a format that PETSc understands or the
PETSc vector functions must be extended to act on SAMRAI grids. The former
strategy will likely be very inefficient, as large amounts of data must be moved in
memory. Instead, SAMRAI provides an interface to PETSc that redirects PETSc
vector operations, such as norms and dot products, to act directly on the data that is
stored in SAMRAI format. This solver structure is used to solve the natural convection
problem and test several aspects of the algorithms.

First the effect of using a better initial iterate on the performance of the linear
and nonlinear solver is examined. For this time integrator, the initial conditions are
used as the initial iterate for the first time step, and then a linear predictor based on
the previous two time steps is used for the remaining time steps in a simulation. The
linear predictor should perform much better than the initial iterate for the first time
step. The results shown in Table 4.6 are for a 128 × 128 × 128 grid, and they show
that the solvers have to work much harder to solve the initial time step because of
the poor initial iterate. Also, for all the results shown here, the backtracking scheme
was never activated.
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Table 4.6
Performance of the linear and nonlinear solvers per time step for the three-dimensional natural

convection problem on a grid of 128× 128× 128.

First time step 10 time steps

Ra ∆t NNI NLI NNI NLI

106 10−4 5 14 4.1 10.4

107 10−5 9 24 4.0 8.0

108 10−6 8 19 2.8 4.2
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Fig. 4.4. Parallel performance on an SGI Origin 2000 for the natural convection problem.

The parallel performance of these algorithms is also very important, so the same
test problem was run on the SGI Origin 2000 at Los Alamos National Laboratory
with Ra = 106 and ∆t = 10−4 for the 128 × 128 × 128 problem and Ra = 106 and
∆t = 10−5 for the 256×256×256 problem. The results, shown in Figure 4.4, indicate
that you can get very good scalability for the small problem until the problem size
on each processor becomes too small. Then increasing the problem size allows us to
get good scalability up to 512 processors. This type of behavior is typical of parallel
algorithms for solving PDEs.

5. Summary and conclusions. The pressure-correction methods SIMPLE and
SIMPLER have been adapted for use in preconditioning a matrix-free Newton–Krylov
method applied to the incompressible Navier–Stokes equations. Application to both
two- and three-dimensional problems, as well as unsteady problems, was demon-
strated. NK-MG methods with pressure-correction smoothers substantially accelerate
the convergence of the pressure-correction methods, albeit at an increase in storage
cost, and their performance scales well as problem size is increased. The performance
of both methods was found to be sensitive to damping the pressure update; anal-
ysis of this behavior will be the subject of future work and will be facilitated by
the development of a new correction-oriented version of SIMPLER. SIMPLE-based
preconditioning was found to require less CPU time. While SIMPLER-based precon-
ditioning generally led to fewer total linear iterations to complete the inexact Newton
solve, this reduction in iteration counts was offset by the additional expense of en-
forcing continuity at each step. However, SIMPLER-based preconditioning displayed
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some favorable robustness trends with respect to problem size and Reynolds number,
so further investigation of ways to reduce the cost per iteration is warranted. Finally,
these methods were found to be straightforward to parallelize, and encouraging initial
parallel results have been obtained.

Acknowledgments. Thanks to Dana Knoll of Los Alamos National Laboratory
for pointing out that Q could be directly reused in the Newton–Krylov precondi-
tioner. The comments of an anonymous referee led to numerous improvements in the
presentation. The computations presented in this paper were conducted on facilities
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GÉRARD MEURANT†

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 2, pp. 419–429

Abstract. We consider how to cheaply compute an incomplete Cholesky decomposition of
symmetric perturbed matrices C = εI+A with a small ε when knowing an incomplete decomposition
of A. Numerical examples are provided that show the effectiveness of the proposed approach.
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1. Introduction. In this paper we are mainly concerned with the incomplete
Cholesky decomposition of symmetric M-matrices

C = εI +A,

where A arises from the discretization of an elliptic partial differential equation, ε
being a “small” positive real parameter. Such problems arise, for instance, from
discretizing parabolic equations.

As a model problem we can use the two-dimensional heat equation

∂u

∂t
−∆u = f

in the unit square with Dirichlet boundary conditions and an initial condition u(x, 0) =
u0(t). We discretize in space with finite differences with a stepsize h and a time im-
plicit scheme. Then we obtain

(
I

k
+

1

h2
A

)
un+1 =

un

k
+ fn+1,

where k is the time step and 1/h2 A is the matrix of the corresponding elliptic problem.
For some problems it makes sense to choose k � h. After multiplication by h2 the
matrix of the problem is C = kI +A, where k is “small.”

Since the matrix C is symmetric positive definite, we would like to solve the linear
system at each time step with the preconditioned conjugate gradient algorithm. A
very popular preconditioner is the incomplete Cholesky decomposition without any
fill-in IC(1,1) (sometimes also denoted as IC(0)); c.f. [3], [4] or [5], [6] for a review.
Usually the time step k must be small to obtain the convergence of the approxima-
tion. Therefore, it is interesting to know if one can compute an approximation of the
incomplete decomposition of C knowing the decomposition of A. Moreover, very often
the time step is not constant, and therefore one cannot compute the decomposition
of C once for all. It has to be recomputed at each time step. Hence it would be
interesting to find a way to cheaply update the incomplete decomposition from one
time step to the next.

∗Received by the editors May 26, 2000; accepted for publication (in revised form) November 29,
2000; published electronically July 10, 2001.

http://www.siam.org/journals/sisc/23-2/37124.html
†CEA/DIF, DCSA/ED, BP 12, 91680 Bruyères le Chatel, France (gerard.meurant@cea.fr).

419
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Matrices of this type have been considered in previous works, mainly to stabilize
the incomplete factorization of A (see [2], [1]) when the straightforward factorization
of A gives some small pivots.

In section 2, we describe algorithms corresponding to perturbations of order 0
and 1 in ε. Section 3 gives numerical examples for several problems with comparisons
between the incomplete decomposition of C, that of A, and the SSOR preconditioning.
For a definition of these algorithms, see [5]. We will also give some results for problems
not arising from parabolic partial differential equations, even for cases where A is not
an M-matrix. Then in section 4, we apply the previous results to the solution of the
heat equation. Section 5 deals with another problem where C = I + εA.

2. Approximate preconditioners. We first recall the first step of the incom-
plete Cholesky decomposition of a matrix C whose elements are denoted ci,j . Let G
be a set of indices corresponding, for instance, to the nonzero structure of A and

C = C1 =

(
c1,1 cT1
c1 E2

)
=

(
c1,1 fT1
f1 E2

)
−
(

0 rT1
r1 0

)
= M1 −R1,

with

c1 = f1 − r1,

(f1)i = 0, if (i, 1) �∈ G⇒ (r1)i = −(c1)i,

(f1)i = (c1)i, if (i, 1) ∈ G⇒ (r1)i = 0.

Then, we factorize M1:

M1 =

(
c1,1 0
l1 I

)(
c−1
1,1 0
0 C2

)(
c1,1 lT1
0 I

)
= L1Σ1L

T
1 .

We obtain

l1 = f1,

C2 = E2 − 1

c1,1
f1f

T
1 .

The next step is applying the same decomposition on C2,

C2 =

(
c
(2)
2,2 cT2
c2 E3

)
=

(
c
(2)
2,2 fT2
f2 E3

)
−
(

0 rT2
r2 0

)
= M2 −R2,

where f2 is obtained from c2 by setting to zero the elements for which the indices
(i, 2) do not belong to G. Let

L2 =


 c1,1 0

0

(
c
(2)
2,2 0
l2 I

)

 .

Note that l2 = f2 and that we shall never throw away a diagonal entry.
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At the end of the second step, we have

C = L1L2Σ2L
T
2 L

T
1 − L1

(
0 0
0 R2

)
LT1 −R1,

but

L1L2 =


 c1,1 0

l1

(
c
(2)
2,2 0
l2 I

)

 and L1

(
0 0
0 R2

)
LT1 =

(
0 0
0 R2

)
.

Therefore, we have a factor with the desired structure and we can go on as long

as the pivots c
(i)
i,i are nonzero. It has been proven that IC is feasible whatever the set

G is when C is an H-matrix. We apply this algorithm to C = εD + A, where D is a
diagonal matrix with nonzero diagonal elements di. We use a matrix D �= I because
with the order 1 algorithm to be described soon, the diagonal entries are going to be
modified so that we do not get the identity for all steps of the algorithm. We have

c1,1 = εd1 + a1,1,

l1 = f1,

C2 = εD2 +A2 − 1

εd1 + a1,1
f1f

T
1 ,

where these matrices are defined by

C =

(
εd1 + a1,1 aT1

a1 εD2 +A2

)
.

Rather than computing C2 exactly, we would like to use an asymptotic expansion
related to ε for the ratio. For the order 0 we have

C2 = εD2 +A2 − 1

a1,1
f1f

T
1 ;

that is to say, we add εD2 to what we would have obtained for the incomplete decom-
position of A.

The order 1 gives

C2 = ε

(
D2 +

d1f1f
T
1

a2
1,1

)
+A2 − 1

a1,1
f1f

T
1 .

To motivate the choices we are going to make later on, let us look at what we get
for a two-dimensional finite difference matrix. As an example, we take the Poisson
equation in a square with a mesh size h = 1/(m+1). This leads to a matrix of order
n = m2, which can be written blockwise as

A =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T



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with blocks of order m

T =




4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


 .

The matrix A has five nonzero diagonals. For a generic row i and more general
problems, the nonzero coefficients are ai,i−m, ai,i−1, ai,i, ai+1,i, ai+m,i. When we com-
pute the incomplete decomposition IC(1,1) (with no fill-in) of this matrix obtaining
M = (Σ+ L)Σ−1(Σ + LT ), it is easy to see that we only need to compute the diago-
nal matrix Σ whose elements are denoted by σi,i. The matrix L is the strictly lower
triangular part of A. The diagonal elements are given by

σi,i = ai,i −
a2
i,i−1

σi−1,i−1
− a2

i,i−m
σi−m,i−m

.

In this formula, entries of A (resp., Σ) whose indices do not exist are taken to be 0
(resp., 1). The two ratios arise from the two nonzero elements in each column of L
and from the upper triangular part of A in each row of LT .

Let us look at what we obtain in the first step of the decomposition of C = εD+A.
For order 0 there is no problem as we have just to compute σi,i as before and to add
εdi.

Handling order 1 is a little more tricky. We obtained

C2 = ε

(
D2 +

d1f1f
T
1

a2
1,1

)
+A2 − 1

a1,1
f1f

T
1 .

To what we would have obtained for A, that is,

A2 − 1

a1,1
f1f

T
1 ,

which corresponds to the computation of σi,i, we have to add the correction of order
ε. That is,

ε

(
D2 +

d1f1f
T
1

a2
1,1

)
.

Since there are only two nonzero elements in f1 for the model problem, the outer
product f1f

T
1 gives two diagonal modifications for indices (2, 2) and (m + 1,m + 1)

(when these terms exist). Therefore, we add

ε

(
d2 + d1

a2
2,1

a2
1,1

)

to the element of index (2, 2) and

ε

(
dm+1 + d1

a2
m+1,1

a2
1,1

)
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to the element of index (m+ 1,m+ 1). This modifies the diagonal terms of order ε.
Therefore, we see that the modification of the diagonal terms is recursive. This means
that there is no gain from doing the decomposition of C from scratch. Consequently,
we decided to bypass the recursion. We apply only the modifications to the initial D.
For example, the correction of the element (3, 3) will be

ε

(
d3 + d2

a2
3,2

σ2
2,2

)
.

This will work when ε is small but not with larger values of the parameter. In the
latter case we have

1

εd1 + a1,1
� 1

εd1
.

Therefore, in the formulas for order 1 we replace σi,i by σi,i+εdi. This does not make
too much of a difference when ε is small and gives asymptotically the exact answer
when it is large. For instance, the final correction for the element (3, 3) in the second
step will be

ε

(
d3 + d2

a2
3,2

(σ2,2 + εd2)2

)
.

This algorithm is what we call order 1 in the numerical experiments. This has the
additional advantage that all the corrections can proceed in parallel. In this way we
get rid of the recursion of the incomplete Cholesky factorization which is not easily
parallelizable. However, note that there is still a recursion when solving the triangular
systems.

In the case of a matrix arising from a diffusion equation with a constant coefficient,
we can perform an asymptotic analysis of the diagonal elements of the incomplete
factors. If ai,i = a, ai,i−1 = b, ai,i−m = c, then the elements of the incomplete
decomposition σi,i (within a block) converge rapidly to σ:

σ =
a+ s

2
, s =

√
a2 − 4(b2 + c2).

If the diagonal coefficients of A are perturbed by ε, we obtain a limit σ̄:

σ̄ � a+ s

2
+

ε

s

a+ s

2
.

The fact that the difference between the exact factorization and the approximate one
is small is also illustrated in Figure 2.1, where we show the relative differences between
the exact and approximate order 0 values of the second block of diagonal coefficients
for the perturbed Poisson equation with a 30× 30 mesh as a function of the relative
index in the block. The solid line is ε = 10−2, the dashed line is ε = 10−1, the dot-
dashed line is ε = 1, the dotted line is ε = 10, the plus signs are ε = 100, and the
circles are ε = 1000. Over all values of ε the maximum relative difference is 4%.

This technique can be generalized to any nonzero structure for A. For order 0 we
just add εD to the diagonal. For the order 1 we modify only the diagonal, neglecting
the recursiveness, and we add an order of ε term in the denominator to obtain the
correct behavior when ε is large. The method can also be applied to matrices arising
from finite element methods. In case mass lumping is used we can do exactly the
same thing. If the mass matrix is not diagonal, we can do modifications to the
nonzero entries but neglecting the recursiveness that is using the initial values of the
entries of the mass matrix.
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Fig. 2.1. Relative differences between diagonal coefficients.

Table 1
Poisson problem.

ε IC(C) Order 0 Order 1 IC(A) SSOR

320 2 3 3 40 2
80 3 4 4 39 3
20 4 5 5 35 4
5 6 6 6 26 7

1.25 10 10 10 14 11
0.325 17 17 17 15 19

7.812 10−2 26 26 26 25 29
1.953 10−2 32 32 32 32 39
4.882 10−3 34 34 34 34 40

3. Numerical experiments. We denote by IC the incomplete Cholesky de-
composition without fill-in. We use several examples to compare the following pre-
conditioners:

1. IC for C = εI +A,
2. approximate IC of C order 0,
3. approximate IC of C order 1,
4. IC for A,
5. SSOR with ω = 1.

We first consider matrices arising from diffusion equations in the unit square with
homogeneous Dirichlet boundary conditions. The first example is the Poisson equation
we described in section 2. We solve a linear system whose solution is x = {1, 1, . . . , }T .
The initial iterate is chosen at random, and we stop the iterations as soon as the
relative norm residual is less 10−10. We use a regular 30 × 30 cartesian mesh. We
start with ε = 320, and we divide it by 4 several times. The results are given in
Table 1.

For this example, the two approximate decompositions give almost the same num-
ber of iterations as the “exact” incomplete decomposition. The results of the approx-
imate decompositions are also quite good for large ε’s. This is linked to the fact that
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Table 2
Diffusion problem with discontinuous coefficients.

ε IC(C) Order 0 Order 1 IC(A) SSOR

320 16 16 16 148 19
80 24 24 24 171 28
20 29 29 29 129 35
5 32 32 32 79 37

1.25 33 33 33 44 38
0.325 34 34 34 36 40

7.812 10−2 37 37 37 37 43
1.953 10−2 39 39 39 39 45
4.882 10−3 41 41 41 41 47

Table 3
Diffusion problem with anisotropic coefficients.

ε IC(C) Order 0 Order 1 IC(A) SSOR

320 4 8 8 143 6
80 5 12 9 92 10
20 7 15 11 53 18
5 10 14 12 28 33

1.25 15 15 15 16 57
0.325 25 26 26 25 97

7.812 10−2 34 34 34 33 126
1.953 10−2 38 38 38 38 134
4.882 10−3 39 39 39 39 136

in this case the matrix is diagonally dominant and that we add a proper correction for
the order 1. We also note that in this case the results of the order 1 are the same as
those of order 0. Of course, when ε is small we obtain the same number of iterations
when we only use IC(A).

The second example is a diffusion problem with discontinuous diffusion coefficients
and Dirichlet boundary conditions on the unit square. The diffusion coefficient is 1000
in [1/4, 3/4] × [1/4, 3/4] and 1 elsewhere. We use the same mesh and parameters as
before. Results are provided in Table 2. The conclusions are the same as for the first
example.

The third example is a diffusion problem with an anisotropic coefficient and
Dirichlet boundary conditions on the unit square. The x diffusion coefficient is 100
in [1/4, 3/4]× [0, 1] and 1 elsewhere. The y diffusion coefficient is 1 everywhere. The
parameters are the same as before. Results are given in Table 3.

This is a difficult problem, and we can see there are differences between IC and
the approximate decompositions. For this problem we get an improvement when
going from order 0 to order 1 for middle range values of ε . However, the differences
are small, and we can still conclude that it could be useful to use the approximate
decomposition.

We now consider some matrices from the Harwell–Boeing collection or from the
Boeing collection arising from Tim Davis’s Web site (http://www.cise.ufl.edu). We
had to normalize some of these matrices in order for the perturbations εI to be
meaningful. We use the following examples.

1. 1138-bus. An admittance matrix of order 1138 with 4054 nonzeros. It was
normalized. Note that the unperturbed matrix is close to being singular.

2. bcsstk01. A stiffness matrix of order 48 with 400 nonzeros. It was normalized.
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Table 4
1138-bus.

ε IC(C) Order 0 Order 1 IC(A) SSOR

1000 1 2 2 205 1
250 2 3 3 249 2
62.5 2 3 3 249 2
15.625 2 4 4 242 3
3.51 3 5 5 215 4
0.98 6 8 8 163 6
0.24 10 14 13 110 10
0.0610 18 22 21 93 19
0.0015 30 34 33 86 34
0.0038 46 48 48 81 62

9.54 10−4 65 65 65 80 108
2.38 10−4 83 83 83 86 175
5.963 10−5 101 101 101 102 250
1.490 10−5 114 114 114 114 320

This matrix is not diagonally dominant, nor an M-matrix, but nevertheless positive
definite.

3. gr3030. A matrix arising from a nine point approximation to the Laplacian
on the unit square with a 30× 30 mesh. It has order 900 and 7744 nonzeros.

4. msc00726. A matrix of order 726 with 34518 nonzeros from Nastran. This
matrix was normalized.

We ran the different problems and preconditioners with values of ε ranging from
1000 to 1.49 10−5. In Tables 4 to 7 we report the number of iterations obtained by
using a stopping criterion of 10−6 on the relative residual norm in CG.

For 1138-bus there is no gain by using order 1 over order 0. The SSOR precon-
ditioner gives better results than the approximate ICs for large ε, but for small ones
the SSOR results are much worst. We can see that although this is a different kind of
problem the approximate preconditioners still give very good results. Note that ε has
to be very small for having good results with IC(A). The conclusions for bcsstk01 are
the same as for the previous example. For the last two problems gr3030 and msc00726
we can also draw the same conclusions. We can obtain a very good preconditioner by
just modifying the diagonal elements in a parallel way. A general remark is that using
IC(A) is fine when ε→ 0, but with the perturbed factorizations we can also get good
results when ε is large. Moreover, the results are generally better than using straight
SSOR.

4. Application to the heat equation. We consider the following problem:

∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
= f, in Ω =]0, 1[2,

with Dirichlet boundary conditions and a given initial condition.
We discretize with finite differences and a time implicit scheme as shown in the

introduction. We use the conjugate gradient algorithm to solve the linear system we
obtain at each time step.

We solved a problem whose exact solution is u = (1+ t3) sin(πx) sin(πy). We use
30 discretization points in each direction and k = h. We obtained exactly the same
total number of CG iterations using either the “exact” incomplete Cholesky decom-
position recomputed at each time step or the approximate one of order 0. Therefore,
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Table 5
bcsstk01.

ε IC(C) Order 0 Order 1 IC(A) SSOR

1000 1 2 2 31 1
250 2 3 3 30 2
62.5 2 3 3 31 2
15.625 2 4 4 29 2
3.51 3 5 5 26 4
0.98 4 7 7 19 6
0.24 6 8 8 13 9
0.0610 7 10 10 12 14
0.0015 10 11 11 12 18
0.0038 12 12 12 13 23

9.54 10−4 13 13 13 14 24
2.38 10−4 14 14 14 14 24
5.963 10−5 14 14 14 14 24
1.490 10−5 14 14 14 14 24

Table 6
gr3030.

ε IC(C) Order 0 Order 1 IC(A) SSOR

1000 2 2 2 25 2
250 2 3 3 24 2
62.5 2 3 3 23 2
15.625 3 4 4 19 4
3.51 5 5 5 12 6
0.98 7 7 7 7 10
0.24 11 11 11 14 15
0.0610 14 14 14 16 19
0.0015 16 16 16 17 22
0.0038 17 17 17 17 23

9.54 10−4 17 17 17 17 23
2.38 10−4 17 17 17 17 23
5.963 10−5 17 17 17 17 23
1.490 10−5 17 17 17 17 23

Table 7
msc00726.

ε IC(C) Order 0 Order 1 IC(A) SSOR

1000 1 2 2 44 1
250 2 3 3 44 2
62.5 2 3 3 43 2
15.625 2 4 4 41 3
3.51 3 6 6 34 4
0.98 5 8 8 23 6
0.24 8 9 9 13 10
0.0610 12 12 12 12 17
0.0015 18 18 18 18 25
0.0038 26 26 26 26 38

9.54 10−4 30 30 30 30 40
2.38 10−4 31 31 31 31 41
5.963 10−5 31 31 31 31 41
1.490 10−5 31 31 31 31 41
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Table 8
Diffusion problem with anisotropic coefficients.

ε IC(C) Order 1 Order 2 ICd SSOR

320 40 138 86 40 138
80 39 135 85 39 135
20 35 129 82 36 129
5 29 111 71 29 111

1.25 18 70 43 18 70
0.325 11 40 25 14 40

7.812 10−2 7 22 13 15 22
1.953 10−2 5 12 7 13 12
4.882 10−3 4 7 4 9 7

this shows that in this case it is useless to recompute the decomposition at each time
step; we just have to update the diagonal of the decomposition of A which is computed
during the initialization phase. Of course, updating the incomplete factorization was
much cheaper than recomputing at every time step. We do not give any computer
times since this computation was done using Matlab for which computer times depend
very much on how the programs are written.

5. Perturbation of a diagonal matrix. For completeness, we now consider
the incomplete Cholesky decomposition of a matrix C = I+εA, although this case has
much less practical applications than the case we handle in section 2. Let c1 = f1−r1,
l1 = εf1. For the first step we get

C2 = I + εA2 − 1

1 + εa1,1
l1l

T
1 = I + ε

(
A2 − ε

1 + εa1,1
f1f

T
1

)
.

Now we use an asymptotic expansion of the ratio. The order 1 expansion gives
l1 = εf1, C2 = I + εA2. This is nothing else than the SSOR preconditioner with
ω = 1. For the order 2 expansion we obtain

C2 = I + εA2 − ε2f1f
T
1 .

Looking at this formula, we may already think that this correction cannot give good
results for large ε. It may even happen that the preconditioner is not positive definite.
To obtain something which can work for both small and large ε, it makes sense to use
a weighting factor. Therefore, we propose to use

C2 = I + εA2 − ε2

εa1,1 + 1
f1f

T
1 .

This is what is denoted as order 2 in the results. As in section 2, we neglect the
recursion when we compute the diagonal corrections.

Another way is to use the incomplete decomposition of A which computes a
diagonal d and to set the diagonal elements of the approximate decomposition to
1+ εdi,i. We denote this method as ICd. We consider the third example from section
3 for which results are given in Table 8.

The results in Table 8 show that the order 1 approximation indeed gives the same
results as SSOR with ω = 1. The order 2 gives better results than order 1. For small
ε it gives almost the same results as IC(C). Finally, ICd always gives good results.
These are not too far from those of IC(C) for all values of ε although order 2 gives
better results for very small ε. Therefore, ICd seems to be the method of choice for
this case.
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6. Conclusion. In this paper we have shown that we can efficiently and easily
compute incomplete Cholesky-like preconditioners of εI + A and I + εA when we
know the incomplete decomposition of A. The proposed methods work for a large
range of values of the perturbation parameter ε. These approximate factorizations
can be useful when solving time dependent partial differential equations since we do
not anymore have to recompute the factorization at each time step but only have to
update it, which is a cheap and parallel operation.

Acknowledgment. Thanks to Henk van der Vorst for helpful comments on a
preliminary draft of this paper.
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Abstract. We consider theoretical and computational issues associated with an aggregation-
based domain decomposition preconditioner applied to a Bi-CGSTAB iterative solver used to solve
both Laplace’s equation and an important nonlinear model from hydrology used to simulate un-
saturated flow, Richards’ equation. Theoretical results for Laplace’s equation provide estimates of
the condition number and the rate of convergence for a two-level Schwarz domain decomposition
preconditioner. Computational results for Laplace’s equation and Richards’ equation show excel-
lent scalability, although no theory is yet available to support the results for the difficult nonlinear
problem.

Key words. domain decomposition, Newton–Krylov–Schwarz methods, Richards’ equation,
nonlinear equations, aggregation
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1. Introduction. In this paper we report on a scalability study and derive condi-
tion number estimates for a two-level additive Schwarz preconditioner. In our previous
work we have applied this preconditioner to a set of problems in hydrology [8, 9, 7].
We build the coarse mesh problem with aggregation, an approach used in both alge-
braic multigrid [2, 21] and domain decomposition methods [11, 12, 13, 3]. In the case
of minimal overlap, we implement this as a simple unweighted sum of nodal values.
This implementation permits a simple construction of a two-level preconditioner on
unstructured grids.

Our methods were developed for use in the adaptive hydrology model (ADH)
[18], a production code being developed at the U.S. Army Engineer Research and
Development Center. The use of aggregation arose from necessity. In the applications
reported in [8, 9, 7] the subdomains were irregular, and a coarse mesh based on “hat
functions” over the subdomains was impractical. For the same reason, we needed
minimal overlap between subdomains. Unlike the method from [5], we do not need to
create a coarse mesh geometry or use geometric information about the subdomains.
Neither theoretical analysis of this algorithm applied to any problem nor in-depth
scalability studies have been performed to date to our knowledge.

The overall goal of this work is to advance our understanding of this aggregation-
based domain decomposition method. The specific objectives are (1) to develop esti-
mates of the condition number as a function of coarse and fine grid size for Laplace’s
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equation; (2) to evaluate computationally the scalability of this algorithm for Laplace’s
equation and to compare to theoretical estimates; and (3) to apply this algorithm to
a difficult and important problem in hydrology, the flow of water in the unsaturated
zone modeled by Richards’ equation [16]. The first two objectives will advance and
test the current theory of this algorithm for a simple equation, while the latter objec-
tive will provide some evidence of the applicability of this algorithm to a challenging
class of applications for which improved solution algorithms are badly needed. We
consider the theoretical analysis of this algorithm applied to Richards’ equation and
other nonlinear models as open issues and beyond the scope of this effort.

The use of smoothed aggregation elements in an additive Schwarz scheme was
originally proposed in [2, 3]. In these papers this idea was tested on a variety of
elliptic problems with complicated geometries. Construction of coarse mesh problems
by aggregation was critical to the results reported in [8, 9, 7], where computations
were done on unstructured grids in three space dimensions. Our coarse mesh basis
functions are nonsmoothed, which means that the square of theH1 bound on the basis

functions is O(H
d−1

δ ) instead of O(Hd−1). Note that we do, for generality, include
the possibility of overlap δ > h. The method in [2, 3], however, assumes a physical
overlap of O(h) and obtains the benefits of overlap (i.e., bounds on the condition
number independent of H and h) by smoothing the basis functions. These differences
lead to a change in the energy of the coarse mesh operator so that |Qu|2H1 ≤ CH

δ |u|2H1 .
Thus instead of having a condition number bound by a constant we get a condition

bound that is O(H
2

δ2 ).
In our previous work [8, 9, 7], we used nonsmoothed aggregation elements with

minimal overlap and exact subdomain solves. Similarly, in section 3 the overlap is h,
where h is the fine mesh length scale, and we solve the subdomain problems exactly
with sparse Gaussian elimination. The convergence results in section 2 allow for more
flexibility in overlap and subdomain solvers.

The analysis in section 2 uses the standard finite element framework from [17, 23].
The preconditioner also works well in the context of finite differences, however, as the
example in section 3.2 illustrates.

Richards’ equation [16] is a model of flow through unsaturated porous media. In
this paper we consider the head-based form of the equation and for a homogeneous
media in two space dimensions,

[
∂θ

∂ψ
+
Ss
θs
θ

]
∂ψ

∂t
= ∇ · [Kskr∇ (ψ + z)] ,(1.1)

where ψ is the pressure head, θ is the volume fraction of the wetting phase, and kr
is the relative permeability of the wetting phase. The remaining terms are scalar
coefficients given in Table 1.1, along with their values for the test problem. θ and kr
are functions of ψ given by

θ = (θs − θr)(1 + |αψ̂|n)−m + θr,(1.2)

kr = (1 + |αψ̂|n)−m/2[1− |αψ̂|n−1(1 + |αψ̂|n)−m]2, and(1.3)

ψ̂ = min(ψ, 0),(1.4)

where m = 1 − 1/n. These functions are derived from the van Genuchten [20] and
Mualem [14] empirical relations among pressure, saturation, and relative permeability.
We discretize (1.1) in space with finite differences and integrate the resulting system
of differential algebraic equations in time with the fixed leading coefficient backward
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Table 1.1
Richards’ equation parameters.

Description Symbol Value
Saturated volume fraction θs 3.01× 10−1

Residual volume fraction θr 9.30× 10−2

Specific storage Ss 1.00× 10−6 (1/m)
Hydraulic conductivity Ks 5.04× 100 (m/day)
Mean pore size α 5.47× 100 (1/m)
Pore size uniformity n 4.26× 100

difference formulas of orders one to five [4, 10]. Within the implicit temporal inte-
gration is a Newton iteration, and we solve the nonsymmetric linear equation for the
Newton step with a preconditioned Bi-CGSTAB [19] linear iteration.

2. Theory for an elliptic model problem. The convergence theory in this
paper is for the weak form of an elliptic boundary value problem with Dirichlet bound-
ary conditions on a domain Ω ⊂ Rd with boundary Γ, with spatial dimension d. We
will restrict our attention to piecewise linear nodal finite element spaces.

The goal is to find u ∈ V such that

a(u, v) = l(v) for all v ∈ V ,(2.1)

where a is a strongly elliptic bilinear form on V , l is a linear functional on V , and V
is an appropriate function space.

We let V h ⊂ V be the appropriate space of piecewise linear functions. The
approximating problem at level h is to find uh ∈ V h such that

a(uh, v) = l(v) for all v ∈ V h.(2.2)

The problem (2.2) is equivalent to a linear system

Auh = f(2.3)

on V h, where a(u, v) = (Au, v) for all u, v ∈ V h. Here (·, ·) is the l2 inner product.
Schwarz preconditioners are designed to accelerate Krylov space iterative methods

for the solution of (2.3).

2.1. One-level method. We begin with the one-level additive Schwarz pre-
conditioner. We divide Ω into subdomains {Ωj}Jj=1 with an overlap width of δ and

assume that
⋃J
j=1 Ωj = Ω.

Let Rj be the restriction map from an element of V h to the subspace Vj of
functions in V h with support on Ωj . Let

Aj = RjAR
T
j

be the subdomain operator. We assume that Aj is nonsingular on Vj and define

Bj = R
T
j Ã

−1
j Rj ,

where Ãj is an approximation of Aj . The one-level additive Schwarz preconditioner
is

M =
J∑
j=1

Bj .(2.4)
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2.2. Two-level method. The two-level additive Schwarz method adds a coarse
mesh term

B0 = RT0 Ã
−1
0 R0

to the one-level preconditioner. Here Ã0 is an approximation of A0. We let V H

denote the space of coarse mesh basis functions. If the coarse mesh restriction map
R0 and the coarse mesh operator A0 are well designed, the condition number of MA
is significantly reduced.

One way to define a coarse mesh problem is to discretize the continuous problem
on a coarser mesh. There are a few difficulties associated with forming the coarse
problem this way. First, for unstructured meshes, such as the ones considered in
[7, 9, 8], the interpolation operators between the fine mesh and the coarse mesh are
difficult to define. Second, a coarse mesh must be generated, stored, and parallelized.
Finally, the PDE must be discretized and recomputed on the coarse mesh.

Alternatively, the discretization of the coarse mesh operator may be defined in
terms of the existing fine mesh discretization. A Galerkin or variational coarse grid
correction uses the fine grid matrix to obtain the coarse grid operator as A0 = R0AR

T
0 ,

where RT0 is the interpolation operator from the coarse mesh function space, and R0

is the restriction operator. If the coarse mesh basis functions are obtained from the
fine mesh basis functions, then the coarse mesh space V H is contained in the fine grid
space V h.

In this section we use the aggregation-based basis from [2, 3, 7, 8, 9], where one
coarse mesh basis function is defined for each subdomain as the sum of the fine mesh
basis functions for that subdomain.

To set the notation that we will need in section 2.4, let the expansion of a function
u ∈ V h in the finite element basis be

u =
∑
l

ulψl,(2.5)

where the ψl’s are the nodal basis functions for the fine mesh. A function uC ∈ V H
can be represented on the coarse mesh space as

uC =
∑
K

uCKΨK ,(2.6)

where the ΨK ’s are the basis functions for the coarse mesh space. Since V H ⊂ V h,
ΨK can be written as

ΨK =
∑
l

RKlψl.(2.7)

The index K represents the subdomain number. The value of RKl ≥ 0 is constrained
by the conditions that ∇ΨK = O(δ) and the requirement of the theory that the coarse
mesh basis functions provide a partition of unity, i.e.,

∑
K

ΨK = 1.

In the case of minimal overlap, where δ = O(h), RKl = 1 if the support of the fine
mesh basis function ψl is contained in subdomain K; otherwise, RKl = 0.
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Further expanding the representation of uC gives

uC =
∑
K

uCKΨK ,

=
∑
K

uCK
∑
j

RKlψl,

=
∑
l

(∑
K

uCKRKl

)
ψl,

=
∑
l

(
RTuC

)
l
ψl.

ThusRT is the operator which interpolates from the coarse mesh to the fine mesh. Any
function on the coarse mesh can be represented solely in terms of the already existing
fine mesh functions, making the formulation of a separate coarse mesh unnecessary.

2.3. Condition number estimate. In Assumption 2.1 we make precise the
idea that H is the characteristic diameter of a subdomain. In Assumption 2.2 we
make precise the overlap δ between the subdomains and the properties of the coarse
mesh basis functions. These assumptions are based on assumptions given in [2, 3],
but ours differ in the fact that an overlap parameter of δ is considered and the square

of the energy of our coarse mesh basis function is bound by Hd−1

δ instead of Hd−2,
where d is the dimension of the problem.

Assumption 2.1.

1. There is C > 0 such that diam(Ωj) ≤ CH for all j = 1, . . . , J .
2. There is c > 0 such that for all x ∈ Ω there exists j ≥ 1 such that x ∈ Ωj and

dist (x, ∂Ωj\∂Ω) ≥ cδ.

3. There are CR, C1, C2 > 0 such that for all x ∈ Ω the ball

B (x,CRH) = {y ∈ Ω : dist (y, x) ≤ CRH}

intersects at most C1 +C
d
2 subdomains Ωj (i.e., an object of diameter O (H)

intersects at most O(1) subdomains Ωi).
4. µ (Ωj) ≥ CHd, j = 1, . . . , J.

In Assumption 2.1, µ denotes the Lebesgue measure.

Assumption 2.2. Assume the basis functions Ψi of the coarse space satisfy the
following.

1. |Ψi|2H1(Ω) ≤ CHd−1

δ ,

‖Ψi‖2L2 ≤ CHd.
2. There is a domain Ωint ⊂ Ω such that

∑
iΨi (x) = 1 for every x ∈ Ωint and

dist(x, ∂Ω) ≤ Cδ for every x ∈ Ω\Ωint.
3. supp (Ψi) ⊂ Ω̄i.

In section 2.4 we prove the following theorem.

Theorem 2.1. Let V h =
∑J
j=0 Vj ⊂ C(Ω̄), and let Assumptions 2.1 and 2.2

hold. Assume that there is ω ≥ 1 such that

(v, v) ≤ (Ã−1
j Ajv, v) ≤ ω(v, v)
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for all v ∈ V h and 0 ≤ j ≤ J . Let

M =

J∑
j=0

Bj ;(2.8)

then there is C > 0, independent of H and h such that

κ(MA) ≤ Cω(1 + (H/δ)2).(2.9)

2.4. Convergence theory. The bound on the condition number for the system
preconditioned using two-level additive Schwarz methods is given in [23, 22]. We use
this theory to calculate our bound.

Theorem 2.2. Let K0 be a positive constant so that, for any v ∈ V h, there exists
a decomposition v =

∑J
i=0 vi such that vi ∈ Vi and

J∑
i=0

(Aivi, vi) ≤ K0 (Av, v) .(2.10)

Let

K1 = max
1≤j≤J

J∑
i=1

εij ,(2.11)

where, for 1 ≤ i, j ≤ J , εij = 0 if Vi⊥Vj; εij = 1 otherwise. Then

κ (MA) ≤ ωK0 (1 +K1) ,(2.12)

where

ω = max
0≤j≤J

λmax

(
Ã−1
j Aj

)
.

We assume that the energy norm is equivalent to the H1 seminorm, and we can
therefore replace (2.10) by

J∑
i=0

|ui|2H1(Ω) ≤ K0|u|2H1(Ω).(2.13)

Our estimate for K0 will be based on (2.13).
The value of K1 is an indicator of the number of subdomains which contain any

given point in Ω; we assume our partition is such that K1 = O(1). We solve the
subdomain problems exactly in our numerical results, so Ãj = Aj for all j and ω = 1
in section 3. Thus our condition number estimate is based on the estimate of K0,
which we obtain using Lemmas 2.3 and 2.4.

We define the coarse mesh projection Q : V h → V H by

Qu =

J∑
i=1

αiΨi, αi = αi (u) =
1

µ (Ωi)

∫
Ωi

u (x) dx,

where u ∈ V h.
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The value of K0 depends on the bound of the energy of Qu and on the L2 bound
of the error in the coarse mesh operator, i.e., u−Qu. These bounds are provided in
Corollary 2.3. This analysis is a modification of the results in [2, 3] for nonsmoothed
aggregates.

Here, as in the remainder of this section, C is a constant that is independent of
H and h. C may increase as the analysis progresses.

Corollary 2.3. If Assumptions 2.1 and 2.2 hold, then

‖u−Qu‖2L2 ≤ CH2 |u|2H1 ,(2.14)

|Qu|2H1 ≤ CH
δ
|u|2H1 .(2.15)

Proof. We give here the main results where our work differs from that in [2, 3],
and we refer the reader to the details of the proof in those papers.

Since we have ‖Ψi‖2L2 ≤ CHd by construction of our coarse mesh basis functions,
we get

‖Qu‖2L2(Ω) ≤ C ‖u‖2L2(Ω) .

Therefore, by Poisson’s inequality [6],

‖u−Qu‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖Qu‖L2(Ω) ≤ C ‖u‖L2(Ω) ≤ CH |u|H1(Ω) .(2.16)

Since by construction we also have |Ψi|2H1 ≤ CHd−1

δ , we obtain

|Qu|2H1(Ω) ≤ CH
δ |u|2H1(Ω) .(2.17)

We use these bounds in the following lemma.
Lemma 2.4. Under Assumptions 2.1 and 2.2, for every finite element function

u ∈ V h, there exists a decomposition {ui}Ji=0, ui ∈ Vi, such that

u =

J∑
i=0

ui,(2.18)

J∑
i=0

|ui|2H1(Ω) ≤ C
(
1 +
H

δ

)2

|u|2H1(Ω) .(2.19)

Proof. Define the fine mesh pointwise projection Ih : C(Ω)→ V h by

Ih (u) =

n∑
l=1

u (xl)ψl,

where {ψl}nl=1 is the finite element basis on the fine mesh, and {xl}nl=1 are the fine
mesh nodal points. Let u be partitioned such that

u0 = Qu and ui = Ih (θi(u−Qu)) ,

where, as in [17], {θi} is a smooth partition of unity such that

θi = 1 if x ∈ Ωi ∪ Ωint, x �∈ Ωj for j �= i, and
θi = 0 if x �∈ Ωi.
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Hence |∇θi| ≤ 1
δ . Clearly, by construction, for all u ∈ V h,

J∑
i=0

ui = u.

The standard arguments [17] imply that

J∑
i=0

|ui|2H1(Ω) ≤ C
(

1

δ2
‖u−Qu‖2L2(Ω) + |u−Qu|2H1(Ω) + |Qu|2H1(Ω)

)
.(2.20)

We complete the proof by applying Lemma 2.3 to estimate |Qu|2H1(Ω) and ‖u −
Qu‖2L2(Ω).

If we let

K0 = C

(
1 +
H

δ

)2

,

we obtain the result in Theorem 2.1.

3. Numerical results. In the two examples we used minimal overlap. Hence
the coarse mesh problem is constructed by simply adding the matrix contributions
for the nodes in a subdomain. The matrix representation for the restriction operator
R0 given minimal overlap h is

R0 =




1 1 . . . 1 0 0 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 . . . 0
...


 ,

where the length of 1’s in row i is determined by the number of unknowns in subdomain
i.

Subdomain solves were exact, meaning that Ãj = Aj for all j and, therefore, that
ω = 1.

3.1. Laplace equation. In this section we consider the simple test problem

∇2u = 0(3.1)

on the unit square [0, 1]× [0, 1] with zero Dirichlet boundary conditions. We use the
function identically equal to one on the mesh as the initial iterate for a preconditioned
conjugate gradient iteration. We terminated the iterations when the residual had been
reduced by a factor of 10−4. This example fully conforms to the theory from section
2.4.

In Table 3.1 we report results for a piecewise linear finite element discretization
of (3.1). From the theory, one would expect the condition number κ to increase by
a factor of 4 as either H is doubled or h is halved and to remain constant along
the diagonals where H/h is constant. If, as is the case with the unpreconditioned
problem, the iteration count is O(

√
κ), we would expect the iteration count to double

if either H is held fixed and h is reduced by a factor of two or h is held fixed and H
is increased by a factor of two.

If the iteration count is proportional to the square root of the condition number,
as it is in the unpreconditioned case, then Table 3.1 shows that the growth in the
number of iterations for fixed H and decreasing h is slower than predicted by the
theory and is consistent with an O(H/h) growth in the condition number. The rate
of reduction in the iteration count as h is held fixed and as H is decreased is smaller
still.
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Table 3.1
Finite element discretization of Laplace’s equation.

H \ h 1/64 1/128 1/256
1/4 37 51 68
1/8 32 44 61
1/16 26 36 49
1/32 26 37

3.2. Richards’ equation. The test domain is the unit square [0, 1m]× [0, 1m]
with boundary and initial conditions

ψ(x, 0) = 0.0, x ∈ [0, 1], t > 0,

ψ(x, 1) = 0.1, x ∈ [1/3, 2/3], t > 0,

∂ψ

∂z
(x, 1) = −1.0, x ∈ [0, 1/3) ∪ (2/3, 1], t > 0,

∂ψ

∂x
(x, z) = 0.0, x = 0, 1 z ∈ [0, 1], t > 0,

ψ(x, z) = −z, x, z ∈ [0, 1]× [0, 1], t = 0.

(3.2)

3.2.1. Finite difference discretization with minimal overlap. We dis-
cretized (1.1) by applying cell-centered finite differences to the spatial operator, thereby
yielding the system of differential-algebraic equations,

Fi,j(t, ψ,
∂ψ

∂t
) =

(
dθ

dψ i,j
+
Ss
θs
θi,j

)
∂ψi,j
∂t

− 1

∆z2

[
Ki+ 1

2 ,j
(ψi+1,j − ψi,j)−Ki− 1

2 ,j
(ψi,j − ψi−1,j)

]

− 1

∆z
(Ki+ 1

2 ,j
−Ki− 1

2 ,j
)

− 1

∆x2

[
Ki,j+ 1

2
(ψi,j+1 − ψi,j)−Ki,j− 1

2
(ψi,j − ψi,j−1)

]
,

(3.3)

where i = 0, . . . , N − 1, j = 0, . . . , N − 1, ∆z = ∆x = 1/N , and

Ki± 1
2 ,j

= [(Kskr)i±1,j + (Kskr)i,j ] /2,(3.4)

Ki,j± 1
2
= [(Kskr)i,j±1 + (Kskr)i,j ] /2.(3.5)

The semidiscrete system was integrated in time over [0, 0.0149 days]. Order and
step-size were selected via local truncation error estimates, and the local truncation
error tolerance was set to 10∆x2, thereby balancing temporal and spatial truncation
error. A secondary effect of this choice is that the number of iterations needed for
convergence grows more slowly as ∆x is reduced than would be the case for a steady-
state problem. This effect is clearly visible in all the results reported in Tables 3.2,
3.3, and 3.4.

At a given step tn+1, the application of the integration method yielded a nonlinear
system of the form

F [tn+1, ψn+1, g(ψn+1)] = G(ψn+1) = 0,

where g(ψ) is a the backward difference formula for ∂ψ/∂t. We solved the nonlinear
system with an inexact Newton iteration that terminated when the 2-norm of the
nonlinear residual was reduced by a factor of 10−5.
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Table 3.2
Richards’ equation iteration statistics, 2-level Schwarz.

H\h 1/16 1/32 1/64 1/128 1/256
1/8 7 8 9 12 15
1/16 7 9 11 14
1/32 7 9 11
1/64 7 9
1/128 7

Table 3.3
Richards’ equation iteration statistics, 1-level Schwarz.

H\h 1/16 1/32 1/64 1/128 1/256
1/8 5 6 6 6 6
1/16 6 7 7 7 7
1/32 10 10 10 10
1/64 15 14 14
1/128 21 20
1/256 29

Table 3.4
Richards’ equation iteration statistics, no preconditioner.

h 1/16 1/32 1/64 1/128 1/256
31 56 84 129 193

At each Newton iteration we obtained the Newton step δm+1, by solving the linear
system [

∂G

∂ψ
(ψmn+1)

]
δm+1 = −G(ψmn+1)

with scaled, preconditioned BiCGstab. The scaling was obtained from the integration
method’s weighted root mean squared norm [15, 10, 1, 4]. In real applications, such a
scaling would allow termination of the linear iteration according to tolerances specified
by the integration scheme. However, for this test we computed the l2 norm of the
true linear residual for each linear iteration and terminated the linear iteration when
that norm had been reduced by a factor of 10−7. We did this both to more accurately
estimate the effects of the preconditioner and to insure that errors in the Newton step
were insignificant with respect to the Newton iteration and integration. The choices
of termination criteria for the linear and nonlinear solvers imply that the time steps
that the code uses are independent of the choice of preconditioner.

The preconditioner was two-level additive Schwarz using (3.1). The subdomains
had the minimal overlap of ∆x = 1/N . Table 3.2 gives the average BiCGstab iter-
ations per Newton iteration for two-level additive Schwarz. The iteration count is
constant as H and h are reduced simultaneously, as was the case with the simple
example from section 3.1.

The iteration counts in Table 3.2 increase more slowly than the theory would
predict if, as would be the case with a discretized elliptic problem and conjugate
gradient iteration, the iteration count increased as the square of the condition number.
In that case, if the condition number is O(1+H2/h2), then the iteration count would
double as either H doubled or as h was halved.

For comparison we include similar statistics for a one-level additive Schwarz pre-
conditioner in Table 3.3 and for no preconditioning in Table 3.4. Point Jacobi pre-



440 E. JENKINS, C. KEES, C. KELLEY, AND C. MILLER

conditioning is the H = h diagonal in Table 3.3. Neither of these scale well as H and
h are reduced together.

4. Conclusions. In the context of Richards’ equation, a model for subsurface
flow through the unsaturated zone, we have demonstrated the effectiveness of the two-
level additive Schwarz preconditioner using nonsmoothed aggregates for the coarse
space on a temporally dependent, nonlinear problem. Our convergence estimates for
a simpler model problem are consistent with the observations for Richards’ equation,
a problem to which the theory does not apply.
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Abstract. In this article we introduce new bounds on the effective condition number of deflated
and preconditioned-deflated symmetric positive definite linear systems. For the case of a subdomain
deflation such as that of Nicolaides [SIAM J. Numer. Anal., 24 (1987), pp. 355–365], these theorems
can provide direction in choosing a proper decomposition into subdomains. If grid refinement is
performed, keeping the subdomain grid resolution fixed, the condition number is insensitive to the
grid size. Subdomain deflation is very easy to implement and has been parallelized on a distributed
memory system with only a small amount of additional communication. Numerical experiments for
a steady-state convection-diffusion problem are included.
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1. Background: Preconditioning and deflation. It is well known that the
convergence rate of the conjugate gradient method is bounded as a function of the
condition number of the system matrix to which it is applied. Let A ∈ R

n×n be
symmetric positive definite. We assume that the vector f ∈ R

n represents a discrete
function on a grid Ω and that we are searching for the vector u ∈ R

n on Ω which
solves the linear system

Au = f.

Such systems are encountered, for example, when a finite volume/difference/element
method is used to discretize an elliptic partial differential equation (PDE) defined on
the continuous analogue of Ω. In particular our goal is to develop efficient serial and
parallel methods for applications in incompressible fluid dynamics; see [28, 27].

Let us denote the spectrum of A by σ(A) and the ith eigenvalue in nondecreasing
order by λi(A) or simply by λi when it is clear to which matrix we are referring. After
k iterations of the conjugate gradient method, the error is bounded by (cf. [10, Thm.
10.2.6]

‖u− uk‖A ≤ 2 ‖u− u0‖A
(√

κ− 1√
κ+ 1

)k
,(1.1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of u
is given by ‖u‖A = (uTAu)1/2. The error bound (1.1) does not tell the whole story,
however, because the convergence may be significantly faster if the eigenvalues of A
are clustered [23].
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When A is the discrete approximation of an elliptic PDE, the condition number
can become very large as the grid is refined, thus slowing down convergence. In this
case it is advisable to solve, instead, a preconditioned system K−1Au = K−1f , where
the symmetric positive definite preconditioner K is chosen such that K−1A has a
more clustered spectrum or a smaller condition number than that of A. Furthermore,
K must be cheap to solve relative to the improvement it provides in convergence rate.
A final desirable property in a preconditioner is that it should parallelize well, espe-
cially on distributed memory computers. Probably the most effective preconditioning
strategy in common use is to take K = LLT to be an incomplete Cholesky (IC)
factorization of A [18]. For discretizations of second order PDEs in two dimensions,
defined on a grid with spacing h, one finds, with IC factorization, κ ∼ h−2; with a
modified IC factorization [11, 1], κ ∼ h−1; and with a multigrid cycle, κ ∼ 1. Precon-
ditioners such as multigrid and some domain decomposition methods, for which the
condition number of the preconditioned system is independent of the grid size, are
termed optimal.

Another preconditioning strategy that has proven successful when there are a few
isolated extremal eigenvalues is deflation [20, 16, 17]. Let us define the projection P
by

P = I −AZ(ZTAZ)−1ZT , Z ∈ R
n×m,(1.2)

where Z is the deflation subspace, i.e., the space to be projected out of the residual,
and I is the identity matrix of appropriate size. We assume that m � n and that
Z has rank m. Under this assumption Ac ≡ ZTAZ may be easily computed and
factored and is symmetric positive definite. Since u = (I − PT )u+ PTu and because

(I − PT )u = Z(ZTAZ)−1ZTAu = ZA−1
c ZT f(1.3)

can be immediately computed, we need only compute PTu. In light of the identity
APT = PA, we can solve the deflated system

PAũ = Pf(1.4)

for ũ using the conjugate gradient method and premultiply this by PT . Obviously
(1.4) is singular, and this raises a few questions. First, the solution ũ may contain an
arbitrary component in the null space of PA, i.e., in span{Z}.1 This is not a problem,
however, because the projected solution PT ũ is unique. Second, what consequences
does the singularity of (1.4) imply for the conjugate gradient method?

Kaasschieter [14] notes that a positive semidefinite system can be solved as long as
the right-hand side is consistent (i.e., as long as f = Au for some u). This is certainly
true for (1.4), where the same projection is applied to both sides of the nonsingular
system. Furthermore, he notes (with reference to [23]) that because the null space
never enters the iteration, the corresponding zero-eigenvalues do not influence the
convergence. Motivated by this fact, we define the effective condition number of a
positive semidefinite matrix C ∈ R

n×n with corank m to be the ratio of its largest to
smallest positive eigenvalues:

κeff(C) =
λn

λm+1
.

1We will use the notation span{Z} to denote the column space of Z.
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Example. To see that the condition number of PA may be better than that
of A, consider the case in which Z is the invariant subspace of A corresponding to
the smallest eigenvalues. Note that PAZ = 0, so that PA has m zero-eigenvalues.
Furthermore, since A is symmetric positive definite, we may choose the remaining
eigenspace Y in the orthogonal complement of span{Z}, i.e., Y TZ = 0 so that PY =
Y . However, AY = Y B for some invertible B; therefore, PAY = PY B = Y B, and
span{Y } is an invariant subspace of PA. Evidently, when Z is an invariant subspace
of A,

κeff(PA) =
λn(A)

λm+1(A)
.

In summary, deflation of an invariant subspace cancels the corresponding eigenvalues,
leaving the rest of the spectrum untouched.

This idea has been exploited by several authors. For nonsymmetric systems,
approximate eigenvectors can be extracted from the Krylov subspace produced by
GMRES. Morgan [19] uses this approach to improve the convergence after a restart.
In this case, deflation is not applied as a preconditioner, but the deflation vectors are
augmented with the Krylov subspace, and the minimization property of GMRES en-
sures that the deflation subspace is projected out of the residual. For more discussion
on deflation methods for nonsymmetric systems, see [15, 8, 6, 21, 5, 2]. Other authors
have attempted to choose a subspace a priori that effectively represents the slowest
modes. In [29] deflation is used to remove a few stubborn but known modes from
the spectrum. Mansfield [16] shows how Schur-complement-type domain decomposi-
tion methods can be seen as a series of deflations. Nicolaides [20] chooses Z to be
a piecewise constant interpolation from a set of m subdomains and points out that
deflation might be effectively used with a conventional preconditioner. Mansfield [17]
uses the same “subdomain deflation” in combination with damped Jacobi smoothing,
obtaining a preconditioner which is related to the two-grid method.

In this article we introduce new bounds on the effective condition number of
deflated and preconditioned-deflated symmetric positive definite linear systems. For
the case of a subdomain deflation such as that of Nicolaides [20], these theorems
can provide direction in choosing a proper decomposition into subdomains. If grid
refinement is done keeping the subdomain grid resolution fixed, the condition number
is insensitive to the grid size. Subdomain deflation is very easy to implement and
has been parallelized on a distributed memory system with only a small amount
of additional communication. Numerical experiments for a steady-state convection-
diffusion problem are included.

2. A condition number bound for deflation. Nicolaides [20] proves the fol-
lowing bound on the spectrum of PA:

λm+1(PA) = min
vT v

vTA−1v
, λn(PA) = max

vT v

vTA−1v
,

where v is taken in span{Z}⊥. In this section we give a bound of a different flavor
which will be used in the subsequent sections to construct a preconditioning strategy
with an optimal convergence property.

First we need the following result on the preservation of positive semidefiniteness
under deflation.

Lemma 2.1. Let R be positive semidefinite and P be a projection (P 2 = P ); then
if PR is symmetric, it is positive semidefinite.
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Proof. By hypothesis, 0 ≤ uTRu for all u. In particular, 0 ≤ (PTu)TR(PTu) =
uTPRPTu so that PRPT = P 2R = PR is positive semidefinite.

The next theorem provides a bound on the condition number of PA and is our
main result.

Theorem 2.2. Let A be symmetric positive definite, let P be defined by (1.2),
and suppose there exists a splitting A = C + R such that C and R are symmetric
positive semidefinite with N (C) = span{Z} the null space of C. Then

λi(C) ≤ λi(PA) ≤ λi(C) + λmax(PR).(2.1)

Moreover, the effective condition number of PA is bounded by

κeff(PA) ≤ λn(A)

λm+1(C)
.(2.2)

Proof. From (1.2) it is obvious that PA is symmetric. Since Z is in the null space
of C, we have that PC = C and is therefore also symmetric by hypothesis. Symmetry
of PR = PA− C follows immediately; and by assumption R is positive semidefinite,
so we can apply Lemma 2.1 to arrive at λmin(PR) ≥ 0, with equality holding in any
case due to singularity of P . The bound (2.1) now follows from Theorem 8.1.5 of [10]:

λi(PC) + λmin(PR) ≤ λi(PA) ≤ λi(PC) + λmax(PR).

Furthermore, because PA = A−AZ(ZTAZ)−1(AZ)T is the difference of positive
(semi-)definite matrices, the same theorem (Theorem 8.1.5 of [10]) gives λmax(PA) ≤
λmax(A). This upper bound together with the lower bound in (2.1) proves
(2.2).

There is also a preconditioned version of the previous theorem.
Theorem 2.3. Assume the conditions of Theorem 2.2 and let K be a symmetric

positive definite preconditioner with Cholesky factorization K = LLT . Then

λi(L
−1CL−T ) ≤ λi(L

−1PAL−T ) ≤ λi(L
−1CL−T ) + λmax(L

−1PRL−T ),(2.3)

and the effective condition number of L−1PAL−T is bounded by

κeff(L
−1PAL−T ) ≤ λn(L

−1AL−T )
λm+1(L−1CL−T )

.(2.4)

Proof. Define Â = L−1AL−T , Ĉ = L−1CL−T , R̂ = L−1RL−T (all congruence
transformations), Ẑ = LTZ, and

P̂ = I − ÂẐ(ẐT ÂẐ)−1ẐT = L−1PL.

Note that P̂ is a projection and P̂ Â is symmetric, and also that Ẑ is in the null
space of Ĉ so that P̂ Ĉ = Ĉ. Thus, Theorem 2.2 applies directly to the deflated
system matrix P̂ Â. The conclusions follow immediately from the definitions of Â
and Ĉ.

Remark. Experience with discretized PDEs indicates that the greatest improve-
ment in convergence is obtained by removing the smallest eigenvalues from the spec-
trum. It is therefore the lower bounds of (2.1) and (2.3) which are of most concern.
Theorem 2.3 suggests that it might be better to construct a preconditioner for C
rather than for A in this case. However, care should be taken that a good precon-
ditioner for C does not increase the upper bound in (2.3) when applied to A. See
Kaasschieter [14] for a discussion about preconditioning indefinite systems.

In the next section we consider applications of Theorems 2.2 and 2.3 in lieu of a
specific choice of the subspace of deflation Z.
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3. Subdomain deflation. The results of the previous section are independent
of the choice of deflation subspace Z in (1.2). As mentioned in section 1, deflation
of an eigenspace cancels the corresponding eigenvalues without affecting the rest of
the spectrum. This has led some authors to try to deflate with “nearly invariant”
subspaces obtained during the iteration, and led others to try to choose in advance
subspaces which represent the extremal modes.

For the remainder of this article we make a specific choice for the subspace Z in
(1.2), based on a decomposition of the domain Ω with index set I = {i |ui ∈ Ω} into
m nonoverlapping subdomains Ωj , j = 1, . . . ,m, with respective index sets Ij = {i ∈
I |ui ∈ Ωj}. We assume that the Ωj are simply connected graphs covering Ω. Define
Z by

zij =

{
1, i ∈ Ij ,
0, i �∈ Ij .(3.1)

With this choice of Z, the projection (1.2) will be referred to as subdomain deflation.
Such a deflation subspace has been used by Nicolaides [20] and Mansfield [16, 17].

This choice of deflation subspace is related to domain decomposition and
multigrid methods. The projection P can be seen as a subspace correction in which
each subdomain is agglomerated into a single cell; see, for example, [13]. Within
the multigrid framework, P can be seen as a coarse grid correction using a piecewise
constant interpolation operator with very extreme coarsening.

Note that the matrix Ac = ZTAZ, the projection of A onto the deflation subspace
Z, has sparsity pattern similar to that of A. We will see that the effective condition
number of PA improves as the number of subdomains is increased (for a fixed problem
size). However, this implies that the dimension of Ac also increases, making direct
solution expensive. By analogy with multigrid, it might be advantageous in some
applications to solve Ac recursively.

2 In a parallel implementation this would lead to
additional idle processor time, as it does with multigrid.

3.1. Application to Stieltjes matrices. Using subdomain deflation, we can
identify matrices C and R needed for application of Theorems 2.2 and 2.3 to the class
of irreducibly diagonally dominant Stieltjes matrices (i.e., symmetric M-matrices).
Such matrices commonly arise as a result of discretization of symmetric elliptic and
parabolic PDEs. For our purposes the following characteristics are important:

• A is symmetric positive definite and irreducible.
• aii > 0, aij ≤ 0 for i �= j.
• aii +

∑
j �=i aij ≥ 0 with strict inequality holding for some i.

For a matrix A, define the subdomain block-Jacobi matrix B(A) ∈ R
n×n associated

to A by

bij =

{
aij if i, j ∈ Ik, for some k,
0 otherwise.

(3.2)

Notice that since each block Bjj is a principle submatrix of A, it is symmetric positive
definite. Also, since B is obtained from A by deleting off-diagonal blocks containing
only negative elements, the Bjj are at least as diagonally dominant as the correspond-
ing rows of A. Furthermore, the irreducibility of A implies that A itself cannot be

2A referee pointed out to us that the two-level method with direct solution of Ac has suboptimal
complexity. On the other hand, for the examples considered in this article, Ac is too small for a
second coarsening.
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written in block diagonal form, so to construct B it is necessary to delete at least
one nonzero block from each block-row. As a result, at least one row of each Bjj is
strictly diagonally dominant. We will further assume that the so-constructed Bjj are
irreducible.3 It follows from Corollary 6.4.11 of [12] that the Bjj are again Stieltjes
matrices.

Additionally, define 1 = (1, . . . , 1)T with the dimension following from the con-
text, such that A1 is the vector of row sums of A. Let the matrix C be defined
by

C = B − diag (B1) .(3.3)

Each block Cjj of C has zero row sums—so 1 is in the null space of each block—but is
further irreducible and weakly diagonally dominant and has the M-matrix property.
According to Theorem 4.16 of [3], a singular M-matrix has a null space of rank exactly
1. It follows that the matrix Z defined by (3.1) is a basis for the null space of C.

Putting these ideas together we formulate the following.

Theorem 3.1. If A is an irreducibly diagonally dominant Stieltjes matrix and
C defined by (3.3) has only irreducible blocks, then the hypotheses of Theorem 2.2 are
met.

Example. Consider a Poisson equation on the unit square with homogeneous
Dirichlet boundary conditions

−∆u = f, u = 0, u ∈ ∂Ω, Ω = [0, 1]× [0, 1].(3.4)

The problem is discretized using central finite differences on a 9× 9 grid, and subdo-
main deflation is applied with a 3 × 3 decomposition into blocks of resolution 3 × 3.
The system matrix A is pre- and postmultiplied by the inverse square root of its
diagonal. Figure 3.1 shows the eigenvalues of A, PA, and C. The extreme positive
eigenvalues of these three matrices are

λmin λmax

A 0.06 1.94
PA 0.27 1.91
C 0.25 1.50

Both the table and the figure support the conclusions of Theorem 2.2; namely,
that the largest eigenvalue of A and the smallest nonzero eigenvalue of C bound the
spectrum of PA. (Note that each eigenvalue of C has multiplicity equal to the number
of blocks—9 in this case.) We observe also that the bounds are reasonably sharp.

Each diagonal block Cjj of the matrix C as defined by (3.3) can be interpreted as
the discretization of a related Neumann problem on the jth subdomain. By Theorem
2.2, the effective condition number of the deflated matrix PA is determined by the
smallest nonzero eigenvalue of C—in this case, the smallest nonzero eigenvalue over
the set of related Neumann problems on the subdomain grids, i.e.,

λm+1(PA) = min
j

λ2(Cjj).

3This is generally the case with matrices arising from discretization of PDEs on simply connected
domains. If a block Bii is reducible, then it may be possible to decompose Bii into additional
subdomains which are irreducible.
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Fig. 3.1. The eigenvalues of A (*), PA (◦), and C (· · · ).

Theorem 2.2 thus says that subdomain deflation effectively decouples the original sys-
tem into a set of independent Neumann problems on the subdomains, with conver-
gence governed by the “worst-conditioned” Neumann problem. This implies an opti-
mality result, since—if we can somehow refine the grid without affecting the worst-
conditioned Neumann problem—the condition number will also remain unchanged.
For an isotropic problem on a uniform grid, for example, this can be achieved by
simply fixing the subgrid resolutions and performing refinement by adding more sub-
domains. The numerical experiments of section 6 support this observation.

3.2. Application to finite element stiffness matrices. A result similar to
the above discussion on M-matrices holds for finite element stiffness matrices. We
briefly describe it here. Suppose we have a domain Ω whose boundary is given by ∂Ω =
∂ΩD ∪ ∂ΩN , with Dirichlet boundary conditions on ∂ΩD and Neumann boundary
conditions on ∂ΩN . Let Ω be decomposed into m nonoverlapping subdomains Ωj ,
j = 1, . . . ,m, and define the finite element decomposition of Ω by

Ω̄ = ∪i∈I ēi.

Let the index set I be divided into m+ 1 disjoint subsets I1, . . . , Im and Ir, defined
by

Ij =
{
i ∈ I | ei ⊂ Ωj and ēi ∩ ∂ΩD = ∅

}
,

and Ir = I\ ∪j Ij . Figure 3.2 shows an example of a domain with quadrilateral
elements and two subdomains.

The stiffness matrix A is defined as the sum of elemental stiffness matrices Aei :

A =
∑
i∈I

Aei ,

where the elemental matrices are assumed to be positive semidefinite. This is always
the case when the integrals in the element matrices are computed analytically. We
assume that A is symmetric positive definite. This is normally true if the solution
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Fig. 3.2. The domain Ω is decomposed into two subdomains (the shaded region is Ir).

is prescribed somewhere on the boundary. The matrix C needed for Theorem 2.2 is
defined by

C =
∑

i∈I\Ir
Aei .

Note that C is block diagonal and the blocks Cjj can be interpreted as a finite element
discretization of the original system on the subdomain Ωj with homogeneous Neumann
boundary conditions. This implies that λ1(Cjj) = 0 and that Z is in the null space
of C. Clearly C is positive semidefinite, as is

R =
∑
i∈Ir

Aei .

To ensure that λm+1(C) �= 0, it is necessary that every grid point xk ∈ Ω̄\∂ΩD be
contained in a finite element ei with i ∈ ∪mj=1Ij ; otherwise the ith row of C contains
only zero elements.

4. Guidelines for selecting subdomains. We can use the results of the pre-
vious section to give guidance in choosing a good decomposition of the domain Ω
such that the “worst-conditioned related Neumann problem” is as well conditioned as
possible. We consider two cases: a Poisson equation on a stretched uniform grid, and
a diffusion equation with a discontinuity in the diffusion coefficient.

4.1. Large domain/grid aspect ratios. Consider the Poisson equation with
homogeneous Neumann boundary conditions on a rectangular domain Ω:

−∆u = f, ∂u/∂n̂ = 0, u ∈ ∂Ω,

where n̂ denotes the unit normal vector to the boundary. This equation is discretized
using cell-centered, central finite volumes on a uniform Nx × Ny grid having cell
dimensions hx × hy:

1

h2
x

(−uj−1,k + 2uj,k − uj+1,k) +
1

h2
y

(−uj,k−1 + 2uj,k − uj,k+1) = fj,k
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for j = 0, . . . , Nx and k = 0, . . . , Ny. Assume central discretization of the boundary
conditions

u−1,k = u0,k, etc.;

then, the eigenvalues of the discretization matrix are given by

λj,k =
4

h2
x

sin2

(
jπ

2(Nx + 1)

)
+

4

h2
y

sin2

(
kπ

2(Ny + 1)

)
.(4.1)

The largest eigenvalue is λNx,Ny and the smallest nonzero eigenvalue is the minimum
of λ0,1 and λ1,0. Substituting into (4.1), and assuming Nx, Ny � 1, we find

λNx,Ny ≈
4

h2
x

+
4

h2
y

,

λ0,1 ≈ 4

h2
y

(
π

2(Ny + 1)

)2

=
π2

h2
y(Ny + 1)2

,

λ1,0 ≈ 4

h2
x

(
π

2(Nx + 1)

)2

=
π2

h2
x(Nx + 1)2

.(4.2)

The decomposition problem can be stated as follows: For a fixed cell aspect ratio
Qc ≡ hx/hy and a fixed total number of cells γ ≡ NxNy = const, find the grid aspect
ratio Qg ≡ Nx/Ny minimizing the effective condition number

κeff = max

{
λNx,Ny
λ0,1

,
λNx,Ny
λ1,0

}

= 4/π2 max
{
(1 +Q−2

c )(γ/Nx + 1)2, (1 +Q2
c)(Nx + 1)2

}
.

Since both arguments of the maximum are monotone functions of positive Nx, one
increasing and the other decreasing, the condition number is minimized when these
arguments are equal:

(1 +Q−2
c )(γ/Nx + 1)2 = (1 +Q2

c)(Nx + 1)2,

1

Q2
c

=
1 +Q−2

c

1 +Q2
c

=
(Nx + 1)2

(Ny + 1)2
≈ Q2

g.

Thus, for constant coefficients and a uniform grid, one should choose a decomposition
such that the subdomain grid aspect ratio is the reciprocal of the cell aspect ratio;
that is, one should strive for a subdomain aspect ratio Qd ≡ (Nxhx)/(Nyhy) of 1:

Qd = QgQc = 1.

Example. Again take the Poisson equation on the unit square (3.4), with a grid
resolution Nx = 16, Ny = 32. We compare the condition number of PA for three
decompositions into 16 subdomains as shown in Figure 4.1:

λmin(C) λmin(PA) κ(PA)
2× 8 0.013 0.024 83.0
4× 4 0.053 0.062 32.2
8× 2 0.014 0.024 81.8
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Fig. 4.1. Three decompositions of the unit square into 16 subdomains.

The 4 × 4 decomposition yields a subdomain aspect ratio of Qd = 1, and this is
the best-conditioned case, as predicted.

The decomposition problem described above assumes that the grid size and the
number of domains is given, and that one would like to choose the decomposition for
optimal convergence rate. This would be the case, for example, if a parallel decom-
position is desired on a prescribed number of processors. For a serial computation,
or if there is an unlimited number of available processors, a better approach would
be to ask what number of domains gives the fastest solution. Suppose we decompose
into subdomains of unit aspect ratio, as described above. By comparison with (4.2),
the smallest positive eigenvalue of C scales as 1/N2

x , with Nx the number of grid cells
in the x direction for the worst-conditioned Neumann problem. Thus if we split each
subdomain horizontally and vertically into four equivalent smaller subdomains, the
condition number of C is improved by a factor of 4, roughly speaking. On the other
hand, the dimension of the coarse grid matrix Ac will be increased by a factor of 4,
causing the direct (or recursive) solution of this system to be relatively more expen-
sive. In the extreme case of one unknown per subdomain, Ac = A, so that solving Ac
is as expensive as solving A. Clearly, there must be an optimal value for the number of
subdomains; however, this will depend on the convergence of the conjugate gradients
process, and therefore also on the distribution of eigenvalues.

4.2. Discontinuous coefficients. When a problem has a large jump in coef-
ficients at some location, poor scaling may result in slow convergence. It may be
possible to improve the convergence by applying subdomain deflation, choosing the
subdomain interface at the discontinuity. Since the related Neumann problems are de-
coupled, a diagonal scaling preconditioner is sufficient to make the condition number
independent of the jump in coefficients. This is best illustrated with an example.

Consider a one-dimensional diffusion problem with Neumann and Dirichlet bound-
ary conditions

− d

dx
α(x)

du

dx
= f(x), x ∈ (0, 1), du

dx
(0) = 0, u(1) = 1,

and a jump discontinuity in the coefficient

α(x) =

{
1, x ≤ 0.5,
ε, x > 0.5

for some ε > 0. Choose an even number n and define h = 1/n. The grid points
are given by xi = ih, i = 0, . . . , n and ui is the numerical approximation for u(xi).
For all i ∈ {0, 1, . . . , n − 1} \ {n/2} we use the standard central difference scheme.
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Fig. 4.2. Eigenvalues of D−1A (∗) and D−1PA (◦) for ε = 1 (left) and ε = 0.01 (right). The
spectrum of D−1C is indicated by the dotted lines.

The unknown un is eliminated from the system of equations by using the Dirichlet
boundary condition. For i = 0 the value u−1 is eliminated by a central discretization
of the Neumann boundary condition. The resulting equation is multiplied by 1/2 to
make the coefficient matrix symmetric. Finally for i = n/2 the discrete equation is

un/2−un/2−1

h − ε
un/2+1−un/2

h

h
= f(xn/2).

The domain Ω = [0, 1] is subdivided into two subdomains Ω1 = [0, 0.5] and Ω2 =
(0.5, 1]. Note that grid point xn/2 = 0.5 belongs to Ω1. The subdomain deflation
space Z is defined by (3.1).

To construct C from A we decouple the matrix A according to the subdomains,
so

cn/2+1,n/2 = cn/2,n/2+1 = 0.

The other off-diagonal elements of A and C are identical. Finally the diagonal ele-
ments of C are made equal to minus the sum of the off-diagonal elements, so

n∑
j=1

cij = 0.

Let D be the diagonal of A. The eigenvalues of D−1A and D−1PA (equivalent
to the eigenvalues of the symmetrically preconditioned case D−1/2AD−1/2, etc.) with
n = 8 are shown in Figure 4.2 for ε = 1 and ε = 0.01 with the eigenvalues of D−1C
appearing as dotted lines. Note that the smallest positive eigenvalue of D−1C bounds
from below the smallest positive eigenvalue of D−1PA, as predicted by Theorem 2.3.
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In the following table we give the effective condition numbers relevant for conver-
gence of the preconditioned conjugate gradient method.

ε λ1(D
−1A) κ(D−1A) λ3(D

−1PA) κeff(D
−1PA)

1 2.5 · 10−2 7.9 · 101 3.8 · 10−1 5.0
10−2 4.1 · 10−4 4.8 · 103 5.0 · 10−1 4.0
10−4 4.2 · 10−6 4.8 · 105 5.0 · 10−1 4.0

Due to diagonal preconditioning, the smallest nonzero eigenvalue of D−1C is inde-
pendent of ε. As predicted by Theorem 2.3, the same holds for D−1PA. The smallest
eigenvalue of D−1A, however, decreases proportionally to ε, leading to a large con-
dition number and slow convergence of the conjugate gradient method applied to
D−1Au = D−1f .

5. Additional considerations. In this section we discuss extension of deflation
methods to the nonsymmetric case and describe an efficient parallel implementation
of the subdomain deflation method.

5.1. The nonsymmetric case. A generalization of the projection P for a non-
symmetric matrix A ∈ R

n×n is used in [29]. In this case there is somewhat more
freedom in selecting the projection subspaces. Let P and Q be given by

P = I −AZ(Y TAZ)−1Y T , Q = I − Z(Y TAZ)−1Y TA,

where Z and Y are suitable subspaces of dimension n ×m. The operator Ac on the
projection subspace is given by Ac = Y TAZ.4 We have the following properties for
P and Q:

• P 2 = P , Q2 = Q.
• PAZ = Y TP = 0, Y TAQ = QZ = 0.
• PA = AQ.

To solve the system Au = f using deflation, note that u can be written as

u = (I −Q)u+Qu

and that (I−Q)u = Z(Y TAZ)−1Y TAu = Z(Y TAZ)−1Y T f can be computed imme-
diately (cf. (1.3)). Furthermore Qu can be obtained by solving the deflated system

PAũ = Pf(5.1)

for ũ (cf. (1.4)) and premultiplying the result with Q.
Also in the nonsymmetric case, deflation can be combined with precondition-

ing. Suppose K is a suitable preconditioner of A, then (5.1) can be replaced by the
following: solve ũ from

K−1PAũ = K−1Pf(5.2)

and form Qũ, or solve ṽ from

PAK−1ṽ = Pf(5.3)

and form QK−1ṽ. Both systems can be solved by one’s favorite Krylov subspace
solver, such as GMRES [22], GCR [7, 25], Bi-CGSTAB [24], etc.

The question remains how to choose Y . We consider two possibilities:

4In multigrid terminology, Z is the projection or interpolation operator, and Y T is the restriction
operator.
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1. Suppose Z consists of eigenvectors of A. Choose Y as the corresponding
eigenvectors of AT .

2. Choose Y = Z.
For both choices we can prove some results about the spectrum of PA.

Assumption 5.1. We assume that A has real eigenvalues and is nondefective.
Whenever A satisfies Assumption 5.1 there exists a matrix X ∈ R

n×n such that
X−1AX = diag(λ1, . . . , λn). For the first choice, which is related to Hotelling deflation
(see [30, p. 585]), we have the following result.

Lemma 5.1. If A satisfies Assumption 5.1, Z = [x1 · · ·xm], and Y is the matrix
composed of the first m columns of X−T , then

X−1PAX = diag(0, . . . , 0, λm+1, . . . , λn).

Proof. From the definition of P we obtain PAZ = 0, so PAxi = 0, i = 1, . . . ,m.
For the other vectors xi, i = m+ 1, . . . , n, we note that

PAxi = Axi −AZ(Y TAZ)−1Y TAxi = λixi −AZ(Y TAZ)−1λiY
Txi = λixi.

The second choice Y = Z has the following properties.
Lemma 5.2. For Y = Z one has the following:
(i) If A is positive definite and Z has full rank, Ac = ZTAZ is nonsingular.
(ii) If A satisfies Assumption 5.1 and Z = [x1 · · ·xm], the eigenvalues of PA are
{0, λm+1, . . . , λn}, where the zero-eigenvalue has multiplicity m.

Proof. (i) For Y = Z the matrix Ac = ZTAZ is nonsingular since sTAcs > 0 for
all s ∈ R

m and s �= 0.
(ii) Again PAxi = 0 for i = 1, . . . ,m. For the other eigenvalues we define the

vectors

vi = xi −AZA−1
c ZTxi = xi − ZDmA

−1
c ZTxi, i = m+ 1, . . . , n,

where Dm = diag(λ1, . . . , λm). These vectors are nonzero, because x1, . . . , xn form
an independent set. Multiplication of vi by PA yields

PAvi = PA(xi − ZDmA
−1
c ZTxi) = PAxi = Axi −AZA−1

c ZTAxi = λivi,

which proves the lemma.
From these lemmas we conclude that both choices of Y lead to the same spectrum

of PA. The second choice has the following advantages: when A is positive definite we
have proven that Ac is nonsingular; it is not necessary to determine (or approximate)
the eigenvectors of AT ; and finally only one set of vectors z1, . . . , zm has to be stored
in memory. This motivates us to use the choice Y = Z. In our applications Z is not
an approximation of an invariant subspace of A but is defined as in (3.1).

Theorems 2.2 and 2.3 do not apply to the nonsymmetric case. However, our
experience has shown that the convergence of (5.1) is similar to that of (1.4) as long
as the asymmetric part of A is not too dominant.

5.2. Parallel implementation. In this section we describe an efficient paral-
lel implementation of the subdomain deflation method with Z defined by (3.1). We
distribute the unknowns according to subdomain across available processors. For the
discussion we will assume one subdomain per processor. The coupling with neighbor-
ing domains is realized through the use of virtual cells added to the local grids. In



DEFLATION-BASED PRECONDITIONERS 455

this way, a block-row of Au = f corresponding to the subdomain ordering

A =



A11 · · · A1m

...
...

...
Am1 · · · Amm


(5.4)

can be represented locally on one processor: the diagonal block Aii represents coupling
between local unknowns of subdomain i, and the off-diagonal blocks of block-row i
represent coupling between local unknowns and the virtual cells.

Computation of element Acij of Ac = ZTAZ can be done locally on processor i
by summing the coefficients corresponding to block Aij of (5.4): Acij = 1TAij1.

Use of the deflation P within a Krylov subspace method involves premultiplying
a vector v by PA:

PAv = (I −AZ(ZTAZ)−1ZT )Av.

Assuming A−1
c has been stored in factored form, this operation requires two multi-

plications with A. However, the special form of Z given by (3.1) allows some sim-
plification. Since Z is piecewise constant, we can efficiently compute and store the
vectors

wj = Azj =



A1j

...
Amj


1(5.5)

corresponding to row sums of the jth block-column of A. Note that for the ith block
system the local block of wj is nonzero only if there is coupling between subdomains
i and j, and only the nonzero blocks of wj need be stored. Thus, for a five-point
stencil the number of nonzero vectors wj which have to be stored per block is five.
Furthermore, for many applications, the row sums are zero, and wj is only nonzero
on subdomain boundaries.

With the wj stored, local computation of AZẽ for a given (m-dimensional) vector
ẽ consists of scaling the nonzero wj by the corresponding ẽj and summing them up:
AZẽ =

∑
j ẽjwj . The number of vector updates is five for a five-point stencil.

In parallel, we first compute and store the (nonzero parts of the) wj and (Z
TAZ)−1

(factored) on each processor. In particular, on processor i we store the local part
wj = Aij1 for all nonzero Aij . Then to compute PAv we first perform the matrix-
vector multiplication q̃ = Av, requiring nearest neighbor communications. Next we
compute the local contribution to the restriction q = ZT q̃ (local summation over all
grid points) and distribute the result to all processes. With this done, we solve for ẽ
from Acẽ = q and finally compute AZẽ =

∑
j ẽjwj locally.

The total parallel communication involved in the matrix-vector multiplication and
deflation are a nearest neighbor communication of the length of the interfaces and a
global gather-broadcast of dimension m.

The computational and communication costs plus storage requirements of sub-
domain deflation are summarized in Table 5.1, assuming a five-point discretization
stencil on an Nx × Ny grid with Mx ×My decomposition into blocks of revolution
nx × ny (Nx = nxMx, Ny = nyMy). The abbreviation GaBr (m) refers to a gather-
broadcast operation in which a set ofm distributed floating point numbers is gathered
from the participating processors and then the whole set is returned to each proces-
sor. The construction costs are incurred only once, whereas the iteration costs are in
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each conjugate gradient iteration. Also included in the table are the costs of an (in
the parallel case, blockwise) incomplete factorization preconditioner with zero fill-in,
ILU(0).

Table 5.1
Work, storage, and communication costs for deflation-based preconditioning.

Sequential Parallel
Work Storage Work Storage Comms.

Construction:
ILU(0) 6NxNy NxNy 6nxny nxny 0
Ac 5NxNy 5MxMy 5nxny 5MxMy GaBr (5MxMy)
Band-factor Ac 2M3

xMy 2M2
xMy 2M3

xMy 2M2
xMy 0

AZ 9NxNy 5NxNy 9nxny 9nxny 0

Iteration:
Backsolve IC(0): 10NxNy 10nxny 0
Restriction: q = ZTAv NxNy nxny 0
Backsolve: Acẽ = q 4M2

xMy 4M2
xMy GaBr (MxMy)

Prolongation: AZẽ 5NxNy 5nxny 0
Vector update: Av −AZẽ NxNy nxny 0

Besides the items tabulated above, there are computation and communication
costs associated with the matrix-vector multiplication and inner products as well as
computational costs of vector updates, associated with the CG method. Based on
this table, we expect the added iteration expense of deflation to be less expensive
than an ILU(0) factorization, and that the method will parallelize very efficiently on
a distributed memory computer.

6. Numerical experiments. All experiments in this section are conducted with
PDEs discretized using cell-centered, central finite volumes on Cartesian grids in
rectangular regions. The theory discussed until now makes no such assumptions,
however, and should hold in a more general, unstructured setting.

In conducting numerical experiments, we are interested in the following issues: (i)
verification of the theoretical results of this article, (ii) the properties of subdomain
deflation for nonsymmetric systems, and (iii) the parallel performance of the method.
To this end we consider three test cases:

I. Poisson equation: −∆u(x, y) = f .
II. Diffusion equation: −∇ · ν(x, y)∇u(x, y) = f .
III. Steady-state convection-diffusion equation: ∇·(a(x, y)u(x, y))−∆u(x, y) = f .

In most examples we take f ≡ 1, having checked that similar results are observed
for a random right-hand side function. We use a global grid resolution Nx × Ny,
with decomposition into Mx × My subdomains, each of resolution nx × ny (thus,
Nx = nxMx and Ny = nyMy).

We solve the resulting discrete (symmetric) system using the CG method and
subdomain deflation. The initial iterate is chosen to be u(0) = 0, and convergence is
declared when, in the Jth iteration, ‖rJ‖ ≤ tol · ‖r0‖ for tol = 10−6.

When classical preconditioning is included, we solve K−1PAu = K−1Pf , where
the preconditionerK used on the blocks is the relaxed incomplete Cholesky (RIC) fac-
torization of [1], with relaxation parameter ω = 0.975. We choose this preconditioner
because it is simple to implement (for a five-point stencil, modifications occur only on
the diagonal) and is reasonably effective. Certainly, more advanced preconditioners
could be employed on the blocks of C.
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6.1. Convergence results. In this section we give convergence results with
problems I, II, and III to illustrate the insensitivity of the convergence to the number
of subdomains, the optimal decomposition on stretched grids, the effectiveness of the
method for problems with discontinuous coefficients, and the convergence behavior
for nonsymmetric problems.

6.1.1. Near grid independence. First we illustrate the sense in which subdo-
main deflation can lead to nearly grid-independent convergence. The symmetric dis-
cretization matrix of problem I on (0, 1)×(0, 1) with homogeneous Dirichlet boundary
conditions is used without preconditioning. Keeping the resolution of each subdomain
fixed, the number of subdomains is increased. In so doing, the blocks of C remain
roughly the same as the grid is refined, and the bound in (2.1) becomes insensitive to
the number of blocks m for large enough m.

Assume Mx = My and nx = ny. Figure 6.1 shows the scaled number of CG
iterations J/nx (note that nx is constant along each line in the figure) for problem I
as the grid is refined keeping the subdomain resolution nx fixed at values of 10, 50,
and 200. The lines are almost indistinguishable from one another. It is apparent from
the figure that—using only subdomain deflation—the number of iterations required
for convergence is bounded independent of the number of subdomains. The same
qualitative behavior is observed with preconditioning.
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Fig. 6.1. Number of iterations J divided by the subdomain resolution nx ≡ ny ∈ {10, 50, 200}
with and without deflation.

6.1.2. Stretched grid. We consider problem I on (0, 3) × (0, 1) with homoge-
neous Dirichlet boundary conditions, and Nx = 36 and Ny = 72. The cell aspect
ratio is Qc = hx/hy = (3/36)/(1/72) = 6. Based on the discussion of section 4.1,
the best condition number is expected for a subdomain aspect ratio Qd = 1, associ-
ated with a subdomain grid aspect ratio of Qg = Qd/Qc = 1/6. Table 6.1 gives the
number of iterations required for convergence for 5 different decompositions into 12
equally sized subdomains. The solution tolerance of the nonpreconditioned CG algo-
rithm was set to tol = 10−2, prior to the onset of superlinear convergence, to obtain
these results. The 6 × 2 decomposition with Qd = 1 gives the minimum number of
iterations, in keeping with the discussion. We note that if iteration is continued to
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high tolerance, the superlinear convergence effect may give quite different results than
shown here. This domain decomposition selection strategy is most useful when the
condition number governs the convergence rate.

Table 6.1
Iterations required for problem I for different decompositions.

Mx ×My nx × ny Qd J
2× 6 18× 12 9 73
3× 4 12× 18 4 63
4× 3 9× 24 9/4 56
6× 2 6× 36 1 48
12× 1 3× 72 1/4 50

6.1.3. Discontinuous coefficients. To further illustrate the discussion of sec-
tion 4.2 we give results for problem II on (0, 1) × (0, 1) with boundary conditions
ux(0, y) ≡ uy(x, 0) ≡ uy(x, 1) ≡ 0, u(1, y) ≡ 0. We define the diffusion coefficient
to have value ν(x, y) = 1 on the lower left subdomain, including its interfaces, and
ν(x, y) = ε elsewhere. Table 6.2 lists the iterations for the CG method with diagonal
preconditioning for Mx =My = 3 and nx = ny = 30, as ε is decreased.

One observes that this is a very effective strategy for eliminating the effect of the
jump in coefficients.

Table 6.2
Iterations for problem II with discontinuous coefficients.

ε No deflation Deflation
1 295 151
10−2 460 183
10−4 521 189
10−6 628 189

6.1.4. A nonsymmetric example. We also illustrate the convergence of the
deflation method for a convection dominated problem III on (0, 1) × (0, 1) with re-
circulating wind field a1(x, y) = −80xy(1− x), a2(x, y) = 80xy(1− y) and boundary
conditions u(x, 0) ≡ u(y, 0) ≡ u(x, 1) ≡ 0, ux(1, y) = 0. The grid parameters are
Nx = Ny, Mx =My, nx = ny with grid spacing given by

xi = (i/Nx)
2(3− 2(i/Nx)).

The resulting system is solved using GCR truncated to a subspace of 20 vectors
by dropping the vector most nearly orthogonal to the current search direction [26].
Classical preconditioning in the form of RILU(0.975) is incorporated. The restriction
matrix for deflation is chosen to be Y = Z.

Table 6.3 compares the required number of GCR iterations as the number of
subdomains is increased keeping the subdomain resolution fixed at nx = 50. Although
the number of iterations is not bounded in the deflated case, it grows much slower
than the nondeflated case.

6.2. Parallel performance. For the results in this section, problem I will be
solved on (0, 1)× (0, 1) with homogeneous Dirichlet boundary conditions everywhere.

The resulting equations are solved with CG preconditioned with RIC(0.975). Our
implementation does not take advantage of the fact that some of the row sums may
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Table 6.3
Scalability for a nonsymmetric problem, subdomain grid 50× 50.

Mx No deflation Deflation
1 42 42
2 122 122
3 224 191
4 314 235
5 369 250
6 518 283
7 1007 377

Table 6.4
Speedup for problem I on a 120× 120 grid.

p J tconst titer s eff
1 38 8.7 · 10−3 1.3 – –
4 58 1.2 · 10−2 0.57 2.3 0.58
9 68 5.0 · 10−3 0.33 4.0 0.44
16 64 5.3 · 10−3 0.18 7.2 0.45
25 57 4.3 · 10−3 0.15 9.0 0.36
36 50 7.6 · 10−3 0.11 11.7 0.33
64 41 1.1 · 10−2 0.11 12.3 0.19

Table 6.5
Speedup for problem I on a 480× 480 grid.

p J tconst titer s eff
1 120 1.4 · 10−1 67.3 – –
4 137 1.3 · 10−1 21.8 3.1 0.77
9 138 6.3 · 10−2 9.65 7.0 0.78
16 139 3.6 · 10−2 5.60 12.0 0.75
25 121 2.5 · 10−2 3.21 21.0 0.84
36 118 2.2 · 10−2 2.27 29.7 0.82
64 100 1.3 · 10−2 1.19 56.6 0.88

be zero in (5.5). Each processor is responsible for exactly one subdomain. Parallel
communications were performed with MPI, using simple point-to-point and collective
communications. No exploitation of the network topology was used. Parallel results
were obtained from a Cray T3E. Wall-clock times in seconds were measured using the
MPI timing routine.

6.2.1. Speedup for fixed problem size. To measure the speedup, we choose
p = M2

x processors for Mx ∈ {1, 2, 3, 4, 5, 6, 8}. The results are given in Tables 6.4
and 6.5 for Nx = 120 and Nx = 480, respectively. The total number of iterations
is denoted by J ; the time to construct the incomplete factorization and deflation
operator is denoted by tconst; and the time spent in iterations is denoted by titer.
The speedup is determined from s = (titer|p=1) /(titer|p=M2

x
) and parallel efficiency by

eff = s/p.

In Table 6.4 the parallel efficiency decreases from 58% on 4 processors to only
19% on 64 processors, whereas in Table 6.5 efficiency increases slightly from 77%
to 88%. We expect that the poorer performance in the first table is due to both a
relatively large cost of solving the coarse operator Ac and a large communication-
to-computation ratio for small subdomains. The following factors contribute to the
parallel performance:

• As more subdomains are added, the relative size of the deflation system Ac
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increases, making it more expensive to solve, but at the same time, its solution
becomes a better approximation of the global solution.
• As the size of the subdomain grids decreases, the RILU preconditioner be-
comes a better approximation of the exact solution of the subdomain prob-
lems.
• Global communications become more expensive for many subdomains.
• Additionally there may be architecture-dependent effects in play.

6.2.2. Scaled performance for fixed subdomain size. Table 6.6 gives the
computation times in seconds obtained with and without deflation, keeping the sub-
domain size fixed at nx ∈ {5, 10, 20, 50, 100, 200} as the number of processors is
increased. It is clear that the effect of deflation is to make the parallel computation
time less sensitive to the number of processors.

We have already seen that the number of iterations levels off as a function of
the number of subdomains. The results of this table show that also the parallel
iteration time becomes relatively insensitive to an increase in the number of blocks.
Some overhead is incurred in the form of global communications and in solving the
deflation subsystem. As a result, the computation times are not bounded independent
of the number of subdomains.

Comparing the iteration counts for this problem, we note that the ratio of itera-
tions with and without deflation is very similar to that of Figure 6.1 without precon-
ditioning. Furthermore, the cost per iteration scales with n2

x for nx ≥ 20 (for smaller
nx, the cost of deflation offsets the advantage gained). The effect of preconditioning is
to reduce the necessary number of iterations in both the deflated and undeflated cases
such that the ratio of iterations remains fixed. We therefore expect that the ratio of
computation times with and without deflation should reflect the ratios of Figure 6.1
as well.

Table 6.6
Scaled performance for problem I with fixed subdomain size nx.

nx p = 1 p = 4 p = 9 p = 16 p = 25 p = 36 p = 64
5 no defl. 4 · 10−4 4 · 10−3 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2 4 · 10−2

defl. — 5 · 10−3 1 · 10−2 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2

10 no defl. 1 · 10−3 9 · 10−3 3 · 10−2 3 · 10−2 5 · 10−2 6 · 10−2 7 · 10−2

defl. — 1 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 6 · 10−2 6 · 10−2

20 no defl. 6 · 10−3 3 · 10−2 6 · 10−2 8 · 10−2 0.12 0.15 0.18
defl. — 3 · 10−2 7 · 10−2 8 · 10−2 0.10 0.11 0.13

50 no defl. 0.11 0.34 0.51 0.69 0.94 1.10 1.37
defl. — 0.35 0.57 0.64 0.71 0.75 0.77

100 no defl. 0.78 2.11 2.98 4.10 5.29 6.23 8.00
defl. — 2.10 3.27 3.46 3.58 3.89 3.97

200 no defl. 4.96 13.3 18.6 25.3 32.8 38.6 49.7
defl. — 12.9 17.6 20.4 20.8 22.5 23.3

7. Conclusions. In this paper we have given new effective condition number
bounds for deflated systems, both with and without conventional preconditioning.
Specifically, we show that choosing the deflation subspace to be piecewise constant
on subdomains effectively decouples the problem into a set of related Neumann prob-
lems, with the convergence governed by the “worst-conditioned” Neumann problem.
This knowledge can help to choose an effective decomposition of the domain and is
especially useful for problems with large discontinuities in the coefficients. Numerical
experiments illustrate that the convergence rate is nearly independent of the num-
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ber of subdomains for some problems, and that the method can be very efficiently
implemented on distributed memory parallel computers.

We see the deflation approach presented here as offering improved convergence
rate at a small additional cost for parallel computations using blockwise application
of conventional preconditioners. The reader is referred to [9] for a comparison of
blockwise incomplete factorization in the framework of nonoverlapping domain de-
composition. In that reference is also a comparison of blockwise incomplete factor-
ization with single-block incomplete factorization. In turn, to put these results in
perspective, Botta et al. [4] compare a number of modern strategies including ICCG
and multigrid methods.

Acknowledgments. We thank HPαC for the use of the Cray T3E, and Pieter
Wesseling, Guus Segal, Jos van Kan, and a referee for helpful discussions and sugges-
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Abstract. We introduce a new preconditioner for elliptic PDEs on unstructured meshes. Using a
wavelet-inspired basis we compress the inverse of the matrix, allowing an effective sparse approximate
inverse by solving the sparsity vs. accuracy conflict. The key issue in this compression is to use second
generation wavelets which can be adapted to the unstructured mesh, the true boundary conditions,
and even the PDE coefficients. We also show how this gives a new perspective on multiresolution
algorithms such as multigrid, interpreting the new preconditioner as a variation on node-nested
multigrid. In particular, we hope the new preconditioner will combine the best of both worlds: fast
convergence when multilevel methods can succeed but with robust performance for more difficult
problems.

The rest of the paper discusses the core issues for the preconditioner: ordering and construction
of a factored approximate inverse in the multiresolution basis, robust interpolation on unstructured
meshes, automatic mesh coarsening, and purely algebraic alternatives. Some exploratory numeri-
cal experiments suggest the superiority of the new basis over the standard basis for several tough
problems, including discontinuous anisotropic coefficients, strong convection, and indefinite reaction
problems on unstructured meshes, with scalability like hierarchical basis methods achieved.

Key words. preconditioner, multilevel, multigrid, hierarchical basis, unstructured mesh, elliptic
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1. Motivation. Approximate inverses are becoming increasingly popular pre-
conditioners for the iterative solution of large sparse linear systems. The main reason
is that they can be efficiently applied (with just matrix-vector products) on high-
performance hardware; they are also a valuable general-purpose alternative to ILU
for tough problems where ILU breaks down from instabilities.

Several algorithms for computing sparse approximations to A−1, or to its inverse
triangular factors L−1 and U−1, have been proposed; see, e.g., [5, 6, 7, 19, 27, 30, 36].
Unfortunately, for linear systems arising from elliptic PDEs, there appears to be
an inherent problem in the explicit nature of these preconditioners, a fundamental
conflict between accuracy and sparsity. As problem sizes increase, their performance
(either in terms of convergence rate at a fixed number of nonzeros per row, or storage
required for a fixed convergence rate) quickly decreases.1

For a simple heuristic analysis of this problem, ignore boundary conditions. Sup-
pose the elliptic PDE Lu = f on domain Ω is discretized to Au = f on points x1,
. . . , xn in Ω, where the matrix A is the discrete form of the elliptic operator L,
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1Of course, switching to an implicit preconditioner isn’t guaranteed to solve the scalability prob-

lem; for example, standard ILU does not scale any better than no preconditioner, and the question
of how best to use matrix orderings, dropping strategies, and numerical modifications to improve the
scalability of ILU is still open [3, 4, 9, 14, 32, 33, 34].
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and ui ≈ u(xi). (The discretization may use finite elements, finite volumes, or any
other reasonable scheme.) The continuous solution may be written with the Green’s
function G(x, y) on Ω× Ω satisfying LG(x, y) = δ(x− y):

u(x) =

∫
Ω

G(x, y)f(y) dy

(assuming this exists, as one would expect for an elliptic problem well-posed enough
to permit numerical solution). The discrete solution is similarly found with the matrix
A−1 satisfying AA−1 = I:

ui =

n∑
j=1

A−1
ij fj .

Through this analogy, it is clear that A−1 is the discrete approximation to the Green’s
function.

Unfortunately, it is well known that though the Green’s function decays away from
its diagonal singularity, the decay may be slow especially for convective or indefinite
problems (in fact, for problems with Neumann boundaries, G might not even decay
to zero at all). The decay of the true Green’s function is independent of the mesh
size in the discretization, and so as the mesh is refined the number of large nonzeros
in A−1 also increases, roughly like O(n1+1/d), where n is the number of mesh nodes
and d is the dimensionality of the problem.2 This means an approximate inverse
preconditioner cannot scale effectively with the problem size.3

To be more precise, one cannot scale in the standard basis, where ui approximates
u(xi). In [11, 18], the realization that the Green’s function is smooth away from the
diagonal suggested wavelets as alternate bases: they can compress smooth functions
into high-quality sparse approximations, handle nonsmooth points (e.g., at the di-
agonal singularity, or arising from discontinuous coefficients), and provide fast and
parallelizable transforms to and from the standard basis. The finer the mesh, the bet-
ter the smoothness of G(x, y) can be exploited for compression, so the preconditioner
may scale much more effectively.

The original paper [18] considered only classical wavelets, treating the discrete
Green’s function as a two-dimensional, regularly sampled, periodic image. For prob-
lems of dimensions greater than one (so the Green’s function is of dimension greater
than two) on irregular meshes with nonperiodic boundaries, this leads to significant
problems. In particular, these “first generation” wavelets are constructed on regu-
larly sampled one-dimensional periodic domains and so cannot hope to perform well
on data coming from more complicated situations. This motivated the use of second
generation wavelets [35] in [11] that naturally match such domains, while retaining the
attractive properties of compression, tolerance of singularities, and fast transforms.
The present article describes the multiresolution approximate inverse preconditioner
of [11] and more recent developments.

2There are n columns in A−1, with column i containing a discrete approximation to G(·, xi).
There is a d-dimensional subregion ΩL ⊂ Ω such that G(x, xi) is large for x ∈ ΩL. There are
O(n1/d) mesh nodes contained in ΩL, so column i of A−1 has roughly O(n1/d) large entries, for a
total of O(n1+1/d) in A−1.

3Of course, this reasoning applies directly only to fully explicit approximate inverses: precondi-
tioners in factored form perhaps may be more effective, since their product may be dense, though at
the time of writing this has yet to be demonstrated.
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The initialization phase

• Determine multiresolution bases α and β.

• Use a standard operator-based approximate inverse algorithm to find
Q̃ ≈ (M−T

β AM
−1
α )−1.

The application phase (called by a Krylov solver)

• Apply preconditioner to x by y =M−1
α (Q̃(M−T

β x)).

Fig. 1. The multiresolution approximate inverse method.

Other authors have proved that discretizing elliptic PDEs with a wavelet ba-
sis in the finite element method (and using point or block diagonal preconditioners)
can give optimal scalability, primarily working with classical wavelets and generaliza-
tions to handle boundaries and even dyadically refined unstructured meshes (see, e.g.,
[15, 16, 21, 22, 23, 24]) but also, e.g., with approximate wavelets derived from an exist-
ing hierarchical basis [37, 38]. The work in [21] actually worked with a full approximate
inverse rather than just diagonal preconditioners and found significant improvements
by taking into account interactions between different levels. The present paper differs
by combining second generation wavelets with a more sophisticated approximate in-
verse, with an emphasis on heuristically finding good multilevel algorithm components
(regrettably without theoretical results to confirm the promising first few numerical
experiments).

2. Outline of the method. Since the Green’s function is defined on the product
space Ω×Ω, it is natural to look for a wavelet basis that is a tensor product α⊗ β of
wavelet bases α and β on Ω. In the discrete case, this means representing A−1 as

A−1
ij =

n∑
k=1

n∑
l=1

Qkla
k
i b
l
j ,

where the separable basis functions are the product of elements ak ∈ α and bl ∈ β,
and the coefficients are stored in matrix Q. Equivalently,

A−1 =M−1
α QM

−T
β ,

where M−1
α and M−1

β have the basis functions of α and β, respectively, as their
columns. Applying these operators to the standard basis vectors shows that Mα

and Mβ are the transforms from the wavelet bases to the standard basis.

The transformed A−1, ready for compression, is Q =MαA
−1MT

β . For the precon-

ditioner, a highly sparse approximation Q̃ will be used. RewritingQ = (M−T
β AM

−1
α )−1

shows that Q̃ can be obtained by applying a standard sparse approximate inverse al-
gorithm to the transformed operator M−T

β AM
−1
α —in particular, without knowledge

of the true inverse A−1. Note that to avoid forming (M−T
β AM

−1
α ) explicitly, which

may incur significant fill-in, an approximate inverse algorithm that works on a linear
operator (not necessarily a matrix) is required. One example, used in this research,
is SAINV [7].

To summarize, an overview of the multiresolution approximate inverse method is
given in Figure 1.
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The forward transform (standard basis → multiresolution basis)

• Start with the function values f1, . . . , fn at sample points x1, . . . , xn.

• Let λ0
i = fi for all i, C0 = {x1, . . . , xn}, and j = 0.

• Begin loop:
• Split up the sample points Cj into two disjoint subsets, the fine nodes
Fj+1 and the coarse nodes Cj+1.

• Predict λjF , the values at the fine nodes, from λjC , the values at the

coarse nodes, with some linear prediction operator Pj : λjF ≈ PjλjC .

• Store the wavelet coefficient γj+1
i = λji − (PjλjC)i for each fine node

xi ∈ Fj+1.

• Update the value at each coarse node by λj+1
i = λji + (Ujγj+1)i for

each xi ∈ Cj+1 so that the required moments will be preserved. This
update operator Uj must also be linear.

• If |Cj+1| is small enough, below some constant, break out of the
loop. Otherwise, set j ← j + 1 and continue.

• Return λj from the coarsest level along with the wavelet coefficients
γ1, . . . , γj from each level.

The inverse transform (multiresolution basis → standard basis)

• Start with λj and the wavelet coefficients γ1, . . . , γj .

• Begin loop:
• Reconstruct λj−1

C at the coarse nodes by λj−1
i = λji − (Uj−1γj)i for

each xi ∈ Cj .
• Reconstruct λj−1

F at the fine nodes by λj−1
i = γji + (Pj−1λj−1

C )i for
each xi ∈ Fj .

• Continue with j ← j − 1 until j = 1.

• Return fi = λ0
i for all i.

Fig. 2. The transform algorithms of the lifting scheme.

3. The general algorithm.

3.1. The basis construction. The goal of the new basis α ⊗ β is to convert
“smoothness” in the standard basis to small coefficients that can be accurately approx-
imated by zero. For irregular domains, the lifting scheme [35] for second generation
wavelets is a natural choice. In this scheme, the basis is not constructed explicitly,
but rather the forward transform algorithms (from the standard basis to the mul-
tiresolution basis, called Mα and Mβ above) are designed to directly achieve good
compression along with easy invertibility. Figure 2 gives summaries of the transform
algorithms.

The essential idea is that where a function is smooth, its values can be accurately
predicted from nearby neighbors, and so storing the prediction error results in small
coefficients except near “rough” regions. Doing this in a hierarchy of levels gives
rise to a multiresolution representation: wavelet coefficients at level j correspond to
features on the scale of the grid resolution of the set of nodes Cj at level j. It should be
noted that on unstructured meshes (and possibly for other reasons mentioned below)
the prediction operator for each fine node may have different weights—unlike classical



MULTIRESOLUTION APPROXIMATE INVERSES 467

wavelets, where one set of convolution weights is used throughout the domain.

The update step is required in signal processing to prevent aliasing, where for
example a high-resolution singularity is propagated unchanged to lower resolutions;
the update step is an averaging designed to make sure the signal is smooth enough
to be faithfully represented at the next coarser level. However, in this context of
compressing discrete Green’s functions, this seems to be a liability, as demonstrated
in [11]. In the ideal case, all wavelet coefficients in Q will be very small except on
the diagonal, where the discrete Green’s function must have a singularity: finding
a sparse approximate inverse for a nearly diagonal matrix is simple. However, the
update step smooths out this inherent singularity, smearing the large diagonal entries
to off-diagonals, resulting in a harder task for a sparse approximate inverse algorithm.

On the other hand, without the update step the basis can be viewed as just a
generalization of the standard hierarchical basis [1, 40] (if regular refinement and linear
interpolation for prediction are used, it is exactly the hierarchical basis; see section 4
for more details). While optimal scalability has been demonstrated with classical
wavelets in [15, 16, 21, 22, 23, 24], it is well known that with just diagonal or block
diagonal preconditioning the hierarchical basis is not optimal: the condition number
of the preconditioned system slowly grows with the number of unknowns, particularly
in higher dimensions. To get the optimal performance of methods such as multigrid,
the basis must be stabilized [37, 38], making the basis functions from different levels
at least approximately orthogonal. This is essentially what the update step does,
smoothing the function at each level so that coarser levels don’t see the high-resolution
features picked up at finer levels. Thus perhaps a theoretical analysis, beyond the
scope of this paper, will show that the update step can be of value for multiple
dimensions. However, the issue is further complicated by the fact that approximate
inverses can be more effective in higher dimensions, where the Green’s function decays
faster and a sparse approximation is more feasible. For the rest of this paper we will
not use the update step, leaving these questions for future research.

Without the update step, the forward transform is simplified, and in fact all
wavelet coefficients at all levels can be computed simultaneously. The forward trans-
formM can easily be written explicitly as a triangular matrix multiply and the inverse
transform as a triangular solve, as in Figure 3. As long as each prediction operation
can be done in constant time, i.e., each Pj has a bounded number of nonzeros per
row, it is clear that the forward and inverse transforms can both be done in O(n)
time in serial. In terms of parallel computation, the forward transform is as good as
a single sparse matrix multiply, whereas the inverse transform can naturally be done
in O(log n) steps (with smaller and smaller matrix multiplies) assuming a geometric
decline in the size of the Cj .

There are two big issues that need to be resolved when constructing the basis.
The first is how to coarsen; how to select the sets Cj of coarse nodes at each level.
So far, we have concentrated on independent set heuristics similar to those used in
unstructured multigrid [17] and algebraic multigrid [31]. The second issue is how
to define the prediction operators Pj at each level. Standard linear interpolation or
higher order polynomial interpolation is a possibility, but for robustness in difficult
problems we have found more sophisticated techniques are necessary [11].

Looking at the compressed inverseQ =MαA
−1MT

β , notice that the transformMα

is being applied to each of the columns of A−1. From the equation AA−1 = I, observe
that column i of A−1 is actually the discrete solution to the PDE Lu(x) = δ(x− xi).
Thus the functions compressed by α satisfy the homogeneous PDE Lu = 0 almost
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The forward transform (standard basis → multiresolution basis)




γ1

γ2

...
γj

λj




=Mf =




I −P1

I −P2

. . .
...

I −Pj

I







fF1

fF2

...
fFj
fCj




The inverse transform (multiresolution basis → standard basis)

f =M−1γ =




I −P1

. . .
...

I −Pj

I




−1

γ1

...
γj

λj




Fig. 3. The multiresolution basis transforms without update steps expressed in terms of trian-
gular matrices.

everywhere, which we can take as our definition of “smooth.” Predicting the value
at a fine node i from nearby coarse nodes can be done by solving a discrete form of
Lu(xi) = 0 using the coarse nodes as specified “boundary” data.

Similarly, the β transform is applied to the rows of A−1, which are discrete so-
lutions to the adjoint problems, so β may be constructed with the adjoint operator
L∗ in mind. In particular, for self-adjoint problems it makes sense to take α = β; for
highly non-self-adjoint problems it will be important to have α �= β.

Finally it should be noted that for some problems—e.g., with oscillatory coeffi-
cients, strong indefiniteness, or complicated convection streamlines—it may be too
difficult to construct very coarse yet useful representations of the Green’s function.
Though ideas from homogenization theory may help, it’s likely that there will be a
lower limit to the resolutions that are useful to consider. In this case, it is proba-
bly wisest to limit the multiresolution bases to a few levels and instead concentrate
resources on the approximate inverse.

3.2. The approximate inverse. The transformed operatorM−T
β AM

−1
α may be

multiplied out explicitly at which point any approximate inverse algorithm may be
used. However, in doing so substantial extra fill-in is incurred, increasing the cost of
the preconditioner construction and application as well as storage requirements. A
more attractive route is to use an approximate inverse algorithm that doesn’t require
explicit knowledge of the matrix and thus can precondition an operator known only
in this factored form.

Many popular algorithms can, in their simplest form, be adapted to this context.
One example is the minimal residual (MR) method of [19] which requires no mod-
ification. However, other approximate inverses require more thought. For example,
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• Take as input matrix A of dimension n and a drop tolerance δ, generally
around 0.1 or 0.01.

• Set W← I and Z← I.
• for j = 1 to n do

• Compute l = AZ:,j and u = ATW:,j .

• Set Djj ← (uTZ:,j)
−1, the inverse pivot.

• Rescale L = lDjj and U = uDjj .

• Compute the biconjugation coefficients
CW = LTW:,j+1:n and CZ = UTZ:,j+1:n.

• Update the remaining columns of W and Z with sparsified outer-
products (i.e., only updating with the entries of magnitude greater
than δ): W:,j+1:n ←W:,j+1:n − sparsify(W:,jCW )
and Z:,j+1:n ← Z:,j+1:n − sparsify(Z:,jCZ).

Fig. 4. The SAINV algorithm, using MATLAB colon notation for submatrices.

a sparsity pattern must be specified a priori for some methods, and it is not clear
how to do so for efficient and robust performance here. Avoiding this issue, we have
chosen to adopt SAINV [5, 6, 7] for this first study, which constructs the sparsity
pattern during construction. In particular we use an outer-product-based version of
the algorithm [13] that doesn’t require any knowledge of the sparsity pattern of the
operator for efficient performance. We note that for efficiency during the construc-
tion phase, the basis transforms and matrix multiplies must be done in fully sparse
mode. Figure 4 gives the algorithm, which by biconjugation (along the lines of mod-
ified Gram–Schmidt) applied to two copies of the identity matrix constructs upper
triangular matrices W and Z and a diagonal matrix D such that A−1 ≈ ZDWT .
It can be simplified in the case of symmetric matrices to construct just Z (which is
equal to W) with half the work and storage. It has the advantage that for positive
definite matrices it is guaranteed to produce a positive definite preconditioner, though
breakdown is possible in the general case, and has generally been shown to be very
robust [7].

One important issue for factored approximate inverses is the ordering of the rows
and columns of the matrix. As demonstrated in [8, 12, 13], performance can be sig-
nificantly improved by an appropriate reordering—e.g., nested dissection (we use the
Metis routine [29]). On the other hand, one might argue that if the multiresolution
bases here are constructed correctly, the transformed A will be well enough condi-
tioned that ordering isn’t needed. However, it seems doubtful that the multiresolution
framework will be robust enough to handle all problems on its own. What we de-
sire for tough problems is a multiresolution basis construction algorithm which “fails
gracefully,” i.e., never makes A worse conditioned even though it may not provide ad-
equate improvement. In this case, the power of the approximate inverse will hopefully
show through, provided we have taken care of the ordering.

3.2.1. Ordering. Unfortunately, typical ordering algorithms require the explicit
structure of the matrix, so this is a nontrivial step in this context; some analysis is
required.

Before going further, recall the graph theory notation often used in sparse matrix
ordering. With a given n × n matrix B, associate the graph GB, or simply G if the
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context makes it clear, defined on nodes {1, . . . , n} with a directed edge i→ j if and
only if Bij �= 0 (for i �= j). Thus the nonzero structure of B and the graph GB

may be identified. As an abbreviation, write i → j to mean the statement that the
directed edge i → j exists in G. The neighborhood of a node i is the set of nodes j
such that i→ j. A path is a sequence of distinct nodes i1, . . . , ik such that i1 → i2,
i2 → i3, . . . , and ik−1 → ik, often written i1 → · · · → ik, or simply i1 ❀ ik. The
transitive closure G∗ of a graph G is one constructed on the same nodes but having
i→ j whenever i❀ j in G. For a fuller treatment, see [25, 26].

As is shown in [26], assuming here and for the rest of this section that there is no
felicitous cancellation, the structure of B−1 is given by the transitive closure of the
graph of GB. As shown before, the forward transform Mα can be simply expressed
as a triangular matrix (when there are no update steps). Then the graph of Mα

satisfies i→ j if and only if at some level i there is a fine node whose prediction uses
coarse node j. Therefore the graph ofM−1

α has i→ j if and only if there is a chain of
prediction dependencies i❀ j.

Define the support of a node j to be the set supp(j) of nodes i such that (M−1
α )ij �=

0—this is actually the support of the jth multiresolution basis function. From the
transitive closure characterization of inverses, observe that the supports have a nested
structure: if i ∈ supp(j), then supp(i) ⊂ supp(j). Notice that if j is a fine node at the
highest resolution level, supp(j) = {j}, but that if j is at the lowest resolution level,
its support may be very dense—showing that it is important to not multiply out the
inverse transform explicitly.

Now examine the structure ofM−T
β AM

−1
α . Assume that A has symmetric struc-

ture (Aij �= 0 if and only if Aji �= 0) and Mβ and Mα have the same structure,
i.e., that the two bases have the same hierarchy of levels and the same prediction
dependencies.4 Then the product has symmetric structure, and one can speak unam-
biguously about coarse/fine nodes and the support of a node. Observe

(M−T
β AM

−1
α )ij =

n∑
k=1

n∑
l=1

(M−T
β )ikAkl(M

−1
α )lj

=

n∑
k=1

n∑
l=1

(M−1
β )kiAkl(M

−1
α )lj .

Then (M−T
β AM

−1
α )ij �= 0 if and only if there exist nodes k and l with k ∈ supp(i),

l ∈ supp(j), and k → l in A. In other words, i→ j in the product if and only if their
supports are adjacent in A. Using the nested structure of the supports, it is then
clear that the neighborhood of any node j contains the neighborhoods of all nodes in
supp(j).

Now, the location of nonzeros in column i of the upper inverse triangular factor
Z of a symmetrically structured matrix B can be characterized as follows [12]: Z has
a nonzero for each node before i and reachable from i via paths in B using nodes
before i.

Consider the effect of swapping the positions of i �= j in some ordering, when
i ∈ supp(j). Clearly the number of nonzeros in columns in Z ordered before both

4So far, relatively good results have been obtained under this assumption, which makes the
following analysis much easier. However, it may prove useful to relax this requirement for convection-
dominated problems, where predicting from the upwind nodes suggests that the structure of Mα and
Mβ should be different: convection for the adjoint problem (handled by β) is in the opposite direction
from the original problem (handled by α).
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• Take as input the structure of Mα or Mβ (multiplied out).

• For i = 1, . . . , n
• Set numdep(i) = number of nodes j with j → i, not including i

itself.

• Set waiting(i) to false.

• Initialize a queue with room for n entries, empty at first.

• Set i = 1, the first node to attempt to order.

• Set j = 1, the first index into the modified ordering p.

• While j ≤ n
• If the queue is not empty then

• Remove the first node k from the front of the queue.

• Set pj = k and j ← j + 1.

• Consider, in order, each l �= k with k → l and waiting(l) true;
decrement numdep(l), and if this is 0 set waiting(l) to false and
append l to the queue.

• Else if numdep(i) = 0 then
• Set pj = i, j ← j + 1, and i← i+ 1.

• Consider, in order, each l �= i with i → l and waiting(l) true;
decrement numdep(l), and if this is 0 set waiting(l) to false and
append l to the queue.

• Else (numdep(i) > 0)
• Set waiting(i) to true, and i← i+ 1.

• Return the modified ordering p.

Fig. 5. Modifying an ordering to respect the multiresolution basis.

i and j or after both will not be changed. However, the columns in between may
be altered. Since the neighborhood of j contains the neighborhood of i, any nodes
reachable on paths through i are reachable through j, but not necessarily the other
way around. Therefore ordering i before j can’t result in more nonzeros in Z, but
putting j before i might.

Thus any ordering of the nodes should respect j ordered after all other nodes in
supp(j). Since supp(j) is the set of i such that (M−1

α )ij �= 0, this is equivalent to
requiring that i be ordered before j whenever i❀ j inMα. This is clearly equivalent
to ordering i before j whenever i→ j inMα, which can be enforced by the algorithm
in Figure 5.

Essentially the algorithm outputs the nodes in the existing order except when a
coarse node comes before any of its fine dependents. Then the coarse node is made
to wait until all the fine dependents have been ordered, at which point it’s put on a
queue to be ordered as soon as possible. The value numdep(i) serves as a counter of
how many fine nodes dependent on i have yet to be ordered—since i is put into p only
when this reaches zero, the ordering must be consistent.

The initialization loop, assuming sparse storage of the matrix, takes time on the
order of the number of nonzeros in the matrix, which should be O(n). The complexity
of the main loop is a little more difficult to prove.

First note that both i and j begin at 1 and are never decremented. Let d =∑n
i=1 numdep(i), so before the main loop begins d = nnz(Mα) − n, the number of
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off-diagonal nonzeros in Mα. Values in numdep are never incremented, so d never
increases.

A node can only be marked as waiting in the final else clause, and since i is
incremented there it can never be marked as waiting again. The only way an entry
in numdep can be decremented to zero is if it had been marked as waiting, and when
it hits 0 its marked as not waiting, so it can never be decremented past 0. Therefore
d is always nonnegative.

Suppose i is incremented past n+1—this can only happen if i = n+1 at the start
of an iteration with the queue empty. There must be some unordered nodes left, as
otherwise j would have been incremented past n and the loop would have stopped. If
any of the unordered nodes had numdep equal to zero, they either would have started
at zero, in which case the first else clause would have been executed for that value
of i, or would have been decremented to zero and added to the queue—in either case
implying that they must now be ordered, a contradiction. Thus all the unordered
nodes have positive numdep counters. However, some unordered node v must be from
the finest resolution level of all unordered nodes and so cannot have any unordered
dependent fine nodes—and so must have numdep(v) = 0, a contradiction. Therefore
i never is incremented past n+ 1.

Clearly j can never be incremented past n + 1 thanks to the loop condition.
Therefore, since in each iteration either j is incremented, i is incremented, or at
least one of the values in numdep is decremented, there can be at most n+ nnz(Mα)
iterations. In fact, assuming constant time queue operations (e.g., as in a simple array
implementation) the time spent in the main loop is O(n)+O(nnz(Mα)), which again
should be O(n). Thus the entire algorithm runs in O(n) time.

Now consider the following simple scheme: order A with nested dissection and
then run the above algorithm to make the ordering consistent with the multiresolution
basis. The only worry is that the modification will destroy the good fill-reducing
qualities of the original ordering. However, the bulk of the nodes should be at the finest
level and thus have trivial supports, so the modification can’t change their relative
order. The only nodes that can be greatly affected by the ordering modification
are the very coarse nodes, which are in a very small minority. Thus the potential
damage is very limited. Experiments have confirmed that this isn’t much worse (but
far cheaper) than applying nested dissection to the multiplied out M−T

β AM
−1
α .

4. Relationships with other methods. Before proceeding to our actual im-
plementation and testing for unstructured two-dimensional problems, it is instructive
to compare the new algorithm with some other multiresolution methods.

As mentioned before, the basis transforms can be expressed as triangular matrices
with unit block diagonals, so the algorithm could be viewed as a highly parallel variant
of multilevel ILU (e.g., [4, 3, 9, 32, 33, 34]) with an approximate inverse replacingD−1

for the approximate LDU factorization.
Another viewpoint comes from noting that the operators

(
Pα
I

)
and (PTβ I) within

the transforms for α and β correspond to node-nested multigrid’s prolongation and
restriction, respectively. The application of the preconditioner can then be thought
of as the multigrid-like algorithm in Figure 6. The key difference between this and
multigrid is that the smoothing is performed in one step, and only at the coarsest level
for each variable, instead of being interleaved with restriction and prolongation. (See
[36] for an example of approximate inverses used as smoothers in multigrid.) This is
similar to but not exactly the same as additive multigrid, i.e., BPX [10].

The hierarchical basis preconditioners (see, e.g., [1, 2, 40]) are very similar to the
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• Successively restrict the function to coarser and coarser levels by M−T
β .

• Smooth all variables at their coarsest level only—including couplings be-
tween variables at different levels—by Q̃, possibly doing an exact solve
on the coarsest level if the approximate inverse is dense enough there.

• Prolong the smoothed multiresolution representation back to the original
variables by M−1

α .

Fig. 6. A multigrid-like interpretation of the multiresolution approximate inverse algorithm.

new preconditioner. In these, the original system is transformed into a new multires-
olution basis, and a simple preconditioner such as block Jacobi is applied. Extending
this, the multiresolution approximate inverse naturally works with unsymmetric bases
(α �= β) better adapted to the problem and also allows for coupling between variables

at different levels in the preconditioner Q̃.

More sophisticated multiresolution bases (but otherwise essentially the same al-
gorithm as the hierarchical basis method) are used in wavelet methods; see, e.g.,
[15, 16, 21, 22, 23, 24, 37, 38]. In particular, these bases are more stable than simple
hierarchical bases, in the sense that the multiresolution norm is equivalent to the
standard norm, which results in optimal scalability. As we mentioned before when
discussing the update step in the present method, this issue hasn’t been resolved
here, and it appears that we currently achieve only the suboptimal scalability of the
hierarchical basis method.

Finally, there have already been proposed wavelet–approximate inverse combina-
tions in [18] and [21]. Both of these works used classical wavelets, though the latter
featured a generalization which correctly treats nonperiodic boundary conditions.

5. Implementation. This section illustrates two ways to generate the multires-
olution basis, one geometric and one algebraic. The important thing to keep in mind
here is not the exact heuristics used but rather that exactly the same techniques used
for other node-nested unstructured multilevel methods are used here. The new view-
point of compressing the discrete Green’s function provides additional insight, but
this part of the problem is the same.

5.1. Geometric implementation in two dimensions. In this section, we
describe a geometric-oriented implementation for scalar second-order elliptic problems
on unstructured triangular meshes. We restrict ourselves to two dimensions since the
geometric complexity of remeshing in three dimensions is daunting.

The first issue to be dealt with is discretization. In this geometric implementation,
the PDE is rediscretized on coarser and coarser meshes, so it is imperative to have
a discretization which is stable and reasonably accurate even for large meshes. In
this paper upwinding is used for convection and harmonic averaging for diffusion;
more accurate schemes such as [39] could be used instead. Obviously there could be
aliasing problems with highly oscillatory coefficients with the simple rediscretization
used here—without resorting to algebraic methods, the only solution would be an
analytic homogenization, but we have not investigated this.

The second issue is how to choose coarse nodes. Of course, in some applications
an appropriate hierarchy of nested meshes is already available, but in general an
automatic procedure for generating the hierarchy is needed. The simplest approach,
used for multigrid in [17], is to consider the graph of a triangulation of the current
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set of nodes and to select a greedily chosen maximal independent subset as the next
coarser level. These nodes can then be retriangulated for the next coarsening. Under
the assumption that the edges of the triangulation represent strong couplings between
unknowns, the maximality condition ensures that every fine node has at least one
strongly coupled coarse node from which it can be predicted, and the independence
condition ensures that there won’t be too many coarse nodes.

This assumption breaks down for anisotropic PDEs or anisotropic meshes;
“semicoarsening” is needed here, where coarsening takes place only in the directions of
strong coupling. Heuristically this can be implemented by rediscretizing the PDE on
the coarser mesh and then disregarding the edges corresponding to small off-diagonal
nonzeros when constructing the maximal independent set. Then every fine node is
guaranteed to have a strongly coupled coarse node, where the strength of coupling is
measured by the size of the nonzero in the discretization. A reasonable measure of
coupling strength is, for example,

|Aij |+ |Aji| > ε||(|Ai|+ |Aj |)||
for some norm of the matrix columns, and with ε = 0.1, say. All reasonable heuristics
appear to work equally well after a little tuning of ε on small test problems.

The other problem with anisotropic PDEs lies in retriangulation of the coarse
nodes. At coarse levels with anisotropically distributed nodes, Delaunay triangulation
(which ignores the PDE, of course) may produce very poor meshes which don’t reflect
the anisotropy. Some form of coefficient-adapted triangulation is needed, such as
breaking the region into subregions with more-or-less constant coefficients, changing
coordinates in each subregion to make the PDE isotropic, Delaunay triangulating in
the new coordinates, and then stitching the triangulated subregions back together.

The final issue concerns how to do prediction. The most robust technique is
PDE prediction, where as discussed earlier the value at a fine node is taken from the
approximate solution of the homogeneous PDE or its adjoint with neighboring coarse
nodes as Dirichlet boundary data. With unstructured triangular meshes this is easily
done by triangulating the fine node together with the few surrounding coarse nodes,
then rediscretizing the PDE at just the fine node to give a single linear equation for
the value there. To guarantee sparsity in the prediction operator, the coarse nodes
are selected as the vertices of the coarse triangle containing the fine node, possibly
with any of the three vertices on the other sides of the triangle’s edges according to
the Delaunay criterion for edge-swapping. If the fine node is on a convex boundary,
the coarse triangle that comes nearest to containing it is used. Note that these
neighboring coarse nodes can be found in O(1) time by doing a breadth-first search
from the fine node in the fine mesh. Also we restrict the retriangulation so that at
most six coarse nodes are used to predict the fine node, thus guaranteeing a fast (linear
time) construction, sparse basis transforms, and agreement with stretched meshes (see
Figure 7 for what could go wrong with unrestricted retriangulation).

These same issues appear in any unstructured multilevel algorithm and, in par-
ticular, algorithms developed for coarsening and interpolation in multigrid, etc., can
be used here, just as the algorithms given above could be used for other multilevel
methods.

5.1.1. Sample results. In [11] several example problems were given, showing
that for a variety of two-dimensional problems the new method is superior to a plain
approximate inverse. For the same storage (including the basis transforms as well
as the approximate inverse) and similar flop counts per iteration, the multiresolution
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(a)

fine node 

(b)

(c)

Fig. 7. When retriangulating around a fine node in a stretched mesh (a), problems can arise if
no limits are put on the Delaunay insertion algorithm since many distant coarse nodes are connected
to the fine node (b), but a restricted retriangulation solves this issue and is also more efficient (c).

algorithm provided convergence that was several times faster, even on the smallest
problems. As problem sizes increased, the number of iterations for the multiresolution
method grew much more slowly than for the plain approximate inverse. (Regrettably
the convergence still wasn’t mesh-independent but appeared to grow like the number
of levels squared, similar to hierarchical basis methods. As noted in the first part,
perhaps further analysis of the update step will produce an optimal preconditioner.)

We first present results for three problems from [11] in Table 1. HEAT is a large
(10 units) backward-Euler timestep of the heat equation ut = ∇2u on the unit disc
with Neumann boundary conditions ∇u · n̂ = sign(cos(20θ)) and a previous timestep
of u = 0 for x < 0 and u = 1 for x > 0 on an exponentially stretched mesh.
ANISO is an anisotropic discontinuous problem from [20], with 1000uxx + uyy = f
on the southwest and northeast quarters of the unit square, uxx + 1000uyy = f on
the others, f = sin(10πy), homogenous Neumann boundaries for y > 0.25, and the
Dirichlet boundary condition u = x for y < 0.25. REACTOR is a discontinuous
indefinite problem on the unit disc of the form ∇ · K∇u + cu = f , with K = 1,
c = 0.3, f = −1 in 21 small interior discs, K = 0.005, c = −0.2, f = −1 for the rest
of the inner disc r < 0.9, and K = 10−6, c = 0, f = 0 for r > 0.9.

The multiresolution bases included enough levels so that the coarsest had about
100 nodes. Drop tolerances in AINV were selected to give approximately the same
storage (including prediction operators) for each preconditioner: ≈ 7n nonzeros for
a problem with n nodes. CG was used for the SPD problems and Bi-CGSTAB for
the rest, with convergence flagged when the 2-norm of the residual was reduced by a
factor of 10−6 from a starting guess of all zeros, giving up at 1000 iterations.

However, two examples of difficulties for the geometric approach arose in ANISO
without the special coefficient-adapted retriangulation and in ROTATE. The latter
is a non-self-adjoint, convection-dominated problem based on a solid-body rotation
of a disc (circular streamlines); see Table 2. ROTATE couldn’t be effectively solved
with a complete hierarchy; the best results were obtained with only two coarse levels,
precluding any improvement in the asymptotic rate of convergence.

5.2. An algebraic alternative. Some of the difficulties encountered in solving
ANISO and ROTATE are really just artifacts of trying to rediscretize the problem
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Table 1
Iteration counts for example problems of varying sizes, with the standard basis and a problem-

adapted multiresolution basis for AINV. The number of unknowns starts at n = 4939 for HEAT,
n = 900 for ANISO, and n = 4195 for REACTOR.

Problem Method n ≈ 4n ≈ 16n

HEAT Standard 125 215 432
Multiresolution 23 25 28

ANISO Standard 37 67 111
Multiresolution 12 14 18

REACTOR Standard 181 355 744
Multiresolution 89 141 132

Table 2
Iteration counts for examples of difficulties in geometric approach. Delaunay retriangulation

ignoring anisotropy causes problems for ANISO; attempting to coarsely discretize curved streamlines
causes problems for ROTATE. The number of unknowns starts at n = 900 for ANISO and at
n = 1195 for ROTATE.

Problem n ≈ 4n ≈ 16n ≈ 64n

ANISO 350 545 * *
ROTATE 73 135 297 879

on very coarse triangular meshes. A simple triangular mesh cannot easily match the
changing anisotropies of ANISO or curved streamlines of ROTATE, yet both of these
problems would appear to permit very coarse representations. This motivates the
use of algebraic methods for basis construction, where no auxiliary meshes are used;
everything is generated from the original matrix alone, hopefully avoiding geometric
pitfalls in doing so. This is also an advantage in three dimensions, where unstructured
remeshing can be difficult.

For the prediction operators, we first decide which coarse nodes will be used to
predict each fine node: we select the strongly coupled coarse nodes that are adjacent
to either the fine node or one of its fine neighbors. Next we determine the weights for
each coarse node in the prediction.

The simplest method we try, labeled M1, is to predict the fine node value as a
weighted mean of the coarse node values, with (positive) weights proportional to the
magnitude of the appropriate off-diagonal entries in the matrix A.

A potentially more accurate method, M2, is based on solving the homogeneous
PDE at the fine node with boundary values specified at the surrounding coarse nodes,
as in the geometric approach. In fact, the matrix gives us an equation for each node
involving it and its neighbors. Unfortunately, the equation at the fine node in general
involves neighboring fine nodes as well as coarse nodes, and so we cannot stop here.
Including the equations at those fine nodes would again, in general, involve more fine
nodes or coarse nodes we’re not using in the prediction, so the system still won’t be
closed. However, we can use method M1 to interpolate these unknown values from the
coarse neighbors instead and then solve the closed system for the desired fine value.
This is similar to element-free AMGe [28], where an additional layer of nodes is used.

The next issue is how to generate the discretized matrix at coarser levels than the
original. While these matrices are not used in the preconditioner, they are required
to generate the prediction operators using the above schemes and allow us to use
the maximal independent set algorithm for coarse node selection from the previous
section. The most natural choice for these coarser versions ofA is the Petrov–Galerkin
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approximation to the Schur complement, as in multigrid:

Acoarse = (PTβ I)A

(
Pα
I

)
.

Unfortunately we encountered a difficulty with this approach: for unstructured prob-
lems with a reasonable number of coarse nodes used to predict each fine node, the
coarse versions of A quickly become dense. From a finite element perspective, the
supports of the coarse basis functions have too much overlap. Perhaps with more
tuning of the strong connection heuristic in the coarse node selection this could have
been averted, but we looked for a more automatic approach instead.

The bulk of the extra nonzeros in the coarse versions ofA are very small, and thus
a viable approach is to simply filter out the small nonzeros at each level (perhaps with
diagonal compensation) as is done in multilevel ILU [4, 3, 9, 32, 33, 32]. However,
for anisotropic problems such a filter may be unreliable, destroying essential topology
in the problem—it cannot distinguish between the small, negligible entries resulting
from excessive overlap of coarse basis functions and the small but nonnegligible entries
representing weak couplings in the original PDE (that increase in relative strength as
semicoarsening proceeds).

Our solution is to use two sets of prediction operators. One is stored for the basis
transform, and the other is used temporarily just to generate the coarsened matrices.
The prediction operators in the second set are much sparser, with structures chosen so
that excessive fill-in is impossible (e.g., if the initial matrix has a planar graph, so do
the coarsened matrices). They are poorer quality than the operators in the first set,
but since they are better adapted to the problem than simple polynomial interpolation
they should be superior to a standard rediscretization on the coarse nodes.

The nonzero structure of the second set of prediction operators is determined in
two stages. In the first stage, each fine node is assigned the coarse node to which
it is most strongly coupled, giving one nonzero per row in the prediction operator.
In this way, the fine nodes are disjointly partitioned into clusters around the coarse
nodes. From the finite element method perspective this guarantees at most unit
element overlap between coarse basis functions. From the graph theory perspective
this guarantees that the graph of the coarse matrix is the result of a sequence of edge
contractions (the edges coupling each fine node to its chosen coarse node) from the
original matrix—and this means that graph properties such as planarity or being a
triangulation are preserved. In the second stage, additional nonzeros are added to
improve the quality of prediction but only when they don’t incur any extra fill in the
coarse matrix. A greedy algorithm is used, considering the coarse nodes in order of
how few fine dependencies they have, adding as many connections to the neighboring
fine nodes (in order of connection strength) as possible.

5.2.1. Sample results. We now present the results of using the algebraic ap-
proach in solving ANISO and ROTATE. Table 3 gives iteration counts for these
problems with both prediction methods. Clearly there is more research to be done as
M2 is better than M1 for ANISO but unexpectedly worse for ROTATE.

6. Conclusions. We have presented a new preconditioner designed for the high-
performance solution of linear systems derived from elliptic PDEs. We combine the
scalability of multiresolution methods with the robustness of approximate inverses to
give something useful for large problems on unstructured meshes with anisotropies,
strong convection, or even indefinite reaction terms. The key idea is to create a
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Table 3
Iteration counts for example problems of varying sizes, solved with algebraic methods. The

number of unknowns starts at n = 961 for ANISO and at n = 307 for ROTATE.

Problem Method n ≈ 2n ≈ 4n ≈ 8n

ANISO M1 12 15 17 19
M2 10 10 13 13

ROTATE M1 10 14 19 23
M2 24 32 41 63

sparse approximate inverse expressed in a multiresolution basis which compresses the
discrete Green’s function.

In implementing the method we have worked with a factored approximate inverse
algorithm, solving the problem of ordering the unknowns in the new basis. We have
also investigated both geometrical and algebraic methods for constructing the basis
for unstructured problems.

Unfortunately it appears that the method doesn’t scale any better than hierar-
chical basis methods; while this is much better than simple approximate inverses, it is
suboptimal. However, the power of the approximate inverse in addition to problem-
adapted interpolation means convergence is generally better than hierarchical basis
methods. Robustness is particularly gained for problems, where an effective complete
multilevel decomposition cannot be found: the new method can truncate the hierarchy
at an appropriate level and the approximate inverse can take care of the rest.

As a result, we don’t expect the method to be competitive with a well-tuned
multigrid algorithm for well-behaved problems, but it may be of use for more difficult
problems where robustness is critical.
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Abstract. Most preconditioned iterative methods apply to both real- and complex-valued linear
systems. At the same time, most iterative linear solver packages available today focus exclusively
on real-valued systems or deal with complex-valued systems as an afterthought. By recasting the
complex problem in a real formulation, a real-valued solver can be applied to the equivalent real
system.

On one hand, real formulations have been dismissed due to their unfavorable spectral proper-
ties. On the other hand, using an equivalent preconditioned real formulation can be very effective.
We give theoretical and experimental evidence that an equivalent real formulation is useful in a
number of practical situations. Furthermore, we show how to use the advanced features of modern
solver packages to formulate equivalent real preconditioners that are computationally efficient and
mathematically identical to their complex counterparts.

The effectiveness of equivalent real formulations is demonstrated by solving ill-conditioned complex-
valued linear systems for a variety of large scale applications. Moreover, the circumstances under
which certain equivalent real formulations are competitive is more clearly delineated.

Key words. complex linear systems, iterative methods, sparse matrices, preconditioning
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1. Introduction. We describe a simple yet effective extension of a real-valued
preconditioned iterative solver package to solve complex-valued linear systems such
as

Cw = d,(1.1)

where C is an m-by-n known complex matrix, d is a known right-hand side, and w
is unknown. Although most preconditioners and iterative methods apply to either
complex-valued or real linear systems [4], most preconditioned iterative solver pack-
ages treat only real-valued systems. Packages that deal with complex-valued linear
systems include QMRPACK [8], PETSc [3, 2, 1], and work done at CERFACS [6].
However, even in these cases, the breadth, depth, and performance capabilities of the
complex-valued solvers are not as complete as the collective set of real-valued solvers.
Because of these apparent deficiencies, we are compelled to consider using the vast
body of real-valued solver packages to solve complex-valued systems. This work ex-
plains when and how to leverage the existing real-valued solver packages for use with
complex-valued systems.

1.1. Potential equivalent real formulations. We begin our study of equiva-
lent real formulations by writing (1.1) in its real and imaginary terms:

(A + iB)(x + iy) = b + ic.(1.2)
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Table 1.1
Spectral properties of the K formulations. σ(K) denotes the spectrum of K and i =

√−1.

Matrix Spectral properties
K1

(i) If λ ∈ σ(C), then λ, λ̄ ∈ σ(K1).
(ii) If C is Hermitian (positive definite), then K1 is symmetric (positive

definite).

K2
(i) If λ ∈ σ(K2), then −λ, λ̄,−λ̄ ∈ σ(K2).
(ii) If C is symmetric, then K2 is symmetric.

K3
(i) If λ ∈ σ(K3), then −λ, λ̄,−λ̄ ∈ σ(K3).
(ii) If C is symmetric, then K3 is symmetric.
(iii) σ(K3) = σ(K2).

K4
(i) If λ ∈ σ(C), then −iλ, iλ ∈ σ(K4).
(ii) If C is Hermitian (positive definite), then K4 is skew symmetric (with

eigenvalues that have positive imaginary parts).

Equating the real and imaginary parts of the expanded equation, respectively, gives
rise to four possible 2-by-2 block formulations, listed in (1.3)–(1.6). We call these K1
to K4, respectively.

K1 formulation.

(
A −B
B A

)(
x
y

)
=

(
b
c

)
.(1.3)

K2 formulation.

(
A B
B −A

)(
x
−y

)
=

(
b
c

)
.(1.4)

K3 formulation.

(
B A
A −B

)(
x
y

)
=

(
c
b

)
.(1.5)

K4 formulation.

(
B −A
A B

)(
x
−y

)
=

(
c
b

)
.(1.6)

For future reference, we denote the matrix associated with the K1 to K4 formulations
by K1 to K4, respectively. For any pair of bases for R2m and R2n, there is a different
equivalent real formulation of (1.1). K1 to K4 are representative of the many different
formulations.

The convergence rate of an iterative method applied directly to an equivalent real
formulation is often substantially worse than for the corresponding complex iterative
method (see [7] and section 2). The slower convergence rate is due to the spectral
properties of the equivalent real formulation. Table 1.1 summarizes the spectral prop-
erties of K1 to K4.
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We digress briefly to justify certain relations in Table 1.1 that are not discussed
in the following sections. The K2 and K3 matrices satisfy K2J = −JK2 and K3J =
−JK3, where

J =

(
0 I
−I 0

)
.(1.7)

In fact, −JK2 has the same eigenvalues as K2 and is similar to K3. Thus σ(K3) =
σ(K2) is symmetric with respect to the origin. (σ(K) denotes the spectrum of K.)

The configuration of the eigenvalues of K2 and K3 is problematic for Krylov
methods. If a matrix has positive eigenvalues, then augmenting that matrix in a way
that reflects the spectrum through the origin degrades the convergence rate of an
iterative method such as the generalized minimum residual (GMRES) method. The
convergence rate for a matrix whose spectrum is symmetric with respect to the origin
is the square root of the rate for the same method applied to a linear system whose
spectrum lies in a half plane (see section 3.2, Example 2). Similarly, convergence rates
in the K2 or K3 formulations tend to be the square root of the rates in the K1 or K4
formulations.

For the K1 formulation, if all the eigenvalues of C are on one side of the imagi-
nary axis, then the spectrum of K1 should not present a major problem to an iterative
method such as GMRES. However, if C has eigenvalues on both sides of the imaginary
axis, a property that degrades the GMRES convergence rate, then K1 will have twice
as many problematic eigenvalues. Moreover, the convex hull containing the eigenval-
ues of K1 will also contain the origin. For the K4 formulation, if all the eigenvalues
of C are in the upper half plane, then the eigenvalues of K4 will be in the right half
plane.

It is noteworthy that the K4 formulation of (1.1) is the same as the K1 formulation
of

i Cw = i d.(1.8)

Similarly, the K3 formulation of (1.1) is the same as the K2 formulation of (1.8).
Because of these relationships, we need to consider only the K1 and K2 formula-
tions if we are interested in the convergence properties of unpreconditioned Krylov
methods. In fact, most of the remaining discussion is focused on the K1 and K2
formulations with K3 and K4 being special cases. However, if we want to consider the
preconditioned case, especially preconditioners such as the incomplete lower/upper
factorization (ILU), then K4 deserves more attention than we present in section 2.2.

If C is Hermitian, then K1 is symmetric, and, as we will demonstrate below, the
convergence rate with an equivalent real formulation is identical to the convergence
rate with the original complex formulation. If C is complex symmetric, then K2 and
K3 are also complex symmetric. Nevertheless, we still recommend K1 for complex
symmetric linear systems (see section 3.2, particularly Examples 1 and 2) because of
the problem mentioned above. The best way known to the authors to precondition
K2 or K3 is to permute back to K1.

In view of their spectral properties, the K1 to K4 formulations have been justly
criticized. Particularly, the K2 and K3 formulations appear to be unusable. However,
in spite of these properties, we have found that a variation of the K1 formulation has
merit. Success with the K1 formulation depends on the quality of the preconditioner
to the same extent that success with the original complex formulation depends on
the quality of the complex preconditioner. In fact, our experience shows that for the
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classes of problems we are solving, in particular, eigenvalue problems for computa-
tional fluid dynamics using complex valued shift parameters, if a good preconditioner
is used, then the iteration count of the K formulation (discussed below) is generally
comparable (within 50%) to that of solving the original complex problem with a true
complex preconditioned iterative solver and has the same robustness as a true com-
plex solver. Given the wide availability of excellent real-valued solver packages, we
view our results as noteworthy.

2. Preconditioning equivalent real systems. In trying to solve the original
complex system in (1.1) via the K1 formulation in (1.3), the most interesting question
is how to precondition K1. Standard real-valued preconditioners such as Jacobi,
Gauss–Seidel, or ILU applied directly to K1 are not robust enough for our needs.
Furthermore, the ordering of the unknowns is unsuitable for sparse matrix operations
related to factorization, particularly ILU preconditioning.

Another preconditioner we experimented with is

M =

(
MA 0

0 MA

)
,(2.1)

where MA is a real-valued preconditioner determined from the real part of C =
A+iB. This approach can be viewed as a special form of block Jacobi preconditioning
that may be effective if terms in A are generally larger in magnitude than those in
B. However, for the problems we tested, the preconditioner in (2.1) was also not
robust enough. We observed large increases in iteration count and outright failure to
converge, while the solution of the complex system via a complex solver succeeded.
Preconditioning by the imaginary part of C (by using the K4 formulation in (1.6))
also failed.

2.1. The K formulation. The approach that consistently gives us good results
is based on preserving the sparsity pattern of C. A block entry matrix is a sparse
matrix whose entries are all (small) dense (sub)matrices. An alternative formulation,
which we call the K formulation, preserves the nonzero pattern of the block entries
at the expense of doubling the size of each dense submatrix.

In the K formulation, cpq = apq + ibpq corresponds, via the scalar K1 formulation,
to the 2-by-2 block entry of the 2m-by-2n real matrix K given by

(
apq −bpq
bpq apq

)
.(2.2)

For example, if

C =




c11 0 c13 0 c15
0 c22 c23 0 0

c31 0 c33 c34 0
0 0 c43 c44 0

c51 0 0 0 c55


 ,(2.3)
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then

K =




a11 −b11 0 0 a13 −b13 0 0 a15 −b15

b11 a11 0 0 b13 a13 0 0 b15 a15

0 0 a22 −b22 a23 −b23 0 0 0 0

0 0 b22 a22 b23 a23 0 0 0 0
a31 −b31 0 0 a33 −b33 a34 −b34 0 0

b31 a31 0 0 b33 a33 a34 −b34 0 0
0 0 0 0 a43 −b43 a44 −b44 0 0

0 0 0 0 b43 a43 a44 −b44 0 0
a51 −b51 0 0 0 0 0 0 a55 −b55

b51 a51 0 0 0 0 0 0 b55 a55




.(2.4)

In a related real formulation, also preserving the block entry structure, the K2
formulation of cpq forms the corresponding 2-by-2 block entry(

bpq apq
apq −bpq

)
.(2.5)

The K3 and K4 versions are generated similarly.

2.2. Implementation within existing software packages. The properties of
the K formulation defined in section 2.1 enable us to implement efficient and robust
preconditioned iterative solvers for complex linear systems. We can efficiently compute
and apply the exact equivalent of a complex-valued preconditioner. If the complex
preconditioned linear system has nice spectral properties, then the K formulation
leads to convergence that is competitive with the true complex solver.

Solvers with block entry support. There are a number of general-purpose parallel
sparse iterative solver packages that do not require special matrix properties, e.g.,
structured grids, and thus can be applied to a wide range of problems. These packages
are usually freely available and have been used in a variety of applications. Several
of these packages, including Aztec [19] and PETSc [2], support block entry matrices.
The matrix K in the K formulation has a natural 2-by-2 block structure that can
be exploited by using block entry data structures. Using the block entry features of
these packages has the following benefits.

1. Applying 2-by-2 block Jacobi scaling to K corresponds exactly to applying
point Jacobi scaling to C.

2. The block sparsity pattern of K exactly matches the point sparsity pattern
of C. Thus any pattern-based preconditioners such as block ILU(l) applied
to K correspond exactly to ILU(l) applied to C. See section 4 for definitions
of block ILU(l) and ILU(l).

3. Any drop tolerance-based complex preconditioner has a straightforward K
formulation since the absolute value of a complex entry equals the scaled
Frobenius norm of the corresponding block entry in K.

Other solver packages. For existing solvers that do not have block entry support,
it is still possible to exploit many of the benefits of the K formulation with the following
considerations.
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1. It is still possible to form the K matrix, even though its underlying block
structure will not be explicitly available. Many preconditioners, especially
incomplete factorizations, will closely approximate the block preconditioners
listed above. Ideally, a real or imaginary nonzero in C corresponds to four
entries in K, two of which are zero and may fill in during an incomplete
factorization.

2. If any diagonal entries of the complex matrix C have zero or very small
real parts, then pointwise incomplete factorization preconditioners may fail.
(Note that this is not a problem for block entry factorization if pivoting is
done within the diagonal block entries.) In this situation, one might consider
using the K4 equivalent of the K formulation, or one may interleave the K1
and K4 formulations at the equation level depending on the relative mag-
nitude of the real and imaginary parts of the complex diagonal entries. In
certain situations, this leads to better ILU factors. However, we have not
fully explored this approach, and its overall effectiveness remains an open
question to us.

As noted above, by using block entry features, we can easily and efficiently con-
struct preconditioners for K that are equivalent to those we would form for C using
a true complex preconditioner formulation. As a result, the equivalent real precondi-
tioned matrix operation is identical to the true complex preconditioned operator up
to a permutation. Thus solving the real equivalent form via the K formulation using
a preconditioned iterative method is identical to solving the original complex system
using a corresponding preconditioned complex solver, except that the two approaches
use different inner product spaces. Section 3 expands upon these comments.

3. Properties of the K formulation. The K formulation of a preconditioned
iterative method is comparable to the original complex formulation. Section 3.1
presents an equivalence between a preconditioned complex linear system and the cor-
responding K formulation. Next, the properties of K and C that influence convergence
of iterative linear solvers are contrasted. The critical difference between K and C is
that the eigenvalues of K are the eigenvalues of C together with their conjugates;
σ(K) = σ(C) ∪ σ(C). Section 3.2 contains a detailed survey of the influence of the
spectrum of the convergence rate. The theoretical results of sections 3.1 and 3.2
are summarized in section 3.3 and illustrated using an example from computational
chemistry in section 3.4.

3.1. Homomorphic properties of the K formulation. The K formulation of
a coefficient matrix C results in a symmetric permutation K = PK1P

T that preserves
the block entry structure of C. Note that K and K1 are orthogonally similar and share
many properties.

We use the function f() to denote the matrix K that corresponds to C in the K
formulation, f(C) = K. The key to understanding the K formulation is that f is a
homomorphism:

{
f(I) = I,
f(XY ) = f(X)f(Y ).

This observation appears not to have been made before in this context. In the K
formulation of an iterative method for solving a linear system with coefficient matrix
C and preconditioner M , the linear system f(C) is preconditioned with preconditioner
f(M). The K formulation of a preconditioned iterative method inherits from the
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preconditioned complex iterative method through

f(M−1C) = f(M)−1f(C)

all the properties that K1 inherits from C.
We use the following framework to compare preconditioned iterative linear solvers.

For clarity, a zero initial guess is assumed. A left-preconditioned Krylov solver is
an algorithm that determines a sequence of approximations from the corresponding
expanding Krylov subspaces

Kk(M−1C,M−1d) = span(M−1d, . . . , (M−1C)k−1M−1d).(3.1)

Right preconditioning is similar. A preconditioned Krylov solver succeeds to the
extent that the algorithm converges in a small number of iterations.

Characterizing successful preconditioners is difficult. The convergence rate of
conjugate gradient methods applied to the left or right normal equations is bounded
in terms of the square of the condition number

cond(M−1C).(3.2)

The convergence rate of GMRES is bounded in terms of the eigenvalues and condition
number of the matrix of eigenvectors of M−1C [15]. For many problems, the maximum
absolute value of the ratio of eigenvalues, the spectral condition number, best correlates
with preconditioner effectiveness. The Krylov subspace, (3.1), the condition number
of C, (3.2), and the condition number of the matrix of eigenvectors of C are all
invariant under the K formulation (see below).

The K formulation preserves Krylov subspaces in the sense that

f((M−1C)kM−1) = (f(M)−1f(C))kf(M)−1

for left preconditioning and a similar equation applies with a right preconditioner. A
prerequisite to discussing condition numbers is to relate the singular value decompo-
sition (SVD) of C,

C = UΣV ∗,

to the SVD of K1. Problem 8.6.4 in [9] is to show that if U = Ur + iUu and V =
Vr + iVu, where Ur,Uu,Vr,Vu are real, then K has the SVD

K =

[
Ur −Uu
Uu Ur

] [
Σ 0
0 Σ

] [
Vr −Vu
Vu Vr

]T
.

In particular, f preserves condition numbers. This implies the second property, that
conditioning is preserved from the complex case:

cond(M−1C) = cond(f(M−1C))

= cond(f(M)−1f(C)).

For clarity, we discuss eigenvalues in the unpreconditioned case. However, as
above, these results to extend to the preconditioned case. As mentioned in section 3,
eigenvalues of K are the eigenvalues of C together with their conjugates. Thus, for
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Fig. 3.1. Asymmetric preconditioned spectrum.

example, M−1C and f(M)−1f(C) also have the same spectral condition number.
More precisely, Proposition 5.1 of [7] states that if C has Jordan normal form,

C = XJX−1,

then K1 = Wdiag(J, J)W−1 for

W =

[
X X

−iX iX

]
.

An observation not made explicitly in [7] is that it immediately follows that

cond(W ) = cond(X).

As mentioned earlier, eigenvalue-based bounds on the convergence rate involve the
condition number of the matrix of eigenvectors. (See also (3.3) below.)

3.2. Convergence of the K formulation. Augmenting the spectrum of C to
σ(K) = σ(C) ∪ σ(C) may or may not change the convergence rate of an iterative
method. Examples 1–4 below compare the convergence rates of iterative methods
in the K formulation and the original complex formulation applied to representative
classes of model problems. Based on these examples, we conclude the following.

• For Hermitian linear systems, the K formulation preserves the convergence
rate of the original complex formulation.
• For linear systems with an asymmetric preconditioned spectrum (see Fig-

ure 3.1), the convergence rate degrades mildly in a K formulation.
We review the prerequisite mathematical tools to keep this work self-contained.

Preliminary remarks. We selected four examples to illustrate the influence of
recasting a complex linear system in an equivalent real form on the convergence rate
of the linear solver. Examples 1 and 3 are paraphrased from [5]. Example 2 is classical
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and reviewed here in detail. Example 4 appears to be new. Examples 1 and 2 illustrate
the best and the worst properties of the K1 formulation. In Example 1 the spectral
condition number is preserved, and in Example 2 the spectral condition number is
squared. Fortunately, the K formulation of a successfully preconditioned system is
more like Example 1 than Example 2.

Examples 3 and 4 relate the convergence rates of the K formulation of a pre-
conditioned iterative method to the corresponding complex preconditioned iterative
method if the spectrum is nearly symmetric with respect to the real axis. Successful
preconditioning transforms the spectrum into a disk far from 0. Example 3 shows
that the convergence rate for the complex formulation is the ratio of the radius of the
disk to the distance from the center of the disk to the origin. In the K formulation
the convergence rate also depends on the angle between the disk and the real axis.
Example 4 shows how the convergence rate gently increases as the disk rotates away
from the positive real axis.

The asymptotic convergence factor for polynomial-based methods, including pre-
conditioned Krylov subspace methods, is κ if the nth residual norm is proportional
to κn for some constant κ. A sharp upper bound for the asymptotic convergence
factor can be determined using the complex Green’s function for the convex hull of
the spectrum. Following [5, pp. 90–93], an iterative method for Cw = d determines
{wk} that (hopefully) converges to w and residuals, rk = d − Cwk, such that {rk}
converges to zero. Consider the polynomial-based iterative solution method

rn = pn(C)r0, pn(0) = 1,

where each pn ∈ Πn, the space of nth degree polynomials. Next let Ω be a set
containing σ(C), and define

‖pn‖Ω = max
ω∈Ω
|pn(ω)|.

Common choices for Ω are the convex hull of σ(C), a disk, or an ellipse with a major
axis along a ray through the origin. For clarity, we assume that C is diagonalizable:
CV = V Λ. The reduction in the residual norm

‖rn‖2 = ‖pn(C)r0‖2 ≤ cond(V )‖pn‖σ(C)‖r0‖2 ≤ cond(V )‖pn‖Ω‖r0‖2(3.3)

is bounded above by the spectral condition number of V and ‖pn‖Ω. A residual
polynomial pn that minimizes ‖pn‖Ω is an optimal polynomial Pn(t; Ω, 0) and solves

‖Pn(t; Ω, 0)‖Ω = min{‖p‖Ω : p ∈ Πn, p(0) = 1}, 0 /∈ Ω.

The convergence of an iteration rn = pn(C)r0 is related to the asymptotic con-
vergence factor for the polynomial iterative method induced by {pn},

κ(C; pn) = lim sup
n→∞

(
sup
r0 �=0

‖rn‖2
‖r0‖2

)1/n

.

The asymptotic convergence factor for Ω is defined by

κ(Ω) = inf
pn

sup
σ(C)⊂Ω

κ(C; pn).

The asymptotic convergence factor corresponding to the K formulation is κ(Ω ∪ Ω).
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Next we determine the asymptotic convergence factor for C and K in several
characteristic cases. κ(Ω) is determined from Green’s function G(z; Ωc) for the com-
plement Ωc of Ω with pole at infinity

κ(Ω) = |G(0; Ωc)|.
If Ω is connected, then G is a conformal mapping from Ωc to the open unit disk such
that G(∞) = 0. In general, G has the following properties.

• G(z; Ωc) is an analytic function on Ωc with a single-valued modulus |G(z; Ωc)| <
1 in Ωc.

• G(z; Ωc) has precisely one zero at ∞.
• If z ∈ ∂Ω, then |G(z; Ωc)| = 1.

Example 1. If C is Hermitian positive definite, then the convex hull of σ(C) =
σ(K) is Ω = [α, β] for 0 < α < β. The first step is to derive Green’s function for the
complement of the interval G(z; Ic), an inverse of φ(z) = (z+z−1)/2, where I denotes
the interval [−1, 1]. We select the square root function with a branch cut along the
negative real axis and

φ−1(z) =

{
z +
√
z2 − 1, 0 ≤ arg(z) ≤ π,

z −√z2 − 1, π < arg(z) < 2π.

Note that the branch cut for the argument function is along the positive real axis,
and for ρ > 1,

lim
z→ρ,	(z)<0

arg(z2 − 1) = 2π.

Here �(z) denotes the imaginary part of the complex number z. In this case, the
singularity in φ−1 along [1,∞] has been removed, and because φ−1 is odd, φ−1 is
analytic on Ic. To show that φ−1 maps Ic to the open unit disk, note that the
equation φ(z) = w is a quadratic polynomial in z and φ(z) = φ(z−1).

Now for Ω = [α, β] such that 0 < α < β, G(z; Ωc) = φ−1(.(z)) for .(t) =
(2t− α− β)/(β − α), and

κ([α, β]) = |G(0)| = 1

−.(0) +
√
.2(0)− 1

=
β − α

β + 2
√
βα + α

.

Example 2. If iC is Hermitian positive definite, then the convex hull of σ(C) is
[iα, iβ] for 0 < α < β and κ(i[α, β]) = κ([α, β]). However, σ(K) ⊂ [−iβ,−iα]∪[iα, iβ],
and κ([−iβ,−iα] ∪ [iα, iβ]) = κ([−β,−α] ∪ [α, β]). The first step is to derive Green’s
function for the complement of symmetric intervals Ω = [−1,−η]∪[η, 1] for η = α/β <
1. Green’s function is a branch of the solution of

ψ2 + 2
2z2 − (1 + η2)

1− η2
ψ + 1 = 0.

The two branches

ψ± =
2

1− η2

(
±
√

(z2 − 1)(z2 − η2)− z2 +
1 + η2

2

)

satisfy ψ+ψ− = 1, and we seek a branch whose range is the open unit disk. We
choose the branch of ±√(z2 − 1)(z2 − η2) that is nearest to z2. The branch cut for√

is along the negative real axis, and

arg
(
(z2 − 1)(z2 − η2)

)
= ±π ↔ z = x + iy and x2 − y2 =

1 + η2

2
.
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This gives us Green’s function

G(z) =




2
1−η2

(√
(z2 − 1)(z2 − η2)− z2 + 1+η2

2

)
, x2 − y2 ≥ 1+η2

2 ,

2
1−η2

(
−√(z2 − 1)(z2 − η2)− z2 + 1+η2

2

)
, x2 − y2 < 1+η2

2 .

To show that the range of G is the open unit disk, note that ψ is a quadratic polynomial
and |ψ±| = 1 if and only if η2 ≤ z2 ≤ 1. In this case, κ(Ω) = (1 − η)/(1 + η) =
(β − α)/(β + α).

To contrast Examples 1 and 2 as in the preliminary remarks, note that β/α is
the spectral condition number of C. In Example 1 the asymptotic reduction factor
depends on the square root of the spectral condition number,

κ1 ≈ 1− 2

√
α

β
.

In Example 2 the asymptotic reduction factor depends on the spectral condition
number and is much larger:

κ2 ≈ 1− 2
α

β
� κ1.

Examples 3 and 4 quantify the penalty for using the K formulation instead of
the true complex formulation if the convex hull of the preconditioned spectrum lies
inside a disk in the left half plane rotated by θ from the positive real axis. Our
analysis applies in the case in which the disk intersects its conjugate. Example 3
shows that in complex arithmetic, the asymptotic convergence factor is independent
of θ. Comparing (3.4) with |w| = 1 to (3.6) shows that, in the K formulation, the
asymptotic convergence factor increases mildly with θ.

Example 3. Here Ω = {z : |z − w| < r} is the disk in the complex plane of
radius r about a point w that is the distance ρ = |w| from the origin. The asymptotic
convergence factor is η = r/ρ. A conformal mapping of Ω onto the open unit disk is
G(z; Ω) = r

z−w and

κ(Ω) =
r

|w| = η.(3.4)

Example 4. Here Ω comes from rotating the disk {z : |z − ρ| < r} with center
ρ > 0 by θ and then from reflecting though the real axis as illustrated in Figure 3.1.
The circles intersect: sin θ < η = r/ρ.

Figure 3.2 illustrates the conformal mapping from two intersecting disks to a
disk. The upper left graph corresponds to Figure 3.1. In the upper right figure
the two disks are transformed to a wedge by the fractional linear transformation
w(z) = (z−µ)/(z− ν) for µ and ν defined in (3.5). Next, in the lower left figure, the
wedge is opened up into the imaginary axis via v(w) = wπ/α for α defined in (3.5).
In the lower right figure, the half plane is transformed to a disk by another fractional
linear transformation u(v) = (v − 1)/(v + 1).

To sum up, the conformal mapping of the exterior of two intersecting circles to
the open unit disk is given by

G(z) =

(
z−µ
z−ν

)π/α
− 1

(
z−µ
z−ν

)π/α
+ 1

,
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Fig. 3.2. A conformal mapping between two intersecting disks (upper left) and a disk (lower
right).

where

µ = cos θ−
√
η2 − sin2 θ, ν = cos θ+

√
η2 − sin2 θ, α = π−2 tan−1

(
sin θ√

η2 − sin2 θ

)
.

(3.5)
Also wπ/α = exp(πα logw) for logw = log |w|+iarg w, and the branch for the argument
function is placed along the negative real axis, −iπ < arg w ≤ iπ. In this case,

κ(Ω) = (1− (µ/ν)π/α)/(1 + (µ/ν)π/α) = η +
| sin θ|
ηπ

(1− η)2 + O(θ2).(3.6)

3.3. Summary of K formulation properties. Based on the results of this
section, we see that the K formulation differs from a true complex iterative solver only
in the inner product space used by the iterative method. In other words, by utilizing
the block entry data structures mentioned in section 2.2, we are able to provide the
identical preconditioned matrix-multiply computations using the K formulation as we
would for a true complex solver.

Furthermore, for complex Hermitian problems, there is no difference in asymptotic
convergence rates. In fact, as is well known (e.g., see Problem 8.3.6 in [9]), if a complex
matrix C is Hermitian (positive definite), the corresponding K matrix has the same
eigenvalues, each with doubled multiplicity. Given the ability of the conjugate gradient
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Fig. 3.3. Eigenvalues of the original complex matrix in problem M3D2.

method for linear systems to resolve multiple eigenvalues simultaneously, we observe
in practice that the K formulation has identical convergence properties as a true
complex solver for complex Hermitian problems.

For the non-Hermitian case, we saw from Examples 3 and 4 above that if the disk
enclosing the spectrum of the preconditioned matrix C is not far from the point (1,0)
in the complex plane, then the asymptotic convergence rate of the K formulation is
close to the convergence rate of a true complex solver with the rate dictated by the size
of the angle θ in Figure 3.1. As we will see in section 3.4, a high quality preconditioner
tends to move the spectrum of C toward (1,0), setting up very favorable conditions
for the K formulation.

3.4. Spectral case study. For problem M3D2 listed in Table 4.1, we computed
the spectrum of the original and preconditioned matrix using the eig function of
MATLAB. Figure 3.3 shows the distribution of the eigenvalues of the original matrix.1

Figure 3.4 shows the eigenvalues of the K matrix, and, as expected, the eigenvalues
of the K matrix are the eigenvalues of the complex matrix plus their reflection about
the real axis.

Figure 3.5 shows the spectrum of the preconditioned matrix using luinc(A,1e-1)

from MATLAB. luinc computes an incomplete LU factorization of a given sparse
matrix. It provides several means to reduce the fill that would occur with an exact
factorization. We chose to specify a drop tolerance. Given this drop tolerance, luinc
will perform the LU factorization column by column as though it were doing an exact
factorization, but as each column is computed, the terms in the column that are
smaller in magnitude than the drop tolerance times the norm of the column are set to

1A note of thanks to Tom Wright and Nick Trefethen. They analyzed the pseudospectra of this
matrix and determined that the eigenvalues of this matrix obtained via eig would be accurately
computed.
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Fig. 3.4. Eigenvalues of the K formulation matrix in problem M3D2.
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Fig. 3.5. Eigenvalues of the complex matrix in problem M3D2, preconditioned by luinc(A,1e-1).

zero. luinc(A,1e-1) uses a drop tolerance of 10−1. Note that the eigenvalues start
to cluster around the point (1,0) in the complex plane.

Figure 3.6 shows the spectrum using luinc(A,1e-2), which uses a drop tolerance
of 10−2. This preconditioner will typically keep more entries than luinc(A,1e-1) and
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Fig. 3.6. Eigenvalues of the complex matrix in problem M3D2, preconditioned by luinc(A,1e-2).

will be a better approximation to the exact LU factorization. With the exception of
one outlyer, the eigenvalues in this case are closely clustered around (1,0).

Coupling this observation with the analysis from section 3.2, we see that high
quality preconditioning, which tends to cluster the eigenvalues around the point (1,0),
additionally minimizes the differences in asymptotic convergence rates between the
true complex formulation and the K formulation. Thus, it simultaneously improves
the convergence of both formulations and reduces the differences in convergence rates
between them.

4. Computational results. We have used the K formulation to solve complex
linear systems coming from two application areas (see Table 4.1). Each system comes
from a real application. These problems are very ill conditioned in the sense that inex-
pensive preconditioners like Jacobi or block Jacobi are not sufficient for convergence.
Eigenvalue problems with complex eigenvalues are important applications for complex
linear solvers. Complex linear systems arise first in computing the eigenvalue using
a complex shift-invert implicitly restarted Arnoldi method [11] and next in tracking
the eigenvalues as a function of a parameter using Newton’s method. Selecting a shift
near to the eigenvalues of interest to accelerate the convergence of Arnoldi’s method
creates a linear system with a large spectral condition number. We have found the K
formulation with ILU preconditioning to be very effective.

4.1. Overview of problems and solution methods. Our computational
problems come from molecular dynamics and fluid dynamics. The first two prob-
lems listed in Table 4.1 come from given data sets where we are unfamiliar with the
details of the applications. The last two problems come from efforts to understand the
stability of a computed solution to a particular computational fluid dynamics prob-
lem using MPSalsa [18, 17]. The stability problems are representative of the linear
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Table 4.1
Test problem descriptions.

Problem Dim # Nonzeros Description
M3D2 1024 12480 Computational Chemistry Model I, Sherry Li,

LBL/NERSC
M4D2 10000 127400 Computational Chemistry Model II, Sherry Li,

LBL/NERSC
LINSTAB1 10590 276979 MPSalsa Linear Stability Analysis, Andrew Salinger,

Rich Lehoucq, Cayley Transform Approach
LINSTAB2 10590 276979 MPSalsa Linear Stability Analysis, Andrew Salinger,

Shift-and-Invert with shift equal to 33i

systems solved in a complex shift-invert formulation of the eigenvalue problem.
MATLAB results were obtained using version 5.3.1 [12]. In particular, we used the

built-in functions luinc, described in section 3.4, and gmres. gmres solves a linear
system using the GMRES method [16] preconditioned by the ILU preconditioner
computed by luinc.

The remaining results come from the Komplex Solver Package [10], an add-on
module to Aztec 2.1 [19] that forms equivalent real systems from complex systems,
uses Aztec to solve the real systems, and returns the complex results. For each of
the problems we use overlapping domain decomposition preconditioning, specifically,
additive Schwarz with one level of overlap, and we use GMRES(∞). For the M4D2
problem, the matrix has a natural block structure, and we used a block ILU precon-
ditioner with a level fill of l (BILU(l)) on the subdomains, where we view the matrix
as a sparse matrix whose entries are dense 8-by-8 matrices. The level fill parameter
l refers to the pattern of the BILU factors. A level fill of l = 0 means that the only
block entries kept are those that correspond to the pattern of the original matrix.
A level fill of l > 0 is defined recursively to allow the BILU factors to have entries
that correspond to the terms from the level fill l − 1 and any fill-in that comes di-
rectly from these terms. For LINSTAB1 and LINSTAB2 we replace BILU(l) with a
variation of ILUT [14], a dual-threshold ILU preconditioner, as the subdomain pre-
conditioner. The ILUT factors are computed row by row, dropping terms that fall
below the threshold parameter multiplied by the norm of the row, and then keeping
(at most) a prescribed number of the largest terms in the row. Details of the solvers
and preconditioners can be found in [19].

Table 4.2
MATLAB test results using GMRES(∞) with luinc(droptol) preconditioning.

Problem droptol nz(ILU)/nz(A) ‖r‖/‖b‖ C Iters K Iters
M3D2 1× 10−3 5.8 3× 10−11 12 12

1× 10−2 4.5 8× 10−11 30 40
1× 10−1 0.5 5× 10−11 107 181

M4D2 1× 10−4 13.1 5× 10−11 17 23
1× 10−3 6.7 6× 10−11 72 109

LINSTAB1 1× 10−3 10.7 9× 10−11 71 93

4.2. Results. The first set of results (in Table 4.2) were obtained using a MAT-
LAB code where we compare a true complex preconditioned iterative solver to the K
formulation. For these problems, the preconditioned operators are exactly equivalent;
i.e., using the notation from section 3, if MC and MK are the C and K precondition-
ers, respectively, then MK = f(MC). Thus what we are comparing are the differences
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due to having a complex inner product over n-space versus a real inner product over
2n-space. Note that, as the quality of the preconditioner improves, the difference in
iteration counts between the two approaches diminishes.

Our MATLAB results did not have any relevant solution time statistics, so we
cannot precisely measure the relative costs. However, the results in Table 4.3 show
that higher quality preconditioners also provide the best time to solution, up to a
point where the time spent constructing and applying the higher quality precondi-
tioner exceeds the reduction in time due to fewer iterations. These results are from the
Komplex Solver Package [10], an add-on module to Aztec. We used a BILU precon-
ditioner with 8-by-8 blocks and GMRES(∞). The best time to solution comes from
BILU with a level fill of 2. This result suggests a general observation that a high qual-
ity preconditioner provides both the best time to solution and makes the difference
in iteration counts between the true complex and the K formulations minimal.

Table 4.3
Komplex test results for M4D2 using GMRES(∞) with block ILU preconditioning, 8-by-8 blocks.

Problem l ‖r‖/‖b‖ K Iters Time(s)
M4D2 0 1× 10−11 322 354

1 1× 10−11 179 182
2 1× 10−11 75 95
3 1× 10−11 60 125

The final set of results (in Table 4.4) comes from using the Komplex Solver Pack-
age to solve linear stability problems in computational fluid dynamics. The primary
purpose of these results is to illustrate that, with a modest amount of new software de-
velopment, we are able to provide a general-purpose parallel preconditioned iterative
solver for complex-valued linear systems by leveraging existing real-valued solvers.
Results are given for 1, 2, 4, 8, and 16 processors of an 8-node, 16-processor PC-based
Beowulf [13] cluster. The second column of this table lists the ratio of nonzero entries
in the ILU factors to the original matrix. In all cases we iterated until the scaled
residual (the norm of the residual divided by the norm of the right-hand side) was
below 10−13. The increase in the ILU fill is due to the effect of overlap used by our
parallel overlapping Schwarz preconditioners. Another trend we see is that the iter-
ations increase as we add processors, an additional effect that is common with these
preconditioners. However, even with these increasing serial costs, the parallel timings
are quite reasonable.

Table 4.4
Komplex test results using GMRES(∞) with ILUT preconditioning.

Problem nz(ILU)/nz(A) ‖r‖/‖b‖ # Proc K Iters Time(s)
LINSTAB1 2.0 1× 10−13 1 27 151.4

2.2 2 38 75.6
2.4 4 55 42.6
2.7 8 64 22.7
2.8 16 79 13.3

LINSTAB2 2.0 1× 10−13 1 49 158.7
2.2 2 57 80.8
2.4 4 83 45.8
2.7 8 93 26.3
2.8 16 112 16.7
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5. Conclusions. In this paper we presented a discussion of how to solve complex-
valued linear systems via equivalent real formulations. We listed approaches that
failed and presented the K formulation, which works very well. Although it is clear
from our results that the K formulation is not superior to a true complex solver, and
clearly if you have easy access to a complex-valued solver you should use it, we do
think that equivalent real formulations should receive more attention than they have
in the past.

For many challenging problems, a high quality preconditioner is a requirement for
convergence. Such a preconditioner has the tendency to map the spectrum around the
point (1,0) in the complex plane. This, in turn, as the analysis in section 3.2 shows,
minimizes the spectral difference between a true complex-valued iterative solver and
the K formulation and leads to our observation that the requirement of a high quality
preconditioner simultaneously provides the best solution times and diminishes the
convergence differences between a true complex iterative solver and the K formulation.

Finally, for applications such as linear stability analysis, where all operators are
real-valued except for the presence of complex shift value, the equivalent real for-
mulation can be very attractive since it utilizes the native real-valued solver, and
installation of the K formulation usually involves a modest amount of extra effort on
the part of the application developer.
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Abstract. In this paper, we present a comparison of four preconditioning strategies for Jacobian
systems arising in the fully implicit solution of radiation diffusion coupled with material energy
transfer. The four preconditioning methods are block Jacobi, Schur complement, and operator
splitting approaches that split the preconditioner solve into two steps. One splitting method includes
the coupling of the radiation and material fields that appears in the matrix diagonal in the first solve,
and the other method puts this coupling into the second solve. All preconditioning approaches use
multigrid methods to invert blocks of the matrix formed from the diffusion operator. The Schur
complement approach is clearly seen to be the most effective for a large range of weightings between
the diffusion and energy coupling terms. In addition, tabulated opacity studies were conducted
where, again, the Schur preconditioner performed well. Last, a parallel scaling study was done
showing algorithmic scalability of the Schur preconditioner.

Key words. preconditioning, Newton–Krylov, operator splitting, nonlinear solvers, radiation
diffusion
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1. Introduction. In this paper, we present a comparison of preconditioners for
a new numerical approach to the solution of very large-scale radiation diffusion prob-
lems. In this model, energy can be transferred to a material through coupling terms
in both the radiation and material energy equations. These problems are important
in modeling photon energy progression through an optically thick regime, a situation
common in some laser and stellar fusion applications. Traditionally, solutions for
these problems have been developed using operator split and time-lag techniques to
reduce the coupled system of nonlinear equations to the solution of a series of linear
problems. These solution techniques, however, lead to requirements of unacceptably
small time steps. Furthermore, as computers have become faster, researchers have
attempted to simulate larger problems despite existing solution methods that did not
scale well for increased numbers of unknowns.

For these reasons, we have developed a solution method for solving radiation
diffusion problems formulated in a fully implicit manner [5]. The fully implicit formu-
lation allows larger time steps to be taken without sacrificing accuracy. Furthermore,
recent work in iterative methods has provided computational scientists with new tools
for solving these problems—tools that scale well to large numbers of unknowns. In
order to solve this fully implicit formulation, we employ ODE time integration tech-
niques which then require an implicit solve for the solution at each time step. We
use an inexact Newton method for these solves, with a preconditioned Krylov method
for solving the linear Jacobian systems that arise within the Newton iterations. The
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Newton method provides fast nonlinear convergence, and the Krylov method gives a
robust linear solver.

We consider four methods for solving the Jacobian preconditioning step in the
Krylov method. All four schemes neglect the nonlinearity in the diffusion coefficient.
The four methods primarily differ in how they approximate the coupling between the
radiation and material energies. The first scheme is just to use the block diagonal part
of the Jacobian matrix, thereby neglecting the majority of the coupling between the
two fields. The second scheme is to factor the Jacobian and use a Schur complement
preconditioner. The remaining methods use operator splitting approaches to split the
preconditioner solve into two steps. One method includes the coupling of the radiation
and material fields that appears in the matrix diagonal in the first solve, and the other
method puts this coupling into the second solve. All preconditioning approaches use
multigrid methods to invert blocks of the matrix formed from the diffusion operator.

Recent work by Mousseau, Knoll, and Rider [15] has considered the fully implicit
formulation of radiation diffusion using an operator splitting preconditioner similar
to the second splitting method mentioned above. They saw this preconditioner to
be quite effective in solving one- and two-dimensional problems. In addition, earlier
work by Knoll, Rider, and Olson [14] showed that the fully implicit form of the
one-dimensional radiation diffusion problem gave greater accuracy in shorter times
than did traditional methods. In previous work, we found that the block Jacobi
preconditioning method was effective for test problems in three dimensions on parallel
computers [5]. Further work has shown that this method is not as effective as we would
like for cases where the material coupling dominates the diffusion operator. In this
paper, we will compare the four preconditioning methods mentioned above on three-
dimensional test problems. We will show an effective, fully implicit, parallel solution
strategy for these problems.

The rest of this paper is organized as follows. In the next section, we present
the mathematical models we are considering for this work. In sections 3 and 4 we
discuss the spatial and temporal discretization techniques used, and in section 5 we
detail the four preconditioning methods compared and show analysis indicating what
qualitative behavior we expect of each for different problem parameters. We briefly
discuss multigrid methods in section 6. In section 7 we give some numerical results
showing algorithm performance on problems with various degrees of difficulty and in
parallel on problems in three dimensions. Section 8 provides some concluding remarks.

2. Problem formulation. Our model for radiation diffusion is a simplification
of the full radiation transport equation given in [16]. We assume isotropic radiation
(no angular dependence), Fick’s law of diffusion, no scattering effects, and that the
photon energy is Planckian, and then integrate the transport equation in frequency
to get the diffusion model [2],

∂ER
∂t

= ∇ ·
(

c

3ρκR(TR)
∇ER

)
+ cρκP (TM ) · (aT 4

M − ER
)
,(2.1)

where ER(x, t) is the radiation energy density (x = (x, y, z)), TM (x, t) is the material
temperature, ρ(x) is the material density, c is the speed of light, and a = 4σ/c, where
σ is the Stephan–Boltzmann constant. The Rosseland opacity, κR, is a nonlinear
function of the radiation temperature, TR, which is defined by the relation ER = aT 4

R.
The Planck opacity, κP , is a nonlinear function of material temperature, TM , which
is related to the material energy through an equation of state, EM = EOS(TM ). In
many instances, the two opacities will take on similar values.
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We also consider a spatially dependent source term in this equation expressing
sources or sinks in the radiation field given by

χ(x)caT 4
source,(2.2)

where Tsource is a given source temperature and χ(x) is a function of the spatial
variable x. Computed solutions to (2.1) may result in photon velocities which exceed
the speed of light. To prevent this nonphysical phenomenon, a flux-limiter is often

added to the diffusion term [2]. We use a flux-limiter of the form ‖∇ER‖
ER

, where the

norm ‖ · ‖ is just the l2 norm of the gradient vector.
The resulting radiation diffusion equation we use as our model is

∂ER
∂t

= ∇ ·
(

c

3ρκR(TR) + ‖∇ER‖
ER

∇ER
)

+ cρκP (TM ) · (aT 4
M − ER

)
+ χ(x)caT 4

source.(2.3)

This equation is coupled to an equation expressing conservation of material energy
given by

∂EM
∂t

= −cρκP (TM ) · (aT 4
M − ER

)
.(2.4)

We will focus on the development of solution methods for the system (2.3)–(2.4) in
what follows.

3. Solution method. We apply a method of lines approach to the solution of
(2.3)–(2.4). The spatial discretization used is as follows. We use a tensor product
grid with Nx, Ny, and Nz cells in the x, y, and z directions, respectively. Define
ER,i,j,k(t) ≈ ER(xi,j,k, t) and EM,i,j,k(t) ≈ EM (xi,j,k, t), with xi,j,k = (xi, yj , zk) the
cell centers. Next, define

ER ≡




ER,1,1,1
...

ER,Nx,Ny,Nz


 and EM ≡




EM,1,1,1

...
EM,Nx,Ny,Nz


 .

We employ a cell-centered finite difference scheme over the computational mesh and
write our discrete equations in terms of a discrete diffusion operator given by L(ER) ≡(
L1,1,1(ER), . . . , LNx,Ny,Nz (ER)

)T
, where

Li,j,k(ER) =


 c

3ρi+1/2,j,kκR,i+1/2,j,k +
‖∇ER‖i+1/2,j,k

ER,i+1/2,j,k

ER,i+1,j,k − ER,i,j,k
xi+1 − xi

− c

3ρi−1/2,j,kκR,i−1/2,j,k +
‖∇ER‖i−1/2,j,k

ER,i−1/2,j,k

ER,i,j,k − ER,i−1,j,k

xi − xi−1




/(xi+1/2 − xi−1/2) + y and z terms,(3.1)

and a local operator S(ER,EM ) ≡ (S1,1,1(ER,EM ), . . . , SNx,Ny,Nz (ER,EM ))T , where

Si,j,k(ER,i,j,k, EM,i,j,k) = cρi,j,kκP,i,j,k
(
aT 4

M,i,j,k − ER,i,j,k
)
.(3.2)
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Thus, our discrete scheme is to find ER(t) and EM (t) such that

dER
dt

= L(ER) + S(ER,EM ) +Q,(3.3)

dEM
dt

= −S(ER,EM ),(3.4)

where Q ≡ caT 4
source(χ(x1,1,1), . . . , χ(xNx,Ny,Nz ))

T . The system (3.3)–(3.4) is an ODE
system and our time integration technique will be based on ODE time integration
methods.

4. Time integration. We have developed a three-dimensional, parallel simula-
tor that employs a fully implicit formulation and solution process for the radiation
diffusion model in (3.3)–(3.4) and with which algorithms for radiation diffusion can be
studied. In order to allow for accurate time-stepping as well as larger steps than what
traditional methods allow, we use an ODE time integrator to handle the temporal
discretization. This simulator uses the parallel ODE solver, PVODE [8], developed at
Lawrence Livermore National Laboratory and based on the VODPK package (variable
order ODE solver with preconditioned Krylov methods; see [7]). PVODE employs the
fixed leading coefficient variant of the backward differentiation formula (BDF) method
[4, 12] and allows for variation in the order of the time discretization as well as in the
time step size. Time step sizes are chosen to minimize the local truncation error and
thus give a solution that obeys a user-specified accuracy bound.

This time integration technique leads to a coupled, nonlinear system of equations
that must be solved at each time step. For the solution of this system, we use an
inexact Newton–Krylov method with Jacobian-vector products approximated by finite
differences. As the methods in PVODE are predictor-corrector in nature, an explicit
predictor is used for an initial guess in the nonlinear solve.

In the methods discussed above, we use the scaling technique incorporated into
PVODE. Thus, we include an absolute tolerance (ATOL) for each unknown and a
relative tolerance (RTOL) which is applied to all unknowns. These tolerances are
then used to form a weight which is applied to each solution component during the
time step from tn−1 to tn. This weight is given as

wi = RTOL|yin−1|+ATOLi(4.1)

and is also used to weight a root mean square norm which is applied to all error-
like vectors within the solution process. This scaling gives each vector component
equal weight when calculating norms. For our application, we supply two absolute
tolerances, one to be used with the radiation energy unknowns and one to be used
with the material energy unknowns.

5. Preconditioners. The use of Newton–Krylov methods necessitates the use
of preconditioning, and we consider several strategies. Before detailing the four pre-
conditioning strategies we compare in this work, we consider the content and structure
of the Jacobian matrix we are trying to precondition. We formulate our system of
ODEs as ẏ = f(t, y), set y = (ETR,E

T
M )T , and then form f using the right-hand sides

of (3.3)–(3.4). The Jacobian matrices used in the Newton method are of the general
form F ′(y) = (I − γJ), where J = ∂f/∂y is the Jacobian of the nonlinear function f ,
and the parameter γ ≡ ∆tβ with ∆t the current time step value and β a coefficient
depending on the order of the BDF method. Recalling the definitions of the discrete



PRECONDITIONING IMPLICIT RADIATION DIFFUSION 503

divergence and source operators, defined in (3.1) and (3.2), the block form of the
Jacobian of f is

J =

(
∂L/∂ER + ∂S/∂ER ∂S/∂EM

−∂S/∂ER −∂S/∂EM
)

=

(
A+G B
C D

)
,

where A = ∂L/∂ER, G = ∂S/∂ER, B = ∂S/∂EM , C = −∂S/∂ER, and D =
−∂S/∂EM . We note that G,B,C, and D are all diagonal matrices.

Since Jacobian approximations can be expensive to compute, the preconditioner
is not updated with every Newton iteration. Preconditioner updates occur only when
the Newton iteration fails to converge, when 20 time steps pass without an update, or
when there is a significant change in the time step size and order of the ODE method.

On close inspection of the nonlinear diffusion operator L(ER), we can write

L(ER) = L̂(ER)ER,

where L̂ is a nonlinear matrix-valued function of ER. In all of our preconditioning
strategies, we neglect the nonlinearity in the diffusion term and use the approximation

A = ∂L(ÊR)/∂ER ≈ L̂(ÊR) ≡ Ã,

where ∂L(ÊR)/∂ER is the Jacobian of L evaluated at a radiation energy, ÊR. The
size of the neglected term is related to the derivatives of the Rosseland opacity and
the flux-limiter. Our motivation for neglecting this term arises from the fact that
−Ã is symmetric and positive definite, whereas A has a first-order term that leads
to nonsymmetries in its discretized form. This first-order term includes derivatives of
the Rosseland opacity and flux-limiter. By neglecting the nonlinearity, this term is
removed from the preconditioner, and a symmetric approximation results. In addition,
calculation of Ã is much cheaper than for A, as no derivatives of the flux-limiter need
be computed. We also note that computation of the derivative of the flux-limiter may
lead to numerical errors if ∇ER approaches 0.

Our preconditioning strategies differ in how they approximately solve systems
with the matrix

M = I − γ
(
Ã+G B
C D

)
.

In all cases, multigrid methods are used to invert the Ã blocks. We will discuss the
specifics of the multigrid scheme after detailing the four strategies.

In the following discussion, we will be examining the preconditioner performance
responses to changes in the κP , κR, and ∆t parameters in the problem. For these
discussions, it will be useful to consider the same radiation diffusion model as given
in (3.3)–(3.4) but neglecting flux-limiting and assuming κP and κR constant. In this
case, we see that Ã = O(1/κR) and that B, C, and D are all O(κP ).

5.1. Block Jacobi. Our first strategy is to approximate the Jacobian system
with

MJacobi = I − γ
(
Ã+G 0

0 D

)
.

This method effectively neglects the coupling between the radiation and material
energy fields.
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We now examine the error, ErrJacobi = (I − γJ)−MJacobi. We see that

ErrJacobi = γ

(
Ã−A −B
−C 0

)
.

Thus, the error for this block Jacobi preconditioning strategy is O(∆t). In addition,
for the non-flux-limited, constant opacity case, we see that Ã = A and the error is
O(∆t × κP ) since both B and C are O(κP ). When ∆t × κP gets large, we would
expect this preconditioner to perform poorly.

5.2. Schur complement. Our second preconditioning strategy is to factor the
matrix (

P Q
R T

)
≡
(
I − γ(Ã+G) −γB
−γC I − γD

)
= M

into the following:

MSchur =

(
I QT−1

0 I

)(
P −QT−1R 0

0 T

)(
I 0

T−1R I

)
.

Letting S = P −QT−1R, we write the solution to MSchurx = b as

(
x1

x2

)
=

(
S−1(b1 −QT−1b2)
T−1(−Rx1 + b2)

)
.

The error in this preconditioner, ErrSchur = (I − γJ)−MSchur, is given by

ErrSchur = γ

(
Ã−A 0

0 0

)
.

If the Schur complement, S, is exactly inverted, there will be no error associated
with this preconditioner for the non-flux-limited, constant opacity case. In addition,
because D and hence T are diagonal, there is no penalty associated with inverting
T for every iteration of a method that inverts S, as there would be if a material
energy diffusion term were added to the equations. Also note that S is formed by
modifying the diagonal of P , so we can still employ multigrid methods to invert this
Schur complement, as we would to invert the Ã matrix.

5.3. Matrix split. Our third strategy is motivated by a preconditioner devel-
oped in [11] where a splitting of the Jacobian matrix is used. Our preconditioner is
written as

Mmatrix split = (I − γJdiag)(I − γJborder),(5.1)

where

Jdiag =

(
Ã+G 0

0 0

)
and Jborder =

(
0 B
C D

)
.

Solving systems of the form Mmatrix splitx = b requires two steps. The first step
consists of a solve with the system (I − γJdiag)y = b, and the second step consists of
a solve with the system (I − γJborder)x = y. Multigrid methods can be used to solve
the first system.



PRECONDITIONING IMPLICIT RADIATION DIFFUSION 505

To see how the second system can be easily inverted, we consider a reordering
of the unknowns and equations of the system, so that unknowns are first ordered
by space and then by energy type for each spatial point. Equations are reordered
similarly. With this new ordering, I − γJborder will be a block diagonal matrix with
2× 2 blocks. Each of these blocks can be written as

(I − γJborder)i =

(
1 bi
ci di

)
=

(
1 0
ci 1

)(
1 bi
0 d′

)
,

where d′ = di − bici. Solutions of the second step in the application of Mmatrix split

are easily obtained with this factorization.
The error in this preconditioner, Errmatrix split = (I−γJ)−Mmatrix split, is given

by

Errmatrix split= γ

( −A+ Ã 0
0 0

)
− γ2

(
0 (Ã+G)B
0 0

)
.(5.2)

For the non-flux-limited, constant coefficient case, Ã = A. The term (Ã +G)B is of
order O(( 1

κR
+ κP )κP ) ≈ O(κ2

P ). Thus, this preconditioner has error O((∆t)2 × κ2
P ).

So, as ∆t × κP gets large, we would expect this preconditioner’s effectiveness to
deteriorate rapidly.

5.4. Operator split. Our last strategy is motivated by a preconditioner devel-
oped in [6] where an operator splitting of the Jacobian operator is used to split the
preconditioning into two steps. This preconditioner is very similar to the previous
strategy except that the G term is part of the second step, rather than the first. This
preconditioner is written as

Moperator split = (I − γJdiff)(I − γJcoupling),(5.3)

where

Jdiff =

(
Ã 0
0 0

)
and Jcoupling =

(
G B
C D

)
.

Again, the first step consists of a solve with the system (I − γJdiff)y = b, and the
second step consists of a solve with the system (I − γJcoupling)x = y. Multigrid
methods can be used to solve the first system.

The second system here is also easily inverted by a simple LU decomposition of
a reordered problem. However, the 2 × 2 blocks have a nonidentity upper left entry,
so that the decomposition is

(I − γJcoupling)i =

(
gi bi
ci di

)
=

(
gi 0
ci 1

)(
1 bi/gi
0 d′

)
,

where d′ = di − (bici)/gi.
The error associated with this preconditioner, Erroperator split = (I − γJ) −

Moperator split, is given by

Erroperator split= γ

( −A+ Ã 0
0 0

)
− γ2

(
ÃG ÃB
0 0

)
.(5.4)

Again, for the non-flux-limited, constant coefficient case, Ã = A and the terms ÃG
and ÃB are of order O(κPκR ). Thus, this preconditioner has O((∆t)2 × κP

κR
) error.
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If κR ≈ κP , we would expect this preconditioner to show minimal deterioration in
effectiveness as the opacities get large.

Note that G = −C and B = −D so that as ∆t → ∞, the second stage of
this preconditioner I − γJcoupling becomes singular. As a result, we may expect this
preconditioner to deteriorate for extremely large time steps.

6. Multigrid methods. The Rosseland opacity will exhibit large changes where
material interfaces exist in the domain. The temperature dependence gives rise to
large value changes as well. These changes imply that the problem can be very
heterogeneous. As a result, to invert matrix blocks formed from the diffusion operator,
we use a multigrid method designed to handle large changes in problem coefficients.
In particular, we use 1 V-cycle of the ParFlow multigrid (PFMG) algorithm developed
by Ashby and Falgout [1] as our multigrid solver. Other multigrid methods have been
developed for highly heterogeneous problems. A comparison of PFMG and another of
these methods can be found in [13]. We use PFMG here because it is fast and scales
extremely well. More information about multigrid methods can be found in [3].

7. Numerical results. To understand how these preconditioning strategies per-
form for problems with varying degrees of difficulty, we performed a number of studies.
Our first study looked at the effects of changing the relative weighting of the diffusion
and coupling terms in the radiation equation by setting the two opacities constant
and equal and then investigating preconditioner responses to increasing the value.
Our second study looked at the effects of tabulated opacities, as are currently used
in applications of interest, on these preconditioners. Last, we performed a parallel
scaling study with the most effective preconditioner to verify algorithmic scalability
of the solution method.

For all runs, we used the PVODE package default settings, with the following
exception. Some of our tests led to nonstable solutions with higher-order methods,
so we have limited the ODE method order to 2 for all cases, except where explicitly
noted. We are presently looking into why these situations occur. Some work has been
done in the area of avoiding these sorts of instabilities [10], and we will investigate its
applicability here. Note that the default setting for the maximum number of GMRES
iterations for PVODE is 5. No restart is performed.

7.1. Constant opacity results. In our first study, we set the Rosseland and
Planck opacities equal to a single parameter, κ. We then changed the value of this
parameter from κ = 1 to κ = 100,000.

For this problem, we set EM = TM . The system (2.3)–(2.4) is solved on the box
D ≡ {x = (x, y, z) : 0 ≤ x, y, z ≤ 1cm}. The function χ(x) in (2.3) is defined by

χ(x) =

{
1 if 0.4 ≤ x, y, z ≤ 0.6,
0 otherwise.

(7.1)

The parameter Tsource was 3,481,440 ◦K (approximately 300eV ), and the initial con-
ditions were taken as ER = aT 4

R,0 and EM = TM,0, where TR,0 = TM,0 = 300 ◦K.
Dirichlet boundary conditions were consistent with the initial conditions. The density
was taken to be 1.0g/cc. The spatial grid was uniform with Nx = Ny = Nz = 20.

We examined solver statistics at 50 intervals of about 0.1002s with a final simu-
lation time of about 5.0104s. Flux-limiting was applied to the problem as discussed
above. We asked for a relative tolerance on each solution component of 10−4 and an
absolute tolerance on each of the energies of 200.
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Fig. 7.1. Radiation and material energies for κ = 100, time = 0.1002s, y = z = 0.475cm.
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Fig. 7.2. Radiation and material energies for κ = 100, time = 1.5031s, y = z = 0.475cm.

Figures 7.1 and 7.2 show the solutions over the x-line for y = z = 0.475cm at
times 0.1002s and 1.5031s for the value κ = 100cm2/g. The time 0.1002s is the first
output time we recorded. The solutions have felt the effects of the source at this point.
By 1.5031s, the energies have increased due to the source at the domain center. We
also see the effects of the diffusion operator spreading out the radiation energy.

Figures 7.3 and 7.4 show the solutions at these times but for κ = 105cm2/g. Here
the “bump” in the domain center is much more pronounced. This difference from
the lower κ case is due to the increased coupling between the two energy fields. For
higher values of κ, the radiation energy diffuses much less, and more of its energy is
transferred to the material. For these cases, the local physics is clearly dominating
the calculation.
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Fig. 7.3. Radiation and material energies for κ = 105, time = 0.1002s, y = z = 0.475cm.
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Fig. 7.4. Radiation and material energies for κ = 105, time = 1.5031s, y = z = 0.475cm.

Table 7.1 shows the cumulative solver statistics for these runs. In this and sub-
sequent tables,

S = Schur preconditioner,
BJ = block Jacobi preconditioner,
MS = matrix split preconditioner, and
OS = operator split preconditioner,

and the statistical counters are
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Table 7.1
Solver statistics for constant opacity problem.

PC κ NST NNI NLI RT NCFN NCFL
S 1 1,831 1,884 2,168 2,648 0 0
BJ 1 1,830 1,886 2,167 2,711 0 0
MS 1 1,830 1,884 2,171 2,617 0 0
OS 1 1,830 1,884 2,170 2,626 0 0
S 100 1,782 1,875 3,065 3,145 0 0
BJ 100 1,778 1,874 3,273 3,366 0 0
MS 100 1,786 1,894 3,141 3,213 3 17
OS 100 1,782 1,877 2,995 3,129 0 0
S 10,000 660 723 1,271 1,315 0 0
BJ 10,000 694 831 2,299 2,116 8 88
MS 10,000 2,828 4,939 19,343 17,371 930 2,893
OS 10,000 670 733 2,285 1,950 0 134
S 100,000 424 474 786 846 0 0
BJ 100,000 1,288 2,084 6,010 5,822 88 439
MS 100,000 2,359 3,787 14,780 12,995 518 2,090
OS 100,000 650 949 2,912 2,609 8 214

NST = total number of time steps,
NNI = total number of nonlinear iterations,
NLI = total number of linear iterations,
NFE = total number of f(t, y) evaluations,
NPE = total number of preconditioner evaluations,
NPS = total number of preconditioner solves,
HU = step size that was used on the last step (scaled by c),
RT = run time in seconds,
NCFN = total number of nonlinear convergence failures, and
NCFL = total number of linear convergence failures.

We see that the Schur preconditioner is consistently performing better and faster
than the others. As the coupling term between the radiation and material grows
in weight relative to the diffusion term, we see that the matrix split preconditioner
is the first to show significant signs of struggle. This degradation in the matrix
split preconditioner performance is expected since its error was on the order of κ2

P .
However, all but the Schur preconditioner are struggling for κ = 104 and κ = 105.
The operator split preconditioner shows the second best performance, which is also
expected since its error is on the order of κP /κR. For lower opacity values, the
preconditioners all perform fairly well.

Figure 7.5 shows the cumulative numbers of nonlinear iterations taken by each of
the preconditioners for the 50 output times for the two cases of κ = 100cm2/g and
κ = 105cm2/g. For the lower κ value, all preconditioners result in about the same
number of nonlinear iterations at each time step. For the higher κ value, however,
the preconditioners show distinctly different performances. During the transition to
steady state, the matrix split preconditioner has the most degradation with the block
Jacobi preconditioner also showing degradation, but less. These results bear out the
analysis given above in that these two preconditioners have the strongest dependence
on the κ value with the matrix split the strongest. After the solution gets close to
steady state, however, the four preconditioners all require very few nonlinear iterations
to resolve the physics. Similar results bear out for the linear iteration counts.

7.2. Tabular opacities results. In this section we give results of using the
above preconditioners on several problems involving the use of tabular opacities. We
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and κ = 105cm2/g.

use the LEOS package (Livermore Equation of State; see [9]) to give the Rosseland
and Planck opacities as nonlinear functions of the radiation temperature TR and
material temperature TM , respectively. The system (2.3)–(2.4) is solved on the box
D ≡ {x = (x, y, z) : 0 ≤ x, y, z ≤ 1cm} with Dirichlet boundary conditions. The
function χ(x) in (2.3) is defined by

χ(x) =

{
1 if 0.3 ≤ x, y, z ≤ 0.7,
0 otherwise.

(7.2)

The parameter Tsource was 3,481,440 ◦K (approximately 300eV ), and the initial con-
ditions were taken as ER = aT 4

R,0 and EM = EOS(ρ, TM,0), where TR,0 = TM,0 =
116,100 ◦K (approximately 10eV ), and EOS(ρ, TM ) is the equation of state function
in the LEOS package giving EM as a function of ρ and TM . The Dirichlet boundary
values for ER and EM are taken to be consistent with the initial conditions. The
material used was carbon at a reference density of ρ = 1.05g/cc. The spatial grid was
uniform with Nx = Ny = Nz = 20.

For this problem, the time behavior consists of an initial transient in which the
material heats up in the region of the source (from 0 to .01 microseconds), followed
by a radiation front traveling to the boundary (continuing to .41 microseconds), and
then a final phase in which the solution approaches a steady state (integrated to
about 1.33 microseconds). Figures 7.6 and 7.7 show the solutions plotted on the
line y = z = 0.475cm at .01 and .03 microseconds. The only preconditioner that was
effective for the entire course of the simulation was the Schur preconditioner. We note
that for the initial conditions, the starting values of the Rosseland and Planck opacities
are on the order of 104 and 105, respectively. Table 7.2 compares the statistics of the
PVODE solver at .01 microseconds.

At this early output time, the matrix split preconditioner is actually performing
the best. However, in the next phase of the solution all the preconditioners start hav-
ing large numbers of linear convergence failures except for the Schur preconditioner.
It has zero linear and nonlinear convergence failures for this problem. When a linear
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Fig. 7.6. Snapshot of ER and EM for the first LEOS problem on the line y = z = 0.475cm at
.01 microseconds.
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Fig. 7.7. Snapshot of ER and EM for the first LEOS problem on the line y = z = 0.475cm at
.03 microseconds.

Table 7.2
Statistics for LEOS problem 1 at .01 microseconds.

PC NST NNI NLI NFE NPE NPS HU RT NCFN NCFL
S 323 420 562 985 59 975 1.52 298.43 0 0
BJ 305 518 1,023 1,544 68 1,534 .95 488.59 0 14
MS 226 308 280 591 54 581 6.54 188.91 0 0
OS 493 663 1,511 2,179 103 2,164 .78 663.87 0 33
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Fig. 7.8. Plot of step size comparisons for first LEOS problem. Note that the time steps are
actually c∆t.
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convergence failure occurs and the preconditioner is current, the PVODE solver re-
duces the step size and tries the step over. This has the effect of increasing the total
number of steps for the simulation. Also note that the step sizes used by PVODE
are much larger than one would expect for the split and Jacobi preconditioners to be
effective. With step sizes of order 1, the errors in the split and Jacobi preconditioners
are extremely large. Hence, it is not hard to understand the failure of these precondi-
tioners (or their high cost since the step sizes must be kept small) for the latter part
of the simulation. Figures 7.8 and 7.9 show the step size behavior as a function of out-
put times for the Schur and block Jacobi preconditioners. While the step sizes change
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Table 7.3
Statistics for LEOS problem 1 at 1.33 microseconds.

PC NST NNI NLI NPE HU RT NCFN NCFL
S 2,654 2,942 5,930 189 4,421 2,592 0 0
BJ >4,197 >4,969 >23,387 >451 15.11 >7,208 >55 >1,720
MS >3,226 >5,261 >20,691 >1,653 .00166 >6,559 >473 >1,680
OS >4,743 >6,720 >22,528 >962 .321 >6,867 >10 >185

Table 7.4
Statistics for LEOS problem 1 restricted to first order.

PC NST NNI NLI Final time RT NCFN NCFL
reached (µs)

S 9,236 9,726 14,725 .0097 7,142 0 0
BJ 5,970 6,280 16,256 .0047 6,862 0 18
MS 6,564 8,177 13,717 .0031 6,894 191 701
OS 5,629 5,968 18,706 .0053 7,161 0 64

fairly smoothly for the Schur preconditioner, the behavior has a sawtooth flavor for
the block Jacobi preconditioner. The final statistics for the Schur preconditioner are
given in Table 7.3, as well as the final computed statistics for the other precondition-
ers. For this problem, we requested 400 output snapshots. The Schur preconditioner
finished the computation in under a 2-hour limit, while the block Jacobi reached 285
output points, the operator split reached 14, and the matrix split reached only 7. For
the Schur preconditioner, there were on average 1.1 nonlinear iterations per time step
and 2.0 linear iterations per nonlinear iteration.

For this first problem, we also investigated the effect of restricting the ODE solver
to first order (i.e., backward Euler). While this had a significant effect on reducing
the number of linear and nonlinear convergence failures for all but the matrix split
preconditioner, the number of time steps increased dramatically. As a result, all of the
preconditioners failed to produce the requested 400 output points within the 2-hour
run time limit. Table 7.4 gives statistics and final times reached for each precon-
ditioner. From these results, it is apparent that the higher-order time integration
methods can be extremely effective in reducing overall run time costs.

A second problem was run with hydrogen as the material at a reference density
of ρ = .874g/cc. This problem has the same general behavior as the first, except that
the time to reach steady state is an order of magnitude lower, i.e., the simulation was
run to .133 microseconds. Figures 7.10, 7.11, and 7.12 show the solutions plotted on
the line y = z = 0.475cm at .01, .02, and .133 microseconds. Table 7.5 contains the
statistics for this problem. As before, the Schur preconditioner was the only effective
preconditioner for the entire run. There were on average 1.1 nonlinear iterations per
time step, and 2.15 linear iterations per nonlinear iteration. Note that there were 13
linear convergence failures and 1 nonlinear failure.

7.3. Scalability study with tabulated opacities. A scalability study was
performed on a third problem. The system (2.3)–(2.4) was solved on the box D ≡
{x = (x, y, z) : 0 ≤ x, y, z ≤ 1cm} with Dirichlet boundary conditions. The function
χ(x) in (2.3) is defined by (7.1). The parameter Tsource was 3,481,440 ◦K, and the
initial conditions were obtained using TR,0 = TM,0 = 300 ◦K. The Dirichlet boundary
values were taken to be consistent with the initial conditions. The material used was
carbon at a reference density of ρ = 1.05g/cc, and the spatial grid per processor was
uniform with Nx = Ny = Nz = 40. Thus, problem size and computational resources
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Fig. 7.10. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0.475cm
at .01 microseconds.
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Fig. 7.11. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0.475cm
at .02 microseconds.

were simultaneously increased for this study. Only the Schur preconditioner was used.
Table 7.6 contains the results of the scalability study. The reported scaled efficiency
for a run on N processors was calculated by dividing the run time for the single
processor case by the run time for the N processor case. As can be seen, except for
the run times, all the statistics scaled extremely well. (We note that when this study
was performed, the run time environment on the IBM ASCI Blue Pacific machine
at LLNL was under a state of flux. Earlier scalability studies performed showed a
much better scalability of run times.) The simulation was run until approximately
.001 microseconds, which is very early in the time history.
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Fig. 7.12. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0.475cm
at .133 microseconds.

Table 7.5
Statistics for LEOS problem 2 at .133 microseconds.

PC NST NNI NLI NFE NPE NPS HU RT NCFN NCFL
S 834 943 2,029 2,976 81 2,967 26.69 879 1 13

Table 7.6
Statistics for scalability study.

Processor NST NNI NLI NPE RT RT scaled Avg. cost
topology efficiency per step
1× 1× 1 217 329 423 70 2,015 – 9.3
2× 2× 2 214 324 411 75 2,287 88.1% 10.7
4× 4× 4 196 295 378 66 2,220 90.7% 11.3
8× 8× 8 197 273 374 57 2,575 78.2% 13.1
16× 8× 8 190 273 376 60 3,106 64.8% 16.4

8. Conclusions. We have presented a comparison of four preconditioning strate-
gies for Jacobian systems arising in the fully implicit solution of radiation diffusion
coupled with material energy transfer. The four preconditioning methods are block
Jacobi, Schur complement, and operator splitting approaches that split the precondi-
tioner solve into two steps. From our results, it is apparent that the Schur complement
approach is clearly seen to be the most effective for a large range of weightings between
the diffusion and energy coupling terms. For problems using tabulated opacities, the
Schur preconditioner outperformed the other preconditioners by a wide margin. One
conclusion we can draw from our studies is that it appears to be more effective to use
full matrix approaches to developing preconditioners for radiation transport problems
rather than approaches based on splittings or on only parts of the matrix.

While limiting the time integration methods to first order helps lower the number
of step failures, there is a marked increase in the number of steps. At least for the
problems we have considered, the better preconditioner allows for much larger step
sizes within the allowed error bounds used by the PVODE solver, and this significantly
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reduces the overall work. Our parallel scaling study demonstrated good algorithmic
scalability of our solution approach. Finally, when material diffusion is added to equa-
tion (2.4), the Schur approach may fail to be competitive. In addition, extending the
physics in the problem to include multigroup diffusion (where the radiation energy
spectrum is resolved) leads to a Schur complement that is a full matrix. Our future
work will include exploring the use of system-based multigrid solvers as precondi-
tioners, as well as other multilevel methods, to address material energy diffusion and
multigroup energy resolution.
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Abstract. We describe new algorithms of the locally optimal block preconditioned conjugate
gradient (LOBPCG) method for symmetric eigenvalue problems, based on a local optimization of a
three-term recurrence, and suggest several other new methods. To be able to compare numerically
different methods in the class, with different preconditioners, we propose a common system of model
tests, using random preconditioners and initial guesses. As the “ideal” control algorithm, we advocate
the standard preconditioned conjugate gradient method for finding an eigenvector as an element of
the null-space of the corresponding homogeneous system of linear equations under the assumption
that the eigenvalue is known. We recommend that every new preconditioned eigensolver be compared
with this “ideal” algorithm on our model test problems in terms of the speed of convergence, costs of
every iteration, and memory requirements. We provide such comparison for our LOBPCG method.
Numerical results establish that our algorithm is practically as efficient as the “ideal” algorithm when
the same preconditioner is used in both methods. We also show numerically that the LOBPCG
method provides approximations to first eigenpairs of about the same quality as those by the much
more expensive global optimization method on the same generalized block Krylov subspace. We
propose a new version of block Davidson’s method as a generalization of the LOBPCG method.
Finally, direct numerical comparisons with the Jacobi–Davidson method show that our method is
more robust and converges almost two times faster.
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1. Introduction. We consider a generalized symmetric definite eigenvalue prob-
lem of the form (A−λB)x = 0 with real symmetric n-by-n matrices A and B, assum-
ing that A is positive definite. That describes a regular matrix pencil A − λB with
a discrete spectrum (set of eigenvalues λ). It is well known that such a generalized
eigenvalue problem has all real eigenvalues λi, and corresponding (right) eigenvec-
tors xi, satisfying (A− λiB)xi = 0, can be chosen orthogonal in the following sense:
(xi, Axj) = (xi, Bxj) = 0, i �= j. In some applications, the matrix B is simply the
identity B = I, and then we have the standard symmetric eigenvalue problem with
matrix A, which has n real positive eigenvalues

0 < λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax.

In general, when B �= I, the pencil A − λB has n real, some possibly infinite, eigen-
values. If B is nonsingular, all eigenvalues are finite. If B is positive semidefinite,
some eigenvalues are infinite, all other eigenvalues are positive, and we consider the
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problem of computing the smallest m eigenvalues of the pencil A − λB. When B is
indefinite, it is convenient to consider the pencil µA−B with eigenvalues

µ =
1

λ
, µmin = µn ≤ · · · ≤ µ1 = µmax,

where we want to compute the largest m eigenvalues, µ1, . . . µm, and corresponding
eigenvectors.

An important class of eigenproblems is the class of mesh eigenproblems, arising
from discretizations of boundary value problems with self-adjoint differential operators
of mathematical physics. Such problems appear, e.g., in structural mechanics, where
it is usual to call A a stiffness matrix and B a mass matrix. A mass matrix is usually
positive definite, but in some applications, e.g., in buckling, the matrix B is only
nonnegative, or even indefinite, while A is positive definite.

Typical properties of mesh eigenproblems are well known; see, e.g., [22]. We just
want to highlight that the desired eigenpairs of the matrix pencil B − µA are rarely
needed with high accuracy as the pencil itself is just an approximation of the original
continuous problem and the approximation error may not be small in practice. It
means that the typical ratio of the number of iterations and the number of unknowns
should be small when a preconditioner is of a reasonable quality. For that reason, in
the present paper we are not much interested in such properties of eigensolvers, e.g.,
in superlinear convergence, which could be observed only after large number of steps.

In the rest of the paper, for brevity, we deal with the pencil B−µA mostly. With
B = I and λ = 1/µ, our results and arguments are readily applied for the pencil
A− λI.

The paper is organized as follows.

In section 2, we introduce, following [21, 22], preconditioning for eigenvalue solvers
and give general definitions of preconditioned single-vector and block, or simultaneous,
iterative eigensolvers. We describe the global optimization method on the correspond-
ing generalized Krylov subspace. No efficient algorithm is presently known to perform
a global optimization of the Rayleigh quotient on the generalized Krylov subspace.
We shall show numerically in section 8, however, that the method we suggest in sec-
tion 4 provides approximations often quite close to those of the global optimization,
at a small fraction of the cost.

In section 3, we outline the “ideal” control algorithm, namely, the standard pre-
conditioned conjugate gradient method, for finding an eigenvector as an element of
the null-space of the corresponding homogeneous system of linear equations under
assumption that the eigenvalue is known. The algorithm cannot, of course, be used
in practice as it requires knowledge of the extreme eigenvalue, but it seems to be
a perfect choice as a benchmark for preconditioned eigensolvers for computing the
extreme eigenpair.

In section 4, we describe, in some details, a new algorithm of the locally optimal
preconditioned conjugate gradient method, based on the local optimization of the
three-term recurrence suggested by the author in [19, 21, 22]. In the original algorithm
of [19], the three-term recurrence contains the current eigenvector approximation, the
current preconditioned residual, and the previous eigenvector approximation. As the
current eigenvector approximation and the previous eigenvector approximation get
closer in the process of iterations, special measures need to be used in the algorithm
to overcome the potential instability. In our new algorithm, the three-term recurrence
contains the current eigenvector approximation, the current preconditioned residual,
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and the implicitly computed difference of the current and previous eigenvector ap-
proximations. Such choice resolves instability issues and allows us to write a much
simpler and more efficient code.

We present block versions of the method, the locally optimal block precondi-
tioned conjugate gradient (LOBPCG) methods for symmetric eigenvalue problems, in
section 5.

To be able to compare numerically different methods in the class, with different
preconditioners, we suggest, in section 6, a common system of model tests, using
random preconditioners and initial guesses. We recommend that every new precondi-
tioned eigensolver for computing the extreme eigenpair be compared with our “ideal”
algorithm on our model test problems in terms of the speed of convergence, costs of
every iteration, and memory requirements. We also recommend a comparison with
the global optimization method in terms of accuracy.

We provide such comparison for our LOBPCG method in sections 7 and 8. Nu-
merical results of section 7 establish that our algorithm is practically as efficient as the
“ideal” algorithm when the same preconditioner is used in both methods. In section
8 we show numerically that the block version of our method comes close to finding
the global optimum of the Rayleigh quotient on the corresponding generalized block
Krylov subspace.

Section 9 contains an informal discussion of the block Davidson method. We
describe a nonstandard restart strategy that makes the block Davidson method a
generalization of our LOBPCG method. We argue, however, that such generalization
may not be beneficial for symmetric eigenvalue problems.

In section 10, we compare directly our method with a version of the Jacobi–
Davidson method [14] for B = I. No MATLAB code of the Jacobi–Davidson method
for a generalized eigenvalue problem is currently publicly available. We find that our
method is much more robust and typically converges almost two times faster. This is
not very surprising, as the MATLAB version of the Jacobi–Davidson method available
to us for testing is not apparently optimized for symmetric eigenvalue problems, while
our method takes full advantage of the symmetry by using a three-term recurrence.

Finally, section 11 contains references to some relevant software written by the
author.

We note that the simplicity, robustness, and fast convergence of preconditioned
eigensolvers we propose make them a more and more popular choice in applications,
e.g., in band structure calculations in two- and three-dimensional photonic crystals [6,
7] and eigenvalue problems for thin elastic structures [32]. Some eigenvalue problems
in mechanics, e.g., vibration of a beam supported by springs, lead to equations with
nonlinear dependence on the spectral parameter. Preconditioned eigensolvers for such
equations are analyzed in [39, 40], where, in particular, a generalization of the theory
of a preconditioned subspace iteration method of [9, 10] is presented.

2. Preconditioning for eigenvalue problems. First, we briefly review a tra-
ditional approach for large symmetric generalized eigenproblems, based on using clas-
sical methods, e.g., the Lanczos method, for a shifted-and-inverted operator (B −
νA)−1A. It typically lets us quickly compute the eigenvalues closest to the shift ν,
assuming that this operation may be implemented with an efficient factorization of
B − νA. However, for very large problems such factorizations are usually too expen-
sive. An inner iterative solver is often used to somewhat circumvent this difficulty;
see a review and references in [21, 22] and a recent paper [38].

If B is efficiently factorizable, e.g., B = I, so that we can multiply vectors by
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AB−1, or B−1A, we take ν = 0. In this case, a single iteration may not be expensive,
but eigenvalues µ close to zero are usually not of practical interest, and the convergence
for eigenvalues of interest is often very slow.

Thus, the traditional approach is inefficient for very large mesh eigenproblems.
Preconditioning is the key for significant improvement of the performance as it allows
one to find a path between the Scylla of expensive factorizations and the Charybdis
of slow convergence.

Preconditioned methods are designed to handle the case when the only operation
we can perform with matrices A and B of the pencil is multiplication of a vector by
A and B. To accelerate the convergence, we introduce a preconditioner T .

In many engineering applications, preconditioned iterative solvers for linear sys-
tems Ax = b are already available, and efficient preconditioners T ≈ A−1 are con-
structed. It is important to realize that the same preconditioner T can be used to
solve an eigenvalue problem Ax = λx, or Bx = µAx.

We assume that the preconditioner T is symmetric positive definite. As A is also
symmetric positive definite, there exist positive constants δ1 ≥ δ0 > 0 such that

δ0(T
−1x, x) ≤ (Ax, x) ≤ δ1(T

−1x, x).(2.1)

The ratio δ1/δ0 can be viewed as the spectral condition number κ(TA) of the precon-
ditioned matrix TA and measures how well the preconditioner T approximates, up to
a scaling, the matrix A−1. A smaller ratio δ1/δ0 usually ensures faster convergence.

We want to highlight that the assumption we just made on T is essential for the
theory (see [21]) but may not be an actual limitation in numerical computations for
some methods. In particular, our own method of section 5 is quite robust in practice
with respect to the choice of the preconditioner, even when the assumptions above are
not satisfied; see Figure 5.2 below as an example of using an indefinite preconditioner.

As we want to discuss an optimality of preconditioned eigensolvers, we need to
have a formal definition of the whole class of such methods. We first define, follow-
ing [21], a preconditioned single-vector iterative solver for the pencil B − µA, as a
generalized polynomial method of the following kind:

x(k) = Pk(TA, TB)x
(0),(2.2)

where Pk is a polynomial of the kth degree of two independent variables, x
(0) is an

initial guess, and T is a fixed preconditioner.
We need only choose a polynomial, either a priori or during the process of it-

erations, and use a recursive formula which leads to an iterative scheme. For an
approximation µ(i) (λ(i)) to an eigenvalue of the pencil B − µA (A− λB) for a given
eigenvector approximation x(i) the Rayleigh quotient µ(x) (λ(x)) defined as

µ(x(i)) =
(x(i), Bx(i))

(x(i), Ax(i))

(
λ(x(i)) =

(x(i), Ax(i))

(x(i), Bx(i))

)
(2.3)

is typically used.
Let us now define the generalized Krylov subspace:

Kk

(
TA, TB, x(0)

)
=
{
Pk(TA, TB)x

(0)
}
,(2.4)

where Pk runs through the set of all polynomials of the kth degree of two independent
variables and x(0) is a fixed initial vector. In particular,
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K2

(
TA, TB, x(0)

)

= span
{
x(0), TAx(0), TBx(0), (TA)2x(0), TATBx(0), TBTAx(0), (TB)2x(0)

}
.

We notice that in our definition (2.2) of the preconditioned eigensolver

x(k) ∈ Kk

(
TA, TB, x(0)

)
.

Having definition (2.2) of the whole class of preconditioned eigensolvers, we can
introduce, as in [21], the global optimization method for computing the first eigenpair
simply by maximizing the Rayleigh quotient µ(x) on the Krylov subspace (2.4):

x(k)
o = argmaxx∈Kk(TA,TB,x(0))µ(x).(2.5)

We want to highlight that an efficient algorithm for finding x
(k)
o , e.g., based on

short-term recurrences, is not presently known, and that the number of vectors in
the basis of the Krylov subspace (2.4) grows exponentially, which makes the method
very expensive in practice, similarly to the situation with Davidson’s method (see
discussion in [21, 22]), unless restarts are used. Therefore, the global optimization
method (2.5) is optimal only in the sense that it provides the global maximum of the
Rayleigh quotient on the Krylov subspace, but it may not be optimal if we also count
computational costs.

For block methods, we introduce the generalized block Krylov subspace:

Kk

(
TA, TB,X(0)

)
= span

{
Pk(TA, TB)x

(0)
j , j = 1, . . . ,m

}
,(2.6)

where Pk runs through the set of all polynomials of the kth degree of two independent

variables and X(0) = span{x(0)
j , j = 1, . . . ,m}.

A general preconditioned block eigensolver is a generalization of method (2.2) with
a single vector being replaced with several ones. Using the Rayleigh–Ritz method is
typical for block methods; see [21, 22].

Here, we only want to define the block global optimization method, Algorithm 2.1,
as we use it later in our numerical experiments.

Algorithm 2.1. The block globally optimal preconditioned eigen-
solver.

Input: m starting vectors x
(0)
1 , . . . x

(0)
m , devices to compute: Ax, Bx, and Tx for

a given vector x, and the vector inner product (x, y).

1. Start: select x
(0)
j , j = 1, . . . ,m.

2. Iterate to compute the basis of the generalized block Krylov subspace (2.6).
3. Use the Rayleigh–Ritz method for the pencil B − µA in the subspace

to compute the Ritz values µ
(k)
j and the corresponding Ritz vectors x

(k)
j .

Output: the approximations µ
(k)
j and x

(k)
j to the largest eigenvalues

µj and corresponding eigenvectors, j = 1, . . . ,m.

In our code of the block global optimization method, we do not even try to
minimize computation costs and simply compute recursively

Kk+1 = Kk + TAKk + TBKk,(2.7)
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followed by complete orthogonalization. The only purpose of the code is to provide a
comparison, in terms of accuracy, for the actual block method we suggest in section 5.

3. The “ideal” preconditioned conjugate gradient method. In this sec-
tion, we outline the “ideal” control algorithm, namely, the standard preconditioned
conjugate gradient (PCG) method for finding an eigenvector, corresponding to the
minimal eigenvalue, as an element of the null-space of the corresponding homoge-
neous system of linear equations under the assumption that the eigenvalue is known.

We assume B > 0 in this section. Let us suppose that the minimal eigenvalue λ1

is already known, and we just need to compute the corresponding eigenvector x1, an
element of the null-space of the homogeneous system of linear equations

(A− λ1B)x1 = 0,

where the matrix of the system is symmetric and nonnegative definite. What would
be an ideal preconditioned method of computing x1? As such, we choose the standard
PCG method. It is well known that a PCG method can be used to compute a nonzero
element of the null-space of a homogeneous system of linear equations with a sym-
metric and nonnegative definite matrix if a nonzero initial guess is used. While fitting
perfectly the definition of a single-vector preconditioned eigensolver of the previous
section, this ideal method cannot be used in practice as it requires knowledge of the
eigenvalue.

We suggest using the method as a control in numerical comparison with practical
eigenvalue solvers, in particular, with PCG eigensolvers, e.g., with our locally optimal
PCG method. If an eigensolver finds the eigenvector u1 with the same accuracy and
costs as the ideal method, we have reasons to call such an eigensolver “optimal” for
computing the eigenvector u1.

For our numerical tests, we write a code PCGNULL.m, which is a slightly modified
version of the built-in MATLAB code PCG.m, revision 1.11, of the standard PCG
method to cover solution of homogeneous systems of linear equations with symmetric
and nonnegative definite system matrices.

The standard theory of the PCG method for computing an element of the null-
space of a symmetric nonnegative definite matrix implies convergence to the eigenvec-
tor x1, which is the T

−1-orthogonal projection of the initial guess y(0) to the null-space
of the matrix A− λ1B. On the (i+ 1)st step, the “energy” norm of the error, in our
case it’s actually the seminorm based on A− λ1B, i.e.,√

(y(i+1), (A− λ1B)y(i+1)),(3.1)

is minimized over the hyperplane

Hi+1 = y(0) +Ki(T (A− λ1B), T (A− λ1B)y
(0)),(3.2)

where Ki is the standard Krylov subspace. As x1 is in the null-space of the matrix
A− λ1B, we have

(y, T−1x1) = (y
(0), T−1x1) ∀y ∈ Hi,(3.3)

in particular, (y(i), T−1x1) does not change in the process of iterations, while (3.1)
converges to zero at least linearly with the asymptotic average convergence factor
(1−√ξ)/(1+√ξ), where ξ is an upper bound for the ratio of the largest and smallest
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nonzero eigenvalues of the preconditioned matrix T (A − λ1B). Using estimates of
[18] of eigenvalues of T (A− λ1B) in terms of eigenvalues λ of the pencil A− λB and
constants of (2.1), we can obtain such an upper bound and get the following upper
bound of the asymptotic average convergence factor:

q =

(
1−√ξ
1 +
√
ξ

)
, ξ =

1

κ(TA)

(
1− λ1

λ2

)
.(3.4)

Finally, we would like to remind the reader of a long forgotten version of the PCG
method based on optimization of a three-term recurrence, e.g., [35]:

y(i+1) = y(i) + α(i)v(i) + β(i)(y(i) − y(i−1)), v(i) = T (A− λ1B)y
(i), β(0) = 0,(3.5)

with both scalar parameters α(i) and β(i) computed by minimizing seminorm (3.1) of
y(i+1). This version is mathematically equivalent, in exact arithmetic, to the standard
version implemented in PCGNULL, which uses two linked two-term recurrences.

This provides an insight into the locally optimal PCG eigensolver [19] we discuss
in the next section, where we simply replace in (3.5) exact λ1 with its approximation,
and instead of minimizing seminorm (3.1) of y(i+1) we compute y(i+1) by using the
Rayleigh–Ritz method on the subspace

y(i+1) ∈ Span
{
v(i), y(i), y(i−1)

}
.(3.6)

An investigation of a possible connection between the two methods is in progress. As
we see in section 7, they behave quite similarly in our numerical tests.

4. The PCG methods. In this section, we propose a new version of the locally
optimal PCG method [19].

In [19], the author suggested the following PCG method for the pencil B − µA:

x(i+1) = w(i)+τ (i)x(i)+γ(i)x(i−1), w(i) = T (Bx(i)−µ(i)Ax(i)), µ(i) = µ(x(i)), γ(0) = 0,
(4.1)
with scalar iteration parameters τ (i) and γ(i) chosen using an idea of local optimality
[19], namely, select τ (i) and γ(i) that maximize the Rayleigh quotient µ(x(i+1)) by
using the Rayleigh–Ritz method. As the current eigenvector approximation x(i) and
the previous eigenvector approximation x(i−1) are getting closer to each other in the
process of iterations, special measures need to be used in the algorithm to overcome
the potential instability.

Formula (4.1) has been used in an earlier revision of our MATLAB code LOBPCG.
In our numerical tests, it often led to so ill-conditioned Gram matrices that the
Rayleigh–Ritz method would produce spurious eigenpairs. As a cure, we had to use
an A-based orthogonalization of the three-dimensional trial subspace, which increased
computational costs as had to multiply by A more often.

In our new algorithm, the three-term recurrence contains the current eigenvec-
tor approximation, the current preconditioned residual, and the implicitly computed
difference between the current and the previous eigenvector approximations:

x(i+1) = w(i) + τ (i)x(i) + γ(i)p(i), w(i) = T (Bx(i) − µ(i)Ax(i)),
p(i+1) = w(i) + γ(i)p(i), p(0) = 0, µ(i) = µ(x(i)),

(4.2)

with scalar iteration parameters τ (i) and γ(i) chosen using the idea of local optimality
as above, namely, select τ (i) and γ(i) that maximize the Rayleigh quotient µ(x(i+1))
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by using the Rayleigh–Ritz method. We see that

p(i+1) = x(i+1) − τ (i)x(i);

thus,

x(i+1) ∈ Span {w(i), x(i), p(i)} = Span {w(i), x(i), x(i−1)},

and therefore the new formula (4.2) is mathematically equivalent to the previous one,
(4.1), in exact arithmetic.

We describe the actual algorithm of the method given by (4.2) as Algorithm 4.1.
Our experiments confirm that Algorithm 4.1 is much more numerically stable

compared to the previous version (4.1) and that it can be used without extra A-
orthogonalization in most situations. However, for ill-conditioned problems and when
a high accuracy is required, even our new choice of the basis w(i), x(i), p(i) of the
trial subspace of the Rayleigh–Ritz method may lead to ill-conditioned 3-by-3 Gram
matrices, which makes necessary orthogonalization prior to the use of the Rayleigh–
Ritz method. In the actual code of LOBPCG, we check for ill-conditioned Gram
matrices on every iteration and implement A-orthogonalization if necessary. Since
by our assumptions matrix B may not be positive definite, there is no other option
except to use the A-based scalar product for the orthogonalization. This typically
increases the cost of iterations, but it makes the algorithm more robust.

Algorithm 4.1. The locally optimal PCG method.

Input: devices to compute: Ax, Bx, and Tx for a given vector x, the vector inner

product (x, y), and a starting vector x(0).
1. Start: select x(0) and set p(0) = 0.
2. Iterate: For i = 0, . . . , Until Convergence Do:
3. µ(i) := (x(i), B x(i))/(x(i), A x(i))
4. r := B x(i) − µ(i)Ax(i)

5. w(i) := Tr
6. Use the Rayleigh–Ritz method for the pencil B − µA

on the trial subspace Span {w(i), x(i), p(i)}
7. x(i+1) := w(i) + τ (i)x(i) + γ(i)p(i),

(the Ritz vector corresponding to the maximal Ritz value)
8. p(i+1) := w(i) + γ(i)p(i)

9. EndDo
Output: the approximations µ(k) and x(k) to the largest eigenvalue µ1 and its
corresponding eigenvector.

We want to highlight that the algorithm can be implemented with only one appli-
cation of the preconditioner T , one matrix-vector product Bx, and one matrix-vector
product Ax, per iteration.

Storage requirements for Algorithm 4.1 are small—only several n-vectors and no
n-by-n matrices at all. Such methods are sometimes called matrix-free.

For the stopping criterion, we compute some norms of the preconditioned resid-
ual w(i) on every iteration. Such norms may provide accurate two-sided bounds for
eigenvalues and a posteriori error bounds for eigenvectors; see [18]. For brevity, we
do not consider it in the present paper.
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Let us also mention the possibility of avoiding the residual in method (4.1) by
splitting it into two vectors:

x(i+1) ∈ Span
{
TAx(i), TBx(i), x(i), x(i−1)

}
.(4.3)

In this new method, the trial subspace is enlarged, which may lead to somewhat
faster convergence. However, we need to apply the preconditioner two times now on
every iteration; therefore, in our opinion, method (4.3) will not be more efficient for
computing the extreme eigenpair than our favorite method, Algorithm 4.1, since the
latter already converges practically with the optimal speed; see sections 7 and 8.

Other known CG methods for eigenproblems, e.g., [41, 12, 15, 11, 42, 13, 1,
26], starting from Bradbury and Fletcher [3], are usually constructed as general CG
minimization methods, applied to the Rayleigh quotient or to a quadratic form (x,Bx)
under the constrain (x,Ax) = 1. They are often based on (now standard for linear
systems) two linked two-term recurrences,

p(i) = −w(i) + β(i)p(i−1), x(i+1) = x(i) + α(i)p(i),

where α(i) is chosen using a line search to minimize the Rayleigh quotient of x(i+1),
which leads to a quadratic equation for α(i) , but β(i) is computed to make directions
p(i) to be conjugate in some sense. These methods do not utilize the specific property
of the Rayleigh quotient, i.e., that the local minimization of the Rayleigh quotient can
be cheaply carried out using the Rayleigh–Ritz method not just in two dimensions, for
line search for finding α(i), but in three-dimensional or larger dimensional subspaces
as well.

Let us now discuss theoretical convergence rate results for Algorithm 4.1.
The basic fact is that the locally optimal version of the PCG method trivially

converges not slower on every step than the preconditioned steepest ascent in terms of
the maximizing the Rayleigh quotient [19]; thus, we can use known and well-developed
convergence theory of the latter method (e.g., [19]; see also very recent results by
Klaus Neymeyr [29, 30]). Our numerical comparison in [21, 22] shows, however, that
the PCG method converges much faster in practice than the preconditioned steepest
ascent. A ten-fold increase of δ1/δ0 leads to the increase in number of iterations, ten-
fold for the preconditioned steepest ascent, but only about three-fold for the PCG
method, exactly as we would expect for a genuine PCG solver.

No comprehensive convergence theory that would explain such a fast convergence
is available yet. Moreover, no even similar results are apparently known at present,
e.g., there is no adequate convergence theory of CG methods in nonquadratic opti-
mization. Even if one considers the simplest version of (4.1) for the standard eigen-
problem and with no preconditioning, T = A = I when it is reduced to the following
trivial method, suggested in [17, 18, 25]: find

x(i+1) ∈ Span
{
Bx(i), x(i), x(i−1)

}
(4.4)

by maximizing the Rayleigh quotient (x,Bx)/(x, x) on every step. There is still no
convergence theory currently known that would be able to compare (4.4) with the
optimal method, in this case, with the Lanczos method for the global maximization
of Rayleigh quotient (x,Bx)/(x, x) on the corresponding standard Krylov subspace.

One possible approach to develop an adequate convergence theory may be based
on comparison of method (4.4) with the following stationary three-term recurrence:

x(i+1) = αBx(i) + βx(i) + γx(i−1),
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where α, β, γ are fixed scalar parameters, sometimes called the heavy ball method in
optimization [35]. However, for this simpler method, no accurate convergence theory
in terms of the Rayleigh quotient apparently exists yet; cf. [25].

In this paper, we do not prove any new theoretical convergence rate results for
Algorithm 4.1, but we suggest a different kind of remedy: numerical comparisons
using the benchmark routines we propose; see sections 7 and 8.

We present block versions of Algorithm 4.1 in the next section.

5. Preconditioned simultaneous iterations. The well-known idea of using
simultaneous, or block, iterations provides an important improvement over single-
vector methods, and permits us to compute an (m > 1)-dimensional invariant sub-
space, rather than one eigenvector at a time. It can also serve as an acceleration
technique over single-vector methods on parallel computers, as convergence for ex-
treme eigenvalues usually increases with the size of the block, and every step can be
naturally implemented on wide varieties of multiprocessor computers.

As in other block methods, the block size should be chosen, if possible, to provide
a large gap between first m eigenvalues and the rest of the spectrum as this typically
leads to a better convergence; see (5.5) below. Let us also mention that block methods
generally handle clusters in the spectrum and multiple eigenvalues quite well; and the
block methods we propose below are no exceptions. An attempt should be made to
include the whole cluster of eigenvalues into the block, while for multiple eigenvalues
this is not essential at all; e.g., if µm−1 > µm = µm+1 > µm+2, then the convergence
rate will be determined by the gap µm+1−µm+2 even though the block size is only m;
however, only one vector of the two-dimensional eigenspace corresponding to µm =
µm+1 will be computed, as we observe in numerical experiments.

A block version of the locally optimal PCG method [19] was suggested in [21, 22]:

x
(i+1)
j ∈ Span

{
x

(i−1)
1 , x

(i)
1 , T (B − µ

(i)
1 A)x

(i)
1 , . . . , x(i−1)

m , x(i)
m , T (B − µ(i)

m A)x(i)
m

}
,

(5.1)

where x
(i+1)
j is computed as the jth Ritz vector. It shares the same problem, as the

single-vector version of [19] discussed in the previous section, of having close vectors
in the trial subspace.

Our new block Algorithm 5.1 is a straightforward generalization of the single-
vector Algorithm 4.1 and is combined with the Rayleigh–Ritz procedure. Here we
present two different variants of the algorithm. They differ in the way that the
Rayleigh–Ritz method is used. The first version is mathematically equivalent (without

round-off errors) to that of [21, 22], but uses directions p
(i)
j instead of x

(i−1)
j , similar

to that of Algorithm 4.1.
Here, the column-vector

(
α

(i)
1 , . . . , α(i)

m , τ
(i)
1 , . . . , τ (i)

m γ
(i)
1 , . . . , γ(i)

m

)T

is the jth eigenvector corresponding to the jth largest eigenvalue of the 3m-by-3m
eigenvalue problem of the Rayleigh–Ritz method, so it should have had an index j
also, but we run out of space for indexes.

We observe that

p
(i+1)
j = x

(i+1)
j −

∑
k=1,...,m

τ
(i)
k x

(i)
k ,
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Algorithm 5.1. The LOBPCG method I.

Input: m starting vectors x
(0)
1 , . . . x

(0)
m , devices to compute: Ax, Bx, and Tx

for a given vector x, and the vector inner product (x, y).

1. Start: select x
(0)
j , and set p

(0)
j = 0, j = 1, . . . ,m.

2. Iterate: For i = 0, . . . , Until Convergence Do:

3. µ
(i)
j := (x

(i)
j , B x

(i)
j )/(x

(i)
j , A x

(i)
j ), j = 1, . . . ,m;

4. rj := B x
(i)
j − µ

(i)
j Ax

(i)
j , j = 1, . . . ,m;

5. w
(i)
j := Trj , j = 1, . . . ,m;

6. Use the Rayleigh–Ritz method for the pencil B − µA on the trial subspace

Span {w(i)
1 , . . . , w

(i)
m , x

(i)
1 , . . . , x

(i)
m , p

(i)
1 , . . . , p

(i)
m };

7. x
(i+1)
j :=

∑
k=1,...,m α

(i)
k w

(i)
k + τ

(i)
k x

(i)
k + γ

(i)
k p

(i)
k ,

(the jth Ritz vector corresponding to the jth largest Ritz value),
j = 1, . . . ,m;

8. p
(i+1)
j :=

∑
k=1,...,m α

(i)
k w

(i)
k + γ

(i)
k p

(i)
k ;

9. EndDo

Output: the approximations µ
(k)
j and x

(k)
j to the largest eigenvalues µj and

corresponding eigenvectors, j = 1, . . . ,m.

and thus,

x
(i+1)
j ∈ Span {w(i)

1 , . . . , w
(i)
m , x

(i)
1 , . . . , x

(i)
m , p

(i)
1 , . . . , p

(i)
m }

= Span {w(i)
1 , . . . , w

(i)
m , x

(i)
1 , . . . , x

(i)
m , x

(i−1)
1 , . . . , x

(i−1)
m },

and, indeed, the new Algorithm 5.1 is mathematically equivalent to method (5.1).
We note that Algorithm 5.1 without preconditioning, i.e., with T = I, appears in

[25] as a “W-accelerated simultaneous gradient method.”
Example 5.1. Let us consider the problem of computing first eigenpairs of the

standard five-point finite-difference approximation of the Laplacian ∆h in a [−1, 1]×
[−1, 1] square on a uniform mesh with the step h = 1/10, such that the total number
of the unknowns is 361. We set B = I and A = ∆h. The initial approximations are
random. No preconditioning is used in the first test, i.e., T = I. We plot in Figure 5.1

on a semilog scale relative errors in this example defined as ‖Ax(i)
j −λ(i)

j x
(i)
j ‖A/‖x(i)

j ‖A,
where we use the standard notation of an A-based norm, ‖ · ‖2A = (·, A·).

Figure 5.1 shows a clear superlinear convergence. This is quite important as
some authors, e.g., [34], consider a superlinear convergence as a sign of a genuine
CG method. We see that a larger block size in the method improves convergence
in this example. We also observe different convergence speed for different eigenpairs
on Figure 5.1—the convergence is faster for smaller eigenvalues λ, in particular, λ1

converges first.
In the second test, we use a preconditioner T = A − νI with the shift ν =

20, which is approximately in the middle of the group of the first ten eigenvalues

that we compute, starting with random initial approximations. We plot ‖Ax(i)
j −

λ
(i)
j x

(i)
j ‖/‖x(i)

j ‖, using the Euclidean norm, in Figure 5.2 on a semilog scale. Figure
5.2 shows a superior convergence of the preconditioning. Now, we have a better
convergence for eigenvalues close to the shift on the right part of Figure 5.2.
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Fig. 5.1. Errors for the Laplace operator in a square without preconditioning for three (left)
and ten (right) first eigenpairs.
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Fig. 5.2. Errors for the Laplacian operator in a square without preconditioning (left) and with
an indefinite preconditioner(right).

The example thus illustrates that our method works without preconditioning and
may even work with an indefinite preconditioner.

Example 5.2. As our next example, we solve a similar eigenvalue problem, but in
the L-shaped domain—a union of three unit squares with a mesh uniform in both
directions with the step 1/8, such that the total number of unknowns is 161. A spe-
cialized domain-decomposition without overlap method for such problem is suggested
in [23]. Our numerically computed eigenvalues are consistent with those found in [23].
We compare the performance of the method without preconditioning and with precon-
ditioning based on an incomplete Choleski decomposition of A with a drop tolerance

of 10−3. We plot ‖Ax(i)
j − λ

(i)
j x

(i)
j ‖/‖x(i)

j ‖ in Figure 5.3. We see that preconditioning
leads to approximately quadruple acceleration.

The actual MATLAB code LOBPCG of Algorithm 5.1 that we wrote uses the
basis of the trial subspace exactly the way it appears in Algorithm 5.1 until this
choice leads to ill-conditioned Gram matrices in the Rayleigh–Ritz method. When
such an ill-conditioning shows up, we perform a selected orthogonalization. If this
does not fix the problem, as a last resort we apply a complete orthogonalization prior
to the Rayleigh–Ritz method. By our assumptions, Amay be the only positive definite
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Fig. 5.3. Residuals for the Laplacian operator in the L-shaped domain with no preconditioning
(left) and an ILU preconditioning (right).

matrix of the pencil; thus, theA-based scalar product is used for the orthogonalization.
There is no theory available yet to predict accurately the speed of convergence

of Algorithm 5.1. Similarly to the single-vector case of the previous section, we can
easily see that Algorithm 5.1 does not converge slower than the block steepest ascent
on every step. Unfortunately, earlier known convergence results [9, 10, 4] for block
preconditioned eigensolvers cannot be used to take advantage of this fact. Only the
very recent result by Neymeyr [28] for the block preconditioned simple iterations al-
lows us to conclude that Algorithm 5.1 converges linearly with the average asymptotic
convergence factors

qj = 1− 2

κ(TA) + 1

µj − µj+1

µj − µmin
, j = 1, . . . ,m.(5.2)

Let us formulate and prove this as the following.
Theorem 5.1. For simplicity, let

µj > µ
(i)
j > µj+1, j = 1, . . . ,m.

Then

µj − µ
(i+1)
j

µ
(i+1)
j − µj+1

≤ q2
j

µj − µ
(i)
j

µ
(i)
j − µj+1

,(5.3)

with qj given by (5.2).
Proof. The proof is straightforward and is based on a possibility of using the

convergence rate estimate of [28] recursively and on the fact that our Algorithm 5.1
does not converge slower than the method of [28] in terms of Ritz values as our trial
subspace is enlarged compared to that of [28].

The first step is to notice that all results of [28], written for the pencil A − λB
with B = I, can be trivially applied to a more general case of B �= I, B > 0 by using
substitutions involving B1/2. Secondly, we take the main convergence result of [28],

presented as a nasty looking inequality for λ
(i+1)
j , and after tedious but elementary

algebraic manipulations we show that it can be reduced to (5.3) with

qj = 1− 2

κ(TA) + 1

(
1− λj

λj+1

)
= 1− 2

κ(TA) + 1

µj − µj+1

µj
.(5.4)
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Here, T is optimally scaled such that ‖I − TA‖A ≤ (κ(TA) − 1)/(κ(TA) + 1) to be
consistent with assumptions of [28]. Neymeyr has recently found (private communi-
cation) an easier proof that takes only two pages.

Now, we use a trick, suggested in [17] and reproduced in [8]; namely, we substitute
our actual matrix B, which is not necessarily positive definite with positive definite
Bα = B − αA > 0 with a scalar α < µmin and apply the previous estimate to the
pencil Bα − µαA with eigenvalues µα = µ− α, which gives (5.3) with

qj = 1− 2

κ(TA) + 1

µj − µj+1

µj − α
.

Finally, we realize that the block method of [28], which is the same as that of [4], itself
is invariant with respect to α, and everything depends continuously on α < µmin, so
we can take the limit α = µmin as well. This proves estimate (5.3) with qj given by
(5.2) for the block method used in [4, 28] for the general pencil B − µA satisfying
assumptions of the present paper. However, in Algorithm 5.1 the trial subspace is
enlarged compared to that of the method of [4, 28]; thus, the convergence rate estimate
(5.3) with qj given by (5.2) holds for our method, too.

This result, however, does not appear to be sharp for our method, while it is
sharp for the method of [28] in a certain sense.

First, if the computed eigenvalues form, or include, a cluster, the factor given by
(5.2) is quite pessimistic as it depends on µj −µj+1, which may be small. For a block
method, we expect to have a term µj − µm+1 instead, where m is the block size.

Second, for a genuine CG method we should count on having
√
κ(TA) instead of

κ(TA) in the expression for q.
In [21, 22], we demonstrate numerically that our method is much faster than that

of [4, 28]. Having in mind estimate (3.4) we have for the PCGNULL and results
of [20] on the Rayleigh–Ritz method used in [4], which informally speaking allows

us to analyze the error in jth Ritz vector x
(i)
j ignoring components (x

(i)
j , xk)A, k =

1, . . . ,m, k �= j, we should expect convergence of norms of residuals to be asymptot-
ically linear with the average asymptotic convergence factors

qj =

(
1−√ξj

1 +
√
ξj

)
, ξj =

1

κ(TA)

µj − µm+1

µj − µmin
, j = 1, . . . ,m.(5.5)

Thus, convergence of µ
(i)
j to µj should be linear with the ratio q

2
j .

All our numerical tests (see some selected results in sections 7 and 8 below)
support our expectation of having asymptotically linear convergence with the ratio
(5.5).

A potential disadvantage of Algorithm 5.1 can manifest itself when the number m
of eigenpairs of interest is large, as we need to form 3m-by-3m matrices and solve the
corresponding eigenvalue problem of the size 3m in the Rayleigh–Ritz method on every

step. It seems that vectors w
(i)
j and p

(i)
j may not always be helpful as basis vectors

of the trial subspace of the Rayleigh–Ritz method to improve the approximation of

x
(i+1)
k for j �= k. And adding unnecessary vectors in the trial subspace increases
computational costs. Even more importantly, it may make the algorithm less stable,
as the 3m-by-3m eigenvalue problem of the Rayleigh–Ritz method is likely to inherit
ill-conditioning of the original eigenvalue problem when m is large.

In our second variant, Algorithm 5.2, we apply the Rayleigh–Ritz method in two
stages: first, as in Algorithm 4.1, for individual indices j, and, second, we include
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only the minimal set of vectors, namely, just current approximations to different
eigenvectors into the trial subspace.

Thus, on the first stage of an iteration of Algorithm 5.2 we solve m three-
dimensional eigenproblems, and on the second stage we solve one m-dimensional
eigenproblem. But thism-dimensional eigenproblem is constructed using approximate
eigenvectors, corresponding to extreme eigenvalues, as a basis of the trial subspace.
Therefore, this eigenvalue problem should not be ill-conditioned and no orthogonal-
ization would be required.

We note that arguments of the previous theorem cannot be applied to Algo-
rithm 5.2. Theoretical investigation of accurate convergence estimates of Algorithm 5.2
does not seem to be a trivial exercise.

Our numerical comparison using model problems described in section 6 below
shows that Algorithm 5.2 converges with practically the same speed as Algorithm 5.1,
except for the case of finding a cluster of eigenvalues with high accuracy. For eigen-
values in a cluster, Algorithm 5.2 at first converges similarly to Algorithm 5.1, but it
then slows down and soon after may hit a plateau, i.e., may stop improving the qual-
ity of approximations. See Figure 5.4, which shows convergence history of eigenvalue
errors of a one run of Algorithms 5.1 (solid) and 5.2 (dotted) with block size m = 3.
The left picture is for well-separated eigenvalues, and errors for different algorithms
are not possible to distinguish. The right picture corresponds to the cluster of three
eigenvalues with (µ1 − µ3)/(µ1 − µmin) ≈ 10−11.

Algorithm 5.2. The LOBPCG method II.

Input: m starting vectors x
(0)
1 , . . . x

(0)
m ,devices to compute: Ax, Bx, and Tx for a

given vector x,and the vector inner product (x, y),

1. Start: select x
(0)
j , and set p

(0)
j = 0, j = 1, . . . ,m.

2. Iterate: For i = 0, . . . , Until Convergence Do:

3. µ
(i)
j := (x

(i)
j , B x

(i)
j )/(x

(i)
j , A x

(i)
j ), j = 1, . . . ,m;

4. rj := B x
(i)
j − µ

(i)
j Ax

(i)
j , j = 1, . . . ,m;

5. w
(i)
j := Trj , j = 1, . . . ,m;

6. Use the Rayleigh–Ritz method m times for the pencil B − µA on the trial

subspaces Span {w(i)
j , x

(i)
j , p

(i)
j }, j = 1, . . . ,m;

7. x̂
(i+1)
j := w

(i)
j + τ

(i)
j x

(i)
j + γ

(i)
j p

(i)
j ,

(the Ritz vector corresponding to the maximal Ritz value), j = 1, . . . ,m;

8. p
(i+1)
j := w

(i)
j + γ

(i)
j p

(i)
j ;

9. Use the Rayleigh–Ritz method for the pencil B − µA on the trial

subspaces {x̂(i+1)
1 , . . . , x̂

(i+1)
m };

10. x
(i+1)
j := the jth Ritz vector corresponding to the jth largest Ritz value,

j = 1, . . . ,m;
11. EndDo

Output: the approximations µ
(k)
j and x

(k)
j to the largest eigenvalues µj and

corresponding eigenvectors, j = 1, . . . ,m.

For mesh eigenproblems, when high accuracy of computed eigenvalues and eigen-
vectors is not often required, Algorithm 5.2 can be recommended. For a general
purpose method, it seems best to use a mix of Algorithms 5.1 and 5.2 such that eigen-
values, which have already formed a cluster, are treated together using Algorithm 5.1,
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Fig. 5.4. LOBPCG I (solid) vs. LOBPCG II (dotted): well-separated eigenvalues (left) and
eigenvalue cluster (right).

while all other eigenvalues in the block are treated separately, as in Algorithm 5.2.
This approach will be implemented in the code LOBPCG.m in future revisions.

In the rest of the paper, all our numerical results are for Algorithm 5.1 only.

As theoretical investigation and comparison of preconditioned eigensolvers are
quite tedious ([4] provides a perfect example of this), a possibility of a fair numerical
comparison becomes even more important than usual. In the next section, we suggest
a numerical benchmark for preconditioned eigensolvers.

6. Model test problems with random preconditioners. To be able to com-
pare numerically different methods in the class with different preconditioners, we sug-
gest the following system of model tests, with random preconditioners and initial
guesses, be used for benchmarking.

For simplicity, we take the mass matrix B = I.

The stiffness matrix A is in our model tests a diagonal matrix with the minimal
entry 1 and the maximal entry 1010; therefore, all eigenvalues µ of the pencil B−µA
lie on the semiclosed interval (0, 1]. We are interested in finding a group of the largest
eigenvalues and corresponding eigenvectors. In most of the tests of the present paper,
we compute only one, the largest eigenvalue µ = 1.

For preconditioned eigensolvers, we expect that the convergence does not slow
down when the condition number of A gets larger [18, 19, 4, 21, 22], with a properly
chosen preconditioner. Because of this, we simply use a fixed large value, 1010, for
the maximal entry of A. Our code seems to work robustly for condition number of A
as large as 1016 in double precision arithmetic.

The gap between computed and excluded parts of the spectrum is known to play
an important role in the convergence speed. It seems necessary to fix the gap within
a series of tests. We do it with the gap ranging from 1 to 0.01 in different series. A
small value of the gap may or may not lead to slow convergence, depending on several
factors, the first of which is the distribution of eigenvalues in the excluded part of
the spectrum close to the desired part. This makes comparison of different methods
somewhat unreliable when the gap is small.

It is also necessary to choose a distribution of eigenvalues. The desired eigenvalues,
if there is more then one, are distributed randomly on a given interval, as their
distribution should not affect performance significantly. In the rest of the spectrum,
the distribution of eigenvalues does not noticeably affect the speed of convergence in



TOWARD THE OPTIMAL PRECONDITIONED EIGENSOLVER 533

our tests for a general preconditioner. If, however, the preconditioner commutes with
A, e.g., T = I, or T = A−1, we do observe a strong influence of the distribution on
convergence. For such cases, we choose a distribution that mimics that of an ordinary
differential equation of the fourth order, but with the given maximal entry 1010 (see
above). The initial guess is fixed for every run of the actual and the control codes but
is changed for every new run as a vector with random entries, chosen from a normal
distribution with mean zero and variance one.

The preconditioner T is also fixed for every run of the actual and the control
programs but is modified for every new run as a random symmetric positive definite
matrix with the fixed value of κ(TA) = δ1/δ0 of (2.1). We construct T as follows.

First, we chose a diagonal matrix D with random diagonal entries, chosen from a
uniform distribution on the interval (0, 1). Then we find minimal minD and maximal
maxD values ofD and do a linear scalingD = 1+(D−minD)/(maxD−minD)∗(κ−1),
where κ = κ(TA) is the desired fixed value of the spectral condition number of TA.
That makes diagonal entries of D uniformly distributed on the interval (1, κ) with
minimal and maximal values exactly at the end points of the interval; thus, the
condition number of D equals exactly κ.

Second, we take a square matrix with random entries, chosen from a normal distri-
bution with mean zero and variance one, and perform the standard orthogonalization
procedure on it. That produces a random orthogonal matrix Q. We now scale it,
S = QA−1/2, keeping in mind that Q is orthogonal and A is diagonal, and therefore,
ST = A−1/2Q−1.

Finally, we form T = STDS. The matrix T is clearly symmetric. Moreover, the
diagonal entries of D and columns of Q are eigenpairs of the matrix A1/2TA1/2 =
Q−1DQ, which completes our argument.

There are two reasons for using random preconditioners for our model test prob-
lems. First, it is a natural choice when solving eigenvalue problems for diagonal
matrices. Second, it allows us to make a fair numerical comparison of different eigen-
solvers and gives a simple opportunity to check that the best method in the class
consistently outperforms other methods independently of the choice of the precondi-
tioner for a fixed value of κ.

The size of the problem varies from 1000–4000.

The upper bound, 4000, is simply determined by our computer resources. The
above algorithm of constructing a random preconditioner is quite expensive and leads
to a full matrix T . The total cost grows cubically with the size of the problem.
We find in our tests that small problems may lead to unreliable conclusions when the
number of iterations is large enough. Namely, in some tests, depending on distribution
of excluded eigenvalues of the original pencil, we observe a superlinear convergence
of our methods when the total number of steps was more than 30% of the size of
the problem. However, in practical applications of interest, eigenvalue problems are
so large that the number of steps should not usually exceed 20% of the size of the
problem, taking also into account that the high accuracy of desired eigenpairs of the
algebraic pencil is rarely needed, as the pencil itself is just an approximation of the
original continuous problem and the approximation error may not be small. Thus,
one should not count in practice on having a superlinear convergence; and we try to
rule such a possibility out by choosing the size of the problem large enough.

We recommend every new preconditioned eigensolver be compared with our “ideal”
algorithm in our model test problems in terms of the speed of convergence, costs
of every iteration, and memory requirements. We provide such comparison for our
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LOBPCG method in the next section.

7. Numerical results: LOBPCG vs. PCGNULL. Here, we solve a model
eigenvalue problem with λ1 = 1, λ2 = 2 and take the condition number of A to be
1010.

For simplicity, the mass matrix equals the identity B = I.

We compute only the first eigenpair, i.e., the smallest eigenvalue λ1 = 1 and
the corresponding eigenvector. Thus, we set the block size m = 1 in our LOBPCG
Algorithm 5.1.

The initial guess is fixed for every run of the actual and the control codes but is
modified randomly for every new run. The preconditioner T is also fixed for every
run of the actual and the control programs but is modified for every new run as
a random symmetric positive definite matrix with the fixed value of the condition
number κ(TA); see above. We vary κ(TA) in different series of tests.

The straight (and green on a color print) line corresponds to linear convergence
with the residual reduction rate (3.4), which is the same as (5.5) with m = 1 and
µmin = 0. To be consistent with MATLAB’s built-in code PCG.m, we measure the

error as the Euclidean norm of the residual, i.e., ‖(A−λ1B)x
(i)‖/‖x(i)‖ in PCGNULL

and ‖(A−λ(i)B)x(i)‖/‖x(i)‖ in our code. With these definitions, norms of the residuals
are quite large on the first few iterations in our tests as our matrix A is very ill-
conditioned.

The average slope is the most important. We observe in Figure 7.1 that the
average residual reduction rate is about the same for the “ideal” method, PCGNULL,
and for our LOBPCG, and is quite close to the theoretical prediction. Convergence
history lines for every method are tightly bundled together, with the bundle for our
LOBPCG (colored red in the electronic version of the paper) consistently a bit lower
than the bundle for the PCGNULL (dotted and blue). We present here, because of
space limitations, only cases κ(TA) = 4 and κ(TA) = 1000. Pictures with other values
of κ are similar to those shown in Figure 7.1. Thus, our code converges essentially as
fast as the “ideal” method.
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Fig. 7.1. LOPCG (solid) vs. ideal (dotted): κ(TA) = 4 (left) and κ(TA) = 1000 (right).

Let us now compare computational costs of a single iteration. PCGNULL involves
one application of the preconditioner T , and one multiplication of A and a vector.
LOBPCG (revision 3.2.9) has exactly the same major costs; however, for very ill-
conditioned problems and when a very high accuracy is required, to increase stability
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we perform A-based orthogonalization of basis vectors of the trial subspace, which
may require matrix A be multiplied two times instead of one on every iteration.

In terms of memory use, both methods are similar, as they require only several
vectors, but no large matrices, to be stored.

To conclude, numerical results establish that our algorithm is practically as ef-
ficient as the “ideal” algorithm when preconditioners and initial approximations are
the same in both methods.

8. Numerical results: LOBPCG vs. GLOBALMIN. In the previous sec-
tion, we compare our LOBPCG with the benchmark based on PCGNULL and show
that LOBPCG is practically the optimal preconditioned method for finding the ex-
treme eigenvalue and the corresponding eigenvector. LOBPCG can also be used, of
course, for computing a group of extreme eigenvalues when the block size m > 1.

What benchmark do we advocate for preconditioned eigensolvers for finding sev-
eral eigenpairs? We do not have an answer to this question as satisfactory as that
for a single extreme eigenpair, because we are not yet able to suggest a convincing
“ideal” (in terms of speed and costs) solver. We do have, however, the block globally
optimal solver, Algorithm 2.1, which computes optimal approximations on the block
generalized Krylov subspace.

Let us highlight again that the number of vectors in the basis of the block Krylov
subspace (2.6) grows exponentially, which makes Algorithm 2.1 very expensive. On
the other hand, it provides the global optimization of the Rayleigh quotient on the
block Krylov subspace and, thus, can be used for numerical comparison with actual
block preconditioned eigensolvers to check if they provide approximations close to
those of the global optimization.

We write a MATLAB code of Algorithm 2.1, called GLOBALMIN.m, using re-
cursion (2.7), followed by complete orthogonalization.

We tested LOBPCG vs. GLOBALMIN on model problems described in section
6 with n = 3000. The gap between computed and excluded parts of the spectrum is
one. The condition number of A is chosen to be 108 as GLOBALMIN fails in some
tests for larger condition numbers.

We find in the present section that putting only one run on a figure is more
illustrative, as LOBPCG and GLOBALMIN produce very similar results, but they
change greatly with different random initial guesses. We remove the initial value of the
error from all pictures as it is typically too large to fit the chosen scale. LOBPCG is
presented by a solid (and red in a color version of the paper) line, while GLOBALMIN
is dashed (and blue). The straight (and green) line corresponds, as in section 7, to
the average error reduction predicted by (5.5).

The residual-based error is measured as ‖(A−λ(i)
j B)x

(i)
j ‖/‖x(i)

j ‖ on a correspond-
ing Ritz vector x

(i)
j . The eigenvalue error is simply measured as the difference of the

Ritz value λ
(i)
j and the corresponding eigenvalue λj . Both methods, LOBPCG and

GLOBALMIN, should monotonically decrease the eigenvalue error. GLOBALMIN
provides the global minimum of the Rayleigh quotient; therefore, the eigenvalue error
of GLOBALMIN should be always not larger than that of LOBPCG.

We first compare, on Figure 8.1, errors just for the smallest eigenvalue λ1 for
the LOBPCG and GLOBALMIN both with block size one as in section 7. Figure
8.1 displays errors for the same problems as Figure 7.1, but we also add the eigen-
value error. We highlight again that dimension of the generalized Krylov subspace
global (2.4) grows exponentially with the number of iterations. For numerical tests
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Fig. 8.1. LOBPCG (solid) vs. GLOBALMIN (dashed), κ(TA) = 4, m = 1: residuals (left)
and eigenvalue errors (right).
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Fig. 8.2. LOBPCG (solid) vs. GLOBALMIN (dashed), κ(TA) = 4, m = 3: residuals (left)
and eigenvalue errors (right).

presented in Figure 8.1, typical dimensions are 3, 7, 15, 31, 63, 127, 255, 511, e.g., on
the last (eighth) iteration, GLOBALMIN minimizes the Rayleigh quotient on a trial
subspace of dimension 511.

In Figures 8.2 and 8.3, we compare the error for the third smallest eigenvalue
λ3 for the LOBPCG and GLOBALMIN, both with block size three. In these experi-
ments, dimensions of the block generalized Krylov subspace global (2.6) typically are
9, 21, 45, 93, 189, 381, 765. As our code GLOBALMIN is based on complete orthogo-
nalization that filters out possible linearly dependent vectors in the trial subspace, in
different tests we observe slightly different dimensions.

The trial subspace in GLOBALMIN is getting large enough—about 10%–20% of
the size of the problem—to lead to a superlinear convergence of GLOBALMIN when
κ(TA) is not too large; see Figure 8.2. We believe that this effect is artificially created
by the fact that our problem is of a small size, only 3000, and should be disregarded.
Our computer resources do not allow us to solve larger problems.

We first observe that LOBPCG and GLOBALMIN produce almost the same
approximations on the first two steps. Most importantly, by comparing the slopes on
the figures, we come to the conclusion that our LOBPCG provides approximations
close to those of the global optimization method on the generalized block Krylov
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Fig. 8.3. LOBPCG (solid) vs. GLOBALMIN (dashed), κ(TA) = 1000, m = 3: residuals (left)
and eigenvalue errors (right).

subspace and has a similar convergence speed.

9. LOBPCG vs. Davidson’s method. The discussion above allows us to make
some conclusions on LOBPCG vs. Davidson’s method, though we do not have a
numerical comparison. The block Davidson method without restarts can be presented
(cf. [5, 27, 37]) as the Rayleigh–Ritz method on the trial subspace spanned on vectors:

{
x

(0)
1 , T (B − µ

(0)
1 A)x

(0)
1 , T (B − µ

(1)
1 A)x

(1)
1 , . . . , T (B − µ

(i)
1 A)x

(i)
1 , . . .

x
(0)
m , T (B − µ

(0)
m A)x

(0)
m , T (B − µ

(1)
m A)x

(1)
m , . . . , T (B − µ

(i)
m A)x

(i)
m

}
,

(9.1)

and x
(i+1)
j is computed as the jth Ritz vector. All vectors (9.1) are in the block gener-

alized Krylov subspace (2.6) (assuming a fixed preconditioner), so such defined block
Davidson method cannot converge faster than the GLOBALMIN. But our LOBPCG
converges with about the same rate as the GLOBALMIN. Therefore, we can expect
that LOBPCG is more efficient than Davidson’s method, since the former should not
converge much slower than, but is significantly less expensive than, the latter.

To make Davidson’s method more competitive with our LOBPCG, one needs to
restart after every k steps in the following special way: the Rayleigh–Ritz method is
now used on the trial subspace spanned by vectors{
x

(i−1)
1 , x

(i)
1 , T (B − µ

(i)
1 A)x

(i)
1 , T (B − µ

(i+1)
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m , . . . , T (B − µ

(i+k)
m A)x

(i+k)
m

}
,

(9.2)

and x
(i+k+1)
j is computed as the jth Ritz vector. The new trial subspace is still a

subset of the block generalized Krylov subspace (2.6), but its dimension does not
depend on the number of iterations.

Compared to a naive method of restarts, we have extra vectors, x
(i−1)
j , j =

1, . . . ,m, in the basis of the trial subspace, which we expect will make method (9.2)
much faster. We now notice that Davidson’s method based on (9.2) with k = 0
coincides with our earlier method (5.1). Thus, our Algorithm 5.1 can be viewed as a
specially-restarted-at-every-step block Davidson method.

Is there any benefit to using block Davidson method, based on (9.2) with k > 0?
In our opinion, for symmetric eigenproblems, the answer seems to be no. We expect
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methods with k = 0 and k > 0 to be quite similar to each other in terms of speed of
convergence, as the method with k = 0 already provides approximations practically
close to those of the global optimization method on the block Krylov subspace. At the
same time, method (9.2) with k > 0 will be somewhat more computationally expensive
and less stable for ill-conditioned problems simply because the dimension of its trial
subspace for the Rayleigh–Ritz method is larger. A direct numerical comparison is
yet to be done.

10. Numerical results: LOBPCG vs. JDQR. Here, we present numerical
results for the MATLAB code JDQR.m of the inexact Jacobi–Davidson method [14],
written by Gerard Sleijpen, which is publicly available on the Internet (http://www.
math.uu.nl/people/sleijpen/JD software/JDQR.html). We are not able to compare
it with PCGNULL, as recommended, because norms of the actual residuals are not
available in JDQR on every inner iteration. Instead, we provide results of direct
numerical comparison of JDQR with our method LOBPCG.

As in the previous two sections, the comparison is made using model eigenvalue
problems with B = I (a revision of JDQR code for generalized eigenproblems is not
yet available) and random preconditioners, suggested in section 6. JDQR is used with
the default tolerance. The number of iterations of our LOBPCG is chosen to match
the accuracy of eigenvector approximations provided by the JDQR. We measure the
accuracy as the angle between computed and exact invariant subspaces in the two-
norm.

First, we find that JDQR is not as robust as our method with respect to ill-
conditioning of the matrix A and the number of required eigenpairs. JDQR consis-
tently fails to find even one eigenpair for condition number of A above 108. JDQR
becomes even more sensitive to ill-conditioning when we increase the number of re-
quired eigenpairs. With cond(A) = 106, JDQR typically fails to compute all ten
required eigenpairs in another series of tests, and in some of the tests outputs only
one eigenpair out of ten. Attempts to compute forty eigenpairs using JDQR even
with cond(A) = 10 produce no more than 16 eigenpairs.

JDQR does not handle random initial guess very well. In some tests it converges
to the second eigenpair instead of the desired first one, with the smallest eigenvalue
λ.

Our LOBPCG is much more robust and successfully computes all required eigen-
pairs in all tests mentioned above without any difficulties. Moreover, LOBPCG always
converges about one-and-a-half to two times faster than JDQR if we count the number
of iterations as the number of times the preconditioner is invoked. This may not be
very surprising, as the only MATLAB version of the inexact Jacobi–Davidson method
available to us for testing can be used for nonsymmetric eigenproblems as well and is
not apparently optimized for symmetric eigenvalue problems, while our method takes
full advantage of the symmetry by using a three-term recurrence.1

Both methods are scalable, as expected, with respect to the size of the problem
and the quality of the preconditioner used.

A comparison of LOBPCG with JDQR has also been made for some practical
problems, e.g., for an eigenvalue problem describing vibrations of a slender beam,

1A new MATLAB package, JDCG by Yvan Notay, was released in 2001; see http://mnsgi.
ulb.ac.be/pub/docs/jdcg. It implements the Jacobi–Davidson method with a PCG inner solver,
specifically tuned for the symmetric case [31]. According to our numerical tests, while JDCG does
accelerate JDQR, it still converges slower than—and for clusters of eigenvalues is not as reliable
as—our LOBPCG.
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with a domain-decomposition-based preconditioner. This is outside of the scope of
the present paper and will be reported elsewhere. Let us just highlight that the
conclusions based on these practical comparisons are the same as above for our model
diagonal eigenproblem with random preconditioners.

11. Availability of software for the preconditioned eigensolvers. The In-
ternet page http:// www-math.cudenver.edu/̃ aknyazev/software/CG/ is maintained
by the author. It contains all the software used for numerical experiments of the
present paper, including benchmarking codes written in MATLAB by the author.

12. Conclusion. Let us formulate here the main points of the paper:
• Numerical results establish that our algorithm LOBPCG is practically as
efficient as the “ideal” algorithm for computing an extreme eigenpair and
provides approximations close to those of the global optimization method on
the generalized block Krylov subspace.
• Our method is much more robust and typically converges about one and a
half to two times faster than the inexact Jacobi–Davidson method.
• We provide a system of test problems with random preconditioners that we
suggest be used for benchmarking. Every new preconditioned solver for find-
ing an extreme eigenpair should be compared with the “ideal” algorithm in
terms of the speed of convergence, costs of every iteration, and memory re-
quirements. As the number of publications on different preconditioned eigen-
value solvers and their applications, e.g., recent papers [36, 43, 44, 24, 2, 34,
33], keeps growing rapidly, a need for such benchmarking becomes evident.
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Abstract. The symmetric band Lanczos process is an extension of the classical Lanczos al-
gorithm for symmetric matrices and single starting vectors to multiple starting vectors. After n
iterations, the symmetric band Lanczos process has generated an n× n projection, Ts

n, of the given
symmetric matrix onto the n-dimensional subspace spanned by the first n Lanczos vectors. This
subspace is closely related to the nth block-Krylov subspace induced by the given symmetric matrix
and the given block of multiple starting vectors. The standard algorithm produces the entries of
Ts
n directly. In this paper, we propose a variant of the symmetric band Lanczos process that em-

ploys coupled recurrences to generate the factors of an LDLT factorization of a closely related n× n
projection, rather than Ts

n. This is done in such a way that the factors of the LDLT factorization
inherit the “fish-bone” structure of Ts

n. Numerical examples from reduced-order modeling of large
electronic circuits and algebraic eigenvalue problems demonstrate that the proposed variant of the
band Lanczos process based on coupled recurrences is more robust and accurate than the standard
algorithm.

Key words. symmetric matrix, block-Krylov subspace, multiple starting vectors, orthogonal
basis, projection, reduced-order modeling, passivity, circuit simulation, eigenvalue problem
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1. Introduction. In recent years, suitable extensions of the classical Lanczos
process [23] for single right and left starting vectors to multiple right and left starting
vectors have proven to be powerful tools for reduced-order modeling of large-scale
multi-input multi-output linear dynamical systems. The most general such Lanczos-
type algorithm is the one proposed in [1]. Given a square matrix A and two blocks
of right and left starting vectors, the algorithm in [1] generates two sequences of
biorthogonal basis vectors for the right and left block-Krylov subspaces induced by
the given data. The algorithm can handle the most general case of right and left
starting blocks of arbitrary sizes, say, m and p. In [12, 13], it was shown that this
Lanczos-type algorithm can be employed to generate reduced-order models of m-input
p-output linear dynamical systems and that these reduced-order models correspond
to matrix-Padé approximants of the system’s transfer function. The resulting com-
putational procedure is called the MPVL (matrix-Padé via Lanczos) algorithm. For
recent surveys on MPVL, related methods, and their use in VLSI circuit simulation,
we refer the reader to [14, 16].

In circuit simulation, an important special case is linear dynamical systems that
describe large RCL subcircuits consisting of only resistors, capacitors, and inductors.
In this case, by employing so-called modified nodal analysis, the circuit equations
can be formulated so that the matrix A is symmetric and the blocks of right and
left starting vectors are identical; for details of such a symmetric formulation, see,
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e.g., [18]. The SyMPVL algorithm [17, 18] is a variant of MPVL that exploits this
symmetry and as a result requires only half the computational costs and storage of
MPVL. The Lanczos-type algorithm underlying SyMPVL is essentially the symmetric
band Lanczos process first proposed in [26], with some additional features, such as
deflation of Krylov vectors; see [15]. It generates a sequence of n × n projections
Ts
n, n ≥ 1, of the symmetric matrix A onto the n-dimensional subspace spanned by

the first n Lanczos vectors. This subspace is closely related to the nth block-Krylov
subspace induced by A and the given block of multiple starting vectors. As the
classical Lanczos process, the symmetric band Lanczos process generates the entries
of Ts

n directly.

In this paper, we propose a new variant of the symmetric band Lanczos process
that employs coupled recurrences to produce the factors of an LDLT factorization of
an n × n matrix, Tn, closely related to Ts

n, rather than Ts
n itself. This work was

motivated mainly by numerical experiences with the SyMPVL algorithm applied to
RC subcircuits. In this case, the matrix A is symmetric positive semidefinite, and
in order to ensure passivity of the reduced-order models produced by SyMPVL, it is
crucial that the projection of A preserves the positive semidefiniteness of A. In exact
arithmetic, the projection Ts

n of a positive semidefinite matrix A is guaranteed to be
positive semidefinite. However, in finite-precision arithmetic, round-off may cause the
computed projection Ts

n to be slightly indefinite; see [4] for such examples. These
problems are clearly due to the direct computation of Ts

n. Indeed, when the projection
is obtained via the LDLT factorization produced by the proposed symmetric band
Lanczos process based on coupled recurrences, the computed projection preserves
the positive semidefiniteness of A. In addition, the new variant also produces more
accurate reduced-order models with the same number of iterations.

The idea of enforcing positive semidefiniteness of a matrix by generating it via
a factorization is of course not new. Indeed, the very same issue arises in Kalman
filtering where numerical round-off in the standard update formula of the covariance
matrices may result in slightly indefinite matrices. The remedy there is to update
suitable factors, rather than the covariance matrices, resulting in so-called square-root
filtering; see, e.g., [3, Chapter 6.5]. The idea of square-root filtering seems to have
originated with James E. Potter in 1962; see [3, Chapter 6.5] and [8, section 13.7].
The use of square-root filtering was crucial in eliminating problems in the Apollo
navigation systems caused by numerical round-off; see [8] and the references given
there. The same issue also arises in the computation of positive semidefinite solutions
of Lyapunov equations; see [22] and the references therein. In [22], an algorithm is
proposed that directly generates the Cholesky factor of the solution matrix, rather
than the solution matrix.

Finally, in the context of employing the classical Lanczos process for single starting
vectors to the solution of systems of linear equations, it has been observed that coupled
two-term recurrences are more robust than the mathematically equivalent three-term
recurrences; see, e.g., [19] and the references given there. Some recent analysis of this
phenomenon can be found in [21].

The remainder of this paper is organized as follows. In section 2, we describe
the governing equations of the symmetric band Lanczos process based on coupled
recurrences and discuss connections with the standard algorithm. In section 3, we
present a complete statement of the algorithm based on coupled recurrences and
establish some of its properties. In sections 4 and 5, we discuss applications of the
new variant of the symmetric band Lanczos process to reduced-order modeling and to
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eigenvalue computations, respectively, and we report results of numerical experiments.
In section 6, we make some concluding remarks.

Throughout this article, we use boldface letters to denote vectors and matrices.
Unless stated otherwise, vectors and matrices are assumed to have real entries. As
usual, MT = [mkj ] denotes the transpose of the matrix M = [mjk ], and M ≥ 0
(M > 0) means that M = MT is symmetric positive semidefinite (symmetric positive

definite). The vector norm ‖x‖ :=
√
xT x is always the Euclidean norm, and ‖M‖ :=

max‖x‖=1 ‖Mx‖ is the corresponding induced matrix norm. We use In to denote the
n× n identity matrix and 0n×m to denote the n×m zero matrix; we will omit these
indices whenever the actual dimensions of I and 0 are apparent from the context. The
sets of real and complex numbers are denoted by R and C, respectively. For s ∈ C,
Re(s) is the real part of s.

2. The symmetric band Lanczos process based on coupled recurrences.
In this section, we describe the governing equations of the symmetric band Lanczos
process based on coupled recurrences and discuss connections with the standard al-
gorithm.

2.1. Preliminaries. In what follows, we assume that

A = AT ∈ R
N×N and R = [ r1 r2 · · · rm ] ∈ R

N×m(2.1)

are given matrices. The columns of R are the multiple starting vectors. The purpose
of the symmetric band Lanczos process is to generate orthogonal basis vectors for the
subspaces spanned by the leading columns of the block-Krylov matrix,

K(A,R) := [R AR A2 R · · · AN−1 R ] ,(2.2)

associated with the matrices (2.1) and to compute the projection of A onto these
subspaces. A proper definition of these subspaces is necessarily quite involved; see the
discussion in [1]. The main reason is that the columns of the matrix K(A,R) in (2.2)
are all vectors of length N , and thus at most N of them are linearly independent.
As a result, in the symmetric band Lanczos process, one needs to perform so-called
deflation of linearly dependent or in some sense almost linearly dependent vectors. As
we will describe below, the symmetric band Lanczos process has a very simple built-in
deflation procedure. In exact arithmetic, only the linearly dependent vectors have to
be removed, and we refer to this as exact deflation. In the case of exact deflation, the
subspaces spanned by the leading columns of the matrix (2.2) can be easily defined,
and we will do so in section 2.5 below.

2.2. Governing equations. The symmetric band Lanczos algorithm is an iter-
ative procedure. After n iterations, the algorithm has generated the first n Lanczos
vectors,

v1,v2, . . . ,vn ∈ R
N ,(2.3)

as well as the mc = mc(n) vectors,

v̂n+1, v̂n+2, . . . , v̂n+mc ∈ R
N ,(2.4)

that are the candidates for the next mc Lanczos vectors, vn+1,vn+2, . . . ,vn+mc . Here,
mc = mc(n) is the current block size defined as follows. In the initialization phase,
i.e., for n = 0, mc := m is set to be the number of starting vectors in (2.1), and
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the candidate vectors (2.4) are set to be the starting vectors from (2.1), i.e., v̂i = ri,
1 ≤ i ≤ m. Within the algorithm, mc is then reduced by 1 every time a deflation
occurs. Moreover, in the algorithm, the vectors (2.4) are used to detect and perform
deflation. More precisely, it can be shown that an exact deflation occurs during the
(n+1)st iteration of the algorithm if and only if v̂n+1 = 0. Therefore, in the algorithm,
one simply checks if the first of the candidate vectors is the zero vector or in some
sense close to the zero vector, and if so, one performs deflation by removing that first
candidate vector.

We remark that due to the use of the candidate vectors (2.4), we need only
generate n × n Lanczos matrices. This is in contrast to approaches such as the
symmetric algorithm [26] and the nonsymmetric algorithm [1], which only involve
Lanczos vectors, but no candidate vectors, and generate (n+mc)×n Lanczos matrices.
Since for the applications we have in mind only the leading n×n part of the Lanczos
matrices is needed anyway, the approach using candidate vectors is more economical.

In addition to (2.3), the symmetric band Lanczos process based on coupled re-
currences also generates a second set of vectors,

p1,p2, . . . ,pn ∈ R
N ,(2.5)

that span the same subspaces as (2.3), i.e.,

span{v1,v2, . . . ,vj} = span{p1,p2, . . . ,pj} for all 1 ≤ j ≤ n.(2.6)

The vectors (2.3)–(2.5) are constructed to satisfy (in exact arithmetic) the following
orthogonality conditions:

VT
n Vn = In,(2.7)

VT
n [ v̂n+1 v̂n+2 · · · v̂n+mc

] = 0,(2.8)

PT
n APn = ∆n := diag (δ1, δ2, . . . , δn) .(2.9)

Here and in what follows,

Vn := [v1 v2 · · · vn ] and Pn := [p1 p2 · · · pn ](2.10)

denote the matrices whose columns are just the vectors (2.3) and (2.5), respectively.
Furthermore, in (2.9), we assume that δi 
= 0 for all i. This implies that

∆n is nonsingular.(2.11)

Note that, by (2.7), the Lanczos vectors (2.3) are an orthonormal basis of the sub-
spaces (2.6), while, by (2.9), the vectors (2.5) are an A-orthogonal basis of (2.6).

The recurrence relations that are used in the algorithm to generate the vec-
tors (2.3)–(2.5) can be stated as follows. The first m1 vectors in (2.3) are obtained by
applying a modified Gram–Schmidt procedure [20] (with deflation) to the m columns
of the block R to eliminate any linearly dependent or almost linearly dependent start-
ing vectors. This procedure can be summarized in a relation of the form

R = Vm1 ρm1
+ V̂df

0 .(2.12)

Here, m1 (≤ m) denotes the number of columns of the block R that have not been

deflated, the matrix V̂df
0 ∈ R

N×m contains the m−m1 deflated starting vectors and
m1 zero vectors as columns, and

ρm1
= [ ρi,j ]i=1,2,...,m1; j=1,2,...,m ∈ R

m1×m(2.13)
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is an upper triangular matrix whose entries are chosen such that the columns of Vm1

are orthonormal. The main relations for generating the vectors (2.3)–(2.5) are coupled
recurrences that can be summarized as follows:

APn = Vn Ln∆n +
[
0 0 · · · 0︸ ︷︷ ︸

n−mc

v̂n+1 v̂n+2 · · · v̂n+mc︸ ︷︷ ︸
mc

]
+ V̂df

n ,(2.14)

Vn = PnUn.(2.15)

Here, ∆n is the diagonal matrix defined in (2.9), and

Ln = [ 
ij ]i,j=1,2,...,n ∈ R
n×n and Un = [uij ]i,j=1,2,...,n ∈ R

n×n(2.16)

are unit lower and upper triangular matrices, respectively. The entries of the matrices
∆n, Ln, and Un are chosen such that the vectors (2.3)–(2.5) satisfy the orthogonality
conditions (2.7)–(2.9). Furthermore, any candidate vector v̂j that was deflated at
the jth iteration, where 1 + mc(j) ≤ j ≤ n, appears as the (j −mc(j))th column of

the matrix V̂df
n in (2.14); all other columns of V̂df

n are zero vectors. In the actual
Algorithm 3.1 below, we use the index set I to record the positions of the potentially
nonzero columns of V̂df

n due to deflation. If no deflation has occurred or if only exact
deflation is performed, then clearly

V̂df
0 = 0 and V̂df

n = 0(2.17)

in (2.12) and (2.14), respectively.

2.3. The Lanczos matrix. By multiplying (2.9) from the left by UT
n and from

the right by Un, and by using (2.15), it follows that

Tn := VT
n AVn = UT

n ∆nUn.(2.18)

The matrix Tn defined in (2.18) is the so-called nth Lanczos matrix. It represents
the projection of A onto the subspaces spanned by the Lanczos vectors (2.3). Recall
that Un is a unit upper triangular matrix and that ∆n is a diagonal matrix. Thus,
in view of (2.18), the symmetric band Lanczos process based on coupled recurrences
computes the factors of an LDLT decomposition of the Lanczos matrix Tn, rather
than Tn itself.

In the important special case A ≥ 0, in view of (2.9), the diagonal entries of ∆n

satisfy

δi = pT
i Api ≥ 0 for all i,(2.19)

and hence ∆n ≥ 0. Thus, for A ≥ 0, generating Tn via the factorization (2.18)
always results in a positive semidefinite matrix.

The triangular matrices Ln in (2.14) and Un in (2.15) are closely related. In-
deed, by multiplying (2.14) from the left by VT

n and from the right by Un, and by
using (2.7), (2.8), and (2.15), we get

VT
n AVn = (Ln∆n + Σn) Un, where Σn := VT

n V̂df
n .(2.20)

By comparing (2.18) and (2.20), it follows that

Un = LT
n + ∆−1

n ΣT
n .(2.21)

In particular, if no deflation has occurred or if only exact deflation is performed, then,
in view of (2.17), we have Σn = 0 in (2.20) and thus Un = LT

n .
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2.4. Structure of the triangular factor Un. In this subsection, we describe
the sparsity structure of the matrix Un.

The unit upper triangular Un consists of a banded part with bandwidth decreas-
ing from m+ 1 to mc + 1 and a “spiked” part with potentially nonzero elements only
in rows with index i ∈ I and to the right of the banded part. Recall that the index
set I records deflation. It turns out that in the additive splitting (2.21) of Un, the
first term, LT

n , is the banded part, while the second term, ∆−1
n ΣT

n , is the spiked part.
Next, we present an example that illustrates this structure of Un. Consider the

case that m = 5 and that the three candidate vectors v̂8 (when mc = 5), v̂11 (when
mc = 4), and v̂13 (when mc = 3) have been deflated. The associated index set is
I = { 3, 7, 10 }. After n = 15 iterations, we then have mc = 2, and the matrix U15

has the following structure:

U15 =




1 × × × × ×
1 × × × × ×

1 × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 × × × ×

1 × × × ×
1 × × × ×

1 × × × ∗ ∗ ∗ ∗ ∗
1 × × ×

1 × × ×
1 × × ∗ ∗ ∗

1 × ×
1 × ×

1 × ×
1 ×

1




.

Here, potentially nonzero off-diagonal entries in the banded part of U15 are marked
by “×”, and potentially nonzero entries in the spiked part are marked by “∗”.

2.5. Block-Krylov subspaces in the case of exact deflation. It can be
shown that performing only exact deflation in the symmetric band Lanczos process is
equivalent to scanning the columns of the block-Krylov matrix (2.2) from left to right
and deleting each column that is linearly dependent on earlier columns; see [1]. The
result of such a deletion of columns in (2.2) is the deflated block-Krylov matrix

Kdf(A,R) := [R1 AR2 A2 R3 · · · Ajmax−1 Rjmax ] .

By the structure of (2.2), a column Aj−1 ri being linearly dependent on earlier
columns implies that all A-multiples, Akri, k ≥ j, of that column are also linearly de-
pendent on earlier columns. As a result, for each j = 1, 2, . . . , jmax, Rj is a submatrix
of Rj−1, where, for j = 1, we set R0 := R.

By construction, all columns of the matrix Kdf(A,R) are linearly independent.
The nth block-Krylov subspace, Kn(A,R), induced by A and R is now defined as
the n-dimensional subspace of R

N spanned by the first n columns of the matrix
Kdf(A,R). When only exact deflation is performed in the symmetric band Lanczos
process, then the Lanczos vectors (2.3) span the nth block-Krylov subspace, i.e.,

span{v1,v2, . . . ,vn} = Kn(A,R).(2.22)
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2.6. The standard symmetric band Lanczos process. In this subsection,
we review the standard symmetric band Lanczos process. The standard process only
generates Lanczos vectors (2.3) and candidate vectors (2.4), but not the second set
of vectors (2.5). We stress that our notion of “standard” process includes the same
proper deflation procedure as used in the coupled algorithm. Moreover, all numerical
comparisons reported in this paper were run with deflation turned on in both algo-
rithms. In particular, the difference in the numerical behavior is indeed due to the
use of coupled vs. standard recurrences, and not due to one algorithm being run with
deflation and the other without deflation.

In the standard algorithm, the Lanczos vectors (2.3) and candidate vectors (2.4)
are constructed to satisfy the orthogonality conditions (2.7) and (2.8). The first m1

Lanczos vectors again satisfy a relation of the form (2.12). The main recurrences used
in the standard algorithm can be summarized in the form

AVs
n = Vs

n T̃
s
n +

[
0 0 · · · 0︸ ︷︷ ︸

n−mc

v̂s
n+1 v̂s

n+2 · · · v̂s
n+mc︸ ︷︷ ︸

mc

]
+ V̂s, df

n .(2.23)

Here, the upper index “s” is used to differentiate the vectors and matrices generated
by the standard process from those generated by the coupled process.

In (2.23), T̃s
n is an n×n matrix whose entries are chosen such that the vectors (2.3)

and (2.4) satisfy the orthogonality conditions (2.7) and (2.8). By multiplying (2.23)

from the left by (Vs
n)

T
, and by using (2.7) and (2.8), it follows that

Ts
n := (Vs

n)
T
AVs

n = T̃s
n + (Vs

n)
T
V̂s, df
n .(2.24)

It turns out that Ts
n consists of a symmetric banded part with bandwidth decreasing

from 2m+ 1 to 2mc + 1 and a “spiked” part with potentially nonzero elements only
in rows and columns with index i ∈ I and outside of the banded part. This means
that the matrix Ts

n has the same “fish-bone” sparsity structure as UT
n + Un, where

Un is the triangular factor of Tn described in section 2.4.
For the example considered in section 2.4, the corresponding matrix Ts

n produced
by the standard algorithm has the following structure:

Ts
15 =




× × × × × ×
× × × × × × ×
× × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ∗ ∗ ∗ ∗ ∗
∗ × × × × × × × ×
∗ × × × × × × × ×
∗ × × × × × × × ∗ ∗ ∗
∗ ∗ × × × × × ×
∗ ∗ × × × × × ×
∗ ∗ ∗ × × × × ×
∗ ∗ ∗ × × × ×
∗ ∗ ∗ × × ×




.

Here, potentially nonzero entries in the banded part of Ts
15 are marked by “×”, and

potentially nonzero entries in the spiked part are marked by “∗”.
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For further details and properties of the standard symmetric band Lanczos algo-
rithm, we refer the reader to [15]. We would also like to point the reader to the earlier
work [9, 10, 26] on symmetric band or block Lanczos algorithms. The symmetric band
Lanczos algorithm proposed in [26] identifies Lanczos vectors that need to be deflated
in a similar fashion as described above. However, the deflated vectors are then simply
discarded, and, as a result, a relation such as (2.24) holds true only approximately
for this algorithm. The symmetric block Lanczos algorithm described in [9] and [10,
Chapter 7] is a block and not a band procedure. At each block iteration, a new block
of mc vectors is computed so that it is orthogonal to the earlier blocks. Similar to
the deflation procedure described above, vectors in the new block that are in some
sense close to the zero vector are properly deflated, and not just discarded, before the
remaining columns in the new block are orthogonalized.

2.7. Connection with the standard process. The standard band Lanczos
process and the algorithm based on coupled recurrences are mathematically equivalent
in the case that no deflation occurs or that only exact deflation is performed. Indeed,
in this case, the first n Lanczos vectors (2.3) generated by both algorithms are identical
and, in view of (2.22), span the nth block-Krylov subspace Kn(A,R). Hence, the
associated projected Lanczos matrices Tn and Ts

n given by (2.18) and (2.24) are

identical. Moreover, in (2.14) and (2.23), we have V̂df
n = V̂s, df

n = 0. This implies
that the spiked parts of both Tn and Un are actually zero matrices. Thus both Tn

and Un = LT
n are banded matrices, and (2.18) reduces to the LDLT factorization

Tn = Ts
n = Ln∆n L

T
n

of the Lanczos matrix associated with both variants of the symmetric band Lanczos
process.

As soon as deflation of almost linearly dependent vectors is performed, the two
processes are no longer mathematically equivalent in general. In this case, the spiked
parts of both Tn and Un are nonzero, and thus

Ts
n 
= Tn = UT

n ∆nUn

in general. Indeed, Ts
n has a “fish-bone” sparsity structure, while Tn is a full matrix

in general, even though Un is sparse. However, one can show that ‖Tn −Ts
n‖ is

bounded by the tolerance used to check for deflation.

3. The algorithm and its properties. In this section, we present a detailed
statement of the symmetric band Lanczos process with coupled recurrences, and es-
tablish some of its properties.

3.1. Statement of the algorithm. At each pass n through the main loop of
the algorithm, one first checks if the candidate vector v̂n needs to be deflated. If
yes, it is deleted, the indices of all the remaining candidate vectors are reduced by 1,
and the deflation check is repeated. If no, the candidate vector v̂n is normalized to
become the nth Lanczos vector vn. In the remaining steps of pass n, the algorithm
orthogonalizes the candidate vectors against vn, generates the potentially nonzero
entries of the nth column of Un and, if n ≤ m1, of the nth row of ρm1

, and computes
the vector pn, the scalar δn, and a new candidate vector v̂n+mc

.
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A detailed statement of the algorithm is as follows.

Algorithm 3.1 (symmetric band Lanczos process with coupled recurrences).
INPUT: A matrix A = AT ∈ R

N×N , and a block R = [ r1 r2 . . . rm ] ∈ R
N×m

of m starting vectors.

OUTPUT: Matrices Un, ∆n, and (if n ≥ m1) ρm1
.

(0) Set v̂i = ri for i = 1, 2, . . . ,m.

Set mc = m.

Set I = ∅.
For n = 1, 2, . . . , do :

(1) (If necessary, deflate.)
Decide if v̂n should be deflated.
If no, continue with step 2.
If yes, deflate v̂n by doing the following :
(a) If n−mc > 0, set I = I ∪ {n−mc} and v̂df

n−mc
= v̂n.

(b) Set mc = mc − 1. If mc = 0, set n = n− 1 and stop.
(c) For i = n, n+ 1, . . . , n+mc − 1, set v̂i = v̂i+1.
(d) Repeat all of step 1.

(2) (Normalize v̂n to become the nth Lanczos vector vn.)

Set vn =
v̂n
‖v̂n‖ .

If n−mc > 0, set un−mc,n =
‖v̂n‖
δn−mc

.

If n−mc ≤ 0, set ρn,n−mc+m = ‖v̂n‖.
If n = mc, set m1 = mc.

(3) (Orthogonalize the vectors v̂n+j , 1 ≤ j < mc, against vn.)
For j = 1, 2, . . . ,mc − 1, do :

Set τ = vT
n v̂n+j and v̂n+j = v̂n+j − vn τ .

If n+ j −mc > 0, set un+j−mc,n =
τ

δn+j−mc

.

If n+ j −mc ≤ 0, set ρn,n+j−mc+m = τ .
(4) (Update the spiked part of Un.)

For each j ∈ I, set ujn =
vT
n v̂df

j

δj
.

(5) (Compute the vector pn.)

Set j0 = max{1, n−mc} and

pn = vn −
∑
j∈I

pj ujn −
n−1∑
j=j0

pj ujn.(3.1)

Set unn = 1.
(6) (Advance the block-Krylov subspace.)

Set v̂n+mc = Apn.
(7) Set δn = pT

n v̂n+mc .
If δn = 0, stop : look-ahead would be needed to continue.

(8) Set v̂n+mc = v̂n+mc − vn δn.
(9) Test for convergence.
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Remark 3.1. In Algorithm 3.1, only the potentially nonzero entries of the matrices
Un and ρm1

and the diagonal entries of the diagonal matrix ∆n are computed. All
other entries of these matrices are set to be zero.

Remark 3.2. The entries of Un generated in step 3 of Algorithm 3.1 are just the
potentially nonzero off-diagonal entries of the banded part of the unit upper triangular
matrix Un. In view of (2.21), the unit lower triangular matrix Ln can be obtained
by simply transposing the banded part of Un.

Remark 3.3. A practical criterion for deflation in step 1 of Algorithm 3.1 is as
follows. The vector v̂n is deflated if and only if

‖v̂n‖ ≤ dtoln.

Here,

dtoln := dtol×
{ ‖rn+m−mc‖ if n ≤ m1,

nest(A) if n > m1

(3.2)

is the product of an absolute deflation tolerance dtol and a scaling factor that makes
the deflation check independent of the actual scaling of the columns ri of R and of
the matrix A. Ideally, we would like to set nest(A) = ‖A‖ in (3.2). However, if ‖A‖
is not available, then nest(A) is set to be an estimate of ‖A‖. For example, we can
use the estimate

nest(A) := max
1≤i≤m1

‖Api‖
‖pi‖ ≤ ‖A‖ ,

which can be obtained from the vectors generated in Algorithm 3.1 at the expense of
2m1 additional vector-norm computations. Based on our numerical experiences with
Algorithm 3.1, we recommend the absolute deflation tolerance dtol =

√
eps, where

eps is the machine precision.

Remark 3.4. If A ≥ 0, then δn > 0 for all n and so Algorithm 3.1 never stops in
step 7. If A is indefinite, then it cannot be excluded that Algorithm 3.1 terminates
prematurely due to δn = 0 in step 7. In this case, look-ahead can be used to continue
the process, but in order to keep the algorithm relatively simple, we opted to treat
only the no-look-ahead case in this paper. However, we stress that Algorithm 3.1
can be extended to include look-ahead. Such an extension again generates an LDLT

factorization (2.18), where ∆n is a block-diagonal matrix in general. Furthermore,
the nonsingularity (2.11) of ∆n is guaranteed only for the values of n that correspond
to the end of a look-ahead step.

Remark 3.5. Algorithm 3.1 requires storage of the vector vn, the mc candidate
vectors v̂n+1, v̂n+2, . . . , v̂n+mc , the mc vectors pn−mc+1,pn−mc+2, . . . ,pn, and all the
vectors pi and v̂df

i with i ∈ I. Since the set I contains at most m−mc elements, the
total number of vectors to be stored is at most

1 +mc +mc + 2(m−mc) = 2m+ 1,

which is identical to the storage requirement of the standard symmetric band Lanczos
process.
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3.2. Properties. We now show that the quantities generated by Algorithm 3.1
indeed satisfy the governing equations stated in section 2.2.

Theorem 3.2. The vectors and matrices generated by n iterations of Algo-
rithm 3.1 satisfy the recurrence relations (2.14), (2.15), and (if n ≥ m1) (2.12).

Proof. Using the matrices introduced in (2.9), (2.10), (2.13), and (2.16), it is
straightforward to verify that all the recurrences employed in the first n iterations
of Algorithm 3.1 can indeed be summarized as the matrix relations (2.12), (2.14),
and (2.15).

Theorem 3.3. The vectors and matrices generated by n iterations of Algo-
rithm 3.1 (run in exact arithmetic) satisfy the orthogonality conditions (2.7)–(2.9).

Proof. From steps 2, 6, and 7 of Algorithm 3.1, it follows that

vT
i vi = 1 and pT

i Api = δi for all 1 ≤ i ≤ n.(3.3)

Next, we use induction on n (≥ 0) to show that

vT
i vn = 0 for all 1 ≤ i < n,(3.4)

pT
i Apn = 0 for all 1 ≤ i < n,(3.5)

vT
i v̂n+j = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ mc(n).(3.6)

Note that the relations (3.4)–(3.6), together with (3.3), are equivalent to the orthog-
onality conditions (2.7)–(2.9).

The assertions (3.4)–(3.6) are trivially satisfied for n = 0, since the sets of indices i
in (3.4)–(3.6) are all empty in this case. Now let n ≥ 1, and as induction hypothesis,
assume that for all 0 ≤ n′ < n, we have

vT
i vn′ = 0 for all 1 ≤ i < n′,

pT
i Apn′ = 0 for all 1 ≤ i < n′,(3.7)

vT
i v̂n′+j = 0 for all 1 ≤ i ≤ n′, 1 ≤ j ≤ mc(n

′).(3.8)

We need to show that the relations (3.4)–(3.6) are satisfied.
Since vn = v̂n/ ‖v̂n‖, the orthogonality condition (3.4) for vn is an immediate

consequence of (3.8) (with n′ = n− 1 and j = 1).
We now turn to (3.5). Note that at the end of the ith iteration of Algorithm 3.1,

we have

v̂
(i)
i+mc(i)

:= v̂i+mc(i) = Api − vi δi.(3.9)

Here, the upper index “(i)” indicates that v̂
(i)
i+mc(i)

is the (i + mc(i))th candidate

vector at the end of the ith iteration. Note that, by (3.9) and (3.4), we have

vT
n Api = vT

n

(
v̂

(i)
i+mc(i)

+ vi δi

)
= vT

n v̂
(i)
i+mc(i)

for all 1 ≤ i < n.(3.10)

Let 1 ≤ i < n be arbitrary, but fixed, and consider the transformations that are

performed on the candidate vector v̂
(i)
i+mc(i)

during iterations i + 1, i + 2, . . . , n of

Algorithm 3.1. Note that there are only two types of transformations: shift of the
(lower) index of the candidate vector by −1, and orthogonalization against previous

Lanczos vectors. For the transformed vector resulting from v̂
(i)
i+mc(i)

, there are the

following three cases:
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(I) The transformed vector is deflated during iteration ñ for some i < ñ ≤ n.
(II) The transformed vector is one of the candidate vectors v̂n, v̂n+1, . . . , v̂n−mc−1

before steps 2 and 3 are performed within the nth iteration of Algorithm 3.1.
(III) The transformed vector is normalized to become the kth Lanczos vector vk

for some k < n.
Case I occurs if and only if i ∈ I. Indeed, let m̃c be the value of mc when the

transformed vector v̂ñ is checked for deflation during iteration ñ. Since v̂ñ resulted

from v̂
(i)
i+mc(i)

, we have

ñ = i+mc(i)− (mc(i)− m̃c) = i+ m̃c,

and thus i = ñ − m̃c > 0. By step 1(a) of Algorithm 3.1, deflation of the vector v̂ñ
is equivalent to i = ñ − m̃c ∈ I. Moreover, note that v̂df

i = v̂ñ and that v̂ñ was

obtained by orthogonalizing v̂
(i)
i+mc(i)

against Lanczos vectors vk with k < ñ ≤ n. In

view of (3.4) and step 4 of Algorithm 3.1, it follows that

vT
n v̂

(i)
i+mc(i)

= vT
n v̂df

i = δi uin if i ∈ I.(3.11)

Case II occurs if and only if i ≥ j0 := max{1, n−mc}. Indeed, the transformed
vector has index i + mc and is thus one of the candidate vectors v̂n, . . . , v̂n−mc−1 if
and only if

n ≤ i+mc ≤ n−mc − 1.(3.12)

Since 1 ≤ i < n, the condition (3.12) is equivalent to i ≥ j0. Note that, in view
of (3.4) and steps 2 and 3 of Algorithm 3.1, we have

vT
n v̂

(i)
i+mc(i)

= vT
n v̂i+mc

= δi uin if i ≥ j0.(3.13)

Case III complements cases I and II, and thus occurs if and only if i < j0 and
i 
∈ I. In this case, in view of (3.4), we have

vT
n v̂

(i)
i+mc(i)

= vT
n v̂k =

(
vT
n vk

) ‖v̂k‖ = 0.(3.14)

Here, k < n is the index of the Lanczos vector vk that resulted from v̂
(i)
i+mc(i)

.

By combining (3.10) with (3.11), (3.13), and (3.14), we get

vT
n Api = vT

n v̂
(i)
i+mc(i)

=

{
δi uin if i ∈ I or j0 ≤ i < n,

0 if i < j0 and i 
∈ I.
(3.15)

On the other hand, by transposing the relation (3.1), multiplying it from the right by
Api, and using (3.3) and (3.7), it follows that

pT
n Api = vT

n Api −
{
δi uin if i ∈ I or j0 ≤ i < n,

0 if i < j0 and i 
∈ I.
(3.16)

Inserting (3.15) into (3.16) gives (3.5).
Finally, we show (3.6). Note that mc(i) is a nonincreasing function of i, and in

particular, m′
c ≥ mc(n) =: mc. By (3.8) (for n′ = n − 1 and 2 ≤ j ≤ mc), the

candidate vectors v̂n+1, . . . , v̂n+mc−1 are orthogonal to v1, . . . ,vn−1 before step 3 is
performed within the nth iteration of Algorithm 3.1. The update

v̂n+j = v̂n+j − vn
(
vT
n v̂n+j

)
, 1 ≤ j < mc,(3.17)
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in step 3 then makes these candidate vectors also orthogonal to vn. Moreover, in view
of (3.4), the update (3.17) does not destroy the orthogonality to v1, . . . ,vn−1, and
thus (3.6) is satisfied for all 1 ≤ j < mc. In order to prove (3.6) for j = mc, we first
note that, by (3.9) (for i = n),

v̂n+mc = Apn − vn δn.

Multiplying this relation from the left by vT
i and using (2.6), (3.4), and (3.5), it follows

that

vT
i v̂n+mc = vT

i Apn −
(
vT
i vn

)
δn = 0 for all 1 ≤ i < n.

We have thus established all three relations (3.4)–(3.6), and the proof of Theorem 3.3
is complete.

4. Application to passive reduced-order modeling. In this section, we dis-
cuss the application of the band Lanczos process with coupled recurrences to construct
passive reduced-order models.

4.1. The problem. Consider symmetric m-input m-output time-invariant lin-
ear dynamical systems of the form

C
d

dt
x(t) = −Gx(t) + Bu(t),

y(t) = BT x(t).
(4.1)

Here, C = CT, G = GT ∈ R
N×N , and B ∈ R

N×m are given matrices. Moreover,
we assume that the matrix pencil G + sC is regular, i.e., det (G + sC) = 0 for only
finitely many values of s ∈ C. In (4.1), the components of the given vector-valued
function u : [0,∞) �→ R

m are the inputs, y : [0,∞) �→ R
m is the unknown function of

outputs, the components of the unknown vector-valued function x : [0,∞) �→ R
N are

the state variables, and N is the state-space dimension. Systems of the form (4.1) can
be used to model so-called RCL electrical networks consisting of resistors, capacitors,
and inductors; see, e.g., [14] and the references given there. An important special case
is RC networks consisting of only resistors and capacitors; in this case, the matrices
C and G in (4.1) are sparse and positive semidefinite.

A reduced-order model of (4.1) is a system of the same form as (4.1) but of smaller
state-space dimension n < N . A reduced-order model of dimension n is thus of the
form

Cn
d

dt
z(t) = −Gn z(t) + Bn u(t),

y(t) = BT
n x(t),

(4.2)

where Cn = CT
n , Gn = GT

n ∈ R
n×n, and Bn ∈ R

n×m. These three matrices should
be chosen such that the input-output mapping u(t) �→ y(t) of (4.2) somehow approx-
imates the input-output mapping of the original system (4.1).

The input-output behavior of the original system (4.1), respectively, the reduced-
order model (4.2), can be described by the associated transfer function

Z(s) = BT(G + sC)−1B, respectively, Zn(s) = BT
n (Gn + sCn)−1Bn,(4.3)

where s ∈ C is a complex variable. Note that both Z and Zn are (m ×m)-matrix-
valued rational functions.
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Now, let s0 ∈ C be any expansion point such that the matrix G + s0 C is non-
singular. The transfer function Zn is called an nth matrix-Padé approximant of Z
(about the expansion point s0) if the matrices Cn, Gn, and Bn in (4.3) are chosen
such that

Zn(s) = Z(s) +O((s− s0)
q(n))

,(4.4)

where the integer q(n) is as large as possible; see, e.g., [7, pp. 429–466]. The con-
dition (4.4) means that the Taylor expansions of Zn and Z about s0 agree in as
many leading ((m ×m)-matrix-valued) coefficients as possible. In what follows, we
call the reduced-order model (4.2) of (4.1) a matrix-Padé model (associated with the
expansion point s0) if its transfer function Zn is an nth matrix-Padé approximant
of Z.

4.2. Reduced-order models via the symmetric band Lanczos process.
In what follows, we assume that the matrices C and G in (4.1) are sparse and positive
semidefinite. Moreover, let s0 ≥ 0 be any real expansion point such that G+s0 C > 0,
and let

G + s0 C = MMT(4.5)

be a sparse Cholesky factorization of G+ s0 C. Note that, in general, M is a product
of a permutation matrix, which records any pivoting for sparsity, and a sparse lower
triangular matrix. Using (4.5), the transfer function Z in (4.3) can be recast as follows:

Z(s) = RT (I + (s− s0)A)
−1

R,

where A := M−1 CM−T ≥ 0 and R := M−1 B.
(4.6)

In [17, 18], it was proposed to obtain reduced-order models via the symmetric
band Lanczos process applied to the matrix A and the block of starting vectors R
given in (4.6). More precisely, after n (≥ m1) iterations of the algorithm, a reduced-
order transfer function of dimension n is defined as follows:

Zn(s) = ρT
n (In + (s− s0)Tn))

−1
ρn, where ρn =

[
ρm1

0n−m1×m

]
.(4.7)

Here, Tn is the n×n projected Lanczos matrix and ρn is the m1×m matrix containing
the coefficients used to orthogonalize the starting block R. In [17, 18], the standard
symmetric band Lanczos process was used to generate Tn and ρn, and the resulting
algorithm was termed SyMPVL.

Here, we propose to employ the symmetric band Lanczos process based on coupled
recurrences, instead of the standard algorithm, and we call the resulting computational
procedure SyMPVL2.

Algorithm 4.1 (SyMPVL2).
INPUT: Matrices C, G ∈ R

N×N such that C, G ≥ 0 and G+sC is a regular pencil.
A matrix B ∈ R

N×m.
OUTPUT: Transfer function Zn of a reduced-order model of dimension n.

(1) Select expansion point s0 ≥ 0 with G + s0 C > 0.
(2) Compute Cholesky decomposition G + s0 C = MMT.
(3) Run n (≥ m1) iterations of Algorithm 3.1 (applied to A := M−1 CM−T

and R := M−1 B) to generate matrices Un, ∆n, and ρm1
.
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(4) Set

Zn(s) = ρT
n

(
In + (s− s0)UT

n ∆nUn

)−1
ρn, where ρn =

[
ρm1

0n−m1×m

]
.

Remark 4.1. As we mentioned in section 2.7, the standard band Lanczos process
and the algorithm based on coupled recurrences are mathematically equivalent in the
case that no deflation occurs or that only exact deflation is performed. Consequently,
in this case, SyMPVL and SyMPVL2 are mathematically equivalent. Furthermore,
in [13, 18], it was shown that the reduced-order model defined by the transfer func-
tion (4.7) is a matrix-Padé model.

4.3. Passivity. Linear dynamical systems of the form (4.1) with C, G ≥ 0 are
passive. Roughly speaking, a system (4.1) is passive if it does not generate energy. In
terms of the transfer function (4.3), Z, passivity of (4.1) is equivalent to the positive
realness of Z; see, e.g., [2, 27]. A precise definition of positive realness is as follows.

Definition 4.2 (positive realness). An (m × m)-matrix-valued rational func-
tion Z is called positive real if

(i) Z has no poles in C+ := { s ∈ C | Re(s) > 0 };
(ii) Z(s̄) = Z(s) for all s ∈ C;
(iii) Re

(
xH Z(s)x

) ≥ 0 for all x ∈ C
m and all s ∈ C+.

Passivity is a stronger condition than stability of a linear dynamical system. When
reduced-order models of passive linear subsystems are used within a simulation of a
(not necessarily linear) system, then passivity of the reduced-order models is needed
to guarantee stability of the overall simulation; see the references given in [16].

By [16, Theorem 13], a reduced-order model (4.2) with transfer function Zn given
by (4.3) is passive if Cn ≥ 0 and Gn ≥ 0. By applying this result to the reduced-order
transfer function (4.7), it follows that passivity is guaranteed if

Tn ≥ 0 and In − s0 Tn ≥ 0.(4.8)

In exact arithmetic, the two conditions (4.8) are always fulfilled. Indeed, the first
relation in (4.8) follows from Tn = VT

n AVn and A ≥ 0, and the second relation
in (4.8) follows from

M (IN − s0 A) MT = G ≥ 0

and

In − s0 Tn = VT
n (IN − s0 A) Vn ≥ 0.

Unfortunately, in finite-precision arithmetic, round-off may cause the matrix Tn gen-
erated by the standard band Lanczos process to be indefinite. The negative eigenval-
ues of Tn translate into positive poles of Zn, causing the reduced-order model given
by (4.7) to be nonpassive; see the examples given in section 4.4 below. This problem
can easily be remedied by employing the SyMPVL2 Algorithm 4.1. Instead of Tn, it
generates an LDLT factorization, UT

n ∆nUn, of Tn. In view of (2.9) and (2.19), we
have ∆n ≥ 0 and thus the first relation in (4.8) is satisfied.

An important practical issue for the SyMPVL2 Algorithm 4.1 is to determine
if the reduced-order model Zn is a sufficiently good approximation to Z for some
prescribed range of s. By applying the technique in [6] to the reduced-order transfer
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function Zn generated by Algorithm 4.1, it is easy to verify the following result; see [5]
for more details. For all s with |s− s0| < 1/ ‖A‖, we have

‖Z(s)− Zn(s)‖ ≤ |s− s0|2 ‖Fm(s− s0)‖2 ‖V̂mc‖2
1− |s− s0| ‖A‖ +O (dtoln) .(4.9)

Here, we set

Fn(s− s0) := [0mc×n−mc
Imc

]
(
In + (s− s0)UT

n ∆nUn

)−1
[

ρT
m

0n−m×m

]
,

V̂mc := [ v̂n+1 v̂n+2 · · · v̂n+mc
] .

In practice, we drop the last term, O (dtoln), in the error bound (4.9), and evaluate
only the remaining terms. The (mc ×m)-matrix-valued function Fm(s − s0) can be
computed explicitly, and sufficiently good approximations of the norms ‖Fm(s− s0)‖
and ‖V̂mc

‖ can easily be obtained, for instance, using the Matlab function normest.
The norm ‖A‖ can be estimated by using the largest eigenvalue of the projected
Lanczos matrix UT

n ∆nUn; see, e.g., [20, section 9.1.4].

We have performed extensive numerical tests with SyMPVL2 using the conver-
gence check based on evaluating the error bound (4.9). We found that, typically, the
computational costs for this convergence check is about 5% to 8% of the cost of the
underlying symmetric band Lanczos process.

4.4. Numerical examples. In this subsection, we present results of three nu-
merical examples that demonstrate the superiority, in terms of both robustness and
accuracy, of the SyMPVL2 Algorithm 4.1 based on coupled recurrences over the orig-
inal SyMPVL algorithm [17, 18] based on the standard symmetric band Lanczos
process.

All three examples are passive linear dynamical systems (4.1) describing RC net-
works arising in VLSI circuit simulation. The frequency range of interest is always
s = 2π iω, where 1 ≤ ω ≤ 109. The goal is to compute a reduced-order transfer
function Zn that approximates the transfer function Z of (4.1) well in this frequency
range. In all three examples, C ≥ 0, G > 0, and the expansion point s0 = 0 is used.
All experiments were performed in Matlab. The symmetric band Lanczos process
was run with deflation tolerance (3.2), where dtol =

√
eps and eps is the machine

precision.

Example 4.1. In this example, C and G are matrices of order N = 1346, and
m = 10. Both SyMPVL and SyMPVL2 required n = 60 iterations. However, the
reduced-order model generated via SyMPVL is not passive, and not even stable. The
reason is that the computed matrix T60 is indefinite, causing some positive poles of the
transfer function Z60. On the other hand, SyMPVL2 generates a diagonal matrix ∆60

with only positive diagonal entries, and the matrix UT
60 ∆60 U60 is positive definite.

In particular, the transfer function Z60 does not have any positive poles. In Figure 1,
we show the dominant poles of the reduced-order models obtained from SyMPVL and
SyMPVL2, as well as the dominant poles of the transfer function Z of the original
linear dynamical system. Note that SyMPVL not only generated two unstable poles,
but also that one of the negative poles close to zero is wrong. In Figure 2, we plot
the SyMPVL and SyMPVL2 errors ‖Z(s)− Z60(s)‖ for all s = 2π iω, 1 ≤ ω ≤ 109.
Clearly, the SyMPVL2 model is also more accurate than the SyMPVL model.
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Fig. 1. Dominant poles of SyMPVL reduced-order model (top), SyMPVL2 reduced-order
model (middle), and the exact dominant poles (bottom) for Example 4.1.
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Fig. 2. Error ‖Z(s)− Zn(s)‖ of SyMPVL and SyMPVL2 models for Example 4.1.

Example 4.2. In this example, C and G are matrices of order N = 13875, and
m = 150. A reduced-order model of dimension n = 300 is needed to achieve con-
vergence in the frequency range of interest. Again, SyMPVL produced an indefinite
matrix T300, resulting in some positive poles of Z300, while the reduced-order model
generated via SyMPVL2 has no positive poles and is indeed passive. In Figure 3, we
show the dominant poles of the reduced-order models obtained from SyMPVL and
SyMPVL2.

Example 4.3. This example illustrates the behavior of the error bound (4.9).
We use the same matrices C and G as in Example 4.2, but now B has only m = 50
columns. The left plot in Figure 4 shows the norm of the reduced-order transfer
function Z300(2π iω) for the frequency range 1 ≤ ω ≤ 109. The right plot in Fig-
ure 4 shows the upper bound (4.9) for the corresponding error norm ‖Z(s)− Zn(s)‖
obtained after n = 100, 200, and 300 iterations of Algorithm 3.1.
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Fig. 3. Dominant poles of SyMPVL reduced-order model (top) and SyMPVL2 reduced-order
model (bottom) for Example 4.2.
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Fig. 4. ‖Z300(s)‖ (left) and upper bounds for ‖Z(s)− Zn(s)‖ (right) for Example 4.3.

5. Application to eigenvalue computations. In this section, we present some
preliminary numerical examples to illustrate the application of Algorithm 3.1 to the
solution of generalized symmetric definite eigenvalue problems of the form

Kx = λMx,(5.1)

where K = KT ∈ R
N×N , M = MT ∈ R

N×N , and M > 0.
The usual approach is first to compute a Cholesky decomposition M = LLT of

M, and then convert (5.1) to the standard eigenvalue problem

(
L−1 KL−T

)
y = λy, where y := LT x.(5.2)

The band Lanczos process is then applied to the symmetric matrix A := L−1 KL−T

and a random block B ∈ R
N×m of m starting vectors. Note that the Lanczos process

requires only matrix-vector products with A. These can be computed by means of
multiplications with K and backsolves with L and LT, without explicitly forming A.

Next, we present two numerical examples. These experiments were performed
in Matlab, and in both cases m = 2 starting vectors were used. In both examples,
K ≥ 0, and hence the eigenvalues λk, 1 ≤ k ≤ N , of (5.2) are all real and nonnegative.

Example 5.1. The matrices K and M in this example are of order N = 1346,
and are taken from an application in circuit simulation. We ran both the standard
symmetric band Lanczos process and the coupled Algorithm 3.1 for n = 20 and n = 40
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Fig. 5. The standard (left) and the coupled (right) band Lanczos process for Example 5.1.

iterations. The Ritz values are then computed as the eigenvalues of the matrices Tn

(for the standard algorithm) and UT
n ∆nUn (for Algorithm 3.1). In Figure 5, we plot

the computed Ritz values θi and their relative errors vs. their index i, i = 1, 2, . . . , n,
for both variants of the Lanczos process, and for n = 20 and 40. Here, the relative
error of a computed Ritz value θi is defined as

min1≤k≤N |θi − λk|
|λki |

, where ki := argmin1≤k≤N |θi − λk|.(5.3)

Note that for n = 20, the computed Ritz values and their relative errors for both
variants of the band Lanczos process are essentially the same. However, for n = 40,
the standard algorithm is significantly worse than the coupled algorithm, and even
has generated negative Ritz values. On the other hand, all the Ritz values from the
coupled Algorithm 3.1 are positive.

Example 5.2. In this example, K and M are 834 × 834 stiffness and mass
matrices arising in a structural analysis within MSC’s NASTRAN application. In
Figure 6, we show the computed Ritz values, as well as their relative errors (5.3), that
were obtained after n = 40 iterations of both variants of the band Lanczos process.
Note that the standard algorithm produced one negative Ritz value, namely, θ30,
while all Ritz values from the coupled Algorithm 3.1 are positive.

6. Concluding remarks. We proposed a variant of the band Lanczos process
for symmetric matrices and multiple starting vectors that uses coupled recurrences
involving two sets of basis vectors, instead of the recurrences involving only one set
in the standard algorithm. The new variant generates the factors of an LDLT fac-
torization of the Lanczos matrix, rather than the Lanczos matrix directly. Numerical
experiments suggest that the coupled algorithm is superior to the standard algorithm
both in terms of accuracy and robustness. However, a precise round-off error analysis
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Fig. 6. The standard (left) and the coupled (right) band Lanczos process for Example 5.2.

that would provide a theoretical basis for the superiority of the coupled algorithm
still remains to be done.

For a single starting vector, the symmetric band Lanczos process reduces to the
classical symmetric Lanczos algorithm [23] and the Lanczos matrix is tridiagonal. In
the last few years, it has gradually become clear that the standard representation of
a tridiagonal matrix via its entries is an unfortunate one, and that it is better, for
both accuracy and efficiency, to represent the matrix as a product of bidiagonals; see,
e.g., [11, 24, 25]. This paper has demonstrated that the same is true for the Lanczos
matrix associated with the symmetric band Lanczos process. Instead of representing
that matrix via its entries, it is preferable to present it via the entries of an LDLT

factorization.
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Abstract. We apply truncated RQ-iteration (TRQ) and the Jacobi–Davidson (JD) method to
perform vibrational (eigenvalue) analysis for large-scale molecular systems. Both algorithms employ
a preconditioned iterative solver to construct a low-dimensional subspace that contains desired vibra-
tional modes. We discuss several strategies for speeding up the eigenvalue calculation. In particular,
we illustrate how to construct effective preconditioners and analyze the quality of these precondi-
tioners. We show that convergence can be improved by choosing appropriate shifts and deflating the
translational and rotational modes. Numerical examples are provided to demonstrate the efficiency
of our computation.
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1. Introduction. Normal coordinate analysis (NCA) [17, 26] plays an important
role in the study of vibrational and thermal properties of various molecular structures
at the atomic level. The molecular vibration at low temperatures can be analyzed by
examining a collection of fundamental (normal) vibrational modes. These modes are
essentially eigenvectors of a matrix that describes the atomic force interaction within
the molecular system under study. Once NCA information is obtained, it becomes
easier to link theoretical models to experimentally accessible macroscopic data to pro-
vide a straightforward interpretation of molecular events in the absence of classical
chaos. The immediate applications of NCA include characterizing thermal stability
of polymer materials [7] and assessing the dynamic role protein plays in the photo-
synthetic center of green plants [19]. The long-term benefits include the development
of new materials that can be used for nano-manufacturing and bioengineering [8].

Until recently, the use of NCA has been limited to relatively small systems. This
is partly due to the lack of efficient numerical algorithms and the limited computing
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power on traditional sequential and parallel machines. In [16], we presented a numeri-
cal scheme that was based on a shift-invert Lanczos iteration. We reported the success
of using this scheme to compute the lowest 100 vibrational modes for a 6000-atom
(18000 degrees of freedom) polyethylene particle. This computation was performed
on a single processor of NEC SX-4, a powerful vector machine with 2 Gflops peak per-
formance and 2 GB of main memory. Although the performance we achieved on the
SX-4 is quite satisfactory, the large amount of memory (450 MB) required to carry
out this calculation makes it difficult to extend the current computation to larger
molecular systems. To solve problems that are 10 or 100 times larger on existing
machines, we must modify the algorithm to reduce memory usage.

Although force field modeling and calculation are crucial components of NCA,
extracting eigenvalues and eigenvectors from the force interaction matrix constitutes
the majority of the computational work. Therefore, the efficiency of NCA relies on
fast algorithms for solving matrix eigenvalue problems. As will be shown in section 2,
the force interaction matrix encountered in NCA is sparse, symmetric, and positive
(semi-)definite.

In this paper we investigate the possibility of applying two recently developed
algorithms—the truncated RQ-iteration (TRQ) [23, 27] and the Jacobi–Davidson (JD)
method [20, 4]—to perform large-scale NCA. Both algorithms require far less memory
than a shift-inverted Lanczos iteration. The experiments shown in section 6 demon-
strate that these methods are quite effective in capturing the desired vibrational modes
of a large-scale polymer system.

The paper is organized as follows. In the next section, we provide some mathemat-
ical background for NCA. Various approaches to the solution of large-scale eigenvalue
problems are discussed in section 3. We point out the limitation of the Lanczos-type
algorithms for this particular problem. We review TRQ and JD in section 4. The
efficiency of TRQ and JD depends largely on the quality of preconditioners used to
solve a linear system with a special structure. We discuss the construction of effective
preconditioners and the use of deflation techniques in section 5. We show numerical
results in section 6 to demonstrate the efficiency of these methods on NCA problems
and point out additional techniques that can be used to improve the convergence rate.
Finally, we give a few concluding remarks in section 7.

2. Problem formulation. The dynamics of a molecular system consisting of
m atoms can be described by

d

dt

(
∂T

∂q̇j

)
+

(
∂V

∂qj

)
= 0,

where T and V are total kinetic and potential energy of the system, respectively, and
qj is the mass adjusted displacement of an atom in one of the Cartesian coordinate
directions. If we assume molecules vibrate near an equilibrium configuration, the
equation of motion can be simplified to yield

q̈ + Fq = 0,

where F is obtained by taking the second derivative of the potential with respect to
the Cartesian coordinates, i.e.,

Fi,j =
∂2V

∂qi∂qj
.
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The standard technique for solving this second-order ODE is first to diagonal-
ize F by computing its eigenvalues and eigenvectors. This allows us to decouple
the system and solve each equation independently. Each eigenvector of F is called
a normal (vibrational) mode and the corresponding eigenvalue is proportional to the
vibrational frequency associated with that particular mode. This procedure of decom-
posing molecular vibration into a number of linearly independent modes is thus called
normal coordinate (mode) analysis. It is well known that the near-equilibrium motion
can often be captured by a linear combination of several low-frequency modes. Thus,
our primary interest is to compute a number of smallest eigenvalues and corresponding
eigenvectors of F .

Throughout this paper, we will focus on performing NCA on computer-generated
polyethylene (PE) particles of various sizes. These particles are named as pe3k, pe6k,
pe12k, and pe24k, where the trailing number represents the number of atoms in the
particle. A 6000-atom particle model (pe6k) is shown in Figure 2.1. The structure of
this model closely resembles droplet streams that can be generated experimentally [1,
11]. An m-atom particle involves n = 3m degrees of freedom. Thus the dimension of
the force interaction matrix F for the 6000-atom model is 18000.

Fig. 2.1. The structure of the pe6k particle.

The potential field of PE particles is well understood. The interactions between
atoms are categorized as either bonded or nonbonded. These interactions are often
measured in terms of various angles and internal stretches. For example, the bonded
interaction contributed by the ith atom can be expressed by

V i
b (ri,i+1, θi,i+1,i+2, τi,i+1,i+2,i+3) =

1

2
kr(ri+1,i − r0)2

+
1

2
kθ(θi,i+1,i+2 − θ0)2

+ 8.77 + α cos τi,i+1,i+2,i+3 + β cos3 τi,i+1,i+2,i+3,
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Fig. 2.2. The nonzero pattern of the lower triangular part of F for pe3k.

where kr, kθ, α, and β are force constant parameters and r0 and θ0 are equilibrium
values of the bond length and angle. The 2-atom bonded stretch ri,i+1 measures the
displacement along the line segment connected by atom i and i+1. Atoms i, i+1, and
i+2 form a bending angle θi,i+1,i+2 centered at atom i+1. The quantity τi,i+1,i+2,i+3

represents a 4-atom torsional angle.

The interaction between two atoms not directly bonded is represented by the
following Lennard–Jones type of potential function:

V̂nb = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6]
,

where rij is the distance between atom i and j, and σ and ε are Lennard–Jones
parameters. The nonbonded interaction is often neglected when the distance between
two atoms is beyond a certain threshold. The cutoff distance we used for PE particle
in our experiment is 10 angstrom.

To form the force interaction matrix, one must calculate the derivatives of V with
respect to the Cartesian coordinates (x,y,z). The brute force approach of expressing
V in terms of x, y, and z before taking derivatives is very time-consuming. A more
efficient computational scheme is presented in [24] to speed up the calculation. The
details on efficient derivative calculation is beyond the scope of this paper. We refer
readers to [24, 25] for more information.

Because the long-range nonbonded interactions are neglected, the force constant
matrix is sparse. Since the second derivative of our potential is independent of the
order in which it is taken, F is symmetric. The nonzero structure of the lower trian-
gular portion of F for a 3000-atom PE particle is shown in Figure 2.2. The sparsity
of F allows us to perform the matrix-vector mulitplication y ← Fx efficiently.
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Fig. 3.1. The relative residual history of the 1st and 7th approximate eigenpairs of F computed
by IRL.

3. Implicitly restarted Lanczos and shift-invert. Because F is fairly sparse,
and because we are only interested in a small number of eigenpairs of F (around 100),
it is natural to apply the Lanczos algorithm [12] to calculate the desired vibrational
modes. The implicit restarting mechanism [21] implemented in the ARPACK soft-
ware [13] allows us to further reduce memory usage by maintaining and repeatedly
updating a Krylov subspace of low dimension. The approximate eigenpairs of F are
obtained by projecting F into this low-dimensional subspace and solving a smaller
eigenvalue problem.

Our first attempt at using ARPACK to perform large-scale NCA turned out to
be somewhat disappointing. In Figure 3.1, we plot the convergence history of the
first and the seventh approximate eigenpairs (θ1, u1) and (θ7, u7). Each curve records
relative residual norms

‖Fui − θiui‖
|θi|

measured at the end of each implicit restarting cycle. The dimension of the Krylov
subspace constructed in the implicitly restarted Lanczos (IRL) process is ncv = 100.
For this particular run, we requested nev = 50 eigenpairs. The convergence tolerance
is set to etol = 10−8. Thus, the number of matrix-vector products used in each
IRL cycle is roughly 50. At the end of 300 IRL cycles, only 20 eigenpairs converged.
The residual curves show some irregular bumps during the course of convergence.
This phenomenon usually indicates that IRL detects nearby eigenpairs first before
it converges to the desired one. It is not difficult to see, after examining the full
spectrum of F , why IRL converges slowly. We observe from Figure 3.2 that the
relative gaps between adjacent eigenvalues at the low end of the spectrum are tiny.
The lowest six eigenvalues are nearly zero. The small magnitude of these eigenvalues
is expected. In fact, if F is formed exactly, these eigenvalues should be exactly zero.
The corresponding eigenvectors represent the pure translational and rotational motion
of the entire molecular system. It is well known that small relative gaps between
eigenvalues at the low end of the spectrum make it harder for IRL to construct a
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Fig. 3.2. The full spectrum of pe3k.

polynomial filter that can effectively separate the desired vibrational modes from the
unwanted ones [13].

A commonly used strategy for speeding up the calculation of clustered or interior
eigenvalues is to apply IRL to the shifted and inverted matrix (F −σI)−1, where σ is
a target shift near the eigenvalues of interest. Instead of performing a sparse matrix-
vector multiplication, we must solve sparse triangular systems at each Lanczos step
using the sparse triangular factors computed in advance. The shifted matrix is often
decomposed as F − σI = LDLT , where L is unit lower triangular and D is diagonal.
The matrix L contains nonzero “fill-ins” produced by Gaussian elimination and thus
requires more memory than that for F . Although significant progress has been made
in the past few years on direct algorithms for solving large sparse linear systems
[3, 9], decomposing F −σI into sparse triangular factors and solving sparse triangular
systems still constitute a large portion of the computational effort in shift-invert
Lanczos. However, our experiments show that, at least for problems of moderate size,
shift-invert Lanczos is quite efficient compared to the straightforward application of
IRL to F . In Table 3.1, we list CPU seconds and memory usage required to compute
the lowest 100 vibrational modes of pe6k. The computation is carried out on a NEC
SX-4 vector processor with 2 Gflop peak performance and 8 GB of shared memory.
We observe that shift-invert is almost 20 times faster than the direct usage of IRL.
Unfortunately, the large amount of memory required to store L makes it more difficult
to perform NCA for larger molecular systems on current high-performance computers.
Table 3.2 shows the CPU time and memory required to perform NCA on PE particles
with various sizes. The first column of the table represents the dimension of F . A
multilevel nested dissection matrix ordering scheme is used to reduce the amount of
fill-ins in the sparse matrix factorization [10]. We observe that more than 3 GB of
memory is needed to carry out NCA for a PE particle with 24000 atoms. Multifrontal
codes require even more memory for intermediate stacks. This is quite demanding
for a problem that is still relatively small compared to what we would like to tackle
(molecular systems with 300,000 atoms).

An alternative to shift-invert is to apply IRL to p(F ), where p(λ) is a polynomial
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Table 3.1
The CPU time and memory required to compute the lowest 100 vibrational modes of a 6000-

atom PE particle.

Method CPU time (seconds) Memory (MB)
IRL 9204 116

Shift-invert 515 459
Polynomial 2850 116

Table 3.2
The CPU time and memory required to compute the lowest 100 vibrational modes of PE particles

of various sizes.

n CPU time (seconds) Memory (MB)
9000 145 224
18000 515 459
36000 1472 1333
72000 3432 3213

constructed to enhance the eigenvalue distribution. Typically, p(λ) is chosen to map
the small eigenvalues F to dominant eigenvalues of p(F ) [22]. However, when the
condition number of F is large, it is difficult to find a low degree polynomial that
can effectively separate the desired eigenvalues from the unwanted ones. Neverthe-
less, Table 3.1 indicates that polynomial transformation appears to be a reasonable
compromise between the direct-use IRL and shift-invert IRL.

Another potential way to overcome the memory limitation is to parallelize the
eigenvalue calculation on distributed-memory multiprocessors or a network of work-
stations [28]. We will not discuss parallelization issues in this paper.

4. JD and TRQ. In the last few years, several algorithms [4, 20, 23] have
been developed to address the computation of clustered or interior eigenvalues of
large-scale problems without performing complete sparse matrix factorizations. The
JD algorithm [4, 20] and the inexact TRQ (ITRQ) iteration [23, 27] are among the
most successful ones. Both algorithms use preconditioned iterative solvers to generate
and update a subspace similar to the one that is produced by a shift-invert Lanczos
iteration. Neither method requires linear systems to be solved to high accuracy. In
JD, the approximation subspace is no longer a Krylov subspace, and basis vectors are
generated through a successive eigenvector correction process. The ITRQ iteration
uses a preconditioned iterative solver to modify the starting vector of a restarted
Lanczos process so that the leading columns of the Lanczos basis matrix converge
quickly to desired eigenvectors. We review some of the basic concepts of these methods
in this section.

4.1. The JD algorithm. Suppose an approximate eigenvector u ∈ R
n×1, ‖u‖ =

1, and its associated Rayleigh quotient

θ = uTFu

have been computed. One way to improve the current approximation is to seek a
correction pair (γ, z), where γ ∈ R and z ∈ R

n×1, such that

F (u + z) = (θ + γ)(u + z) and uT z = 0.(4.1)

It follows that

(F − θI)z − γu = −r + γz,
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Algorithm. Jacobi–Davidson.

Input: jmin, jmax, matrix F , initial eigenvector approximation u.
Output: approximate eigenpair (θ, u) such that ‖Fu− θu‖ is small.

1. u← u/‖u‖, θ ← uHFu; converged ← FALSE;
2. V ← (u); H ← (θ); jstart← 1;
3. while not converged do

3.1 for j = jstart, jstart + 1, ..., jmax
3.1.1 Solve the correction equation (4.2) to obtain z;
3.1.2 z ← (I − V V H)z;
3.1.3 V ← (V, z); H ← V HFV ;
3.1.4 Compute all eigenpairs of H, and select a desired pair (θ, s);
3.1.5 Put u← V s;
3.1.6 if ‖Fu− θu‖ < some tolerance, converged ← TRUE, goto 4;

3.2 end for;
3.3 Restart: replace V with jmin desired Ritz vectors;
3.4 H ← V HFV ; jstart← jmin + 1; goto 3;

4. end while;

Fig. 4.1. The JD iteration.

where r = Fu − θu. If we drop the second order correction γz, z and γ can be
determined by solving the following linear equation:

(
F − θI u
uT 0

)(
z
−γ

)
=

( −r
0

)
.(4.2)

The solution to this equation may be viewed as a Newton correction to the initial
approximation to the solution of the nonlinear equation (4.1). Once z is computed,
it can be adjoined to the approximate eigenvector u to form an augmented subspace

S = span{u, z},

from which a better approximation, (θ+, u+), to the desired eigenpair of F can be
extracted. If the new residual r+ = Fu+ − θ+u+ remains large, we can repeat the
correction procedure and further expand S with an additional correction vector. To
promote numerical stability, the new correction vector is orthogonalized against all
previously generated basis vectors of S. As the dimension of S becomes large, it may
be necessary to truncate the correction sequence and retain only a few basis vectors
of S. The correction process then continues, and new correction vectors are appended
to the truncated subspace S. The details of this algorithm are described in [4, 20].
For completeness, we list the main steps of this subspace correction procedure in
Figure 4.1.

Clearly, the most time-consuming part of this correction scheme is to solve the
bordered linear system (4.2). One can easily show that if (4.2) is solved exactly, then

z = −u + γ(F − θI)−1u,
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Algorithm. Implicitly shifted RQ-iteration.

Input: (F, V,H) with FV = V H, V HV = I, and H is upper
Hessenberg.

Output: (V,H) such that FV = V H, V TV = I and H is upper triangular.

1. for j = 1, 2, 3, . . . until converged,
1.1. Select a shift µ← µj ;
1.2. Factor H − µI = RQ; (R is triangular and Q is orthogonal)
1.3. H ← QHQT ; V ← V QT ;

2. end;

Fig. 4.2. Implicitly shifted RQ-iteration.

where γ = uT (F−θI)−1r
uT (F−θI)−1u

. If we simply add the correction vector to u, it follows that

u← γ(F − θI)−1u,

which indicates the close relationship between the above correction procedure and an
inverse iteration.

To reduce the cost associated with solving (4.2), Sleijpen and Van der Vorst [20]
suggested solving the correction equation by a preconditioned iterative method. They
expressed z as the solution to the projected equation

(I − uuT )(F − θI)(I − uuT )z = −(I − uuT )r.(4.3)

Since z is merely used as a basis vector of S = span{V }, it is not necessary to solve
(4.3) to full accuracy. Thus JD can be viewed as an inner-outer iteration. The outer
iteration provides eigenvalue and eigenvector approximations through the standard
Rayleigh–Ritz procedure [18]. Each inner iteration provides a new basis vector of S
by solving (4.3).

4.2. The ITRQ iteration. The TRQ iteration brings in the flavor of inverse
iteration in a different way. A full RQ-iteration is similar to the familiar QR algorithm
[5, 6]. The algorithm begins with a Hessenberg reduction

FV = V H,(4.4)

where V TV = I and H is upper Hessenberg. This reduction is followed by a procedure
described in Figure 4.2, which eventually drives H into an upper triangular form
with eigenvalues exposed on the diagonal. Since our matrix F is symmetric, H is
symmetric and tridiagonal. As convergence takes place, H becomes diagonal. If we
let V+ = V QT , H+ = QHQT , v+

1 = V+e1, and v1 = V e1, it is easy to verify that in
a single RQ iterate

(F − µI)v+
1 = v1ρ1,1,

where ρ1,1 = eT1 Re1. This implies that the first column V+ is what one would have
obtained by applying one step of inverse iteration to v1 with the shift µ. This prop-
erty is preserved in all subsequent RQ iterates. Thus, one would expect very rapid
convergence of leading columns of V to an invariant subspace of A.
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To avoid carrying out the full RQ-iteration involving n× n orthogonal similarity
transformations on large-scale problems, it is desirable to truncate this update proce-
dure after k steps to maintain and update only the leading portion of the factorizations
occurring in this sequence.

The truncation scheme developed in [23] leads to a procedure that maintains and
updates the following set of equations:

(F − µI)(Vk, v+) = (Vk, v)

(
Tk − µIk h
βke

T
k α

)
,(4.5)

where Tk is symmetric and tridiagonal, V T
k Vk = Ik, V T

k v = 0, V T
k v+ = 0, and

‖v‖ = ‖v+‖ = 1.
Clearly, the first k columns of the above equation satisfy a Lanczos reduction

FVk = VkTk + βkve
T
k .

The vectors v+, h, and the scalar variable α can be determined by solving the TRQ
equation

(
F − µI Vk
V T
k 0

)(
v+

h

)
=

(
vα
0

)
, ‖v+‖ = 1.(4.6)

Once the solution of the above equation is obtained, the TRQ algorithm proceeds by
performing an RQ decomposition

(
Tk − µIk h
βke

T
k α

)
=

(
Rk r
0 ρ

)(
Qk q
σeTk γ

)

and updating Vk, Tk, and v by applying appropriate orthogonal transformations. We
refer readers to [23] for a detailed derivation of the algorithm.

Again, the major cost for carrying out a TRQ iteration is in solving the TRQ
equation. To avoid enormous memory usage, we prefer to solve the TRQ equation
by a preconditioned iterative solver. Just as it was for the correction equation that
appeared in JD, it is easy to verify that v+ also satisfies the following equation:

(I − VkV
T
k )(F − µI)(I − VkV

T
k )v+ = vα.(4.7)

If the equation is not solved to full accuracy, the residual error will be mixed into all
columns of Vk so that they will no longer form a basis of a Krylov subspace. However,
it is shown in [27] that the error is damped by the orthogonal transformation applied
to columns of Vk. After the RQ update is complete, the first column of the updated
Vk, v+

1 satisfies the equation

(F − µI)v+
1 = ρ11v1 + zδ,

where z is the residual error produced by the iterative solver used to solve (4.7), and
δ is the product of sines generated from the Givens rotations used in the RQ update.
Therefore the error associated with the above inexact inverse iteration is likely to be
considerably smaller than ‖z‖. Consequently, we expect v+

1 to converge rapidly to
a desired eigenvector of F . However, to continue the next cycle of ITRQ, we must
restart a k-step Lanczos iteration from v+

1 to generate a new set of Tk, Vk, v, βk. We
outline the basic steps of ITRQ in Figure 4.3. A convergence analysis for ITRQ is
provided in [27].
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Algorithm. ITRQ iteration.

Input: (F, Vk, Tk, fk) with FVk = VkTk + fke
T
k , V

T
k Vk = I,

Tk is tridiagonal.
Output: (Vk, Tk) such that FVk = VkTk, V

T
k Vk = I and Tk is

diagonal.

1. Put βk = ‖fk‖ and put v = fk/βk;
2. for j = 1, 2, 3, ... until convergence,

2.1. Select a shift µ← µj ;
2.2. Solve (I − VkV

T
k )(F − µI)(I − VkV

T
k )w = v approximately;

2.3. w ← (I − VkV
T
k )w, v+ ← w/‖w‖;

2.4. h← V T
k Fv+, α← vT (F − µI)v+ ;

2.5. Factor

(
Tk − µIk h
βke

T
k α

)
=

(
Rk r
0 ρ

)(
Qk q
σeTk γ

)
;

2.6. v1 ← VkQ
T
k e1 + v+q

T e1;
2.7. (Tk,Vk,v,βk) ← Lanczos(F ,v1,k);

3. end;

Fig. 4.3. ITRQ iteration.

5. Deflation and preconditioning. The overall performance of TRQ and JD
depends largely on the efficiency of the preconditioned iterative solver used to solve
a sequence of projected linear systems of the form (4.7) (inner iteration). Although
these equations do not need to be solved to full accuracy, some level of convergence is
needed to ensure improvement of the approximate eigenpair in the outer iteration. In
this section, we will discuss techniques for accelerating the convergence of the inner
iteration.

5.1. Deflation. Because the eigenvectors corresponding to the lowest six eigen-
values of F represent translational and rotational modes, the invariant subspace as-
sociated with these modes can be easily constructed. For example, a translational
mode can be fixed by specifying 1 in the x direction and 0 in the other two directions.
Deflating these modes from JD and ITRQ iteration helps improve the convergence of
the eigenvalue calculation. In JD, deflation essentially amounts to solving a correction
equation

(I −QQT )(F − θI)(I −QQT )z = −r,

where Q = (U, u) consists of both the converged eigenvectors (including the transla-
tional and rotational modes) U and the approximation to a desired vibrational mode
u. Deflation in ITRQ can be achieved by locking the converged eigenvectors in the
leading columns of Vk. We refer readers to [4, 23] for implementation details.

5.2. Preconditioner for F . Recall that each nonzero entry of the matrix F
corresponds to either a bonded or a nonbonded force interaction between a pair of
atoms. Because the bonded interaction is typically stronger than the nonbonded
interaction, a natural candidate for a preconditioner is a matrix B that contains only
the bonded entries of F . For PE particles, bonded interaction occurs among four
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adjacent atoms. Since each atom has three degrees of freedom (x, y, z), the full
bonded interaction can be represented by a 12× 12 dense matrix block. If atoms are
numbered appropriately, these dense blocks will appear (with some overlap) on the
diagonal of F . If we also include some of the nonbonded interactions between atoms
that belong to different but nearby molecules, B can be made into a banded matrix.
One of the preconditioners used in our experiments is a banded matrix formed by
extracting nonzero entries between the 12th super- and subdiagonals of F .

A precise analysis of the effects of this preconditioner appears to be difficult. The
following observation provides an intuitive explanation on why this preconditioner
works well for PE particles.

It follows from our construction that

F = B + E.

The norm of E is relatively small compared to that of F and B. For the 3000-
atom PE particle (pe3k) used in our experiments, ‖F‖2 = 127.6, ‖B‖2 = 127.6, and
‖E‖2 = 1.3. Thus, one may view E as a perturbation. Since B−1F = I + B−1E, the
spectrum of the preconditioned system depends solely on the eigenvalue distribution
of B−1E. Because the removal of nonbonded interaction essentially eliminates the
possibility of rigid body motion (i.e., translations and rotations), B is unlikely to
contain eigenvalues that are extremely close to zero. Therefore, we expect eigenvalues
of B−1E to be small. We observed from numerical experiments that the eigenvalues
of B−1E lie within the interval (−1.0, 1.5) for pe3k.

In Figure 5.1, we plotted the estimated spectrum of B−1F (computed by a simple
Lanczos run) and compared it with that of F . Clearly, the preconditioner is quite
effective in reducing condition number by two orders of magnitude.
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Fig. 5.1. The estimated spectrum of F and B−1F .

To use the preconditioner in a symmetric iterative solver such as the conjugate
gradient (CG) or the minimum residual (MINRES) method, B is required to be
positive definite so that the Cholesky factors of B can be applied to preserve symmetry.



LARGE-SCALE NORMAL COORDINATE ANALYSIS 575

When this fails to be true, we add a small shift to the diagonal of B to make it positive
definite.

Another technique we use to construct a preconditioner for F is incomplete
Cholesky factorization [14, 15]. The factorization produces a lower triangular ma-
trix L such that

E = F − LLT

is small componentwise. If F is partitioned as

F =

(
α 5T

5 F̂

)
,

the first step of the factorization leads to
(

α 5T

5 F̂

)
≈
( √

α

5̃/
√
α I

)( √
α 5̃T /

√
α

F̂ − 5̃5̃T /α

)
,

where 5̃ is obtained by setting some small entries in 5 to zero. Because most of the
nonzero entries outside of the 12th subdiagonal element in 5 correspond to weaker
nonbonded interactions between atoms, their magnitude can be significantly smaller
than

√
α. Therefore it is reasonable to set some of these entries to zero to reduce

the amount of fill-ins in F̂ − 5̃5̃T /α. A heuristic threshold is often used to determine
whether to keep or drop the nonzero entries in 5. When a fill-in is created in F̂− 5̃5̃T /α
its magnitude is likely to be small compared to the diagonal entry. Therefore, it is
likely to be dropped from L as the factorization proceeds. As we will show in section 6,
with a proper choice of drop tolerance, the number of nonzeros in L can be less than
that in the lower triangular part of F .

5.3. Preconditioner for the projected system. We discussed how to con-
struct preconditioners for F in section 5.2. However, in both JD and ITRQ, precon-
ditioners must be applied to the projected system

(I − VkV
T
k )(F − θI)(I − VkV

T
k )x = b̂,(5.1)

where V T
k b̂ = 0 and V T

k x = 0. In this section, we will provide a procedure for applying
a pair of symmetric preconditioners to the projected system.

Suppose B = LLT is a good preconditioner for F − θI. It is reasonable to expect
that

L̂ = (I − VkV
T
k )L(I − VkV

T
k ),

together with L̂T , can be used to enhance the eigenvalue distribution of

C = (I − VkV
T
k )(F − θI)(I − VkV

T
k ).

To apply these preconditioners in an iterative solver, we must find a convenient way
to solve

L̂x̂ = b̂ and L̂T ŷ = b̂,

where V T
k x̂ = 0, V T

k ŷ = 0, and V T
k b̂ = 0. Because the solution to L̂x̂ = b̂ also satisfies

(
L Vk
V T
k 0

)(
x̂
−g

)
=

(
b
0

)
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Fig. 5.2. The estimated spectrum of F and L̂−1(I − V6V T6 )F (I − V6V T6 )L̂−T .

for some g ∈ R
k×1, block Gaussian elimination yields

x̂ = L̂−1b̂ = (I − YkG
−1V T

k )L−1b̂,

where Yk = L−1Vk and G = V T
k Yk. It follows that

L̂−1CL̂−T =

(
I − YkG

−1V T
k

)
L−1(F − θI)L−T

(
I − VkG

−TY T
k

)
.(5.2)

In Figure 5.2, we plotted the estimated spectrum of L̂−1(I−V6V
T
6 )F (I−V6V

T
6 )L̂−T

restricted to the subspace V ⊥
6 , where V6 consists of six vectors that describe the trans-

lational and rotational motions of pe3k. The estimated spectrum of the preconditioned
and deflated matrix is compared to that of F . We observed that the combination of
preconditioning and deflation effectively reduces the condition number of the linear
system (in the inner iteration) from 108 to 102. Most eigenvalues of the preconditioned
system have been clustered around 1.0.

Equation (5.2) defines a sequence of matvec operations that must be performed in
one step of CG or MINRES iteration. One may follow the procedure provided below to
modify a standard preconditioned iterative solver to compute an approximate solution
of (5.1).

1. Solve LYk = Vk.
2. Compute Gk = V T

k Yk.

3. b̂← L−1b̂.
4. b̂← b̂− YkG

−1
k V T

k b̂.
5. Apply an iterative solver to (I−YkG−1V T

k )L−1(F−θI)L−T (I−VkG−TY T
k )y =

b̂ to obtain an approximate solution y.
6. Compute y ← y − VkG

−TY T
k y.

7. Solve LT x̂ = y.

6. Performance. In this section we present our computational experience ap-
plying JD and ITRQ to PE particles of various sizes. We found both algorithms are



LARGE-SCALE NORMAL COORDINATE ANALYSIS 577

quite efficient at extracting a small number of low-frequency vibrational modes. The
total number of floating point operations (flops) required to obtain the lowest 100
vibrational modes is kn2 for some k � n. The JD algorithm appears to be more
efficient than ITRQ when a set of optimal parameters is identified. These parameters
include the following:

1. Preconditioner. We found that it is extremely expensive to solve the linear
systems (4.2) and (4.7) without use of a preconditioner. We choose between
two preconditioners of the linear systems. The first is a standard incomplete
Cholesky preconditioner, which we call IC. The second is the banded subma-
trix of the original matrix obtained by ignoring the nonbonded interactions;
we call this preconditioner band.

2. The convergence tolerance tol used to control the accuracy of the linear
systems solved. The values of tol looked at here are

√
10−1, 10−1, 10−2,

10−4, and 10−6. We also investigated the possibility of using a dynamic
tolerance in which the tol value is gradually tightened in the outer iteration
as the approximate eigenvector becomes more accurate.

3. The maximum dimension (jmax) of the approximating subspace constructed
in the outer iteration and the minimum number (jmin) of vectors retained
when restarting takes place.

4. Choice of shift θ. In the JD algorithm the linear systems are shifted using
the most recent estimate of the eigenvalue. We can choose, alternatively, to
refrain from shifting the linear system, and work directly with F . Shifting
produces linear systems that are generally more ill-conditioned; however, it
potentially obtains greater reduction in the eigenresidual per solve because
shifting preserves the Newton-like solution process.

We ran our implementation of JD on three PE particle models pe3k, pe6k, and
pe12k of orders 9000, 18000, and 36000, respectively. Problem statistics are given in
Table 6.1, which includes statistics for the two preconditioners.

Table 6.1
Problem statistics.

nonzero IC band

Problem n nnz(F ) percentage(F ) nnz(L) nnz(L)
pe3k 9000 3,279,690 3.7% 903,510 106,161
pe6k 18000 6,897,316 1.8% 1,876,009 211,946
pe12k 36000 14,220,946 1.1% 3,540,453 423,517

Throughout we will use approximate counts of flops to measure performance.
We count just the flops required by matrix-vector products and application of the
preconditioners. We ignore the relatively small number of flops required by BLAS
operations used in deflation, projection, and other MINRES operations. A flop refers
to a multiply-add pair. An approximate eigenpair is declared converged when its
residual norm drops below 10−6.

6.1. IC and band preconditioners. To compute the IC preconditioner we used
a drop-tolerance-based code provided to us by Edmond Chow [2], which provides a
number of options that we found useful or even necessary. We used the option that
scales the matrix before factorization so that it has unit main diagonal. We needed
to shift the main diagonal to preserve positive definiteness. We tried a number of
combinations of shifts and drop tolerances, and found that a drop tolerance of 10−4

and shift of 2×10−4 are very near optimal for all three problems under consideration.
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Table 6.2
Average iterations per solve, flops per iterations, and flops per solve for MINRES using two

different preconditioners during JD runs to calculate leading twenty eigenvalues. Linear systems are
shifted; tol = 10−1; and jmin = 20 and jmax = 40.

Iter/solve Flops/iter Flops/solve
Problem IC band IC band IC band

pe3k 10.5 23.6 1.02e7 6.84e6 1.08e8 1.61e8
pe6k 11.8 32.0 2.12e7 1.44e7 2.50e8 4.61e8
pe12k 12.4 34.7 4.21e7 2.96e7 5.21e8 1.03e9

Table 6.3
Approximate total flops during JD runs to calculate leading twenty eigenvalues using two dif-

ferent preconditioners. Linear systems are shifted; tol = 10−1; and jmin = 20 and jmax = 40.

Problem IC band

pe3k 1.05e10 1.58e10
pe6k 2.38e10 4.27e10
pe12k 4.96e10 9.28e10

In Table 6.1 notice that each IC factor is considerably sparser than the lower triangle
of the corresponding coefficient matrix. There are many very small entries in the
coefficient matrices, and it is vital that the IC algorithm allows many of these small
original entries to be dropped from the IC factors.

Observe in Table 6.1 that the band factors are much sparser than their IC coun-
terparts, and hence much cheaper to apply. In Table 6.2 the number of flops per
iteration is significantly smaller for band. But there are significant entries outside the
band that need to play a role in the preconditioner.

IC permits entries to enter the preconditioner based on size alone and not position
in the matrix (i.e., physical classification). While IC produces a much denser factor
L, it is nonetheless much sparser than the lower triangle of the originating coefficient
matrix. The number of iterations per solve in Table 6.2 shows that IC is a much more
powerful preconditioner; the number of flops per solve in the same table show that it
is much more efficient.

Finally, Table 6.3 shows approximate total flops for JD runs using IC and band.
IC is clearly superior and has been in all the tests we have run. Henceforth we

drop band and work with IC alone.

6.2. Accuracy in the linear equations. Using a “factorization-free” approach,
we can choose how accurately to solve the linear systems. This turns out to be impor-
tant. We tried various tolerances tol to control the relative reduction in the MINRES
residuals. Table 6.4 shows approximate total work for the various values of tol.

Table 6.4
Approximate total flops during JD runs to calculate leading twenty eigenvalues using various

settings of tol. IC is used; linear systems are shifted; and jmin = 20 and jmax = 40.

Tolerance

Problem
√
10−1 10−1 10−2 10−4 10−6 Dynamic

pe3k 1.22e10 1.05e10 1.45e10 1.81e10 2.14e10 1.09e10
pd6k 2.73e10 2.38e10 3.43e10 4.53e10 5.37e10 2.36e10
pe12k 5.50e10 4.96e10 7.28e10 1.01e11 1.16e11 4.95e10

Roughly one digit of accuracy (tol = 10−1) is preferable for all three problems.
The superiority of tol = 10−1 manifested itself in all the tests we ran, which includes
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many runs not recorded in the table. One pays a fairly high price for solving the linear
systems too accurately. In general, our experience has been that high accuracy in the
linear system does not lead, with sufficient consistency, to commensurate reductions
in the eigenresiduals in the JD algorithm. We have also observed that the cost of
an average linear solve increases faster than accuracy as shift becomes closer to an
eigenvalue.

Following the strategy proposed in [4], we also experimented with a dynamic tol-
erance tolj = tol0/2j , where j is the outer iterate number, and tol0 is the initial
residual. This is motivated by the fact that JD can be viewed as an inexact Newton
iteration in which a higher accuracy is required near the solution of the correction
equation. However, for this scheme to be competitive with the fixed tolerance ap-
proach, we must limit the maximum number of MINRES iterations to a small number
(10 ∼ 15 in most cases). We observed that this limit is almost always reached be-
fore the residual error of the approximate solution falls below the dynamic tolerance.
Henceforth the following results are obtained by using tol = 10−1 in our runs.

6.3. Projection subspace size in JD. Our experience verified our expectation
that the larger the space from which approximate eigenvectors are taken, the more
efficiently the algorithm runs. Table 6.5 shows that increasing the maximum size jmax
of the basis from 10 to 20 to 40 (along with the minimum size jmin from 5 to 10 to
20) reduces approximate total work when either shifted or unshifted linear systems
are used.

Table 6.5
Approximate total flops during JD runs to calculate leading twenty eigenvalues using various

settings of jmax and jmin and shifted and unshifted linear systems. IC and tol = 10−1 are used.

Shifted Unshifted
(jmin,jmax) (jmin,jmax)

Problem (5,10) (10,20) (20,40) (5,10) (10,20) (20,40)

pe3k 1.26e10 1.13e10 1.05e10 1.88e10 1.47e10 1.26e10
pe6k 2.89e10 2.50e10 2.38e10 4.42e10 3.31e10 2.79e10
pe12k 6.05e10 5.32e10 4.96e10 9.10e10 7.14e10 5.90e10

It is interesting to note that the effect of increasing jmax is far more pronounced
when the linear systems are unshifted rather than shifted. Unshifted is far more
competitive with shifted when jmax = 40 rather than jmax = 10. In all our tests
jmax = 40 outperformed the lower alternative values. The primary cost in increasing
jmax is extra space for the basis vectors. The cost in storage of using jmax = 40 is not
too large, and in the table it appears to be a reasonable point of diminishing returns.
Hence, we choose jmax = 40.

6.4. Shifted versus unshifted linear systems. Table 6.5 also shows that
shifting the linear systems is superior to the alternative of using unshifted linear
systems. When jmax is large, the advantage of shifting is modest but significant;
when jmax is small, the advantage of shifting can be quite large. Our experience with
other runs not shown in the table also corroborate the conclusions we draw here.

6.5. A closer look at an optimal run. Let us now consider in more detail a
single run of JD to compute the leading 20 eigenpairs for the smallest problem (pe3k)
using the optimal parameters IC, tol = 10−1, jmax = 40, jmin = 20, and shifted lin-
ear systems. Figure 6.1 displays the convergence history of the leading 20 eigenpairs.
The residual norm of each approximate eigenpair is plotted against the flops mea-
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Fig. 6.1. The residual history of the first 20 eigenpairs in a JD run.

sured at each outer iteration of JD. The first eigenpair is computed without shifting
because in our experience shifting is always completely ineffective for this eigenpair;
moreover, shifting is always considerably more expensive for this eigenpair. The con-
vergence histories for the other 19 eigenpairs are remarkably regular. The thing we
would like to emphasize here is that with great regularity reducing the residual in the
linear system by one order of magnitude results in reducing the eigenresidual by close
to one order of magnitude. The average number of iterations per linear system solve
is 10.5 iterations. The average number of MINRES iterations per eigenpair is 47.5
iterations.

It is important that some attention is paid to tuning the linear equation solver and
JD for this application. Using IC, unshifted linear systems, tol = 10−6, jmax = 10,
and jmin = 5 it takes approximately 4.24 × 1010 flops to compute the leading 20
eigenpairs for problem pe3k. This is 4.0 times more flops than required by the optimal
run. Using band, unshifted linear systems, tol = 10−6, jmax = 10, and jmin = 5 it
takes approximately 1.04e11 flops to compute the leading 20 eigenpairs for problem
pe3k. This is 9.9 times more flops than required by the optimal run.

6.6. Comparison with ITRQ. Our preliminary results show that ITRQ is
less efficient than JDQR for the PE problems. The convergence history of the first 20
eigenpairs is displayed in Figure 6.2. The residual norm of each approximate eigenpair
is plotted against the flops measured at each RQ update step. We observe that the
total number of flops required to capture the lowest 20 eigenpairs is significantly
larger than that required by an optimal JD run. Part of the reason why ITRQ
takes more flops is that our current implementation solves the full bordered system
(4.2) by preconditioned MINRES. This may not be necessary because (4.2) can be
rearranged into an equation that involves no Vk by exploiting the Lanczos relation
FVk = VkTk + feTk [23]. However, our experience seems to indicates that ITRQ
requires a tighter convergence tolerance (tol = 10−7) for the preconditioned iterative
solver to obtain sufficient reduction in the residual norm in approximate eigenpairs.
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Fig. 6.2. The residual history of the first 20 eigenpairs in an ITRQ run.

Figure 6.2 also indicates that the convergence pattern of ITRQ is quite different from
that of JD. Several approximate eigenpairs converge almost at the same time, whereas
in JD an almost equal amount of time is spent on computing each eigenpair.

7. Conclusion. In this paper, we presented our computational experience in
applying JD and ITRQ algorithms to obtain fundamental vibrational modes of large-
scale molecular structures. The key to the efficiency of our computation is the choice
of preconditioners used in the inner iteration of both JD and ITRQ. We found that
both the banded preconditioner that contains mainly the bonded interaction and an
incomplete Cholesky preconditioner are quite effective. We presented additional tun-
ing techniques for improving the performance of JD. We believe both algorithms can
be developed into general software tools for performing NCA on large-scale molecular
structures.
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Abstract. Analysis of nonsymmetric matrix iterations based on eigenvalues can be misleading.
In this paper, we discuss sixteen theorems involving ε-pseudospectra that each generalize a familiar
eigenvalue theorem and may provide more descriptive information in some cases. Our organizing
principle is that each pseudospectral theorem reduces precisely to the corresponding eigenvalue the-
orem when ε = 0.
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1. Introduction. Though we speak of linear algebra, matrix iterative methods
belong to the realm of linear analysis. Convergence of errors or residuals to zero is the
concern, and this process has meaning because the algebraic problem is embedded in
a normed space. Except for questions concerning finite termination, the appropriate
tools for analyzing convergence are not the tools of algebra, such as eigenvalues, which
are basis-independent, but those of analysis, such as singular values, which are defined
via norms and necessarily change with the basis.

In this paper we consider the particular tools of linear analysis known as pseu-
dospectra, which were invented to give information about matrices that lack a well-
conditioned basis of eigenvectors. For simplicity, our norm ‖ · ‖ will always be the
vector 2-norm and the matrix 2-norm that it induces. With this choice of norm, the
matrices of interest are those that are far from normal in the sense that their eigen-
vectors, if a complete set exists, are far from orthogonal. Many of our results can be
extended to other norms and also to operators as well as matrices, but we will not
discuss these generalizations.

Throughout the article, A is an N × N matrix, and Λ(A) denotes its spectrum,
i.e., its set of eigenvalues, a subset of the complex plane C. The pseudospectra of A
are nested subsets of C that expand to fill the plane as ε→∞.

Definition. For each ε ≥ 0, the ε-pseudospectrum Λε(A) of A is the set of
numbers z ∈ C satisfying any of the following equivalent conditions:

(i) ‖(z −A)−1‖ ≥ ε−1;
(ii) σmin(z −A) ≤ ε;
(iii) ‖Au− zu‖ ≤ ε for some vector u with ‖u‖ = 1;
(iv) z is an eigenvalue of A + E for some matrix E with ‖E‖ ≤ ε.

Here σmin denotes the smallest singular value, and we employ the convention that
‖(z −A)−1‖ =∞ for z ∈ Λ(A).

Pseudospectra were introduced as early as 1975 [12] and became a popular tool
during the 1990s. We will not give detailed references here, but we refer the reader
to [23] and [24] for examples, to [25] for algorithms and a list of applications, and to [26]
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for history. For extensive online information about pseudospectra, including examples
and a bibliography of papers by many authors, see the Pseudospectra Gateway [3].

This brief article is devoted to a simple idea:
Many theorems about eigenvalues are special cases ε = 0 of theorems about
ε-pseudospectra.

Our whole content consists of the presentation of sixteen examples of theorems of this
kind. These theorems are for the most part neither mathematically deep nor even
new, though in some cases they have not been stated in the language of pseudospectra
before. Nevertheless, for practical applications involving highly nonnormal matrices,
they may sometimes be more useful than their eigenvalue special cases. This will tend
to be so in situations where the eigenvalues of A are misleading, filling a region of
C smaller than where A actually “lives.” For an example illustrating the limitations
of eigenvalue analysis for Krylov subspace methods for linear systems of algebraic
equations, see [6]. Here is another extreme example. If A is nilpotent, with AK = 0
for some K ≥ 1, then Λ(A) = {0}. Some such matrices will have norms ‖Ak‖ that
diminish steadily toward 0 as k → K, while for others, there may be no reduction
until k = K or great transient growth before the eventual decay. Eigenvalues alone
cannot distinguish between these behaviors, but pseudospectra can.

Our presentation will adhere to a fixed pattern. In each case, we first list a
theorem about eigenvalues, without proof, that is either elementary or well known.
We follow this with a generalized theorem for pseudospectra together with an outline
of a proof. Some pointers to the literature are included along the way, but we do not
aim to be exhaustive, as it is often hard with this essentially elementary material to
track down the first appearance of a result in print.

We hope that this article may provide a useful compendium for those concerned
with nonnormal matrices and associated iterations, but we emphasize that this col-
lection does not include all potentially useful theorems involving pseudospectra. By
confining our attention to theorems that reduce for ε = 0 to valid statements about
eigenvalues, we exclude some of the subtler estimates that may be obtained from
pseudospectra, notably those based on contour integrals. One example is the Kreiss
matrix theorem, which contains a constant eN that does not reduce cleanly to 1 as
ε → 0 [11, 19]. Another is the bound on a polynomial norm ‖p(A)‖, of immediate
relevance to iterations such as GMRES, that can be obtained by integrating p(z)
over the boundary contour(s) of Λε(A) [22]. For new results comparing such contour
integral techniques to other approaches, see [5].

2. Sixteen theorems. Our first theorem indicates the connection between the
ill-conditioning of solving a linear system with A and the existence of a pseudoeigen-
value near the origin. This result has been attributed to Gastinel (see [21, pp. 120,
133], [28, p. 248]).

Theorem 1. A is singular ⇐⇒ 0 ∈ Λ(A).
Theorem 1ε. ‖A−1‖ ≥ ε−1 ⇐⇒ 0 ∈ Λε(A).
Proof. The proof is immediate from the definitions.
Pseudospectra possess the satisfying property that every connected component of

the ε-pseudospectrum must contain at least one eigenvalue. This property forms the
basis for the following result.

Theorem 2. A has N distinct eigenvalues =⇒ A is diagonalizable.
Theorem 2ε. Λε(A) has N distinct components =⇒ A is diagonalizable.
Proof. From definition (iv) of pseudospectra it is clear that for any δ > 0, Λε(A)

is contained in the interior of Λε+δ(A). By the continuity of matrix eigenvalues with
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respect to perturbations, the same condition (iv) implies that if Λε(A) has N distinct
components, so does Λε+δ(A) for sufficiently small δ > 0. Thus we see that ‖(z −
A)−1‖ must achieve local maxima strictly in the interior of each of the N components
of Λε+δ(A). Now log ‖(z − A)−1‖ is a subharmonic function of z throughout the
complex plane except at the eigenvalues of A (see, e.g., [7, Thm. 3.13.1], [4]), and thus
log ‖(z−A)−1‖ and likewise ‖(z−A)−1‖ satisfy the maximum principle away from the
eigenvalues of A. Putting these facts together, we see that each component of Λε(A)
must contain an eigenvalue of A, which implies that A has N distinct eigenvalues and
thus is diagonalizable.

Gallestey has developed an algorithm for computing pseudospectra based on the
maximum principle property used in the above proof [4]. A simpler exclusion al-
gorithm, recently proposed by Koutis and Gallopoulos [10], is based upon the next
result.

Theorem 3. ‖(z −A)−1‖ ≥ 1
dist(z,Λ(A))

.

Theorem 3ε. ‖(z −A)−1‖ ≥ 1
dist(z,Λε(A))+ε

.

Proof. A perturbation of A of norm dist(z,Λε(A)) + ε could make z an
eigenvalue.

The Koutis–Gallopoulos algorithm utilizes Theorem 3ε rewritten in the form

dist(z,Λε(A)) ≥ 1

‖(z −A)−1‖ − ε.

In our next theorem, S is an arbitrary nonsingular matrix and κ(S) is its condition
number, κ(S) ≡ ‖S‖‖S−1‖. Though the theorem is stated as an inclusion in one
direction only, it applies in the other direction too, and in that sense Theorem 4
maintains our usual pattern of being the special case ε = 0 of Theorem 4ε. The result
demonstrates that pseudospectra are invariant under unitary transformations, and
also reflects the extent to which an ill-conditioned similarity transformation can alter
pseudospectra. When B is diagonal, so that SBS−1 represents a diagonalization of A,
Theorem 4ε is equivalent to the most familiar version of the Bauer–Fike theorem [1].

Theorem 4. A = SBS−1 =⇒ Λ(A) = Λ(B).
Theorem 4ε. A = SBS−1 =⇒ Λε(A) ⊆ Λκ(S)ε(B).
Proof. Since (z − A)−1 = S(z − B)−1S−1, ‖(z − A)−1‖ ≤ κ(S)‖(z − B)−1‖.

Therefore if ‖(z −A)−1‖ ≥ ε−1, then ‖(z −B)−1‖ ≥ (κ(S)ε)−1.
The following theorem makes use of the idea of the “average pseudoeigenvalue”

of a matrix, meanλε∈Λε(A)λε. Of course, this quantity needs to be defined. We could

be very specific and make use of, say, Haar measure (isotropy in C
N ) on the space

of N × N matrices, but for the purposes of this theorem it is enough to say that
meanλε∈Λε(A)λε is the mean of the eigenvalues of A + E averaged over any fixed

distribution on the matrices E with ‖E‖ ≤ ε with the property that each matrix
entry eij has mean 0.

Theorem 5. tr(A) = N ·meanλ∈Λ(A)λ.
Theorem 5ε. tr(A) = N ·meanλε∈Λε(A)λε.
Proof. The theorem looks deep but is elementary. All we need to do is consider

traces of perturbed matrices. Since each ejj has mean 0 by assumption, so does their
sum, and thus tr(A) = mean‖E‖≤εtr(A + E) = N ·meanλε∈Λε(A)λε.

Our next pair of results requires a definition of the condition number κA(Σ(A))
of a compact set Σ = Σ(A) ⊂ C depending on A with respect to perturbations
of A. If Σ1 and Σ2 are compact subsets of C, let d(Σ1,Σ2) denote the Hausdorff
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distance d(Σ1,Σ2) = max{maxs∈Σ1
d(s,Σ2),maxs∈Σ2

d(s,Σ1)}, where d(s,Σ) is the
usual distance of a point s to a set Σ. Then

κA(Σ(A)) ≡ lim sup
δ→0

(
δ−1 sup

‖D‖≤δ
d(Σ(A + D),Σ(A))

)
.

Theorem 6. Λ(A) depends continuously on A, with condition number κA(Λ(A))
= 1 if A is normal.

Theorem 6ε. Λε(A) depends continuously on A, with condition number κA(Λε(A))
= 1 if A is normal.

Proof. The continuity of Λε(A) in the Hausdorff metric follows from the analogous
continuity of Λ(A). Suppose now that A is normal, so that its ε-pseudospectrum is
the union of ε-disks centered at each eigenvalue. For any δ ≥ 0 and D ∈ C

N×N with
‖D‖ ≤ δ, we have maxs∈Λε(A+D) d(s,Λε(A)) ≤ δ and similarly maxs∈Λε(A) d(s,Λε(A+
D)) ≤ δ. Thus,

sup
‖D‖≤δ

d(Λε(A + D),Λε(A)) ≤ δ.

Since ∪‖D‖≤δΛε(A + D) = Λε+δ(A), there always exists some D with ‖D‖ ≤ δ such
that maxs∈Λε(A+D) d(s,Λε(A)) = δ, and for such a D we must have ‖D‖ = δ, since
the pseudospectra are strictly nested sets. It follows that

κA(Λε(A)) ≡ lim sup
δ→0

(
δ−1 sup

‖D‖≤δ
d(Λε(A + D),Λε(A))

)
= 1.

Eigenvalues can change dramatically with small perturbations, a warning that
analysis based on them can be misleading. The following theorem hints that pseu-
dospectra may be more robust.

Theorem 7. Λ(A + E) ⊆ Λ‖E‖(A).
Theorem 7ε. Λε(A + E) ⊆ Λε+‖E‖(A).
Proof. If z ∈ Λε(A + E), then there exists a matrix F with ‖F‖ ≤ ε such that

(A+E +F )u = zu for some u �= 0. Since ‖E +F‖ ≤ ε+ ‖E‖, z ∈ Λε+‖E‖(A).
We now turn to the problems of estimating the behavior of a matrix from its

spectrum and pseudospectra.
Theorem 8. λ ∈ Λ(A) =⇒ ‖A‖ ≥ |λ|.
Theorem 8ε. λε ∈ Λε(A) =⇒ ‖A‖ ≥ |λε| − ε.
Proof. If λε ∈ Λε(A), then Au = λεu + εv for some vectors u, v ∈ C with

‖u‖ = ‖v‖ = 1. It follows that ‖Au‖ ≥ |λε| − ε.
The convergence analysis of stationary iterative methods is based on the behavior

of powers of the iteration matrix. It has long been known that transient growth can
occur even when the spectral radius of the iteration matrix is less than one (see,
e.g., [27, p. 63]). The following two theorems use pseudospectra to describe this
transient growth. The first is the “easy half of the Kreiss matrix theorem,” that is,
the half of that theorem that does not depend on N and whose proof is elementary [11].

Theorem 9. maxλ∈Λ(A) |λ| > 1 =⇒ supk>0 ‖Ak‖ =∞.

Theorem 9ε. maxλε∈Λε(A) |λε| > 1 + Cε =⇒ supk≥0 ‖Ak‖ > C.
Proof. Since ‖A0‖ = 1, the result is trivial for C < 1, so assume C ≥ 1. If

maxλ∈Λ(A) |λ| > 1, then the conclusion certainly holds, so assume maxλ∈Λ(A) |λ| ≤ 1,
in which case we have the convergent series representation

(z −A)−1 = z−1(I + z−1A + z−2A2 + · · ·),
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which is valid for all z with |z| > 1. We now argue the contrapositive. If ‖Ak‖ ≤ C
for all k ≥ 0, then

‖(z −A)−1‖ ≤ |z−1|C
1− |z−1| =

C

|z| − 1

for any z with |z| > 1. This implies that Λε(A) is contained in the disk about the
origin of radius 1 + Cε, i.e., maxλε∈Λε(A) |λε| ≤ 1 + Cε.

Theorem 10. λ ∈ Λ(A) =⇒ ‖Ak‖ ≥ |λ|k for all k.

Theorem 10ε. λε ∈ Λε(A) =⇒ ‖Ak‖ ≥ |λε|k − kε‖A‖k−1

1−kε/‖A‖ for all k such that

kε < ‖A‖.
Proof. Pick E such that ‖E‖ ≤ ε and λε ∈ Λ(A + E). Then ‖(A + E)k‖ ≥ |λε|k,

which implies

‖Ak‖ ≥ |λε|k − kε‖A‖k−1 −
(
k

2

)
ε2‖A‖k−2 − · · ·

≥ |λε|k − kε‖A‖k−1
(
1 + kε/‖A‖+ (kε)2/‖A‖2 + · · ·) .

Provided kε < ‖A‖, the series in this last equation converges, giving

‖Ak‖ ≥ |λε|k − kε‖A‖k−1

1− kε/‖A‖ .

Theorems 9 and 9ε have exact analogues for continuous time (see [14, 15]).
Theorem 11. maxλ∈Λ(A) Reλ > 0 =⇒ supt>0 ‖etA‖ =∞.
Theorem 11ε. maxλε∈Λε(A) Reλε > Cε =⇒ supt>0 ‖etA‖ > C.
Proof. As in the proof of Theorem 9ε, the conclusion is immediate if C < 1 or if

maxλ∈Λ(A) Reλ > 0, so we assume that C ≥ 1 and maxλ∈Λ(A) Reλ ≤ 0 and use the
Laplace transform identity

(z −A)−1 =

∫ ∞

0

e−ztetAdt,

which is valid for Rez > 0. Again arguing the contrapositive, we note that if ‖etA‖ ≤
C for all t > 0, then ‖(z−A)−1‖ ≤ C/Rez for z with Rez > 0, implying that Λε(A)
is contained in the half-plane defined by Rez ≤ Cε.

Our next result is a pseudospectral generalization of Gerschgorin’s theorem, which
we believe to be new. It implies that if Λε(A) contains points distant from Λ(A) for
sufficiently small ε, then the bounds given by Gerschgorin’s theorem will be more
sharply descriptive of the pseudospectra than of the spectrum. Coupling this with
Theorems 9ε and 10ε, one sees that Gerschgorin eigenvalue estimates may sometimes
lead to more accurate predictions of transient behavior of iterative matrix processes
than would be obtained from the exact eigenvalues! As has been pointed out in [13],
this curious robustness phenomenon is of practical importance, for it sheds light on
how it is that iterations such as GMRES may sometimes converge handily even when
the associated Ritz values or harmonic Ritz values are far from accurate eigenvalue
estimates. For these theorems, define dj = ajj and rj =

∑
k �=j |ajk|, and for any

complex number z and real number r ≥ 0, let D(z, r) denote the closed disk about z
of radius r.

Theorem 12. Λ(A) ⊆ ⋃
j D(dj , rj).

Theorem 12ε. Λε(A) ⊆ ⋃
j D(dj , rj +

√
Nε).
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Proof. Applying Gerschgorin’s theorem to A + E with ‖E‖ ≤ ε yields inclusion
disks centered at dj + ejj with radius

∑
k �=j |ajk + ejk| ≤ rj +

∑
k �=j |ejk|. Each such

disk is contained in the disk centered at dj with radius rj +
∑N
k=1 |ejk| = rj +‖Ej‖∞,

where Ej denotes the matrix equal to E in the jth row and zero elsewhere. The term√
Nε comes from the inequality ‖Ej‖∞ ≤

√
N‖Ej‖2 ≤

√
N‖E‖2.

The next result concerns the numerical range or field of values, which we denote
by W (A). In the context of iterative methods, the theorem indicates how analysis
based on the field of values (see, e.g., [2]) relates to pseudospectral analysis. We
write conv(S) for the convex hull in C of a set S ⊆ C. The notation “S \ ε-border”
also requires some explanation. By this we mean the set of points z ∈ C such that
D(z, ε) ⊆ S. Perhaps Reddy, Schmid, and Henningson were the first to formulate this
result in the language of pseudospectra [15, Thm. 2.2].

Theorem 13. W (A) ⊇ conv(Λ(A)).
Theorem 13ε. W (A) ⊇ conv(Λε(A)) \ ε-border.
Proof. This result follows from a familiar result in functional analysis: that W (A)

is the intersection of all convex sets S that satisfy the condition

‖(z −A)−1‖ ≤ 1

dist(z, S)
.

See, for example, Kato [9, p. 268].
The spectral mapping theorem (see, e.g., [9, p. 45]) is a jewel in the crown of

eigenvalue theorems; it is theoretically appealing and practically relevant, forming
the basis for rational transformation techniques for computing eigenvalues. The nu-
merical range obeys a similar, though one-sided, mapping theorem [8]. Theorems 13
and 13ε suggest that a similar result might hold for pseudospectra. Our next theorem
is a modest step in this direction, a precise mapping theorem for linear transforma-
tions [26, Thm. 2.4].

Theorem 14. Λ(α + βA) = α + βΛ(A) for α, β ∈ C.
Theorem 14ε. Λε|β|(α + βA) = α + βΛε(A) for α, β ∈ C.
Proof. The result is trivial when β = 0. Otherwise, note that

|β| ‖(z − (α + βA))−1‖ = ‖(β−1(z − α)−A)−1‖.

For Theorems 15 and 16, let V denote an N×k rectangular matrix with orthonor-
mal columns for some k ≤ N , as might be obtained by Arnoldi or subspace iteration,
and let H denote a k × k square matrix. In the Arnoldi iteration, H would have
Hessenberg form, but this is not necessary for these theorems. First, we assume that
the columns of V exactly span an invariant subspace of A. The resulting theorem
forms the basis for algorithms that compute pseudospectra by projecting A onto a
carefully chosen invariant subspace [15, 25, 29].

Theorem 15. AV = VH =⇒ Λ(H) ⊆ Λ(A).
Theorem 15ε. AV = VH =⇒ Λε(H) ⊆ Λε(A).
Proof. If ‖Hu− zu‖ ≤ ε for some u ∈ C

N with ‖u‖ = 1, then ‖V Hu− V zu‖ ≤ ε
too, and this implies ‖AV u− zV u‖ ≤ ε.

Practical algorithms such as the implicitly restarted Arnoldi method [18] or sub-
space iteration (see, e.g., [16, section V.1]) may not easily yield an exact basis for
the invariant subspace. Rather, the columns of V form an orthonormal basis for
some approximate invariant subspace of A. Let H denote the generalized Rayleigh
quotient this basis forms, H ≡ V ∗AV . With this notation, eigenvalue Theorem 15
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has an alternative, more practical pseudospectral generalization. This theorem is a
fundamental result in the perturbation theory of invariant subspaces; see [20] and
references therein.

Theorem 16. AV = VH =⇒ Λ(H) ⊆ Λ(A).
Theorem 16ε. AV = VH + R =⇒ Λ(H) ⊆ Λε(A) for ε = ‖R‖.
Proof. Consider the square matrix E = −RV ∗. Then (A+E)V = AV −R = VH,

so by Theorem 15, the eigenvalues of H are eigenvalues of A+E and hence ε-pseudo-
eigenvalues of A for ε = ‖−RV ∗‖ = ‖R‖.

For an Arnoldi factorization with k basis vectors, V ∈ C
n×k, Theorem 16ε reduces

to a well-known result: ε = ‖R‖ = |hk+1,k|, where hk+1,k is the (k +1, k) entry in the
extended upper Hessenberg matrix (see, e.g., [17, Lem. 2.1]).
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Abstract. ARPACK and its Matlab counterpart, eigs, are software packages that calculate
some eigenvalues of a large nonsymmetric matrix by Arnoldi iteration with implicit restarts. We show
that at a small additional cost, which diminishes relatively as the matrix dimension increases, good
estimates of pseudospectra in addition to eigenvalues can be obtained as a by-product. Thus in large-
scale eigenvalue calculations it is feasible to obtain routinely not just eigenvalue approximations, but
also information as to whether or not the eigenvalues are likely to be physically significant. Examples
are presented for matrices with dimension up to 200,000.
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1. Introduction. The matrices in many eigenvalue problems are too large to
allow direct computation of their full spectra, and two of the iterative tools available
for computing a part of the spectrum are ARPACK [10, 11] and its Matlab counter-
part, eigs.1 For nonsymmetric matrices, the mathematical basis of these packages is
the Arnoldi iteration with implicit restarting [11, 23], which works by compressing the
matrix to an “interesting” Hessenberg matrix, one which contains information about
the eigenvalues and eigenvectors of interest. For general information on large-scale
nonsymmetric matrix eigenvalue iterations, see [2, 21, 29, 31].

For some matrices, nonnormality (nonorthogonality of the eigenvectors) may be
physically important [30]. In extreme cases, nonnormality combined with the practical
limits of machine precision can lead to difficulties in accurately finding the eigenvalues.
Perhaps the more common and more important situation is when the nonnormality is
pronounced enough to limit the physical significance of eigenvalues for applications,
without rendering them uncomputable. In applications, users need to know if they
are in such a situation. The prevailing practice in large-scale eigenvalue calculations
is that users get no information of this kind.

There is a familiar tool available for learning more about the cases in which
nonnormality may be important: pseudospectra. Figure 1 shows some of the pseu-
dospectra of the “Grcar matrix” of dimension 400 [6], the exact spectrum, and con-
verged eigenvalue estimates (Ritz values) returned by a run of ARPACK (seeking
the eigenvalues of largest modulus) for this matrix. In the original article [23] that
described the algorithmic basis of ARPACK, Sorensen presented some similar plots
of difficulties encountered with the Grcar matrix. This is an extreme example where
the nonnormality is so pronounced that even with the convergence tolerance set to
its lowest possible value, machine epsilon, the eigenvalue estimates are far from the
true spectrum. From the Ritz values alone, one might not realize that anything was

∗Received by the editors June 6, 2000; accepted for publication (in revised form) January 15,
2001; published electronically July 10, 2001.

http://www.siam.org/journals/sisc/23-2/37322.html
†Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK (TGW@comlab.

ox.ac.uk, LNT@comlab.ox.ac.uk).
1In Matlab version 5, eigs was an M-file adapted from the Fortran ARPACK codes. Starting

with Matlab version 6, the eigs command calls the Fortran ARPACK routines themselves.
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Fig. 1. The ε-pseudospectra for ε = 10−5, 10−6, . . . , 10−17 of the Grcar matrix (dimension
400), with the actual eigenvalues shown as solid stars and the converged eigenvalue estimates (for
the eigenvalues of largest modulus) returned by ARPACK shown as open circles. The ARPACK
estimates lie between the 10−16 and 10−17 pseudospectral contours.

amiss. Once the pseudospectra are plotted too, it is obvious.
Computing the pseudospectra of a matrix of dimension N is traditionally an ex-

pensive task, requiring an O(N3) singular value decomposition at each point in a grid.
For a reasonably fine mesh, this leads to an O(N3) algorithm with the constant of the
order of thousands. Recent developments in algorithms for computing pseudospectra
have improved the constant [28], and the asymptotic complexity for large sparse ma-
trices [3, 12], but these are still fairly costly techniques. In this paper we show that
for large matrices, we can cheaply compute an approximation to the pseudospectra
in a region near the interesting eigenvalues. Our method uses the upper Hessenberg
matrix constructed after successive iterations of the implicitly restarted Arnoldi al-
gorithm, as implemented in ARPACK. Among other things, this means that after
performing an eigenvalue computation with ARPACK or eigs, a user can quickly
obtain a graphical check to indicate whether the Ritz values returned are likely to
be physically meaningful. Our vision is that every ARPACK or eigs user ought to
plot pseudospectra estimates routinely after their eigenvalue computations as a cheap
“sanity check.”

Some ideas related to ours have appeared in earlier papers by Nachtigal, Reichel,
and Trefethen [17], Ruhe [19], Sorensen [23], Toh [24], and Toh and Trefethen [25].
For example, Sorensen plotted level curves of filter polynomials and observed that
they sometimes approximated pseudospectra, and Ruhe showed that pseudospectra
could be approximated by a rational Krylov method. What is new here is the explicit
development of a method for approximating pseudospectra based on ARPACK. Of
course, one could also consider the use of different low-dimensional compressions of
a matrix problem such as those constructed by the Jacobi–Davidson algorithm [22].
Preliminary experiments, not reported here, show that this kind of Jacobi–Davidson
approximation of pseudospectra can also be effective.

We start by giving an overview of pseudospectra calculations and the implicitly
restarted Arnoldi iteration, followed by the practical details of our implementation
along with a discussion of some of the problems we have had to deal with. After this
we give some examples of the technique in practice. We also mention our Matlab
graphical user interface (GUI), which automates the computation of pseudospectra
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after the eigenvalues of a matrix have been computed by eigs in Matlab.
The computations presented in this paper were all performed using eigs in Mat-

lab version 6 (which essentially is ARPACK) and our GUI rather than the Fortran
ARPACK, although our initial experiments were done with the Fortran code.

2. Pseudospectra. There are several equivalent ways of defining Λε(A), the
ε-pseudospectrum of a matrix A. The two most important (see, e.g., [27]) are perhaps

Λε(A) = {z ∈ C : ‖(zI −A)−1‖ ≥ ε−1}(2.1)

and

Λε(A) = {z ∈ C : z ∈ Λ(A+ E) for some E with ‖E‖ ≤ ε}.(2.2)

When the norms are taken to be the 2-norm, the definitions are equivalent to

Λε(A) = {z ∈ C : σmin(zI −A) ≤ ε},(2.3)

where σmin(·) denotes minimum singular value. This provides the basis of many
algorithms for computing pseudospectra. The most familiar technique is to use a grid
over the region of the complex plane of interest and calculate the minimum singular
value of zI − A at each grid point z. These values can then be passed to a contour
plotter to draw the level curves. For the rest of this paper, we consider the 2-norm;
other norms are discussed in [8, 28].

The reason for the cost of computation of pseudospectra is now clear: the amount
of work needed to compute the minimum singular value of a general matrix of dimen-
sion N is O(N3) (see, e.g., [5]). However, several techniques have been developed to
reduce this cost [28]. Here are two important ones.

(I) Project the matrix onto a lower dimensional invariant subspace via, e.g., a
partial Schur factorization (Reddy, Schmid, and Henningson [18]). This works well
when the interesting portion of the complex plane excludes a large fraction of the
eigenvalues of the matrix. In this case, the effect of the omitted eigenvalues on the
interesting portion of the pseudospectra is typically small, especially if the undesired
eigenvalues are well conditioned. Projection can significantly reduce the size of the
matrix whose pseudospectra we need to compute, making the singular value compu-
tation dramatically faster. In general, the additional cost of projecting the matrix is
much less than the cost of repeatedly computing the smallest singular value for the
shifted original matrix.

(II) Perform a single matrix reduction to Hessenberg or triangular form before
doing any singular value decompositions (Lui [12]), allowing the singular value calcu-
lations to be done using a more efficient algorithm.

One way of combining these ideas is to do a complete Schur decomposition of the
matrix, A = UTU∗, and then to reorder the diagonal entries of the triangular matrix
to leave the “wanted” eigenvalues at the top. The reordered factorization can then
be truncated leaving the required partial Schur factorization. We can now find the
singular values of the matrices shifted for each grid point z using either the original
matrix A or the triangular matrix T :

σ(zI −A) = σ(zUIU∗ − UTU∗) = σ(U(zI − T )U∗) = σ(zI − T ).(2.4)

This allows us to work solely with the triangular matrix T once the O(N3) factoriza-
tion has been completed. The minimum singular value of zI − T can be determined
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in O(N2) operations2 using the fact that σmin(zI − T ) =
√
λmin((zI − T )∗(zI − T )).

This can be calculated using either inverse iteration or inverse Lanczos iteration, which
require solutions to systems of equations with the matrix (zI − T )∗(zI − T ). These
can be solved in two stages, each using triangular system solves.

By combining these techniques with more subtle refinements we have an algorithm
which is much more efficient than the straightforward method. It is suggested in [28]
that the speedup obtained is typically a factor of about N/4, assuming the cost of
the Schur decomposition is negligible compared with that of the rest of the algorithm.
This will be the case on a fine grid for a relatively small matrix (N of the order
of a thousand or less), but for larger matrices the Schur decomposition is relatively
expensive, and it destroys any sparsity structure.

3. Arnoldi iteration. The Arnoldi iteration for a matrix A of dimension N
works by projecting A onto successive Krylov subspaces Kj(A, v1) ⊆ C

N of dimension
j for some starting vector v1 [1, 20]. It builds an orthonormal basis for the Krylov
subspace by the Arnoldi factorization

AVj = VjHj + fje
∗
j = Vj+1H̃j ,(3.1)

where Hj is an upper Hessenberg matrix of dimension j, the columns of Vj form an
orthonormal basis for the Krylov subspace, and fj is orthogonal to the columns of Vj .
The residual term fje

∗
j can be incorporated into the first term VjHj by augmenting

the matrix Hj with an extra row, all zeros except for the last entry, which is ‖fj‖,
and including the next basis vector, vj+1 = fj/‖fj‖, in the matrix Vj . The matrix

H̃j is now rectangular, of size (j + 1)× j.
The matrix H̃j , being rectangular, does not have any eigenvalues, but we can

define its pseudospectra in terms of singular values by (2.3). (With ε = 0, we recover
the definition occasionally used that λ is an eigenvalue of a rectangular matrix A if
A− λI is rank-deficient, where I is the rectangular matrix of appropriate dimension
with 1 on the diagonal and 0 elsewhere. In general, a rectangular matrix will have
no eigenvalues, but it will have nonempty ε-pseudospectra for large enough ε.) It can

then be shown [14, 25] that the pseudospectra of successive H̃j are nested.
Theorem 3.1. Let A be an N × N matrix which is unitarily similar to a Hes-

senberg matrix H, and let H̃j denote the upper left (j + 1) × j section (in particular

H̃j could be created using a restarted Arnoldi iteration). Then for any ε ≥ 0,

Λε(H̃1) ⊆ Λε(H̃2) ⊆ · · · ⊆ Λε(A).(3.2)

Thus as the iteration progresses, the pseudospectra of the rectangular Hessen-
berg matrices better approximate those of A, which gives some justification for the
approximation Λε(A) ≈ Λε(H̃j). Unfortunately, this is only the case for the rectan-

gular matrices H̃j . There do not appear to be any satisfactory theorems to justify
a similar approximation for the square matrices Hj , and of course for ε sufficiently
small the ε-pseudospectra of Hj must be disjoint from those of A, since they will be
small sets surrounding the eigenvalues of Hj , which are in general distinct from those
of A. This is not the case for the rectangular matrix as there will not be points in
the complex plane with infinite resolvent norm unless a Ritz value exactly matches an

2An O(N2) algorithm can also be used for Hessenberg matrices [12], but for those we do not
have the advantage of projection.
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eigenvalue of the original matrix. That is, Λε(H̃j) is typically empty for sufficiently
small ε.

Although the property (3.2) is encouraging, theorems guaranteeing rapid conver-
gence in all cases cannot be expected. The quality of the approximate pseudospectra
depends on the information in the Krylov subspace, which in turn depends on the
starting vector v1. Any guarantee of rapid convergence could at best be probabilistic.

3.1. Implicitly restarted Arnoldi. In its basic form, the Arnoldi process may
require close to N iterations before the subspace contains good information about the
eigenvalues of interest. However, the information contained within the Hessenberg
matrix is very dependent on the starting vector v1: if v1 contains relatively small
components of the eigenvectors corresponding to the eigenvalues which are not re-
quired, convergence may be quicker and the subspace size need not grow large. To
avoid the size of the subspace growing too large, practical implementations of the
Arnoldi iteration restart when the subspace size j reaches a certain threshold [20]. A
new starting vector v̂1 is chosen which has smaller components in the directions of
eigenvectors corresponding to unwanted eigenvalues, and the process is begun again.

Implicit restarting [11, 23] is based upon the same idea, except that subspace is
only implicitly compressed to a single starting vector v̂1. What is explicitly formed
is an Arnoldi factorization of size k based on this new starting vector, where k is the
number of desired eigenvalues, and this Arnoldi factorization is obtained by carrying
out p − k implicitly shifted steps of the QR algorithm, with shifts possibly corre-
sponding to unwanted eigenvalue estimates. The computation now proceeds in an
accordion-like manner, expanding the subspace to its maximum size p, then com-
pressing to a smaller subspace.3 This is computationally more efficient than simple
restarting because the subspace is already of size k when the iteration restarts, and
in addition, the process is numerically stable due to the use of orthogonal transfor-
mations in performing the restarting. This technique has made the Arnoldi iteration
competitive for finding exterior eigenvalues of a wide range of nonsymmetric matrices.

3.2. Arnoldi for pseudospectra. In a 1996 paper, Toh and Trefethen [25]
demonstrated that the Hessenberg matrix created during the Arnoldi process can
sometimes provide a good approximation to the pseudospectra of the original matrix.
They provided results for both the square matrix Hj and the rectangular matrix H̃j .

We choose to build our method around the rectangular Hessenberg matrices H̃j , even
though this makes the pseudospectral computation harder than if we worked with the
square matrix. The advantage of this is that we retain the properties of Theorem 3.1,
and the following in particular:

For every ε ≥ 0, the approximate ε-pseudospectrum generated by our ARPACK
algorithm is a subset of the ε-pseudospectrum of the original matrix,

Λε(H̃p) ⊆ Λε(A).(3.3)

This is completely different from the familiar situation with Ritz values, which
are, after all, the points in the 0-pseudospectrum of a square Hessenberg matrix. Ritz
values need not be contained in the true spectrum. Simply by adding one more row
to consider a rectangular matrix, we have obtained a guaranteed inclusion for every ε.

The results presented by Toh and Trefethen focus on trying to approximate the
full pseudospectra of the matrix (i.e., around the entire spectrum) and they do not use

3Our use of the variable p follows eigs. In ARPACK and in Sorensen’s original paper [23], this
would be p+ k.
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any kind of restarting in their implementation of the Arnoldi iteration. While this is
a useful theoretical idea, we think it is of limited practical value for computing highly
accurate pseudospectra since good approximations are often obtained generally only
for large subspace dimensions.

Our work is more local; we want a good approximation to the pseudospectra
in the region around the eigenvalues requested from ARPACK or eigs. By taking
advantage of ARPACK’s implicit restarting, we keep the size of the subspace (and

hence H̃p) reasonably small, allowing us to compute (local) approximations to the
pseudospectra more rapidly, extending the idea of [25] to a fully practical technique
(for a more restricted problem).

4. Implementation. In deciding to use the rectangular Hessenberg matrix H̃j ,
we have made the post-ARPACK phase of our algorithm more difficult. While the
simple algorithm of computing the minimum singular value of zI−A at each point has
approximately the same cost for a rectangular matrix as a square one, the speedup
techniques described in section 2 are difficult to translate into the rectangular case.

The first idea, projection to a lower dimensional invariant subspace, does not
make sense for rectangular matrices because there is no such thing as an invariant
subspace. The second idea, preliminary triangularization using a Schur decompo-
sition, also does not extend to rectangular matrices, for although it is possible to
triangularize the rectangular matrix while keeping the same singular values (by per-
forming a QR factorization, for example), doing so destroys the vital property of
shift-invariance (see (2.4)).

However, our particular problem has a feature we have not yet considered: the
matrix is Hessenberg. One way to exploit this property is to perform a QR factoriza-
tion of the matrix obtained after shifting for each grid point. The upper triangular
matrix R has the same singular values as the shifted matrix, and they are also un-
changed on removing the last row of zeros, which makes the matrix square. We can
now use the inverse Lanczos iteration as in section 2 to find its smallest singular value.
The QR factorization can be done with an O(N2) algorithm (see, e.g., [5, p. 228]),
which makes the overall cost O(N2). Unfortunately, the additional cost of the QR
factorization at each stage makes this algorithm slightly slower for the small matrices
(dimensions 50–150) output from ARPACK than for square matrices of the same size,
but this appears to be the price to be paid for using matrices which have the property
of (3.3).

4.1. Refinements. In some cases we have found that inverse iteration to find
the minimum eigenvalue of (zI − R)∗(zI − R) is more efficient than inverse Lanczos
iteration but only when used with continuation (Lui [12]). Continuation works by
using the vector corresponding to the smallest singular value from the previous grid
point as the starting guess for the next grid point.

This sounds like a good idea; if the two shifted matrices differ by only a small
shift, their singular values (and singular vectors) will be similar. When it works, it
generally means that only a single iteration is needed to satisfy the convergence crite-
rion. However, as Lui indicates, there is a problem with this approach if the smallest
and second smallest singular values “change places” between two values of z: the iter-
ation may converge to the second smallest singular value instead of the smallest, since
the starting vector had such a strong component in the direction of the corresponding
singular vector. This leads to the convergence criterion being satisfied for the wrong
singular value (even after several iterations).
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Choose max subspace size p—larger p for better pseudospectra.

Choose number of eigenvalues k—larger k for better pseudospectra.

Run ARPACK(A, p, k) to obtain H̃p.

Define a grid over a region of C enclosing converged Ritz values.

For each grid point z:

Perform reduced QR factorization of shifted matrix: zĨ − H̃p = Q̃pR.

Get λmax(z) from Lanczos iteration on (R∗R)−1, random starting vector.

σmin(z) := 1/
√
λmax(z).

end.

Start GUI and create contour plot of the σmin values.

Allow adjustment of parameters (e.g., grid size, contour levels) in GUI.

Fig. 2. Pseudocode for our algorithm.

In the course of our research, we have found several test matrices which suffer
from this problem, including the so-called Tolosa matrix [4]. Accordingly, because of
our desire to create a robust algorithm, we do not use inverse iteration. In theory it is
also possible to use continuation with inverse Lanczos iteration, but our experiments
indicate that the benefit is small and it again brings a risk of misconvergence.

Our algorithm (the main loop of which is similar to that in [28]) is summarized
in Figure 2.

5. Practical examples. While one aim of our method is to approximate the
pseudospectra of the original matrix accurately, this is perhaps no more important
than the more basic mission of exhibiting the degree of nonnormality the matrix has,
so that the ARPACK or eigs user gets some idea of whether the Ritz values returned
are likely to be physically meaningful. Even in cases where the approximations of
the sets Λε(A) are inaccurate, a great deal may still be learned from their qualitative
properties.

In the following examples, ARPACK was asked to look for the eigenvalues of
largest real part except where otherwise indicated. However, the choice of region of
the complex plane to focus on is unimportant for our results and is determined by
which eigenvalues are of interest for the particular problem at hand. The number
of requested eigenvalues k was chosen rather arbitrarily to be large enough so that
the approximate pseudospectra clearly indicate the true behavior in the region of
the complex plane shown, and the maximum subspace size p was chosen to ensure
convergence of ARPACK for the particular choice of k. Experiments show that the
computed pseudospectra are not very sensitive to the choices of k and p, provided
they are large enough, but we have not attempted to optimize these choices.

5.1. Two extremes. Our first example (Figure 3), from Matrix Market [15],
shows a case where the approximation is extremely good. The matrix is the Jacobi
matrix of dimension 800 for the reaction-diffusion Brusselator model from chemical
engineering [7], and one seeks the rightmost eigenvalues. The matrix is not highly non-
normal, and the pseudospectra given by the approximation almost exactly match the
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Fig. 3. Pseudospectra for the matrix rdb800l (left) computed using the standard method, and
pseudospectra of the upper Hessenberg matrix of dimension p = 50 computed using ARPACK
(right) in about 9% of the computer time (on the fine grid used here). Levels are shown for
ε = 10−1, 10−1.2, . . . , 10−2.4. The number of matrix-vector products needed by ARPACK (nv) is
1,493.

true pseudospectra around the converged Ritz values. This is a case where the pseu-
dospectra computed after running ARPACK indicate that the eigenvalues returned
are both accurate and physically meaningful, and that no further investigation is nec-
essary. In this computation we used a maximum subspace dimension of p = 50 and
requested k = 30 eigenvalues.

The second case we consider is one where the matrix has a high degree of non-
normality—the Grcar matrix. As seen in Figure 1, ARPACK can converge to Ritz
values which are eigenvalues of a perturbation of order machine precision of the orig-
inal matrix, and the nonnormality of this particular matrix (here of dimension 400)
means that the Ritz values found can lie a long way from the spectrum of the matrix.
Figure 4 shows that the pseudospectra of the Hessenberg matrix (computed using
p = 50, k = 45, and asking for eigenvalues of largest modulus) in this case are not
good approximations to the pseudospectra of the original one.

This is typical for highly nonnormal matrices—the Hessenberg matrix cannot cap-
ture the full extent of the nonnormality, particularly when more than p eigenvalues
of the original matrix lie within the region of the complex plane in which the pseu-
dospectra are computed. In other words, the approximation is typically not so good in
areas away from the Ritz values computed, and then only accurately approximates the
pseudospectra of the original matrix when the Ritz values are good approximations
to the eigenvalues. Despite this, a plot like that of Figure 4 will instantly indicate to
the ARPACK user that the matrix at hand is strongly nonnormal and needs further
investigation.

5.2. A moderately nonnormal example. While the above examples show
two extreme cases, many important applications are more middle-of-the-range, where
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standard method, and the pseudospectra of the upper Hessenberg matrix of dimension 50 computed
using ARPACK (right) in about 8% of the computer time (on this fine grid). Contours are shown
for ε = 10−1, 10−2, . . . , 10−11, and nv = 8,284.
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Fig. 5. Pseudospectra for ε = 10−1, 10−1.5, . . . , 10−5 for linearized fluid flow through a circular
pipe at Reynolds number 10,000 (streamwise-independent disturbances with azimuthal wave number
1), nv = 708,678.

machine precision is sufficient to accurately converge the eigenvalues, but pronounced
nonnormality may nevertheless diminish the physical significance of some of them. A
good example of a case in which this is important is the matrix created by linearization
about the laminar solution of the Navier–Stokes equations for fluid flow in an infinite
circular pipe [26]. (Our matrix is obtained by a Petrov–Galerkin spectral discretiza-
tion of the Navier–Stokes problem due to Meseguer and Trefethen [16]. The axial
and azimuthal wave numbers are 0 and 1, respectively, and the matrix dimension is
402.) The pseudospectra are shown in Figure 5, and although the eigenvalues all have
negative real part, implying stability of the flow, the pseudospectra protrude far into
the right half-plane. This implies pronounced transient growth of some perturbations
of the velocity field in the pipe, which in the presence of nonlinearities in practice may
lead to transition to turbulence [30]. The approximate pseudospectra also highlight
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Fig. 6. Left: The ε = 10−0.2, 10−0.4, . . . , 10−1.6 pseudospectra for the Brusselator wave model,
nv= 16,906. Right: Pseudospectral contours for ε = 10−1, 10−2, . . . , 10−13 for a matrix of dimension
10,000 from the Crystal set at Matrix Market, nv = 22,968.

this behavior. The parameters used here were p = 50 and k = 25.

5.3. Larger examples. We now consider four larger examples. The first is the
Brusselator wave model from Matrix Market (not to be confused with the very first
example), which models the concentration waves for reaction and transport interaction
of chemical solutions in a tubular reactor [9]. Stable periodic solutions exist for a
parameter when the rightmost eigenvalues of the Jacobian are purely imaginary. For a
matrix of dimension 5,000, using a subspace of dimension 100 and asking ARPACK for
20 eigenvalues, we obtained the eigenvalue estimates and approximate pseudospectra
shown in Figure 6 (left). The departure from normality is evidently mild, and the
conclusion from this computation is that the Ritz values returned by ARPACK are
likely to be accurate and the corresponding eigenvalues physically meaningful.

Figure 6 (right) shows approximate pseudospectra for a matrix of dimension
10,000, taken from the Crystal set at Matrix Market, which arises in a stability anal-
ysis of a crystal growth problem [32]. The eigenvalues of interest are the ones with
largest real part. The fact that we can see the 10−13 pseudospectrum (when the axis
scale is O(1)) indicates that this matrix is significantly nonnormal, and although the
matrix is too large for us to be able to compute its exact pseudospectra for compar-
ison, this is certainly a case where the nonnormality could be important, making all
but the rightmost few eigenvalues of dubious physical significance in an application.
The ARPACK parameters we used in this case were p = 80 and k = 30, and the com-
putation took about one hour on our Sun Ultra 5 workstation. Although we do not
have the true pseudospectra in this case, we would expect that the rightmost portion
should be fairly accurate where there is a good deal of Ritz data and relatively little
nonnormality. We expect that the leftmost portion is less accurate where the effect
of the remaining eigenvalues of the matrix unknown to the approximation begins to
become important.

The third example, Figure 7 (left), shows the Airfoil matrix created by performing
transient stability analysis of a Navier–Stokes solver [13], also from Matrix Market. In
this case the matrix appears fairly close to normal, and the picture gives every reason
to believe that the eigenvalues have physical meaning. Using p = 80 and k = 20,
ARPACK took about 9 hours to converge to the eigenvalues, while we were able to
plot the pseudospectra in about 3 minutes (even on the fine grid used here).

Our final example is a matrix which is bidiagonal plus random sparse entries
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Fig. 7. Left: The ε = 10−1, 10−1.25, . . . , 10−2.5 pseudospectra for the Airfoil matrix from
Matrix Market of dimension 23,560, nv= 72,853. Right: The ε = 10−1, 10−1.5, . . . , 10−4.5 pseu-
dospectra for our random matrix, with nv= 61,347.

elsewhere, created in Matlab by

A = spdiags([3*exp(-(0:N-1)’/10) .5*ones(N,1)], 0:1, N, N)

+ .1*sprandn(N,N,10/N);

The approximation to the pseudospectra of the matrix of dimension 200,000 is shown
in Figure 7 (right), from which we can conclude that the eigenvalue estimates returned
are probably accurate, but that the eigenvalues toward the left of the plot would likely
be of limited physical significance in a physical application, if there were one, governed
by this matrix. We used a subspace size of 50 and requested 30 eigenvalues from this
example, and the whole computation took about 26 hours.

6. MATLAB GUI. We have created a Matlab GUI to automate the process
of computing pseudospectra, and Figure 8 shows a snapshot after a run of ARPACK.
Initially the pseudospectra are computed on a coarse grid to give a fast indication
of the nonnormality of the matrix, but the GUI allows control over the number of
grid points if a higher quality picture is desired. Other features include the abilities
to change the contour levels shown without recomputing the underlying values, and
to select parts of the complex plane to zoom in for greater detail. The GUI can
also be used as a graphical front end to our other pseudospectra codes for computing
pseudospectra of smaller general matrices. The codes are available on the World Wide
Web from http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/.

7. Discussion. The examples of section 5 give an indication of the sort of pic-
tures obtained from our technique. For matrices fairly close to normal, the approx-
imation is typically a very close match to the exact pseudospectra, but for more
highly nonnormal examples the agreement is not so close. This is mainly due to the
effect of eigenvalues which the Arnoldi iteration has not found: their effect on the
pseudospectra is typically more pronounced for nonnormal matrices.

The other point to note is that if we use the Arnoldi iteration to look (for ex-
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Fig. 8. A snapshot of the Matlab GUI after computing the pseudospectra of a matrix.

ample) for eigenvalues of largest real part, the rightmost part of the approximate
pseudospectra will be a reasonably good approximation. This can clearly be seen in
Figure 4 where we are looking for eigenvalues of largest modulus: the top parts of the
pseudospectra are fairly good and only deteriorate lower down where the effect of the
“unfound” eigenvalues becomes important.

However, as mentioned in the introduction, creating accurate approximations of
pseudospectra was only part of the motivation for this work. Equally important has
been the goal of providing information which can help the user of ARPACK or eigs
decide whether the computed eigenvalues are physically meaningful. For this purpose,
estimating the degree of nonnormality of the matrix is more important than getting
an accurate plot of the exact pseudospectra.

One of the biggest advantages of our technique is that while the time spent on the
ARPACK computation grows as the dimension of the matrix increases, the time spent
on the pseudospectra computation remains roughly constant. This is because the
pseudospectra computation is based just on the final Hessenberg matrix, of dimension
typically in the low hundreds at most. Figure 9 shows the proportion of time spent
on the pseudospectra part of the computation for the examples we have presented
here. These timings are based on the time to compute the initial output from our
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Fig. 10. Lower-quality plots of pseudospectra produced by our GUI on its default coarse
15 × 15 grid. Such plots take just a few seconds. The matrices shown are rdb800l with ε =
10−1, 10−1.2, . . . , 10−1.8 (cf. Figure 3) and the Grcar matrix with ε = 10−1, 10−2, . . . , 10−10 (cf.
Figure 4).

GUI using a coarse grid such as those illustrated in Figure 10, which is our standard
resolution for day-to-day work. For the “publication quality” pseudospectra of the
resolution of the other plots in this paper, the cost is about thirty times higher, but
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this is still much less than the cost of ARPACK for dimensions N in the thousands.
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Abstract. We discuss a new method for the iterative computation of a portion of the sin-
gular values and vectors of a large sparse matrix. Similar to the Jacobi–Davidson method for the
eigenvalue problem, we compute in each step a correction by (approximately) solving a correction
equation. We give a few variants of this Jacobi–Davidson SVD (JDSVD) method with their theoret-
ical properties. It is shown that the JDSVD can be seen as an accelerated (inexact) Newton scheme.
We experimentally compare the method with some other iterative SVD methods.
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1. Introduction. Suppose that we want to compute one or more singular values,
and the corresponding singular vectors, of the real m× n matrix A. This subject has
already been studied from a number of different viewpoints [5, 6, 1, 19, 20, 13], for ex-
ample, to determine a few of the largest or smallest singular triples. This partial SVD
can be computed in two different ways using equivalent eigenvalue decompositions.

The first is to compute some eigenvalues and eigenvectors of the n × n matrix
ATA or the m×m matrix AAT . For large (sparse) matrices, direct methods like the
QR method are unattractive, but there exist several iterative methods. In [13], for
example, (block) Lanczos [10] and Davidson [2] are applied toATA. Another candidate
is Jacobi–Davidson [15]. Note that it is in general not advisable (or necessary) to
explicitly form the product ATA. The nonzero eigenvalues of ATA and AAT are the
squares of the nonzero singular values of A. This works positively for the separation of
large singular values, but it forces a clustering of small ones. Moreover, it can be hard
to find very small singular values (relative to the largest singular value) accurately.
Apart from this, the approaches via ATA or AAT are asymmetric: in the process we
approximate only one of the two singular vectors. The second vector can be obtained
from the first by a multiplication by A or AT , but this may introduce extra loss of
accuracy. Besides, when we have approximations to both the left and right singular
vector, we can use only one of them as a starting vector for an iterative method.

A second approach is to compute some eigenvalues and eigenvectors of the aug-
mented matrix (

0 A
AT 0

)
.(1.1)

This approach has its own advantages and disadvantages. The eigenvalues of the
augmented matrix are plus and minus the singular values of A, and we can extract the
left and right singular vectors from the eigenvectors by just taking the first and second
part (see section 2). This makes an extra multiplication by A or AT unnecessary. We
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do not have the drawback of squaring small singular values. On the negative side, the
augmented matrix is larger in size, and the smallest singular values are in the interior
of the spectrum.

The Lanczos method for the augmented matrix has been studied by a number of
authors [5, 6, 1]. The Lanczos process does not exploit the special (block or “two-
cyclic”) structure of the matrix, unless the starting vector is of the form (u, 0) or
(0, v). This is essentially Lanczos bidiagonalization of A; see [7, p. 495].

We can also consider the Jacobi–Davidson method [15] for the augmented matrix.
This is an efficient method for the computation of a few eigenpairs, and it is of
a different nature in comparison to Lanczos. The essence of Jacobi–Davidson is its
correction equation, where the shifted operator is restricted to the subspace orthogonal
to the current approximation to an eigenvector. When we solve this equation exactly,
we can show that the updated vector is the same as the one we would get by one
step of Rayleigh quotient iteration (RQI). But in practice one solves the Jacobi–
Davidson correction equation only approximately, and one accelerates the convergence
by projecting the matrix onto the subspace spanned by all iterates. Therefore, Jacobi–
Davidson can also be viewed as an inexact accelerated RQI.

“Standard” Jacobi–Davidson does not make use of the structure of the augmented
matrix. In this paper we propose a Jacobi–Davidson variant that does take advantage
of the special structure of the matrix. Instead of searching the eigenvector in one
subspace, we search the left and right singular vectors in separate subspaces. We still
solve a correction equation for the augmented matrix, but we use different projections,
and we split the approximate solution of this equation for the expansion of the two
search spaces. More similarities and differences are discussed in section 7.3.

After some preparations in section 2, we introduce the new approach, which we
call the Jacobi–Davidson SVD (JDSVD), in section 3. In section 4, a few variants
of the algorithm with their properties are presented. In section 5, we show that the
JDSVD process can be viewed as an (inexact) accelerated Newton scheme, and in
section 6 we focus on convergence. Various aspects of the method are discussed in
section 7, and after numerical examples in section 8, we finish with conclusions in
section 9.

2. Preparations. Let A be a real m × n matrix with SVD A = U∗ΣV T
∗ and

singular values

0 ≤ σmin = σp ≤ σp−1 ≤ · · · ≤ σ2 ≤ σ1 = σmax,

where p := min{m,n}. Denote the corresponding left and right singular vectors by
u∗,j (1 ≤ j ≤ m) and v∗,j (1 ≤ j ≤ n).

Throughout the paper, ‖·‖ stands for ‖·‖2, and we write σj(B) for the jth largest
singular value of a real matrix B and simply σj for the jth largest singular value of
A. Furthermore, Λ(B) is the spectrum of B, and Σ(B) is the set of singular values
of B. If B is a real symmetric matrix, then λj(B) denotes the jth largest eigenvalue
of B.

If a ∈ R
m and b ∈ R

n, then, for convenience, we write (ab ) ∈ R
m+n also as (a, b).

If X is a matrix, then we denote the subspace spanned by the columns of X by X .
We use the notation Kl(B, x) for the Krylov subspace of dimension l generated by B
and x.

Definition 2.1. Let u ∈ R
m, v ∈ R

n, X ⊂ R
m, and Y ⊂ R

n. We say
that (uv ) ∈ R

m+n is double-orthogonal to the pair of subspaces (X ,Y) if both u ⊥ X
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and v ⊥ Y, which is denoted by (uv ) ⊥⊥ (XY ). By (u, v)⊥⊥ we denote the subspace{
(a, b) ∈ R

m × R
n : uTa = vTb = 0

}
.

The following lemma gives a relation between the singular triples of A and the
eigenpairs of the augmented matrix.

Lemma 2.2 (Jordan–Wielandt; see Theorem I.4.2 of [18]). The augmented matrix
(1.1) has eigenvalues

−σ1, . . . ,−σp, 0, . . . , 0︸ ︷︷ ︸
|m−n|

, σp, . . . , σ1

and eigenvectors
(

u∗,j
±v∗,j

)
(1 ≤ j ≤ p)

corresponding to the ±σj and, if m �= n, additionally,

either

(
u∗,j
0

)
(n+ 1 ≤ j ≤ m) or

(
0

v∗,j

)
(m+ 1 ≤ j ≤ n),

depending on whether m > n or n > m.
The next definition is the natural analogue of the definition of a simple eigenvalue

(see, e.g., [18, p. 15]).
Definition 2.3. We call σi a simple singular value of A if σi �= σj for all j �= i.
The following lemma gives a link between a simple singular value of A and a

simple eigenvalue of ATA and AAT .
Lemma 2.4. Let σ > 0. Then σ is a simple singular value of A if and only if σ2

is a simple eigenvalue of ATA and AAT .
Proof. The nonzero eigenvalues of ATA and AAT are just the squares of the

nonzero singular values of A (see, for example, [18, p. 31]).
Note that the condition σ > 0 in the previous lemma is necessary. For example,

0 is a simple singular value of the 1 × 2 matrix A = (0 0), but it is not a simple
eigenvalue of ATA.

For future use, we mention the following well-known results.
Lemma 2.5 (Weyl; see pp. 101–102 of [21], Corollary IV.4.9 of [18], and Theorem

10.3.1 of [12]). Let B and E be real symmetric n×n matrices. Then for all 1 ≤ j ≤ n

λj(B) + λn(E) ≤ λj(B + E) ≤ λj(B) + λ1(E).

Lemma 2.6 (see (3.3.17) of [9]). If B and E are m × n matrices, then for
1 ≤ i, j ≤ p, and i+ j ≤ p+ 1,

σi+j−1(B + E) ≤ σi(B) + σj(E).

In particular, for j = 1 this yields σi(B + E) ≤ σi(B) + σ1(E) for i = 1, . . . , p.
Lemma 2.7 (see (7.3.8) of [8]). Let B and E be real m× n matrices. Then

p∑
j=1

(σj(B + E)− σj(B))2 ≤ ‖E‖2
F .

Lemma 2.8. If U and V are orthogonal m×m and n× n matrices, respectively,
then for all 1 ≤ j ≤ p we have σj(U

TAV ) = σj(A). In particular, ‖UTAV ‖ = ‖A‖.
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Proof. The SVD of UTAV is just (UTU∗)Σ(V TV∗)T . The final statement follows
from the characterization of the matrix two-norm as the largest singular value.

Lemma 2.9 (see (3.1.3) of [9]). Let B be an m × n matrix, and let Bl denote a
submatrix of B obtained by deleting a total of l rows and/or columns from B. Then

σj(B) ≥ σj(Bl) ≥ σj+l(B)

for 1 ≤ j ≤ p, where for a q × r matrix X we set σj(X) = 0 if j > min{q, r}.
3. The JDSVD correction equation. Suppose that we have k-dimensional

search spaces U ⊂ R
m and V ⊂ R

n and test spaces X ⊂ R
m and Y ⊂ R

n. To
determine approximations θ, η to a singular value, and u ∈ U , v ∈ V (of unit norm)
to the corresponding left and right singular vectors, we impose the double Galerkin
condition with respect to X and Y on the residual r:

r = r(θ, η) :=

(
Av − θu
ATu− ηv

)
⊥⊥

( X
Y
)
.(3.1)

Because u ∈ U and v ∈ V, we can write u = Uc and v = V d, where the columns of
the m× k matrix U and the columns of the n× k matrix V form bases for U and V,
respectively, and c, d ∈ R

k. Then we want to find θ, η, c, and d that are solutions of

{
XTAV d = θXTUc,
Y TATUc = η Y TV d,

(3.2)

where X and Y are matrices with columns that form bases for X and Y. For test
vectors x ∈ X and y ∈ Y, we have, in particular, that r ⊥⊥ (x, y); so if xTu �= 0 and
yT v �= 0,

θ =
xTAv

xTu
, η =

yTATu

yT v
.(3.3)

This shows that the approximations θ and η may differ. We discuss possible choices
for X and Y and the resulting relations for u and v in the following section. For now,
suppose that we have approximations (u, v, θ, η). We would like to have a double-
orthogonal correction (s, t) ⊥⊥ (u, v) to (u, v) such that

{
A(v + t) = σ(u+ s),
AT(u+ s) = τ(v + t),

(3.4)

where σ > 0 and τ > 0 need not be equal because the vectors are not normalized.
However, since ATA(v+t) = στ(v+t), we have στ = σ2

i for some 1 ≤ i ≤ p. Equations
(3.4) can be rearranged to obtain

( −σIm A
AT −τIn

)(
s
t

)
= −

(
Av − θu
ATu− ηv

)
+

(
(σ − θ)u
(τ − η)v

)
= −r+

(
(σ − θ)u
(τ − η)v

)
.

Because σ and τ are unknown, we do not know the differences (σ − θ)u and (τ − η)v
either. Therefore, we can consider the projection of the last equation onto (x, y)⊥⊥

along (u, v). This projection is given by

(
Im − uxT

xTu
0

0 In − vyT

yT v

)
,
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and it fixes r. Projecting the previous equation, we get(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −σIm A
AT −τIn

)(
s
t

)
= −r,(3.5)

where (s, t) ⊥⊥ (u, v).

Since σ and τ are unknown, an obvious choice is to replace them by θ and η. This can
be considered as “throwing away second order terms” (σ − θ, τ − η, s, and t will all
be asymptotically small) and suggests that the JDSVD is in fact a Newton method,
which is true indeed (see section 5). Furthermore, since for every x̃ ∈ R

m and ỹ ∈ R
n

such that uTx̃ �= 0 and vTỹ �= 0(
Im − x̃uT

uT x̃
0

0 In − ỹvT

vT ỹ

)(
s
t

)
=

(
s
t

)
,

(3.5) leads to the JDSVD correction equation
(

Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
Im − x̃uT

uT x̃
0

0 In − ỹvT

vT ỹ

)(
s
t

)
= −r,

(3.6)

where (s, t) ⊥⊥ (u, v). We see that the operator in (3.6) is symmetric if and only if x̃
and ỹ are a nonzero multiple of x and y. It maps (u, v)⊥⊥ to (x, y)⊥⊥. In sections 5
and 6 we explain why this process may lead to fast convergence, and we meet a
generalized version of the correction equation. In the next section we examine several
choices for the Galerkin conditions (3.1).

4. Choices for the Galerkin conditions. Consider the eigenvalue problem
for a symmetric matrix B, where we have one subspace W that is used both as search
space and test space. If the columns of W form an orthonormal basis for W, then the
projected matrix WTBW has some nice properties; see [12, section 11.4]. We will see
that searching in two spaces, as in the JDSVD, spreads those properties over a few
Galerkin choices. In this section we examine some obvious choices.

4.1. The standard choice X = U and Y = V. Consider the situation where
the search spaces U and V are of equal dimension k. Let us first take the test spaces
X and Y equal to the search spaces U and V.

If the columns of U and V form orthonormal bases for U and V, then with the
notation H := UTAV , (3.2) reduces to

Hd = θc and HT c = ηd.(4.1)

This gives approximations u = Uc and v = V d, where c and d are, respectively, left
and right singular vectors of H. With the requirement ‖c‖ = ‖d‖ = 1 and test vectors
x = u and y = v, we get

θ = η = uTAv.(4.2)

For reasons of symmetry, we choose x̃ = x (= u) and ỹ = y (= v). The resulting
algorithm for the computation of σmax is given in Algorithm 4.1.

In step 2 of the algorithm, RMGS stands for repeated modified Gram–Schmidt
(see, for example, [7, pp. 231–232]), used to make s and t orthogonal to Uk−1 and
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Input: a device to compute Av and ATu for arbitrary u and v, starting vectors u1 and v1,
and a tolerance ε.

Output: the approximate singular triple (θ, u, v) for the largest singular value

σmax and its corresponding singular vectors satisfying ‖( Av − θu

ATu − θv
)‖ ≤ ε.

1. s = u1, t = v1, U0 = [ ], V0 = [ ]
for k = 1, . . .

2. Uk = RMGS(Uk−1, s)
Vk = RMGS(Vk−1, t)

3. Compute kth column of Wk = AVk
Compute kth row and column of Hk = UTk AVk = UTk Wk

4. Compute largest singular triple (θ, c, d) of Hk, (‖c‖ = ‖d‖ = 1)
u = Ukc, v = Vkd

5. r = ( Av − θu

ATu − θv
) = ( Wkd − θu

ATu − θv
)

6. Stop if ‖r‖ ≤ ε
7. Solve (approximately) an (s, t) ⊥⊥ (u, v) from(

Im − uuT 0
0 In − vvT

)( −θIm A
AT −θIn

)(
Im − uuT 0

0 In − vvT
)(

s
t

)
= −r

Alg. 4.1. The JDSVD algorithm for the computation of σmax(A) with Galerkin conditions

X = U , Y = V. The approximations (θ, η, u, v) satisfy θ = η = uTAv.

Vk−1, and to expand the search spaces with the normalized vectors. Furthermore,
[ ] stands for the empty matrix, and we omit the index k of all variables that are
overwritten in every step. If we are interested in another singular value, for example,
the smallest, or the one closest to a specific target, we should adjust our choice in
step 4 of the algorithm accordingly. The variant of Algorithm 4.1 is the only variant
of the JDSVD for which the operator in (3.6) is symmetric and maps (u, v)⊥⊥ in
itself. Other choices imply that the operator is not symmetric or maps (u, v)⊥⊥ to a
different space. See also section 7.2.

4.2. Optimality of this choice. The following two results indicate that the
method resulting from this standard Galerkin choice is optimal in some sense. Suppose
we have an m × k matrix U and an n × k matrix V . Then for any k × k matrices
K and L there are associated an m × k residual matrix R(K) and an n × k residual

matrix R̃(L):

R(K) := AV − UK and R̃(L) := ATU − V L.

If there exist K and L such that these residual matrices are zero, then we have
found left and right singular subspaces, i.e., invariant subspaces of ATA and AAT .
The following theorem states that if both U and V have orthonormal columns, then
H := UTAV and HT = V TATU minimize the norm of these residual matrices, which
is a desirable property. It is a generalization of a result in the theory for eigenproblems
(see [12, Theorem 11.4.2] and [18, Theorem IV.1.15]), which deals with residuals of
the form AV − V K.

Theorem 4.1 (cf. Theorem 11.4.2 of [12]). For given m× k matrix U and n× k
matrix V , let H = UTAV .

(a) If the columns of U are orthonormal, then for all k × k matrices K we have
‖R(H)‖ ≤ ‖R(K)‖. Moreover, H is unique with respect to the Frobenius
norm ‖R(H)‖F ≤ ‖R(K)‖F with equality only when K = H.
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(b) If the columns of V are orthonormal, then HT = V TATU minimizes the norm

of R̃(L), and HT is unique with respect to the Frobenius norm.
Proof. Suppose that the columns of U are orthonormal; then UTU = I, so

R(K)TR(K) = V TATAV +KTK −KTH −HTK
= V TATAV −HTH + (K −H)T (K −H)
= R(H)TR(H) + (K −H)T (K −H).

Since (K −H)T (K −H) is positive semidefinite, it follows that

‖R(K)‖2 = λmax(R(K)TR(K)) ≥ λmax(R(H)TR(H)) = ‖R(H)‖2,

where we used Lemma 2.5 in the inequality. For uniqueness, we realize that ‖B‖2
F =

Trace(BTB) for every real matrix B. Part (b) can be proved using the same
methods.

Proposition 4.2. Let u and v be approximations of unit norm. Then

(θ, η) = (uTAv, uTAv) minimizes ‖r(θ, η)‖.

Proof. This can be shown by differentiating ‖r(θ, η)‖2 with respect to θ
and η.

Because of these two results, it is a natural idea to take the k singular values

θ
(k)
j of Hk as approximations to the singular values of A. When Uk and Vk have
orthonormal columns, we see by Lemma 2.8 that these approximations converge in a
finite number of steps to the singular values of A. In the following theorem we show
that the approximations converge monotonically increasing.

Theorem 4.3. Let θ
(k)
k ≤ · · · ≤ θ

(k)
1 be the singular values of Hk := UT

k AVk,
where Uk and Vk have orthonormal columns. Then for all fixed j and increasing k,

the θ
(k)
j converge monotonically increasing to the σj.

Proof. Hk is a submatrix of Hk+1, so according to Lemma 2.9 θ
(k+1)
j ≥ θ

(k)
j

for 1 ≤ j ≤ k. Because of the orthogonality of Uk and Vk, the θ
(k)
j converge to the

σj .

Remark 4.4. In practice, one often observes that the θ
(k)
j converge strictly mono-

tonically to the σj. With the aid of [21, pp. 94–98], conditions could be formulated
under which the convergence is strict.

Note that the theorem does not say that the smallest approximations θ
(k)
k converge

monotonically (decreasing) to σp, because Lemma 2.9 only gives us θ
(k+1)
k+1 ≤ θ

(k)
k−1.

For example, if uk ≈ u∗,p and vk ≈ v∗,p−1, then θ
(k)
k ≈ 0, so we see that the smallest

approximation can in fact be (much) smaller than σp. Experiments show that the

convergence of the θ
(k)
k can be irregular and slow (see section 8). This is a serious

difficulty of working with the augmented matrix, because the smallest singular values
are in the interior of its spectrum. We discuss this matter further in sections 4.3, 4.4,
and 7.5. The following theorem gives some relations between the singular values of
Hk and those of A. For clarity, we leave out the index k as much as possible.

Theorem 4.5 (cf. Theorems 11.5.1 and 11.5.2 of [12] and Corollary IV.4.15 of
[18]). For j = 1, . . . , k, there exist singular values σj′ of A which can be put in one-one
correspondence with the singular values θj of H in such a way that

|σj′ − θj | ≤ max {‖R(H)‖, ‖R̃(HT )‖} (1 ≤ j ≤ k).



A JACOBI–DAVIDSON TYPE SVD METHOD 613

Moreover,

k∑
j=1

(σj′ − θj)
2 ≤ ‖R(H)‖2

F + ‖R̃(HT )‖2
F .

Proof. Let the columns of Ũ and Ṽ be orthonormal bases for the orthogonal
complements of U and V , respectively. Then both [U Ũ ] and [V Ṽ ] are orthogonal
and

[U Ũ ]TA[V Ṽ ] =

(
H 0

0 ŨTAṼ

)
+

(
0 UTAṼ

ŨTAV 0

)
.(4.3)

Using Lemmas 2.8 and 2.6, respectively, we obtain for 1 ≤ j ≤ p = min{m,n}

σj(A) = σj

(
[U Ũ ]TA[V Ṽ ]

)
≤ σj

(
H 0

0 ŨTAṼ

)
+ σmax

(
0 UTAṼ

ŨTAV 0

)
.

Now

[U Ũ ]TR(H) =

(
0

ŨTAV

)
and [V Ṽ ]T R̃(HT ) =

(
0

Ṽ TATU

)
,

so, because of the orthogonal invariance of the norm (see Lemma 2.8), ‖R(H)‖ =

‖ŨTAV ‖ and ‖R̃(HT )‖ = ‖Ṽ TATU‖ = ‖UTAṼ ‖. Because

Σ

(
H 0

0 ŨTAṼ

)
= Σ(H) ∪ Σ(ŨTAṼ ),

there exist indices j′ such that

σj′

(
H 0

0 ŨTAṼ

)
= θj .

So the theorem’s first inequality is obtained by

σmax

(
0 UTAṼ

ŨTAV 0

)
= max {‖ŨTAV ‖, ‖UTAṼ ‖} = max {‖R(H)‖, ‖R̃(HT )‖}.

For the second inequality, apply Lemma 2.7 to the splitting of (4.3).
For the following proposition, we need the minimax theorem for singular values

[9, Theorem 3.1.2]

σj = max
X j⊂Rn

min
0 
=x∈X

‖Ax‖
‖x‖ ,(4.4)

where X j ranges over all subspaces of R
n of dimension j.

The following proposition states that the singular values of UT
kAVk are also not

optimal in another sense.
Proposition 4.6. Let Uk and Vk have orthonormal columns. For 1 ≤ j ≤ k,

σj(U
T
kAVk) ≤ σj(AVk) and σj(U

T
kAVk) ≤ σj(A

TUk).
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Proof. This follows from (4.4) and the inequalities ‖UT
kAVky‖ ≤ ‖AVky‖ and

‖V T
k A

TUkx‖ ≤ ‖ATUkx‖.
We have seen that the σj(U

T
k AVk) increase monotonically and that they are

bounded above by both σj(AVk) = λ
1/2
j (V T

k ATAVk) and σj(A
TUk) = λ

1/2
j (UT

k AATUk).
This forms one motivation to study other Galerkin choices. A second is the possibly
irregular convergence of the smallest singular value of UT

k AVk.

4.3. Other choices. Suppose that the columns of V form an orthonormal basis
for V. By the Galerkin choice X = AV, Y = V, with test vectors x = Av, y = v, and
u = Uc, v = V d, and ‖v‖ = 1, (3.2) reduces to

{
V TATAV d = θ V TATUc,
V TATUc = η d.

(4.5)

One can check that to satisfy the Galerkin conditions, (θη, d) should be an eigenpair
of V TATAV . Now first suppose that V TATU is nonsingular. Note that in this case
η �= 0; otherwise, V TATU would be singular. It follows that c = η(V TATU)−1d,
η = vTATu, and θ = vTATAv/vTAu. When V TATU is singular, then this construction
is impossible, but in this case we can simply restart the process or add extra vectors
to the search spaces (see section 7.6).

With this Galerkin choice, θ and η do not converge monotonically in general, but
we can apply well-known results from eigenvalue theory to ensure that their product
does converge monotonically to the squares of the singular values and also to the
smallest. In section 7.2 we discuss the resulting correction equation.

Likewise, if the columns of U form an orthonormal basis for U , the Galerkin choice
X = U , Y = ATU leads to the determination of (θη, c), an eigenpair of UTAATU .
These two approaches are natural with respect to minimax considerations, as we will
see now.

Lemma 4.7. Let ξ ∈ [0, 1]. Then we have the following minimax property for
singular values:

σj = max
Sj⊂Rm

T j⊂Rn

min
0�=s∈Sj
0�=t∈T j

ξ
‖At‖
‖t‖ + (1− ξ)

‖ATs‖
‖s‖ (1 ≤ j ≤ p).(4.6)

Proof. This follows from (4.4) and the observation that A and AT have the same
singular values.

When we have search spaces U and V, it is a natural idea to substitute U for R
m

and V for R
n in (4.6), as a generalization of a similar idea in the theory of eigen-

problems; see [12, p. 236]. This gives the following approximations for the singular
values:

τj = max
Sj⊂U
T j⊂V

min
0�=s∈Sj
0�=t∈T j

ξ
‖At‖
‖t‖ + (1− ξ)

‖ATs‖
‖s‖ .(4.7)

The following theorem relates these approximations to the Ritz values ofATA andAAT.

Theorem 4.8. τj = ξ(λ
1/2
j (V TATAV )) + (1− ξ)(λ

1/2
j (UTAATU)).

Proof. We have that T j ⊂ V if and only if T j = V T̃ j := {V t : t ∈ T̃ j} and

T̃ j ⊂ R
k. So for the first term of the expression for the τj we have that

max
T j⊂V

min
0 
=t∈T j

‖At‖2

‖t‖2
= max

T̃ j⊂Rk

min
0 
=t∈T̃ j

tTV TATAV t

‖t‖2
= λj(V

TATAV ).
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For the second term we have a similar expression.
When we take ξ = 0 and ξ = 1 in Theorem 4.8, we recognize the Galerkin ap-

proaches described in (4.5) and the discussion after that. They can essentially be
viewed as a two-sided approach to ATA or AAT , in the sense that we have approxi-
mations to both the left and the right singular vector during the process.

As a generalization, we can consider the test spaces X and Y with bases αui+βAvi
and γvi + δATui, respectively, where α2 + β2 = γ2 + δ2 = 1. Every choice other
than α = γ = 1 (the standard Galerkin choice discussed in section 4.1) involves the
computation of additional projected matrices and more work per iteration.

Another possibility is to take search spaces of unequal dimension, that is, Uk and
Vl, where k �= l. However, in view of the symmetric role of Sj and Tj in (4.6), this is
probably not very useful.

4.4. Harmonic singular triples. As observed in section 4.2, the standard
Galerkin choice leads to monotone convergence for the largest singular value, but
it can imply irregular behavior for the smallest singular value. A related problem is
the selection of the best approximate vectors. Suppose that u =

∑m
j=1 γju∗,j and

v =
∑n
j=1 δjv∗,j are approximate vectors; then θ = uTAv =

∑p
j=1 γjδjσj . (We may

assume θ is nonnegative; otherwise, take −u instead of u.) Now suppose that θ ≈ σ1,
in the sense that σ2 < θ < σ1 and that σ1 − θ is (much) smaller than θ−σ2. Then we
conclude that γ1 ≈ 1 and δ1 ≈ 1, so u and v are good approximations to u∗,1 and v∗,1.
But when θ ≈ σp, u and v are not necessarily good approximations to u∗,p and v∗,p.
For example, u could have a large component of u∗,p−1 and a small component of
u∗,1, and v could have a large component of v∗,p−2 and a small component of v∗,1. In
conclusion, when we search for the largest singular value, it is asymptotically safe to
select the largest singular triple of H, but for the smallest singular value the situation
is more subtle.

Suppose for the moment that A is square and invertible. If the minimal singular
value is the one of interest, the above discussion suggests to study the singular values
of A−1. Based on the SVD of A−1

A−1 = V∗Σ−1UT
∗ ,

we try to find the largest singular values of A−1 with respect to certain search spaces
Û , V̂ and test spaces X̂ , Ŷ. The new Galerkin conditions become (cf. (3.1))

(
A−1û− θ̂v̂
A−T v̂ − η̂û

)
⊥⊥

(
Ŷ
X̂

)
,

where û ∈ Û and v̂ ∈ V̂, say, û = Û ĉ and v̂ = V̂ d̂. To avoid having to work with A−1,
we take for the search spaces Û = AV and V̂ = ATU (cf. [15]). This gives the system

{
Ŷ TV ĉ = θ̂ Ŷ TATUd̂,

X̂TUd̂ = η̂ X̂TAV ĉ.

Taking X̂ = U and Ŷ = V results in equivalent conditions as in the standard choice
(4.1); only now (η̂, θ̂) and (ĉ, d̂) play the role of (θ−1, η−1) and (d, c). The choices

(X̂ , Ŷ) = (AV,V), (U , ATU), and (AV, ATU) lead to different approximations: to (4.5)
and other systems described in section 4.3, only the roles of the variables differ. We
can call these approximations harmonic singular triples, in analogy to the harmonic
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Ritz pairs in the eigenproblem [11]. So these harmonic approximations have two
advantages: the monotone behavior of the approximations to the smallest singular
value, and the selection of a good approximate “smallest” vector.

The conclusion is that the nondefault Galerkin choices, as presented in section 4.3,
can also be seen as a “harmonic” approach to the problem. Finally, when A is singular
or even nonsquare, we can consider A+ with respect to the test and search spaces AV
and ATU , exploiting the fact that AA+A = A.

5. The JDSVD as an (inexact) accelerated Newton scheme. In [16], it is
shown that the Jacobi–Davidson method can be interpreted as an inexact accelerated
Newton scheme [4] for the eigenvalue problem. Here we show that the same is true for
the JDSVD applied to the singular value problem. Define F : R

m×R
n → R

m×R
n as

F (u, v) :=

(
Av − θu
ATu− ηv

)
,

where θ = θ(u, v) and η = η(u, v) are as in (3.3). Thus the function F is nonlinear.
Consider the singular value problem where we require the singular vectors u∗, v∗ to
be scaled such that uT∗ a = 1 and vT∗ b = 1 for certain vectors a ∈ R

m and b ∈ R
n. So

we look for solutions u∗, v∗ of the equation F (u, v) = 0 in the “hyperplane”

{
(u, v) ∈ R

m × R
n : uTa = 1, vTb = 1

}
.

We introduce these a and b to derive a more general form of the correction equation
(3.6). If (uk, vk) are approximations to the singular vectors, then the next Newton
approximations (uk+1, vk+1) are given by (uk+1, vk+1) = (uk, vk) + (sk, tk), where
(sk, tk) ⊥⊥ (a, b) satisfies

DF (uk, vk)(sk, tk) = −F (uk, vk) = −rk.

Omitting the index k, one may check (remembering that θ = θ(u, v) and η = η(u, v)
are as in (3.3)) that the Jacobian DF (u, v) of F is given by

DF (u, v) =

(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)
.

Hence the correction equation of the Newton step is given by

(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
s
t

)
= −r, where (s, t) ⊥⊥ (a, b).

For every x̃, ỹ so that aT x̃ �= 0 and bT ỹ �= 0, this is equivalent to the slightly more
general form of the JDSVD correction equation (in comparison with (3.6)),

(
Im − uxT

xT u
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)(
s
t

)
= −r,

(5.1)

where (s, t) ⊥⊥ (a, b). Note that the substitution a = u and b = v gives (3.6).
If we keep a, b, x, x̃, y, and ỹ fixed during the process, and if xTu∗, yT v∗, aT x̃,

and bT ỹ are nonzero, then Newton iteration produces a series (uk, vk) that converges
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asymptotically quadratically towards (u∗, v∗) if the starting vector (u1, v1) is suffi-
ciently close to (u∗, v∗).

But if we take a, b, x, x̃, y, and ỹ variable but converging to certain vectors, such
that the denominators in (5.1) do not vanish, we get asymptotically quadratic conver-
gence as well. The choice a = x = x̃ = uk and b = y = ỹ = vk leads to Algorithm 4.1.
With other Galerkin choices described in section 4, the test vectors (x, y) are, in gen-
eral, not equal to the approximations (u, v), and in this situation the vectors a and b
can be useful; see sections 6 and 7.2.

We see that the JDSVD is a Newton scheme, accelerated by the usage of all
previous iterates and the projection of A on the subspace that they span. This
subspace acceleration accelerates the “prequadratic” phase of the method and ensures
that we find a singular triple in a finite number of steps. It may be expensive to
solve the correction equation exactly. Instead we may solve (5.1) approximately (see
section 7.1); the resulting method is an inexact accelerated Newton scheme.

In [14], it is proved that if the correction equation is solved exactly, then Jacobi–
Davidson applied to a symmetric matrix has asymptotically cubic convergence. Be-
cause the augmented matrix (1.1) is symmetric, we expect that the JDSVD can also
reach cubic convergence. The next section shows that this expectation is correct
indeed.

6. Convergence. In the previous section we have already seen that the cor-
rection equation represents a Jacobian system in a Newton step. Now we focus on
the convergence (see [14] for similar observations for Jacobi–Davidson applied to the
eigenvalue problem).

In a mathematical sense, it is not meaningful to speak of asymptotic convergence,
because we know that the process ends in a finite number of steps. However, in
many practical situations a singular triple will be approximated well, long before
the dimension of the search spaces reaches p. At that stage, these approximations
display a behavior that looks like a converging infinite sequence close to its limit.
When speaking of asymptotic convergence, we think of this situation. In other words,
by the word “asymptotically” we mean the situation where we have a (very) good
approximation to the singular triple, rather than the situation where k → ∞.

In the correction equation (5.1), u and v are the current approximations and x and
y are test vectors, but we have not said much about choosing x̃, ỹ, a, and b. They can
vary per step. The next lemma and proposition show that the exact JDSVD (that is,
the JDSVD where we solve the correction equation exactly) has asymptotically cubic
convergence for specific choices of the test vectors x and y and the vectors a and b.
To be precise, with ε small enough, if

|∠(uk, u∗)| = O(ε) and |∠(vk, v∗)| = O(ε)(6.1)

and if

a = x and b = y and |∠(x, u∗)| = O(ε) and |∠(y, v∗)| = O(ε),(6.2)

then |∠(uk+1, u∗)| = O(ε3) and |∠(vk+1, v∗)| = O(ε3). Then the approximate singular
values (see (3.3)) converge cubically as well.

Lemma 6.1 (cf. Lemma 3.1 of [14]). Assume that Av∗ = σu∗ and ATu∗ = τv∗,
where σ, τ > 0, and that

√
στ is a simple singular value of A. Let a, b, x, x̃, y, and
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ỹ be such that xTu∗, yT v∗, aT x̃, bT ỹ, aTu∗, and bT v∗ are all nonzero. Then the map

G :=

(
Im − u∗xT

xTu∗
0

0 In − v∗yT

yT v∗

)( −σIm A
AT −τIn

)(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)

is a bijection from (a, b)⊥⊥ onto (x, y)⊥⊥.
Proof. Suppose (z1, z2) ⊥⊥ (a, b) and G(z1, z2) = 0. We show that z1 = z2 = 0.

We have ( −σIm A
AT −τIn

)(
z1

z2

)
=

(
µu∗
νv∗

)

for certain µ, ν. Then
{

Az2 = σz1 + µu∗,
ATz1 = τz2 + νv∗.

Multiplying the first equation by AT and the second by A, we find
{

(ATA− στ)z2 = (σν + τµ)v∗,
(AAT − στ)z1 = (σν + τµ)u∗.

So both z1 and u∗ belong to the kernel of (AAT − στ)2, and both z2 and v∗ belong
to the kernel of (ATA − στ)2. From the simplicity of στ using Lemma 2.4, we have
that z1 and z2 are multiples of u∗ and v∗, respectively. Because z1 ⊥ a, z2 ⊥ b, and
aTu∗ �= 0, bT v∗ �= 0, we conclude z1 = z2 = 0. The bijectivity follows from comparing
dimensions.

Proposition 6.2 (cf. Theorem 3.2 of [14]). With the assumptions of Lemma
6.1, if the initial vectors are close enough to the singular vectors corresponding to a
simple nonzero singular value (i.e., if (6.1) holds), and if the correction equation is
solved exactly, then for fixed vectors x, y, a, and b, the JDSVD process has quadratic
convergence. Moreover, if (6.2) holds, then the JDSVD has even cubic convergence.

Proof. For convenience write

P =

(
Im − uxT

xT u
0

0 In − vyT

yT v

)
, B =

( −θIm A
AT −ηIn

)
, Q =

(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)
.

Then the correction equation (5.1) reads, for (s, t) ⊥⊥ (a, b),

PBQ(s, t) = PB(s, t) = −r = −B(u, v).

Suppose that ũ and ṽ are scalar multiples of the singular vectors u∗ and v∗ and that
(ũ, ṽ) = (u, v) + (e, f), where (e, f) ⊥⊥ (a, b), and ‖e‖ = O(ε), ‖f‖ = O(ε). Our first
goal is to show that ‖(e − s, f − t)‖ = O(ε2). We know that there are σ, τ > 0 such
that

0 =

( −σIm A
AT −τIn

)(
ũ
ṽ

)
=

( −θIm A
AT −ηIn

)(
ũ
ṽ

)
−
(

(σ − θ)ũ
(τ − η)ṽ

)
.

Therefore, we have
( −θIm A

AT −ηIn

)(
e
f

)
= −

( −θIm A
AT −ηIn

)(
u
v

)
+

(
(σ − θ)ũ
(τ − η)ṽ

)
.(6.3)
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We multiply this on the left side by P and use the fact that PB(u, v) = B(u, v):

PB(e, f) = −B(u, v) + P ((σ − θ)ũ, (τ − η)ṽ).(6.4)

Subtracting PB(s, t) = −B(u, v) from (6.4), and noting that P (u, v) = 0, we get

PB(e− s, f − t) = P ((σ − θ)e, (τ − η)f).(6.5)

Multiplying (6.3) on the left by (x 0
0 y )

T leads to

(
σ − θ
τ − η

)
=

(
(xT ũ)−1 0

0 (yT ṽ)−1

)( −θxT xTA
yTAT −ηyT

)(
e
f

)
.(6.6)

So for fixed x, y, a, and b we have ‖PB(e− s, f − t)‖ = O(ε2). Using Lemma 6.1 and
the assumption that the initial vectors are close enough to the singular vectors, we
see that PB in (6.5) is invertible, so ‖(e− s, f − t)‖ = O(ε2), which implies quadratic
convergence. But, if additionally, (6.2) holds, then∥∥∥∥
( −θxT xTA

yTAT −ηyT

)(
e
f

)∥∥∥∥ =

∥∥∥∥
(

aTAf
bTATe

)∥∥∥∥ = σ

∥∥∥∥
(

bT f
aT e

)∥∥∥∥+O(ε2) = O(ε2),

so from (6.6) we see that ‖(σ − θ, τ − η)‖ = O(ε2). We conclude that in this case the
convergence is even cubic.

One may check that the hypotheses on x and y in the theorem are true if we
choose xk = uk or xk = Avk, and yk = vk or yk = ATuk in the process. The cubic
convergence can be observed in practice; see section 8.

7. Various aspects of the method.

7.1. Solving the correction equation. We now translate a number of obser-
vations for Jacobi–Davidson in [15, 14] to the JDSVD context. Consider the situation
after k steps of the JDSVD algorithm. For easy reading, we again leave out the index
k. In this section we take for simplicity the Galerkin spaces used in section 4.1, but
most arguments carry over to other choices. First we rewrite the correction equation.
Because of (s, t) ⊥⊥ (u, v), we can eliminate the projections and write (3.6) as( −θIm A

AT −θIn

)(
s
t

)
= −r +

(
αu
βv

)
,(7.1)

where α and β are determined by the requirement that (s, t) ⊥⊥ (u, v). If we have a
nonsingular preconditioner M ≈ ( −θIm A

AT −θIn
), then we can take an approximation

(s̃, t̃) = −M−1r +M−1(αu, βv).(7.2)

1 (cf. [15, p. 406, point 1]). If we approximate (s, t) simply by ±r (by taking
M = ∓I and α = β = 0), then, because of the orthogonalization at step
2 of Algorithm 4.1, this is equivalent to taking (s̃, t̃) = (Av,ATu). By in-
duction one can prove that for the special case where we take this simple
approximation in every step, we have

U2k = Kk(AAT, u1)⊕Kk(AAT, Av1), V2k = Kk(ATA, v1)⊕Kk(ATA,ATu1),

as long as the Krylov subspaces have a trivial intersection. Compare this
with bidiagonalization, where

Uk = Kk(AAT, Av1), Vk = Kk(ATA, v1).
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2 (cf. [15, p. 408, point 3]). If θ is not equal to a singular value, then M =
( −θIm A

AT −θIn
) is nonsingular and M−1r = (u, v). So for the updated vectors

ũ, ṽ we have

(
ũ
ṽ

)
=

(
u+ s
v + t

)
=

( −θIm A
AT −θIn

)−1(
αu
βv

)
.(7.3)

We conclude that exact the JDSVD can be seen as an accelerated scaled RQI.
3 (cf. [15, p. 409, point 4]). If we take M �= ( −θIm A

AT −θIn
), M nonsingular, then

with (s̃, t̃) = M−1(αu, βv) we obtain an inexact shift and invert method. This
may be an attractive alternative if (7.3) is expensive.

4. When we are interested in a singular value close to a specific target τ , we can
replace this in the left-hand side of the correction equation (3.6):

(
Im − uuT 0

0 In − vvT
)( −τIm A

AT −τIn
)(

Im − uuT 0
0 In − vvT

)(
s
t

)
= −r.

The advantage of this approach is that we avoid misconvergence to some
unwanted singular value “on the way.” For example, if we want to compute
the largest singular value, we can use a known approximation of σmax as a
target. In practice, τ ≈ ‖A‖∞ may be a good guess (see section 8). For
the minimal singular value, we can take τ = 0 or a small positive number
as target. As soon as we notice that the process starts to converge, we may
replace the target in the correction equation by the current approximation to
the singular value again.

5. In practice we often solve (5.1) approximately by an iterative method: for
example, a few steps of GMRES or MINRES if the operator is symmetric (in
case of the standard Galerkin choice). We may use a (projected) precondi-
tioner; see section 7.8.

7.2. The correction equation with nonstandard Galerkin choices. In the
case of nonstandard Galerkin choices (see section 4.3), we may have the situation that
(x, y) �= (u, v). Now we exploit the flexibility of (a, b) in (5.1): by the choice

(a, b) = (x, y) and (x̃, ỹ) = (u, v),(7.4)

we ensure that the operator in (5.1) maps (x, y)⊥⊥ onto itself, and that the asymptotic
convergence is cubic according to Theorem 6.2 (if the correction equation is solved
exactly). Another option is

(a, b) = (u, v) and (x̃, ỹ) = (x, y)(7.5)

to make the operator in (5.1) symmetric. In this case the operator maps (u, v)⊥⊥ to
(x, y)⊥⊥. Therefore, we should use a left “preconditioner” that maps the image space
(x, y)⊥⊥ bijectively onto the domain space (u, v)⊥⊥ (see also section 8 and [14, 17]).

7.3. Comparison with Jacobi–Davidson on the augmented matrix. It is
interesting to compare the JDSVD with Jacobi–Davidson on the augmented matrix,
starting with the “same” starting vector w1 = (u1, v1)/

√
2.

There are some analogies between Jacobi–Davidson and the JDSVD. When their
correction equations are solved exactly, both converge asymptotically cubically to a
simple eigenvalue of the augmented matrix. Moreover, the costs per iteration are
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almost the same; the only difference is that in each step the JDSVD needs a small
SVD, while Jacobi–Davidson needs a small eigenvalue decomposition. The storage
requirements are also comparable.

The main difference is the fact that the JDSVD, by construction, searches in two
(smaller) subspaces, while Jacobi–Davidson has one search space. If Jacobi–Davidson
solves its correction equation exactly, then in fact it solves (7.3) with α = β [15].
This suggests that the JDSVD can cope better with “unbalanced” vectors, that is,
vectors (u, v), where ‖u‖ �= ‖v‖. An extreme example of this can be seen by taking a
starting vector of the form (u∗, δv∗) for 0 < δ < 1. In contrast to Jacobi–Davidson,
the JDSVD terminates after computing a zero residual.

Another (mostly theoretical) difference is the fact that the JDSVD terminates
for every starting vector after at most max{m,n} iterations, and Jacobi–Davidson
terminates on the augmented matrix after at most m+ n iterations. In section 8, we
compare the methods experimentally.

7.4. Refinement procedure. Suppose that we have found an approximate
minimal right singular vector v = (1 − ε2)1/2vmin + εvmax by an iterative method
applied to ATA, so that sin∠(v, vmin) = ε. Then, in the absence of other informa-
tion, u = Av = (1 − ε2)1/2σminumin + εσmaxumax is the best approximation to the
left singular vector we have to our disposal. But tan∠(u, umin) ≈ εσmax

σmin
= κ(A)ε,

and this can be large. Moreover, ‖u‖2 = (1− ε2)σ2
min + ε2σ2

max can be an inaccurate
approximation to σ2

min, and so may ‖ATu‖2/‖u‖2.

Hence the approximations to small singular values, resulting from working with
ATA, may be inaccurate. In this situation, we may try to improve the approximate
singular triple by a two-sided approach like the JDSVD. The following lemma gives
a link with [3], where a system with a matrix of the form




−θIm A −u 0
AT −θIn 0 −v
2uT 0 0 0
0 2vT 0 0


(7.6)

is used for improving an approximate singular triple.

Lemma 7.1 (cf. Theorem 3.5 of [14]). The JDSVD correction equation (5.1) is
equivalent to




−θIm A −u 0
AT −ηIn 0 −v
aT 0 0 0
0 bT 0 0







s
t
α
β


 =




θu−Av
ηv −ATu

0
0


 ;(7.7)

that is, if (s, t, α, β) is a solution of (7.7), then (s, t) is a solution of the correction
equation (5.1), and if (s, t) is a solution of (5.1), then there exist unique α, β such
that (s, t, α, β) is a solution of (7.7).

Proof. We use the same notation as in the proof of Theorem 6.2. The system
(7.7) is equivalent to

B(s, t)− (αu, βv) = −r and (s, t) ⊥⊥ (a, b).
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By splitting the first equation in (x, y)⊥⊥ and its complement, we obtain




PB(s, t) = −r,(
α
β

)
=

(
(xTu)−1 0

0 (yT v)−1

)(
xT 0
0 yT

)
B

(
s
t

)
,

(s, t) ⊥⊥ (a, b).

Note that we have used Pr = r, P (αu, βv) = 0, and r ⊥⊥ (x, y). The first and third
equation together are equivalent to the correction equation (5.1), and the second
equation determines α, β uniquely.

Remark 7.2. Of course, this equivalence is valid only when both (7.7) and (5.1)
are solved exactly, not when we solve them approximately.

In particular, when we substitute η = θ and (a, b) = 2(u, v), the matrix in (7.7)
becomes (7.6).

7.5. Smallest singular value. As mentioned in section 4.1, the standard vari-
ant of the JDSVD may have difficulties with finding the smallest singular value of a
matrix. This is not surprising, because the small singular values of A correspond to
the interior eigenvalues of the augmented matrix. But in many applications, e.g., the
computation of pseudospectra, the smallest singular value is just what we want to
compute.

We can use the JDSVD with the nonstandard Galerkin (harmonic) variants, men-
tioned in sections 4.3 and 4.4, starting with zero, or a small positive number as a
target, and solve the correction equation rather accurately, possibly with the aid of
a preconditioner; see section 8. In this way the method is close to a shift and invert
iteration but less expensive. Of course it is hereby advantageous to have a good initial
triple (e.g., coming from an iterative method on ATA); the JDSVD (with nonstandard
Galerkin) can then be used as refinement procedure.

7.6. Restart. A nice property of Jacobi–Davidson is its flexibility in restarting.
The JDSVD, too, has this advantage: we can restart at every moment in the process
with any number of vectors, only keeping those parts of the search spaces that look
promising, or possibly adding some extra vectors. All we have to do is compute the
new resulting H = UTAV and continue. This is practical when the search spaces
become large or to avoid a breakdown in case of the nonstandard Galerkin choices.
Of course, the JDSVD can also be started with search spaces of dimension larger
than one.

7.7. Deflation. We can compute multiple singular triples of A by using a defla-
tion technique. If we have found a singular triple of A, and we want to find another,
we can deflate the augmented matrix to avoid finding the same triple again. For the
JDSVD, this can be done as follows. Suppose that Uf and Vf contain the already
found singular vectors. Then it can be checked that, if we found the exact vectors,

(
Im − UfU

T
f 0

0 In − VfV
T
f

)(
0 A
AT 0

)(
Im − UfU

T
f 0

0 In − VfV
T
f

)

has the same eigenvalues as the original augmented matrix, except that the found
eigenvalues are transformed to zeros. The method can then be restarted with another
approximate triple.
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7.8. Preconditioning the correction equation. The correction equation of
the JDSVD can be preconditioned in a manner similar to Jacobi–Davidson (see, for
example, [17]). We use the same notation as in the proof of Theorem 6.2 for the
important case Q = P . Suppose that we have a preconditioner M for B. For left
preconditioning we are given (s, t) ⊥⊥ (x, y), and we have to solve for (z1, z2) ⊥⊥
(x, y) from

PMP (z1, z2) = PBP (s, t).

Note that we project the preconditioner as well. Hence, for some α, β,

(z1, z2) = M−1B(s, t)−M−1(αu, βv),

and by using the test vectors we obtain

(
x 0
0 y

)T
M−1

(
u 0
0 v

)(
α
β

)
=

(
x 0
0 y

)T
M−1B

(
s
t

)
.

A recipe for computing (z1, z2) is given by the following four steps.
(1) Compute (ũ1, ũ2) = M−1(u, 0) and (ṽ1, ṽ2) = M−1(0, v).
(2) Compute (s̃, t̃) = M−1B(s, t).

(3) Compute (α, β) from (x
T ũ1 xT ṽ1
yT ũ2 yT ṽ2

)(αβ ) = (x
T s̃
yT t̃ ).

(4) Compute (z1, z2) = (s̃, t̃)− α(ũ1, ũ2)− β(ṽ1, ṽ2).
An important observation is that step (1) and the computation of the 2× 2 matrix in
step (3) have to be performed only once at the start of the iterative solution process
of the correction equation. The right-hand side of the correction equation, minus the
residual, is handled similarly.

8. Numerical experiments. Our experiments are coded in MATLAB and are
executed on a SUN workstation. The following lemma implies that up to rounding
errors, it is not a loss of generality to consider (rectangular) diagonal matrices A.

Lemma 8.1. If there are no rounding errors, and the JDSVD’s correction equation
(5.1) in step k is solved by lk steps of GMRES, then the JDSVD applied to

(a) A = U∗ΣV T
∗ , with starting vectors u1 and v1,

(b) Σ, with starting vectors ũ1 := UT
∗ u1 and ṽ1 := V T

∗ v1,
gives “the same” results; that is,

θ̃k = θk and ‖r̃k‖ = ‖rk‖.
Proof. Define

Q =

(
UT
∗ 0
0 V T

∗

)
;

then Q is orthogonal, and one may verify that (ũ1, ṽ1) = Q(u1, v1), θ̃1 := ũT1 Σṽ1 =
uT1 Av1 =: θ1, and r̃1 = Qr1. A well-known property of Krylov subspaces ensures that
(see [12, p. 264])

QTKl
((

0 Σ
ΣT 0

)
, r̃

)
= Kl

(
QT

(
0 Σ
ΣT 0

)
Q,QT r̃

)
= Kl

((
0 A
AT 0

)
, r

)
.

With little extra work one can check that the same relation holds for the shifted
and projected matrices that are present in the correction equation (5.1), where one
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Fig. 8.1. (a) The convergence history of the exact JDSVD algorithm for diag(1..100) as in
Algorithm 4.1: residual norm (solid line) and error in the approximations to σmax (dots). The
horizontal dotted line indicates the stopping tolerance. (b) Convergence for diag(1..1000) using,
respectively, 5, 2, and a variable number of GMRES steps to solve the correction equation.

should bear in mind that all other vectors involved in the projectors (a, b, x, y, x̃,
and ỹ) must also be altered for the Σ-system in the obvious way. So the approximate
solutions from the correction equations satisfy (s̃1, t̃1) = Q(s1, t1). By induction we

can prove that Ũk = UT
∗ Uk and Ṽk = V T

∗ Vk, so the projected matrices are the same

in both cases: H̃k := ŨT
k ΣṼk = UT

k AVk = Hk. In particular, the approximations
to the singular values are the same, and the approximations (uk, vk) and (ũk, ṽk) are
orthogonal transformations of each other: (ũk, ṽk) = Q(uk, vk) and r̃k = Qrk, so
‖r̃k‖ = ‖rk‖.

For this reason, we first study some phenomena on A = diag([1 : 100]) and
A = diag([1 : 1000]). In Figure 8.1(a), the solid line is the convergence history of
(the standard variant of Algorithm 4.1 of) the JDSVD for the computation of the
largest singular triple of A = diag([1 : 100]). The starting vectors are the normalized
v1 = vmax + 0.1r, where r is a vector with random entries, chosen from a uniform
distribution on the unit interval, and u1 = Av1/‖Av1‖. The dots represent the error

in the approximation σmax − θ
(k)
k . In all figures, a horizontal dotted line indicates

the stopping tolerance. We solve the correction equation by 200 steps of GMRES.
Because the (augmented) matrices in the correction equation (step 7 of Algorithm 4.1)
are of size 200× 200, this means (theoretically) exactly, so according to Theorem 6.2
we expect cubic convergence. In Figure 8.1(a) we see, for instance, that the error in
the approximation in iteration number 5 decreases from ≈ 10−2 to ≈ 10−7.

In Figure 8.1(b), we take A = diag([1 : 1000]), and u1 and v1 random vectors
(as described above) with unit norm. We experiment with the number of GMRES
steps. For the solid line, we solve the correction equation approximately by five steps
of GMRES, which we denote by GMRES5, for the dashed line by GMRES2, and for
the dotted line by a variable number equal to max{2 · (�− log ‖r‖ +1), 0}. Measured
in terms of matrix-vector products (MVs), the variable choice is best, followed by
GMRES5. An explanation of this is that when the initial approximations are not
good (as in this case), it is of no use to try hard to solve the correction equation in
the beginning. When we are almost converging, it may make sense to solve it more
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Fig. 8.2. (a) The JDSVD (solid) and Jacobi–Davidson (dashed) for the three largest σs of
diag(1..1000). (b) The same as Figure 8.2(a), only with GMRES2 to solve the correction equation.

accurately to get fast convergence. See also [17].
In Figure 8.2(a) we compare, for A = diag([1 : 1000]), the standard JDSVD for

the three largest singular triples (solid), with Jacobi–Davidson on the augmented ma-
trix for the computation of the three largest eigenpairs (dashed), each with GMRES5.
For the JDSVD, we take v1 as a random vector, and u1 = Av1/‖Av1‖. For Jacobi–
Davidson we take the “same” starting vector (u1, v1)/

√
2. We see that the JDSVD is

faster for the first triple; for the second and third we restart with a good approxima-
tion, and then the histories are similar.

In Figure 8.2(b), we do the same, but now using GMRES2. For the first two
triples, the JDSVD is somewhat faster than Jacobi–Davidson, for the third JDSVD
in the first instance (mis)converges to the fourth largest singular value 997. Other
experiments also suggest that the JDSVD is generally (somewhat) faster than Jacobi–
Davidson on the augmented matrix.

Next, we take some examples from the Matrix Market (these matrices can be
downloaded from http://math.nist.gov/MatrixMarket). For Figure 8.3(a), we ap-
ply different JDSVD variants to find the smallest singular triple of PDE225, using two
random starting vectors and GMRES10 (no preconditioning). In all variants, we take
initially target 0, but when ‖r‖ < 10−3, we replace the target by the best approxima-
tions again (see section 7.1, point 4). The solid line is the standard choice; we see an
irregular convergence history, as could be expected (see section 4). The dashed line
represents the Galerkin choice (4.5), where in the correction equation (5.1) we substi-
tute (7.4). Finally, the dash-dotted line is (4.5) with (7.5) substituted in (5.1). In the
last case, as seen in section 7.2, the operator in (5.1) maps (u, v)⊥⊥ to (x, y)⊥⊥. Since
in this case v = y but u �= x, we use a left “preconditioner” to handle the correction
equation correctly. The preconditioned identity

(
Im − xuT

uT x
0

0 In

)
Im+n

(
Im − uxT

xTu
0

0 In

)

maps (x, y)⊥⊥ back to (u, v)⊥⊥.
In Figure 8.3(b), the standard JDSVD’s approximations to the singular values

during this process are plotted. These are “regular,” nonharmonic estimates. Note
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Fig. 8.3. (a) Three different JDSVD variants for the computation of σmin of PDE225: standard,
(4.5) + (5.1) + (7.4), and (4.5) + (5.1) + (7.5). (b) (Nonharmonic) approximations to the singular
values by the standard variant.

the monotone convergence of the approximations to the largest singular values but
the irregular behavior of the approximations to the smallest singular value.

Next, we compare the JDSVD with Lanczos applied to ATA for the computation
of σmax. These methods are of a different nature. The Lanczos method can be viewed
as an accelerated power method, while the JDSVD can be seen as an accelerated
inexact RQI. An advantage of the JDSVD is that we may use preconditioning for the
correction equation. Therefore, we expect that if we have a reasonable preconditioner,
and if preconditioning is relatively cheap in comparison to a multiplication by A or
AT , then the JDSVD can be cheaper than Lanczos. On the other hand, if m ! n,
or if there is no good or cheap preconditioner available, then we expect that Lanczos
will be better. Table 8.1 shows some test results. For the JDSVD, we take a target
τ ≈ ‖A‖∞, in the hope that τ ≈ σmax. We make an incomplete LU-decomposition
(using a drop tolerance displayed in the table) of the augmented matrix (1.1) minus
τ times the identity, and we use M = LU as a preconditioner. The starting vector
v1 is the vector with all coordinates equal to one, and is then normalized, and u1 is a
random vector. We solve the correction equation by only preconditioning the residual
(“0 steps of GMRES”). The process is continued until ‖r‖ < 10−8. Lanczos’s method
uses v1 as starting vector and continues until ‖(ATA− θ2)v‖ < 10−8. The matrix A1

stands for diag(1 : 100) + 0.1 · rand(n, n), where rand(n, n) denotes an n × n-matrix
with random entries, chosen from a uniform distribution on the unit interval. See [13]
for more information on the origin and singular values of the other matrices. For the
JDSVD, a pair is given, consisting of the number of MVs and the number of systems
with L or U . For Lanczos we show the number of MVs.

For HOR131, the target τ is relatively far from σmax ≈ 0.66. We see that although
the JDSVD uses fewer MVs than Lanczos, Lanczos is cheaper when we take the
preconditioning into account. Although for PORES3 (σmax ≈ 1.5 · 105) Lanczos
finds a good approximate vector, its residual does not reach the required 10−8 due
to the high condition number of the matrix. The JDSVD does converge, so this
is an example of a situation where the JDSVD could be used as refinement. For
SHERMAN1, the target is a reasonable approximation to σmax ≈ 5.05. When we
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Table 8.1
Some experiments with the JDSVD to compute σmax, using incomplete LU-factorizations of

the shifted augmented matrix. The number of MVs, and the number of systems with L or U is
displayed in the 5th column. The shift (or target) τ (6th column) for the preconditioning is roughly
taken to be ‖A‖∞. The last three columns give information on the incomplete LU-factorization: the
drop tolerance of ILU, and the resulting number of nonzeros of L and U . We compare the JDSVD’s
results with the MVs of Lanczos applied to ATA (4th column).

Matrix Size nnz(A) Lan(ATA) JDSVD τ tol nnz(L) nnz(U)
HOR131 434 × 434 4182 30 (28, 65) 0.90 10−2 1792 1792
PORES3 532 × 532 3474 – (72, 175) 2 · 105 10−1 1301 1300
SHERMAN1 1000 × 1000 3750 74 (24, 66) 5 10−2 4805 4803
A1 100 × 100 10000 102 (38, 108) 106 10−2 299 299

take the preconditioning into account, Lanczos is cheaper than the JDSVD. The last
row of the table is an example where preconditioning is relatively cheap. The reason
for this is that we now take the diagonal of A, instead A itself, to form an augmented
matrix of the form (1.1) and to make an ILU-decomposition. Using far more MVs,
Lanczos is (also counting the preconditioning) more expensive.

Finally, in Table 8.2, we compare the JDSVD for the computation of σmin with
Lanczos applied to (ATA)−1. We use the Galerkin choice (4.5) for the JDSVD. Note
that the comparison with Lanczos is mainly meant to get an idea of how well the
JDSVD performs. In practice, for large (sparse) A, it is too expensive to work with
A−1 and A−T or (ATA)−1. For the JDSVD, we take a small target τ = 10−5, drop
tolerance 10−3, and again we make an incomplete LU-decomposition based on this
target. The starting vectors are the same as for Table 8.1. We solve the correction
equation by preconditioning only the residual (“0 steps of GMRES”). Both processes
are continued until ‖r‖ < 10−7.

Table 8.2
Some experiments with the JDSVD to compute σmin. The numbers of MVs and systems with L

or U (3rd column), and the number of nonzeros of L and U are displayed. We compare the JDSVD’s
results with the number of MVs of Lanczos applied to (ATA)−1.

Matrix Lan(ATA)−1 JDSVD nnz(L) nnz(U)
HOR131 – (26, 72) 20593 21167
PORES3 12 (36, 108) 3683 5491
SHERMAN1 20 (20, 54) 11575 11738
A1 14 (28, 78) 200 200

We see that although the JDSVD may in general use more MVs, it may be much
cheaper than Lanczos, due to the sparsity of A, L, and U . For HOR131, Lanczos does
not converge to the required 10−7. Again A1 serves as an example for the situation
where preconditioning is relatively cheap, which makes the JDSVD attractive. We
also tried Lanczos applied to ATA for the computation of σmin, but the results were
bad (262 MVs for A1, and more than 500 MVs for the other matrices).

9. Conclusions. We have discussed an alternative approach for the computation
of a few singular values and vectors of a matrix. The JDSVD method searches in two
separate subspaces, and it can be interpreted as an inexact Newton method for the
singular value problem. The JDSVD can also be seen as an inexact accelerated scaled
RQI method. Therefore, the best results may be expected when we have a good initial
starting triple (refinement), but we can start with any approximations. While the
asymptotic convergence is cubic if the correction equation is solved exactly, in practice
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we solve it approximately, and then the convergence typically looks (super)linear.
Although we mainly discussed the application of the JDSVD for the largest and
smallest singular value, the method is in principle suitable for all singular values. We
may use preconditioning for the solution of the correction equation. This can be a
decisive factor for fast convergence. Experiments indicate that the JDSVD is a good
competitor to other iterative SVD methods, in particular when A is (almost) square
and we have a reasonable, relatively cheap preconditioner for the correction equation.

Acknowledgments. The author thanks Henk van der Vorst and Gerard Sleijpen
for interesting discussions, and the referees for many helpful comments.
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Abstract. We propose a new general algorithm for constructing interpolation weights in al-
gebraic multigrid (AMG). It exploits a proper extension mapping outside a neighborhood about a
fine degree of freedom (dof) to be interpolated. The extension mapping provides boundary values
(based on the coarse dofs used to perform the interpolation) at the boundary of the neighborhood.
The interpolation value is then obtained by matrix dependent harmonic extension of the boundary
values into the interior of the neighborhood.

We describe the method, present examples of useful extension operators, provide a two-grid anal-
ysis of model problems, and, by way of numerical experiments, demonstrate the successful application
of the method to discretized elliptic problems.

Key words. algebraic multigrid, interpolation weights, sparse matrices, finite elements, un-
structured meshes

AMS subject classifications. 65F10, 65N20, 65N30
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1. Introduction. The classical algebraic multigrid (AMG) algorithm [2, 3, 9]
was developed for operators represented by symmetric, positive definite M-matrices.
While the algorithm works well for many real-world problems [10, 6, 11], there are
situations in which it does not perform particularly well. One reason for this is that in
some instances the classical definition of interpolation does not adequately interpolate
the smooth modes of the error. More specifically, standard AMG interpolation makes
certain assumptions about the nature of the smooth error which may not be valid for
operators that are not M-matrices. A more sophisticated characterization of smooth
error is required to develop an adequate interpolation formula.

To provide a better characterization of smooth error, a method known as AMGe,
for element-based algebraic multigrid, was developed recently [4] for finite element
discretizations. AMGe provides an accurate interpolation formula by using the in-
dividual element stiffness matrices to construct a neighborhood matrix for each fine
degree of freedom (dof). The neighborhood matrix—the sum of the individual stiffness
matrices for all the elements containing the point at which the dof is defined—acts
as a local “Neumann”-type version of the original operator. According to AMGe the-
ory, once the local matrix is developed and coarse-grid points are chosen, solving a
simple minimization problem yields the optimal interpolation operator for each dof.
It is shown in [4] that the method indeed produces superior interpolation and leads
to improved convergence rates on several types of problems, including both scalar
problems and systems of PDEs, such as elasticity problems.

An obvious drawback to AMGe, naturally, is that it requires that the element
stiffness matrices be available. While this is often the case, their storage can be
expensive. Further, AMGe requires that coarse level elements be constructed and
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their individual stiffness matrices be available. Determining the coarse elements is a
difficult and laborious task.

In this paper we examine the construction of the interpolation operator in both
classical AMG and AMGe and present them within a common framework. Our pur-
pose is to extend and generalize the classical interpolation, which was originally mo-
tivated for M-matrices, to develop a rule applicable in more general settings. Ac-
cordingly, we propose a new method for determining the interpolation weights that
attempts to capture the benefits of AMGe interpolation without requiring access to
the individual element stiffness matrices. This method is applicable to finite difference,
finite element, or finite volume discretizations, and we concentrate on the symmetric
positive definite case. Essentially, it seeks to determine, for each fine dof, a neighbor-
hood matrix that can be utilized in the same manner that the local assembled stiffness
matrix is used in AMGe. We do this by defining a neighborhood for the fine dof and
examining the rows of the original matrix that correspond to the points in that neigh-
borhood. A set of exterior dofs is defined and a mapping developed that extends
functions on the neighborhood to the exterior dofs. This essentially imposes a set of
boundary conditions on the neighborhood. Here we propose a unified way of building
these boundary conditions. One may view them as an extension (extrapolation) of a
vector defined on the neighborhood to its immediate exterior. This extension can be
performed using constant vectors or any other vectors that may be of interest (such
as the rigid body motions in elasticity problems). The extension can be built for each
dof in the exterior based on the matrix sparsity pattern.

By incorporating the action of the extension operator into the local connections
of the neighborhood, a modified local matrix is created. This matrix is then used in a
manner similar to that employed in AMGe, that is, by solving a minimization problem,
to create the interpolation operator. We consider the construction of the extension
operator and the respective minimization procedure to build the interpolation weights
as our main contribution. We give examples of several extension operators and show
how they relate to both classical AMG and other, more recently proposed algorithms.
A two-grid model analysis of the properties of the resulting interpolation mappings is
provided as well. In particular, we prove that they exhibit approximately “harmonic”
properties as well as “partition of unity” properties, desirable in standard two-grid
analyses of the AMG methods.

Numerical results are presented to demonstrate the method. We include both
scalar problems and systems of PDEs in the form of elasticity problems. Finally, we
draw some conclusions and comment on the direction that continued research will
take.

It is important to note that while the choice of coarse-grid points, like the con-
struction of the interpolation operator, is crucial to the success of the AMG method,
we do not consider the coarse-grid selection here; rather, we leave that topic to future
research while focusing on the interpolation problem here. Furthermore, we observe
that neither AMGe nor the method proposed here are intended to replace or com-
pete with classical AMG on problems characterized by simple M-matrices, such as
the model Laplacian problem on a regular grid. Instead, they are intended for com-
plicated problems, such as thin-body elasticity, posed typically on unstructured grids.
Nonetheless, we apply the new method (and AMGe) to model problems because they
illustrate, in simple fashion, the features of the methods. We therefore compare re-
sults of our method with AMGe on these problems but do not include comparisons
to classical AMG, which would be used in practice.
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Some notational conventions follow: to denote a vector we will use boldface, e.g.,
v,w, . . . . The ith component of v will be denoted in different contexts as v(i), v(i),
or vi. In the latter two cases v (i.e., not in boldface) will have a meaning of a “grid”
function.

2. A framework for AMG interpolation. Assume that the problem Ax = f
is to be solved, where A is a sparse, symmetric, positive definite matrix. AMG is
a multigrid method in which no geometric grid information is used (and often isn’t
available or doesn’t even exist). Accordingly, all of the components of a multigrid
algorithm, the hierarchy of grids, interpolation and restriction operators, and the
coarse-grid versions of the original operator must be constructed using only the in-
formation contained in the entries of A. For any multigrid algorithm, several basic
components are required. In the case of AMG, they can be described as follows:

• A fine grid is required. For AMG, this is generally a set D comprising the
degrees of freedom of the original problem.
• A coarse grid Dc is necessary. This set of dofs is typically a subset of D.
• An interpolation operator P is necessary to map vector functions defined on
the coarse grid Dc to the fine grid D, P : Dc −→ D.
• A restriction operatorR : D −→ Dc, mapping fine-grid functions to the coarse
grid, is needed. For AMG the restriction is frequently defined by R = PT ,
and we will use that definition here.
• A coarse-grid version of the original operator A is needed. For AMG the
coarse operators are generally defined by the Galerkin relation Ac = PTAP .
• A smoothing iteration, G, is used. It is typical to use a point-relaxation
method such as Gauss–Seidel or Jacobi relaxation.

The basic two-grid algorithm can then be described as follows: Begin with an
initial approximation x0 to the solution of Ax = f .

1. Smooth the error by x0 ← G(A, f ,x0).
2. Compute the residual r = f −Ax0.
3. Restrict the residual to the coarse grid fc = Rr.
4. Solve the coarse-grid residual equation ec = A−1

c fc.
5. Interpolate the coarse-grid error to the fine grid and correct the fine-grid

approximation x0 ← x0 + Pec.

For a multigrid method, a hierarchy of coarse grids D ≡ D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃
DJ is present, and the two-grid algorithm is applied recursively, i.e., the two-grid
algorithm is repeated each time step 4 is encountered, except that a direct solve is
employed at the coarsest grid.

For the multigrid method an interpolation operator Pi is required mapping func-
tions on each grid (level i) to the next finer grid (level i−1). Unlike many conventional
(geometric) multigrid algorithms, in AMG the interpolation operators are rarely the
same for different levels. Similarly, the Galerkin relation is employed to define versions
of the original operator A on all levels, thusly: Ai+1 ≡ RiAiPi.

There are many ways in which to select the coarse-grid dofs in AMG [9, 11, 5].
Commonly, the coarse set Dc is a maximally independent subset of D, but this is not
required. We will not discuss the question of coarse-grid selection further, except to
note that each fine-grid dof i is connected to its nearest neighbors (e.g., j) by way of
having a nonzero coefficient aij , and that the value of a interpolated function at i is
typically a weighted average of the values of its nearest neighbors that are coarse-grid
dofs. For the remainder of this paper, we shall simply assume that a coarse grid has
been selected and that the coarse neighbors are known for any fine dof.
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With this description of the basic components of AMG, we can describe a simple
framework for computing the entries of the interpolation operator. Let i ∈ D be a
fine-grid dof whose value is to be interpolated. We first define a subset Ω(i) ⊂ D to
be the neighborhood of i. For now we place no particular restrictions on what dofs
can be in Ω(i). For example, the set Ω(i) could consist of i and all of its nearest
neighbors, or i and its nearest coarse neighbors, or i, its neighbors, and all of their
neighbors. Indeed, within the framework we describe here, the exact character of the
interpolation operator will depend largely on what sort of neighborhood is defined.
Since the value at i will be interpolated from coarse points in the neighborhood, it is
useful to denote the set of coarse dofs in the neighborhood to be Ωc(i).

To construct the interpolation for i, we examine the entries of the operator A in
the following way. We begin, without loss of generality, by permuting the rows and
columns of A and partitioning it so the first set of rows and columns corresponds to
i and the fine dofs in the neighborhood, that is, to Ω(i)\Ωc(i). The next set of rows
and columns corresponds to the coarse neighbors Ωc(i), while the final set of rows
and columns corresponds to the rest of the grid D\Ω(i). Hence the partitioning of A,
along with the identity of the rows corresponding to the partitions, appears as

A =


 Aff Afc ∗
∗ ∗ ∗
∗ ∗ ∗


 } Ω(i)\Ωc(i),
} Ωc(i),
} D\Ω(i).

For our purposes we are concerned only with two blocks of the partitioned matrix.
The block Aff gives the connections among i and the fine-grid neighbors while the
block Afc links i and the fine neighbors to the coarse neighbors.

Armed with these concepts of neighborhood partitioning of the operator, we can
examine classical AMG, AMGe, and our proposed method in terms of choices of
neighborhood and definition of the neighborhood matrices.

3. Interpolation in classical AMG. For classical AMG [9], the interpolation
is computed in the following fashion. The neighborhood Ω(i) is defined to be the dof
i and all dofs connected to it (all j for which aij 
= 0). We then replace both Aff and

Afc with modified versions, Âff and Âfc, respectively.

Aff is modified in two ways. Let Si denote the set of dofs that are strongly
connected to the dof i, let Ci denote the set of C-points in the neighborhood Ω(i), and
let Wi denote the dofs that are weakly connected to the dof i. (By strongly (weakly)
connected we mean that the magnitude of aij is greater (smaller) than some pre-
defined threshold. A common choice is that if the magnitude of aij is less than θ times
the largest magnitude of all off-diagonal entries in the ith row, then j is considered to
be weakly connected to i.) Then we modify the row of Aff corresponding to the dof
i (which we will hereafter refer to as the ith row, regardless of the actual numerical
ordering) by

âii = aii +
∑
j∈Wi

aij ,(3.1)

âi,j =

{
0, j ∈Wi,
ai,j , j ∈ Si.(3.2)
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For j ∈ Wi we replace the jth row of Aff by a zero row and then place a 1 in
column j and −1 in column i. For all other rows of Aff , i.e., for j ∈ Si, we zero out
the off-diagonal entries, and replace the diagonal entry ajj with

âjj = −
∑
k∈Ci

aj,k.

The block Afc is modified to Âfc by zeroing the jth row for j ∈Wi.

Once the modified blocks Âff and Âfc are computed, the entries of the ith row
of the interpolation matrix P are determined by taking the entries of the ith row of
the matrix

−
(
Â−1
ff Âfc

)
.

4. Interpolation in AMGe. For AMGe a similar description of the interpola-
tion is easily given. In this setting, the neighborhood Ω(i) is defined naturally as the
union of all finite elements having i as a vertex (Figure 4.1). In the figure, the set
Ω(i) consists of all vertices in the shaded region, including i (the open circle in the
center). The shaded region consists of the six triangular finite elements having i as
a vertex. Members of Ωc(i) are indicated by the square vertices. Since AMGe gives
us access to the individual element stiffness matrices, we may create a neighborhood
matrix AΩ(i) simply by summing together all the individual element stiffness matrices
of the elements in the neighborhood. In AMGe the interpolation operator for the
dof i is determined by solving a constrained min-max problem, that is, by finding
interpolation coefficients that minimize a certain measure from finite element theory.
The solution to the min-max problem can be computed in several ways, one of which
fits into the framework we are developing here. We partition the neighborhood matrix
into the rows and columns associated with the fine dofs in the neighborhood and the
rows and columns associated with the coarse dofs, as

AΩ(i) =

(
Aff Afc
∗ ∗

) } Ω(i) \Ωc(i),
} Ωc(i).

Again, our only interest is in the rows of the neighborhood matrix corresponding to
the fine dofs, including i. With this partitioning, it turns out that one way to solve
the min-max problem is to take, as the coefficients for the interpolation operator for
i, the entries of the ith row of the matrix

−
(
A−1
ffAfc

)
.

It is useful to note that, unlike the classical AMG case, there is no need to modify
the matrix Aff prior to computing the interpolation coefficients. Essentially, this is
because the element stiffness matrices have built into them local versions of the null
space and near-null space of the operator; we do not need to make alterations to the
local matrices to ensure that these spaces are represented.

For many problems the AMGe method produces a superior interpolation and
results in good convergence rates [4]. In the remainder of this paper our goal is to
accomplish a superior interpolation without the knowledge (and hence, expense) of
the individual stiffness matrices.
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Fig. 4.1. The neighborhood of the fine dof i (large open circle).

5. Interpolation for element-free AMGe. The process we propose for build-
ing the interpolation operator is very similar to the processes described for AMG and
AMGe. Once again, we will proceed by defining a neighborhood of the fine dofs
and an associated neighborhood matrix. Let ψ be a set of fine dofs whose values we
wish to interpolate. We define Ω(ψ) to be the neighborhood of ψ, which includes the
coarse dofs that will be used to interpolate the dofs in ψ. The set of coarse dofs in
the neighborhood we denote Ωc(ψ).

Now, however, we define a third set of dofs:

ΩX (ψ) = {j∈/Ω(ψ) | aij 
= 0 for some i ∈ Ω(ψ)\Ωc(ψ)} .
That is, Ω(ψ) can be viewed as the interior of the set Ω(ψ) ≡ Ω(ψ) ∪ ΩX (ψ). Figure
5.1 gives an example of such a neighborhood.

We begin the construction of a neighborhood matrix by examining the rows of
the matrix A that correspond to the fine dofs in Ω(ψ); that is, we will be concerned
with the following partitioning of A:

A =




Aff Afc AfX 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




} Ω(ψ) \Ωc(ψ),
} Ωc(ψ),
} ΩX (ψ),
} everything else on grid.

5.1. Local (neighborhood) quadratic form. Our next task is to define a
matrix associated with ψ that yields a local version of the operator A, performing the
same function as does the neighborhood matrix in AMGe. To do this we first build
an extension mapping (matrix) E(ψ) that maps a vector defined on Ω(ψ) to Ω(ψ),

E(ψ) :

(
vf
vc

)
−→

 vf
vc
vX


 ,

using the relation

vX = EXf (ψ)vf + EXc(ψ)vc.

That is, the extension operator looks like

E =


 I 0

0 I
EXf (ψ) EXc(ψ)


 .
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χ χ

χ χ

χ

Fig. 5.1. The extended neighborhood Ω(ψ), including the fine dofs to be interpolated (solid
circles), the coarse interpolatory set Ωc(ψ) (squares), and the extension dofs (open circles marked
X ).

For now we will not be specific about the exact nature of the extension operator.
Rather, we will describe how it may be used to develop an interpolation formula, after
which we shall discuss desirable properties of the operator.

We construct a neighborhood matrix from the first block of rows of the partitioned
matrix

(
Âff , Âfc

)
= (Aff , Afc, AfX )


 I 0

0 I
EXf (ψ) EXc(ψ)




so that

Âff = Aff +AfXEXf (ψ) and Âfc = Afc +AfXEXc(ψ).

For any vector [vfvc ], consider its extension

v =


 vfvc
vX


 ,

where vX is given by vX = EXf (ψ)vf + EXc(ψ)vc. Let

v̂ =


 −A

−1
ff (Afcvc +AfXvX )

vc
vX




be the so-called harmonic extension of v|Ωc(ψ)∪ΩX (ψ) into Ω(ψ) \Ωc(ψ). That is, one
extends v, restricted to the “boundary” Ωc(ψ) ∪ ΩX (ψ), into the “interior” Ω(ψ) \
Ωc(ψ).

We use the vf that minimizes the difference v − v̂ in energy norm in the inter-
polation procedure. Since

v − v̂ =

 vf − (v̂)f

0
0


 ,

its energy norm is computable and equals

||v − v̂||2A = (vf − (v̂)f )
TAff (vf − (v̂)f )

= (vf +A−1
ff (Afcvc +AfXvX ))TAff (vf +A−1

ff (Afcvc +AfXvX )).
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Since Aff is positive definite, this implies that if we solve the equation

0 = Affvf + (Afcvc +AfXvX )
= (Aff +AfXEXf )vf + (Afc +AfXEXc)vc
= Âffvf + Âfcvc,

the minimization of ||vf−(v̂)f ||A is attained with zero minimum by vf = −Â−1
ff Âfcvc.

We can actually show (see Remark 7.1 and Lemma 7.1) that in the model finite
element case considered in section 7 the minimization procedure is equivalent to a
quadratic functional minimization involving Neumann assembled matrices, as in the
AMGe method (cf. [4]).

It is natural to ask whether Âff is invertible. If EXf = 0, there is no difficulty,

since then Âff = Aff . In general, if EXf is sufficiently small in norm, Aff+AfXEXf
will be invertible.

6. Examples of extension operators. We describe here four extension oper-
ators E that can be used to construct the interpolation operator in the element-free
approach. These are by no means all the useful extensions that we could concoct;
they form, however, a simple set of examples that will allow us to demonstrate the
efficacy of the method and its underlying philosophy.

The first we call the L2-extension because it is a simple averaging method. Given
v defined on Ω(i), we wish to extend it to vX , defined on ΩX (ψ). Suppose that iX is
an exterior dof, that is, a point from ΩX (ψ) whose value we wish to determine from
the values of the dofs in Ω(i). Let S = {j ∈ Ω(i) : aiX ,j 
= 0}; that is, S comprises
those dofs in Ω(i) to which the point iX is connected. It seems natural to consider
using a simple average over these dofs as the extension at iX . Thus, the extension
formula, for the dof iX , is given by

vX (iX ) =
1∑

j∈S
1

∑
j∈S
v(j).

A somewhat more sophisticated extension we call the A-extension because it is
a simple operator-induced method. The A-extension operator for the dof iX is given
by the formula

vX (iX ) =
1∑

j∈S
|aiX ,j |

∑
j∈S

(|aiX ,j |v(j)) .

It may be seen that in this case the extension to the exterior is a simple weighted
average of the values of the neighborhood dofs to which the exterior point is connected.
The weights in the average are given by the absolute values of the matrix coefficients.

The two methods just described share the property that they are computed point
by point. That is, the extension formulas for the dofs in ΩX (ψ) are determined
independently. A second feature shared by the methods is that if the neighborhood
vector v is constant, then the extended values are also constant and have the same
value as the entries of the neighborhood vector. This feature is clearly desirable for
many elliptic PDEs, where the constant vector is in the null space or near-null space
of the operator A.
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The third example we describe is based on the minimization of a quadratic func-
tional. Again, let v be a vector defined on Ω(i) that we wish to extend to ΩX (ψ). We
construct the extension to be that operator which produces vX that minimizes the
functional Q(vX ), where

Q(vX ) =
∑

iX∈ΩX (ψ)
j∈Ω(i)

|aiX ,j | (viX − vj)
2
.(6.1)

It is evident that, like the previous extension operators, if v is constant on Ω(i)
then the dofs in ΩX (ψ) will also have the same constant value. Unlike the previous
extension operators, which are determined one dof at a time, this is a “simultaneous”
extension, computing formulas for extending to all of the exterior dofs together. As
such, it is necessarily more expensive to compute. We also note that this extension,
and the interpolation it generates, is equivalent to the method recently proposed in [1].

A final example is given by minimizing the following “cut-off” quadratic func-
tional:

(θv)TAΩ(ψ)(θv) �→ min,

where Ω(ψ) ≡ Ω(ψ) ∪ ΩX (ψ) subject to vf , vc fixed. Here

θ =

[
I 0
0 θX

] } Ω(ψ),
} ΩX (ψ)

is a diagonal matrix. A good choice is a diagonal matrix θX formed from the vector

θX = −(AXX )−1 [AXf , AXc]
[
(1)f
(1)c

]
.

Here we used the blocks of A corresponding to its ΩX (ψ) rows.
It is easily seen that the extension mapping is actually defined as

vX = EXcvc + EXfvf

= −θ−1
X (AXX )−1 [AXf , AXc]

[
vf
vc

]
.

Note that this extension mapping is also a simultaneous extension operator and an
averaging one; i.e., if vc = (1)c and vf = (1)f , then vX = (1)X .

6.1. Classical AMG as an extension method. The interpolation method
of the classical AMG algorithm popularized by Ruge and Stüben [9] may be viewed
as an extension method. Here the neighborhood is just the dof to be interpolated
together with the dofs that will be used to compute the interpolated value. That is,
Ω(i) = {i} ∪ Ωc(i). The extended neighborhood then includes all fine dofs that are
connected to i:

ΩX (ψ) = {j ∈/Ω(i) : aij 
= 0} .
An A-extension is defined in the following manner. For each iX ∈ ΩX (ψ), set viX = vi
if iX is weakly connected to i. (Recall that in classical AMG, as developed for M -
matrices, the dof i is said to be strongly connected to the dof j if

−aij > θmax
k �=i

(−aik),



638 VAN EMDEN HENSON AND PANAYOT S. VASSILEVSKI

N

S

NW

SW SE

NE

EW

Fig. 6.1. The neighborhood of the fine dof i (large solid circle) for the stretched quadrilateral
element problem. The problem is semicoarsened; squares denote the coarse neighbors Ωc(i) while
the open circles are the exterior points ΩX (ψ).

where θ is a user-specified parameter, and weakly connected otherwise.) If iX is
strongly connected to i, the extension is defined by

viX =
1∑

j∈Ωc(ψ)

aiX ,j

∑
j∈Ωc(ψ)

aiX ,jvj .

6.2. An example of the extensions. A simple example should suffice to il-
lustrate these extension methods. Suppose the problem −Uxx − Uyy = f(x, y) is
discretized using a regular Cartesian grid of points making up the vertices of quadri-
lateral elements. Suppose further that the elements had dimension hx × hy where
hx � hy. As hy/hx → 0 the operator stencil tends toward

 −1 −4 −1
2 8 2
−1 −4 −1


 .

Since there is effectively no coupling between a given point and its neighbors to the
east or west, the appropriate choice is to semicoarsen, selecting every other line of
points with constant y-coordinate to be coarse points. Using the same logic, the
natural interpolation is to have each fine dof interpolated using only the values to the
north and south of it, each with equal weighting of 1/2. Consider the interpolation of
one point, i, shown in the center of its neighborhood in Figure 6.1. For either the L2-
or A-extensions, we might select Ω(i) = {i} ∪ Ωc(i), where, in this instance, Ωc(i) =
{N,S, SW,NW,SE,NE}. Then ΩX (ψ) = {W,E}. We see then that Aff = [8],
Afc = [ −4 −4 −1 −1 −1 −1 ], and AfX = [ 2 2 ]. For the A-extension it
is easy to compute the extension operators

EXc =
1

12

(
1 1 4 4
1 1 4 4

)
and EXf =

1

12

(
2
2

)
,

from which

Âff =

(
104

12

)
and Âfc =

1

3

( −11 −11 −1 −1 −1 −1 ) ,
which yields an interpolation operator

PA =
1

26

(
11 11 1 1 1 1

)
.
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We see that the values to the north and south are used in the interpolation with
weights 11/26 ≈ 0.423 and that the four points diagonally adjacent to i are all
weighted 1/26 ≈ 0.038. The ideal weights, of course, are 0.5 and 0, respectively,
so the interpolation weights computed by the A-extension method, while quite good,
are not perfect.

A similar calculation for the weights using the L2-extension yields the interpola-
tion operator

PL2 =
1

44

(
16 16 3 3 3 3

)
.

Here the dofs to the north and south are weighted 16/44 ≈ 0.364 while the diagonally
adjacent dofs are weighted by 3/44 ≈ 0.068. For this problem, then, the A-extension
is significantly better than the L2-extension.

By contrast, it is a straightforward calculation to show that classical AMG pro-
duces the interpolation operator

PAMG =
1

12

(
4 4 1 1 1 1

)
,

where the north and south dofs are weighted by 4/12 ≈ 0.333 and the diagonally
adjacent dofs are weighted by 1/12 ≈ 0.083; these weights are farther from the ideal
than the weights produced by either the A- or L2-extension.

Finally, consider the extension operator based on minimizing the “cut-off” quadratic
functional. The additional matrix blocks involved read

AXX =

[
8 0
0 8

]
,

AXf =

[
2
2

]
,

AXc =

[ −1 −1 −4 −4 0 0
−1 −1 0 0 −4 −4

]
.

The vector θX = −A−1
XX [AXf AXc][

(1)f
(1)c

] = (1)X . This is seen as follows:

AXf (1)f = 2(1)X , AXc(1)c = −10(1)X ,
and hence

AXf (1)f +AXc(1)c = −8(1)X ,
which implies

θX = −A−1
XX (AXf (1)f +AXc(1)c) = −1

8
[−8(1)X ] = (1)X .

That is, the diagonal matrix θ is the identity and hence the extension matrices then
read

EXf = −A−1
XXAXf = − 1

4

[
1
1

]
,

EXc = −A−1
XXAXc = 1

8

[
1 1 4 4 0 0
1 1 0 0 4 4

]
.
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The modified matrices Âff and Âfc take the form

Âff = Aff +AfXEXf = 8− [2, 2] 14

[
1
1

]

= 7,

Âfc = Afc +AfXEXc = [−4,−4,−1,−1,−1,−1] + [2, 2] 18

[
1 1 4 4 0 0
1 1 0 0 4 4

]

= [−4,−4,−1,−1,−1,−1] + [ 12 ,
1
2 , 1, 1, 1, 1]

= [− 7
2 ,− 7

2 , 0, 0, 0, 0].

That is, the interpolation coefficients are the “perfect” ones (corresponding to semi-
coarsening):

(
(−Âff )−1Âfc

)
i
=

[
1

2
,
1

2
, 0, 0, 0, 0

]
.

7. Two-grid analysis for a model finite element problem. Before pro-
viding numerical results, we present an analysis of the quality of the “element-free
AMGe” interpolation. That is, we prove an “approximate” harmonic property of the
interpolation mapping and show that it provides a partition of unity. Specifically, we
assume that the problem is a standard finite element discretization of a second-order
elliptic problem

a(u, v) ≡
∫

a(x)∇u · ∇v dx = (f, v), v ∈ V,

where V is a finite element space of piecewise linear functions over quasi-uniform
triangular elements that cover a given two-dimensional polygonal domain. For sim-
plicity, we assume that homogeneous Neumann boundary conditions are imposed and
that (f, 1) = 0 (to ensure solvability).

Let us denote, for any element e,

"(e) = sup
x∈e

max
ξ∈R2

ξTa(x)ξ

ξT ξ
·(7.1)

In the following, we assume that the differential operator coefficients are essen-
tially constant in each element, so that "(e) gives rise to the local ellipticity constant.

Further, we assume (only for simplicity) that the neighborhood Ω(i) ≡ Ω(i) ∪
ΩX (i) for any fine dof i is formed by a union of triangles that share dof i as a common
vertex. Thus we will use i instead of ψ to denote the neighborhoods (Ω(i), ΩX (i), and
Ωc(i)) and the extension mappings. In particular, we denote Ei = [EXf , EXc] where
for brevity EXf = EXf (i) and EXc = EXc(i). A closer look at the analysis to follow,
however, shows that it applies as well to more general (i.e., larger) neighborhoods.

In what follows, for any subdomain (union of triangles) G, we let aG(., .) denote
the bilinear form a restricted to G. The corresponding subdomain matrix (assem-
bled from the individual element matrices Ae) will be denoted by ANG . We omit the
superscript N when there is no confusion between ANG and AG, the submatrix of
the original matrix A (corresponding to G). Note that in the latter case AG cor-
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on
∂(G ∪ {elements neighboring G}).
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For this discussion we assume that Ei, the local extension mapping used to build
the interpolation coefficients, is based on averaging, although no specific rule is as-
sumed. We do, however, assume that E = E(i) has the particular form


 I 0

0 I
0 EXc


 }Ω(i),}Ωc(i),
}ΩX (i).

That is, EXf = 0 and Ei = [0, EXc].
Remark 7.1. The general case of Ei = [EXf , EXc] can be reduced to the partic-

ular case above by using the modified extension mapping Êi = [0, ÊXc], where

ÊXc = EXf
(
−Â−1

ff Âfc

)
+ EXc.

To see this, recall that Âff = Aff + AfXEXf and Âfc = Afc + AfXEXc, and note
that the modified extension mapping extends a constant vector defined on Ωc(i) to be
the same constant on ΩX (i), that is,

ÊXc(1)c = −EXf Â−1
ff Âfc(1)c + EXc(1)c

= EXf (1)f + EXc(1)c
= (1)X .

Here we have used the fact that since (for the model second-order elliptic problem)
Aff (1)f + AfX (1)X + Afc(1)c = 0, then Aff (1)f + AfX (EXf (1)f + EXc(1)c) +
Afc(1)c = 0. That is, Âff (1)f + Âfc(1)c = 0, implying that (1)f = −Â−1

ff Âfc(1)c.

We still must show that the modified extension mapping Êi leads to the same
interpolation as does Ei, i.e., that

−A−1
ff

(
AfX ÊXc +Afc

)
= −Â−1

ff Âfc.

For this we observe that

−A−1
ff (AfX ÊXc +Afc) = −A−1

ff

[
AfX
(
EXf (−Â−1

ff Âfc) + EXc
)
+Afc

]

= −A−1
ff

[
AfXEXc +Afc −AfXEXf Â−1

ff Âfc

]

= −A−1
ff

[
Âfc −AfXEXf Â−1

ff Âfc

]

= −A−1
ff

[
Âff −AfXEXf

]
Â−1
ff Âfc

= −A−1
ff (Aff ) Â

−1
ff Âfc

= −Â−1
ff Âfc.

Consider the minimization problem

find vf such that


 vf

vc
Eiv



T

AN
Ω(i)


 vf

vc
Eiv


 = inf

w: wc=vc
wX=Eiw

aΩ(i)(w, w).(7.2)

Thus we seek vf , the value of w on Ω(i) \ Ωc(i), which minimizes the quadratic form
aΩ(i)(w, w) when the values of w are fixed at the coarse points and are “slave” at the
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exterior points (ΩX (i)); that is, they are extrapolated from the interior Ω(i) and the
coarse points Ωc(i) by Eiw.

Lemma 7.1. The solution to the minimization problem (7.2) produces the same
interpolation coefficients as does element-free AMGe, namely, those given by
−A−1

ff (AfXEXc+Afc). That is, the minimizer is given by wf = vf ≡ −A−1
ff (AfXEXc+

Afc)vc.
Proof. Consider the Neumann matrix

AN
Ω(i)

=




Aff Afc AfX
Acf ANcc ANcX
AXf ANXc ANXX


 .

We use the superscript N for the blocks which differ from the corresponding blocks
of AΩ(i), the principal submatrix of the original matrix A corresponding to the sub-

domain Ω(i). Note that the “N” blocks are not accessible (available) and not used
in our algorithm. We have Eiv|ΩX (i) = EXcvc. Hence, aΩ(i)(w, w) for wc = vc and

wX = Eiw|ΩX (i) leads to the following matrix expression:

aΩ(i)(w, w) =


 wf

vc
EXcvc



T



Aff Afc AfX
Acf ANcc ANcX
AXf ANXc ANXX




 wf

vc
EXcvc




=

[
wf
vc

]T [ Aff Afc +AfXEXc
Acf + ETXcAXf ANcc +ANcXEXc + ETXc(A

N
Xc +ANXXEXc)

]

×
[
wf
vc

]
.

Minimizing this symmetric positive semidefinite quadratic form with respect to wf is
equivalent to solving the equation

Affwf + (Afc +AfXEXc)vc = 0,

which is the same equation that specifies vf in the element-free AMGe interpolation
procedure.

In the next lemma we will remove the constraint on v being fixed at the ΩX (i)
points.

Lemma 7.2. The following quadratic forms are spectrally equivalent:

q1(vc, vc) ≡ inf
v: v|Ωc(i)=vc

aΩ(i)(v, v), and q2(vc, vc) ≡ inf
v: vc fixed
vX=Eiv

aΩ(i)(v, v).

That is, there exists a positive constant η such that

q1(vc, vc) ≤ q2(vc, vc) ≤ η q1(vc, vc) for all vc.

Proof. We show the proof for two-dimensional domains. For other domains, we
must scale " by the local mesh size appropriately; otherwise, the proof remains the
same. It suffices to show that the two quadratic forms have the same null-space. The
null-space of q1 is vc = const and the null-space of q2 is the same as that of aΩ(i)(v, v)
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with v : vc = const and Eiv = const on ΩX (i). Note that aΩ(i)(v, v) = 0 implies vf
is the same constant as vc. Then Eiv is also the same constant, since it is an averaging
operator based on the values of vc and vf . Hence the forms q1 and q2 both vanish
only for constant vc. In order to show that the constant η is bounded independently
of Ei, one first easily sees that

aΩ(i)(v, v) ≤ C
∑
e⊂Ω(i)

"(e)
∑
l, k∈e

(v(l)− v(k))2.

The constant C depends only on the number of points used in the averaging procedure
(Ei), i.e., it is bounded by the total number of coarse points Ωc(i) (plus the interior
point i). The dofs l and k in the summation are either coarse dofs or i, and "(e) is
defined in (7.1) to be the maximal value of the local ellipticity bound associated with
the original elliptic operator coefficient a(x). More specifically, for each iX ∈ ΩX (i)

v(iX ) ≡ (Eiv)(iX ) =
∑

k∈Ωc(i)∪{i}
αiX , kv(k),

where
∑

k∈Ωc(i)∪{i}
αiX , k = 1, and αiX , k ≥ 0.

Then, for any j ∈ Ωc(i) ∪ {i},

(v(iX )− v(j)) =
∑

k∈Ωc(i)∪{i}
αiX , k(v(k)− v(j)),

and hence

(v(iX )− v(j))2 ≤
∑

k∈Ωc(i)∪{i}
α2
iX , k

∑
k∈Ωc(i)∪{i}

(v(k)− v(j))2

≤
∑

k∈Ωc(i)∪{i}
(v(k)− v(j))2.

As a result we see that, for vX = Eiv,

q2(vc, vc) ≤ aΩ(i)(v, v)

≤ C
∑
e⊂Ω(i)

"(e)
∑
l,k∈e

(v(l)− v(k))2

≤ C

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)

∑
e⊂Ω(i)

"(e)
∑

k,j∈e∩(Ωc(i)∪{i})
(v(k)− v(j))2.

Finally, since vf is arbitrary on the right-hand side of this inequality,

q2(vc, vc) ≤ C

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)
inf
vf


 ∑
e⊂Ωc(i)

"(e)
∑

k,j∈e∩(Ωc(i)∪{i})
(v(k)− v(j))2


 .
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It is also true that

q1(vc, vc) � inf
v: vc fixed


 ∑
e⊂Ω(i)

"(e)
∑
l, k∈e

(v(l)− v(k))2


 .

This shows that η can be chosen bounded independently of the actual averaging
extension mapping Ei.

The above estimates involve the factor

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)
.

Whether it is large or small depends on the selection of the coarse grid (the coarse
grid reflects the form of the neighborhood Ω(i)), which we do not consider in the
present paper.

Then the following corollary, involving the element-free AMGe interpolated vector
Pvc, is proved in the same way as Lemma 7.2.

Corollary 7.3. Consider the extended neighborhood of i, Ω̂(i) = ∪{e, e ⊂
Ω(i) or e ⊂ Ω(j) for all j ∈ ΩX (i)}. There is a constant κ = κΩ̂(i) > 0, locally
estimated, such that the following bound holds:

aΩ(i)(Pvc, Pvc) ≤ κ inf
w: wc=vc

aΩ̂(i)(w, w).

Proof. Let v be defined on Ω̂(i) as follows:

v(k) =




(Pvc)(k), k ∈ Ω(i),
vc(k), k is a coarse dof outside Ω(i),
(Ejv)(k), k ∈ ΩX (j), for some j ∈ ΩX (i).

We see that v at every fine dof k in Ω̂(i) is an average value of some neighboring coarse

dofs from Ω̂(i). Hence, in the same way as in the proof of Lemma 7.2, we establish
the inequality

aΩ̂(i)(v, v) ≤ κ inf
w: wc=vc

aΩ̂(i)(w, w).

Since aΩ(i)(Pvc, Pvc) ≤ aΩ̂(i)(v, v), the desired result follows.

For each fine dof i, define Z(i) to be the number of overlapping domains on Ω̂(i),
that is, the number of domains Ω̂(j) such that Ω̂(j) ∩ Ω̂(i) 
= ∅. Then we may state
the following theorem.

Theorem 7.4. The element-free interpolation mapping P exhibits the following
approximate harmonic property:

a(Pvc, Pvc) ≤ κ inf
w: wc=vc

a(w, w),

where the constant κ = max
i=fine dof

κΩ̂(i)Z(i), and the κΩ̂(i) are the local constants from

Corollary 7.3.
Proof. The proof simply follows from the fact that

a(Pvc, Pvc) ≤
∑

i=fine dof

aΩ(i)(Pvc, Pvc)

and by summation of the local estimates from Corollary 7.3.
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Another important property of the element-free interpolation mapping P is that
it partitions unity, as we show in the following theorem.

Theorem 7.5. P provides a partition of unity. Specifically, the row sums of P
are 1.

Proof. Let vf = Pvc be given by vf =
∑
ic∈Ωc(i)

αi, icvc(ic). Assume that vc(ic) =

1 on Ωc(i). Now, P uses the formula that minimizes (7.2) and the minimum (zero) is
achieved for Eiv(j) = 1 at ΩX (i) and vf = 1. That is, we find that

1 =
∑

ic∈Ωc(i)

αi, ic ,

which is the desired unity row-sum property of P .
Remark 7.2. Theorems 7.4 and 7.5 are the main goals of many two-grid conver-

gence analyses and they imply convergence of the respective two-grid AMG methods,
cf., e.g., [14], [8], [13], and [7].

8. Numerical experiments. We describe here several sets of numerical ex-
periments designed to test the efficacy of the element-free AMGe methods described
above. For each of several problems, we apply a set of interpolation rules within an
AMG code. The problems are then solved using a CG solver, preconditioned with
one V-cycle of AMG.

The interpolation rules are
• the AMGe rule [7] for the finite element problems;
• three element-free AMGe rules from section 6:

1. L2-extension;
2. A-extension;
3. (only for scalar PDE) the simultaneous extension based on minimizing

the quadratic functional (6.1) described in section 6.
For system problems the unknowns are split into physical variables. That is, for scalar
problems the rule is as described in section 6, while for two-dimensional elasticity, with
physical variables u and v (displacement in the x- and y-directions, respectively), we
perform the extensions (and associated interpolation) of exterior dofs of type u using
only neighborhood dofs of type u; similarly, the extension to exterior dofs of type v
are carried out using neighborhood dofs of type v; this applies both to L2- and A-
extensions. The local neighborhood about a point is defined by the sparsity pattern
of the matrix about that point, and the averaging involves only dofs from the sparsity
pattern set S (see section 6).

8.1. An elliptic problem on a triangular element mesh. We apply the
various interpolation rules to a second-order elliptic PDE

−∇ · (A(x, y)∇u) = f(x, y) on G,(8.1)

u(x, y) = g(x, y) on ∂G,(8.2)

where G is the unit square. The matrix of diffusion coefficients includes functions with
relatively benign characteristics—there are both spatial variability and jump discon-
tinuity in the coefficients, but the jumps are of relatively small magnitude and the
variation is mild. The discretization is by a finite element method on an unstructured
triangular mesh. The coarsening algorithm is one of element agglomeration. That
is, the coarse grids are the vertices of coarse elements produced by an agglomeration
algorithm proposed in [7]. Figure 8.1 displays the coarsening sequence for a typical
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Fig. 8.1. Sequence increasingly coarse elements, formed by element agglomeration.

problem. Here the fine grid comprises 1600 elements, the first coarse grid has 382 el-
ements, and the remaining grids have 93, 33, 15, 7, 3, and 1 elements. Table 8.1 gives
the coarsening details for four different versions of this problem. It may be seen that
the number of elements decreases by about 75% at each coarsening for the first few
coarsenings, after which it decreases by about 50% per level. The number of nonzero
entries in the matrix decreases by approximately 50% per level, while the number of
dofs tends to decrease by 50–60% with each successive level.

For each of the four interpolation rules, the problem is solved using a precon-
ditioned CG method, where the preconditioning consists of a single V(1,1)-cycle of
AMG, with a Gauss–Seidel smoother. The iteration is run until the residual is less
than 10−8 in norm. We report the results in Table 8.2. For each problem size, we
display, for each interpolation rule, the number of preconditioned CG iterations re-
quired to achieve the desired residual size and ", the average convergence factor over
the iterations.
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Table 8.1
Coarsening history for the problem −∇·A(x.y)∇u = f on an unstructured triangular fine grid.

For each level of each problem size, “nz” is the number of nonzero entries in the operator matrix,
“dofs” gives the number of degrees of freedom, and “elts” gives the number of finite elements in the
agglomerated grid.

No. of elements
Level 25600 6400 1600 400

0 nz 90321 22761 5781 1491
dofs 13041 3321 861 231
elts 25600 6400 1600 400

1 nz 32898 9540 2602 1094
dofs 4108 1152 330 114
elts 6013 1427 382 76

2 nz 14305 4361 1397 470
dofs 1507 451 143 50
elts 1489 374 93 26

3 nz 7193 2098 634 199
dofs 643 198 64 23
elts 392 117 33 11

4 nz 3458 975 304 88
dofs 302 91 32 12
elts 158 47 15 5

5 nz 1580 453 126 36
dofs 140 45 16 6
elts 70 22 7 2

6 nz 714 188 46 16
dofs 68 22 8 4
elts 33 10 3 1

7 nz 274 84 16
dofs 30 12 4
elts 14 5 1

8 nz 120 30
dofs 16 6
elts 7 2

9 nz 42 16
dofs 8 4
elts 3 1

10 nz 16
dofs 4
elts 1

Table 8.2
CG convergence results; unstructured triangular fine grid; second-order elliptic problem;

V (1, 1)-cycle MG, Gauss–Seidel smoother used as preconditioner.

Interp. rule 400 elts 1600 elts 6400 elts 25600 elts

AMGe iterations 14 16 21 23
� 0.115 0.172 0.252 0.289

A-extension iterations 13 15 19 20
� 0.118 0.158 0.218 0.247

L2-extension iterations 13 16 19 21
� 0.119 0.161 0.227 0.249

Quadratic funct. iterations 13 15 19 19
min. � 0.105 0.152 0.222 0.231
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Examination of the results reveals that all three of the extension methods, A-
extension, L2-extension, and quadratic functional minimization, perform at least as
well on this problem as does AMGe. In some cases the performance of the extension
methods is marginally better than AMGe. The amount of work entailed for the A-
extension and the L2-extension methods is comparable to that of AMGe, provided that
the neighborhoods are selected to be of comparable size to the element neighborhoods
(which is the case in these experiments). For the quadratic functional minimization
the work is somewhat greater but still comparable. The advantage of the element-
free methods is, of course, that there is no requirement to have the actual individual
stiffness matrices that are required in AMGe. For this experiment this represents a
considerable savings in storage.
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Fig. 8.2. The thin-beam elasticity problem domain. Homogeneous Dirichlet boundary conditions
are applied at x = 0.

8.2. Two-dimensional elasticity: The thin beam. We consider next the
two-dimensional plane-stress elasticity problem on a cantilevered beam, fixed at one
end (see Figure 8.2). The domain of the problem is G = (0, 1) × (0, d) with d ≤ 1.
For d� 1 this is the thin beam problem. The problem is

uxx +
1− ν

2
uyy +

1 + ν

2
vxy = f1,

1 + ν

2
uxy +

1− ν

2
vxx + vyy = f2,

where u and v are displacements in the x and y directions, respectively. This can
be a difficult problem for standard multigrid methods, especially when the domain is
long and thin [6]. The problem is discretized using uniform square finite elements of
size h. Nodal coarsening is used, with the coarse nodes being the vertices of elements
created by the agglomeration algorithm from [7]. After certain levels of coarsening
the algorithm agglomerates only along the x direction.

We present results in both the thick beam (d = 1.0) and thin beam (d = 0.05)
cases. In both cases we use ν = 1/3. For each case we present results for three
sizes of the discretization parameter: h = 0.05, 0.025, and 0.0125 for the thick beam
and h = 0.025, 0.0125, and 0.00625 for the thin beam. The coarsening histories of
the agglomeration algorithm are shown in Table 8.3. Table 8.4 shows the results
of the experiments for the beam problem. As in section 8.1, preconditioned CG is
used as the solver, with a single V(1,1)-cycle of AMG as the preconditioner, with a
Gauss–Seidel smoother. For this problem we show the number of iterations required
to achieve a residual norm less than 10−8, and also the convergence factor of the final
iteration. For this problem we do not implement the quadratic minimization method
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Table 8.3
Coarsening history; structured rectangular fine grid; two-dimensional elasticity, d = 1.

Thick beam d = 1.0 Thin beam d = 0.05
Level h = 0.050 h = 0.025 h = 0.0125 h = 0.025 h = 0.0125 h = 0.00625

0 nz 14884 58564 232324 3388 12532 48100
dofs 882 3362 13122 246 810 2898

1 nz 10440 40880 161760 1664 7328 30656
dofs 264 924 3444 88 252 820

2 nz 4128 17248 70488 784 3744 10152
dofs 84 264 924 44 132 252

3 nz 1000 4956 19056 384 1152 3816
dofs 32 94 284 24 48 132

4 nz 256 1404 6128 144 384 1152
dofs 16 38 104 12 24 48

5 nz 64 324 1668 64 144 384
dofs 8 18 42 8 12 24

6 nz 144 576 64 144
dofs 12 24 8 12

7 nz 64 144 64
dofs 8 12 8

8 nz 64
dofs 8

Table 8.4
CG convergence results; structured rectangular fine grid; two-dimensional elasticity, d = 1,

V (1, 1)-cycle MG, Gauss–Seidel smoother used as preconditioner.

Thick beam, d = 1.0
Interp. rule h = 0.050 h = 0.025 h = 0.0125

AMGe iterations 16 18 20
� 0.172 0.206 0.234

A-extension iterations 12 12 12
� 0.099 0.098 0.097

L2-extension iterations 13 13 13
� 0.101 0.102 0.104

Thin beam, d = 0.05
Interp. rule h = 0.025 h = 0.0125 h = 0.00625

AMGe iterations 17 18 19
� 0.180 0.198 0.22

A-extension iterations 20 23 22
� 0.227 0.286 0.280

L2-extension iterations 18 20 27
� 0.203 0.243 0.254

described in section 6. That method is for scalar problems, while this problem is a
system of PDEs. We use the AMGe method described in [4] and compare it with the
A- and L2-extension methods described above. Our expectation is that AMGe should
outperform the element-free methods, at least on the thin beam problem; this is the
problem for which AMGe was originally developed. We observe, however, that for
the thick beam problems the element-free methods both outperform AMGe. First,
we note that it takes fewer iterations to reach the tolerance. It is also apparent that
the element-free methods are more scalable, in that the number of iterations does not
grow with the problem size. The AMGe method requires more iterations for larger
problems.
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For the thin beam problem, we observe the results we naturally expect. That
is, AMGe outperforms the element-free methods, requiring fewer iterations. Further,
AMGe appears to be more scalable on this problem than the extension methods. The
L2-extension method exhibits a distinct lack of scalability as the problem grows larger.

9. Conclusions. In this paper we propose a general rule for building interpo-
lation weights in AMG, thus extending the applicability of AMG to more general
settings than the traditional M -matrix case. The applications include elliptic prob-
lems on unstructured finite element grids, where both scalar problems and systems
(like elasticity) are considered. The element-free AMGe method seems as competitive
as the AMGe methods but entails much less overhead. The element information and
the element matrices, in particular, are essential for the AMGe methods but are not
required for element-free AMGe. If we assume more information is available (such
as the rigid body modes in the case of elasticity) it may be incorporated into the
construction of the extension mappings. Thus element-free AMGe can be made to re-
produce the extra modes in the interpolation from their coarse values. This property
is important in the AMG methods for elasticity problems (cf. [12]), and incorporating
it into element-free AMGe is a subject of ongoing research.

REFERENCES

[1] A. Brandt, Generally highly accurate algebraic coarsening, Electron. Trans. Numer. Anal., 10
(2000), pp. 1–20.

[2] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic Multigrid (AMG) for Automatic
Multigrid Solutions with Application to Geodetic Computations, Report, Inst. for Compu-
tational Studies, Fort Collins, CO, 1982.

[3] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, UK, 1985, pp. 257–284.

[4] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation
(AMGe), SIAM J. Sci. Comput., 22 (2000), pp. 1570–1592.

[5] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones, Coarse-grid selection for
parallel algebraic multigrid, in Proceedings of the Fifth International Symposium on Solving
Irregularly Structured Problems in Parallel, Lecture Notes in Comput. Sci. 1457, Springer-
Verlag, New York, 1998, pp. 104–115.

[6] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge, Robustness and scalability of algebraic
multigrid, SIAM J. Sci. Comput., 21 (2000), pp. 1886–1908.

[7] J. E. Jones and P. S. Vassilevski, AMGe based on element agglomeration, SIAM J. Sci.
Comput., 23 (2001), pp. 109–133.
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Abstract. In this paper, we present three-grid Fourier analysis for multigrid methods. Due to
the recursive structure of a multigrid iteration, this analysis can be deduced from the well-known
two-grid Fourier analysis. The coarse grid correction part of multigrid algorithms can be more
accurately evaluated with the three-grid analysis. We apply the analysis to several scalar equations
and discretizations with an emphasis on problems with a multigrid coarse grid correction difficulty
like upwind discretizations of the convection diffusion equation. The main focus lies on possible
improvements by carefully chosen Galerkin operators and/or by an additional acceleration with
restarted GMRES, GMRES(m). Numerical test calculations validate the theoretical predictions.
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1. Introduction. Fourier one-grid (smoothing) and two-grid analysis [2, 20, 21]
are well-known tools in the multigrid community. The two-grid analysis is the basis
for classical asymptotic multigrid convergence estimates [20, 21]. Moreover, it is the
main analysis tool for nonsymmetric problems.

For several multigrid components or cycle variants, however, the asymptotic
multigrid convergence factor cannot be predicted accurately by the Fourier two-grid
factors. For example, one may use different discretizations on different grids. It can
be beneficial to replace the direct 2h-, 4h-, etc. discretizations on the coarser grids by
other discretizations. The most prominent example of this kind is the Galerkin coarse
grid operator. As the entries of the Galerkin coarse grid discretizations are in general
not known in advance, they may not be favorable for the smoothing method applied.
Investigations of the two-grid iteration cannot display possible smoothing difficulties
on coarser grids induced by the different discretizations, since the direct solution of
the 2h-problem is assumed. Furthermore, if one is interested in the influence on the
asymptotic convergence factor of V -cycles versus W -cycles, of different numbers of
pre- and postsmoothing, or of different smoothers on different grids, one needs to
consider at least three grids.

To investigate these additional phenomena we carry out a three-grid Fourier anal-
ysis, which is usually sufficient to obtain a comprehensive insight into a multigrid
method. In section 2, we outline the theoretical background of the three-grid analy-
sis. Instead of (4 × 4)-blocks for the two-grid iteration matrix [2, 20, 21, 24] in the
case of standard grid coarsening, the three-grid iteration matrix is transformed into
a (16× 16)-block matrix by Fourier analysis in the two-dimensional scalar case. This
means that the calculation of three-grid asymptotic convergence factors is reduced to
the calculation of the spectral radii of certain (16× 16)-matrices.

In section 3, we apply the three-grid analysis to several equations and multigrid
components. We focus on singular perturbation problems like the convection diffu-
sion equation discretized by first or higher order difference schemes and the rotated
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anisotropic diffusion equation. For these problems a variety of nonstandard coarse
grid discretizations is evaluated. Some of them are discussed in [26]. For example,
Galerkin coarsenings based on the transfer operators from [7] and [27] are analyzed.

This analysis can be generalized to the situation where multigrid is a precondi-
tioner for GMRES(m) [15] in the same way as it was done in [24] for the two-grid
analysis. The different multigrid algorithms are not only evaluated as a solver but
also as a preconditioner for GMRES(m).

2. Fourier analysis of multigrid. In this section we introduce the three-grid
Fourier analysis of multigrid as a solver and as a preconditioner for GMRES(m); see
sections 2.3 and 2.4, respectively. We restrict ourselves to the two-dimensional scalar
case and standard coarsening, i.e., the grid coarsening is performed by doubling the
mesh size in each direction, in order to keep the presentation as simple as possible.
However, the generalization to three dimensions or to systems of equations is obvious
but somewhat more technically involved, as explained in Remark 2. Other coarsening
techniques like semicoarsening can be treated in a similar way by some appropriate
changes concerning the coarse grid correction in the multigrid process.

2.1. Notation and basic principles. The rigorous theoretical foundations for
the Fourier analysis of multigrid, which is also commonly called local mode analysis,
can be found, for example, in [4] and [18]. Basically, the local mode analysis is valid
if the influence of a domain boundary is negligible [4]. Often, this requirement can be
fulfilled by performing some extra local relaxations near and at the boundary.

For a k-grid cycle, we consider k discrete linear operators Ln (n = 1, . . . , k) with
constant coefficients on k infinite grids Gn with mesh sizes hn = 2k−nh:

Lnun(x) = fn(x)
(2.1)

on Gn := {x = hnj = (hnjx, hnjy) = (x, y) with j ∈ Z
2} .

Obviously, the grids become finer with an increasing index n, and Lk is defined on
the finest grid with mesh size hk = h. In stencil notation [20], (2.1) looks like

Lnun(x) =
∑
κ∈J

(ln)κun(x+ κhn) = fn(x) on Gn(2.2)

with stencil coefficients (ln)κ and a finite index set J ⊂ Z
2. For compact 9-point

stencils [L] we have, for example,

J := {κ = (κx, κy) with κx, κy ∈ {−1, 0, 1} } and [L] =


 l−1,1 l0,1 l1,1
l−1,0 l0,0 l1,0
l−1,−1 l0,−1 l1,−1


 .

From (2.2), it can be deduced that the continuous eigenfunctions, the Fourier com-
ponents, of the fine grid operator Lk are given by

φ(θ,x) := eixθ/h = eijθ = ei(jxθx+jyθy) with x ∈ Gk ,

where the Fourier frequencies θ = (θx, θy) vary continuously in R
2. The corresponding

eigenvalues or Fourier symbols of Lk read as

L̃k(θ) =
∑
κ∈J

(lk)κe
iθκ .(2.3)
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On Gk, we introduce the scaled Euclidean inner product [20]

〈vk, wk〉 := lim
m→∞

1

4m2

∑
|κ|≤m

vk(κh) wk(κh) with

|κ| = max{|κ1|, |κ2|} and vk, wk : Gk −→ C,

leading to a norm ||vk|| :=
√〈vk, vk〉. Note that the Fourier components are orthonor-

mal with respect to this inner product [20]. We define the space of bounded infinite
grid functions by

F(Gk) := {vk | vk( . ) : Gk −→ C with ||vk|| <∞}.
For each vk ∈ F(Gk), there exists a Fourier transformation, i.e., each vk can be

written as a linear combination of Fourier components [4, 11, 23]. Fourier components

with |θ̂| := max{|θ̂x|, |θ̂y|} ≥ π are not visible on Gk, since they coincide with compo-

nents eijθ, where θ = θ̂(mod 2π), due to the periodicity of the exponential function.
Therefore, the Fourier space

F := span{eijθ : θ ∈ Θ = (−π, π]2}(2.4)

contains any bounded infinite grid-function.
It is convenient to explain the three-grid analysis (or, more generally, the k-

grid analysis) by a recursive adaptation of the two-grid case. The discrete fine grid
solution uk and a current approximation ui can be represented by linear combinations
of Fourier components eijθ ∈ F because of F(Gk) ⊂ F . The same holds for the error
vi−1 = ui−1 − uk before and vi = ui − uk after the ith k-grid cycle. It can be easily
established by induction that the error transformation by a k-grid cycle is given by
the following recursion [10, 20, 21]:

M1
2 = Sν22 K

1
2S

ν1
2 = Sν22 (I2 − P 2

1 (L1)
−1R1

2L2)S
ν1
2 ,(2.5)

M1
�+2 = Sν2�+2K

1
�+2S

ν1
�+2

(2.6)
= Sν2�+2(I�+2 − P �+2

�+1 (I�+1 − (M1
�+1)

γ)(L�+1)
−1R�+1

�+2L�+2)S
ν1
�+2

for ! = 1, . . . , k − 2 ,

where the sub- and superscripts of the different operators are abbreviations for the
related mesh sizes of the k involved grids. Sn is a smoothing operator on Gn, ν1 and
ν2 indicate the number of pre- and postsmoothing iterations, K1

n is the coarse grid
correction operator, In is the Gn-identity, Ln is the approximation of Lk on a coarse
grid Gn, Pnn−1 and Rn−1

n are transfer operators from coarse to fine grids and reversed,
and γ is the cycle index (for example, γ = 1 denotes a V -cycle and γ = 2 denotes a
W -cycle). Of course, it is possible to vary the number of pre- and postsmoothing steps
on the different grids leading to ν1(n) and ν2(n). Ln−1 may be defined by Galerkin
coarsening, Ln−1 = Řn−1

n LnP̌
n
n−1, or simply by a straightforward application of Lk

on Gn−1. Note that the transfer operators in the Galerkin process do not necessarily
have to match with Rn−1

n and Pnn−1 from the multigrid iteration.
For the coarse grid discretization operators, the prolongation, and the restriction,

similar stencil notations as in (2.2) exist. The corresponding Fourier symbols, denoted
by a tilde ,̃ are calculated as in (2.3) with a suitable index set J related to the
operator under consideration; see (2.8). A detailed representation of the Fourier
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symbols for many prolongations, restrictions, and discretizations is given, for instance,
in [10, 20, 21, 23].

In the following, we often use a more instructive notation for the operators from
(2.5), (2.6), the related Fourier symbols, and the infinite grids Gn. For example, their
indices are replaced by the corresponding mesh sizes hn = 2k−nh. For example, we
write Ph2h, P̃h2h(θ), and Gh instead of P kk−1, P̃

k
k−1(θ), and Gk, respectively; see, e.g.,

(2.7), (2.8), or (2.11). Some basic elements of the three-grid analysis already appear
in the two-grid analysis. Here, the sub- or superscript 2g always stands for two-grid.
The index 3g is used accordingly for three-grid in section 2.3.

2.2. Two-grid Fourier analysis. If standard coarsening is selected, it is conve-
nient to divide the Fourier space (2.4) into the following four-dimensional subspaces.

Definition 2.1 (2h-harmonics). The 2h-harmonics F2g
θ are given by

F2g
θ := span{φ(θαxαy ,x) with αx, αy ∈ {0, 1} }, where

θ = θ00 ∈ Θ2g := (−π/2, π/2]2 and θαxαy := θ00 − (αxsign(θx), αysign(θy) )π .

This distinction is motivated by the fact that each low-frequency θ00 ∈ Θ2g is
coupled with three high-frequencies θα with α �= (00) in the transition from Gh to
G2h. For example, the three high-frequency components are not visible on the coarse
grid as they coincide with the corresponding low-frequency component.

In order to ensure that we deal with nonsingular Fourier symbols L̃h(θ) and

L̃2h(2θ), we restrict our considerations to the following slightly shrunken subspace of
the Fourier space (2.4), as in [20]:

F2g := F\
⋃

θ∈Ψ2g

F2g
θ with Ψ2g := {θ ∈ Θ2g : L̃2h(2θ00) = 0 or L̃h(θα) = 0}.

The crucial observation is that the coarse grid correction operator K2h
h (see (2.5))

leaves the spaces of 2h-harmonics invariant for an arbitrary Fourier frequency θ ∈
Θ̃2g := Θ2g\Ψ2g. The same invariance property holds for many well-known smoothing
methods, e.g., Jacobi point- or line-relaxation, lexicographical Gauss–Seidel point-
or line-relaxation, and certain pattern relaxation methods such as red-black Gauss–
Seidel or zebra line Gauss–Seidel. Especially for pattern relaxations, the calculation
of the related Fourier symbols is not as simple as it is for the different operators of
the coarse grid correction. In general, certain Fourier components within the spaces
of 2h-harmonics may be coupled by the smoothing operator, which means that the
calculation of the corresponding Fourier symbol cannot be done separately for each
component φ(θ,x), as in (2.3). On the contrary, it is represented by a general (4×4)-
matrix S2g(θ, h) = S2g(θ00,θ11,θ10,θ01, h) ∈ C

4×4. For the explicit representation
of several relaxation methods, we refer to [10, 20, 21, 23].

Summarizing, we have that the two-grid operator (see (2.5)) leaves the spaces of
2h-harmonics invariant, i.e., for each θ ∈ Θ̃2g it holds that

M2h
h |F2g

θ

∧
= M2g(θ, h)(2.7)

= (S2g(θ, h))ν2( I2g − P 2g(θ, h)(L2g(θ, h))−1R2g(θ, h)L2g(θ, h) )(S2g(θ, h))ν1 .
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The representation of the coarse grid correction block matrices is given by

I2g = diag{1, 1, 1, 1} ∈ C
4×4 , L2g(θ, h) = L̃2h(2θ00) ∈ C

1×1 ,

L2g(θ, h) = diag{L̃h(θ00), L̃h(θ11), L̃h(θ10), L̃h(θ01)} ∈ C
4×4 ,

(2.8)
R2g(θ, h) = ( R̃2h

h (θ00) R̃2h
h (θ11) R̃2h

h (θ10) R̃2h
h (θ01) ) ∈ C

1×4 ,

P 2g(θ, h) = ( P̃h2h(θ00) P̃h2h(θ11) P̃h2h(θ10) P̃h2h(θ01) )T ∈ C
4×1 .

Using the simple block representation from (2.7), the spectral radius of the two-
grid iteration matrix and thus the asymptotic two-grid convergence factor can be
approximated by

ρ2g(h) := sup
θ∈Θ̃2g

ρ(M2g (θ, h)) .(2.9)

Remark 1 (boundedness of ρ2g(h)). In all the examples considered in section 3,

we have Θ̃2g = (−π/2, π/2] \ {(0, 0)}, as only L̃h((0, 0)) and L̃2h(2(0, 0)) are zero.

However, the suprenum in (2.9) remains finite, since R̃2h
h ((0, 0))L̃h((0, 0)) is rank

deficient too, in such a way that limθ→(0,0) ρ(M
2g(θ, h) ) is bounded; see [4].

The smoothing or one-grid convergence factor ρ1g(h), based on the “ideal” coarse

grid correction operator Q2h
h with Q2h

h |F2g
θ

∧
= Q = diag{0, 1, 1, 1} from [20], reads as

ρ1g(h) := sup
θ∈Θ̃2g

ρ(Q(S2g(θ, h))ν1+ν2 ) .(2.10)

Q2h
h annihilates the low-frequency error components and leaves the high-frequency

components unchanged. ρ1g(h) yields reasonable convergence estimates as long as
Q2h
h is a good approximation of the real coarse grid correction operator.

2.3. Three-grid Fourier analysis. From (2.6), the error transformation by a
three-grid cycle is given by vi = M4h

h vi−1 with

M4h
h = Sv2h K

4h
h S

v1
h(2.11)

= Sv2h (Ih−Ph2h(I2h − (M4h
2h )γ)(L2h)−1R2h

h Lh)Sv1h ,

where M4h
2h , defined by (2.5), reads as

M4h
2h = Sν22h(I2h − P 2h

4h (L4h)−1R2h
4hL2h)Sν12h .(2.12)

Instead of inverting L2h, as is done in the two-grid cycle (2.5), the 2h-equation is solved
approximately by performing γ two-grid iterations M4h

2h with zero initial approxima-
tion. This is reflected by the replacement of (L2h)−1 from (2.5) by the expression

(L4h
2h)−1 = (I2h − (M4h

2h )γ)(L2h)−1(2.13)

in (2.11). To see this, consider an arbitrary nonsingular system Lu = f which is
approximately solved by γ steps of an iterative method, Cuj = (C − L)uj−1 + f ,
based on the splitting L = C + (L− C). If a multigrid method is applied, we obtain
uj = Muj−1 + C−1f with C−1 = (I −M)L−1. M denotes the error transformation
matrix by one multigrid cycle; see (2.6). Starting with u0 = 0, the γth iterate can
easily be written as uγ = (I −Mγ)L−1f . In a numerical algorithm, however, L−1

(and, in particular, (L2h)−1) is, of course, not applied explicitly.
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Fig. 2.1. A set of Fourier frequencies that are coupled by a three-grid iteration; see Definition 2.2.

Considering three-grid cycles, it is appropriate to divide the Fourier space F into
a direct sum of the following 16-dimensional subspaces.

Definition 2.2 (4h-harmonics). The 4h-harmonics are defined by

F3g
θ := span

{
φ(θα

β ,x) with α = (αx αy) , β = (βx βy),

and αx, αy ∈ {0, 1} , βx, βy ∈
{

0,
1

2

} }
,

where θ = θ00
00 ∈ Θ3g := (−π/4, π/4]2 and

θ00
βxβy = θ00

00 − (βxsign(θx), βysign(θy) )π ,

θ
αxαy
β = θ00

β − (αxsign(θβx), αysign(θβy ) )π .

Figure 2.1 illustrates this somewhat technical definition by indicating the location
of the 16 different frequencies θα

β . It can be motivated in the same way as it was done
in the two-grid analysis concerning the 2h-harmonics. In the transition from G2h

to G4h, a low frequency θ00
00 ∈ Θ3g is coupled with three high frequencies θ00

β with
β �= (00). We collect four such components in the following subspaces.

Definition 2.3.

Fβ
θ := span

{
φ(θ00

βxβy ,x) with βx, βy ∈
{

0,
1

2

} }
for θ00

00 ∈ Θ3g .

Furthermore, each θ00
β is coupled with three high-frequency components θα

β with
α �= (00) in the transition from Gh to G2h; see Figure 2.1. It follows that a three-grid
cycle couples 16 frequencies, i.e., the 15 high-frequency components alias on G4h with
the low-frequency component φ(θ00

00,x).
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Again, we exclude certain frequencies from the calculation to obtain a well-defined
three-grid operator and consider the following slightly smaller spaces:

F3g := F\
⋃

θ∈Ψ3g

F3g
θ and Θ̃3g := Θ3g\Ψ3g with

Ψ3g :=
{
θ ∈ Θ3g : L̃4h(4θ00

00) = 0 or L̃2h(2θ00
β ) = 0 or L̃h(θα

β ) = 0
}
.

Comparing Definitions 2.1 and 2.2, it immediately follows that each space of 4h-
harmonics consists of four spaces of 2h-harmonics, i.e., for an arbitrary θ ∈ Θ̃3g we
have

F3g
θ = F2g

θ00
00
∪ F2g

θ00
1
2

1
2

∪ F2g
θ00

1
2
0

∪ F2g
θ00

0 1
2

.(2.14)

As a fundamental statement for the three-grid analysis, we find that the three-grid
operatorM4h

h (2.11) leaves the spaces of 4h-harmonics invariant. Using Definition 2.3,

(2.14), and the considerations from the last subsection, it follows for every θ ∈ Θ̃3g

that

Sh : F3g
θ −→ F3g

θ , Lh : F3g
θ −→ F3g

θ ,
(2.15)

R2h
h : F3g

θ −→ Fβ
θ , L4h

2h : Fβ
θ −→ Fβ

θ , Ph2h : Fβ
θ −→ F3g

θ .

The relation for L4h
2h reads in more detail as (see (2.13) and (2.12))

L2h : Fβ
θ −→ Fβ

θ , S2h : Fβ
θ −→ Fβ

θ , R4h
2h : Fβ

θ −→ span{φ(θ00
00,x)} ,

L4h : span{φ(θ00
00,x)} −→ span{φ(θ00

00,x)} , P 2h
4h : span{φ(θ00

00,x)} −→ Fβ
θ .

As a consequence of (2.15), one obtains the following (16× 16)-block matrices:

M4h
h |F3g

θ

∧
= M3g(θ, h)(2.16)

= (S3g(θ, h))ν2( I3g − P 3g(θ, h)(L3g(θ, h))−1R3g(θ, h)L3g(θ, h) )(S3g(θ, h))ν1 .

The different operators of the block-matrices M3g(θ, h) can be expressed by the two-
grid representations from section 2.2; see S2g(θ, h) and (2.8):

I3g = diag{I2g, I2g, I2g, I2g} ∈ C
16×16 ,

S3g(θ, h) = diag{S2g(θ00, h), S2g(θ 1
2

1
2
, h), S2g(θ 1

2 0, h), S2g(θ0 1
2
, h)} ∈ C

16×16 ,

L3g(θ, h) = diag{L2g(θ00, h), L2g(θ 1
2

1
2
, h), L2g(θ 1

2 0, h), L2g(θ0 1
2
, h)} ∈ C

16×16 ,

R3g(θ, h) = diag{R2g(θ00, h), R2g(θ 1
2

1
2
, h), R2g(θ 1

2 0, h), R2g(θ0 1
2
, h)} ∈ C

4×16 ,

P 3g(θ, h) = diag{P 2g(θ00, h), P 2g(θ 1
2

1
2
, h), P 2g(θ 1

2 0, h), P 2g(θ0 1
2
, h)} ∈ C

16×4 ,

(L3g(θ, h))−1 = ( I2g − (M2g(2θ, 2h))γ )

( diag{L2g(θ00, h),L2g(θ 1
2

1
2
, h),L2g(θ 1

2 0, h),L2g(θ0 1
2
, h)} )−1 ∈ C

4×4 .
(2.17)

Of course, M2g(2θ, 2h) can be calculated using S2g(θ, h) and (2.8) if we replace h by
2h and θ by 2θ.
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Analogous to the two-grid factor ρ2g(h) from (2.9), we obtain the three-grid con-
vergence factor as the suprenum of the spectral radii from certain block-matrices:

ρ3g(h) := sup
θ∈Θ̃3g

ρ(M3g (θ, h)) .(2.18)

The considerations from Remark 1 concerning the boundedness of ρ2g(h) carry over
to the three-grid factors calculated in section 3.

Remark 2 (generalization to d dimensions, k grids, and systems of equations). In
the most general case, we consider a d-dimensional problem and apply k-grid cycles to
a system of q equations. Then, every low-frequency θ ∈ Θkg := (−21−kπ, 21−kπ]d is
coupled with 2d(k−1) − 1 high frequencies. Accordingly, the related 2k−1h-harmonics
are of dimension 2d(k−1). Each operator of the k-grid cycle acts on the whole system
and the dimensions of the corresponding block-matrices (see (2.8) and (2.17) for the
two-dimensional scalar case with two- and three-grid cycles, respectively) are given
by

Ikg, Skg(θ, h), Lkg(θ, h) ∈ C
2d(k−1)q×2d(k−1)q, Rkg(θ, h) ∈ C

2d(k−2)q×2d(k−1)q,

P kg(θ, h) ∈ C
2d(k−1)q×2d(k−2)q, Lkg(θ, h) ∈ C

2d(k−2)q×2d(k−2)q.

The evaluation of k-grid cycles appears to be quite complicated and costly for many-
level cycles, but one should take into account that the k-grid operators (2.6) are
recursively defined and can be expressed in terms of two-grid operators. This means
that the entries of a k-grid Fourier matrix representation are given by certain two-
grid Fourier symbols; see (2.17). In practice, however, it should usually be enough to
perform a three-grid analysis to obtain sufficient insight into a multigrid method.

Remark 3 (finite-dimensional Fourier space). Note that the Fourier space (2.4)
has a nondenumerable basis as θ varies continuously in (π, π]2. The use of infinite-
dimensional spaces and operators leads to some technical simplifications in the anal-
ysis; see [20]. However, in general, the suprema from (2.9), (2.10), and (2.18) cannot
be calculated analytically. Therefore, we restrict our practical computations in sec-
tion 3 to a finite-dimensional Fourier space which is related to the mesh size h under
consideration:

Ffinite := span{eijθ : θ ∈ Θfinite := (−π, π]2 ∩Ghθ
}

with Ghθ
:= {θ = hθj = (hθjx, hθjy) with hθ = 2πh , j ∈ Z

2} .

The definitions of Θ̃2g, Θ̃3g, F2g, and F3g have to be changed accordingly. Hence the
suprema are replaced by maxima, which can easily be calculated numerically. Using
this finite-dimensional Fourier space, the infinite Fourier analysis becomes an exact
analysis for certain model problems on rectangular domains with periodic boundary
conditions. Pure periodic boundary conditions lead to a singular boundary value
problem in general. This necessitates a compatibility condition for every iterative
solution method, which directly corresponds to the exclusion of the “zero” frequency
in the analysis; see Remark 1. More details can be found, for example, in [20, 21].

2.4. Generalization for multigrid as a preconditioner for GMRES(m).
In this section, we briefly describe the generalization of the above analysis to multigrid
as a right preconditioner for GMRES(m). For a detailed discussion with respect to
the two-grid analysis, we refer to [24].
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As Krylov subspace methods are commonly described using matrix and vector
notation, we consider the linear system Lu = f , related to (2.1) with n = k. A
three-grid (or, more generally, a multigrid) cycle can be described by the matrix
splitting, Cuj + (L−C)uj−1 = f, where uj and uj−1 represent a new and a previous
approximation. This formulation is equivalent to

uj = uj−1 + C−1(f − Luj−1) and rj = (I − LC−1)rj−1

with the residual vectors rj , rj−1 and the residual transformation matrix

I − LC−1 = LML−1,(2.19)

where M denotes the three-grid iteration matrix. GMRES(m) searches for a new
approximation uj with corresponding residual rj in the Krylov subspace

Km(LC−1, rj−m) := span[rj−m, (LC−1)rj−m, . . . , (LC−1)m−1rj−m] .

It selects the new solution by minimizing the residual in the discrete Euclidean 2-norm

||rj ||2 = min{||Pm(LC−1)rj−m||2 | Pm ∈ Πm},(2.20)

where Πm denotes the set of all polynomials of degree at most m with Pm(0) = 1. For
convenience, j ≥ m is assumed. Since we are interested in the asymptotic convergence
of multigrid preconditioned GMRES with a restart after m iterations, we focus on the
residuals rm, r2m, . . . , ri·m. Then a “complete” iteration with iteration index i consists
of m multigrid preconditioned GMRES(m) steps. The GMRES(m)-polynomial which
characterizes the ith complete iteration is denoted by P im, leading to the following
recursion for the corresponding residual:

ri·m = P im(LC−1)r(i−1)·m.(2.21)

As unitary transformations do not affect the convergence properties of GMRES,
we consider the Fourier representations M̃3g and L̃3g instead of the representations
M and L with respect to the Euclidean basis. More precisely, we use the finite-
dimensional variants

M̃3g := [M3g(θ, h)]θ∈Θ̃3g∩Ghθ
and L̃3g := [L3g(θ, h)]θ∈Θ̃3g∩Ghθ

to allow an explicit calculation; see Remark 3. Assuming a repeated application of
preconditioned GMRES(m), the following function g has to be minimized in order
to find the coefficients αik (k = 1, ...,m) of the ith GMRES(m)-polynomial P im (see
(2.19), (2.20), and (2.21)):

g(αi1, . . . , α
i
m) := (P im(I − L̃3gM̃3g(L̃3g)−1)r̃(i−1)m, P

i
m(I − L̃3gM̃3g(L̃3g)−1)r̃(i−1)m).

The αik are obtained by solving the linear system

∂g

∂αi�
= 2

m∑
k=1

αik((I − L̃3gM̃3g(L̃3g)−1)�r̃(i−1)m, (I − L̃3gM̃3g(L̃3g)−1)kr̃(i−1)m)

+ 2((I − L̃3gM̃3g(L̃3g)−1)�r̃(i−1)m, r̃(i−1)m) = 0 for ! = 1, . . . ,m.(2.22)

The solution of (2.22) can easily be computed for every iteration index i due to

the sparse block structure of (I − L̃3gM̃3g(L̃3g)−1)� (! = 1, . . . ,m) if the previous
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Fourier transformed residual r̃(i−1)m is given. We simply prescribe a randomly chosen
initial residual r̃0. This allows the calculation of α1

� (! = 1, . . . ,m) by (2.22) and

gives r̃1·m = P 1
m(I − L̃3gM̃3g(L̃3g)−1)r̃0. Then the computation of r̃i·m for i > 1 is

straightforward due to its recursive definition; see (2.21). This leads to an average
reduction factor ρacc3g (i,m) for a complete iteration, which can be obtained by the
three-grid Fourier analysis

ρacc3g (i,m) :=

[(
||r̃i·m||2
||r̃0||2

)1/m]1/i

.(2.23)

The superscript “acc” is used as an abbreviation for “accelerated,” since the com-
bination of multigrid and GMRES(m) can be interpreted as an acceleration of the
multigrid convergence speed by an additional application of GMRES(m).

In all tests, presented in section 3, ρacc3g (i,m) tends to a constant for i ≥ 20. The
particular choice of the initial residual r̃0 does not influence the average reduction
factors for i � 1, which is confirmed by systematic test calculations. Thus it is
expected that ρacc3g (m) := ρacc3g (20,m) matches well with numerical reference values.

If we use the above Fourier representation I− L̃3gM̃3g(L̃3g)−1, the corresponding
spectrum can be calculated numerically. The common way (see, for example, [15, 16])
to analyze the convergence of GMRES is to exploit information about the spectrum
σ of the iteration matrix LC−1.

Suppose that all eigenvalues of I − L̃3gM̃3g(L̃3g)−1 are located in an ellipse
E(c, d, a) which excludes the origin. (c, 0) denotes the center, d denotes the focal
distance, and a denotes the major semiaxis. Note that σ is always symmetric with
respect to the real axis, so we only consider ellipses which are aligned with the axes
and where the ordinate of the center equals zero. Then it is known [16] that the
absolute value of the polynomial

tm(z) := Tm

( c
d
− 1

d
z
)/
Tm

( c
d

)
= Tm(ẑ)

/
Tm

( c
d

)
with z, ẑ :=

( c
d
− 1

d
z
)
∈ C

is small on the spectrum of I − L̃3gM̃3g(L̃3g)−1. Here Tm represents the Chebychev

polynomial of degree m of the first kind; see [16]. If I − L̃3gM̃3g(L̃3g)−1 is diagonal-

izable, I − L̃3gM̃3g(L̃3g)−1 = XDX−1, then (2.20) yields

||r̃i·m||2 ≤ ||tm(I − L̃3gM̃3g(L̃3g)−1)||2 ||r̃(i−1)m||2

≤ [||tm(I − L̃3gM̃3g(L̃3g)−1)||2]i ||r̃0||2 ≤
[
κ2(X)Tm

(a
d

)
/Tm

( c
d

)]i
||r̃0||2,

where κ2(X) denotes the spectral condition number of the transformation matrix
X [16]. Using these inequalities, we obtain for an arbitrary complete iteration i

ρacc3g (i,m) ≤ NE
m ≤ (κ2(X))1/m TEm with(2.24)

NE
m := (||tm(I − L̃3gM̃3g(L̃3g)−1)||2)1/m and TEm :=

(
Tm

(a
d

)
/Tm

( c
d

))1/m

(2.25)

as approximations for the average reduction factors of m multigrid preconditioned
GMRES(m) steps (see (2.23)).
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Remark 4 (determination of ellipses). There seems to be no simple way to deter-
mine the “optimal” ellipse for a given spectrum σ which minimizes TEm and NE

m from
(2.25). Thus it is proposed in [8] to compute a rectangle containing the spectrum σ
and then to calculate the ellipse of smallest area which encloses this rectangle. Both
steps of this two-stage strategy are rather simple and straightforward (see [8]), but the
resulting ellipses may cover much too large an area due to the first “auxiliary” step.
The resulting estimates reflect the qualitative convergence behavior of GMRES(m),
but the explicit values are far too pessimistic in general. Therefore, we tune the el-
lipses by hand. It is well known that each ellipse is uniquely defined if we prescribe
three points that should lie on the ellipse. As a first guess, we select those three eigen-
values contained in σ with maximal real part (λRemax), with minimal real part (λRemin),
and with maximal imaginary part (λImmax). Then the semiaxis in the x-direction ax,
the semiaxis in the y-direction ay, and the center (c, 0) of the ellipse are given by

ax =
Re(λRemax)− Re(λRemin)

2
, c = Re(λRemin) + ax, and ay =

Im(λImmax)√
1− Re(λImmax)−c

a2
x

.

Re(λ) and Im(λ) denote the real and imaginary part of the complex eigenvalue λ. (In
this way, the ellipse from Figure 3.2b is calculated.) If this first guess does not contain
the whole spectrum, the ellipse is carefully enlarged until it covers σ. (An example is
given in Figure 3.2a.) Although this strategy might not be very satisfactory from a
mathematical viewpoint, it yields sharper estimates which can be easily calculated.

In [17] it is stated that (2.24) is an asymptotic result and that the actual residual
norm should rather behave like TEm without κ2(X). This presumption, in connection
with the two-grid Fourier analysis, is validated in [24], where it is found that the
heuristic estimate TEm gives a certain insight into the asymptotic accelerated two-grid
convergence, whereas the upper bound NE

m is too pessimistic in general. Therefore,
some explicit values for TEm based on the spectra of three-grid iteration matrices
are given in section 3 and compared with asymptotic numerical convergence results.
However, the main focus lies on ρacc3g (m).

3. Applications of three-grid Fourier analysis. In order to demonstrate the
benefits of the three-grid analysis, we consider several equations, discretizations, and
multigrid components. The applications range from the nicely elliptic Poisson equa-
tion in connection with standard components to singular perturbation problems with
more advanced multigrid components. By considering a large number of smoothers
and transfer operators, we intend to show the large range of applicability of the three-
grid analysis. In each of the following three subsections, we consider coarse grid
correction problems which can often be solved by algebraic multigrid (AMG) [19],
because AMG implicitly selects the “correct” coarsening strategy for the problem
under consideration, or by a special relaxation method. Of course, it is possible to
adapt the Fourier analysis from section 2 to nonstandard coarsenings or to sophisti-
cated smoothers. However, we try to keep the multigrid method simple and search
for possible improvements by carefully chosen transfer operators and Galerkin coarse
grid discretizations. Furthermore, we investigate the use of an additional accelera-
tion with GMRES(m) of nonoptimal but easy-to-program multigrid methods. The
main purpose is to evaluate the additional insights coming from the three-grid Fourier
analysis.

The theoretical estimates are compared with numerical experiments whose con-
vergence is indicated by ρn(kg), which denotes the average defect reduction after 100
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Table 3.1
MG1 applied to the Poisson equation, h = 1/128.

Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.063 0.074 0.106 0.105 0.119
V (2,0) 0.063 0.074 0.133 0.132 0.170
V (0,2) 0.063 0.074 0.140 0.138 0.179

W (1,1), W (2,0), W (0,2) 0.063 0.074 0.074 0.073 0.073

iterations for the corresponding solution method involving k grids. We choose such
a large number of iterations because the theoretical values ρ2g(h) and ρ3g(h) refer
to asymptotic convergence factors. For nonsymmetric problems like the convection-
dominated examples from section 3.3, it might take a large number of iterations before
the asymptotic behavior is observed. An alternative is to consider norms of the three-
grid operator, like the defect reduction norm

σ3g(h) :=

(3.1)

sup
θ∈Θ̃3g

√
ρ(L3g(θ, h)M3g(θ, h)(L3g(θ, h))−1(L3g(θ, h)M3g(θ, h)(L3g(θ, h))−1)∗),

which can be obtained straightforwardly by the above analysis. The star ∗ in (3.1)
denotes, as usual, the adjoint of the matrix.

3.1. Poisson equation. The first example deals with the well-known 5-point
discretization of the Poisson equation,

−∆u(x) = 1 on Ω = (0, 1)2, u(x) = 0 on Γ = [0, 1]2 \ Ω.(3.2)

An efficient multigrid method [20] for this problem, denoted by MG1, consists of
• direct 2h-, 4h-, etc. coarse grid discretizations,
• bilinear interpolation of coarse grid corrections and full weighting of residuals,

and
• red-black Gauss–Seidel relaxation.

Table 3.1 compares the analytical predictions from the one-, two-, and three-grid
analysis with numerical reference values ρn(3g) and ρn(7g) for several 3- and 7-grid
cycles. This table illustrates that even for such a simple and well-understood problem
there is a difference between the performance of a V -cycle and a W -cycle and pre- and
postsmoothing which cannot be displayed by Fourier two-grid analysis, whereas the
different behavior of the cycle variants is very accurately predicted by the three-grid
estimates ρ3g(h).

Remark 5 (maintaining the two-grid convergence). As it is seen in Table 3.1, one
has to choose the multigridW -cycle to obtain the two-grid convergence factor. This is
indicated by the Fourier analysis. The theoretical predictions for the two- and three-
grid factors are equal only for the W -cycle. If we replace the 5-point discretizations
on the coarse grids by operators based on Galerkin coarsening with full weighting and
bilinear interpolation, the V -cycle also leads to k-independent fast convergence. Using
a four-color Gauss–Seidel relaxation for the resulting symmetric 9-point operators, we
get for a V (1,1)-cycle ρ1g(h) = ρ2g(h) = ρ3g(h) = 0.063. This value is validated by
the corresponding numerical calculation for a 7-grid method.

A second multigrid variant, MG2 [1], with a simplified coarse grid correction is
given by
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Table 3.2
MG2 [1] applied to the Poisson equation, h = 1/128.

V (1,1) W (1,1)
ρ1g(h) ρ2g(h) ρ3g(h) ρ1g(h) ρ2g(h) ρ3g(h)

0.06 0.50 0.75 0.06 0.50 0.62
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Fig. 3.1. Eigenvalue spectra from Fourier analysis for three-grid W (1, 1)-cycles of MG2 [1]
with and without rescaling applied to the Poisson equation, h = 1/128.

• Galerkin coarse grid discretizations,
• piecewise constant interpolation and its transpose as transfer operators, and
• symmetric lexicographical Gauss–Seidel relaxation.

Modified versions of this strategy are used in the so-called aggregation-type AMG ap-
proaches, which might be useful for problems on unstructured grids; see, for example,
[1, 22]. A direct application of this method to the Poisson equation leads to inefficient
and strongly h-dependent V - (and W -) cycles. It can be easily shown that each of the
coarse grid operators is off by a factor of 2 compared to the discretization on the next
finer grid [1, 19]. A simple recursive argument yields that the V -cycle convergence
on k grids is limited by ρkg(h) ≥ 1 − 2−k+1 (ρ2g(h) ≥ 0.5, ρ3g(h) ≥ 0.75, . . . ) [19].
Table 3.2 shows that these limiting values can be confirmed by Fourier two- and
three-grid analysis.

The above considerations motivate us to rescale the coarse grid Galerkin operators
by 1/α with α close to 2, Ln−1 = 1/α Řn−1

n LnP̌
n
n−1, as it is proposed in [1]. For

α = 2, the Galerkin operators coincide with the standard 5-point discretizations
on all grids. Figure 3.1 demonstrates the strong influence of this rescaling on the
eigenvalue distribution of a W (1,1) three-grid cycle from Fourier analysis.

Comparing Tables 3.2 and 3.3, one observes the improvement of the two- and
three-grid factors due to the rescaling. However, the coarse grid correction problem
is not completely solved for V -cycles which can be deduced from the big differences
between the one-, two-, and three-grid estimates and which is validated by the further
increasing numerical reference value ρn(7g) for a 7-grid cycle. This behavior might
refer to the fact that the order of the transfer operators (see, for example, [10, 12, 23])



664 ROMAN WIENANDS AND CORNELIS W. OOSTERLEE

Table 3.3
MG2 [1] with a rescaling by α = 2 applied to the Poisson equation, h = 1/128.

MG2 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.06 0.44 0.68 0.66 0.82
W (1,1) 0.06 0.44 0.52 0.50 0.51

MG2 as a preconditioner, m = 5
Cycle ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.44 0.42 0.53
W (1,1) 0.36 0.34 0.35

in the multigrid process is too low compared to the order of the partial differential
equation.

By combining MG2 with GMRES(m), one finds satisfactory convergence factors
with a rather small Krylov subspace. The actual improvement for a three-grid method
can be accurately predicted by ρacc3g (m); see Table 3.3.

Remark 6 (acceleration on coarse grids, F -cycle convergence). As the coarse grid
difficulty occurs on all coarser grids, it seems reasonable to incorporate the Krylov ac-
celeration into the multigrid cycle, like in [14], or to apply it only on the coarse grids.
In the present example, one obtains ρn(7g)=0.52 for a V (1,1)-cycle if GMRES(m = 5)
is applied only on the coarse grids. In this way, it is possible to reduce the storage
because on coarser grids much less storage is needed for a Krylov subspace. Further-
more, the multigrid F -cycle yields very similar convergence factors as the W -cycle,
both as a solver and as a preconditioner.

Of course, these simple transfer operators are not at all an optimal choice for
problem (3.2), especially compared to MG1 (see Table 3.1) or to AMG [19]. But it is
a first example of a multigrid method with a coarse grid correction difficulty already for
the Poisson equation and therefore an illustrative starting example. Furthermore, the
method is easy to program and can be seen as a basis for more advanced aggregation-
type AMG methods.

3.2. Rotated anisotropic diffusion equation. Next we discuss the standard
9-point discretization (see, for example, [23]) of the rotated anisotropic diffusion equa-
tion

−(c2 + εs2)uxx(x)− 2(ε− 1)cs uxy(x)− (εc2 + s2)uyy(x) = 1 on Ω = (0, 1)2

with c = cos(β), s = sin(β), u(x) = 0 on Γ = [0, 1]2 \ Ω.

This differential operator corresponds to −uξξ − εuηη in a (ξ, η)-coordinate system
which can be obtained by rotating the (x, y)-system by an angle of β [23]. We set
β = 45◦. For ε→ 0 this equation is no longer elliptic. Using standard grid coarsening
and Gauss–Seidel smoothing, this leads to coarse grid correction difficulties which
limit the two-grid convergence to a factor of 0.75; see, for instance, [24]. The same
recursive argument as in the previous subsection yields a lower bound for the V -cycle
convergence on k grids which is given by ρkg(h) ≥ 1−4−k+1 (ρ2g(h) ≥ 0.75, ρ3g(h) ≥
0.9375, . . . ). These bounds can be established by Fourier two- and three-grid analysis
as can be seen from Table 3.4, where MG1 is applied to the rotated anisotropic
diffusion equation. Switching to a W -cycle leads to a slight improvement, which is
well predicted by the three-grid analysis.

If MG1 is used as a preconditioner, it is possible to obtain an acceptable W -cycle
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Table 3.4
MG1 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

MG1 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.35 0.76 0.94 0.92 0.95
W (1,1) 0.35 0.76 0.90 0.87 0.89

MG1 as a preconditioner, m = 5

Cycle TEm ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.79 0.68 0.63 0.73
W (1,1) 0.67 0.58 0.52 0.55
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Fig. 3.2. Eigenvalue spectra of I − L̃3gM̃3g(L̃3g)−1 for three-grid V(1, 1)-cycles of MG1 and
MG3 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

convergence, whereas the V -cycle convergence for a 7-grid method remains unsat-
isfactory. Again, the analytical values ρacc3g (m) yield reliable predictions that are

more accurate than those indicated by TEm . As an example, Figure 3.2a shows the

V (1,1)-cycle spectrum of I − L̃3gM̃3g(L̃3g)−1 from Fourier analysis for MG1 and the
corresponding ellipse which is used to calculate TEm . For a more detailed discussion of
such values and spectra, see [24], as the main focus in this paper lies on the three-grid
analysis.

In the context of Galerkin coarsening for the rotated anisotropic diffusion equa-
tion, it is interesting to investigate the multigrid method, MG3,

• Galerkin coarse grid discretizations,
• matrix-dependent prolongation and restriction by de Zeeuw [27], and
• four-color Gauss–Seidel relaxation.

Comparing Tables 3.4 and 3.5, we see a remarkable improvement of the two-grid
convergence factor. For this example, however, Fourier one- and two-grid analysis
yield somewhat misleading results. At first sight, the coarse grid correction problem
seems to be solved since the two-grid value nearly recovers the smoothing factor. But
if we look at the increased three-grid values, one has to expect that the multigrid
convergence deteriorates further, which is validated by the numerical reference values
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Table 3.5
MG3 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

MG3 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.28 0.36 0.63 0.61 0.87
W (1,1) 0.28 0.36 0.47 0.48 0.61

MG3 as a preconditioner, m = 5

Cycle TEm ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.31 0.29 0.28 0.55
W (1,1) 0.21 0.19 0.19 0.27

for the related 7-grid iterations.
On the other hand, we see that the three-grid methods can be nicely accelerated

by GMRES(m) with a small Krylov subspace. Thus it can be expected also that the
corresponding multigrid iterations are appropriate preconditioners, which is confirmed
by the numerical values. The actual performance of the accelerated three-grid meth-
ods is very accurately estimated by ρacc3 (m) and TEm . The V (1,1)-cycle spectrum of

I−L̃3gM̃3g(L̃3g)−1 from Fourier analysis forMG3 and the related ellipse are pictured
in Figure 3.2b.

Remark 7 (other Galerkin coarsenings). If the prolongation and restriction from
[27] in MG3 are replaced by the transfer operators from the nonsymmetric blackbox
multigrid by Dendy [7], we find very similar results. These transfer operators are
investigated in the next subsection. The application ofMG2 to this problem cannot be
recommended. MG2 is mainly developed for elliptic problems and does not converge
well for the rotated anisotropic diffusion equation.

Finally, we would like to mention that there are other multigrid components like
ILU-type smoothers or nonstandard coarsening to overcome the coarse grid correc-
tion difficulty efficiently. De Zeeuw [27], for example, combines his matrix-dependent
Galerkin coarsening with a powerful smoother, the incomplete line LU decomposition
(ILLU), and obtains very fast multigrid convergence. These improvements might be
verified by a straightforward adaption of the presented three-grid analysis.

3.3. Convection diffusion equation. As a third example, we discuss the con-
vection diffusion equation with dominant convection in some detail. Here, it is impor-
tant to distinguish between entering flows with an inflow and outflow boundary and
recirculating flows for which no real inflow and outflow boundary exist and where the
boundary information is mainly diffusing into the domain. In principle, efficient multi-
grid iterations can be constructed for upstream discretizations if relaxation methods
are used with a downstream ordering of grid points. Then the relaxation acts not
only as a smoother but also partly as a solver and takes care of problematic charac-
teristic low-frequency error components; see [5]. For entering flows such smoothers
can be found among standard relaxation methods, whereas for recirculating flows it is
very difficult to construct a smoother with the desired property. Channel-type flows
employing higher order upwind discretizations are treated successfully in [13].

For convection-dominated rotating flow problems like

−ε∆u(x) + a(x, y)ux(x) + b(x, y)uy(x) = 1 on Ω = (0, 1)2(3.3)

with ε = 10−5, a(x, y) = − sin(πx) cos(πy), and b(x, y) = sin(πy) cos(πx) ,

u(x) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) on Γ = [0, 1]2 \ Ω,
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the situation changes if standard smoothers are used, and we observe a similar coarse
grid correction difficulty as in the previous subsection. If the direct 2h-, 4h-, etc.
discretizations are applied on the coarser grids combined with standard coarsening,
the two-grid convergence is limited by the factor

ρ2g(h) ≥ 1− 2−p,(3.4)

where p denotes the order of the discretization [6]. This results in a deterioration of
the V -cycle multigrid convergence on k grids given by ρkg(h) ≥ 1 − 2−(k−1)·p; see
above.

Remark 8 (reliability of the Fourier analysis). Dirichlet boundary effects are
neglected by the Fourier analysis as it is presented in this paper. For entering flows,
high-frequency boundary data may propagate far into the domain, and thus it should
be taken into account by a reliable analysis. This is done by the so-called half-space full
multigrid (FMG) analysis in [5]. For recirculating flows, however, the influence of the
domain boundary is negligible in the limit of small mesh size, and the (infinite-space)
Fourier analysis is again useful [6].

Remark 9 (Fourier analysis for operators with variable coefficients). A direct
application of the Fourier analysis is not possible if we deal with operators Lh(x)
that are characterized by variable coefficients. However, the analysis can be applied
to the locally frozen operator at a fixed grid point ξ. Replacing the variable x by a
constant ξ, one obtains an operator Lh(ξ) with constant frozen coefficients. In [3] it
is motivated that the smoothing or two-grid factor for Lh(x) can be bounded by the
suprenum over the smoothing or two-grid factors for the locally frozen operators. Thus
one may define the following convergence factors in the case of variable coefficients:

ρkg (h, Lh(x)) := sup
ξ∈Ω

ρkg (h, Lh(ξ)) for k = 1, 2, 3.(3.5)

This means for (3.3) that one has to investigate the whole range of convection angles
that occur in the problem. For an explicit calculation, we approximate (3.5) by a
repeated application of the Fourier analysis to discretizations of −ε∆u + a ux + b uy
with fixed a = cosβ and b = sinβ for multiples of 3◦ until the range of possible
convection angles β ∈ [0◦, 360◦] is passed through, as is proposed in [23]. Then, the
maximal values for ρ1g(h, β), ρ2g(h, β), ρ3g(h, β), and σ3g(h, β) are assumed to be
upper bounds for problem (3.3).

In this section, we do not consider the acceleration by GMRES(m) in the Fourier
analysis. For problems with varying coefficients the analysis from section 2.4 can be
adapted in the same way as it is explained in Remark 9, but it has to be interpreted
with care, as it has a more qualitative character. In the numerical experiments,
however, we often observe a considerable improvement, especially for rotating flow
problems.

3.3.1. First order discretization. A first order upwind discretization of (3.3)
is given by the following stencil:

ε

h2


 −1
−1 4 −1

−1


+

1

2h

[−a− |a| 2|a| a− |a|]+
1

2h


 b− |b|2|b|
−b− |b|


 .(3.6)

This discretization is studied in many papers, for instance, in [5, 14, 19, 26], where
the coarse grid correction difficulty for geometric multigrid with direct coarse grid
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Table 3.6
MG4 applied to the convection diffusion equation discretized by a first order upwind scheme,

ε = 10−5, h = 1/256.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β) ρn(8g)

W (1,1) 0.29 (β = 3◦) 0.22 (β = 6◦) 0.22 (β = 6◦) 0.24 (β = 6◦) 0.20
W (2,1) 0.15 (β = 3◦) 0.17 (β = 6◦) 0.18 (β = 6◦) 0.20 (β = 6◦) 0.17

discretizations is overcome by different remedies, like an overweighting of residuals [5],
an additional Krylov acceleration [14], an application of AMG [19], or a special higher
order choice of coarse grid discretizations [26]. Many of these approaches can be well
analyzed by the Fourier three-grid analysis from section 2.

The convergence factors of the multigrid method by de Zeeuw [27] based on
matrix-dependent transfer operators gets worse for discretization (3.6) with an in-
creasing number of grids, even with a powerful relaxation like ILLU. This can be
confirmed by the Fourier three-grid analysis. It is possible to improve the conver-
gence properties with another Galerkin coarse grid operator applied in MG4:

• Galerkin coarse grid discretizations,
• transfer operators from the nonsymmetric blackbox multigrid by Dendy [7],

and
• damped (ω = 0.7) alternating zebra line Gauss–Seidel relaxation.

It was already stated in [26] that the application of this Galerkin coarsening should be
useful. The symmetric prolongation, based on the symmetric part of the respective
discretization operator 1/2(Ln + L∗

n), is similar to the well-known matrix-dependent
prolongations for jumping coefficients; see, for instance, [10, 23, 27]. The nonsymmet-
ric restriction, however, is defined as the transpose of a prolongation operator that is
based on L∗

n leading to an upstream restriction. This is particularly useful because
the coarse-grid operators remain upstream as well and tend to a second order com-
pact upstream discretization. This agrees with the observation that the coarse grid
operators must become higher order, at least in the cross-stream direction, to provide
a good coarse grid approximation; see [26].

Table 3.6 shows the maximal one-, two-, and three-grid factors for MG4 with the
corresponding convection angles in brackets; see Remark 9. As the two- and three-grid
factors are very similar or even equal, it can be expected that the multigrid conver-
gence for discretization (3.6) is close to these estimates, which is confirmed by the
numerical reference for an 8-grid method. The maximal norm values σ3g(h, β) differ
only slightly from the corresponding ρ3g(h, β), which indicates that the convergence
speed for a single iteration is not much larger than the asymptotic convergence factor.
Thus, ρ3g(h, β) is a “satisfactory” prediction for the multigrid convergence. This is
observed in the numerical convergence history. Furthermore, we see that the damped
alternating zebra line relaxation which is a robust smoother for the fine grid discretiza-
tion [23] keeps this property for the Galerkin coarse grid discretizations resulting from
the blackbox transfer operators.

3.3.2. Fourth order compact discretization. We continue with the fourth
order compact discretization of (3.3) from [9]. With respect to the Fourier analysis, it
is convenient to investigate the difference scheme for constant coefficients; see Remark



ON THREE-GRID FOURIER ANALYSIS FOR MULTIGRID 669

Table 3.7
MG4 is applied to the convection diffusion equation discretized by a compact fourth order

scheme [9], ε = 10−5, h = 1/128.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β)

W (1,1) 0.53 (β = 6◦) 0.59 (β = 3◦) 0.77 (β = 6◦) > 20 (β = 45◦)
W (2,2) 0.27 (β = 6◦) 0.54 (β = 9◦) 0.74 (β = 9◦) 0.85 (β = 18◦)

Table 3.8
The convection diffusion equation is discretized by a compact fourth order scheme [9] using

Galerkin coarsening based on the restriction from nonsymmetric blackbox multigrid [7] and biquintic
interpolation, alternating zebra line Gauss–Seidel relaxation (ω = 0.7), ε = 10−5, h = 1/128.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β)

W (1,1) 0.53 (β = 6◦) 0.46 (β = 6◦) 0.60 (β = 9◦) 0.69 (β = 9◦)
W (2,2) 0.27 (β = 6◦) 0.29 (β = 3◦) 0.46 (β = 9◦) 0.53 (β = 9◦)

Cycle ρ3g(h, β) σ3g(h, β)

W (1,1), ν1(2h) = ν2(2h) = 3 0.46 (β = 6◦) 0.50 (β = 6◦)
W (2,2), ν1(2h) = ν2(2h) = 4 0.31 (β = 9◦) 0.35 (β = 9◦)

9, which reads in stencil notation [25]

ε

6h2


−1 −4 −1
−4 20 −4
−1 −4 −1


+

1

12h


a− b −4b −a− b

4a 0 −4a
a+ b 4b −a+ b


+

1

24ε


 ab −2b2 −ab
−2a2 4a2 + 4b2 −2a2

−ab −2b2 ab


 .

Here, a two-grid convergence factor of 0.9375 is predicted by (3.4) for the direct
coarse grid discretizations. ApplyingMG4 to this discretization, we find a remarkable
improvement of the two-grid factor compared to the standard variant, but the coarse
grid problem is not really solved, as is indicated by the increase of the two- and three-
grid factors compared to the one-grid values; see Table 3.7. This can be explained by
considering the orders of the transfer operators in a Galerkin process for singularly
perturbed problems [26]. The sum of these orders (mr +mp, where the subscripts are
abbreviations for restriction and prolongation, respectively) should be greater than
the order of the differential equation M plus the order of the discretization p, i.e.,

mr +mp > M + p.(3.7)

This requirement is fulfilled for the multigrid method from Table 3.6 for the first order
discretization of (3.3) (mr = 1,mp = 2,M = 1, p = 1) but is violated in Table 3.7
(mr = 1,mp = 2,M = 1, p = 4). Note that we set M = 1 in this situation because of
the dominating convection term. It is already indicated by the large value of σ3g for
the W (1,1)-cycle from Table 3.7 that this multigrid method has to be handled with
care.

We keep the restriction from MG4 in order to maintain the upstream properties
of the discretizations on the coarser grids (see [7]) but replace the prolongation by
biquintic interpolation (mp = 6). Thus, the above rule (3.7) is satisfied, which leads
to a considerable improvement of the multigrid method, as is shown in Table 3.8.
Regarding the norm values σ3g(h, β), one obtains a reliable multigrid method. How-
ever, although the one- and two-grid factors are similar, the three-grid factors still
increase in the upper part of Table 3.8. This is due to a deterioration of the smooth-
ing property on the coarse grids because there we have larger stencils resulting from
the very accurate interpolation in the Galerkin process. The three-grid convergence
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factors can be improved if we increase the numbers ν1(2h) and ν2(2h) of pre- and
postsmoothing steps on G2h, as is shown in the lower part of Table 3.8. In this way,
it is possible to recover the two-grid factors, which indicates that the coarse grid cor-
rection difficulty is solved. From section 3.3.1, it can be expected that the analytical
estimates match closely with numerical test calculations, and also for the fourth order
discretization. Because of the large stencils, however, this multigrid method cannot
be recommended for a practical implementation despite its good (regarding the highly
accurate discretization) convergence behavior.

4. Conclusions. We have presented Fourier three-grid analysis for multigrid as
a solver and as a preconditioner for GMRES(m). Applying this analysis, it is pos-
sible to obtain accurate convergence estimates for elliptic operators and to predict
the performance of V - and W -cycles or pre- and postsmoothing. For singularly per-
turbed problems with coarse grid correction difficulties, the three-grid analysis yields
additional valuable insight into the nature of the multigrid convergence problem and
allows for an investigation of the benefits of possible remedies, for example, based on
certain choices of Galerkin coarse grid discretizations. One can verify the qualitative
rule concerning the order of the transfer operators in a Galerkin process for singu-
larly perturbed problems from [26] by quantitative asymptotic convergence and norm
estimates.
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SOLUTION METHODS FOR THE POISSON EQUATION WITH
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Abstract. In [Z. Cai and S. Kim, SIAM J. Numer. Anal., 39 (2001), pp. 286–299], we developed
a new finite element method using singular functions for the Poisson equation on a polygonal domain
with re-entrant angles. Such a method first computes the regular part of the solution, then the stress
intensity factor, and finally the solution itself. This paper studies solution methods for solving the
system of linear equations arising from the discretization and focuses on numerical results including
the finite element accuracy and the multigrid performance.

Key words. corner singularity, finite element, multigrid
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1. Introduction. Solutions of elliptic boundary value problems on a domain
with corners have singular behavior near the corners. This occurs even when data of
the underlying problem are very smooth. Such singular behavior affects the accuracy
of the finite element method throughout the whole domain. In [5], we developed a
new finite element method using singular and dual singular functions for the Poisson
equation with homogeneous Dirichlet boundary conditions on a polygonal domain
with re-entrant angles. By using the dual singular function and a cut-off function with
a bigger support, we derived a new extraction formula for the stress intensity factor
λ in terms of the regular part w of the solution u. This enables us to deduce a well-
posed problem for w, which is then approximated by the continuous piecewise linear
finite element method. Approximations to the intensity factor λ and the solution u
are straightforward, so we concentrate in this paper on the computation of w. It was
shown in [5] that we achieve O(h) optimal accuracy for w and u in the H1 norm. We
established the O(h1+ π

ω ) error bound for w in L2, which, in turn, implies the same
error bounds for u in L2 and for λ in the absolute value, where ω is the internal angle.
This error bound for w in L2 is not optimal. The reason is the simplified adjoint
problem used in the duality argument, which does not have full regularity. But w is
H2 regular; it is then interesting to see if such error bound is sharp numerically.

The problem determining w is no longer the nice Poisson equation but is perturbed
by integral terms which are only nonzero on a strip away from the corner. Because
of such a perturbation, the problem is nonsymmetric and probably indefinite. To
solve the nonsymmetric algebraic equations arising from the discretization, we observe
that the perturbation is rank one and that its pseudodifferential order is −1. The
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former leads to the first approach which uses the Sherman–Morrison (SM) formula
(see section 4.1). This approach requires two (approximate) inversions of the discrete
Laplace operator, which will be done by multigrid (MG) methods. It is well known
(see, e.g., [10, 1]) that the MG for the discrete Poisson problem has a fast convergence
rate. The latter suggests that the nonsymmetric perturbation is well controlled by the
Laplace operator whose pseudodifferential order is 2, and, hence, MG can be applied
efficiently. In particular, the second approach adopted in this paper is the V -cycle
MG that uses the exact coarsest grid solver and in which smoothing operators depend
only on the discrete Laplace operator. Application of the convergence theory in [6]
guarantees that the MG V (1, 0) cycle and, hence, the V (ν1, ν2) cycles for ν1 ≥ 1 and
ν2 ≥ 0 converge uniformly in the finest mesh size and the number of refinement levels,
provided that the coarsest mesh size is sufficiently small. This condition indicates
that the direct MG is probably expensive because it requires us to solve a relatively
large coarse grid problem. The coarsest mesh size used in our experiments for both
approaches is 1/4. Hence, it is clear that such a condition is not essential for our
problem.

The present paper attempts to confirm theories numerically on the accuracy of fi-
nite element approximation and the performance of solution methods. For the Dirich-
let problem on the L-shape domain, we show here that finite element approximations
using continuous piecewise linear elements converge to the exact solution with O(h2)
errors in the discrete H1 seminorm and L2 norm, respectively. The theoretically pre-
dicted error bounds are O(h) in the H1 norm and O(h

5
3 ) in the L2 norm. We appear

to have obtained superconvergence in the discrete H1 seminorm for this particular
case. We seem to achieve the optimal L2 accuracy, which is better than what is pre-
dicted by our theory. We show that the SM formula using the MG V-cycles and the
direct MG V-cycle converge independently of the finest mesh size h and the number
of refinement levels. We also show that the full MG computes a final approximation
with accuracy on the order of a discretization error in a total amount of work equal
to about nine relaxation sweeps on the finest grid.

The paper is organized as follows. The finite element method and related results
from [5] are introduced in sections 2 and 3, and the solution methods are described
in section 4. We present the results of numerical experiments in section 5. Some
conclusions and final remarks are contained in section 6.

2. The problem and preliminaries. As a model problem, we consider the
Poisson equation with homogeneous Dirichlet boundary conditions



−∆u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where f is a given function in L2(Ω) and Ω is an open, bounded polygonal domain
in R2 with one re-entrant angle. Extension to the domain with the finite number
of re-entrant angles is straightforward. We use the standard notation and definition
for the Sobolev spaces Ht(B) for t ≥ 0; the standard associated inner products are
denoted by (·, ·)t,B , and their respective norms and seminorms are denoted by ‖ · ‖t,B
and | · |t,B . The space L2(B) is interpreted as H0(B), in which case the inner product
and norm will be denoted by (·, ·)B and ‖ · ‖B , respectively.

Let ω be the internal angle of Ω satisfying π < ω < 2π. Without loss of generality,
assume that the corresponding vertex is at the origin. Define the singular and the
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dual singular functions by

s = r
π
ω sin

πθ

ω
and s− = r−

π
ω sin

πθ

ω
,(2.2)

respectively, in the polar coordinates (r, θ). The coordinates are chosen at the origin
so that the internal angle ω is spanned by the two half-lines θ = 0 and θ = ω. Set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω and B(r1) = B(0; r1).

Define a family of cut-off functions of r, ηρ(r) as follows:

ηρ(r) =




1 in B(ρR2 ),

15
16

{
8
15 −

(
4r
ρR − 3

)
+ 2

3

(
4r
ρR − 3

)3 − 1
5

(
4r
ρR − 3

)5}
in B̄(ρR2 ; ρR),

0 in Ω \ B̄(ρR),

(2.3)

where ρ is a parameter in (0, 2] and R ∈ R is a fixed number so that the η2s vanishes
identically on ∂Ω. It is well known (see, e.g., [8, 9]) that the solution of (2.1) has the
singular function representation

u = w + ληρs,(2.4)

where w ∈ H2(Ω)∩H1
0 (Ω) is the regular part of the solution and λ ∈ R is the so-called

stress intensity factor.
In [5], by using a new extraction formula in terms of w,

λ =
1

π
(w,∆(η2s−))B(R;2R) +

1

π
(f, η2s−)B(2R),(2.5)

we are able to deduce a well-posed integro-differential equation of w,

−∆w − 1

π
(w,∆(η2s−))B(R;2R)∆(ηρs) = f +

1

π
(f, η2s−)B(2R)∆(ηρs) in Ω,(2.6)

where 0 < ρ ≤ 1. Its variational formulation is to find w ∈ H1
0 (Ω) such that

a(w, v) = g(v) ∀ v ∈ H1
0 (Ω),(2.7)

where the bilinear form a(·, ·) and linear form g(·) are defined by

a(w, v) = as(w, v) + b(w, v), b(w, v) = − 1
π
(w,∆(η2s−))B(R;2R)(∆(ηρs), v)B( ρR2 ;ρR),

as(w, v) = (∇w,∇v)Ω, and g(v) = (f, v)Ω +
1
π (f, η2s−)B(2R)(∆(ηρs), v)B( ρR2 ;ρR).

Note that the bilinear form b(·, ·) is not symmetric. It was shown in [5] that (2.7)
has a unique solution w ∈ H1

0 (Ω) ∩ H2(Ω). The following continuity and coercivity
bounds were also established:

|as(w, v)| ≤ C |w|1,Ω |v|1,Ω, |b(w, v)| ≤ C ‖w‖Ω ‖v‖Ω ∀ w, v ∈ H1
0 (Ω),(2.8)

and |v|21,Ω − C‖v‖2Ω ≤ a(v, v) ∀ v ∈ H1
0 (Ω).(2.9)

Here and henceforth, we use C with or without script to denote a generic positive
constant independent of the mesh size h and the number of levels J introduced in
section 4.
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3. Finite element approximation. Let Th be a partition of the domain Ω
into triangular finite elements; i.e., Ω = ∪K∈ThK with h = max{diamK : K ∈ Th}.
Assume that the triangulation Th is regular. Set

Vh = {φh ∈ C0(Ω): φh|K is linear, ∀ K ∈ Th, φh = 0 on ∂Ω} ⊂ H1
0 (Ω).

Then the finite element approximation to (2.7) in H1
0 (Ω)∩H2(Ω) becomes as follows:

find wh ∈ Vh such that
a(wh, v) = g(v) ∀ v ∈ Vh.(3.1)

Approximations to the stress intensity factor and the solution of (2.1) can be computed
according to (2.5) and (2.4) as follows:

λh =
1

π
(wh,∆(η2s−))B(R;2R) +

1

π
(f, η2s−)B(2R)(3.2)

and uh = wh + λhηρs.(3.3)

The following error estimates were established in [5].
Theorem 3.1. Assume that w ∈ H2(Ω) and u are the solutions of (2.7) and

(2.1), respectively. Then the following error estimates hold:

‖w − wh‖1,Ω, ‖u− uh‖1,Ω ≤ C h‖f‖Ω,(3.4)

and ‖w − wh‖Ω, ‖u− uh‖Ω, |λ− λh| ≤ C h1+ π
ω ‖f‖Ω.(3.5)

4. Solution methods. Let {φj(x)}Nj=1 be nodal bases for Vh, write wh =∑N
j=1 w

h
j φj(x), and then the matricial form of (3.1) is

N∑
j=1

whj a(φj , φi) = g(φi)(4.1)

for i = 1, . . . , N . Let Ash and Bh be N ×N matrices with (i, j) entries as(φj , φi) and
b(φj , φi), respectively, let Wh be the unknown vector with components w

h
i , and let

Fh be the right-hand side vector with components g(φi). Then (4.1) may be written
as

AhWh = Fh,(4.2)

where Ah = A
s
h + Bh. Note that Bh is a nonsymmetric and rank-one matrix. In

this section, we discuss two approaches for solving the system of linear equations in
(4.2). The first approach is to use the SM formula which requires two inversions of
the discrete Laplace operator Ash. The second approach is the application of the MG
V -cycle with smoothers depending only on Ash.

4.1. The SM formula. Any rank-one matrix Bh can be written as the product
of the column and row vectors. In particular, we have

Bh = −UV t,
where U and V are column vectors with ith components

Ui =
1

π
(∆(ηρs), φi)B( ρR2 ;ρR) and Vi = (φi, ∆(η2s−))B(R; 2R),
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respectively. By the SM formula, the inverse of Ah has the form

A−1
h = (Ash)

−1 + α (Ash)
−1UV t(Ash)

−1, where α =
1

1− V t(Ash)−1U
.

Therefore, the solution of the system of linear equations in (4.2), Wh = A
−1
h Fh, can

be computed by the following algorithm.
1. Solve AshX = Fh for X.
2. Solve AshY = U for Y .
3. Compute α = 1

1−V tY and β = V tX.
4. Set Wh = X + α β Y .
Note that the above algorithm requires two (approximate) inversions of the dis-

crete Poisson equations, which will be done by using MG. It is well known that MG
applied to the discrete Poisson equation has a fast convergence rate.

4.2. MG algorithms. In this subsection, we describe the MG for solving the
discrete problem in (4.2); the MG uses the exact coarsest grid solver, and smooth-
ing operators on the fine grids depend only on Ash. To this end, we start with an
intentionally coarse triangulation T0 of Ω̄ with the properties that the boundary ∂Ω
is composed of edges of some triangles K in T0 and that every triangle of T0 is shape
regular. Each triangle K of T0 is regularly refined several times, giving a family of
nested triangulations T0, T1, . . . , TJ ≡ T , such that each triangle of Tk+1 is generated
by subdividing a triangle of Tk into four congruent triangles. Let hk be the mesh size
for the corresponding triangulation Tk; we then have hk = 2hk+1. Denote by h the
mesh size of the finest grid. We associate the triangulation Tk with the continuous
piecewise linear finite element space Vk. It is easy to see that the family of spaces
{Vk} is nested.

For k = 0, 1, . . . , J , define the nonsymmetric and symmetric elliptic operators
Ak, Ask : Vk −→ Vk by

(Akw, φ) = a(w, φ) ∀ φ ∈ Vk and (Askw, φ) = as(w, φ) ∀ φ ∈ Vk,
respectively. Also, define the L2-projection operator Pk : Vk+1 −→ Vk by

(Pkw, φ) = (w, φ) ∀ φ ∈ Vk.
The smoothing operators Rk : Vk −→ Vk adopted in this paper are the exact solver
on the coarsest grid and the Gauss–Seidel iteration based on the symmetric operator
Ask for k = 1, 2, . . . , J . Now we define the MG operator Bk : Vk −→ Vk of the
V(ν1, ν2)-cycle by induction (see [1]).

V(ν1, ν2)-Algorithm. Set B0 = A−1
0 . Assume that Bk−1 has been defined, and

define Bk g for g ∈ Vk as follows.
1. Set an initial guess x0.
2. Define x� for / = 1, . . . , ν1 by x� = x�−1 +Rk(g −Akx�−1).
3. Define xν1+1 by xν1+1 = Bk−1Pk−1(g −Akxν1).
4. Set Bkg = xν1+ν2+1, where x� is defined for / = ν1 + 2, . . . , ν1 + ν2 + 1 by
x� = x�−1 +Rk(g −Akx�−1).

It was shown in [6] that if the bilinear forms a(·, ·) and b(·, ·) satisfy the continuity
and coercivity bounds in (2.8) and (2.9), then the MG V (1, 0)-cycle and, hence, the
V (ν1, ν2)-cycles for ν1 ≥ 1 and ν2 ≥ 0 converge independently of the mesh size h and
the number of levels J , provided that the coarsest mesh size h0 is sufficiently small.
This condition on h0 indicates that this direct MG approach is probably expensive
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because it requires us to solve a relatively large coarse grid problem. Numerical
experiments presented in the next section use h0 = 1/4. Hence, it is clear that such
a condition is not essential for our problem.

Finally, we will also consider the full MG scheme FMG(nV(ν1, ν2)), which pro-
ceeds from the coarsest to the finest grid, invoking n V (ν1, ν2) cycles on each level
along the way with n ≥ 1 (see [4]). Thus, each coarse level serves to provide a
good initial approximation to the next finer level, with the intent of producing a final
approximation on the finest grid that is accurate to the level of discretization error.

5. Numerical experiments. In this section, we present the results of numerical
experiments. Performance of the solution methods and the finite element discretiza-
tion accuracy are first analyzed individually, and then the overall FMG performance
is assessed.

We consider the Poisson equation in (2.1) over the L-shaped domain

Ω = ((−1, 1)× (−1, 1)) \ ([0, 1)× (−1, 0]) .
The domain Ω is first partitioned into 3(n × n) square subdomains of side length
h = 1/n. The 3(n×n) subsquares are then divided into pairs of triangles by connecting
the bottom right and upper left corners. We use continuous piecewise linear finite
element space for the approximation of the regular part w of the solution with respect
to the triangulation with the grid interval h ranging from 2−2 to 2−7 for each direction.
In the performances of the MG V-cycles and the full MG V-cycles, the mesh size of
the coarsest grid is chosen to be h0 = 2−2. To increase the accuracy of numerical
quadratures, all integrations, involving singular and dual singular functions, on a
given triangle K ∈ Tk are computed by the composite three points quadrature rule
using small triangles of the side length 2−11. These small triangles are generated by
(9− k)-times subdividing the triangles K of the side length 2−(k+2). We will use the
following discrete L2-norm and H1-seminorm for the vector Vh ∈ �N :

‖Vh‖h :=
√(
MhVh, Vh

)
and |Vh|1,h :=

√(
AsJVh, Vh

)
,

where Mh is the mass matrix associating with Vh and AsJ is the stiffness matrix of
the Laplace operator defined in section 4.

5.1. Performance of the solution methods. To study the performance of the
solution methods, we begin with the Poisson equation in (2.1) with the homogeneous
right-hand side; i.e.,



−∆u = 0 in Ω,

u = 0 on ∂Ω.

It is obvious that the exact solution is zero. With the initial guess of one, we report
asymptotic convergence factors for the MG V-cycle defined in section 4.2 (referring to
the direct MG) and the iterative Sherman–Morrison algorithm (SMA). Let Xk and
Y k denote, respectively, the kth V(ν1,ν2) iterates of the discrete Poisson problems in
the first two steps of the SMA defined in section 4.1. The iterative SMA is defined as
follows:

W k
h = X

k + αkβkY k
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Table 1
Convergence factors for direct MG V(ν1, ν2) cycle.

ρ = 1.00 ρ = 0.50

Mesh size V(1,0) V(2,0) V(1,1) V(1,0) V(2,0) V(1,1)

h = 1
8

0.3971 0.1822 0.1830 0.3988 0.1720 0.1694

h = 1
16

0.4415 0.2460 0.2369 0.4564 0.2793 0.2758

h = 1
32

0.4417 0.2696 0.2524 0.4504 0.2574 0.2866

h = 1
64

0.4642 0.3113 0.2924 0.4360 0.2691 0.2598

h = 1
128

0.4719 0.3081 0.2612 0.4777 0.3242 0.2831

Table 2
Convergence factors for the iterative SMA with ρ = 1.0.

Mesh size V(1,0) V(2,0) V(1,1)

h = 1
8

0.4005 0.1709 0.1691

h = 1
16

0.4588 0.2722 0.2780

h = 1
32

0.4563 0.2421 0.2680

h = 1
64

0.4638 0.2285 0.2553

h = 1
128

0.4369 0.3072 0.2474

with αk = 1
1−V tY k and β

k = V tXk. Convergence factors σkh here are defined as ratios

of a successive discrete H1-seminorm of errors,

σkh :=
|ek+1
h |1,h
|ekh|1,h

with ekh =Wh −W k
h ,

where Wh = 0 and W k
h are the exact solution and the kth iterate of (4.2) with

f = 0, respectively. It is clear that the convergence factor of the iterative SMA does
not depend on ρ and the mesh size h since the MG iterations apply to two discrete
Poisson problems.

Tables 1 and 2 represent convergence factors measured after 20 MG V(ν1, ν2)
cycles for the direct MG and the iterative SMA, respectively. Uniform convergence
theory of the direct MG (see the discussion in section 4.2) requires the condition
that h0 is sufficiently small. Clearly, the numerical results reported here show that
convergence of the direct MG is not subject to such a constraint since we used h0 =
1/4. The observed convergence factors in Tables 1 and 2 for the direct MG and the
iterative SMA are almost same, but the latter costs about twice as many arithmetic
operations as the former for one re-entrant corner and much more for several re-
entrant corners. This indicates that the direct MG is the method of choice. One
V(2, 0) or one V(1, 1) cycle costs about twice as much as one V(1, 0) cycle. Table 1
shows that the reduction rate by two V(1, 0) cycles is better than the reduction rate
of one V(2, 0) or V(1, 1) cycle. This suggests that the MG V(1, 0) is the most effective
solver, which is confirmed by the subsequent tables.

5.2. Discretization errors and FMG performance. To measure the dis-
cretization error, we consider the Poisson equation in (2.1) with a known nonzero
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Table 3
The number of iterations for the direct MG till |Wh −Wk

h |1,h < 10−4.

ρ = 1.00 ρ = 0.50

Mesh size Dim. V(1,0) V(2,0) V(1,1) V(1,0) V(2,0) V(1,1)

h = 1
4

33 1 1 1 1 1 1

h = 1
8

161 10 7 6 10 7 6

h = 1
16

705 11 8 7 11 7 7

h = 1
32

2945 12 8 7 11 8 7

h = 1
64

12033 12 8 7 11 8 7

h = 1
128

48641 12 8 7 12 8 7

Table 4
The number of iterations till |Wh −Wk

h |1 < 10−4 for ρ = 1.0 (the iterative SMA).

Mesh Size Dim. V(1,0) V(2,0) V(1,1)

h = 1
4

33 1 1 1

h = 1
8

161 10 7 6

h = 1
16

705 11 7 7

h = 1
32

2945 11 8 7

h = 1
64

12033 11 8 7

h = 1
128

48641 11 8 7

solution by choosing the right-hand side function to be

f =

{
sin(2πx)

[
2π2(y2 + 2y)(y2 − 1)− (6y2 + 6y − 1)]−∆(ηρs) if − 1 ≤ y < 0,

sin(2πx)
[
2π2(−y2 + 2y)(y2 − 1)− (−6y2 + 6y + 1)]−∆(ηρs) if 0 < y ≤ 1,

where s = r
2
3 sin( 2θ

3 ) is the singular function. The exact solution of the underlying
problem is then

u = w + ηρs,

where w is the regular part of the solution, which is the exact solution of (2.7) given
by

w =

{
sin(2πx)( 1

2y
2 + y)(y2 − 1) if − 1 ≤ y ≤ 0,

sin(2πx)(− 1
2y

2 + y)(y2 − 1) if 0 ≤ y ≤ 1.
Note that the function w is in H2(Ω) but not in H3(Ω). Let Wh be the exact solution
of (4.2), the coefficient vector of the finite element approximation. We first depict
the number of iterations required in order to reduce the initial error |Wh −W 0

h |1,h =
|Wh|1,h within the given tolerance ε = 10−4 in Tables 3 and 4.

Next, we compute the approximate solution Ŵh of (4.2) on each of the various
levels of discretization by using 30 direct MG V (1, 0) cycles. This is to ensure that
the errors reported in Tables 5 and 6 properly reflect discretization accuracy without
contamination from algebraic iteration errors. Let wIh be the interpolant of w in
Vh = span{φi(x)}Ni=1; i.e.,

wIh =

N∑
i=1

wIjφi(x),
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Table 5
The discrete L2-norm errors and the convergence rates for w.

ρ = 1.00 ρ = 0.50

Mesh size L2-norm Rate L2-norm Rate

h = 1
4

2.5729e-02 2.2269e-02

h = 1
8

7.5903e-03 1.7612 6.6963e-03 1.7336

h = 1
16

2.0062e-03 1.9197 1.7669e-03 1.9221

h = 1
32

5.0926e-04 1.9780 4.4820e-04 1.9790

h = 1
64

1.2774e-04 1.9952 1.1238e-04 1.9958

h = 1
128

3.1850e-05 2.0038 2.8019e-05 2.0039

Table 6
The discrete H1 seminorm and the convergence rates for w.

ρ = 1.00 ρ = 0.50

Mesh size H1-norm Rate H1-norm Rate

h = 1
4

1.6457e-01 1.6027e-01

h = 1
8

4.7468e-02 1.7937 4.5217e-02 1.8256

h = 1
16

1.2568e-02 1.9172 1.1800e-02 1.9381

h = 1
32

3.1938e-03 1.9764 3.0068e-03 1.9725

h = 1
64

8.0209e-04 1.9934 7.5437e-04 1.9949

h = 1
128

2.0121e-04 1.9951 1.8791e-04 2.0052

where wIi is the nodal value of w. Let WI be the coefficient vector of w
I
h, i.e., the

vector with components wIi . Define the error vector by

E(h) =WI − Ŵh.

The rates of convergence for discretization errors in the discrete L2 norm, the discrete
H1 seminorm, and the absolute value are measured by

log2

‖E(h)‖h
‖E(h2 )‖h2

, log2

‖E(h)‖1,h
‖E(h2 )‖1,h2

, and log2

|λ− λh|
|λ− λh

2
| ,

respectively.
Numerical results given in Tables 5 and 6 show that the discretization accuracy

of the finite element approximation to w is O(h2) with respect to both the discrete L2

norm and the discrete H1 seminorm for ρ = 1.0 and 0.5. The theoretically predicted
error bounds are only O(h

5
3 ) in the L2 norm and O(h) in the H1 norm. We therefore

appear to have obtained optimal convergence in the L2 and superconvergence in the
discrete H1 seminorm for this particular case. Our finite element theory in [5] requires
that the mesh size h is sufficiently small since we used G̊arding’s inequality in its
analysis. It is clear from Tables 5 and 6 that our finite element approximation is not
subject to this constraint.

To test overall accuracy for the FMG, we studied the FMG based on 5V (1, 0),
4V (2, 0), and 4V (1, 1) cycles. Tables 7 and 8 show that the total errors produced
by the FMG are comparable to those discretization errors estimated in the respective
Tables 5 and 6. This indicates that the underlying problem on level h can be solved
to within the level of discretization error at a cost of about 4

3 · 5V (1, 0) ≈ 7V (1, 0) or
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Table 7
The discrete L2-norm errors and the convergence rates by FMG.

FMG(5V(1,0)) FMG(4V(2,0)) FMG(4V(1,1))

Mesh size Error Rate Error Rate Error Rate

h = 1
8

7.6617e-03 1.7477 7.6010e-03 1.7591 7.6114e-03 1.7572

h = 1
16

2.0498e-03 1.9022 2.0296e-03 1.9050 2.0283e-03 1.9079

h = 1
32

5.2220e-04 1.9728 5.1803e-04 1.9701 5.1511e-04 1.9773

h = 1
64

1.3105e-04 1.9945 1.3012e-04 1.9932 1.2912e-04 1.9962

h = 1
128

3.2667e-05 2.0042 3.2446e-05 2.0037 3.2179e-05 2.0045

Table 8
The discrete H1-seminorm errors and the convergence rates by FMG.

FMG(5V(1,0)) FMG(4V(2,0)) FMG(4V(1,1))

Mesh size Error Rate Error Rate Error Rate

h = 1
8

4.7954e-02 1.7790 4.7389e-02 1.7961 4.7465e-02 1.7938

h = 1
16

1.2973e-02 1.8861 1.2672e-02 1.9029 1.2669e-02 1.9056

h = 1
32

3.3488e-03 1.9538 3.2528e-03 1.9619 3.2237e-03 1.9745

h = 1
64

8.6492e-04 1.9530 8.2053e-04 1.9871 8.0915e-04 1.9942

h = 1
128

2.3739e-04 1.8653 2.0634e-04 1.9915 2.0290e-04 1.9956

Table 9
The absolute value errors and the convergence rates for λ.

ρ = 1.00 ρ = 0.50

Mesh size |λ− λh| Rate |λ− λh| Rate

h = 1
4

7.0471e-02 6.8240e-02

h = 1
8

2.0457e-02 1.7844 2.0362e-02 1.7447

h = 1
16

5.3595e-03 1.9324 5.3451e-03 1.9296

h = 1
32

1.3576e-03 1.9810 1.3449e-03 1.9907

h = 1
64

3.4091e-04 1.9936 3.2827e-04 2.0345

h = 1
128

8.5640e-05 1.9930 7.3006e-05 2.1688

Table 10
The absolute value errors and the convergence rates by FMG.

FMG(5V(1,0)) FMG(4V(2,0)) FMG(4V(1,1))

Mesh size Error Rate Error Rate Error Rate

h = 1
8

2.0710e-02 1.7667 2.0430e-02 1.7863 2.0454e-02 1.7846

h = 1
16

5.4565e-03 1.9243 5.3802e-03 1.9250 5.3889e-03 1.9243

h = 1
32

1.3846e-03 1.9785 1.3672e-03 1.9764 1.3650e-03 1.9811

h = 1
64

3.4781e-04 1.9931 3.4360e-04 1.9924 3.4259e-04 1.9943

h = 1
128

8.7360e-05 1.9933 8.6318e-05 1.9930 8.6045e-05 1.9933

5V (2, 0) or 5V (1, 1) cycles on level h. Finally, results for the stress intensity factor
are contained in Tables 9 and 10.

6. Conclusion and remarks. We study the MG V-cycle applied directly to
the discrete problem in (4.2) and used in the SMA. Our numerical study shows that
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the direct MG is much more efficient than the iterative SMA. Our numerical study
confirms theories on finite element accuracy established in [5] and MG convergence
discussed in section 4.2. It especially shows that our finite element method seems to
be optimally accurate in the L2 norm. The theory for MG convergence is subject to
the constraint that the coarsest mesh size is sufficiently small. But this condition is
not essential numerically since we used h0 = 1/4 in our experiments.

Acknowledgment. We would like to thank the referee for several helpful sug-
gestions.
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Abstract. In this paper the vector finite element time-domain (VFETD) method is derived,
analyzed, and validated. The VFETD method uses edge vector finite elements as a basis for the
electric field and face vector finite elements as a basis for the magnetic flux density. The Galerkin
method is used to convert Maxwell’s equations to a coupled system of ordinary differential equations.
The leapfrog method is used to advance the fields in time. The method is shown to be stable
and to conserve energy and charge for arbitrary hexahedral grids. A numerical dispersion analysis
shows the method to be second order accurate on distorted hexahedral grids. Several computational
experiments are performed to determine the accuracy and efficiency of the method.

Key words. Maxwell’s equations, vector finite element, unstructured grids, edge elements
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1. Introduction. This paper is concerned with the numerical solution of the
time dependent Maxwell equations in charge-free regions,

∂B

∂t
= −∇×E− σMµ−1B,

ε
∂E

∂t
= ∇× µ−1B− σEE− J,

∇ • εE = 0,

∇ •B = 0,

(1)

with initial-boundary values

n̂×E = Ebc on Γ = boundary (Ω),(2)

E(t = 0) = Eic,B(t = 0) = Bic.(3)

Here, E = E(x, t) is the electric field, B = B(x, t) is the magnetic flux density,
J = J(x, t) is the electric current, and n̂ is the outward normal vector to Γ. The vol-
ume Ω ⊂ R3 is a domain, not necessarily bounded, whose boundary Γ is sufficiently
regular (Lipschitz-continuous). Ω may be inhomogeneous, consisting of several dielec-
tric, magnetic, and metallic regions of arbitrary geometry. The material properties
are assumed to be linear and nondispersive. The volume may also contain several in-
dependent voltage and current sources. The electric and magnetic conductivities, σE
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and σM , the dielectric permittivity ε, and the magnetic permeability µ are assumed
to be time independent symmetric positive definite tensors. Example electromagnetic
problems within this class include the design of waveguides and antennas, scatter-
ing of electromagnetic waves from automobiles and aircraft, and the penetration and
absorption of electromagnetic waves by dielectric objects. Throughout this presen-
tation, unless the physical meaning of quantities suggests otherwise, boldface letters
will stand for vector fields whereas plain faced letters will stand for scalar fields.

The most popular numerical scheme for solving the time dependent Maxwell
equations on an orthogonal Cartesian grid is the finite difference time-domain (FDTD)
method [1, 2, 3, 4]. The method utilizes a centered difference approximation in space
and a leapfrog approximation in time to yield a conditionally stable, consistent, and
second order accurate scheme. However, when one attempts to use the FDTD method
on complicated geometries by approximating curved boundaries with “stair steps,”
poor results are obtained [4, 5]. Nevertheless the FDTD method is extremely efficient
and is the benchmark to which new methods are compared.

There have been several attempts to generalize the FDTDmethod to unstructured
hexahedral grids, most notably the modified finite volume (MFV) and discrete surface
integral (DSI) methods [6, 7, 8, 9]. In these methods Maxwell’s equations are cast in
integral form, then the subsequent volume and/or surface integrals are approximated
by standard integration rules. A leap frog time integration is used so that these
methods reduce to the FDTD method when orthogonal grids are used. However,
the finite volume methods are not provably stable, and weak instabilities leading to
nonphysical solution growth have been observed for nonorthogonal grids [10]. The
instability is caused by the nonsymmetric discretization of the curl-curl operator.
Dissipative time integration schemes may be employed to counteract this nonphysical
solution growth, but this results in a violation of conservation of energy [11].

There is another class of finite volume methods where Maxwell’s curl equations
are cast in conservative form, resulting in a PDE that resembles the Euler equation
of fluid dynamics [12, 13, 14]. The classical methods of computational fluid dynamics
such as Lax–Wendroff or Godunov can then be used to solve the equations. These
methods can be implemented on a structured, but nonorthogonal, hexahedral grid
but do not reduce to the FDTD method when implemented on orthogonal Cartesian
grids. However, these methods are stable and consistent, and very good accuracy can
be achieved as the grid is refined. The methods rely upon dissipative time integration
for stability and consequently do not conserve energy. In addition they neglect the
divergence properties of the fields so that there is no guarantee that these methods
will conserve charge.

Vector finite elements, also known as edge elements, Whitney 1-forms, or H(curl)
elements [15, 16, 17, 18, 19], have been used to formulate finite element solutions to
the weak form of Maxwell’s equations. These elements enforce tangential continuity of
the fields but allow for jump discontinuity in the normal component of the fields. Use
of these elements also eliminates spurious, divergent solutions of Maxwell’s equations
that were common with nodal element formulations [20, 21, 22, 23, 24, 25]. Vector
finite element methods have been successfully used in the frequency domain to analyze
resonant cavities, compute waveguide modes, and perform scattering calculations [26,
27, 28]. Vector finite elements have also been proposed to solve Maxwell’s equations
directly in the time domain [29, 30, 31, 32, 33]. Theoretical convergence results
and error estimates for time dependent vector finite element solutions of Maxwell’s
equations were developed in [34, 35].
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1.1. Vector finite element time-domain (VFETD) method. In this paper,
a Galerkin procedure is used to convert the weak form of Maxwell’s equations to
a semidiscrete coupled system of ordinary differential equations using vector finite
elements. A leapfrog time integration scheme similar to that found in the FDTD
method is then used to discretize time and update the field variables.

The VFETD method uses vector “edge” finite elements as a basis for the elec-
tric field and vector “face” finite elements as a basis for the magnetic flux density.
These elements are complementary in the sense that the edge elements have tan-
gential continuity across interfaces whereas the face elements have normal continuity
across interfaces. Consequently, the Galerkin approximations preserve field continu-
ities/discontinuities across material interfaces. The properties of these vector finite
elements is discussed in detail in [15].

The VFETD method is shown to be conditionally stable. Moreover, if a stable
time step is used, the method conserves energy and charge, independent of how dis-
torted the grid is. A numerical dispersion analysis of the method is performed on
several different distorted hexahedral grids, with the result that the method is second
order accurate. The analysis also shows how the anisotropic part of the numerical
dispersion relation depends upon the grid distortion [40, 41, 42, 43].

The VFETD method requires a sparse linear system to be solved at every time
step. The computational effort required to solve the system depends upon how dis-
torted the grid is. For Cartesian grids mass lumping can be used, in which case
the VFETD method reduces to the classic FDTD method. For non-Cartesian grids
conjugate gradient iterative methods are used to solve the system where it is shown,
via computational experiments on unstructured hexahedral grids, that the number of
iterations required to achieve a given accuracy is a constant independent of the grid
cell size (grid refinement) used to discretize the problem. Hence the method is scal-
able. The accuracy of the method, as well as the required CPU time, are tabulated
for resonant cavity, waveguide, and antenna problems.

2. Weak formulation of Maxwell’s equations. In this section we convert
Maxwell’s equations into variational equations posed over suitable function spaces.
We first consider the space

H(curl ; Ω) = {u ∈ L2(Ω); ∇× u ∈ L2(Ω)}.
A function u in the vector space H1(K1)∪H1(K2) is in H(curl ; Ω = K1 ∪K2) if and
only if the trace u× n is the same on each side of the face Γ [15, 16]. Consequently,
H(curl ; Ω) is an appropriate space for the electric field E. Similarly, we define the
function space

H(div; Ω) = {u ∈ L2(Ω);∇ • u ∈ L2(Ω)}.
Then, a function u in the vector space H1(K1) ∪H1(K2) is in H(div; Ω = K1 ∪K2)
if and only if u • n is the same on each side of the face Γ [15, 16]. Hence, H(div; Ω)
is an appropriate space to which the magnetic flux density B should belong. Both
spaces, equipped with the canonical inner products, are Hilbert spaces with norms

‖u‖H(curl : Ω) = (‖u‖22 + ‖∇ × u‖22)1/2,
‖u‖H(div : Ω) = (‖u‖22 + ‖∇ • u‖22)1/2.

We write ‖u‖22 =
∫
Ω

utu dΩ ≡ (u,u) <∞ for the L2(Ω)-norm and (u,v) =
∫
Ω

utv dΩ
for the L2(Ω) inner product. The subspace of H(curl ; Ω) containing the vector fields
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Fig. 1. Illustration of an arbitrary hexahedron.

u with vanishing tangential trace n × u on Γ is denoted by H0(curl ; Ω). As usual,
n designates the exterior unit normal vector on Γ. Similarly, H0(div; Ω) denotes the
subspace of H(div; Ω) containing vectors u such that u • n = 0 on Γ.

Given the above definitions, a natural way of defining the weak form of Maxwell’s
equations (1)–(3) is to determine functions B ∈ H(div; Ω), E ∈ H(curl ; Ω) such that

∂

∂t
(µ−1B,B∗) = −(µ−1∇×E,B∗) = (µ−1σMµ−1B,B∗),(4)

∂

∂t
(εE,E∗) = (∇×E∗, µ−1B)− (σEE,E∗)− (J,E∗)(5)

for all B∗ ∈ H0(div; Ω), E∗ ∈ H0(curl ; Ω). The multiplication of the first equation
by µ−1 is done to aid in the analysis of the Galerkin method. Clearly, if B, E are
classical solutions of Maxwell’s equations (1)–(3), then they are solutions of the weak
equations (4)–(5).

3. Finite element basis functions. A general definition of finite elements on
arbitrary polyhedra is given by the following.

DEFINITION. A finite element (K,P,A), consists of
1. K, a polyhedral domain;
2. P , a vector space of polynomials defined on K having a basis {ψ1, ψ2, . . . , ψN}

(called shape functions);
3. A, a set of linear functionals defined on P having a basis α1, α2, . . . , αN (called

the degrees of freedom).
In this section we define K,P,A for the linear edge and face elements. For the

elements developed in this paper, we shall approximate the domain Ω with a hexa-
hedral mesh κ consisting of Ki, i = 1, . . . , N , hexahedra. Each of the hexahedra can
be mapped using the standard trilinear mapping (x, y, z) = B(ζ, η, ν) to a reference
element, K0 = {0 ≤ ζ, η, ν ≤ 1}. We require that the mapping B be one-to-one
and invertible, implying a nonsingular Jacobian matrix J . Consequently, K will be
a hexahedron consisting of 8 nodes labeled as in Figure 1. The 12 edges, ai, and 6
faces, fi, are numbered according to Table 1. The Dirichlet part of the boundary ΓD
is assumed to be the union of complete faces of elements.

3.1. Finite elements in H(curl): Edge elements. We consider finite ele-
ments (K,P,A), called “edge elements,” where K is an arbitrary hexahedron and the
degrees of freedom of A are defined by

αi(v) =

∫
ai

(v • ti) ds, v ∈ P(6)
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Table 1
Node, edge, and face numbering scheme for hexahedrons.

i edge, ai face, fi

1 1-2 1-4-8-5

2 4-3 2-3-7-6

3 5-6 1-5-6-2

4 8-7 4-8-7-3

5 1-4 1-2-3-4

6 5-8 5-6-7-8

7 2-3

8 6-7

9 1-5

10 2-6

11 4-8

12 3-7

with ti being the unit tangent vector along edge ai of K. The space P is defined by
considering the reference element (K0, P0, A0). Here

P0 = {u = [u1, u2, u3]
t : u1 ∈ Q0,1,1;u2 ∈ Q1,0,1;u3 ∈ Q1,1,0},

where Ql,m,n denotes the vector space of polynomials in three variables (x, y, z), the
maximum degree of which are, respectively, l in x, m in y, n in z. Note that dimension
[P0] = 12. The basis for P0, as constructed by (6), is

W
(0)
1 = (1− y − z + yz, 0, 0), W

(0)
2 = (y − yz, 0, 0),

W
(0)
3 = (z − yz, 0, 0), W

(0)
4 = (yz, 0, 0),

W
(0)
5 = (0, 1− x− z − xz, 0), W

(0)
6 = (0, x− xz, 0),

W
(0)
7 = (0, z − xz, 0), W

(0)
8 = (0, xz, 0),

W
(0)
9 = (0, 0, 1− x− y − xy), W

(0)
10 = (0, 0, x− xy),

W
(0)
11 = (0, 0, y − xy), W

(0)
12 = (0, 0, xy).

(7)

The above polynomial basis defined on the reference element must be transformed to
the arbitrary hexahedron K such that the degrees of freedom are preserved. It is well
known that the covariant transformation preserves line integrals under a change of

coordinates; hence we define P in (K,P,A) by Wi = J−tW(0)
i .

3.2. Finite elements in H(div): Face elements. We now consider a finite
element (K,P,A), called “face elements,” where K is an arbitrary hexahedron and
the degrees of freedom of a face element are

αi(v) =

∫
fi

(v • ni) ds,(8)

where ni is the unit normal vector to the face fi of K. The space P is defined by
again considering the reference element (K0, P0, A0). Here, P0 = {u = [u1, u2, u3]

t :
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u1 ∈ Q1,0,0; u2 ∈ Q0,1,0; u3 ∈ Q0,0,1}. The basis functions of P0 are constructed from
(8) to get

F
(0)
1 = (−1 + x, 0, 0), F

(0)
2 = (x, 0, 0), F

(0)
3 = (0,−1 + y, 0),

F
(0)
4 = (0, y, 0), F

(0)
5 = (0, 0,−1 + z), F

(0)
6 = (0, 0, z).

(9)

The above polynomial basis defined on the reference element must be transformed
to the arbitrary hexahedron K such that the degrees of freedom are preserved. It is
well known that a contravariant transformation preserves surface integrals; hence we

define P in (K,P,A) by Fi = JF
(0)
i .

4. Galerkin approximation of Maxwell’s equations. The Galerkin method
constructs approximations

Ẽ =

NE∑
j=1

ejWj ∈W = span [W1,W2, . . . ,WNB ] ⊂ H0(curl ; Ω),

B̃ =

NB∑
j=1

bjFj ∈ F = span [F1,F2, . . . ,FNE ] ⊂ H0(div; Ω),

(10)

such that

∂

∂t
(µ−1B̃,Fi) = −(µ−1∇× Ẽ,Fi) +−(µ−1σMµ−1Ẽ,Fi), i = 1, 2, . . . , NF ,

∂

∂t
(εẼ,Wi) = (∇×Wi, µ

−1Ẽ)− (σEB̃,Wi)− (̃j,Wi), i = 1, 2, . . . , NE ,

(11)
where NE and NF are the number of internal edges and faces, respectively. This leads
to systems of ordinary differential equations

G
∂b

∂t
= −Ke− Pb,

C
∂e

∂t
= KTb− Se−Qj,

(12)

where b = [b1, b2, . . . , bNF ]
t, e = [e1, e2, . . . , eNE ]

t, and the matrices are given by

Gij = (µ−1Fi,Fj), Kij = (µ−1∇×Wi,Fj),

Pij = (µ−1σMµ−1Fi,Fj), Cij = (εWi,Wj),

Kt
ij = (µ−1∇×Wj ,Fi), Sij = (σEWi,Wj), Qij = (Fi,Wj).

(13)

5. Leapfrog time differencing. The ordinary differential equations (12) are
differenced so that the electric fields are calculated at whole time steps and the mag-
netic fields are calculated at the half time steps. Specifically,

(G+∆tP/2)bn+1/2 = −∆tKen + (G−∆tP/2)bn−1/2,(14)

(C +∆tS/2)en+1 = ∆tKTbn+1/2 + (C −∆tS/2)en −∆tQjn+1/2.(15)
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5.1. Stability and conservation. Properties of (14) will be derived by assum-
ing no electric or magnetic conductivity, i.e., σE = σM = J = 0. In this case the
discrete equations (14) become[

en+1

bn+1/2

]
=

[
(I −∆t2C−1KtG−1K) ∆tC−1Kt

−∆tG−1K I

][
en

bn−1/2

]
.(16)

The following theorem establishes eigenproperties of the method.
Theorem 1. Let T (∆t) be the amplification matrix in (16). Then
(a) the eigenvalues of T (∆t) either have unit magnitude or are negative
(b) the eigenvalues of T (∆t) have unit magnitude if and only if

∆t ≤ 2√
max(ψ)

,(17)

where ψ is an eigenvalue of C−1KtG−1K.
Proof. (a) Suppose T (∆t) has a complex eigenvalue λ = a + ib. Then there is a

complex eigenvector [ xy ] that solves the eigenvalue problem[
(I −∆t2C−1KtG−1K) ∆tC−1Kt

−∆tG−1K I

][
x

y

]
= λ

[
x

y

]
.

Since the matrices C and G are symmetric and positive definite, they admit Cholesky
decompositions C = C̃tC̃ and G = G̃tG̃, respectively. If we let x̃ = C̃x and ỹ = G̃y,
then the above eigenproblem is equivalent to[

(I −∆t2QQt) ∆tQ

−∆tQt I

][
x̃

ỹ

]
= λ

[
x̃

ỹ

]
,(18)

where the matrix Q is given by Q = C̃−tKtG̃−1. Note that QQt = C−1KtG−1K.
Since [

(I −∆t2QQt) ∆tQ

−∆tQt I

]
=

[
I ∆tQ

O I

][
I O

−∆tQt i

]
,

its determinant is 1 and consequently λ �= 0. We can now write (18) as a general
eigenproblem:

[
I O

−∆tQt I

][
x̃

ỹ

]
= λ

[
I ∆tQ

O I

]−1 [
x̃

ỹ

]
= λ

[
I −∆tQ

O I

][
x̃

ỹ

]
.

We get that

(1− λ)ỹ = ∆tQtx̃

and

−λ∆t2QQtx̃ = (1− λ)2x̃.

Hence, x̃ is an eigenvector of QQt with eigenvalue −(λ − 1)2/λ∆t2. Since QQt is
symmetric, it has only real eigenvalues. Thus,

Im

(−(λ− 1)2

λ

)
= Im

(
2− (λ2 + 1)

λ

)
= Im(λ+ λ−1) = b(1− (a2 + b2)−1) = 0.
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It follows that either b = 0, in which case λ is real, or |λ| = 1. If λ is real, then using
the fact that QQt is positive semidefinite we see its eigenvalues are nonnegative so
that λ = 1 or λ < 0.

(b) Now suppose that condition (17) holds. In view of (a), we need only consider
the case λ < 0. Then

∆t2 ≤ 4

ψ
≤ −4λ∆t2

(λ− 1)2
⇒ (λ+ 1)2 ≤ 0⇒ λ = −1.

Now suppose all eigenvalues of T (∆t) have unit magnitude. Let ψ = (2+α)/∆t2 be the
eigenvalue of QQt that is largest in magnitude. Let λ be such that α = −(λ2 + 1)/λ.
Specifically, λ is given by

λ =
−α±√α2 − 4

2
.

Moreover, using the same arguments as in (a) to show the connection between the
eigenvalues of QQt and T (∆t), we see that λ is an eigenvalue of T (∆t) and by hy-
pothesis has unit magnitude. Then

∆t2

4
|ψ| = |λ− 1|2

4|λ| ≤ 1

and the theorem is proved.

Theorem 2 (conservation of magnetic charge). If B̃n+1/2 =
∑Nf
i=1 b

n+1/2
i Fi is

the Galerkin approximation computed from (16), then∫
Ω

∇ • B̃n+1/2dΩ =

∫
Ω

∇ • B̃n−1/2dΩ, n = 1, 2, . . . .

Proof. Let δbn = (bn+1/2 − bn−1/2)/∆t. Then by (16)

Gδbn = −Ken.

Note that the edge basis functions and the face basis functions are related by the
so-called inclusion (or compatibility) condition ∇×Wi ∈ F . In particular, the edge

and face basis functions are normalized such that ∇×Wi =
∑2
j=1 aijFij , where Fij

are the two face functions associated with the edge function Wi and aij = ±1 with
the sign depending upon the right-hand rule. Thus,

Ne∑
i=1

ei∇×Wi =

Ne∑
i=1

ei

2∑
j=1

aijFij

and by (16) we have

Nf∑
i=1

δbni (Fi,Fk) =

Ne∑
i=1

eni (∇×Wi,Fk) =

Ne∑
i=1

eni

2∑
j=1

aij(Fij ,Fk)

for k = 1, . . . , Nf . The two summations in the right-hand term can be combined so
that the summation is performed over all Nf face, with four electric field degrees of
freedom ej contributing to each bi:

Nf∑
i=1

δbni (Fi,Fk) =

Nf∑
i=1


 4∑
j=1

enj aij


 (Fi,Fk).
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It follows that

δbni =

4∑
j=1

enj aij

Using Gauss’ law, the divergence of the magnetic flux density in a given cell Ωe
is

∫
Ω

(∇ • δB̃n) =

∮
δB̃n • ndΓ =

6∑
i=1

δbni =

6∑
i=1

4∑
j=1

enj aij = 0,

and the theorem follows by summing over the cells.
Theorem 3 (conservation of electric charge). Let S0 be the space of trilinear

continuous Lagrangian finite elements vanishing on γD. If Ẽn =
∑Ne
i=1 e

n
i Wi is the

Galerkin approximation computed from (16), then∫
Ω

(∇ • εẼn)ψ dΩ =

∫
Ω

(∇ • εẼn−1)ψ dΩ, n = 1, 2, . . . ,(19)

for all continuous piecewise linear functions φ ∈ S0.
Proof. First note that integration by parts yields∫

Ω

(∇ • εE)φ = −
∫

Ω

εẼ • ∇φdΩ+

∮
Γ

φεẼ • n dΓ = −
∫

Ω

εẼ • ∇φdΩ.

Let δE
n
= ∆t−1(E

n −E
n−1

). Then by (16),

(εδE
n
,Wj) = (∇×Wj , µ

−1B̃n−1/2), j = 1, 2, . . . , NE .

Now, ∇φ ∈W ; cf. [15, 25]. Therefore∫
Ω

(∇ • εδEn
)φ =

∫
Ω

εδẼn • ∇φdΩ =

∫
Ω

(∇×∇φ) • µ−1B̃n−1/2dΩ = 0,

and the theorem is proved.

5.2. Numerical dispersion. Equation (1) in an infinite, source free, zero con-
ductivity region becomes the vector wave equation

ε
∂2E

∂t2
= −∇× µ−1∇×E.(20)

If µ and ε are constant scalars, then

E = E0e
I(k•x−ωt)(21)

is a solution to (20) only if the dispersion relation ω2 = c2k2 holds where k = ‖k‖2
and c = 1/(

√
µε) is the speed of light. Now, consider the solution

e(t) =
∑
i

ei(t)Wi(x), ei(t) =

∫
ai

E(x, t) • t dl

of the Galerkin form of (20)

C
∂2e

∂t2
= −Ae, ei(0)−

∫
ai

E(x, 0) • t dl(22)
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Fig. 2. Edge numbering for numerical dispersion analysis.

with t the unit tangent vector to edge ai. The matrices C and A are defined by
(13) and Aij = (µ−1∇×Wi,∇×Wj), respectively. We now assume the grid to be
composed of identical hexahedral cells, which may be distorted. For this analysis the
distortion is such that edges ẽ1 − ẽ4, ẽ5 − ẽ8, ẽ9 − ẽ12 are parallel; see Figure 2.

If we let

X(t) =

∫
ẽ1

E(x, t) • t dl, Y (t) =

∫
ẽ5

E(x, t) • t dl, Z(t) =

∫
ẽ9

E(x, t) • t dl,

then

ẽ1(t) = X(t), ẽ2(t) = XeI(k•�∆1,2−ω∆t), ẽ3(t) = XeI(k•�∆1,3−ω∆t),

ẽ4(t) = XeI(k•�∆1,4−ω∆t), ẽ5(t) = Y (t), ẽ6(t) = Y eI(
�k•�∆5,6−ω∆t),

ẽ7(t) = XeI(k•�∆5,7−ω∆t), ẽ8(t) = XeI(k•�∆5,8−ω∆t), ẽ9(t) = Z(t),

ẽ10(t) = ZeI(k•�∆9,10−ω∆t) ẽ11(t) = ZeI(k•�∆9,11−ω∆t) ẽ12(t) = ZeI(k•�∆9,12−ω∆t),
(23)

where <∆i,j is the vector from the midpoint of edge ẽi to the midpoint of edge ẽj .
Clearly,(

∂2ẽi
∂t2

)n
≈ ẽn+1

i − 2ẽni + ẽn−1
i

∆t2
=

ψẽi
∆t2

, ψ = 2 cos(ω∆t− 1).(24)

If we assume ‖<∆i,j‖2 = ∆x for all (i, j), then (22)–(24) yields a homogeneous system
of equations:

(ψF + ηG)


 X

Y
Z


 = 0, η = c2

∆t2

∆x2
.(25)

The numerical dispersion relation is given by

det(ψF + ηG) = 0,(26)

where the 3 × 3 matrices F , G are complicated nonlinear relationship between the
wave vector k and the radian frequency ω. There are three roots; one is zero, which
does not represent anything physical, and the other two correspond to the two distinct
polarizations.
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Fig. 3. Illustration of a cube distorted in the x and z directions by an amount θ = 45◦.

Example: Numerical dispersion for three-dimensional shear distortion.
Let

k = k[cos(φ) sin(Φ), sin(φ) sin(Φ), cos(Φ)]t(27)

be a wave vector as a function of the spherical angles φ and Φ. The exact phase
velocity for (20)–(21) is given by ω/k = c and the numerical phase velocity v = ω̃/k
is computed by specifying a value of k as a function of φ Φ and solving numerically
for the value of ω̃ that satisfies (26).

In this example, a unit cube is sheared by an amount 0 in both the x direction
and the z direction; see Figure 3.

In the computational experiments we take c = 1 and ∆t = 1/3. Figure 4 shows
surfaces of the phase velocity error for shear angles of θ = 0◦, 15◦, 30◦, 45◦. Each
figure shows the velocity error for k = 1π/5, where the velocity error is defined as
v − c. The shape of the velocity error surface remains the same as k is decreased,
thus it is not necessary to display different surfaces. Note that the scale is different
for each plot.

The maximum velocity, minimum velocity, and anisotropy ratio are tabulated in
Table 2 as a function of k for each of the four grid distortions. The results demonstrate
that, as the grid becomes more distorted, the numerical dispersion relation becomes
more anisotropic.

It is possible to determine the rate of convergence of the numerical dispersion
relation for distorted hexahedral grids by applying a least-squares fit to the above
data. The logarithm of the error versus the logarithm of k is shown in Figure 5
for each of the four grids, along with a least-squares linear fit. The least-squares fit
is applied to the maximum velocity error. For each grid the slope of the linear fit
is approximately 2 (from 2.02 to 2.09), indicating second order convergence of the
numerical dispersion relation.

6. Linear system solution methods. The VFETD method requires the solu-
tion of a large, sparse, symmetric, positive-definite mass matrix equation Cx = y at
every time step. In this paper, the incomplete Cholesky conjugate gradient (ICCG)
method will be used to solve the mass matrix. Basically, the ICCG method is a pre-
conditioned conjugate gradient method where the preconditioner is constructed by
applying the Cholesky factorization algorithm to the mass matrix C and ignoring the
nonzero fill-in [39]. This generates an incomplete Cholesky factorization L̃L̃t, where
L̃ has the same sparsity pattern as the matrix C. For the special case of a Cartesian
grid, the following result holds.
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Fig. 4. Phase velocity error for θ = (a) 0◦, (b) 15◦, (c) 30◦, (d) 45◦. The surface corresponds
to k = 2π/5. The length of the axes are (a) 0.15, (b) 0.25, (c) 0.35, (d) 0.35.

Table 2
Phase velocity and anisotropy ratio versus k.

θ = 0◦ θ = 15◦

k max v min v ratio max v min v ratio

2π/5 1.07538 1.03002 1.04404 1.08797 1.01709 1.06969

2π/10 1.01845 1.00736 1.01101 1.02113 1.00423 1.01682

2π/15 1.00816 1.00326 1.00488 1.00931 1.00188 1.00742

2π/20 1.00458 1.00183 1.00274 1.00522 1.00106 1.00416

θ = 30◦ θ = 45◦

2π/5 1.14536 1.00913 1.135 1.35058 1.00333 1.34609

2π/10 1.03401 1.00227 1.0316 1.08656 1.00083 1.08566

2π/15 1.01493 1.00101 1.0139 1.03845 1.00037 1.03807

2π/20 1.00836 1.0057 1.00779 1.02163 1.00021 1.02142
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Fig. 5. Least-squares fit of phase velocity error indicating second order accuracy for distorted
hexahedral grids with shear θ = 0◦, 15◦, 30◦, 45◦, respectively. The larger error corresponds to the
larger shear angle.

Theorem 4. Consider the mass matrix C = [(εWi,Wj)] for an orthogonal

hexahedral grid. Let C = LLt be the Cholesky factorization and L̃L̃t the incomplete
factorization of C. Then L = L̃, i.e., there is no nonzero fill in the course of the
Cholesky decomposition.

Proof. The proof follows by carefully examining the inner most loop of the de-
composition (see Algorithm 4.2.2 in [39])

Cij = Cij − CikCjk,

where k < j ≤ i. If Cij = 0, i.e., there is no interaction between edges i and j, then
there will be zero fill only if there is another edge k that interacts with both edges i
and j. Numbering the edges sequentially precludes this possibility. This is illustrated
on a two-dimensional grid in Figure 6.

It follows from the previous theorem that for the orthogonal case, the ICCG
algorithm converges in one iteration. The above result does not hold for arbitrary
hexahedral grids. However, as will be seen in the numerical results of the next section,
the number of iterations for the ICCG algorithm to converge is quite small, indicat-
ing incomplete factorization is a very good preconditioner for the conjugate gradient
algorithm.

The classical approach to dealing with the mass matrix is to “lump” it, whereby
the matrix C is approximated by a diagonal matrix C̃ given by

C̃ii =
∑
j

αjCij , i = 1, . . . , Ne,(28)

and the coefficients αj are such that

∑
j

αjWj •Wi =

∫
Ω

E •Wi dΩ.(29)
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Fig. 6. Grid numbering scheme for Cartesian grid.

For a uniform orthogonal Cartesian grid and αj = 1, each diagonal term of the lumped

mass matrix C̃ is equal to the row-sum of C and the mass lumping approximation
generates the classic FDTD method. Thus, we see that the VFETD method is a
generalization of the FDTD method.

7. Numerical experiments. In this section the VFETD method is used to
solve several electromagnetics problems for which analytic solutions are known. In all
cases the CPU time is for a Silicon Graphics 8000 workstation (64 bit, 300 MFLOPS,
SPECfp92 310).

7.1. Spherical cavity. In this section a perfectly conducting spherical cavity
of radius a = 0.05855m is analyzed using VFETD and the computed solutions are
compared to the exact analytical solution. The electric field within the cavity satisfies
(20) where σE = σM = 0 and µ = ε = 1 within the cavity. The exact solution is of
the form

E =
∑
np

AnpE
TE
np cos(ωnpt + φnp) +

∑
np

BnpE
TM
np cos(ωnpt + θnp),(30)

where the sum is over all the modes, and A, B, φ, and θ depend upon the initial
conditions [37]. Here, ωnp are the resonant frequencies given by

ω(j)
np =

ζ
(j)
np

a
, n, p = 1, 2, 3, . . . , j = 0.1,(31)

where ζ
(j)
np are the pth zeros of the jth derivative of the spherical Bessel function of

order n. The exact resonant frequencies below 20Hz are shown in Table 3.
The spherical cavity was modeled using a sequence of hexahedral grids ranging

from a coarse grid with 4 cells per radius to a fine grid with 12 cells per radius.
Figure 7(a), (b) are cut-away views of the 256 hexahedral and 2048 hexahedral grids,
respectively. The electromagnetic fields in the cavity were excited by a pulsed current
source, the pulse having the shape of the second derivative of a Gaussian. The initial
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Table 3
Exact value of resonant frequencies below 20Hz.

ω
(1)
11 ω

(1)
21 ω

(0)
11 ω

(1)
31 ω

(0)
21 ω

(1)
41 ω

(1)
12 ω

(0)
31

7.4589 10.5665 12.2132 13.518 15.6654 16.4782 16.6277 18.9953

Fig. 7. Internal view of (a) 256, (b) 2048 hexahedral grid of sphere.

electric and magnetic fields within the cavity were zero. The simulation was run for
t = 6.71315s, which corresponds to 50 periods of the lowest mode. An edge within the
cavity was selected at random and the electric field along this edge was written to disk
at every time step. This signal was weighted by a Hamming window and the signal
was zero-extended to 32768 samples and then Fourier transformed. The magnitude
of the Fourier transform is the power spectrum of the signal. The time step and the
number of steps was different for each grid due to different stability requirements.
The power spectrums for the 256 hexahedral case and the 2048 hexahedral case are
shown in Figure 8(a), (b), respectively.

Naturally the power spectrum corresponding to the higher resolution grid is more
accurate than the power spectrum corresponding to the lower resolution grid. The
order of accuracy of the method is determined by performing a least-squares fit to the
data where the error is defined to be the difference between the exact and computed

values of ω
(1)
31 . In other words we assume that |(ω(1)

31 )exact − (ω
(1)
31 )computed | ∝ hm and

we solve for the value of m that best models the results. Table 4 records the error as
a function of grid size, where h is the average cell size. The logarithm of the error
versus the logarithm of h/a is shown in Figure 9, along with a linear least-squares
fit. The slope of the line is 2.028, so that the method is second order accurate, thus
agreeing with the numerical dispersion analysis.

The CPU time for the calculations is shown in Table 5. The CPU time is for the
time stepping part of the calculation only. For the above experiments the matrix fill
time is approximately 1/50 of the total CPU time. The stopping criteria for the ICCG
algorithm was ‖residual‖2/‖rhs‖2 ≤ 10−9, where rhs is the right-hand side. Note
that the number of ICCG iterations does not increase as the grid is refined, indicating
that the condition number of the mass matrix remains constant [38]. Therefore the
computational cost per time step is proportional to the number of degrees of freedom.
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Fig. 8. Computed power spectrum versus exact for (a) 256, (b) 2048 hexahedral sphere.

Table 4
Relative error of ω

(1)
31 resonant frequency versus grid size for hexahedral grid.

h/A 1/4 1/6 1/8 1/10 1/12

# nodes 321 997 2273 4341 7393

# cells 256 864 2048 4000 6912

# edges 688 2400 5792 11440 19920

error 0.09846 0.03960 0.02342 0.01589 0.009693
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Fig. 9. Linear fit indicating second order accuracy.

Table 5
CPU time for cavity calculation versus grid size for hexahedral grid.

# edges 688 2400 5792 11440 19920

∆t .0035 .002 .0015 .001 .001

# steps 1918 3356 4475 6713 6713

# ICCG iter. 7.8 7.8 7.8 7.8 7.8

CPU sec. 107 731 3255 11962 22490

7.2. Rectangular waveguide. In this section, the VFETD method is used to
compute the electromagnetic fields in a rectangular waveguide. Let the rectangular
waveguide have width a = 0.9m in the x direction, height b = 4.5m in the y direction,
and infinite in the z direction. The fields are modeled by (1)–(3).

A wave is launched by forcing the time dependent boundary condition

Ex = 0,

Ey =

(
1− exp

(
−
(

t

2T

)2
))

sin(πx/a) sin(ωt)
(32)

at the left end (z = 0) of the waveguide. Here ω = 5.523599 and T = 0.5. The initial
electric and magnetic fields in the guide are zero. The exact steady state solution is
given by

Ex = 0,

Ey = A sin(πx/a) sin(ωt− βzz),

Ez = 0,

(33)
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Fig. 10. Rectangular waveguide model using (a) 1080, (b) 2560 chevron cells.

Bx =
βz
ω

A sin(πx/a) sin(ωt− βzz),

Hy = 0,

Bz = A
(π/a)2

ω
cos(πx/a) cos(ωt− βzz),

(34)

where the wave number is βz =
√

ω2µε− (π/a)2; see [36].
The waveguide is modeled using a sequence of chevron grids with the coarsest

grid having h = a/6 and the finest having h = a/14, where h is the average cell size.
Several finite volume methods have been shown to be unconditionally unstable for
these particular chevron grids [10]. Two of the grids are illustrated in Figure 10(a)
and Figure 10(b).

The simulation was run for 20 seconds, which was enough time for the wavefront
to propagate approximately 20 meters, i.e., twice the length of the finite guide.

The infinite waveguide is approximated by a finite length waveguide of length 10m
with a radiation (or absorbing) boundary condition. The method used here to elim-
inate nonphysical reflections from the artificial truncation of the domain is a variant
of the perfectly matched layer (PML) method. The original PML method derived in
[44] is applicable only for the classic Cartesian grid FDTD method, but many variants
have been proposed for unstructured grids [45, 46, 47]. The general idea is to attach
to the truncated domain several layers of anisotropic conductive media, using both
electric and magnetic conductivity. Grading the layers from low conductivity to high
conductivity creates a broadband impedance match, thus eliminating (or nearly elim-
inating) front face reflections. As the outgoing wave propagates through the PML it
is absorbed by the medium. The PML is not really perfect; a small amount of energy
will be reflected from the boundary. But the reflection is an exponential function of
layer thickness and can be made arbitrarily small. Since the VFETD method allows
for arbitrary tensor material properties, the PML technique was used without modi-
fication. In this example, the wave will be attenuated by the PML at the right end of
the waveguide; thus the simulation will reach a dynamic steady state condition that
resembles the exact solution of an infinite waveguide.

In this simulation, a five-layer PML was used to absorb the outgoing wave. Each
layer is defined by the tensor material properties µ, ε, σE , σM . In every layer µ and
ε are identity matrices. The conductivity matrices are given by σE = σM = σ, where
σ is a diagonal matrix with σxx = σyy = σ⊥ and σzz = 1. The values of σ⊥ used are
tabulated in Table 6. The time step, number of steps, and ICCG iterations are shown
in Table 7.

Note again that the number of ICCG iterations is constant. The same stopping
criteria was the same as for the spherical cavity.

The computed electric and magnetic fields in the waveguide are compared to the
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Table 6
PML parameters used for truncated waveguide.

layer 1 layer 2 layer 3 layer 4 layer 5

σ⊥ 1.8 7.2 16.2 28.8 45

Table 7
CPU time for chevron waveguide calculations.

(h/a) 1/6 1/8 1/10 1/14 1/20 1/40

# cells 1080 2560 5000 14720 35800 271200

# edges 4425 9756 18215 47397 96469 771719

∆t 0.016666 0.0125 0.01 0.007142 .005 .0025

# steps 1272 1696 2120 2968 4240 8480

ICCG iter. 5.7 5.7 5.7 5.7 5.5 5.5

exact solution. The error measure is the standard L2 relative error shown below,
where the sum is over all the hexahedral cells (excluding PML cells) in the grid.

L2error =
‖(Eexact −Ecomputed)‖2

‖Eexact‖2(35)

The logarithm of the error versus the logarithm of (h/a) is shown in Figure 11. In
this figure the initial error is somewhat erratic until the grid spacing h/a is approxi-
mately 1/20, and after that the error decreases with second order convergence. This
agrees with the analysis in [48] where it is shown that the Galerkin solution of the
Helmholtz equation exhibits pollution due to numerical dispersion. In our example,
the waveguide is ten wavelengths long and, for large values of h/a, the phase error
builds up significantly along the length of the waveguide, degrading the L2-norm of
the error. As discussed in section 5, for a grid spacing of (h/a) = 10 and a grid
distortion of θ = 30◦ the worst-case phase velocity error is approximately 3%; there-
fore at the termination end of the waveguide the fields are up to 100 degrees out of
phase, resulting in a local error of up to 50%. The L2 error for the (h/a) = 10 case is
17.38%, which is relatively poor. The convergence result in Figure 11 shows that for
electrically large problems a very fine mesh is required in order to achieve a small L2

error.
There are several other measures of error that are applicable for this specific

waveguide problem. The global error as well as errors in impedance, wavelength,
voltage standing wave ratio (VSWR), and reflection coefficient are shown in Table 8.
In this case, the impedance in the guide is defined as Z = Ez/Hy = ωµ/βz = constant.
Since the computed fields are “noisy,” the computed impedance is defined to be the
average impedance over the entire guide. The wavelength is computed by fitting a sine
wave to the magnitude of the electric field, the period of best fit sine wave defining
the wavelength of the electric field. The exact wavelength for this problem is simply
λz = 2π/βz. It is interesting to note that while the L2 error is relatively large, accurate
quantities such as impedance and wavelength can be derived from the computed field.
Hence the L2 error estimate may be overly pessimistic for some applications. The
VSWR is defined as VSWR = |Emax |/|Emin |, where |Emax | is the maximum of the
time average electric field in the waveguide and |Emin | is the minimum of the time
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Fig. 11. Log error versus Log h.

Table 8
Quality of computed fields for PML terminated waveguide.

reflection
h/a L2 impedance wavelength VSWR coefficient

1/10 17.38% 2.713% 0.453% 1.057 −31dB

average electric field in the waveguide. For an infinite waveguide, or a perfectly
terminated finite length waveguide, the VSWR is 1.0. For a terminated waveguide, the
VSWR can be expressed as a function of the reflection coefficient of the termination,
VSWR = (1 − |ρ|)/(1 + |ρ|), where ρ is the reflection coefficient. The VSWR was
computed by determining the maximum and minimum fields over one period, and
the reflection coefficient is then computed from |ρ| = (1 − VSWR)/(1 + VSWR).
The reflection coefficient is a measure of the effectiveness of the PML. If the PML
is perfect, the reflection coefficient would be zero. The reported reflection coefficient
of −31dB is comparable to that obtained when using finite difference methods on
uniform grids [44]. The reflection coefficient can in theory be reduced arbitrarily by
adding more layers and/or tuning the material properties. The computed electric and
magnetic fields are shown in Figure 12 for the 5000 cell waveguide, with excellent
qualitative agreement with theory. Note that the chevron pattern of the underlying
computational grid is not imprinted on the computed fields.

7.3. Dipole antenna. In this section, we compute the radiated electromagnetic
fields due to a small current source using the VFETD method. Starting at the origin,
a current oscillating at frequency ω is aligned in the z direction as illustrated in
Figure 13.
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Fig. 12. z-component of (a) electric field (b) magnetic field in PML terminated waveguide.

Fig. 13. Coordinate system for dipole radiation calculation.

The exact solution is given by

B =

(
x
∂Az
∂y
− y

∂Az
∂x

)
cos(ωt+ θ),

E =
1

ωµε

(
x
∂∂Az
∂x∂z

+ y
∂∂Az
∂y∂z

− z

(
∂∂Az
∂x∂x

+
∂∂Az
∂y∂x

))
sin(ωt+ θ),

(36)

where

Az =
µI

4π

∫ L/2

−L/2

exp(−jβR)
R

dz,(37)

and θ = arg(A). The parameters for this computational experiment were ω =
107.3132 and L = λ/12 = 0.00487916. The problem was modeled using a hemi-
spherical grid consisting of 12032 hexahedral cells and 38005 edges. The grid had a
spacing of h = λ/24 = 0.00243972 at the origin with the grid spacing increasing away
from the origin. The current source is exactly two edge lengths long and given by

I(t) =

(
1− exp

(
−
(

t

2T

)2
))

sin(ωt),(38)

where T = 0.0147. The simulation was executed for 0.05855 seconds using a time step
of ∆t = 10−4 seconds, which corresponds to 585 time steps.

In order to simulate free space, the same 5-layer PML used for the waveguide
in the previous section was used with the exception that the conductivity tensor
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Fig. 14. Illustration of hexahedral grid with 5-layer PML used for dipole calculation.

Fig. 15. Computed (a) electric (b) magnetic field magnitude in the vicinity of λ/12 dipole.

is rotated such that the axial direction corresponds to the radial direction so that
the PML will absorb outgoing waves. The PML begins at radius a = λ = 0.05855
and the grid was terminated at b = 1.5λ = 0.087825; see Figure 14. The global
L2 error was computed in the same manner as for the waveguide, i.e., according to
(35) where the sum is over all cells excluding PML cells. The computed electric field
matched the exact electric field to within 1.6%, which is an excellent result since the
electromagnetic field structure is quite complicated in the near field of the antenna.
Snapshots of the computed electric and magnetic field are shown in Figure 15.

8. Conclusion. In this paper the VFETD method is derived, analyzed, and val-
idated. It is demonstrated that the method is weakly stable, charge is conserved, and
the continuity/discontinuity of the electromagnetic fields across a material interface
are modeled properly. A numerical dispersion analysis indicates that the method is
second order accurate, even on distorted, but regular, three-dimensional hexahedral
grids.

However, like most finite element methods, the VFETD method requires that a
sparse linear system be solved at every time step. The incomplete Cholesky conjugate
gradient method was investigated where it is shown that the computational effort
required to solve the system depends upon how distorted the grid is. However, for a
uniformly refined mesh the number of iterations becomes independent of the number
of mesh points; hence the method is scalable.

The VFETD method is validated by comparing computed solutions to analytical
solutions for a simple resonant cavity, waveguide, and antenna. The accuracy and
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computer CPU time is tabulated for a variety of different grids. The computational
experiments performed on these distorted hexahedral grids have rates of convergence
that agree with previously published analytical approximations. It is also shown that
the recently developed PML concept can be used to approximate an infinite space
using a finite grid. Since the VFETD method allows for arbitrary tensor material
properties, the PML concept is trivial to implement.

Acknowledgment. The authors would like to thank the Institute for Scientific
Computing Research (ISCR) at the Lawrence Livermore National Laboratory (LLNL)
for their support in this research.
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Abstract. We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems
of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more
precise information about the local speeds of propagation and can be viewed as a generalization
of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282;
A. Kurganov and D. Levy, SIAM J. Sci. Comput., 22 (2000), pp. 1461–1488; A. Kurganov and
G. Petrova, A third-order semidiscrete genuinely multidimensional central scheme for hyperbolic
conservation laws and related problems, Numer. Math., to appear] and [A. Kurganov and E. Tadmor,
J. Comput. Phys., 160 (2000), pp. 720–742].

The main advantages of the proposed central schemes are the high resolution, due to the smaller
amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and character-
istic decomposition involved, and this makes them a universal tool for a wide variety of applications.

At the same time, the developed schemes have an upwind nature, since they respect the directions
of wave propagation by measuring the one-sided local speeds. This is why we call them central-upwind
schemes.

The constructed schemes are applied to various problems, such as the Euler equations of gas
dynamics, the Hamilton–Jacobi equations with convex and nonconvex Hamiltonians, and the incom-
pressible Euler and Navier–Stokes equations. The incompressibility condition in the latter equations
allows us to treat them both in their conservative and transport form. We apply to these problems
the central-upwind schemes, developed separately for each of them, and compute the corresponding
numerical solutions.

Key words. multidimensional conservation laws and Hamilton–Jacobi equations, high-resolution
semidiscrete central schemes, compressible and incompressible Euler equations
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1. Introduction. We consider Godunov-type schemes for the multidimensional
(multi-D) systems of conservation laws

ut +∇x · f(u) = 0, x ∈ R
d,(1.1)

and the multi-D Hamilton–Jacobi equations

ϕt +H(∇xϕ) = 0, x ∈ R
d.(1.2)

Godunov-type schemes for the system (1.1) are projection-evolution methods.
Starting with cell averages at time level tn, one reconstructs a piecewise polynomial
interpolant of degree r − 1 (where r is the formal order of the scheme), which is
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evolved to the next time level tn+1, and then it is projected onto a space of piecewise
constants. Depending on the projection step, we distinguish two kinds of Godunov-
type schemes: central and upwind. The Godunov-type central schemes are based on
exact evolution and averaging over Riemann fans. In contrast to the upwind schemes,
they do not employ Riemann solvers and characteristic decomposition, which makes
them simple, efficient, and universal.

In the one-dimensional (1-D) case, examples of such schemes are the first-order
(staggered) Lax–Friedrichs scheme [28, 14], the second-order Nessyahu–Tadmor scheme
[40], and the higher-order schemes in [39, 8, 30]. Second-order multi-D central schemes
were introduced in [3, 4, 5, 6, 19, 34], and their higher-order extensions were developed
in [31, 32]. We would also like to mention the central schemes for incompressible flows
in [33, 22, 20, 21], and their applications to various systems, for example, [2, 13, 44, 49].

Unfortunately, these staggered central schemes may not provide a satisfactory
resolution when small time steps are enforced by stability restrictions, which may
occur, for example, in the application of these schemes to convection-diffusion prob-
lems. Also, they cannot be used for steady-state computations. These disadvantages

are caused by the accumulation of numerical dissipation, which is of order O( (∆x)2r

∆t ),
where r is the formal order of the scheme.

The aforementioned problems have been recently resolved in [26], where new
high-order Godunov-type central schemes are introduced. The proposed construction
is based on the use of the CFL related local speeds of propagation and on integration
over Riemann fans of variable sizes. In this way, a nonstaggered fully discrete cen-
tral scheme is derived and is naturally reduced to a particularly simple semidiscrete
form (for details see [26]). The same idea was used in [24] to develop a third-order
semidiscrete central scheme, and in [25], where its genuinely multi-D extension was
introduced.

The purpose of the first part of this paper is to present new semidiscrete central
schemes for the conservation law (1.1), which we call central-upwind schemes. They
are based on the one-sided local speeds of propagation. For example, in the 1-D case,
these one-sided local speeds are the largest and smallest eigenvalues of the Jacobian
∂f
∂u (in contrast to the less precise local information, used in [26, 24, 25]—the spectral

radius ρ(∂f∂u )).

The new schemes are Godunov-type central schemes, because the evolution step
employs integration over Riemann fans and does not require a Riemann solver and
a characteristic decomposition. They also have an upwind nature, since one-sided
information is used to estimate the width of the Riemann fans. This more precise
estimate makes our schemes less dissipative generalizations of the semidiscrete central
schemes in [26, 24, 25].

The second part of this paper is devoted to the Hamilton–Jacobi equations, (1.2),
which are closely related to (scalar) conservation laws. For example, in the 1-D case,
the unique viscosity solution of the Hamilton–Jacobi equation, ϕt + H(ϕx) = 0, is
the primitive of the unique entropy solution of the corresponding conservation law,
ut + H(u)x = 0, where u = ϕx. However, in the multi-D case, this one-to-one
correspondence no longer exists, but the gradient ∇xϕ satisfies (at least formally) a
system of (weakly) hyperbolic conservation laws.

This relation allows one to apply techniques, developed for conservation laws, to
the derivation of the numerical methods for Hamilton–Jacobi equations. Examples of
such methods can be found in [1, 10, 11, 35, 36, 42, 48]. One of the approaches [35, 36]
is Godunov-type schemes. As in the case of conservation laws, they are projection-
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evolution methods. The differences are that here one starts with point values (not
cell averages) at time tn, builds a continuous piecewise polynomial reconstruction of
degree r, and evolves it to the next time level tn+1. The pointwise projection (not the
cell averages) of this evolved solution is used as initial data for the next time step.

Godunov-type central schemes for Hamilton–Jacobi equations were first intro-
duced in [35, 36]. Semidiscrete Godunov-type central schemes for the multi-D equa-
tions (1.2) were developed in [27], where the same idea of local speeds of propagation
was used to separate between smooth and nonsmooth parts of the evolved solution.

In the second part of this work, we present a new second-order semidiscrete
central-upwind scheme for the Hamilton–Jacobi equations (1.2). It is a less dissipative
generalization of the scheme in [27], which uses more precise one-sided information of
the local propagation speeds.

The paper is organized as follows. In section 2, we give a brief overview of the
Godunov-type central schemes for conservation laws and Hamilton–Jacobi equations
in one space dimension. We also describe the nonoscillatory piecewise quadratic re-
construction from [25], which is later used in the numerical examples. Next, in section
3, we introduce our new Godunov-type central-upwind schemes for the conservation
laws and Hamilton–Jacobi equations, both in one and in two spatial dimensions. The
results of our numerical experiments are presented in section 4. We apply the proposed
scheme to a variety of test problems: the one- and two-dimensional compressible Euler
equations, a 1-D Hamilton–Jacobi equation with a nonconvex Hamiltonian, the two-
dimensional (2-D) eikonal equation of geometric optics. Finally, the incompressible
Euler and Navier–Stokes equations are solved using two different approaches, based
on either their conservative or transport form. The performed numerical experiments,
especially in the case of incompressible flow simulations (see section 4.3), demonstrate
the advantage of our new central-upwind approach.

2. Godunov-type central schemes—brief description. In this section, we
review Godunov-type central schemes in one spatial dimension. We will consider only
uniform grids and use the following notation: let xj := j∆x, xj± 1

2
:= (j ± 1/2)∆x,

tn := n∆t, unj := u(xj , t
n), ϕnj := ϕ(xj , t

n), where ∆x and ∆t are small spatial and
time scales, respectively.

2.1. Central schemes for conservation laws. The starting point for the con-
struction of Godunov-type schemes for conservation laws is the equivalent integral
formulation of the system (1.1),

ū(x, t+∆t)

= ū(x, t)− 1

∆x

[∫ t+∆t

τ=t

f

(
u

(
x+

∆x

2
, τ

))
dτ −

∫ t+∆t

τ=t

f

(
u

(
x− ∆x

2
, τ

))
dτ

]
,

(2.1)

where by

ū(x, t) :=
1

∆x

∫
I(x)

u(ξ, t) dξ, I(x) =

{
ξ : |ξ − x| < ∆x

2

}
(2.2)

we denote the sliding averages of u(·, t) over the interval (x − ∆x
2 , x + ∆x

2 ). At time
level t = tn we consider problem (2.1) with the piecewise polynomial initial condition

ũ(x, tn) = pnj (x), xj− 1
2
< x < xj+ 1

2
∀j,(2.3)
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obtained from the cell averages ūnj := ū(xj , t
n), computed at the previous time step.

This piecewise polynomial reconstruction should be conservative, accurate of order r,
and nonoscillatory.

Second-order schemes require a piecewise linear reconstruction (see the exam-
ples in [15, 16, 23, 29, 40, 43]). Third-order schemes employ a piecewise quadratic
approximation, and one of the possibilities is to use the essentially nonoscillatory
(ENO) reconstruction. In the 1-D case, we refer the reader to [16, 46]. The weighted
ENO interpolants are proposed in [38, 18, 30, 32], and the multi-D ENO-type recon-
structions can be found in [31, 32]. The ENO-type approach employs smoothness
indicators. They require certain a priori information about the solution, which may
be unavailable and then spurious oscillations or extra smearing of discontinuities may
appear.

1-D nonoscillatory piecewise quadratic reconstructions, which do not require the
use of smoothness indicators, were proposed in [37, 39, 25]. 2-D generalizations of
these reconstructions were presented in [25, 41].

The reconstructed piecewise polynomial ũ(x, tn) is then evolved exactly according
to (2.1), and the solution at time t = tn+1 is obtained in terms of its sliding averages,
ū(x, tn+1). An evaluation of these sliding averages at particular grid points provides
the approximate cell averages of the solution at the next time level.

The choice of x = xj in (2.1) results in an upwind scheme. The solution then may
be nonsmooth in the neighborhood of the points {xj+ 1

2
}, and the evaluation of the

flux integrals in (2.1) requires the use of a computationally expensive (approximate)
Riemann solver and characteristic decomposition.

If x = xj+ 1
2
in (2.1), we obtain Godunov-type central schemes, namely,

ūn+1
j+ 1

2

=
1

∆x

[∫ x
j+ 1

2

xj

pnj (x) dx+

∫ xj+1

x
j+ 1

2

pnj+1(x) dx

]

− λ

∆t

[∫ tn+1

tn
f(u(xj+1, t)) dt−

∫ tn+1

tn
f(u(xj , t)) dt

]
, λ :=

∆t

∆x
.(2.4)

In contrast to the upwind framework, the solution is smooth in the neighborhood of
the points {xj}. Therefore, a discretization of the flux integrals in (2.4) can be done,
using an appropriate quadrature formula. The corresponding function values can be
computed either by Taylor expansion or by a Runge–Kutta method [39, 8].

2.2. Central schemes for Hamilton–Jacobi equations. In this section, we
describe second-order Godunov-type central schemes for Hamilton–Jacobi equations.
We follow the approach from [36] and construct a 1-D second-order staggered central
scheme.

Assume that we have computed the point values of ϕ at time t = tn. We then
start with a continuous piecewise quadratic interpolant,

ϕ̃(x, tn) := ϕnj +
(∆ϕ)n

j+ 1
2

∆x
(x− xj) +

(∆ϕ)′
j+ 1

2

2(∆x)
2 (x− xj)(x− xj+1),

x ∈ [xj , xj+1],(2.5)

where

(∆ϕ)nj+ 1
2
:= ϕnj+1 − ϕnj .(2.6)
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Here, (∆ϕ)′
j+ 1

2

/(∆x)
2
is an approximation to the second derivative ϕxx(xj+ 1

2
, tn). An

appropriate nonlinear limiter employed in this approximation guarantees the nonoscil-
latory nature of ϕ̃(x, tn). Examples of such limiters, developed in the context of hy-
perbolic conservation laws, may be found in [15, 16, 23, 40, 43]. In this paper we use
a one-parameter family of the minmod limiters [29, 15, 43]

(∆ϕ)′j+ 1
2
= minmod

(
θ
[
(∆ϕ)nj+ 3

2
− (∆ϕ)nj+ 1

2

]
,
1

2

[
(∆ϕ)nj+ 3

2
− (∆ϕ)nj− 1

2

]
,

θ
[
(∆ϕ)nj+ 1

2
− (∆ϕ)nj− 1

2

])
,(2.7)

where θ ∈ [1, 2], and the multivariable minmod function is defined by

minmod(x1, x2, . . .) :=



minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

(2.8)

Notice that larger θ’s in (2.7) correspond to less dissipative, but still nonoscillatory
limiters [29, 15, 43].

Given a reconstruction (2.5), we consider the Hamilton–Jacobi equation (1.2),
subject to the initial data ϕ(x, 0) = ϕ̃(x, tn). Under an appropriate CFL condition,
due to the finite speed of propagation, the solution of this initial value problem is
smooth in the neighborhood of the line segment {(x, t) : x = xj+ 1

2
, tn ≤ t ≤ tn+1}.

Therefore, from the Taylor expansion of the solution about the point (xj+ 1
2
, tn), we

obtain

ϕn+1
j+ 1

2

=
ϕnj + ϕnj+1

2
−
(∆ϕ)′

j+ 1
2

8
−∆tH

(
(∆ϕ)n

j+ 1
2

∆x

)
+
(∆t)2

2

[
H ′
(
(∆ϕ)n

j+ 1
2

∆x

)]2

·
(∆ϕ)′

j+ 1
2

(∆x)2
.

(2.9)
Remarks.
1. The derived scheme (2.9) is different from the one in [36]. There, the evo-

lution step is executed by integration of (1.2) over [tn, tn+1], followed by the
application of the midpoint rule to the resulting integrals. For details, see
[36, 27].

2. A 2-D staggered central scheme for (1.2) can be found in [36].

3. Central-upwind semidiscrete schemes. In this section, we develop new
semidiscrete central-upwind schemes for conservation laws and Hamilton–Jacobi equa-
tions, following the approach presented in [26, 24, 25] and [27], respectively.

3.1. Semidiscrete central-upwind schemes for 1-D conservation laws.
We consider the 1-D system (1.1) of N strictly hyperbolic conservation laws. We
start with a piecewise polynomial reconstruction (2.3) with possible discontinuities at
the interface points {xj+ 1

2
}. These discontinuities propagate with right- and left-sided

local speeds, which can be estimated by

a+
j+ 1

2

:= max
ω∈C

(
u−
j+ 1

2

,u+

j+ 1
2

)
{
λN

(∂f
∂u

(ω)
)
, 0
}

and

a−
j+ 1

2

:= min
ω∈C

(
u−
j+ 1

2

,u+

j+ 1
2

)
{
λ1

(∂f
∂u

(ω)
)
, 0
}
,
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respectively. Here, λ1 < · · · < λN are the N eigenvalues of the Jacobian ∂f
∂u , and

C(u−
j+ 1

2

, u+
j+ 1

2

) is the curve in the phase space that connects

u+
j+ 1

2

:= pj+1(xj+ 1
2
) and u−

j+ 1
2

:= pj(xj+ 1
2
).(3.1)

For example, in the genuinely nonlinear or linearly degenerate case, we have

a+
j+ 1

2

= max

{
λN

(∂f
∂u

(
u−
j+ 1

2

))
, λN

(∂f
∂u

(
u+
j+ 1

2

))
, 0

}
,

a−
j+ 1

2

= min

{
λ1

(∂f
∂u

(
u−
j+ 1

2

))
, λ1

(∂f
∂u

(
u+
j+ 1

2

))
, 0

}
.(3.2)

In fact, these one-sided local speeds are related to the CFL number. Note that in
the schemes from [26, 24] only the spectral radius of ∂f∂u is used, and for its computation
one actually needs to know both λ1 and λN .

Further, we utilize these one-sided local speeds of propagation in the following
way. We consider the nonequal rectangular domains

[xnj− 1
2 ,r

, xnj+ 1
2 ,l

]× [tn, tn+1] and [xnj+ 1
2 ,l

, xnj+ 1
2 ,r

]× [tn, tn+1],(3.3)

with xn
j+ 1

2 ,l
:= xj+ 1

2
+∆ta−

j+ 1
2

and xn
j+ 1

2 ,r
:= xj+ 1

2
+∆ta+

j+ 1
2

, where the solution of

(1.1) with the initial data ũ(x, tn) is smooth and nonsmooth, respectively.

The cell averages

w̄n+1
j =

1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

[∫ xn
j+ 1

2
,l

xn
j− 1

2
,r

pnj (x) dx−
∫ tn+1

tn

(
f(u(xnj+ 1

2 ,l
, t))−f(u(xnj− 1

2 ,r
, t))

)
dt

]
,

(3.4)
and

w̄n+1
j+ 1

2

=
1

xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

[∫ x
j+ 1

2

xn
j+ 1

2
,l

pnj (x) dx+

∫ xn
j+ 1

2
,r

x
j+ 1

2

pnj+1(x) dx

−
∫ tn+1

tn

(
f(u(xnj+ 1

2 ,r
, t))− f(u(xnj+ 1

2 ,l
, t))

)
dt

]
(3.5)

are obtained by integrating (1.1) over the corresponding domains in (3.3); see Figure
3.1.

Given the polynomials {pnj }, the spatial integrals in (3.4) and (3.5) can be com-
puted explicitly. To discretize the flux integrals there, one may use an appropriate
quadrature formula, since the solution is smooth along the line segments (xn

j+ 1
2 ,l

, t),

tn ≤ t < tn+1 and (xn
j+ 1

2 ,r
, t), tn ≤ t < tn+1.

Next, from the cell averages, w̄n+1
j+ 1

2

, w̄n+1
j , given by (3.4)–(3.5), we reconstruct

a nonoscillatory, conservative, third-order, piecewise polynomial interpolant, denoted
by

w̃n+1(x) =
∑
j

(
w̃n+1
j (x)χ[

xn
j− 1

2
,r
, xn
j+ 1

2
,l

] + w̃n+1
j+ 1

2

(x)χ[
xn
j+ 1

2
,l
, xn
j+ 1

2
,r

]).(3.6)
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n n

n
u
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n

Fig. 3.1. Central-upwind differencing.

Here, the χ’s are the characteristic functions, and {w̃n+1
j+ 1

2

(x), w̃n+1
j (x)} are the quadratic

pieces, associated with the corresponding intervals. In fact, we do not need any high-
order reconstruction w̃n+1

j (x) since it will be averaged out (consult Figure 3.1).

Remark. Notice that even for a nonuniform grid, a particular piecewise quadratic
reconstruction can be written explicitly. Since these formulae are rather messy and
irrelevant for the semidiscrete scheme, we omit them.

The construction of our scheme is then completed by projecting w̃n+1 back onto
the original grid, namely, we compute the cell averages

ūn+1
j =

1

∆x

∫ x
j+ 1

2

x
j− 1

2

w̃n+1(x) dx(3.7)

at the next time level. This leads to a fully discrete Godunov-type central-upwind
scheme, which can be derived explicitly. Its derivation is similar to the derivation of
the central schemes from [26, 24]. We omit here the details of these rather messy
computations and continue within a much simpler semidiscrete framework.

The time derivative of ūj(t) is expressed with the help of (3.7) as

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūnj

∆t
= lim

∆t→0

1

∆t

[
1

∆x

∫ x
j+ 1

2

x
j− 1

2

w̃n+1(x) dx− ūnj

]
.(3.8)

Now, let us suppose that the slopes of w̃n+1
j± 1

2

are uniformly bounded, independently of
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∆t. Since the width of the Riemann fans is bounded by (a+
j+ 1

2

− a−
j+ 1

2

)∆t, we obtain

w̃n+1
j± 1

2

(x) = w̄n+1
j± 1

2

+O(∆t) ∀x ∈ [xnj± 1
2 ,l

, xnj± 1
2 ,r

].(3.9)

The conservation property of the reconstruction gives

1

(xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

)

∫ xn
j+ 1

2
,l

xn
j− 1

2
,r

w̃n+1
j (x) dx = w̄n+1

j .(3.10)

From (3.8)–(3.10) and the definition of xn
j− 1

2 ,r
and xn

j+ 1
2 ,l

, we derive

d

dt
ūj(t) =

a+
j− 1

2

∆x
lim

∆t→0
w̄n+1
j− 1

2

+ lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
w̄n+1
j −ūnj

)
−
a−
j+ 1

2

∆x
lim

∆t→0
w̄n+1
j+ 1

2

.

(3.11)

The three limits in (3.11) are computed separately. Using (3.4) and (3.5), we obtain

lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
w̄n+1
j −ūnj

)
=

a−
j+ 1

2

u−
j+ 1

2

− a+
j− 1

2

u+
j− 1

2

∆x
−
f(u−

j+ 1
2

)− f(u+
j− 1

2

)

∆x
,

(3.12)
and

lim
∆t→0

w̄n+1
j+ 1

2

=
a+
j+ 1

2

u+
j+ 1

2

− a−
j+ 1

2

u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
f(u+

j+ 1
2

)− f(u−
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

,(3.13)

where, similarly to (3.1), u±
j+ 1

2

stand for the corresponding right and left values of the

piecewise polynomial interpolant {pj}, reconstructed at time t.
Finally, a substitution of (3.12) and (3.13) in (3.11) results in our new semidiscrete

central-upwind scheme, which can be written in the following conservative form:

d

dt
ūj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
.(3.14)

Here, the numerical fluxes Hj+ 1
2
are given by

Hj+ 1
2
(t) :=

a+
j+ 1

2

f(u−
j+ 1

2

)− a−
j+ 1

2

f(u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
.(3.15)

Remarks.
1. The new semidiscrete scheme (3.14)–(3.15) is a Godunov-type central scheme,

since it is based on integration over Riemann fans. It does not require char-
acteristic decompositions and Riemann solvers, and therefore it preserves the
main advantage of the central schemes—simplicity.

2. As with the semidiscrete schemes, proposed in [26], the numerical viscosity of
(3.14)–(3.15) is independent of O(1/∆t), and thus it can be used for steady-
state computations. Moreover, due to a more accurate estimate of the widths
of the Riemann fans, the numerical dissipation in (3.14)–(3.15) is even smaller
than the numerical viscosity of the schemes from [26, 24]. Notice that if
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one takes a+
j+ 1

2

= −a−
j+ 1

2

= aj+ 1
2
:= maxω∈C(un−

j+ 1
2

,un+

j+ 1
2

) ρ(
∂f
∂u (ω)), then the

numerical flux (3.15) reduces to

Hj+ 1
2
(t) :=

f(u+
j+ 1

2

) + f(u−
j+ 1

2

)

2
−

aj+ 1
2

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
,

which is the numerical flux of the schemes from [26, 24].
3. We would like to point out that the first-order version of our scheme is exactly

the semidiscrete version of the scheme in [17, 12]. Moreover, if the flux f is
monotone, it reduces to the standard upwind scheme. That is why we call
our new schemes central-upwind. For example, if f ′(u) ≥ 0, then a−

j+ 1
2

= 0

∀j, and the first-order scheme simplifies to

u̇j(t) = −
f(unj )− f(unj−1)

∆x
.

4. A fully discrete, 2-D, third-order accurate scheme using the Harten–Lax–van
Leer approximate Riemann solver [17, 12] was implemented and tested in [41].

5. It can be proved that a scalar second-order version of (3.14)–(3.15), together
with the minmod reconstruction,

ũnj (x) = ūnj + snj (x− xj),

snj = minmod

(
θ
ūnj − ūnj−1

∆x
,
ūnj+1 − ūnj−1

2∆x
, θ

ūnj+1 − ūnj
∆x

)
,(3.16)

is a TVD scheme (for 1 ≤ θ ≤ 2), that is, ‖u(·, t)‖BV ≤ ‖u(·, 0)‖BV . The proof
is analogous to the proof of Theorem 4.1 in [26], and we leave the details to
the reader.

6. The semidiscrete scheme (3.14)–(3.15) is a system of time-dependent ODEs,
which can be solved by any stable ODE solver which retains the spatial accu-
racy of the semidiscrete scheme. In the numerical examples below, we have
used the TVD Runge–Kutta method, proposed in [47, 45].

7. The scheme (3.14)–(3.15) can be easily generalized and applied to convection-
diffusion equations in a straightforward manner. For details, we refer the
reader to [26, 24].

3.2. Semidiscrete central-upwind schemes for multi-D conservation laws.
The semidiscrete central-upwind schemes, presented in section 3.1, can be generalized
to the multi-D case. Without loss of generality, we consider the 2-D system

ut + f(u)x + g(u)y = 0.(3.17)

Given the grid points xj := j∆x, yk := k∆y and the intermediate points xj± 1
2
:=

xj ± ∆x
2 , yk± 1

2
:= yk ± ∆y

2 , we start at time t = tn with a conservative piecewise
polynomial reconstruction of an appropriate order:

ũn(x, y) :=
∑
j,k

pnj,k(x, y)χj,k,

where χj,k is the characteristic function of the cell [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
]. In the

numerical examples in this paper, we have used the third-order piecewise quadratic
reconstruction, described in [25].
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We use the notation

uj,k := pnj,k(xj , yk), uN
j,k := pnj,k(xj , yk+ 1

2
), uS

j,k := pnj,k(xj , yk− 1
2
),

uE
j,k := pnj,k(xj+ 1

2
, yk), uW

j,k := pnj,k(xj− 1
2
, yk), uNE

j,k := pnj,k(xj+ 1
2
, yk+ 1

2
),(3.18)

uNW
j,k := pnj,k(xj− 1

2
, yk+ 1

2
), uSE

j,k := pnj,k(xj+ 1
2
, yk− 1

2
), uSW

j,k := pnj,k(xj− 1
2
, yk− 1

2
)

for the corresponding point values and

ūj,k :=
1

∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+ 1

2

y
k− 1

2

pnj,k(x, y) dx dy

for the cell averages.
The piecewise polynomial interpolant ũn may have discontinuities along the lines

x = xj± 1
2
and y = yk± 1

2
, which propagate with different right- and left-sided local

speeds. To estimate them is a nontrivial problem, but in practice one may use

a+
j+ 1

2 ,k
:= max

{
λN

(∂f
∂u

(uW
j+1,k)

)
, λN

(∂f
∂u

(uE
j,k)

)
, 0
}
,

b+
j,k+ 1

2

:= max
{
λN

(∂g
∂u

(uS
j,k+1)

)
, λN

(∂g
∂u

(uN
j,k)

)
, 0
}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(∂f
∂u

(uW
j+1,k)

)
, λ1

(∂f
∂u

(uE
j,k)

)
, 0
}
,

b−
j,k+ 1

2

:= min
{
λ1

(∂g
∂u

(uS
j,k+1)

)
, λ1

(∂g
∂u

(uN
j,k)

)
, 0
}
,(3.19)

respectively. As in [25], we consider the nonuniform domains, outlined in Figure 3.2
and defined by

Dj,k+ 1
2
:= [xj− 1

2
+A+

j− 1
2 ,k+

1
2

∆t, xj+ 1
2
+A−

j+ 1
2 ,k+

1
2

∆t]×[yk+ 1
2
+b−

j,k+ 1
2

∆t, yk+ 1
2
+b+

j,k+ 1
2

∆t],

Dj+ 1
2 ,k

:= [xj+ 1
2
+a−

j+ 1
2 ,k

∆t, xj+ 1
2
+a+

j+ 1
2 ,k

∆t]×[yk− 1
2
+B+

j+ 1
2 ,k− 1

2

∆t, yk+ 1
2
+B−

j+ 1
2 ,k+

1
2

∆t],

Dj+ 1
2 ,k+

1
2
:= [xj+ 1

2
+A−

j+ 1
2 ,k+

1
2

∆t, xj+ 1
2
+A+

j+ 1
2 ,k+

1
2

∆t]

×[yk+ 1
2
+B−

j+ 1
2 ,k+

1
2

∆t, yk+ 1
2
+B+

j+ 1
2 ,k+

1
2

∆t],

Dj,k := [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] \

⋃
±

[Dj,k± 1
2
∪Dj± 1

2 ,k
∪Dj± 1

2 ,k± 1
2
],

where

A+
j+ 1

2 ,k+
1
2

:= max
{
a+
j+ 1

2 ,k
, a+
j+ 1

2 ,k+1

}
, B+

j+ 1
2 ,k+

1
2

:= max
{
b+
j,k+ 1

2

, b+
j+1,k+ 1

2

}
,

A−
j+ 1

2 ,k+
1
2

:= min
{
a−
j+ 1

2 ,k
, a−
j+ 1

2 ,k+1

}
, B−

j+ 1
2 ,k+

1
2

:= min
{
b−
j,k+ 1

2

, b−
j+1,k+ 1

2

}
.
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Fig. 3.2. 2-D central-upwind differencing.

Similarly to the 1-D case, under an appropriate CFL condition, the solution of
system (3.17) with initial data ũ(x, y) is smooth in the domain Dj,k and may be
nonsmooth in the other domains. Notice that, in general, Dj,k is a nonrectangular
domain inside the (j, k)-cell; see Figure 3.2.

An integration of the system (3.17) over the domains

Dj,k × [tn, tn+1], Dj± 1
2 ,k
× [tn, tn+1], Dj,k± 1

2
× [tn, tn+1], Dj± 1

2 ,k± 1
2
× [tn, tn+1]

results in new cell averages {w̄n+1
j,k+ 1

2

}, {w̄n+1
j+ 1

2 ,k
}, {w̄n+1

j+ 1
2 ,k+

1
2

}, and {w̄n+1
j,k }. They are

used for an intermediate piecewise polynomial reconstruction,

w̃n+1(x, y) :=
∑
j,k

[
w̃n+1
j,k χ̃j,k + w̃n+1

j+ 1
2 ,k

χ̃j+ 1
2 ,k

+ w̃n+1
j,k+ 1

2

χ̃j,k+ 1
2
+ w̃n+1

j+ 1
2 ,k+

1
2

χ̃j+ 1
2 ,k+

1
2

]
.

(3.20)
Here, similarly to (3.6), {w̃n+1

j,k (x, y), w̃n+1
j+ 1

2 ,k
(x, y), w̃n+1

j,k+ 1
2

(x, y), w̃n+1
j+ 1

2 ,k+
1
2

(x, y)} are

the quadratic pieces, and the χ̃’s stand for the characteristic functions of the corre-
sponding domains D.

The construction of our 2-D fully discrete central-upwind scheme is then com-
pleted by projecting the interpolant (3.20) back onto the original cells,

ūn+1
j,k =

1

∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+ 1

2

y
k− 1

2

w̃n+1(x, y) dxdy.(3.21)

The derivation of the explicit form of the fully discrete higher-order scheme is omitted,
since it is rather complicated and is of no practical use. Note, however, that Wendroff
[50] has recently proposed a 2-D version of the Harten–Lax–van Leer Riemann solver,
which is closely related to the first-order fully discrete version of our scheme.

As in [25, section 3.3], we continue within the semidiscrete framework (as ∆t→ 0),
where all the computations are much simpler.
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We use the following notation for the intersections of the cell [xj− 1
2
, xj+ 1

2
] ×

[yk− 1
2
, yk+ 1

2
] with the domains D – Cj± 1

2 ,k± 1
2
for the four corners, Sj± 1

2 ,k
, Sj,k± 1

2

for the four side domains, and Dj,k for the center. The sizes of these domains are
|C| ∼ (∆t)2 and |S| ∼ ∆t. Since we assume that the spatial derivatives of w̃n+1 are
bounded independently of ∆t, the relation between w̃n+1 and w̄n+1 is given by∫ ∫

C
j± 1

2
,k± 1

2

w̃n+1
j± 1

2 ,k± 1
2

dxdy = O((∆t)2),(3.22)

∫ ∫
S
j± 1

2
,k

w̃n+1
j± 1

2 ,k
dxdy = |Sj± 1

2 ,k
| w̄n+1

j± 1
2 ,k

+O(∆t2),(3.23)

∫ ∫
S
j,k± 1

2

w̃n+1
j,k± 1

2

dxdy = |Sj,k± 1
2
| w̄n+1

j,k± 1
2

+O(∆t2).(3.24)

Also, the conservation property of the reconstruction w̃n+1 yields∫ ∫
Dj,k

w̃n+1
j,k (x, y) dxdy = |Dj,k|w̄n+1

j,k .(3.25)

We now use (3.21) together with (3.22)–(3.25) and obtain

d

dt
ūj,k(t) = lim

∆t→0

ūn+1
j,k − ūnj,k

∆t

= lim
∆t→0

(∑
±

|Sj,k± 1
2
|

∆t∆x∆y
w̄n+1
j,k± 1

2

+
∑
±

|Sj± 1
2 ,k
|

∆t∆x∆y
w̄n+1
j± 1

2 ,k

)

+ lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūnj,k

]
.

(3.26)

For the first sum on the right-hand side (RHS), we apply Simpson’s quadrature for-
mula to the integrals over Dj,k± 1

2
in the computation of w̄n+1

j,k± 1
2

. Since |Sj,k± 1
2
| =

∓b∓
j,k± 1

2

∆t∆x+O((∆t)2), we arrive at (consult [25] for details)

lim
∆t→0

|Sj,k± 1
2
|

∆t∆x∆y
w̄n+1
j,k± 1

2

≈ −
b+
j,k± 1

2

b−
j,k± 1

2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
u

SW(NW)
j,k±1 + 4u

S(N)
j,k±1 + u

SE(NE)
j,k±1

]

+

(
b∓
j,k± 1

2

)2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
u

NW(SW)
j,k + 4u

N(S)
j,k + u

NE(SE)
j,k

]

+
b∓
j,k± 1

2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
g(u

SW(NW)
j,k±1 )− g(u

NW(SW)
j,k )

+ 4
(
g(u

S(N)
j,k±1)− g(u

N(S)
j,k )

)
+ g(u

SE(NE)
j,k±1 )− g(u

NE(SE)
j,k )

]
.(3.27)
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The second sum on the RHS of (3.26) is treated similarly, and we obtain

lim
∆t→0

|Sj± 1
2 ,k
|

∆t∆x∆y
w̄n+1
j± 1

2 ,k
≈ −

a+
j± 1

2 ,k
a−
j± 1

2 ,k

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
u

NW(NE)
j±1,k + 4u

W(E)
j±1,k + u

SW(SE)
j±1,k

]

+

(
a∓
j± 1

2 ,k

)2

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
u

NE(NW)
j,k + 4u

E(W)
j,k + u

SE(SW)
j,k

]

+
a∓
j± 1

2 ,k

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
f(u

NW(NE)
j±1,k )− f(u

NE(NW)
j,k )

+ 4
(
f(u

W(E)
j±1,k)− f(u

E(W)
j,k )

)
f(u

SW(SE)
j±1,k )− f(u

SE(SW)
j,k )

]
.(3.28)

Finally, we consider the last term on the RHS of (3.26). Since the domain Dj,k

becomes rectangular as ∆t→ 0, up to small corners of a negligible size O((∆t)2), the
integration of (3.17) over Dj,k × [tn, tn + ∆t] and the application of Simpson’s rule
result in

lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūnj,k

]

≈
a−
j+ 1

2 ,k

6∆x

[
uNE
j,k + 4uE

j,k + uSE
j,k

]
−

a+
j− 1

2 ,k

6∆x

[
uNW
j,k + 4uW

j,k + uSW
j,k

]

+
b−
j,k+ 1

2

6∆y

[
uNW
j,k + 4uN

j,k + uNE
j,k

]
−

b+
j,k− 1

2

6∆y

[
uSW
j,k + 4uS

j,k + uSE
j,k

]

− 1

6∆x

[
f(uNE

j,k )− f(uNW
j,k ) + 4

(
f(uE

j,k)− f(uW
j,k)

)
+ f(uSE

j,k)− f(uSW
j,k )

]

− 1

6∆y

[
g(uNW

j,k )− g(uSW
j,k ) + 4

(
g(uN

j,k)− g(uS
j,k)

)
+ g(uNE

j,k )− g(uSE
j,k)

]
.(3.29)

Our 2-D semidiscrete central-upwind scheme is obtained by plugging (3.27)–(3.29)
into (3.26). It can be written in the following conservative form:

d

dt
ūj,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
,(3.30)

where the numerical fluxes are

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[f(uNE
j,k ) + 4f(uE

j,k) + f(uSE
j,k)

]

−
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[f(uNW
j+1,k) + 4f(uW

j+1,k) + f(uSW
j+1,k)

]

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uNW
j+1,k − uNE

j,k + 4(uW
j+1,k − uE

j,k) + uSW
j+1,k − uSE

j,k

]
(3.31)
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and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[g(uNW
j,k ) + 4g(uN

j,k) + g(uNE
j,k )

]

−
b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[g(uSW
j,k+1) + 4g(uS

j,k+1) + g(uSE
j,k+1)

]

+
b+
j,k+ 1

2

b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[uSW
j,k+1 − uNW

j,k + 4(uS
j,k+1 − uN

j,k) + uSE
j,k+1 − uNE

j,k

]
.(3.32)

Here, the one-sided local speeds a±
j+ 1

2 ,k
, b±
j,k+ 1

2

are defined in (3.19), and the values

of the u’s are computed in (3.18), using the piecewise quadratic reconstruction {pj,k}
at time t. In our numerical examples, we have implemented the reconstruction intro-
duced in [25].

Remarks.
1. Our 2-D semidiscrete central-upwind scheme (3.30)–(3.32) is a Godunov-type
central scheme; therefore it can be applied componentwise and does not re-
quire Riemann solvers. As in [25], this scheme is constructed as a genuinely
multi-D scheme. Moreover, if one sets

a+
j+ 1

2 ,k
:= −a−

j+ 1
2 ,k

:= max
{
a+
j+ 1

2 ,k
,−a−

j+ 1
2 ,k

}
,

b+
j,k+ 1

2

:= −b−
j,k+ 1

2

:= max
{
b+
j,k+ 1

2

,−b−
j,k+ 1

2

}
,

the scheme (3.30)–(3.32) reduces to the one in [25].
2. As in the 1-D case, our 2-D scheme (3.30)–(3.32) has an upwind nature. To

illustrate this, let us consider the simplest linear scalar advection equation,
ut + aux + buy = 0, with positive a and b. In this setting, the first-order
version of the scheme (3.30)–(3.32) becomes a standard first-order upwind
scheme

d

dt
uj,k(t) = −auj,k − uj−1,k

∆x
− b

uj,k − uj,k−1

∆y
.

3. A second-order version of the 2-D scheme (3.30)–(3.32) can be obtained if one
uses a second-order piecewise polynomial reconstruction (say, the minmod
reconstruction) and a lower-order midpoint quadrature instead of the fourth-
order Simpson’s rule. This results in the scheme

d

dt
uj,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
,(3.33)

with the corresponding numerical fluxes

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k
f(uE

j,k)− a−
j+ 1

2 ,k
f(uW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
uW
j+1,k−uE

j,k

]

(3.34)



CENTRAL-UPWIND SCHEMES 721

and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

g(uN
j,k)− b−

j,k+ 1
2

g(uS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
uS
j,k+1−uN

j,k

]
.

(3.35)
The same scheme can also be derived by applying the 1-D numerical flux
(3.15) in both x- and y-directions (this is the so-called dimension-by-dimension
approach, used in [26]).

4. The scheme (3.30)–(3.32) can be generalized and applied to convection-
diffusion equations (for details see [26, 25, 24]). Also, it can be rather easily
extended to the multi-D case, d ≥ 3.

3.2.1. Maximum principle for the second-order central-upwind scheme.
We consider the 2-D second-order central-upwind scheme (3.33)–(3.35), together with
the minmod reconstruction (3.16). We solve the time-dependent ODE system (3.33),
using a TVD Runge–Kutta method. Under an appropriate CFL condition, the result-
ing fully discrete scheme, applied to a scalar conservation law, satisfies the maximum
principle; see the following theorem.

Theorem 3.1 (maximum principle). Consider the scalar conservation laws
(3.17). Then the second-order scheme (3.33)–(3.35), with the minmod reconstruc-
tion (3.16), coupled with a TVD Runge–Kutta method [47, 45] satisfies the maximum
principle

min
j,k
{unj,k} ≤ min

j,k
{un+1

j,k } ≤ max
j,k
{un+1

j,k } ≤ max
j,k
{unj,k}(3.36)

under the CFL condition

max

(
∆tn

∆x
max
u
|f ′(u)|, ∆tn

∆y
max
u
|g′(u)|

)
≤ 1

8
,(3.37)

where ∆tn is the variable time step of the Runge–Kutta method.
We omit the proof since it is similar to the proof of Theorem 5.1 in [26].

3.3. Semidiscrete central-upwind scheme for Hamilton–Jacobi equa-
tions. In this section, we propose a new Godunov-type central-upwind scheme for
the 1-D and 2-D Hamilton–Jacobi equations (1.2). We follow the approach in [27],
but this time we utilize more precise information about the one-sided local speeds of
propagation.

We begin with the 1-D case and start at time level t = tn with the continuous
piecewise polynomial interpolant ϕ̃(x, tn) and estimate the maximal one-sided local
speeds, a+

j and a−j . For example, in the convex case, they are equal to

a+
j := max{H ′(ϕ+

x ), H
′(ϕ−

x ), 0}, a−j := min{H ′(ϕ+
x ), H

′(ϕ−
x ), 0},(3.38)

where we use the notation ϕ±
x := ϕ̃x(xj±0, tn). To construct the second-order scheme

one should use the continuous piecewise quadratic polynomial (2.5), and in this case,

ϕ±
x =

(∆ϕ)
n
j± 1

2

∆x
∓

(∆ϕ)
′
j± 1

2

2∆x
.(3.39)

Note that under an appropriate CFL-condition, the solution of the Hamilton–
Jacobi equation (1.2) with the piecewise polynomial initial data ϕ̃(x, tn) is smooth
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Fig. 3.3. Central-upwind differencing—1-D.

along the line segments (xnj±, t), t
n ≤ t < tn+1, xnj± := xj + a±j ∆t; see Figure 3.3.

Therefore, one can use the Taylor expansion to compute the intermediate point values
at the next time level:

ϕn+1
j± = ϕ̃(xj±, tn)−∆t ·H(ϕ̃x(x

n
j±, t

n)) +O(∆t)
2
.(3.40)

We complete the construction of our fully discrete central-upwind scheme by pro-
jecting the intermediate point values back onto the original grid. Since the distance
between xnj+ and xnj− is proportional to ∆t, it suffices to compute the weighted aver-

ages of ϕn+1
j+ and ϕn+1

j− , that is,

ϕn+1
j =

a+
j

a+
j − a−j

ϕn+1
j− − a−j

a+
j − a−j

ϕn+1
j+ +O(∆t)2.(3.41)

Finally, we substitute (3.40) in (3.41), and arrive at the fully discrete scheme

ϕn+1
j =

a+
j

a+
j − a−j

(
ϕ̃(xj−, tn)−∆tH(ϕ̃x(x

n
j−, t

n))
)

− a−j
a+
j − a−j

(
ϕ̃(xj+, t

n)−∆tH(ϕ̃x(x
n
j+, t

n))
)
,(3.42)

which is high-order in space (depending on the order of the piecewise polynomial
reconstruction) and only first-order in time.

A semidiscrete version of the scheme (3.42), coupled with a high-order ODE
solver, will allow us to achieve high accuracy both in space and time. To derive such
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a scheme, we first use the Taylor expansions, ϕ̃(xj±, tn) = ϕ̃(xj , t
n) + ∆ta±j ϕ̃x(xj ±

0, tn) +O(∆t)2, and rewrite the fully discrete scheme (3.42) as

ϕn+1
j = ϕnj −∆t

a+
j a

−
j

a+
j − a−j

[
ϕ̃x(xj + 0, tn)− ϕ̃x(xj − 0, tn)

]

+
∆t

a+
j − a−j

[
a−j H(ϕ̃x(x

n
j+, t

n))− a+
j H(ϕ̃x(x

n
j−, t

n))
]
+O(∆t)2.(3.43)

We now let ∆t → 0, and end up with the following semidiscrete central-upwind
scheme:

d

dt
ϕj(t) =

1

a+
j − a−j

[
a−j H(ϕ+

x )− a+
j H(ϕ−

x )
]
− a+

j a
−
j

a+
j − a−j

(
ϕ+
x − ϕ−

x

)
.(3.44)

Here, a±j are given by (3.38), and ϕ±
x are the right and the left derivatives at the point

x = xj of the reconstruction ϕ̃(·, t) at time t.

We continue with the construction of a multi-D extension of the scheme (3.44).
Without loss of generality, we consider the 2-D Hamilton–Jacobi equation,

ϕt +H(ϕx, ϕy) = 0.(3.45)

Assume that at time t = tn the discrete approximation to the point values of its
solution, {ϕnj,k ≈ ϕ(xj , yk, t

n)}, has already been computed. We then construct the
2-D continuous piecewise polynomial interpolant ϕ̃(x, y, tn). Such a reconstruction is
defined over the four triangles (NW, NE, SW, and SE) around each grid-point (xj , yk)
(see Figure 3.4). We refer the reader to [27] for an example of a nonoscillatory second-
order piecewise quadratic interpolant.

We now continue with the construction of our semidiscrete central-upwind scheme.
As in the 1-D case, we use the maximal values of the one-sided local speeds of prop-
agation in the x- and y-directions. These values at the grid-point (xj , yk) are given
by

a+
j,k := max

Cj,k

{
Hu(ϕ̃x(x, y), ϕ̃y(x, y))

}
+
, a−j,k := min

Cj,k

{
Hu(ϕ̃x(x, y), ϕ̃y(x, y))

}
−
,

b+j,k := max
Cj,k

{
Hv(ϕ̃x(x, y), ϕ̃y(x, y))

}
+
, b−j,k := min

Cj,k

{
Hv(ϕ̃x(x, y), ϕ̃y(x, y))

}
−
,

(3.46)
where Cj,k := [xj− 1

2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] and ( · )+ := max(·, 0), ( · )− := min(·, 0).

To compute the solution at the next time level t = tn+1, we use the intermediate
values {ϕn+1

j±,k±}, obtained by the Taylor expansion about the points (xnj± := xj +

a±j,k∆t, ynk± := yk + b±j,k∆t),

ϕn+1
j±,k± = ϕ̃(xnj±, y

n
k±, t

n)−∆t ·H(ϕ̃x(x
n
j±, y

n
k±, t

n), ϕ̃y(x
n
j±, y

n
k±, t

n))+O(∆t)
2
.

(3.47)
Expansion (3.47) is valid, since due to the finite speed of propagation, the solution of
(3.45) with the initial data ϕ̃(x, y, tn) is smooth around (xnj±, y

n
k±); see Figure 3.4.

Next, the computed intermediate values (3.47) are projected back onto the original
grid. This can be done using the weighted average of the values ϕn+1

j±,k±, since the
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Fig. 3.4. Central-upwind differencing—2-D.

distance between the points (xj±, yk±) is proportional to O(∆t). The resulting fully
discrete central-upwind scheme is

ϕn+1
j,k

=
a−j,kb

−
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xnj+, y

n
k+, t

n)−∆t ·H(ϕ̃x(x
n
j+, y

n
k+, t

n), ϕ̃y(x
n
j+, y

n
k+, t

n))
)

− a−j,kb
+
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xnj+, y

n
k−, t

n)−∆t ·H(ϕ̃x(x
n
j+, y

n
k−, t

n), ϕ̃y(x
n
j+, y

n
k−, t

n))
)

− a+
j,kb

−
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xnj−, y

n
k+, t

n)−∆t ·H(ϕ̃x(x
n
j−, y

n
k+, t

n), ϕ̃y(x
n
j−, y

n
k+, t

n))
)

+
a+
j,kb

+
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xnj−, y

n
k−, t

n)−∆t ·H(ϕ̃x(x
n
j−, y

n
k−, t

n), ϕ̃y(x
n
j−, y

n
k−, t

n))
)
.

(3.48)

As in the 1-D case, the scheme (3.48) is only first-order in time. This disadvantage
can be eliminated by passing to the semidiscrete limit in (3.48) as ∆t → 0. To this
end, we first compute the values of ϕ̃(xn±, y

n
±, t

n) by the Taylor expansions,

ϕ̃(xj±, yk+, tn) = ϕ̃(xj , yk, t
n) + ∆ta±j,kϕ̃x(xj ± 0, yk, t

n)

+ ∆tb+j,kϕ̃y(xj , yk + 0, tn) +O(∆t)2,

ϕ̃(xj±, yk−, tn) = ϕ̃(xj , yk, t
n) + ∆ta±j,kϕ̃x(xj ± 0, yk, t

n)

+ ∆tb−j,kϕ̃y(xj , yk − 0, tn) +O(∆t)2.

We then plug these values in (3.48), and after passing to the limit as ∆t → 0, we
obtain the 2-D semidiscrete central-upwind scheme,
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d

dt
ϕj,k(t)

= − a−j,kb
−
j,kH(ϕ+

x , ϕ
+
y )− a−j,kb

+
j,kH(ϕ+

x , ϕ
−
y )− a+

j,kb
−
j,kH(ϕ−

x , ϕ
+
y ) + a+

j,kb
+
j,kH(ϕ−

x , ϕ
−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

− a+
j,ka

−
j,k

a+
j,k − a−j,k

(
ϕ+
x − ϕ−

x

)
− b+j,kb

−
j,k

b+j,k − b−j,k

(
ϕ+
y − ϕ−

y

)
.

(3.49)
Here, ϕ±

x := ϕ̃x(xj ± 0, yk, t) and ϕ±
y := ϕ̃y(xj , yk ± 0, t) are the right and the left

derivatives in the x- and y-direction, respectively. The one-sided local speeds in (3.49)
are given by (3.46). In practice, these speeds can be estimated in a simpler way. For
instance, in the numerical examples, we have used

a+
j,k := max±

{
Hu(ϕ

±
x , ϕ

±
y )
}

+
, a−j,k := min±

{
Hu(ϕ

±
x , ϕ

±
y )
}
−
,

b+j,k := max±

{
Hv(ϕ

±
x , ϕ

±
y )
}

+
, b−j,k := min±

{
Hv(ϕ

±
x , ϕ

±
y )
}
−
.

(3.50)

Finally, to obtain the same second-order accuracy in time, our semidiscrete central-
upwind scheme (3.49)–(3.50) should be complemented with at least a second-order
ODE solver for time discretization.

4. Numerical examples. In this section, we implement our scheme for con-
servation laws and Hamilton–Jacobi equations and perform several numerical exper-
iments. We test the accuracy of the scheme on problems with smooth solutions and
solve various equations which admit nonsmooth solutions. Among them are the Eu-
ler equations of gas dynamics, the incompressible Euler equations, and others. The
numerical results show that our scheme gives sharper resolution and reduces some of
the side effects of the schemes from [27, 25].

The high-order semidiscrete methods, presented in this paper, require a time
discretization of the corresponding order. In the numerical examples, shown below,
we have used the third-order TVD Runge–Kutta method, proposed in [45, 47], and the
second-order modified Euler method. Our choice is based on the stability properties
of these methods, each time step of which can be viewed as a convex combination of
small forward Euler steps.

In all the numerical experiments below, the CFL number is equal to 0.475, and
the value of θ in the generalized minmod limiter is 2.

4.1. 1-D problems.

Example 1. Burgers’ equation. We consider the initial boundary value prob-
lem (IBVP) for the inviscid Burgers’ equation

ut +
(u2

2

)
x
= 0, u(x, 0) = 0.5 + sinx, x ∈ [0, 2π],(4.1)

with periodic boundary conditions. It is known that the unique entropy solution of
(4.1) develops a shock discontinuity at time t = 1. The solution at the preshock time
T = 0.5 is smooth, and this allows us to test the accuracy of the 1-D third-order
central-upwind scheme (3.14)–(3.15). We couple it with the basic piecewise quadratic
reconstruction (for details, see [37, 39, 25]), and compute the solution using N grid
points, N = 40, 80, . . . , 1280.

The L∞- and L1-errors are shown in Table 4.1, and they clearly demonstrate a
third-order experimental convergence rate.
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Table 4.1
Accuracy test for the Burgers’ equation (4.1), T = 0.5.

N L∞-error rate L1-error rate
40 1.456e-03 – 1.241e-03 –
80 2.177e-04 2.74 1.683e-04 2.88
160 2.893e-05 2.91 2.187e-05 2.94
320 3.689e-06 2.97 2.794e-06 2.97
640 4.559e-07 3.02 3.484e-07 3.00
1280 5.720e-08 2.99 4.376e-08 2.99
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N=1600
N=400

Fig. 4.1. Problem (4.2)–(4.3), density at T = 0.01.

Example 2. 1-D Euler equations of gas dynamics. We solve the 1-D Euler
system

∂

∂t


 ρ

m
E


+

∂

∂x


 m

ρu2 + p
u(E + p)


 = 0, p = (γ − 1) ·

(
E − ρ

2
u2
)
,(4.2)

with the initial data

-u(x, 0) =




-uL = (1, 0, 2500)
T
, 0 ≤ x < 0.1,

-uM = (1, 0, 0.025)
T
, 0.1 ≤ x < 0.9,

-uR = (1, 0, 250)
T
, 0.9 ≤ x < 1,

(4.3)

and solid wall boundary conditions, applied to both ends. This problem, proposed in
[51], models the interaction of blast waves. Here, ρ, u, m = ρu, p , and E are the
density, velocity, momentum, pressure, and the total energy, respectively; γ = 1.4.

The solution is computed with our scheme (3.14)–(3.15) and the 1-D reconstruc-
tion in [25]. We use N = 400 grid points and plot the density, the velocity, and
the pressure together with a reference solution, obtained by the same method with
N = 1600.

Figures 4.1, 4.2, and 4.3 show the density, the velocity, and the pressure at time
T = .01. Note, that for N = 400, the second density spike has a height of ∼ 5.9, which
is closer to the actual value of the solution. This result is better than the heights of
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Fig. 4.2. Problem (4.2)–(4.3), velocity at T = 0.01.
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Fig. 4.3. Problem (4.2)–(4.3), pressure at T = 0.01.

∼ 5.75, ∼ 5.2, and ∼ 3.7, obtained by the third-order central schemes in [25, 39], and
the second-order Nessyahu–Tadmor scheme in [40], respectively. This illustrates the
higher resolution and smaller numerical dissipation of the central-upwind scheme.

The computations at times T = 0.03 and T = 0.038 are comparable to the results
from [25], and are shown in Figures 4.4–4.9.

Example 3. 1-D Hamilton–Jacobi equation. In this example, we apply
the second-order central-upwind scheme (2.7), (3.38)–(3.39), (3.44) to the Riemann
problem for a 1-D Hamilton–Jacobi equation with a nonconvex Hamiltonian,

ϕt +
1

4
(ϕ2
x − 1)(ϕ2

x − 4) = 0, ϕ(x, 0) = −2|x|.(4.4)

The numerical solution, computed for different numbers of grid points is plotted
in Figure 4.10. One can observe a very fast convergence of the approximate solutions
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Fig. 4.4. Problem (4.2)–(4.3), density at T = 0.03.
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Fig. 4.5. Problem (4.2)–(4.3), velocity at T = 0.03.

toward the exact (viscosity) solution of (4.4) as the mesh is refined. The exact solution
is obtained by solving the Riemann problem for the corresponding conservation law.

4.2. 2-D problems.

Example 4. 2-D Euler equations of gas dynamics. We solve the 2-D
compressible Euler equations

∂

∂t




ρ
ρu
ρv
E


+ ∂

∂x




ρu
ρu2 + p
ρuv

u(E + p)


+ ∂

∂y




ρv
ρuv

ρv2 + p
v(E + p)


 = 0, p = (γ−1)·

[
E − ρ

2
(u2 + v2)

]

(4.5)
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Fig. 4.6. Problem (4.2)–(4.3), pressure at T = 0.03.
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Fig. 4.7. Problem (4.2)–(4.3), density at T = 0.038.

for an ideal gas, γ = 1.4, in the domain [0, 2] × [0, 0.5] ∪ [0, 1] × [0.5, 1], with the
initial data corresponding to a vertical left-moving Mach 1.65 shock, positioned at
x = 1.375. The initial shock propagates and then diffracts around a solid corner.
Here ρ, u, v, p , and E are the density, the x- and y-velocities, the pressure, and the
total energy, respectively.

We compute the solution at time T = 0.5, using the scheme (3.30)–(3.32), coupled
with the reconstruction in [25]. The contour plots of the density for 128×64, 256×128,
and 512× 256 grid points are given in Figures 4.11, 4.12, and 4.13, respectively.

Note that as in [25], the results are obtained without using characteristic decom-
position, dimensional splitting, or evolution of nonconservative quantities.

Example 5. 2-D Hamilton–Jacobi equation. We consider the initial value
problem for the 2-D eikonal equation of geometric optics, which is a Hamilton–Jacobi
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Fig. 4.8. Problem (4.2)–(4.3), velocity at T = 0.038.
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Fig. 4.9. Problem (4.2)–(4.3), pressure at T = 0.038.

equation with a convex Hamiltonian,

ϕt+
√

ϕ2
x + ϕ2

y + 1 = 0, ϕ(x, y, 0) =
1

4
(cos(2πx)−1)(cos(2πy)−1)−1, (x, y) ∈ [0, 1]2.

(4.6)

The numerical solution of (4.6) at time T = 0.6 (after formation of the singularity)
has been computed by the 2-D second-order central-upwind scheme (3.49)–(3.50). The
nonoscillatory nature of the computed solution and nearly perfect resolution of the
singularity can be clearly seen in Figures 4.14–4.15.

4.3. 2-D incompressible Euler and Navier–Stokes equations. Here, we
consider the incompressible Euler (ν = 0) and Navier–Stokes (ν > 0) equations

-ut + (-u · ∇)-u+∇p = ν∆-u,(4.7)
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Fig. 4.11. Equation (4.5), density; T = 0.5, 128× 64 grid, 30 contours.

where p denotes the pressure and -u = (u, v) is the divergence-free velocity field,
satisfying ux + vy = 0. In the 2-D case, equation (4.7) admits an equivalent vorticity
formulation, which can be written either in the conservative form,

ωt + (uω)x + (vω)y = ν∆ω,(4.8)

or in the transport form,

ωt + uωx + vωy = ν∆ω,(4.9)

where ω is the vorticity, ω := vx − uy. Equation (4.8) can be viewed as a 2-D
conservation law

ωt + f(ω)x + g(ω)y = ν∆ω,(4.10)
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Fig. 4.12. Equation (4.5), density; T = 0.5, 256× 128 grid, 30 contours.
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Fig. 4.13. Equation (4.5), density; T = 0.5, 512× 256 grid, 30 contours.

with a global flux (f, g) := (uω, vω), while the transport equation (4.9) can be con-
sidered as a 2-D (viscous) Hamilton–Jacobi equation

ωt +H(ωx, ωy) = ν∆ω,(4.11)

with a global Hamiltonian H(ωx, ωy) = uωx + vωy.

We propose two alternative Godunov-type semidiscrete central-upwind schemes
for these two different formulations of the vorticity equation, (4.8) and (4.9). First,
we consider (4.8) as a conservation law (4.10) and apply our 2-D third-order central-
upwind scheme (3.30)–(3.32) to it. The resulting scheme has the conservative form

d

dt
ω̄j,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ νQj,k(t).(4.12)
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Fig. 4.15. Contour plot.

The following choice of the one-sided local speeds,

a±
j+ 1

2 ,k
:= (uj+ 1

2 ,k
)±, b±

j,k+ 1
2

:= (vj,k+ 1
2
)±,(4.13)

yields the simplified numerical convection fluxes

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uj+ 1
2 ,k+

1
2
ωNE
j,k + 4uj+ 1

2 ,k
ωE
j,k + uj+ 1

2 ,k− 1
2
ωSE
j,k

]

−
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uj+ 1
2 ,k+

1
2
ωNW
j+1,k + 4uj+ 1

2 ,k
ωW
j+1,k + uj+ 1

2 ,k− 1
2
ωSW
j+1,k

]
,(4.14)
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and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[vj− 1
2 ,k+

1
2
ωNW
j,k + 4vj,k+ 1

2
ωN
j,k + vj+ 1

2 ,k+
1
2
ωNE
j,k

]

−
b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[vj− 1
2 ,k+

1
2
ωSW
j,k+1 + 4vj,k+ 1

2
ωS
j,k+1 + vj+ 1

2 ,k+
1
2
ωSE
j,k+1

]
.(4.15)

The diffusion term in (4.12) is obtained by the fourth-order central differencing,

Qj,k =
−ω̄j+2,k + 16ω̄j+1,k − 30ω̄j,k + 16ω̄j−1,k − ω̄j−2,k

12(∆x)2

+
−ω̄j,k+2 + 16ω̄j,k+1 − 30ω̄j,k + 16ω̄j,k−1 − ω̄j,k−2

12(∆y)2
.(4.16)

The intermediate values of the velocities, required to compute the convection fluxes
(4.14) and (4.15), are approximated by the fourth-order averaging, namely,

uj+ 1
2 ,k

=
−uj+2,k + 9uj+1,k + 9uj,k − uj−1,k

16
,

vj,k+ 1
2
=
−vj,k+2 + 9vj,k+1 + 9vj,k − vj,k−1

16
.(4.17)

The velocities at the grid points, {uj,k, vj,k}, are recovered from the computed vor-
ticities {ωj,k} at every time step. This is done with the help of the streamfunction ψ,
such that u = ψy, v = −ψx, and ∆ψ = −ω. We solve this Poisson equation by the
nine-point Laplacian approximation. Then, having the values of {ψj,k}, we compute
the velocities

uj,k =
−ψj,k+2 + 8ψj,k+1 − 8ψj,k−1 + ψj,k−2

12∆y
,

vj,k =
ψj+2,k − 8ψj+1,k + 8ψj−1,k − ψj−2,k

12∆x
.(4.18)

This completes the construction of the “conservative” central-upwind scheme for the
incompressible Euler and Navier–Stokes equations.

We now apply this scheme, coupled with the reconstruction in [25], to the Navier–
Stokes equation (4.8) with ν = 0.05, augmented with the smooth periodic initial data

u(x, y, 0) = − cosx sin y, v(x, y, 0) = sinx cos y.(4.19)

This test problem, proposed in [9], admits the exact classical solution, given by

u(x, y, t) = −e−2νt cosx sin y, v(x, y, t) = e−2νt sinx cos y.

In this numerical experiment, we check the accuracy of our scheme. The numerical
solution is computed at time T = 2, and the errors for the vorticity, measured in
the L∞-, L1-, and L2-norms, are presented in Table 4.2. These results indicate the
expected third-order accuracy of the proposed scheme (4.12)–(4.18).

Next, we apply the scheme (4.12)–(4.18) together with the reconstruction in [25]
to the Euler equation, (4.8) with ν = 0, subject to the (2π, 2π)-periodic initial data

u(x, y, 0) =




tanh( 1
ρ (y − π/2)), y ≤ π,

tanh( 1
ρ (3π/2− y)), y > π,

v(x, y, 0) = δ · sinx.(4.20)
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Table 4.2
Accuracy test for the third-order “conservative” scheme for the Navier–Stokes equation (4.8),

(4.19), ν = 0.05; errors at T = 2.

Nx×Ny L∞-error rate L1-error rate L2-error rate
32× 32 2.103e-03 – 2.761e-02 – 5.623e-03 –
64× 64 2.788e-04 2.92 3.652e-03 2.92 7.404e-04 2.92
128× 128 3.548e-05 2.97 4.636e-04 2.98 9.385e-05 2.98
256× 256 4.444e-06 3.00 5.811e-05 3.00 1.176e-05 3.00
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Fig. 4.16. Vorticity—“conservative” scheme, 64× 64.
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Fig. 4.17. Vorticity—“conservative” scheme, 128× 128.

This is the double shear-layer model problem, proposed in [7]. We take ρ = π/15
and δ = 0.05. Figures 4.16(a) and 4.17(a) are the contour plots (30 contours) of the
vorticity at time T = 10 with 64 × 64 and 128 × 128 grid points, respectively. The
three-dimensional plots of the same results are shown in Figures 4.16(b) and 4.17(b).
The performed numerical experiments demonstrate that our scheme provides a very
high resolution. These results are comparable with the results obtained by the third-
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Table 4.3
Accuracy test for the second-order “transport” scheme for the Navier–Stokes equation (4.9),

(4.19), ν = 0.05; errors at T = 2.

Nx×Ny L∞-error rate L1-error rate L2-error rate
32× 32 5.559e-03 – 7.304e-02 – 1.492e-02 –
64× 64 1.672e-03 1.73 2.265e-02 1.69 4.574e-03 1.71
128× 128 4.531e-04 1.88 6.263e-03 1.85 1.250e-03 1.87
256× 256 1.176e-04 1.95 1.644e-03 1.93 3.276e-04 1.93

order semidiscrete central scheme in [25].
The second alternative is to solve the vorticity equation in its transport form,

(4.9), which can be viewed as a Hamilton–Jacobi equation (4.11).
We choose the one-sided local speeds to be

a±j,k := (uj,k)±, b±j,k := (vj,k)±,(4.21)

and in this setting, our 2-D second-order central-upwind scheme (3.49)–(3.50) has the
following simple form:

d

dt
ωj,k(t) = −

a−j,kb
−
j,k(uj,kω

+
x + vj,kω

+
y )− a−j,kb

+
j,k(uj,kω

+
x + vj,kω

−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

+
a+
j,kb

−
j,k(uj,kω

−
x + vj,kω

+
y )− a+

j,kb
+
j,k(uj,kω

−
x + vj,kω

−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

+ νLj,k.(4.22)

Here, w±
x , w

±
y are the right and the left derivatives in the x- and y-directions of the

continuous piecewise polynomial reconstruction of {ωj,k}. The term Lj,k stands for
the standard central difference approximation of the linear viscous term, that is,

Lj,k =
ωj+1,k − 2ωj,k + ωj−1,k

(∆x)
2 +

ωj,k+1 − 2ωj,k + ωj,k−1

(∆y)
2 .(4.23)

As in the “conservative” scheme, we recover the velocities {uj,k, vj,k} from the known
values of the vorticity {ωj,k}, using the streamfunction approach. At each time step we
solve the five-points Laplacian ∆ψj,k = −ωj,k and compute the velocities as follows:

uj,k =
ψj,k+1 − ψj,k−1

2∆y
, vj,k = −ψj+1,k − ψj−1,k

2∆x
.(4.24)

We now apply this second-order “transport” scheme to the IBVP for the Navier–
Stokes equation (4.9), (4.19) with ν = 0.05. The numerical solution of this test
problem is computed at time T = 2, and the L∞-, L1-, and L2-errors for the vorticity
are presented in Table 4.3. These results indicate the second-order convergence rate
measured in all these norms. We would also like to point out that the absolute values
of the errors here are about 10 times smaller than the corresponding errors obtained
by the semidiscrete central scheme in [27, Table 6.1].

Finally, we test our scheme (4.21)–(4.24) on the double shear-layer problem (4.9),
(4.20). The contour plots (30 contours) of the vorticity are shown in Figures 4.18(a),
4.19(a), and 4.20(a), where the computations are performed at time T = 10 with
64× 64, 128× 128, and 256× 256 grid points. The corresponding three-dimensional
plots are presented in Figures 4.18(b), 4.19(b), and 4.20(b).
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Fig. 4.18. Vorticity—“transport” scheme, 64× 64.
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Fig. 4.19. Vorticity—“transport” scheme, 128× 128.
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Fig. 4.20. Vorticity—“transport” scheme, 256× 256.
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We would like to point out that our second-order “transport” scheme (4.21)–
(4.24) has a very high resolution. The numerical experiments show that it is far
superior to the second-order semidiscrete central scheme in [27, Figures 6.7–6.10]. This
improvement is attributed to the smaller numerical viscosity present in the central-
upwind scheme. Moreover, the resolution of (4.21)–(4.24) is almost as good as the
resolution of our third-order “conservative” scheme (Figures 4.16 and 4.17).

As in [27, Figures 6.9–6.10], our numerical solution has spurious spikes, but of
smaller heights. Also, the consequent mesh refinements (Figures 4.18–4.20) clearly
demonstrate that the supports of these spikes diminish as the mesh size decreases.

Concluding remark. We have already mentioned the benefits of using the new
central-upwind schemes in comparison to the central schemes in [26, 27, 24, 25].
Namely, they are less dissipative, and at the same time they retain the major ad-
vantages of central schemes—simplicity and efficiency.

In particular, the effect of the reduced numerical dissipation can be clearly seen
when solving the incompressible Euler equation in its transport form. Moreover, in all
of the numerical examples presented above, the achieved resolution is slightly better
than the resolution obtained in [27, 24, 25].

The only drawback is the fact that the new schemes require the computation of
both left and right local speeds, which increases the computational costs. However,
the increase is not substantial, because as in any central scheme, our central-upwind
schemes are Riemann-solver-free and do not require any computationally expensive
characteristic decomposition.
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Abstract. We present an adaptive fast multipole method for solving the Poisson equation in
two dimensions. The algorithm is direct, assumes that the source distribution is discretized using
an adaptive quad-tree, and allows for Dirichlet, Neumann, periodic, and free-space conditions to be
imposed on the boundary of a square. The amount of work per grid point is comparable to that of
classical fast solvers, even for highly nonuniform grids.
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AMS subject classifications. 31A10, 35J05, 65R10, 78A30

PII. S1064827500369967

1. Introduction. A variety of problems in scientific computing involve the so-
lution of the Poisson equation

∆ψ = f,(1)

subject to appropriate radiation or boundary conditions. In simple geometries (cir-
cular or rectangular domains) with regular grids, there are well-known fast direct
solvers [6, 7] which typically rely on the fast Fourier transform (FFT) and are well
suited to the task. When either restriction is relaxed, however, these methods no
longer apply. Since practical problems tend to involve complex geometries, highly
inhomogeneous source distributions f , or both, there has been a lot of effort directed
at developing alternative approaches. Most currently available solvers rely on itera-
tive techniques using multigrid, domain decomposition, or some other preconditioning
strategy [5, 9, 21]. Unfortunately, while such multilevel strategies can achieve nearly
optimal efficiency in theory, they require an appropriate hierarchy of coarse grids
which is not provided in practice. Although there has been significant progress in this
direction [1, 2, 10, 11, 20, 23], the available solvers compare unfavorably with the fast
direct solvers in terms of work per grid point.

In this paper, we describe an integral equation method for solving the Poisson
equation in two dimensions which is direct, high order accurate, insensitive to the
degree of adaptive mesh refinement, and accelerated by the fast multipole method
(FMM) [16, 17, 26]. It is competitive with standard fast solvers in terms of work per
grid point. This is a rather stringent test, since we compare the time for a classical,
FFT-based solver using N mesh points with our adaptive, FMM-based solver using
the same number of points, ignoring the fact that the latter solver uses grids which
are highly inhomogeneous. We allow for the imposition of various combinations of
free-space, periodic, Dirichlet, and Neumann conditions on the boundary of a square.

Earlier work on FMM-based integral equation schemes in two dimensions includes
[15, 22, 29]. The paper [22] describes a fast Poisson solver for complex geometries,
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where the boundary can be arbitrarily shaped and multiply-connected, but where
the right-hand side is specified on a uniform underlying mesh. The other two papers
discuss the inversion of (1) in free space by evaluation of the analytic solution

ψ(x) =
1

2π

∫
D

f(y) log(|x− y|) dy.(2)

The algorithms of both [15] and [29] are highly adaptive, with the former relying on a
quad-tree and the latter relying on an unstructured triangulation. Neither, however,
goes beyond the free-space problem.

The present approach is similar to that outlined in [15] but differs in several
respects.

1. In the method of [15], one solves local Poisson problems with spectral methods
on each leaf node of a quad-tree data structure and then patches the solutions
together using the FMM in a domain decomposition approach. Here, we apply
the FMM directly to the volume integral, using high order quadratures.

2. We incorporate a new version of the FMM described in [19], which is based
on diagonal forms for translation operators (see section 3.8).

3. We incorporate the method of images to solve a variety of boundary value
problems on a square (with adaptive refinement).

4. For fourth and sixth order accurate discretizations, we use locally uniform
meshes, compatible with adaptive mesh refinement (AMR) data structures
[3]. For eighth order accuracy, we follow [13, 15, 24] and rely on local spectral
meshes.

The paper is organized as follows. In section 2, we outline the relevant potential
theory, with particular emphasis on the method of images. In section 3, we describe
the fast multipole algorithm itself, and in section 4, we present several numerical
examples. Finally, it should be noted that our algorithm shares a number of features
with the recently developed scheme of [12] for solving the pseudodifferential equation

(−∆)1/2ψ = ω(3)

in the plane via the integral representation

ψ(x) =

∫
R2

ω(y)

|x− y| dy.

2. Potential theory. To complete a description of a well-posed problem, we
must obviously add to the Poisson equation (1) a specification of boundary conditions
on the unit square D. We allow the free-space conditions defined by (2), periodic
boundary conditions, Dirichlet conditions, and Neumann conditions. We can also
handle mixed conditions, but assume that the transition from one type to another
(Dirichlet–Neumann, etc.) occurs only at corners. The solution to all these problems
can be constructed analytically using the method of images.

For periodic boundary conditions, one simply imagines the entire plane to be tiled
with copies of the source distribution contained in the unit cell D. (How to compute
the influence of each of these images efficiently is discussed in the next section.) For
other boundary conditions, the construction is a bit more subtle. Let us consider, for
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example, the boundary value problem

∆ψ = f in D,

ψ = gL on ΓL,

ψ = gR on ΓR,(4)

∂ψ/∂n = gT on ΓT ,

∂ψ/∂n = gB on ΓB ,

where ΓL denotes the “left” boundary (x = −0.5,−0.5 ≤ y ≤ 0.5), ΓR denotes the
“right” boundary (x = 0.5,−0.5 ≤ y ≤ 0.5), ΓT denotes the “top” boundary (−0.5 ≤
x ≤ 0.5, y = 0.5), and ΓB denotes the “bottom” boundary (−0.5 ≤ x ≤ 0.5, y = −0.5).

This problem can be conveniently broken up into two parts. First, we can solve
the Poisson equation:

∆ψ1 = f in D,

ψ1 = 0 on ΓL,

ψ1 = 0 on ΓR,(5)

∂ψ1/∂n = 0 on ΓT ,

∂ψ1/∂n = 0 on ΓB .

Then we can solve the Laplace equation with inhomogeneous boundary conditions:

∆ψ2 = 0 in D,

ψ2 = gL on ΓL,

ψ2 = gR on ΓR,(6)

∂ψ2/∂n = gT on ΓT ,

∂ψ2/∂n = gB on ΓB .

Clearly, ψ = ψ1 + ψ2.
To solve (5), suppose that we tile the plane with the pattern of images depicted

in Figure 1. The shaded box is the computational domain containing the source
distribution f . fT denotes the even reflection of the function f across the top boundary
ΓT , −fR denotes the odd reflection of the function f across the right boundary ΓR,
and −fRT denotes the even reflection of the function −fR across the line y = + 1

2 . It
is easy to verify that the vertical lines x = ± 1

2 are lines of odd symmetry and that the
horizontal lines y = ± 1

2 are lines of even symmetry. Thus, the desired homogeneous
boundary conditions are enforced if we account for the field due to all images. This
task is simplified by the observation that the 2× 2 supercell outlined with dashes in
Figure 1 tiles the plane periodically.

To handle the inhomogeneous boundary conditions in (6), we recall the following
classical results from potential theory [18, 30].

Lemma 2.1. Let u(x, y) satisfy the Laplace equation ∆u = 0 in the half-space
y > 0 with Dirichlet boundary conditions u(x, 0) = f(x). Then u(x, y) is given by the
double layer potential

u(x, y) = 2

∫ ∞

−∞

∂G

∂y
(x− ξ, y) f(ξ) dξ =

1

π

∫ ∞

−∞

y

(x− ξ)2 + y2
f(ξ) dξ.
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Fig. 1. A source distribution tiling the plane which solves the Poisson equation with the homoge-
neous boundary conditions described by the system (5). The shaded box represents the computational
domain itself. fT denotes the even reflection of the function f across the top boundary ΓT , −fR
denotes the odd reflection of the function f across the right boundary ΓR, and −fRT denotes the
even reflection of the function −fR across the line y = + 1

2
. The 2 × 2 “supercell” with the dashed

outline can be seen to tile the plane periodically.

The solution satisfying Neumann boundary conditions ∂u∂n (x, 0) = g(x) is given by the
single layer potential

u(x, y) = 2

∫ ∞

−∞
G(x− ξ, y) g(ξ) dξ =

1

π

∫ ∞

−∞
ln
√

(x− ξ)2 + y2 g(ξ) dξ.

Consider now the system of layer potentials depicted in Figure 2. We leave it to
the reader to verify that, from the preceding lemma and symmetry considerations,
the boundary conditions of (6) are satisfied. As with the tiling of source distributions,
the task of accounting for the field due to all images is simplified by the observation
that the layer potentials on boundary segments outlined with dots in Figure 2 tile the
plane periodically. The evaluation of layer potentials is discussed in section 3.7.

3. Data structures and the FMM. We assume that the source distribution
f in (2) is supported inside the unit square D, centered at the origin, on which is
superimposed a hierarchy of refinements (a quad-tree). Grid level 0 is defined to be
D itself, and grid level l+1 is obtained recursively by subdividing each square at level
l into four equal parts. Using standard terminology, if d is a fixed square at level l,
the four squares at level l + 1 obtained by its subdivision will be referred to as its
children. In order to allow for adaptivity, we do not use the same number of levels
in all regions of D. We do, however, assume that the quad-tree satisfies one fairly
standard restriction, namely, that two leaf nodes which share a boundary point must
be no more than one refinement level apart (Figure 3).

3.1. The volume integral. We restrict our attention, for the moment, to the
free-space problem. Extended volume integrals such as the ones depicted in Figure 1
will be discussed in section 3.6.

The leaf nodes on which the source distribution is given will be denoted by Di.
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Fig. 2. A tiling of the plane with layer potentials to solve (6). The computational domain
is indicated with diagonal dashes. Dl denotes a double layer potential with density gL, and Dr
denotes a double layer potential with density gR. Their even reflections across the bottom boundary
ΓB are Dlb and Drb, respectively. St denotes a single layer potential with density gT , and Sb
denotes a single layer potential with density gB. Their odd reflections across the right boundary ΓR
are −Str and −Sbr, respectively. Symmetry considerations show that all four boundary conditions
are satisfied. Note that the layer potentials on boundary segments outlined with dots tile the plane
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and fine neighbors are labeled n−. The interaction list for B consists of the boxes marked i. The
boxes marked by s are children of B’s colleagues which are separated from B, so they are not fine
neighbors. They constitute the s-list for B (see Definition 3.1).
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Thus, D = ∪Mi=1Di and we rewrite (2) in the form

ψ(x) =

M∑
i=1

1

2π

∫
Di

f(y) log(|x− y|) dy.(7)

Definition 3.1. The colleagues of a square B are squares at the same refinement
level which share a boundary point with B. (B is considered to be a colleague of itself.)
The coarse neighbors of B are leaf nodes at the level of B’s parent which share a
boundary point with B. The fine neighbors of B are leaf nodes one level finer than B
which share a boundary point with B. Together, the union of the colleagues, coarse
neighbors, and fine neighbors of B will be referred to as B’s neighbors. The s-list of a
box B consists of those children of B’s colleagues which are not fine neighbors of B.

The interaction region for B consists of the area covered by the neighbors of
B’s parent, excluding the area covered by B’s colleagues and coarse neighbors. The
interaction list for B consists of those squares in the interaction region which are at
the same refinement level, as well as leaf nodes in the interaction region which are at
coarser levels. When the distinction is important, the squares at the same refinement
level will be referred to as the standard interaction list, while the squares at coarser
levels will be referred to as the coarse interaction list.

In our FMM, following [8, 16, 17], terms in the convolution integral (7) from
neighbor leaf nodes are computed directly. More distant interactions are accounted
for on coarser levels, through the use of a hierarchy of far-field and local multipole
expansions. We consider the local interactions first.

3.2. Local interactions. For fourth and sixth order accuracy, we assume that
we are given f on a cell-centered k × k grid for each leaf node B, with k = 4 or 6,
respectively. We can, therefore, take these k2 data points and construct a kth order
polynomial approximation to f of the form

fB(x, y) ≈
Nk∑
j=1

cB(j) bj(x− xB , y − yB),

where Nk = k(k+1)
2 is the number of basis functions needed for kth order accuracy and

where (xB , yB) denotes the center of B. The basis functions b1(x, y), . . . , bNk(x, y) are
given by

{xiyj | i, j ≥ 0, i+ j ≤ k − 1}.

If we let �fB ∈ Rk
2

denote the given function values (in standard ordering), then the
calculation of the coefficient vector �cB is clearly overdetermined. We obtain it through
a least squares fit based on the singular value decomposition. The pseudoinverse
matrix P ∈ RNk×k

2

, such that

�cB = P �fB ,

can be precomputed and stored.
Remark 3.1. For eighth order accuracy, we assume that f is given on a scaled

8× 8 classical tensor product Chebyshev grid [7] and use as basis functions

{Ti(x)Tj(y)| i, j ≥ 0, i+ j ≤ k − 1},



A NEW FMM-BASED POISSON SOLVER IN TWO DIMENSIONS 747

where Ti(x) denotes the Chebyshev polynomial of degree i. The coefficients of the
Chebyshev expansion can be computed efficiently using the fast cosine transform.

Consider now a target point Q, which lies in a neighbor of B. The field induced
at Q by fB is approximated by

ψB(Q) =

Nk∑
n=1

cB(n)f(Q,n),(8)

where

f(Q,n) =
1

2π

∫
B

bn(x− xB , y − yB) log |Q− (x, y)| dxdy.(9)

Since the target points Q are regularly spaced in each neighboring square, we can
precompute the weights (9) for each of the k2 possible locations at each of 9 possible
colleagues, 12 possible fine neighbors, and 12 possible coarse neighbors. To be more
precise, we can precompute the weights assuming that B is the unit square [−0.5, 0.5]2

because of the following straightforward lemma.
Lemma 3.2. Let B be a leaf node at level l and let Q denote a target point in

one of B’s neighbors. Let Q∗ denote the scaled target point for the unit cell centered
at the origin

Q∗ = 2l−1 · (Q− (xB , yB)),

let

f∗(Q∗, n) =
1

2π

∫ 1/2

−1/2

∫ 1/2

−1/2

bn(x, y) log |Q∗ − (x, y)| dxdy,(10)

and let

f̄(n, l) =
1

2π

(
1

2l−1

)d+2 ∫ 1/2

−1/2

∫ 1/2

−1/2

bn(x, y) log

(
1

2l−1

)
dxdy.(11)

Then the integral f(Q,n) defined in (9) is given by

f(Q,n) =

(
1

2l−1

)d+2

f∗(Q∗, n) + f̄(n, l),

where d is the degree of the polynomial basis function bn.
Thus, we need only obtain weights for a box of unit area. Elementary counting

arguments show that the storage required for this precomputation is

k × k ·Nk · 9 real numbers for colleagues,

k × k ·Nk · 12 real numbers for fine neighbors,

k × k ·Nk · 12 real numbers for coarse neighbors,

for a total of approximately 17× k4 real numbers.
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3.3. Far-field interactions. We turn now to the calculation of far-field inter-
actions, which are computed by means of multipole expansions. We refer the reader
to [14, 16] for more detailed discussions of potential theory. Our starting point is
the usual multipole expansion for a charge distribution, which we state formally as a
theorem.

Theorem 3.3 (multipole expansion). Let ρ(y) be a charge distribution contained
within a square Di with center C and let Φ(x) denote the induced field at a point x
in the interaction list of Di:

Φ(x) =
1

2π

∫
Di

log |x− y|ρ(y) dy.

Then Φ(x) can be described by the multipole expansion

Φ(x) = α0 log |x− C|+ �
( ∞∑
k=1

αk
(x1 + ix2 − C)k

)
,(12)

where C is viewed as a point in the complex plane, x = (x1, x2), and �(w) denotes
the real part of the complex quantity w. The coefficients αk are given by

α0 =
1

2π

∫
Di

ρ(y1, y2)dy1 dy2,

αk = − 1

2π

∫
Di

(y1 + iy2 − C)kρ(y1, y2)

k
dy1 dy2.(13)

In the hierarchical framework of the FMM, an upper bound for the error in truncating
the expansion after n terms is given by

(
1

2

)n
1

2π

∫
Di

|ρ(y1, y2)| dy1 dy2.(14)

Theorem 3.4 (local expansion). Let ρ(y) be a charge distribution contained
outside the neighbors of a square Di with center C and let Ψ(x) denote the induced
field at x ∈ Di. Then Ψ(x) can be described by a local expansion

Ψ(x) = �
( ∞∑
l=0

βl(x1 + ix2 − C)l

)
,(15)

where C is viewed as a point in the complex plane and x = (x1, x2).
The FMM relies on the ability to manipulate multipole and local expansions for

every box in the tree hierarchy. We omit the technical details and refer the reader to
the original papers [8, 14, 16, 17].

Definition 3.5. We denote by Sl,k the kth square at refinement level l.
We denote by Φl,k the multipole expansion describing the far field due to the source

distribution supported inside Sl,k.
We denote by Ψl,k the local expansion describing the field due to the source dis-

tribution outside the neighbors of Sl,k.

We denote by Ψ̃l,k the local expansion describing the field due to the source dis-
tribution outside the neighbors of the parent of Sl,k.
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Remark 3.2. Let Sl,k be a square in the quad-tree hierarchy and let Sl′,k′ be a
square in its interaction list. Then there is a linear operator TMM for which

Φl,k = TMM [Φ(C1),Φ(C2),Φ(C3),Φ(C4)],(16)

where Φ(Cj) denotes the multipole expansion for the jth child of Sl,k. In other words,
we can merge the expansions for four children into a single expansion for the parent.
Similarly, there is a linear operator TLL for which

[Ψ̃(C1), Ψ̃(C2), Ψ̃(C3), Ψ̃(C4)] = TLLΨl,k,(17)

where Cj denotes the jth child of Sl,k. In other words, we can shift the local expansion

Ψ for a box to the corresponding expansion Ψ̃ for each of its children. Finally, there
is a linear operator TML for which the field in Sl,k due to the source distribution in
Sl′,k′ is described by Ψ = TMLΦl′,k′ . It is easy to verify that

Ψl,k = Ψ̃l,k +
∑
i∈IL

TMLΦi,(18)

where IL denotes the interaction list for square Sl,k.
Remark 3.3. One slight complication in the adaptive algorithm concerns the

interaction between boxes of different sizes. Referring to Figure 3, we need to account
for the influence of a childless square B on each box marked s and vice versa. (This
interaction doesn’t arise if B undergoes further refinement.) For the box marked s,
its multipole expansion is rapidly convergent at each of the k2 target points in B.
Thus, its influence can be computed by direct evaluation of the truncated series. For
the reverse, however, note that B’s multipole expansion is not so rapidly convergent.
In this case, we can map directly from the polynomial coefficients �cB of B to the local
expansion in s. A more precise statement than (18) is

Ψl,k = Ψ̃l,k +
∑
i∈SIL

TMLΦi,+
∑
i∈CIL

Ldirect(�ci),(19)

where SIL denotes the standard interaction list and CIL denotes the coarse in-
teraction list. The operator Ldirect, which maps the coefficients of the polynomial
approximation of the density in the coarse box onto the p coefficients of the local
expansion can be precomputed and stored.

The bulk of the work in the FMM consists of applying the operators TMM , TLL,
and especially TML in a systematic fashion. Unfortunately, these operators are dense.
Using multipole and local expansions truncated after p terms, the naive cost of appli-
cation is proportional to p2. Recent improvements in the FMM have reduced this cost
in both two and three space dimensions [17, 19]. A brief discussion of the technical
ideas is presented in section 3.8.

3.4. The FMM algorithm.
Initialization

Comment [We assume we are given a square domain D = S0,0, on which is superim-
posed an adaptive hierarchical quad-tree structure. We let M be the number of leaf
nodes and denote them by Di, i = 1, . . . ,M . The number of grid points is, therefore,
N = 16M . We let p denote the order of the multipole expansion (p ≈ log2 ε, where ε
is the desired accuracy). We let lmax denote the maximum refinement level.]
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Step I: Multipole sweep
Upward pass

for l = lmax, . . . , 0
for all boxes j on level l

if j is childless then
form the multipole expansion Φl,j from (12)

else
form the multipole expansion Φl,j by merging the expansions of
its children using the operator TMM (see (16))

end
end

Downward pass
Initialize the local expansion Ψ0,0 = 0.
for l = 1, . . . , lmax

for all squares j on level l

Compute Ψ̃l,j by shifting its parent’s Ψ expansion using the operator TLL
Compute Ψl,j by adding in the contributions from all squares in j’s

interaction list according to (19).
if j is childless then

for all boxes k in the s-list of j:
evaluate the multipole expansion Φk at each
target in square j.

end
Evaluate the local expansion Ψl,j at each
target in square j.

endif
end

end
Cost [The upward pass requires approximately Mp2 work, where M is the number of
leaf nodes. The downward pass requires approximately 3Mp2 work using plane-wave
expansions (see section 3.8 below).]

Step II: Local interactions
Comment [At this point, for each leaf node Di, we have computed the influence of
the source distribution f over all leaf nodes Dj outside the neighbors of Di.]

do i = 1, . . . ,M
For each target point in Di, evaluate the influence of each

neighbor according to (8) using the precomputed
tables of coefficients (10).

end
Cost [The maximum number of neighbors a square can have is thirteen (twelve fine

neighbors and itself). Thus the local work is bounded by is 13 · k(k+1)
2 ·N operations.]

3.5. Periodic boundary conditions. The inversion formula (2) and the fast
algorithm described above assume that the right-hand side f is supported within a
unit square. When imposing periodic boundary conditions, as mentioned in section 2,
one can simply assume that the entire plane is tiled with copies of f centered at the
lattice points {(i, j)|i, j ∈ Z}. In order to account for the influence of these images, we
follow the approach introduced in [16], the essence of which can already be found in
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Lord Rayleigh’s classic paper [25]. The main thing to notice is that, after the upward
pass in the FMM, we have a net multipole expansion describing the far field due to
the entire source distribution f contained in the unit cell centered at the origin:

φ(x) = �
(

p∑
n=1

αn
zn

)
.(20)

(There is no logarithmic term since we assume that the source distribution has no net
charge.) This is then the expansion for each of the periodic images of the box with
respect to its own center. All of these images, except for the nearest neighbors centered
at {(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)}, are well separated from the
computational domain itself. Thus, the fields they induce inside the computational
domain are accurately representable by a p-term local expansion where, as before, p is
the number of terms needed to achieve a relative precision ε. This local representation
can be written as

Ψ0,0(w) = �
(

p∑
n=0

βnw
n

)
.(21)

It remains only to obtain the operator mapping the coefficients {αn} to the coef-
ficients {βn}. We refer the reader to [4, 16, 25] for a discussion of this operator, which
is based on the precomputation of certain lattice sums. The reason we denote the
local expansion in (21) by Ψ0,0 is for consistency of notation with the FMM described
above; the downward pass is modified in the initialization step. In the remainder of
the downward pass and in Step II, only two changes are required; the interaction list
and the local computations must be adjusted for boxes near the boundary to account
for periodic images. This involves no significant increase in the amount of work.

3.6. Other homogeneous boundary conditions. As noted in section 2, prob-
lems with homogeneous Dirichlet and Neumann conditions can be solved using the
method of images. Since there is a 2 × 2 “supercell” which tiles the plane periodi-
cally, it is straightforward to embed such problems in a periodic version of the FMM.
Done naively, this would entail a fourfold increase in CPU time and storage. Careful
implementation considerations allow one to recover this overhead, but the details are
tedious and will be omitted.

3.7. Inhomogeneous boundary conditions. In order to impose inhomoge-
neous boundary conditions using potential theory, we need to consider arrangements
of single and double layer potentials such as the one depicted in Figure 2. These can
be viewed as singular charge distributions and can be handled by the same FMM as
above, with three modifications. First, the far field due to a box B with a single layer
density σ and a double layer density µ along its boundary Γ is given by

φ(x) = �
(
α0 log |x1 + ix2 − C|+

∞∑
k=1

αk
(x1 + ix2 − C)k

)
,(22)

where

α0 = − 1

2π

∫
Γ

σ(s)ds(23)

and

αk = − 1

2π

∫
Γ

(y1(s) + iy2(s)− C)kσ(s)

k
+ (y1(s) + iy2(s)− C)k−1µ(s) ds.(24)
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Here, (y1(s), y2(s)) is an arclength parametrization of Γ. Second, contributions to the
local field from a leaf node containing layer potentials are precomputed as in section
3.2. Finally, the interaction list and the local computations must be adjusted for
boxes near the boundary.

3.8. Fast translation operators. Consider a box B centered at XB , containing
sources {z1, . . . , zM} with source strengths {q1, . . . , qM} and a target box D centered
at XD in its interaction list. We assume for the moment that �(XD) > �(XB). In
the original FMM, the field outside B is represented as

φ(x) = �
(
α0 log(x1 + ix2 −XB) +

p∑
k=1

αk
(x1 + ix2 −XB)k

)
.(25)

The field inside D is represented as

φ(x) = �
(
p∑
l=0

βl (x1 + ix2 −XD)l

)
(26)

with

β0 = α0 log(XD −XB) +

∞∑
k=1

αk
(XD −XB)k

(−1)k,

βl = − α0

l · (XD −XB)l
+

1

(XD −XB)l

∞∑
k=1

αk
(XD −XB)k

(
l + k − 1

k − 1

)
(−1)k for l ≥ 1.

This describes the translation operator denoted by TML in section 3.3 and requires
O(p2) work to apply. In [19], Hrycak and Rokhlin suggest an alternative representa-
tion of φ, based on the formula

1

z − w =

∫ ∞

0

e−λ(z−w) dλ.(27)

This integral can be discretized using generalized Gaussian quadratures [31] which
take into account the nature of the integrand as well as the precise geometry of the
interaction list. The number of quadrature nodes needed to achieve a precision ε is
less than or equal to the number of multipole coefficients. Tables of weights and nodes
for various values of ε are provided in [31]. For numerical purposes, we begin with an
approximation of the form

1

zi − w ≈
p∑
k=1

wke
−λk(zi−w).

Integrating both sides, we have

log(zi − w) ≈
p∑
k=1

−wk
λk

e−λk(zi−w) + C,

where C is a constant of integration. Choosing

C =

p∑
k=1

wk
λk
e−λk
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enforces the condition that log(1) = 0.
Instead of the classical multipole expansion (25), we instead work with the expo-

nential representation

φ(x) = �
(

p∑
k=1

ake
−λk (x1+ix2−XB) + C ′

)
,(28)

where the coefficients ak are exponential moments of the charge distribution:

ak =

M∑
j=1

qje
+λk (zj−XB)

and

C ′ =


 M∑
j=1

qj


 · C.

The advantage of this approach is that translation has been diagonalized. Transmit-
ting the expansion from box B to D is carried out by computing

ψ(x) = �
(

p∑
k=1

bke
−λk (x1+ix2−XD) + C ′

)
,(29)

where the new coefficients bk are obtained from the ak through the translation formula

bk = ak e
−λk(XD−XB).

The details of how to incorporate such expansions into an adaptive two-dimensional
FMM code can be found in [19]. For the three-dimensional analogue, see [17].

4. Numerical results. Fast Poisson solvers using the algorithms described
above have been implemented in Fortran 77. Here, we demonstrate their perfor-
mance on four problems involving varying degrees of adaptivity. All of the timings
listed below correspond to calculations performed on a 440MHz SUN Ultra-10 with
256 MB RAM using the compiler option (-fast).

There are few efficient adaptive solvers which are widely available. Therefore,
we have chosen a simple and stringent standard for comparison: the time taken by
a classical FFT-based code for the same number of degrees of freedom (grid points).
Using the second order accurate FORTRAN code HWSCRT by Swartztrauber [27]
and Swartztrauber and Sweet [28] (available from www.netlib.org), with the same
machine and compiler option as above, we obtain the data shown in Table 1.

We have, as yet, said little about our adaptive refinement strategy. It is straight-
forward. Let B be a leaf node with k × k grid points, as discussed in section 3.2 and
let fB(x) denote the kth order polynomial used to approximate the right-hand side on
B. We then evaluate fB(x, y) on a 2k× 2k grid covering B and compute the discrete
L2 error E2 = ‖f(x, y) − fB(x, y)‖2 over these target points. If E2 > tol, the leaf
node B is subdivided. Of course, the tree obtained by this procedure may not satisfy
the level restriction that neighboring leaf nodes be at most one level apart. It is a
straightforward matter to “fix” the tree in a subsequent sweep. We omit the details.
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Table 1
Timing results for the FFT-based second order accurate code HWSCRT. N denotes the number

of grid points, Thwscrt denotes the required solution time in seconds, and rate denote the number
of grid points “processed” per second (N/Thwscrt).

N Thwscrt Rate
256× 256 0.17 3.8 105

512× 512 0.78 3.4 105

1024× 1024 4.0 2.6 105

2048× 2048 19.4 2.2 105
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Fig. 4. The left-hand figure shows an adaptive mesh resolving the source distribution in (30).
The right-hand figure shows a surface plot of the solution.

Example 4.1. In our first experiment, we consider the equation

∆ψ(x) =

3∑
i=1

(4α2 ‖x− xi‖2 − 4α)e−α‖x−xi‖2

(30)

in free space, for which the exact solution (Figure 4) is the sum of three Gaussians

ψ(x) =

3∑
i=1

e−α‖x−xi‖2

.(31)

We consider the case where α = 250, x1 = (.1, .1), x2 = (0, 0), and x3 = (−.15, .1).
The right-hand side in (30) is supported, with an exponentially small error, in the
box [−0.5, 0.5]2, which we use as the computational domain. Our adaptive mesh
is depicted in Figure 4. Note that fine grids are created only near the centers of
the Gaussians. The performance of the fourth, sixth, and eighth order codes are
summarized in Table 2.
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Table 2
Timing results for the fourth, sixth, and eighth order accurate codes in Example 4.1. εFMM

denotes the requested precision from far-field interactions within the FMM, εRHS denotes the re-
quested precision in discretizing the right-hand side, and Nlev denotes the number of levels used in
the FMM hierarchy. E2 and E∞ denote the relative L2 and L∞ errors of the computed solution, N
denotes the number of grid points used, TFMM denotes the required solution time in seconds, and
rate denote the number of grid points “processed” per second (N/TFMM ).

εFMM εRHS Nlev E2 E∞ N TFMM Rate

Fourth order

10−3 10−3 7 3.7 10−4 1.2 10−4 11488 0.08 1.4 105

10−3 10−6 9 7.0 10−5 1.4 10−4 96592 0.64 1.5 105

10−6 10−6 9 4.9 10−6 1.3 10−6 96592 1.08 8.9 104

10−6 10−9 10 8.4 10−8 4.9 10−7 821824 8.38 9.8 104

10−9 10−9 10 1.4 10−8 3.4 10−9 821824 12.17 6.8 104

Sixth order

10−3 10−3 6 8.2 10−5 1.2 10−4 10296 0.08 1.3 105

10−3 10−6 7 7.0 10−5 1.6 10−4 43236 0.29 1.5 105

10−6 10−6 7 1.5 10−7 4.2 10−7 43236 0.39 1.1 105

10−6 10−9 9 8.6 10−8 5.6 10−7 279432 2.45 1.1 105

10−9 10−9 9 2.4 10−9 2.2 10−9 279432 3.48 8.0 104

10−9 10−12 10 2.3 10−10 2.4 10−9 1725984 17.19 1.0 105

10−12 10−12 10 2.0 10−12 8.4 10−13 1725984 27.28 6.3 104

Eighth order

10−3 10−3 6 1.0 10−4 2.0 10−4 13888 0.16 8.7 104

10−3 10−6 7 9.0 10−5 2.0 10−4 63616 0.68 9.4 104

10−6 10−6 7 1.7 10−7 6.8 10−7 63616 0.80 8.0 104

10−6 10−9 8 1.4 10−7 6.8 10−7 273280 3.11 8.8 104

10−9 10−9 8 4.4 10−10 2.7 10−9 273280 3.62 7.5 104

10−9 10−12 9 4.2 10−10 2.8 10−9 1281472 16.02 8.4 104

10−12 10−12 9 9.2 10−13 6.1 10−13 1281472 21.68 5.9 104

Example 4.2. For our second experiment, we consider the singular equation

∆ψ = 0 in D,

ψ = 0 on ΓL,

ψ = 0 on ΓR,(32)

ψ = 1 on ΓT ,

ψ = 0 on ΓB ,

In Figure 5, we plot the solution obtained with our solver on an adaptive grid,
the solution obtained by HWSCRT on a uniform 64× 64 mesh, and the error in the
HWSCRT solution. Note that we resolve the corner singularities adaptively and that
our solution is exact (up to the requested FMM tolerance), since the data is piecewise
polynomial (here, constant).

Remark 4.1. There is an enormous difference in the meaning of “order of ac-
curacy” in our solver and in standard finite difference or finite element codes. Our
solver is exact for a certain order of approximation of the data. A kth order accurate
PDE-based solver on an N×N mesh has a global error which decays like (1/N)k with
a constant of proportionality which depends on the kth derivative of the solution. In
the present example, our solver is exact. The finite difference code is only first order
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Fig. 5. The upper left-hand figure shows the solution obtained by HWSCRT to Example 4.2 and
the upper right-hand figure shows the solution obtained using our solver. The middle figures show
the error in the solution obtained by HWSCRT and the adaptive grid use by our solver, respectively.
The lower figures show the electrostatic energy ‖∇ψ‖2 obtained from HWSCRT and our solver,
respectively.
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Fig. 6. The left-most figure shows a surface plot of the right-hand side for 10 randomly placed
Gaussians as described in (33) with α = 100 and the figure to the right of it shows the corresponding
solution. The two lower figures show both the right-hand side and corresponding solution for α =
1000.

accurate because of the corner singularities.
Example 4.3. In order to evaluate the performance of our code with widely

varying degrees of adaptivity, we consider the source distribution

∆ψ(x) =

10∑
i=1

−2αe−α‖x−xi‖2

(33)

in free space. With α = 100, the distribution is fairly smooth, while with α = 1000,
the Gaussians fall off sharply and require many levels of refinement near the centers
(see Figure 6). The experiment was run using the fourth order code and εFMM =
εRHS = 10−6. Table 3 lists our timing data for various values of α.

In addition to comparing various levels of adaptivity, it is also worth noting that
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Table 3
Timings for the FMM-based solver in Example 4.3.

M N TFMM Rate N TFMM Rate
α = 100 α = 250

5 43969 0.44 9.9 104 73840 0.76 9.7 104

10 70864 0.68 1.0 105 138640 1.43 9.7 104

25 119296 1.33 8.9 104 212800 2.06 1.0 105

100 233296 2.43 9.6 104 262144 2.60 1.0 105

α = 500 α = 1000
5 97648 1.08 9.0 104 108544 1.17 9.3 104

10 196336 2.09 9.4 104 225616 2.40 9.4 104

25 377248 4.03 9.4 104 460912 4.96 9.3 104

100 785632 8.39 9.4 104 916336 9.44 9.7 104

Table 4
Timings for the FMM-based solver in Example 4.3 using free-space and periodic boundary con-

ditions.

M N TFMM Rate N TFMM Rate
Free space Periodic

10 138640 1.43 9.7 104 139696 1.63 8.6 104

30 241168 2.38 1.0 105 241552 2.63 9.2 104

50 253696 2.41 1.0 105 253840 2.62 9.7 104

100 262144 2.60 1.0 105 262192 2.94 8.9 104

the periodic and free-space solvers execute in nearly the same time. To show this, we
consider a right-hand side given by

∆ψ(x) =

M∑
i=1

(−1)i2αe−α‖x−xi‖2

.(34)

This ensures that the net charge in the periodic cell is zero. Table 4 compares the per-
formance of the fourth order accurate code with either free-space or periodic boundary
conditions with α = 250 and εFMM = εRHS = 10−6.

Example 4.4. Most of the preceding examples involve adaptive refinement around
a “point-like” singularity. Here we consider the case of a singularity along a curve.
We simply define a source distribution which takes the value 1 inside a circle of radius
.25 and 0 outside. The right-hand side is shown in Figure 7 along with the computed
solution. Using the fourth order solver with 7 levels or refinement and 7936 grid
points, the L2 and L∞ errors are less than 10−3 and the solver executes at the rate
1.3 105 points per second. Using the sixth order solver with 12 levels or refinement
and 681,408 grid points, the L2 and L∞ errors are less than 10−6 and the solver
executes at the rate 8.5 104 points per second. Both of these timings are comparable
to those in Example 4.1.

The following observations can be made from the preceding data.
1. The timings for the FMM-based solver grow linearly with the number of

unknowns. For fourth order accuracy with a three-digit FMM tolerance,
the present implementation achieves a processing speed between 5.9 104 and
1.5 105 points per second. The classical second order FFT-based solver pro-
cesses 2.6 105 points per second on a 1024× 1024 grid.

2. For three-digit accuracy, the fourth order accurate code is fastest (≈ 1.4 105

points per second), while for six-digit accuracy, the sixth order accurate code
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Fig. 7. The left-hand figure shows the right-hand side. The middle figure shows the grid and
the right figure shows the solution.

is fastest (≈ 1.1 105 points per second). For twelve-digit accuracy, the sixth
and eighth order codes are only about twice as slow (≈ 6.3 104 points per
second).

5. Conclusions. We have developed a new adaptive, high order accurate solver
for the Poisson equation in two dimensions. The method is direct, fast-multipole-
based, and allows for the specification of a variety of boundary conditions on a unit
square. These include free-space conditions, periodic boundary conditions, Dirichlet,
Neumann, and a variety of mixed conditions. The amount of work scales linearly with
the number of degrees of freedom in the computational domain and is competitive
with classical FFT-based solvers in terms of work per grid point, despite the flexibility
of adaptive mesh refinement.

In order to develop a black box Poisson solver of broad interest, of course, we
need to allow for complex geometry. It would also be of value to be able to solve the
Helmholtz and linearized Poisson–Boltzmann equations,

∆u+ λ2u = f and ∆u− λ2u = f,

with a similar approach. These extensions are underway and will be reported at a
later date.
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Abstract. In this work we consider the simultaneous solution of large linear systems of the
form Ax(j) = b(j), j = 1, . . . ,K, where A is sparse and non-Hermitian. We describe single-seed
and block-seed projection approaches to these multiple right-hand side problems that are based on
the QMR and block QMR algorithms, respectively. We use (block) QMR to solve the (block) seed
system and generate the relevant biorthogonal subspaces. Approximate solutions to the nonseed
systems are simultaneously generated by minimizing their appropriately projected (block) residuals.
After the initial (block) seed has converged, the process is repeated by choosing a new (block) seed
from among the remaining nonconverged systems and using the previously generated approximate
solutions as initial guesses for the new seed and nonseed systems. We give theory for the single-seed
case that helps explain the convergence behavior under certain conditions. Implementation details
for both the single-seed and block-seed algorithms are discussed and advantages of the block-seed
algorithm in cache-based serial and parallel environments are noted. The computational savings of
our methods over using QMR to solve each system individually are illustrated in two examples.
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1. Introduction. In many applications one desires the solution of multiple lin-
ear systems of the form

Ax(j) = b(j), j = 1, . . . ,K,(1.1)

involving the same N ×N coefficient matrix A but K different right-hand sides b(j),
all of which are available simultaneously. Such problems arise, for instance, in the
numerical solution of frequency-domain electromagnetic wave scattering; here, the
right-hand sides might correspond to incident fields over the scatterer induced either
by plane waves at various angles of incidence or by excitation sources at different
locations.

Systems involving large, sparse matrices make good candidates for solution by
iterative Krylov subspace methods since storage is kept to a minimum and matrix-
vector products can be done efficiently. However, the naive approach of solving each
of the K linear systems independently using a Krylov subspace method does not take
advantage of the fact that the b(j)’s, and hence the x(j)’s, may be closely related
due to the underlying physical nature of the problem. By closely related, we mean
that the solution to the jth system has large components in the initial directions
of the k-dimensional (k � N) Krylov subspace generated from one of the other
systems. Projection-type techniques for both the Hermitian and non-Hermitian cases,
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discussed in more detail below, that specifically exploit such shared information have
been proposed (e.g., see [5, 26, 24] and the references therein).

Another alternative is to use a block Krylov subspace algorithm to solve the sys-
tems simultaneously [16, 23, 4, 8, 15]. Essentially these methods seek solutions in block
Krylov subspaces, or some deflated version thereof, generated by the matrix A and
the N ×K matrix R = B−AX0; here the columns of B are the b(j) and the columns
of X0 are the initial estimates for each of the systems. However, this approach can
be more expensive in terms of storage than projection techniques because the length
of the recurrences to update the iterates depends on the number of right-hand sides,
or, in the case of deflation [8], the number of right-hand sides corresponding to the
deflated Krylov sequences. Also, if a deflation technique is used, a deflation tolerance
must be specified in advance, and we have found in experiments that the performance
and convergence of the systems depend in a somewhat unpredictable manner on this
value. On the other hand, block Krylov subspace algorithms have the advantage that
they are better suited to parallelism [17, 14, 15] and make use of higher level BLAS [2].
Therefore, in this paper we develop new single and block-seed projection approaches
based on the QMR and block QMR algorithms, respectively; our block-seed method
exploits the best properties of the block QMR algorithm while preserving the basic
properties of our sequential projection technique. To our knowledge, ours is the first
block-seed projection algorithm for non-Hermitian linear systems with multiple right-
hand sides; in particular, as our algorithm is built around the BL-QMR algorithm of
[8], it incorporates a deflation strategy.

Specifically, the idea of a projection technique is to first select one of the systems
as “seed” and solve it by an iterative Krylov subspace method. As the relevant
subspaces are generated, the approximations to the other systems are simultaneously
updated by projecting the residual onto a particular subspace and by either enforcing
a Galerkin-type condition [11, 25] or minimizing the projected residual [24]. Such
methods are sometimes referred to as Lanczos–Galerkin approaches [21].

Smith [25] and Joly [11] both consider a projection approach based on BiCG for
nonsymmetric A. In [11] a similar approach for CGS is also given. However, the BiCG-
projection approach can exhibit the potentially erratic convergence behavior observed
when applying BiCG to a single linear system (see the results in [24]). Simoncini and
Gallopoulos [24] also present an approach to solving (1.1) when A is nonsymmetric.

Our single-seed projection algorithm is most similar in concept to the project-
minimize approach in [24]. However, as a result of the underlying unsymmetric Lanc-
zos process, we do not need to store the basis vectors, we do not need to predetermine
a subspace dimension, and we show that the approximate solutions and residuals to
the nonseed systems are cheaply computed and available at every stage of the algo-
rithm because they are updated with short-term recurrences. Since we are minimizing
quantities rather than enforcing Galerkin conditions, the convergence behavior should
be less erratic than methods based on the latter. As noted and as we illustrate in The-
orem 3.4, the success of our single-seed method depends on the closeness, in the sense
described above, among the right-hand sides. The block-seed approach we introduce
here is more efficient when the right-hand sides are not all close.

This paper is organized as follows. In section 2, we give the necessary background
on the QMR approach. We give an outline of our single-seed projection approach
and discuss its convergence in section 3. Background on the block QMR algorithm is
presented in section 4. The block variant of our QMR-projection algorithm is reported
in section 5, and related computational issues are discussed in section 6. Section 7
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gives numerical results, and section 8 reports conclusions and future work.

2. Background: The QMR algorithm. The quasi-minimal residual (QMR)
algorithm was introduced by Freund and Nachtigal in [9]. The original algorithm
was based on three-term recurrences. In [10], the authors proposed a mathematically
equivalent algorithm which employed coupled two-term recurrences. Since the latter
variant has been found to be more numerically stable for solving linear systems, in
numerical experiments we use this implementation. However, to simplify the notation
in this section and in section 3, and to be consistent with the notation in section 5,
we will follow the notation in [9]. Further, for simplicity, we consider only the version
without look-ahead but note that our algorithm could be adapted to account for
look-ahead.

In the remainder of the paper, the notation ‖·‖ always refers to the Euclidean norm
‖ · ‖2. The superscript T is used to denote the transpose operation, and superscript
∗ is used to denote the conjugate transpose operation.

A Krylov subspace of dimension k generated by a matrix G and a vector q is
defined according to

Kk(G, q) = span{q,Gq,G2q, . . . , Gk−1q}.

The QMR algorithm is a Krylov-subspace-based iterative method that can be used
to solve non-Hermitian linear systems of the form Ax = b, A ∈ CN×N . At the kth
iteration, the current solution estimate has the form

xk = x0 + Vkzk,(2.1)

where x0 denotes the initial guess and Vk = [v1, v2, . . . , vk] is an N × k matrix whose
columns are basis vectors for Kk(A, v1) with v1 = r0/‖r0‖ and r0 = b − Ax0. The
length k vector zk is chosen as the solution to a particular minimization problem, as
discussed below. Those basis vectors are generated via the nonsymmetric Lanczos
process (see [22]) and are constructed to be biorthogonal to vectors wi, i = 1, . . . , k,
which form a basis for Kk(A

T , w1).
1 The columns of the N ×k matrix Wk are the wi.

From biorthogonality it follows that

WT
k+1Vk+1 = Dk+1, Dk+1 = diag(δ1, . . . , δk+1), δi �= 0.(2.2)

Also as a result of the Lanczos algorithm we obtain the relation

AVk = Vk+1T̄k,(2.3)

where T̄k is a (k+1)× k tridiagonal matrix. Using (2.1), (2.2), and (2.3), and setting
β = ‖r0‖, at the kth iteration the residual, rk = b−Axk, is given by [22]

rk = Vk+1(βe1 − T̄kzk),(2.4)

where e1 denotes the first Cartesian unit vector. Since the columns of Vk+1 are not
orthonormal,

‖rk‖ ≤ ‖Vk+1‖‖βe1 − T̄kzk‖.
1Here we always take w1 ≡ v1, but note that other choices are possible. A version of the algorithm

is also possible using Kk(A∗, w1) for the second Krylov subspace.
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The QMR algorithm determines zk by minimizing the norm of the quasi-residual term
[9]; that is,

zk = arg min
z∈Ck×1

‖βe1 − T̄kz‖.

We make the following alternate observation. From (2.4) and using biorthogonal-
ity,

‖D−1
k+1W

T
k+1rk‖ = ‖βe1 − T̄kzk‖.

Thus, the zk which defines the kth QMR iterate can also be thought of as the one that
minimizes the norm of the residual projected onto a smaller dimensional subspace. We
will make use of this alternate definition of the QMR iterates in subsequent sections.

3. The single-seed QMR-projection algorithm. In this section we describe
a single-seed QMR-projection algorithm for solving linear systems of the form (1.1).
Our algorithm proceeds as follows. First, we select one system, say, system j, to serve
as “seed” and apply QMR (without look-ahead) to the seed system. In the following,

we use rj,l0 to denote the initial residual to system l, where l denotes the index of any

of the nonconverged systems given the starting guess xj,l0 . We use rj,lk to denote the
residual of system l after k iterations. Since different choices of seed lead to different
Krylov subspaces and hence different iterates, the superscript j is used to denote
that this is the residual at the kth iteration for system l when system j was used as
seed. By the beginning of the kth iterate, QMR has generated biorthogonal bases
for two k-dimensional Krylov subspaces, Kk(A, rj,j0 ) and Kk(A

T , rj,j0 ). We denote the
respective bases by the vectors vj,i and wj,i, i = 1, . . . , k: the subscript j is used to
indicate that this particular set was generated using system j as seed. These vectors
are the columns of the N ×k matrices Vj,k and Wj,k, respectively. The corresponding
(k+1)×k tridiagonal matrix is denoted as T̄j,k (compare to (2.3)). By the end of the
kth iterate, QMR has also generated the unnormalized versions of the vectors vj,k+1

and wj,k+1 for use in the (k + 1)st iteration.

Let us comment on the values of xj,l0 . If we suppose that j was the seed system
and converged after m steps and that the index of the next seed system is j∗, then
we set xj

∗,l
0 = xj,lm for all indices l such that system l has not already converged.

In the previous section, we have seen that the kth iterate corresponding to the
seed system is given by

xj,jk = xj,j0 + Vj,kz
j,j
k with zj,jk = arg min

z∈Ck×1
‖βe1 − T̄j,kz‖.

Now we also want the kth iterate of the (nonconverged) nonseed system, say, system

l, to lie in xj,l0 +Kk(A, rj,l0 ), in other words,

xj,lk = xj,l0 + Vj,kz
j,l
k , l �= j.(3.1)

Next we must decide how to define zj,lk . From (2.3) (with Vj,k in place of Vk) and
(3.1),

rj,lk = b(l) −Axj,lk(3.2)

= rj,l0 − Vj,k+1T̄j,kz
j,l
k .
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Therefore, using biorthogonality,

‖D−1
j,k+1W

T
j,k+1r

j,l
k ‖ = ‖D−1

j,k+1W
T
j,k+1r

j,l
0 − T̄j,kz

j,l
k ‖.

Finally, we use the above equality to determine zj,lk :

zj,lk = arg min
z∈Ck×1

‖D−1
j,k+1W

T
j,k+1r

j,l
0 − T̄j,kz‖.(3.3)

3.1. Computational issues. Let us sketch how to efficiently compute the it-
erates and residuals of the nonseed systems. More details can be found in [13]. As
above, we will use the index l to denote an arbitrary nonseed system and j to denote
the seed system.

Let the QR decomposition of T̄j,k be

T̄j,k = Q∗
j,k

[
Rj,k
0

]
,

where Qj,k is a product of Givens rotations and Rj,k is k × k upper triangular with
upper bandwidth 2. It can be shown [13] that using the QR factorization to solve
(3.3) results in the easily solved system

zj,lk = R−1
j,kt

j,l
k ,(3.4)

where tj,lk differs from tj,lk−1 only in its last entry, which we shall denote by yj,lk . The

norm of the projected residual in (3.3) is given by the scalar |τ j,lk+1|. Further, τ j,lk+1 and

yj,lk can be updated from γj,lk+1 and τ j,lk with δj,k ≡ wTj,kvj,k:[
yj,lk
τ j,lk+1

]
=

[
cj,k sj,k
−s̄j,k cj,k

][
τ j,lk
γj,lk+1

]
with γj,lk+1 ≡

1

δj,k+1
wTj,k+1r

j,l
0 ,(3.5)

where cj,i ∈ R, sj,i ∈ C, c2j,i + |sj,i|2 = 1.

As in equation (4.8) of [9], we define Pj,k = [pj,1, pj,2, . . . , pj,k] ≡ Vj,kR
−1
j,k . Since

Rj,k is upper triangular with bandwidth 2, there is a short-term recurrence relation
for the pj,k [9]. Using (3.1) and (3.4), the kth iterate of the lth system is given by

xj,lk = xj,lk−1 + yj,lk pj,k.(3.6)

From this, we derive an iterative update for rj,lk that does not require any additional
matrix-vector products per iteration as follows.

Lemma 3.1. The residual at the kth iteration corresponding to the lth system is
given by

rj,lk = rj,lk−1 − yj,lk fj,k, where fj,k ≡ Apj,k,

and can be computed in O(N) flops.
Proof. The proof follows from (3.6), the bandedness of Rj,k, and the definition of

pj,k above. (A detailed proof can be found in [13].)

3.2. Seed selection. Clearly, the success of our QMR-projection approach at
reducing the total number of matrix-vector products needed to solve all the systems to
the desired tolerance depends on which and in what order systems are selected as seed.
We use the approach in [24]; namely, we choose the seed index j such that the norm of
the residual of the corresponding system is larger than all the remaining nonconverged
systems. Developing more informed selection heuristics remains a subject for future
research.



766 MISHA KILMER, ERIC MILLER, AND CAREY RAPPAPORT

3.3. Theory. Suppose that QMR has been run once and that the initial seed
system has converged afterm steps. Our algorithm proceeds by choosing another seed
and using as its initial guess that solution obtained via projection as the first system
was solved. One of the results of this section is that in exact arithmetic, assuming
A is diagonalizable, if some of the right eigenvectors are well approximated by Ritz
vectors corresponding to the first Krylov subspace generated, the rate of convergence
of the second seed system behaves as if the corresponding part of the spectrum of A
is cut off. The proof technique follows along the lines of the proof of Lemma 3.2 in
[5]. κ2(·) denotes the 2-norm condition number of the argument.

We assume A is diagonalizable with eigendecomposition A = ẐΛŜ, where Ŝ =
Ẑ−1. Here Λ = diag(λ1, . . . , λN ). We use ẑj to denote the jth column of Ẑ and

ŝ∗j to denote the jth row of Ŝ. Without loss of generality, we may assume that
‖ẑj‖ = 1. After step m of QMR applied to the seed system, let T1,mU1,m = U1,mΣ1,m

be the eigendecomposition of T1,m, where T1,m denotes the tridiagonal m×m leading
submatrix of T̄1,m. Since QMR is built on top of the unsymmetric Lanczos process,
in exact arithmetic if m is large enough, we expect some of the Ritz vectors given
by the columns of V1,mU1,m to be good approximations to, say, n ≤ m of the right
eigenvectors2 [1, 6, 7, 2] (assuming these eigenvectors are present in the starting
vector for the first seed system). Under these definitions and assumptions, we have
the following.

Theorem 3.2. Consider two systems Ax(1) = b(1) and Ax(2) = b(2) with A an
N ×N matrix. Let x2,2

0 be the starting vector for the second system obtained via our
projection approach after m steps of QMR have been run using the first system as
seed; that is, x2,2

0 = x1,2
m .

Define I as the set of indices of the n right eigenvectors that are well approximated
by n ≤ N of the m Ritz vectors V1,mU1,m. Define x̄2,2

0 such that x(2) − x̄2,2
0 is the

projection of x(2) − x2,2
0 on span{ẑj , j �∈ I}. Let x̄2,2

i be the ith iterate of GMRES

applied to system 2 with initial guess x̄2,2
0 . Then for any i

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1)(‖b(2) −Ax̄2,2

i ‖+ δ),

where

δ =
∑
k∈I
|λkp̃(λk)||ŝ∗jPme1,2

0 |,

p̃ is a particular i-degree polynomial with constant term 1, e1,2
0 ≡ x(2) − x1,2

0 , and
Pm ≡ I − V1,m(T̄

∗
1,mT̄1,m)

−1T̄1,mD−1
1,m+1W

T
1,m+1A is a projector.

Proof. Since A is diagonalizable, e2,2
0 ≡ x(2) − x2,2

0 =
∑N
k=1 φkẑk for some expan-

sion coefficients φk. Hence, by definition

b(2) −Ax2,2
0 =

N∑
k=1

φkλkẑk,(3.7)

b(2) −Ax̄2,2
0 =

∑
k �∈I

φkλkẑk.(3.8)

2We caution the reader that our notation is somewhat unconventional, as we use n simply to
denote an index n ≤ N and N to denote the dimension of the matrix.
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Now if x̄2,2
i is the ith GMRES iterate with x̄2,2

0 as the initial guess, there exists a
polynomial p̃i of degree less than or equal to i with p̃i(0) = 1 such that

b(2) −Ax̄2,2
i =

∑
k �∈I

φkλkp̃i(λk)ẑk,(3.9)

where p̃i satisfies

p̃i = arg min
p∈Π̄i

‖p(A)(b(2) −Ax̄2,2
0 )‖.(3.10)

Here, Π̄i denotes the set of all polynomials with degree less than or equal to i with
constant term 1. From Theorem 7.1 in [22], we have a bound on the ith QMR residual
in terms of the ith GMRES residual:

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1) min

p∈Π̄i
‖p(A)(b(2) −Ax2,2

0 )‖.(3.11)

Also,

min
p∈Π̄i

‖p(A)(b(2) −Ax2,2
0 )‖ ≤ ‖p̃i(A)(b(2) −Ax2,2

0 )‖ = ‖
N∑
k=1

φkλkp̃i(λk)ẑk‖.(3.12)

Substituting this into (3.11) and using (3.9) and the triangle inequality gives

‖b(2) −Ax2,2
i ‖ ≤ κ2(V2,i+1)

(
‖b(2) −Ax̄2,2

i ‖+
∑
k∈I
|λkp̃i(λk)||φk|

)
.(3.13)

Using the definition of x2,2
0 as x1,2

m , it is straightforward to show

e2,2
0 = (I − V1,m(T̄

∗
1,mT̄1,m)

−1T̄ ∗
1,mD−1

1,m+1W
T
1,m+1A)e

1,2
0 = Pme1,2

0 .

It is easy to see that Pm is a projector since (Pm)
2 = Pm. By the definition of e2,2

0 it

follows that Pme1,2
0 =

∑N
k=1 φkẑk. Using ŝ∗j ẑk = 1 if j = k and 0 otherwise leads to

|ŝ∗jPme1,2
0 | = |φj | j ∈ I.(3.14)

Substituting (3.14) into (3.13), we obtain the desired result.
Now let us discuss why we expect δ to be small. First, it is clear that in exact

arithmetic the Ritz vectors lie in N (Pm). For any vector q ∈ CN , since Z is full
rank we may write q = Ẑc for the vector of expansion coefficients c = Ẑ−1q = Ŝq
with components cj = ŝ∗jq. Now suppose q ∈ R(Pm). Since the columns of Z with
indices in I are approximated by n of the m Ritz vectors, by assumption, and since
the Ritz vectors are in N (Pm), this implies cj ≈ 0, j ∈ I, which by definition means

ŝ∗jq ≈ 0, j ∈ I. Therefore, with q ≡ Pme1,2
0 , |φj | ≈ 0, j ∈ I, so δ should be small in

exact arithmetic. It is clear that the quality of the Ritz vector approximation and
loss of biorthogonality (e.g., the actual N (Pm)) will affect the size of δ in practice.

Using the definition of p̃i in (3.10), we obtain in analogy with the standard
GMRES upper bound for diagonalizable matrices [22] the following corollary.

Corollary 3.3. Let Ẑn denote the N × (N − n) matrix with columns ẑj for
j �∈ I. Then with δ defined as in Theorem 3.2 and P being the (N − n) ×N matrix
whose rows are the transposed unit vectors eTk , k �∈ I,

‖b(2) −Ax2,2
i ‖2 ≤ κ2(V2,i+1)


min
p∈Πi

max
λk
k �∈I
|p(λk)| ‖Ẑn‖ ‖PŜr̄2,2

0 ‖+ δ


 .
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Proof. The proof follows from the result of the theorem by first writing (3.9)
as Ẑnp̃(Λ̂)

∑
k �∈I φkλkek, where Λ̂ is diag(λk)k �∈I , using the identity ek = PŜẑk, and

taking norms.
Thus, under the assumptions we stated at the beginning of this section so that n

right eigenvectors with indices in I of A have been captured when the first seed system
is solved, the second seed system converges in exact arithmetic as if the corresponding
part of the spectrum of A has been cut off. The strength of this statement in practice
is based on the size of δ, which is affected in finite precision arithmetic as noted above.

In the next theorem, we bound the residual norms of the nonseed systems. A
proof and detailed discussion of the size of the upper bound are given in [13]. In
short, when the right-hand sides are close and the quasi-residual of the seed system
is being efficiently reduced, so are the residuals of the nonseed system.

Theorem 3.4. Let j denote the index of the seed system and l denote the index
of a (nonconverged) nonseed system. Then

‖rj,lk ‖ ≤
√
k+1

(
|γj,l1 |

∣∣∣∣∣
k−1∏
i=0

sj,k−i

∣∣∣∣∣+
k−1∑
i=0

|γj,lk−i+1||cj,k−i|
∣∣∣∣∣
i−1∏
m=0

sj,k−m

∣∣∣∣∣
)

(3.15)

+
√
N−k−1‖hj,lk ‖,

where hj,lk = [γj,lk+2, . . . , γ
j,l
N ]T and sj,k, cj,k are as defined in section 3.1.

4. BL-QMR background. The BL-QMR algorithm of Freund and Malhotra
attempts to solve (1.1) in the following way. First, given K vectors ri and p vectors
li, they define

R = [r1, . . . , rK ], L = [l1, . . . , lp].

The block Krylov sequences generated by R,A and L,AT are{
R,AR,A2R, . . . , Aj−1R, . . .

}
and

{
L,ATL, . . . , (AT )j−1L, . . .

}
.(4.1)

However, if Aj−1ri (likewise (AT )j−1li) is linearly or nearly linearly dependent on
the previous vectors, so are all Akri (likewise (AT )kli) for k ≥ j. Thus, Freund
and Malhotra propose scanning the vectors in the two sequences in (4.1) from left to
right and deleting those which are linearly or nearly linearly dependent on previous
ones. In the process they obtain deflated Krylov sequences whose vectors are linearly
independent. We refer to the n-dimensional subspaces generated by these deflated
sequences as Kdl

n (A,R) and Kdl
n (A

T , L). Note that in the presence of no deflation,
Kdl
n (A,R) and Kdl

n (A
T , L) are spanned by the first n columns of (4.1) with n ≤ jK

or n ≤ jp, respectively.
Within BL-QMR is a Lanczos-type algorithm which incorporates the deflation as

mentioned above in order to generate biorthogonal bases forKdl
n (A,R) andKdl

n (A
T , L):

that is, two sequences of right and left Lanczos vectors

v1, . . . , vn and w1, . . . , wn, n = 1, 2, . . . ,

such that

span{v1, . . . , vn} = Kdl
n (A,R), span{w1, . . . , wn} = Kdl

n (A
T , L),(4.2)

wTj vk =

{
0 ifj �= k,

δj �= 0 ifj = k.
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Defining the N × n matrices Vn = [v1, . . . , vn] and Wn = [w1, . . . , wn], it follows that

WT
n Vn = Dn ≡ diag(δ1, . . . , δn), n = 1, 2, . . . .

Also, the matrix equation relating the v’s is

AVµ = VnTµ + V̂ dl
µ , µ ≥ 1,

where µ = n −mcr and mcr is defined by the fact that K −mcr is the total number
of deflations performed in the v sequence up to iteration n in the Lanczos algorithm.
Further, Tµ is n× µ with lower bandwidth K + 1 and upper bandwidth p+ 1. Also,

V̂ dl
µ = V dl

µ + Eµ, where V dl
µ is N × µ but has only K − mcr nonzero columns cor-

responding to vectors that are deflated and Eµ has nonzero entries in row i column
p + j, j = 1, . . . , only if a deflation of the ith w occurs for i > K. We note that if
deftol is the deflation tolerance, then ‖V dl

µ ‖ ≤ deftol
√
K −mcr. For further details,

the reader is referred to [8].

Now let us assume R = [r
(1)
0 , r

(2)
0 , . . . , r

(K)
0 ]; that is, the matrix R contains the

initial residuals of each of the K systems we would like to solve. Thus, the v’s
correspond to the initial residuals. The way the deflation strategy in [8] works is that
if a v is deflated, one linear system is also set aside; then upon convergence of the
remaining systems, the solution to the deflated system is updated using the solutions
of the other systems. Thus, in what follows we consider only the updates to the
nondeflated linear systems, and we denote with a subscript “cr” submatrices of the
originals with mcr columns that correspond to these systems.

Recall that when QMR is applied to a single linear system, the µth iterate is an
appropriate linear combination of the Lanczos vectors, plus the initial guess. Similarly,
the block QMR iterate is defined as

Xµ,cr = X0,cr + VµZ, Z ∈ Cµ×mcr .

As with QMR, then, we need to find the matrix Z which determines the appropriate
linear combination. Following [8], the residual block Rµ,cr related to Xµ,cr satisfies

Rµ,cr = Bcr −AXµ,cr

= R0,cr −AVµZ

= R0,cr − VnTµZ − V̂ dl
µ Z

= Vn

([
βcr

0

]
− TµZ

)
− V̂ dl

µ Z,

where βcr is m1 ×mcr defined by taking the appropriate columns of β, with

Vm1β + V dl
0 = R,

and m1 is the number of columns of R (recall R has K columns) that are not deflated
as the first K Lanczos vectors are created (m1 ≤ K). Here B contains the b(j)’s as
its columns, and Bcr is the submatrix of B with the appropriate mcr columns.

Because the columns of Vn are not unitary and V̂ dl
µ has nonzero columns, one

cannot find Z such that ‖Rµ,cr‖ is minimal. Rather, we seek Z = Zµ such that

Zµ = arg min
Z∈Cµ×mcr

∥∥∥∥
[

βcr

0

]
− TµZ

∥∥∥∥ .
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Since Tµ is banded, the standard approach based on the QR factorization of Tµ
is used to implicitly determine Zµ and ultimately determine short-term recurrences
for Xµ,cr. Following [8] we have

Tµ = (Q(µ))∗
[

R(µ)

0

]

for a unitary n × n matrix Q(µ) and a nonsingular, µ × µ, upper triangular matrix
R(µ). Thus,

Z(µ) = (R(µ))−1tµ, where

[
tµ
τµ

]
= Q(µ)

[
βcr

0

]
.

Finally,

Xµ,cr = X0,cr + V(µ)(R
(µ))−1tµ

= Xµ−1,cr + pµy
T
µ ,(4.3)

where pµ and yTµ are given by (refer to [8, equations (5.10), (5.8)])

pµ =


vµ −

µ−1∑
i=j∗

piθi


 /θµ,

[
yTµ
τµ

]
= Qµ

[
τµ−1

0

]
.(4.4)

The θi are scalars corresponding to the last column of R(µ), Qµ (not to be confused
with Q(µ)) is a particular matrix of Givens rotations described in (5.2) of [8], and j∗

is an index described in [8] satisfying (µ− j∗) ≤ 2m.

5. The block QMR-projection method. In a manner similar to section 3,
we describe a block QMR-projection approach to solving (1.1) that combines the
advantageous properties of the block QMR algorithm and our single-seed projection
algorithm.

Suppose that we select a subset of size m < K linear systems to serve as “seed”
from among the original K. Let Im1 be the index set i1, . . . , im of the chosen systems.
We use Icm1

to denote the indices from 1 to K which are not in Im1 . Let b(j) with

j ∈ Im1
be the m columns of the matrix B(1) and let the remaining J = K−m right-

hand sides (corresponding to nonseed systems indexed by Icm1
) be the columns of the

matrix B(2). We define X
(1)
0 as the matrix [x

(i1)
0 , . . . , x

(im)
0 ] of initial guesses for the m

seed systems, and X
(2)
0 as the matrix of initial guesses for the nonseed systems. The

corresponding initial block residuals are R
(1)
0 = B(1)−AX

(1)
0 and R

(2)
0 = B(2)−AX

(2)
0 .

The idea is to set R (and L) defined in the previous section to R
(1)
0 and run BL-

QMR to solve the seed systems while using a projection idea to update the nonseed
systems. Once BL-QMR converges on the seed system, the process is repeated by
choosing a new subset, indexed by Im2 ⊂ Icm1

, of the nonconverged, nonseed sys-

tems. The systems indexed by Im2 now serve as seed, where the columns of X
(1)
0 are

understood to be the estimated solutions, generated in the first round of projected
BL-QMR, to the systems with indices in Im2 . The remaining systems, indexed by

Icm2
= Icm1

\Im2 , are updated by projection. In the following, X
(1)
µ (R

(1)
µ ) denotes the

µth block iterate (residual) of the current block seed while X
(2)
µ (R

(2)
µ ) denotes the µth

block iterate (residual) of the current nonseed block. We shall further assume that m
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is the number of current seed systems and J is the number of current nonconverged,
nonseed systems. The numbers m and J can change at each round.

At iteration µ, we want our nonseed systems to also lie in the current Krylov
subspace. That is, we desire

X(2)
µ ∈ X

(2)
0 +Kdl

µ (A,R
(1)
0 ).

Since the columns of Vµ span this subspace, this means

X(2)
µ = X

(2)
0 + VµZ

(2)
µ

for some µ× J matrix Z
(2)
µ . Now we must decide how to define Z

(2)
µ . We observe

R(2)
µ = B(2) −A(X

(2)
0 + VµZ

(2)
µ )

= R
(2)
0 − VnTµZ

(2)
µ − V̂ dl

µ Z(2)
µ .

Using biorthogonality

D−1
n WT

n R(2)
µ = D−1

n WT
n R

(2)
0 − TµZ

(2)
µ −D−1

n WT
n V̂ dl

µ Z(2)
µ .

Then

‖D−1
n WT

n R(2)
µ ‖ ≤ ‖D−1

n WT
n R

(2)
0 − TµZ

(2)
µ ‖+ ‖D−1

n WT
n V̂ dl

µ Z(2)
µ ‖.

Note that if no deflations have occurred, V̂ dl
µ is zero, so we have equality rather than

inequality. Therefore, in analogy with the single-seed algorithm of section 3, we define

Z(2)
µ ≡ arg min

Z∈Cµ×J
‖D−1

n WT
n R

(2)
0 − TµZ‖.

Using the QR factorization of Tµ described in the previous section, we obtain

Z(2)
µ = arg min

Z∈Cµ×J

∥∥∥∥Q(µ)Gn −
[

R(µ)

0

]
Z

∥∥∥∥ ,
where Gn is the n× J matrix Gn = D−1

n WT
n R

(2)
0 . If

[
t
(2)
µ

τ
(2)
µ

]
= Q(µ)Gn,(5.1)

we obtain

Z(2)
µ = (R(µ))−1t(2)µ ,(5.2)

so that

‖D−1
n WT

n R
(2)
0 − TµZ

(2)
µ ‖ = ‖τ (2)

µ ‖.(5.3)

Using GT
n =

[
GT
n−1, gn

]
, together with (5.1) and the definition of Q(µ) in (5.1) of [8],

it is easy to show that

[
t
(2)
µ

τ
(2)
µ

]
=

[
Iµ−1 0
0 Qµ

]
t
(2)
µ−1

τ
(2)
µ−1

gTn


 =




t
(2)
µ−1

Qµ

[
τ

(2)
µ−1

gTn

]

 .(5.4)
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Thus, t
(2)
µ differs from t

(2)
µ−1 only in its last row, which we call (y

(2)
µ )T :

t(2)µ =

[
t
(2)
µ−1

(y
(2)
µ )T

]
, where (y(2)

µ )T ∈ C1×J .

From the above relation and (5.4) it follows that to obtain (y
(2)
µ )T one need only

perform a product with Qµ:[
(y

(2)
µ )T

τ
(2)
µ

]
= Qµ

[
τ

(2)
µ−1

gTn

]
,

which, since Qµ by definition is a product of mcr Givens rotations, is an easy task.
With pi defined as in (4.4), it is now easy to show that the µth nonseed block

iterate is

X(2)
µ = X

(2)
µ−1 + pµ(y

(2)
µ )T .(5.5)

Thus, we may readily show

R(2)
µ = R

(2)
µ−1 −Apµ(y

(2)
µ )T .(5.6)

However, using the definition of pµ, we find an update formula for the block residual
which does not actually require any additional matrix-vector products.

Lemma 5.1. R
(2)
µ can be updated from R

(2)
µ−1 in at most O(N(J+2m)) additional

floating point operations.

Proof. By substituting (4.4) into (5.6), we obtain a formula for updating R
(2)
µ :

R(2)
µ = R

(2)
µ−1 − fµ(y

(2)
µ )T with fi ≡ Api =

1

θi


Avi −

i−1∑
k=j∗

θkfk


 .(5.7)

Consider forming fµ. Now the matrix-vector product Avµ is computed in the course
of the Lanczos process at iteration µ and need not be recomputed. Therefore, it is
clear that to compute the length N vector fµ requires at most O(2mN) flops since
(µ−j∗) ≤ 2m by definition (see section 5 of [8]). We note that the computation of the

outer product fµ(y
(2)
µ )T requires O(JN) operations, and the proof is complete.

We note that a similar update is valid for R
(1)
µ :

R(1)
µ = R

(1)
µ−1 − fµ(y

(1)
µ )T .(5.8)

6. Issues in practical computation for the block algorithm.

6.1. Block-seed selection heuristic. Clearly, the performance of our multiple-
seed algorithm in terms of savings of matrix-vector products depends on which, and
how many, systems are chosen to be seed. Deflation in BL-QMR solves the problem
of removing redundancy if systems with starting residuals which are nearly linearly
dependent are chosen as seed. Ideally, however, we would like to choose as seed
systems some subset of the nonconverged systems which are in some sense optimally
independent in order to increase the chance that the solutions to the nonseed systems
will lie nearly in the Krylov subspaces generated by the seed systems, thereby ensuring
the effectiveness of the projection process.
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In our examples, we used the following heuristics to determine which and how
many seed systems to use. First, we let B = [b(1), . . . , b(K)]. Since K � N was not
too large in these examples, we computed a compact pivoted QR factorization of B,

B̃ ≡ BΠ = QR, Q ∈ CN×K , R ∈ CK×K ,

to determine which of the remaining were most independent. Here, Π is just a per-
mutation matrix which serves to permute the columns of B such that the first few
columns of BΠ are the most independent. In particular, if ρ denotes the diagonal
entries of R and if |ρ(1)|/|ρ(i)| > α for any 1 ≤ i ≤ K, then we discard the corre-
sponding column of B̃. The remaining m columns of B̃ serve as the seed systems.
We set the maximum value of α to 105 to ensure the columns were not too linearly
dependent, but adjusted it lower if necessary so that the size of the seed block was
no bigger than about K/2. On the next round of projected BL-QMR, however, we
simply decided on a new number of seeds to use (m ← �m/2�) and took those with
the largest m relative residuals to serve as seed. More efficient means of selecting m
for each round and for determining the m seeds need to be examined in the future.3

6.2. Loss of biorthogonality. One additional problem that we encountered in
practice in using either our single-seed or our multiple-seed algorithm was that loss
of biorthogonality could affect the accuracy of the γjln = (1/δj,n)w

T
j,nr

jl
0 , or gTn =

(1/δn)w
T
nR

(2)
0 . This loss of accuracy would thereby adversely affect the convergence

of the computed solution. To avoid this difficulty for the block projection algorithm,
we used the following fact. If no deflations were performed up to the µth iteration
when solving the single-seed system,

R
(2)
µ−1 = R

(2)
0 − Vn−1Tµ−1Z

(2)
µ−1 ⇒ gTn =

1

δn
wTnR

(2)
µ−1 =

1

δn
wTnR

(2)
0 ,

where it is understood that R
(2)
j = R

(2)
0 , j < 0. Thus, at the beginning of iteration

µ ≥ 1, we computed gTn based on the current residual estimate, then updated the
residual estimate using Lemma 5.1. If deflations do occur, observe

gTn =
1

δn
wTnR

(2)
µ−1 −

1

δn
wTn V̂

dl
µ−1Z

(2)
µ−1.

In our examples, the second term was on the order of the deflation tolerance. This
was because V̂ dl

µ = V dl
µ since no w deflations occurred for indices larger than J . Hence

nonzero columns of Vdl were nearly linear combinations of the first m1 v’s for which
1
δn
wTn v = 0. In this work we choose to ignore the second term rather than go to the

extra expense of computing inner products with the nonzero columns of V̂dl.
Likewise, for the single-seed algorithm we use

γjln =
1

δj,n
wTj,nr

jl
0 =

1

δj,n
wTj,nr

jl
n−2, n ≥ 2.

An investigation into the reason behind the success of these approaches in finite preci-
sion arithmetic will be the subject of future work. We note that a similar phenomenon
was observed in [20] with respect to practical implementation of GMRES variants,
and an explanation for such behavior in finite precision arithmetic was given.

3In the worst case, if the seed block is too small, then it could require many rounds and much
computation for all the systems to converge, and performance could be worse than BL-QMR without
projection. If the seed block is too large, gains in execution time over BL-QMR would probably also
be reduced, and our algorithm’s behavior would become more dependent on the deflation tolerance.
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6.3. Computational aspects of the block-seed algorithm. It may be rela-
tively expensive in terms of execution time to move data between the smaller, faster
cache and the larger, slower main memory. When data is available in cache, it is
desirable to use it as much as possible. The level-2 and level-3 BLAS are better
for achieving this than level-1 BLAS operations. Thus, one advantage that the block
Krylov subspace algorithms enjoy over standard Krylov subspace algorithms (and our
single-seed algorithm) is that the former can be implemented to be rich in higher level
BLAS operations, whereas the latter class of algorithms requires a large number of
level-1 BLAS operations [14, 2].

Further, Krylov subspace algorithms require a large number of vector inner prod-
ucts relative to the remaining number of computations. These inner products, when
implemented on a distributed memory parallel machine, correspond to synchroniza-
tion points (that is, computation cannot proceed until all processors receive the result
of the inner product) and require numerous smaller messages among processors [17].
Our single-seed method inherits these problems, although updates to the seed and
nonseed systems can be done independently. Block Krylov subspace algorithms, how-
ever, can be implemented to provide more computation between communications and
larger but fewer messages among processors [14, 17]. Below, we provide one imple-
mentation of the block-seed projection algorithm from the proceeding section. We do
not claim that this implementation is optimal in terms of cache utilization or paral-
lelism; our goal is to illustrate the potential efficiencies of the block-seed algorithm
and show that it retains the same advantages that the block QMR algorithm enjoys.

Suppose that m is the number of right-hand sides in a given seed block and that
J is the number of systems in the nonseed block. Let m1 ≤ m be the number of
linearly independent right Lanczos vectors that are formed, using deflation, from the
initial residuals to the seed block. In the following, V(k) = [vm1k+1, . . . , vm1(k+1)] and
W(k) = [wm1k+1, . . . , wm1(k+1)], 0 ≤ k.

Algorithm 1. µ = 1 = φ. Given X
(1)
0 , R

(1)
0 ∈ CN×m1 and X

(2)
0 , R

(2)
0 ∈ CN×J ;

Given the m1 columns of V(1) and W(1) and D(1) = diag(δ1, . . . , δm1
).

For k = 2 until seed block converges do
1. V(k) = AV(k−1);W(k) = ATW(k−1).

2. If deflations occurred in the W (or V ) sequence, update V(k) (or W(k)).
3. Biorthogonalize the columns of V(k) against the columns of V(k−2), V(k−1);

biorthogonalize the columns of W(k) against the columns of W(k−2),W(k−1).
4. Set i = 0, j = 0, s = 1, ŝ = 1. Set µ = µ+ 1; φ = φ+ 1.
5. For n = (k−1)m1+1, . . . , km1, set i = i+ 1 and do

(a) If V(k)(:, i) does not exist, put V(k)(:, i) = AV(k)(:, s) and biorthogonalize
against φµ previous Lanczos pairs; s = s+ 1.

(b) If ‖V(k)(:, i)‖ < deftol, then j = j + 1 and deflate:

i. Compute (y
(1)
µ )T , (y

(2)
µ )T , τ

(1)
µ , τ

(1)
µ ; compute fµ, pµ (via gaxpy’s).

ii. “Delete” ith column of V(k), “shift” remaining columns left 1.
iii. Compute which system gets dropped from the seed block (that row

of y
(1)
µ will have a zero entry).

iv. Let y
(iv)
µ , fµ, pµ be the jth columns of Y (iv), iv = 1, 2;F ;P .

v. Update deflation index sets. Set µ = µ+ 1, goto step 5(a).
(c) Normalize V(k)(:, i) and set µn = µ; j = j + 1:
(d) If W(k)(:, i) does not exist, put W(k)(:, i) = ATW(k)(:, ŝ) and biorthogo-

nalize against µφ previous Lanczos pairs; ŝ = ŝ+ 1.
(e) If ‖W(k)(:, i)‖ < deftol, then deflate:
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i. “Delete” ith column of W(k), “shift” remaining columns left 1.
ii. Update deflation index sets. Set φ = φ+ 1, goto step 5(d).

(f) Normalize W(k)(:, i). Set φn = φ and δn = W(k)(:, i)
TV(k)(:, i).

(g) Continue the MGS4 process on columns ≥ i of V(k),W(k).

(h) Set gTn = (1/δn)W(k)(:, i)
TR

(2)
µ−j .

(i) Compute (y
(1)
µ )T , (y

(2)
µ )T , τ

(1)
µ , τ

(2)
µ ; compute fµ, pµ (via gaxpy’s).

(j) Let y
(iv)
µ , fµpµ be the jth columns of Y (iv), iv = 1, 2;F ;P .

6. X
(1)
µ = X

(1)
µ−j + P (Y (1))T ; R

(1)
µ = R

(1)
µ−j − F (Y (1))T .

7. X
(2)
µ = X

(2)
µ−j + P (Y (2))T ; R

(2)
µ = R

(2)
µ−j − F (Y (2))T .

8. “Remove” deflated systems from X
(1)
µ .

One benefit of this implementation is that A,AT are accessed only once each block
iteration, if no deflation occurs, and computing products of A and AT with dense,
rectangular matrices of Lanczos vectors makes better use of cache than products
of A with a single vector. In step 2 (also 5(a), 5(d)) some columns of either or
both of the current blocks may have to be biorthogonalized against some previous
Lanczos vectors if certain previous deflations occurred in the V and/or W sequence.
In step 3, the current blocks of Lanczos vectors are biorthogonalized against the
appropriate columns5 of the previous two blocks. Considering the matrix V(k) (or
W(k)) rather than its columns separately, we can do this using level-2 BLAS with a
two-sided modified Gram–Schmidt approach or, at the expense of some stability, we
could accomplish this with level-3 BLAS via a block modified Gram–Schmidt approach
[14]. For each deflation step, however, we incur the price of one matrix-vector product
and several vector-wise inner products. It is possible to reorganize the algorithm so
that a Lanczos block effectively decreases in size after deflation (possibly leaving left
and right blocks of different sizes) and thereby put off this extra work until it can be
done with higher-level BLAS, but as the notation is more tedious, we use the current
implementation to illustrate our points.

Notice we are using modified Gram–Schmidt to biorthogonalize within the current
block, but that computation toward updating the solution and residual blocks is done
between each step of the process. Notice also that the block iterates and residuals
are only updated after a new block of Lanczos vectors has been generated; this was
done in order to minimize the number of accesses to the block iterates and residuals
and to incorporate level-3 BLAS operations. The updating could be done (via level-2
BLAS operations) inside the innermost loop according to (4.3), (5.5), (5.7), (5.8), or

one might opt to track the size of τ
(1)
µ and update only when necessary.

One way to implement the algorithm on a distributed memory parallel machine

is to row partition [17, 14] the matrices F, P, V(k),W(k), X
(iv)
µ , R

(iv)
µ , iv = 1, 2. Thus,

the matrix-multiplications with A,AT , the biorthogonalization steps, and steps 5(b),
(c), (e), (f), (h) require communication among processors; most of the other steps
require only local updates of portions of the rectangular matrices. As in [17, section
3.1], it may be possible in a parallel implementation to exploit any computations that
are mostly decoupled: for example, the updates to solution and residual blocks are
somewhat independent of the generation of the Lanczos vectors and of each other.

4Modified Gram–Schmidt.
5If deflations have occurred in the W sequence, then one need only biorthogonalize V(k) against

some of the columns of W(k−2) (or W(k−1)), rather than against the whole block, and similarly for
computing W(k) if deflations occurred in the V sequence.
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Techniques for performing matrix-vector products with A,AT in parallel should also
be employed.

Before executing Algorithm 1, using our heuristic in section 6.1, we do a com-
pact pivoted QR factorization of B to determine the seed block and therefore should
not incur much overhead beyond what the BL-QMR algorithm in [8] would need to
generate its initial block using deflation. Every other time that a seed must be cho-
sen, we select those �m/2� systems with largest residual norm, so a small amount of
additional computations/communication are needed at the seed selection steps.

Clearly, if the first time Algorithm 1 is called J = 0, it is just the block QMR
algorithm with deflation. If J �= 0, then the first time Algorithm 1 is executed, for a
given k, the same number of solution vectors and residual vectors must be updated (at
most) as if J had been 0: the difference is that updates are separated into updates on
two different solution and residual blocks, and these updates are independent of one
another. Thus, if Algorithm 1 is implemented in parallel, the independent updates
may help compensate for the execution time that is due to processor communication.

The computation of gTn and (y
(2)
µ )T are the most notable differences between the

unprojected and projected algorithms. Overall, the block-seed projection approach
may yield the following advantages over block QMR:

• fewer accesses to A and less communication among processors;
• smaller seed block sizes with the block-projection approach mean fewer flops
are needed to compute products with A,AT and fewer flops are needed to
construct Lanczos pairs and to factor Tµ;
• less storage per processor during a given run of Algorithm 1 (as fewer vec-
tors are needed in the recurrences for pµ, fµ and the number of columns of
V(k),W(k), etc., are reduced);

• updating the seed and nonseed blocks can be done independently.

7. Numerical results. In this section we give numerical results which indicate
the potential effectiveness of our approach on electromagnetic scattering problems.
All experiments were conducted in Matlab using IEEE double precision floating point
arithmetic on a 600 MHz Pentium II processor. We compare our results with results
from the Matlab implementation of block QMR with deflation, algorithm BL-QMR in
[8]. For comparison purposes, the implementation of our block-seed algorithm mirrors
the implementation of BL-QMR in [8] with modifications where necessary, rather than
the one in the preceding section.

Mathematically, we would like to solve a two-dimensional Helmholtz-type equa-
tion for the scattered electric field E(x, y):

(∆ + k2(x, y))E(x, y) = χm(x, y)E0(x, y) in Ω(7.1)

with perfectly matched layer (PML) boundary conditions [3, 18]: the specific math-
ematical formulation we use is described in [12]. Here k2(x, y) = ω2µ0ε(x, y) is the
square of the wave number, with ω representing angular frequency and µ0 a constant
denoting the magnetic permeability. The function ε(x, y), called the electrical per-
mittivity, is defined as ε = ε0εrel + i σω for some real σ ≥ 0, εrel ≥ 1 with i =

√−1
and ε0 a constant (the permittivity of free-space). The value σ is the conductivity of
the material. The function χm describes the properties of the buried object and has
support only over the object location. E0(x, y) is the known incident electric field.

We discretize using finite differences, which leads to a matrix equation involving
the matrix A which is N ×N , sparse, complex, and structured but neither symmetric
nor Hermitian due to the boundary conditions. Because the matrix is highly indefinite,



QMR-BASED PROJECTION TECHNIQUES 777

soil

air

angle  θ

scatterer
soil

air

point source at location (x1,y1)

scatterer

Fig. 7.1. Physical configurations for Example 1 (left) and Example 2 (right).

we need to use a preconditioner to speed convergence. The preconditioner we use is
the one described in [12], and we perform all preconditioning from the right.

For all algorithms, we take the initial starting guesses x
(j)
0 to be zero. We stop

running our algorithms when the relative residual norms of all of the systems are
less than tol = 10−7. For the two block-based algorithms, ours and BL-QMR, we
update (seed) block residuals via (5.8) ((5.7) is used for the nonseed block6). We
monitor convergence of the current seed block by checking norms of the columns of

R
(1)
µ . However, the true norms of the residuals in the seed block were computed and

checked to satisfy the convergence tolerance before the block was deemed to have
converged. Since for these examples the major computational expense per iteration is
the two matrix-vector products with applications of the preconditioner, we consider
the total number of matrix-vector products required for all the systems to converge
as our primary measure of success and discuss some timing results.

7.1. Example 1. In this experiment we would like to find the scattered electric
fields caused when plane waves at various angles impinge on a horizontal air-soil
interface and scatter from a 7cm × 6cm object buried 5cm below the surface. Each
angle corresponds to a different E0 in (7.1), which in turn corresponds to a different
right-hand side b(j) in (1.1). Figure 7.1 gives a physical illustration of the problem.

In this example, we use a soil type (referred to as “Seabee” in the literature [19])
and conduct experiments at two different frequencies, ω/(2π) = 45 MHz and 475 MHz.
At 45 MHz, Seabee has εrel = 35.65 and σ = .13, while at 475 MHz εrel = 21.31 and
σ = .23. We assumed that the buried object has εrel = 2.9 and σ = .001 at both
frequencies. For air, εrel = 1, σ = 0. We have discretized at a rate of 50 points per
wavelength of soil at 45 MHz and 20 points per wavelength at 475 MHz. In both
cases, the total number of unknowns (N) is (27 + 15)2.

We centered the buried object (refer to Figure 7.1) and considered the scattered
field due to plane waves impinging on the surface at evenly spaced angles from −60
to 60 degrees from the normal. The second columns in Tables 7.1 and 7.2 give the
total number of matrix-vector products needed if preconditioned QMR is applied
to each system separately.7 The third column gives the total number of matrix-
vector products needed if our preconditioned QMR with projection algorithm is used.
The next several columns give the total number of matrix-vector products computed
when solving the problem using BL-QMR with various deflation tolerances. The final

6Note that the latter needs to be computed each iteration to determine the update for the nonseed
block, whereas one could use the bound in [8] to monitor convergence of the seed block at the possible
expense of computing many extra matrix-vector products.

7Note that we define the matrix-vector product count as the number of multiplies by AM−1 or
its transpose where M is the preconditioner.
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Table 7.1
Example 1. 45 MHz: Number of matrix-vector products required for convergence by each of the

methods (each system independently, single-seed QMR-projection, BL-QMR with deflation tolerances
10−8, 10−9, and 10−10, and block QMR with projection) for experiments involving different numbers
of right-hand sides (RHS). Dashes indicate no convergence of the method in under 300 iterations.

No. matrix-vector products, 45 MHz
No. RHS Seq. Prj. BQ 1E−8 BQ 1E−9 BQ 1E−10 BQ 1E−11 BQ + Prj.

7 856 292 – 201 219 219 173
13 1590 254 – 211 227 239 180
25 3054 280 – 233 243 267 207

Table 7.2
Example 1. 475 MHz: Number of matrix-vector products required for convergence by each of

the methods for experiments involving different numbers of right-hand sides.

No. matrix-vector products, 475 MHz
No. RHS Seq. Prj. BQ 1E−7 BQ 1E−8 BQ 1E−9 BQ 1E−10 BQ + Prj.

7 664 420 223 223 223 223 221
13 1236 468 – 303 321 319 237
25 2378 492 – 321 319 – 245

column shows results when our block-seed approach is used (deftol = 10−9), where
the seed blocks are chosen using the heuristic outlined in section 6.1 with α = 105.
Dashes indicate that the convergence tolerance was not met within maxit = 300
iterations.

As Table 7.1 shows, for the 45 MHz case, BL-QMR failed to converge after 300 it-
erations in all cases when the deflation tolerance was set to 10−8, but it outperformed
our single-seed projection method if the deflation tolerance was small enough. Our
block-seed projection approach performs better than all the other methods in terms
of the number of matrix-vector products; however, we note that for these nonopti-
mized implementations, the execution times for the best BL-QMR runs and our block
algorithm are about the same. Solving sequentially took 4.5 times longer than our
single-seed method and over 6 times longer than block-based algorithms.

At 475 MHz, we expected our x(j)’s not to be as close as in the previous case due
to the underlying physics of the problem, and therefore we did not expect as much
savings with our single-seed projection approach. Indeed, Table 7.2 shows that the
difference between the second and third columns is not as dramatic as in Table 7.1.
Table 7.2 also shows that BL-QMR, with the deflation tolerance set at either 10−8 or
10−9, outperforms our single-seed projection approach. However, comparing the last
column with the others, we find that our block-seed projection approach can provide
substantial savings over the other methods. There is also a difference in execution
times: for example, for 25 systems our block-seed projection method takes about 6.2
minutes while BL-QMR with deflation tolerance of 10−9 takes about 7.1 minutes.

7.2. Example 2. For our second example, each of our K systems corresponds
to solving for the scattered electric field from a buried object when the source of
the incident field is a point source, located at position xi, yi above the earth (see
Figure 7.1). We consider the case when the frequency is 480 MHz, and the soil has
εrel = 6.5 and σ = .019. As before, the buried object has εrel = 2.9 and σ = .001.
The buried object is 7cm × 4cm buried 5cm deep and centered left to right. The
width of each cell in the discrete grid is 1cm, and the total number of unknowns (N)
is (26 + 15)2. Our point sources are each located 3cm above the earth and either
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Table 7.3
Example 2. Number of matrix-vector products required for convergence by each of the methods

for experiments involving different numbers of right-hand sides. Dashes indicate no convergence of
the method in under 300 iterations.

No. matrix-vector products
No. RHS Seq. Prj. BQ 1E−9 BQ 1E−11 BQ 1E−12 BL-QMR + Prj.

25 1894 1084 – – 345 209
35 2658 1468 – – 411 289

Table 7.4
Example 2. Approximate execution time in minutes. Dashes indicate no convergence of the

method in under 300 iterations.

Minutes
No. RHS Seq. Prj. BQ 1E−9 BQ 1E−11 BQ 1E−12 BQ + Prj.

25 4.2 4.5 – – 10.6 2.0
35 5.9 7.4 – – 33.1 3.7

vary in the horizontal direction, with 0 being in the middle, from −12cm to 12cm in
1cm increments or −17cm to 17cm in 1cm increments. The numbers of matrix-vector
products required by each of the different methods to solve these systems are given
in Table 7.3. However, as illustrated by the timing results in Table 7.4, both the
single- and block-seed projection give dramatic improvements over BL-QMR without
projection.8

8. Conclusions and future work. We have introduced two new projection
approaches, based on QMR and block QMR, respectively, for solving multiple linear
systems with the same coefficient matrix but different right-hand sides. Compared to
solving each system separately by QMR, both approaches can significantly reduce the
work and execution time needed to solve all the systems to within a specified tolerance
provided there is sufficient shared information among the right-hand sides; the block-
seed algorithm requires less shared information to perform well. We provided theory
for the single-seed approach which suggests that under certain conditions in exact
arithmetic, QMR on subsequent seed systems converges as if part of the spectrum
has been cut off; we also gave an upper bound for the rate of convergence of the
nonseed systems. More work needs to be done to determine convergence behavior of
the block-seed algorithm in both exact and finite precision arithmetic.

As our numerical results showed, with appropriate deflation tolerance, the BL-
QMR algorithm [8] could outperform our single-seed QMR-projection method in terms
of matrix-vector product savings (although not always reflected in the execution times)
particularly when the right-hand sides are not as close; however, our block-seed pro-
jection method consistently exhibited the greatest savings in such cases. The perfor-
mance of our block-seed approach depends on our choices of successive seed blocks, and
overall execution time depends on the actual implementation. We gave one block-seed
selection heuristic and discussed possible efficiencies of block-seed algorithm. Deter-
mining good seed selection strategies, efficient serial and parallel implementations,
and formal time comparisons with other methods remain subjects for future research.

8Part of the improvement can be attributed to the difference in size of the BL-QMR block iterate
with the size of the seed for our methods.
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[20] M. Rozložńik and Z. Strakoš, Variants of the residual minimizing Krylov space methods,
in Proceedings of the Eleventh Summer School Software and Algorithms of Numerical
Mathematics, I. Marek, ed., University of West Bohemia, Plzen, Czech Republic, 1995,
pp. 208–225.

[21] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right hand
sides, Math. Comp., 48 (1987), pp. 651–662.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[23] V. Simoncini, A stabilized QMR version of block BICG, SIAM J. Matrix Anal. Appl., 18

(1997), pp. 419–434.
[24] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with mul-

tiple right-hand sides, SIAM J. Sci. Comput., 16 (1995), pp. 917–933.
[25] C. F. Smith, The Performance of Preconditioned Iterative Methods in Computational Electro-

magnetics, Ph.D. thesis, University of Illinois at Urbana-Champaign, Illinois, 1987.
[26] C. F. Smith, A. F. Peterson, and R. Mittra, A conjugate gradient algorithm for the treat-

ment of multiple incident electromagnetic fields, IEEE Trans. Antennas and Propagation,
37 (1989), pp. 1490–1493.



ON AN ADAPTIVE MULTIGRID SOLVER FOR
CONVECTION-DOMINATED PROBLEMS∗

WOLFGANG DAHMEN† , SIEGFRIED MÜLLER† , AND THOMAS SCHLINKMANN†
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for the numerical solution of convection-diffusion-reaction equations with dominating convection or
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restriction, prolongation and smoothing operators in combination with an adaptive mesh refinement
strategy. In particular, adaptivity is not only to reduce computational complexity but also to stabilize
standard Galerkin discretizations so that adding artificial viscosity can be avoided. The approach
is suited for any choice of underlying multiresolution sequences, in particular for standard finite
element discretizations on nested but possibly nonuniform meshes. Moreover, all concepts are in
principle independent of the spatial dimension and avoid any special flow-dependent enumeration of
unknowns. The performance of the scheme is illustrated by various examples in one and two spatial
dimensions. They are chosen so as to exhibit possibly many types of adverse or singular behavior in
connection with constant and varying convection or the interplay between convective and reactive
terms. In the light of these tests those issues are identified that require further research.

Key words. convection dominated problems, stable completions, scale-dependent transfer op-
erators and smoothers, full multigrid, adaptive refinements

AMS subject classifications. 65M12, 35J20, 76Rxx, 65N30

PII. S106482759935544X

1. Introduction. This paper is concerned with the numerical solution of con-
vection-diffusion equations which appear as core ingredients of more complex models
such as the Navier–Stokes equations or models for two-phase flow problems. To be
specific, we consider scalar boundary value problems

−∇ · (ν ∇ u) + β · ∇ u+ γ u = f in Ω ⊂ R
d, u = 0 on ∂Ω,(1)

where the principal part of the differential operator is assumed to be self-adjoint and
positive definite, i.e., ν = νT and there exists some λ > 0 such that ξT ν(xxx) ξ ≥ λ ξT ξ
for all xxx ∈ Ω, ξ ∈ R

d. The flow direction β as well as γ ≥ 0 may vary in xxx.
The corresponding variational formulation of (1) then reads as follows: Find

u ∈ H1
0 (Ω) such that

aν(v, u) = b(v) ∀ v ∈ H1
0 (Ω),(2)

where the bilinear form aν : H1
0 (Ω)×H1

0 (Ω) → R and the linear form b : H1
0 (Ω) → R

are defined by the integrals

aν(v, u) :=

∫
Ω

(∇ v)T (ν ∇u) + (β · ∇u) v + γ u v dΩ, b(v) :=

∫
Ω

f v dΩ.(3)
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Our notation indicates the dependence on ν because we will be particularly interested
in those cases where ν is small compared with β and γ.

Under the assumptions νik = νki ∈ C(Ω), βi ∈ C1(Ω), γ ∈ C(Ω), γ ≥ 0, f ∈
L2(Ω), and γ(xxx) − 1

2 (div β) (xxx) > −λmin (1, α) for all xxx ∈ Ω, where the constant
α > 0 results from Friedrich’s first inequality, the existence of a unique solution
can be inferred immediately from the Lax–Milgram lemma. The verification of the
coercivity condition, i.e., the existence of finite positive constants c, C such that

c‖v‖2H1(Ω) ≤ a(v, v) ≤ C‖v‖2H1(Ω) ∀ v ∈ H1
0 (Ω),

can be found, e.g., in [1].

When ‖ν‖ is large compared with ‖β‖ and ‖γ‖ the behavior of the solution to (1)
is essentially governed by the dominating second order elliptic operator. Correspond-
ingly standard Galerkin discretizations are appropriate and fast multilevel solvers are
available that facilitate an efficient numerical treatment. However, when the con-
vective part dominates, i.e., when ‖β‖ � ‖ν‖, at least the following two serious
obstructions arise.

Robustness. Multilevel or multigrid schemes which are asymptotically optimal
in the elliptic case β = 0 lose their efficiency or even fail to converge. Therefore con-
siderable effort has been spent in attempts to increase the robustness of the schemes.
Strategies for restoring robustness concern algebraic multigrid concepts [29], the de-
velopment of scale- and problem-dependent multigrid ingredients [32, 16, 24], local
Fourier analysis [25, 26], or special enumeration schemes combined with incomplete
LU factorizations as smoothers [18, 33, 19, 8] when the flow is by and large acyclic.

Stability. Standard Galerkin discretizations become unstable, i.e., if the grid-
Péclet number Ph := ‖β‖h/(2‖ν‖) is of the order 1 (where h denotes the meshsize
of the underlying trial space), the solution of the discrete problem may exhibit os-
cillations that have nothing to do with the true solution. However, a-priorily fixed
stabilization techniques such as Petrov–Galerkin discretizations or streamline diffu-
sion [21, 10, 20, 22] add in one way or the other some artificial viscosity which, at
least in certain regions (often of primary interest), diminish accuracy.

Thus overall, it is fair to say that the problem has by far not been solved to
complete satisfaction with regard to both adequate discretization as well as efficiency
of the solution process.

Our objectives. Our point of view here is different in that we aim at jointly
addressing both stability and robustness together with the issue of accuracy. Our pri-
mary goal is to retain accuracy also in critical regions through dynamically adapting
discretizations. Our main point is that thereby we restore stability of the discretiza-
tion, as well as efficiency and also to some extent robustness of the solver without
a priori stabilization. This is similar in spirit to the approach in [3, 2] where adap-
tivity is based on a defect correction scheme for finite difference discretizations. The
stabilizing effect is also reminiscent of Shishkin-grids for which stability of Galerkin
discretizations can be shown in special situations [27].

Our starting point is the familiar hierarchical two-by-two blocking of the linear
discrete system as in the hierarchical basis multigrid (HBMG) scheme from [5]. The
level-dependent multigrid ingredients will be automatically generated through ap-
proximately decoupling such block systems quite similar in spirit to the approach in
[7].
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An essential distinction from previous work lies in stabilization solely through
adaptation and in the way adaptation is realized. Here this becomes possible through
an adaptive full multigrid scheme combined with a problem homotopy. This means
that on coarse levels viscosity is being added which will then be successively removed
when progressing to higher (possibly local) refinement levels. Unless one decides to
still use some weak a priori stabilization the refinement process only stops when all
artificial viscosity has been removed everywhere. The adaptation criterion is based on
wavelet thresholding combined with the concept of stable completions from [9]. This
requires no a priori knowledge of the solution and, in particular, avoids regularity
assumptions as in [3, 2]. Finally, our decoupling mechanism automatically modifies
the test spaces resulting in a Petrov–Galerkin discretization with increasing upwind
effect when descending to coarser scales.

Although the scheme will be tested only for one- and two-dimensional examples
we emphasize that all ingredients work in higher dimensions in the same way. In
particular, flow-dependent numberings are avoided.

The contents. The paper is organized as follows. In section 2 we briefly describe
the general discretization setting. Section 3 is devoted to the development of the
basic multigrid ingredients such as scale-dependent intergrid transfer operators and
smoothers. An “ideal” two-grid scheme will serve as a guideline for the multigrid
scheme. In section 4 an adaptive full multigrid scheme is developed.

In section 5 the performance of this concept is tested for problems which exhibit
different types of obstructions or singular behavior. This concerns the formation
of boundary layers due to a strong constant convection and reaction terms or their
interplay or the effect of variable convection, especially for mass accumulation.

2. Discretization. We will base the numerical treatment of (1) on a hierarchy
S of nested trial spaces S0 ⊂ S1 ⊂ · · · ⊂ H1

0 (Ω) whose union is dense in H1
0 (Ω). Each

space Sj is spanned by a finite set Φj = {φj,k : k ∈ Ij} of basis functions, i.e., each
uj ∈ Sj has a unique expansion

uj =
∑
k∈Ij

uj,kφj,k =: ΦT
j uuuj .

Moreover, we will always assume that the bases Φj are uniformly stable in the sense
that for some finite positive constants c, C

c‖uj‖	2(Ij) ≤ ‖ΦTj uj‖L2(Ω) ≤ C‖uj‖	2(Ij),(4)

where ‖ · ‖	2(Ij), ‖ · ‖L2(Ω) denote the respective Euclidean and L2-norms. Canonical
choices of Sj are spaces of globally continuous piecewise linear functions with respect
to a nested sequence of successively refined mesh partitions of Ω. The stability of
the corresponding bases of hat functions is known to hold as long as the triangles are
shape regular. It will be helpful to always think in terms of this example although
any standard finite element spaces are covered.

Although we are ultimately interested in standard Galerkin discretizations of (1)
it will be adequate to consider the more general setting of Petrov–Galerkin schemes,
i.e., fixing some highest level J we look for uJ ∈ SJ such that

aν(v, uJ) = b(v) ∀ v ∈ S̃J ,(5)

where the S̃j = span {φ̃j,k : k ∈ Ij} are suitable nested test spaces. Clearly this
amounts to solving the linear system

AAAJ uuuJ = bbbJ ,(6)
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where the stiffness matrix AAAJ and the right-hand side bbbJ are defined by

AAAJ :=
(
aν(φ̃J,i, φJ,j)

)
i,j∈IJ

, bbbJ :=
(
b(φ̃J,i)

)
i∈IJ

.(7)

It will often be convenient to use the abbreviation AAAJ = aν(Φ̃J ,ΦJ), i.e., for any two
finite collections Θ,Ξ we set aν(Θ,Ξ) := (aν(θ, ξ))θ∈Θ,ξ∈Ξ.

3. Space splittings and multigrid ingredients. Our goal is to solve (6) effi-
ciently by exploiting lower scale discretizations. We proceed with briefly recalling the
mechanisms for problem-dependent space splittings.

3.1. Stable completions. A key idea is to split a given trial space Sj+1 in
the above hierarchy into a coarse subspace Sj and a complement space Wj+1 that
represents the high frequencies. Since it suffices to consider two successive spaces we
simplify the notation and write Sj =: SH , Sj+1 =: Sh, Wj+1 =: W and accordingly
ΦH ,Φh for the corresponding bases. The analogous quantities on the test side are
denoted by S̃H , S̃h, W̃ , Φ̃H , Φ̃h.

If we view the bases as vectors, the fact that test and trial spaces are nested
implies that there are #Ih ×#IH matrices P 0, P̃ 0 such that

ΦTH = ΦThP 0, Φ̃TH = Φ̃Th P̃ 0.(8)

Denoting by Ψ = {ψk : k ∈ J }, and by Ψ̃ = {ψ̃k : k ∈ J } bases for the
complement spaces W, W̃ , respectively, the fact that Ψ ⊂ Sh and Ψ̃ ⊂ S̃h implies that
there must be #Ih ×#J matrices P 1, P̃ 1, respectively, such that

ΨT = ΦThP 1, Ψ̃T = Φ̃Th P̃ 1.(9)

The relations

Sh = SH ⊕W, S̃h = S̃H ⊕ W̃(10)

are equivalent to the fact that the composed matrices P := (P 0,P 1), P̃ := (P̃ 0, P̃ 1)

are invertible. Their inverses will be denoted by R =
(R0

R1

)
and R̃ =

( ˜R0
˜R1

)
, respectively.

For the complement bases to also be stable in the sense of (4) it is necessary and
sufficient that

‖P ‖, ‖R‖ ≤ c(11)

holds for some constant c independent of the current level; see [9]. Here ‖ · ‖ denotes
the spectral norm. The matrices P 1, P̃ 1 are called completions of P 0, P̃ 0. The point
is that choosing a complement spaceW is equivalent to finding a completion P 1 of P 0

to an invertible matrix. When (11) holds (uniformly with respect to the refinement
level) then the completions are called (uniformly) stable.

Note that since ΦTHuH = ΦTh (P 0uH) =: ΦThuh the matrix P 0 (and likewise P̃ 0)
represents a prolongation operator. Conversely, in view of ΦThuh = ΦTH(R0uh) +
ΨT (R1uh), the matrix R0 acts as a restriction operator. The matrices P 1,R1 (and
likewise P̃ 1, R̃1) play analogous roles with respect to the complement spaces.

Hierarchical complements. As in [5] it will be of crucial importance that in
the present context of Lagrange finite elements hierarchical complement spaces and
corresponding completions are easily realized. In this case it is particularly convenient
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to adopt the convention to identify the indices in IH with the nodes in the underlying
mesh, i.e., one simply has to take J := Ih\IH and ψk := φh,k, k ∈ J where k ∈ IH or
k ∈ J also denote points in Ω. In this case the matrices P e, Re, e ∈ {0, 1}, are easily
identified. In particular, they are very sparse, i.e., both prolongation and restriction
operators are local.

Since this will frequently be referred to, we recall for the convenience of the
reader some (well-known) details when the underlying trial spaces are standard con-
tinuous piecewise linear functions on a sequence of uniformly refined triangulations
[35]. Denoting by Nk ⊂ J the set of neighbors of k ∈ IH in Ih, one obviously has

φH,k =
∑
m∈{k}∪Nk

φH,k(m)
‖φh,m‖L∞

φh,m. One easily checks that

(P 0)m,k =
φH,k(m)

‖φh,m‖L∞
, m ∈ Ih, k ∈ IH , (P 1)m,k = δm,k, m ∈ Ih, k ∈ J .(12)

Moreover, the relation φh,m = 2φH,m −
∑
k∈Nm

1
2ψH,k implies that

(R0)k,m = 2δk,m, m ∈ Ih, k ∈ IH , (R1)k,m =




− 1
2 , m ∈ IH , k ∈ Nm,

δk,m, k,m ∈ J ,
0 else.

(13)

One readily checks that (11) is satisfied in this case so that the hierarchical completions
are stable in the above sense.

The importance of the above hierarchical completions is that they provide easily
accessible initial completions from which other problem adapted completions will be
derived. In this context the following remarks should be kept in mind. When SH , Sh
are both given then P 0 is determined. It will sometimes be useful to change the
point of view. Given Sh and prescribing P 0 determines a subspace SH of Sh spanned
by the collection P T

0 Φh regardless of whether Sh was originally obtained through a
refinement process or not.

A key idea of the following development is to adapt the complements W (and
hence restriction and prolongation operators) to the problem at hand. We will there-
fore make systematic use of the following modification of stable completions through
coarse grid corrections [9, 13] of the initial hierarchical stable completion. For any
(# IH)× (#J ) matrix Ľ we infer from PR = I that

I = P

(
I Ľ
0 I

)(
I −Ľ
0 I

)
R =: P̌ Ř,(14)

so that

P̌ 0 = P 0, P̌ 1 = P 0Ľ+ P 1, Ř0 = R0 − ĽR1, Ř1 = R1.(15)

Thus, one obtains a new complement space

W̌ := span Ψ̌, Ψ̌T := ΦTh P̌ 1.(16)

Retaining the prolongation P 0 to Sh means that the original coarse space remains
unchanged. Modifications of this sort will be referred to as type (I) modification and
will be applied to the splitting of trial spaces.
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In contrast to [7] we apply a type (II) modification to the test spaces. This time
we observe that

I = R̃
T
P̃
T

= R̃
T
(
I L̂
0 I

)(
I −L̂
0 I

)
P̃
T

=: R̂
T
P̂
T
,(17)

which yields

R̂0 = R̃0, R̂1 = L̂
T
R̃0 + R̃1, P̂ 0 = P̃ 0 − P̃ 1L̂

T
, P̂ 1 = P̃ 1.(18)

This time the restriction stays the same while the prolongation changes, i.e., the coarse

space is now given by span P̂
T

0 Φ̃h.
Later these modifications may be different for each level j. As long as the corre-

sponding matrices L̂, Ľ have uniformly bounded spectral norms, the corresponding
modified bases stay stable [9].

3.2. Stable multiscale bases. The successive splitting of a fine scale trial space
into coarser versions and complement spaces gives rise to hierarchical representations
of the trial functions. The coefficients in such an expansion reflect the detail informa-
tion needed to upgrade the coarse scale approximations. We will exploit this fact later
for adaptive mesh refinement. However, this will require a tight interrelation between
the norms of the whole coefficient arrays over all levels and the relevant function norm
of the corresponding function. Unfortunately, the hierarchical basis representations
based on the stable completions (12) and (13), although being uniformly stable on
each individual level, do not give rise to such norm equivalences across levels for ei-
ther the L2-norm or the H1-norm. However, suitable type (I) modifications of stable
completions according to (15) allow one to efficiently generate new complement bases
Ψ̌j = {ψ̌j,k : k ∈ Jj} with better stability properties. For instance, the coarse grid
stabilization proposed in [31] offers one way of determining matrices Ľ (see also [13]
and [12]) to generate stable wavelets from hierarchical basis functions as initial stable
completions through the type (I) modifications from (15). An alternative is offered in
[9]; see also [23]. The corresponding matrices P̌ j , Řj from (15) remain sparse in all
cases.

We will therefore employ later for a posteriori local error control multiscale basis
functions ψ̌j,k that are Hs-stable for some regularity range of s ∈ [0, α), α > 1, in the
sense that

c‖Dsď‖	2 ≤
∥∥∥∥
∑
k∈Ij0

uj0,kφj0,k +

∞∑
j=j0+1

∑
k∈Jj

ďj,kψ̌j,k

∥∥∥∥
Hs(Ω)

≤ C‖Dsď‖	2 ,(19)

where ď = {uj0,k : k ∈ Ij0} ∪ {ďj,k : k ∈ Jj , j ≥ j0} and D is the diagonal matrix
(D)(j,k),(j′,k′) = 2jδ(j,k),(j′,k′). Specifically, in connection with multilinear shape func-
tions φj,k on regular quadrilateral meshes, one can employ tensor product wavelets,
which will be the choice in our numerical examples below. Their univariate ver-
sions are determined as follows: The columns of (the univariate) P̌ 0 are given by√

2/4,
√

2/2,
√

2/4, those of P̌ 1 by −√2/6,−√2/3,
√

2,−√2/3,−√2/6 for interior
wavelets, by −7/12, 1/6, 1/12 for the left boundary wavelet, and by 1/12, 1/6,−7/12
for the right boundary wavelet. A typical row of Ř0 is given by −√2/8,

√
2/4, 3

√
2/4,√

2/4, −√2/8, of Ř1 by −3
√

2/16, 3
√

2/8,−3
√

2/16 with the left and right boundary
versions −3/2, 3/4, respectively, 3/4,−3/2. In this case (19) holds for α = 3/2.
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3.3. Two-by-two block systems. Recall that the analogue to (6) for a current
discretization level h reads

aν(Φ̃h,Φh)uh = fh := (Φ̃h, f),(20)

where (u, v) :=
∫
Ω
u(x)v(x)dx is the standard inner product on Ω. This system is

obviously equivalent to

P̂
T
aν(Φ̃h,Φh)PRuh = P̂

T
fh,(21)

where the matrices P̂ , R̂ are defined by (18). We will think of the new system matrix

P̂
T
aν(Φ̃h,Φh)P to be obtained in two steps. Starting with easily computable initial

stable completions P 1, P̃ 1 and the corresponding complement bases Ψ, Ψ̃ we have as
in [5] the initial blocking

P̃
T
aν(Φ̃h,Φh)P :=

(
A0,0 A0,1

A1,0 A1,1

)
.(22)

The two-by-two block matrix A = (Ai,l)
1
i,l=0 is the stiffness matrix relative to the

initial two-level bases ΦH ∪ Ψ and Φ̃H ∪ Ψ̃ for the trial and test spaces according
to the splitting (10). Setting briefly Ψ0 := ΦH , Ψ1 := Ψ and Ψ̃0 := Φ̃H , Ψ̃1 := Ψ̃,
one clearly has Ai,l := aν(Ψ̃i,Ψl), i, l = 0, 1. Recalling from (14) and (17) how the
modified completions are related to the initial stable completions, we may rewrite
(21), in turn, in the form

(
I −L̂
0 I

)(
A0,0 A0,1

A1,0 A1,1

)(
uH
d

)
=

(
f̂0

f̂1

)
,(23)

where uH = R0uh, d = R1uh, f̂0 = P̂
T

0 fh, f̂1 = P̂
T

1 fh.
The choice of the stable completions for the trial spaces will always be the above

hierarchical ones. In principle the test spaces may (and will) be different from the trial
spaces. Let us postpone for the moment the discussion of the stable completions for
the test spaces. Straightforward calculations show that the matrix on the left-hand
side of (23) is given by

Â =

(
A0,0 − L̂A1,0 A0,1 − L̂A1,1

A1,0 A1,1

)
=:

(
Â0,0 Â0,1

Â1,0 Â1,1

)
.(24)

The upper left block in (24) represents the coarse grid problem.
As mentioned earlier, methods based on similar blockings have been studied ex-

tensively in the literature; see, e.g., [5, 4]. Specifically, the approach in [7, 6] is closely
related. In the present terminology, a type (II) modification (17) is applied also to
the trial spaces in order to annihilate both off diagonal blocks in (24); see also the
discussion in [13] for the merits of these options.

3.4. The choice of L̂. Our main objective in exploiting the degrees of freedom
offered by the matrices L̂ is to decouple the system (23) by (approximately) anni-

hilating the upper right block Â0,1, i.e., choosing L̂ so that A0,1 = L̂A1,1, thereby

rendering Â block lower triangular. Thus, our first ideal choice would therefore be

L̂ = A0,1A
−1
1,1.(25)
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Except in the one-dimensional case where A1,1 is diagonal, the exact solution of the

matrix equation (25) (which guarantees Â0,1 = 0 with Ľ = 0) would be by far too

expensive. In fact, except when A1,1 is diagonal, the matrix L̂ would be densely
populated. Nevertheless, solving (25) approximately will later be seen to lead to a
natural multigrid preconditioner.

Given an initial blocking A we wish to determine a nearly decoupling L̂ which
satisfies (25) approximately, i.e.,

L̂A1,1 ≈ A0,1.(26)

Note that the rows of L̂ can be determined independently of each other, which strongly
supports parallelization. Of course, in this context it will be essential to quantify the
meaning of ≈ in (26). The issue is to find a good compromise between efficiency and
accuracy. As long as A1,1 is diagonally dominant (as in the univariate case and in

general for moderate convection) the rows of L̂ can be determined efficiently with the
aid of simple Jacobi iterations.

However, for more demanding problems, e.g., when ν ≤ 2−8 while ‖β‖ is at least
of the order 1, Jacobi iterations are no longer appropriate. A suitable approximate
decoupling then gradually becomes the most demanding part of the whole concept. In
this regime of very small diffusion any a-priorily chosen pattern for nonzero entries in
L̂ turns out to fail. Therefore we have developed a suitable modification of the sparse
approximate inverse (SPAI) technique from [17] where the nonzero pattern for L̂ is
determined adaptively. The objective is to generate for each relevant index k ∈ IH ,
for which the kth row in A0,1 is not identically zero, an index set P = P(k) ⊂ J ,
the index set of the current complement basis, and a vector x = x(k) supported

in P representing the kth row of L̂. P and x will be successively updated starting
with some initialization. We refer to this scheme as DEC (A) = DEC (A,Tol) → L̂,
where Tol measures the accuracy of the approximate decoupling; see [30] for a detailed
description of this scheme. In fact, when xT and bT denote corresponding rows in
L̂ and A0,1 the scheme continues until ‖xTA1,1 − bT ‖	2/‖b‖	2 ≤ Tol. A detailed
description with all distinctions from the original version in [17] can be found in [14].
The main distinctions result from our primary objective to minimize the size of P
relative to the desired accuracy and to keep the number of least squares solutions as
small as possible.

3.5. The basic multigrid iteration. Consider the transformed system Âu =

f̂ , where u = (uT0 ,u
T
1 )T = (uTH ,d

T )T (see (23)), f̂ = (f̂
T

0 , f̂
T

1 )T , and set rµ :=

f̂ − Âuµ = (rµ0 , r
µ
1 )T . For the above ideal choice Â0,1 = 0 implied by (25) block

elimination applied to the block lower triangular matrix Â is equivalent to one itera-
tion of the scheme

uµ+1 = uµ +

{(
Â

−1

0,0 0
0 0

)
+

(
0 0

−A−1
1,1A1,0Â

−1

0,0 A−1
1,1

)}
rµ(27)

for any initial guess uµ. The application of the first matrix on the right-hand side of
(27) corresponds to a coarse grid correction and amounts to solving

Â0,0e0 = rµ0 = f̂0 − Â0,0u
µ
0 ,(28)

which gives uµ+1
0 = uµ0 + e0. The second matrix affects only the high frequency part

of the iterates. Substituting (28), we see that its application is equivalent to

uµ+1
1 = uµ1 + A−1

1,1 (rµ1 −A1,0e0) ,(29)
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which, in turn, amounts to solving

A1,1e1 = rµ1 −A1,0e0,(30)

to obtain uµ+1
1 = uµ1 + e1.

Of course, the above scheme is idealized because it involves the exact inversion
of matrices. However, an iterative two-grid scheme is obtained when viewing the first
matrix on the right-hand side of (27) as a coarse grid correction and approximating
the second matrix to define a smoother which can be written as a basic iteration of
the form

uµ+1 = (I −GÂ)uµ +Gf = uµ +Grµ,

where

G =

(
0 0
M Q

)
,
(
I −GÂ

)
=

(
I 0

−
(
MÂ0,0 +QA1,0

)
I −QA1,1

)
,(31)

and

Q ≈ A−1
1,1, M ≈ −QA1,0Â

−1

0,0.(32)

Thus the high frequency part of the error is reduced when

∥∥∥−(MÂ0,0 +QA1,0

)
e0 + (I −QA1,1) e1

∥∥∥ < η‖e1‖(33)

holds for some η < 1 and a suitable norm ‖ · ‖.
Note that one application of the smoother (31) takes the form

uµ+1 =

(
uµ0

uµ1 + e1

)
, e1 = Mrµ0 +Qrµ1 .

The coarse grid correction (28) as well as the smoothing step require solving a

system with matrix Â0,0. Note that Â0,0 can be viewed as an approximate Schur com-
plement of A with respect to the complement block A1,1; see [13]. One immediately

obtains now a multigrid scheme by applying the same procedure to Â0,0 and so on.
To do this we need to specify the initial blocking also for subsequent coarser levels.
In the subsequent numerical experiments we have employed the following choice: The
initial complement functions Ψ = Ψj on the trial side are always the hierarchical ones,
that is, when H stands for the jth level, P 1 = P j,1 is given by (12). Likewise when h

corresponds to the currently highest level we let Φ̃h = Φh = Φj+1 and Ψ̃j+1 = Ψj+1,

i.e., P̃ j = P j = (P j,0,P j,1). Although on lower levels j, due to the dual modification
(18) applied to the test side, the coarse test spaces are no longer spanned by standard
hat functions, we can always use the same stable completions for the initial blocking

of the coarse system Â
j

0,0 defined by P T
j−1Â

j

0,0P j−1, where P j−1 is given by (12).
By (11) the corresponding initial complement functions always form uniformly stable
bases in the sense of (4).

Recall from [13] that in the univariate case the complement block A1,1 is diagonal

and hence easily invertible so that L̂ according to (25) can be computed exactly. The

following figures illustrate that this choice of L̂ produces more and more deformed
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basis functions for the test spaces when descending to lower levels. In case of domi-
nating convection this has a clear upwind effect which in the limit appears to reduce
to an upwind finite difference scheme; see Figure 1. In fact, it is known that in the
univariate case (with Ľ = 0) decoupling is equivalent to employing L-splines. Figure
2 illustrates the analogous effect for zero convection and large reaction. It would be
interesting to relate this to L-splines and so-called exact discretizations [34, 28].
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Fig. 1. ν = 1, β = 100, γ = 0.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
h
i

x

j0 = 10
j0 =  5
j0 =  4
j0 =  3
j0 =  2
j0 =  1

Fig. 2. ν = 1, β = 0, γ = 2000.

We can now describe the resulting basic multigrid iteration. It refers to a hierarchy
S of nested trial spaces (which will later not necessarily arise from uniform refine-
ments). As before j denotes the current discretization level.

MG (j,S,Aj ,f j ,u
µ
j ) → uµ+1

j .

• Input: Aj := aν(Φ̃j ,Φj) and a current approximation uµj to the solution of
the system Ajuj = f j .

• Initial blocking: Compute (Ai,l)
1
i,l=0 := P TAjP where P := P j−1 is

induced by the initial hierarchical decomposition (10). (In the case of uniform
refinements one can, for instance, take P defined by (12).)

• Decoupling: Determine Ľ, apply DEC (A) → L̂. Compute the matrix Â
according to (24) as well as

(
f0

f1

)
= P̂

T

j f j ,

(
u0

u1

)
= Rju

µ
j .

• Smoothing and coarse grid correction:
(1) Compute r0 := f0−Â0,0u0−Â0,1u1, r1 := f1−Â1,0u0−Â1,1u1; and

if j > j0 + 1 for a coarsest level j0 apply MG (j− 1,S, Â0,0, r0,0) → e′0
to obtain an approximate solution of the coarse grid problem

Â0,0e0 = r0;(34)

else apply a direct solver to (34).
(2) Determine an approximate solution e′1 of the complement system

A1,1e1 = r1 −A1,0e
′
0(35)

and compute u′
0 := u0 + e′0, u′

1 = u1 + e′1.
(3) Set

uµ+1
j := (P j,0,P j,1)

(
u′

0

u′
1

)
.(36)
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A few comments on the above scheme are in order. Of course, the rationale
behind the above scheme is that it is essentially a perturbation of the ideal scheme
from section 3.5. In fact, since the matrix L̂ produced by DEC does not satisfy (25)

exactly the upper right block Â0,1 does not vanish. Moreover, (34) and (35) mean
that the operators M ,Q in the smoother (31) are only approximations to the ideal
choices in (32). Since these ideal choices would, according to (33), annihilate the high
frequency part of the error completely the damping of this high frequency part and
hence the convergence properties of the iterative scheme will depend on the accuracy
of the approximations to L̂, M , and Q. By recursion this affects also the solution in
(34) and will produce a better reduction in (33). Thus the number of multigrid cycles
can be kept small at the expense of investing more computational effort, e.g., in the
computation of L̂ or the execution of M and Q. In this context note that the above
multigrid iteration has V-cycle structure. It would be straightforward to formulate
smoothing and coarse grid correction in terms of W-cycles. However, our numerical
tests have shown that the number of cycles in either mode depends essentially on
the quality of the approximate decoupling and the smoother. So far this is done by
adapting the accuracy of DEC (A). Of course, it would be highly desirable to have
a robust automatic procedure for adapting the involved tuning parameters, which is
still subject to further research; see the discussion in section 5.

4. Adaptive full multigrid. The objective is to design an adaptive refinement
strategy which, as long as layers are to be resolved, in combination with the above
multigrid scheme not only reduces computational cost and storage but also stabilizes
the numerical solution without the need of an a priori stabilization technique. We
proceed now describing the main ingredients.

4.1. Locally refined trial spaces. Instead of working with an a priori fixed
sequence of uniformly refined trial spaces we will seek for approximate solutions of
(1) in a suitably adapted hierarchy of subspaces S◦

j ⊂ Sj . To describe the underlying
setting let j0 denote the coarsest level, i.e., Sj0 is the usual finite element space with
respect to a (quasi-) uniform triangulation of Ω. As before each of the (full) spaces
Sj is spanned by a basis Φj = {φj,k : k ∈ Ij} of Lagrange type, i.e., identifying Ij
with the nodes, we have

φj,k(k′)/‖φj,k‖L∞(Ω) = δk,k′ , k, k′ ∈ Ij .(37)

We will describe now how to generate larger spaces that are not necessarily
spanned by all basis functions of a given level. Instead we make use of the refinement
equation (8) which for each individual coarse basis function reads

φj,k =
∑

l∈Ij+1,k

(P j,0)l,kφj+1,l,(38)

where Ij+1,k is the support of the kth column of P j,0, i.e., Ij+1,k = {l ∈ Ij+1 :
(P j,0)l,k �= 0}.

It will be convenient to characterize the locally refined trial spaces by grids or
better yet by collections of nodes that will eventually be nonuniformly spaced. These
collection of nodes are generated as follows.

• Initialization: Let G := {(j0, k) : k ∈ Ij0}.
• For a given G a refinement step consists of selecting some set R ⊆ G and

setting

(G \R) ∪ GR → G where GR := {(l+ 1,m) : (l, k) ∈ R, m ∈ Il+1,k}.(39)
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Thus one marks a set of nodes in the current set and replaces them by those
nodes on the next finer level which correspond to the fine grid basis functions
needed to represent the marked coarse grid basis functions through (38).

Note that at a given stage the set R could contain pairs (l, k) from different levels l.
Of course, associating with each (l, k) ∈ G the basis function φl,k the corresponding
piecewise polynomial structure induces a mesh which is generally nonuniform and
contains hanging nodes. This is illustrated in Figures 3 and 4. The solid circles ( �) in
Figure 3 form a typical set R of coarse grid nodes that are to be refined. The coarse
grid basis functions marked by ( ❞) remain unchanged. Figure 4 displays the refined
nodes ( �) replacing the elements of R.

Defining SG := span {φj,k : (j, k) ∈ G}, and given any refinement G′ of G in the
above sense, it is clear then that SG ⊂ SG′ and ΦG := {φj,k : (j, k) ∈ G} is a basis of
SG .

❞

❞

❞

❞

❞

❞

�

�

�

Fig. 3. Nodes to be refined.

❞

❞

❞

❞

❞

❞

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 4. Refined grid.

It will be useful to decompose G in its contributions to different levels. Let
J := max {j : (j, k) ∈ G} and define

I−j := {k : (j, k) ∈ G} for j = J, . . . , j0.

Obviously one has G =
⋃J
j=j0

{(j, k) : k ∈ I−j } and I−j ∩ I−l = ∅ for j �= l. Every
element uJ ∈ SG has a unique representation

uJ =

J∑
j=j0

∑
k∈I−

j

u◦j,kφj,k.(40)

This representation involves the standard shape functions on the locally highest level
of current resolution. The coarse grid matrix will be represented with respect to this
basis because it allows us best to exploit sparseness.

4.2. Local multiscale transformations. In addition to the nodal basis repre-
sentation of trial functions we will have to make use of two-level or even multilevel
representations in terms of complement basis functions of the form (9). They are
determined by stable completions represented by matrix pairs P ◦,R◦. Here P ◦ will
stand for either hierarchical complements P ◦ = P or for stable bases in the sense of
(19) P ◦ = P̌ . Recall that in all cases both P ◦ and R◦ are sparse.

In principle, the structure of transformations between representations in terms of
nodal functions and complement functions is well known for uniform refinements. The
only issue here is to realize such transformations for the locally refined case without
unnecessarily increasing the complexity. To explain the essence of the matter, recall
from section 3.1 that ΦThuh = ΦTH(R◦

0uh) + ΨT (R◦
1uh), which splits a fine scale
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representation into a coarse scale representation and a complement part determined
by the given stable completion. Now suppose that J is the highest level occurring in a
locally refined space as described above. Thus the support I−J could be much smaller
than the full set of nodes on level J . By the above splitting, the coarse coefficients
and complement coefficients are given by

u◦
J →

{
R◦

0u
◦
J =: ûJ−1,

R◦
1u

◦
J =: d◦J ,

(41)

where these matrix/vector multiplications are carried out in a sparse format. That
is, only the active coefficients in u◦

J select the corresponding active columns of R◦ so
that, due to the sparseness of R◦, the computational work stays proportional to #I−J .
The array d◦J with support J ◦

J are the wavelet coefficients on the highest level and
will remain untouched in subsequent steps. The coarse scale coefficients ûJ−1 will
be added (if applicable) to the coefficients u◦

J−1 to form the resulting contribution
ūJ−1 := ûJ−1 + u◦

J−1 with support ĪJ−1 on level J − 1.

In the above multigrid scheme this two-level splitting already suffices. Below we
will also need a full transformation involving all lower levels. This means the above
procedure will be successively applied to the arrays ūj for j < J , each time split-
ting off the wavelet coefficients d◦j with supports J ◦

j . This results in the alternative
representation

uJ =
∑
k∈Īj0

ūj0,kφj0,k +

J∑
j=j0+1

∑
k∈J ◦

j

d◦j,kψ
◦
j,k(42)

of the function uJ in (40). Hence, denoting by

uJG := ((u◦
j0)T , (u◦

j0+1)T , . . . , (u◦
J)T )T , uJms := ((ūj0)T , (d◦j0+1)T , . . . , (d◦J)T )T

the coefficient arrays in (40) and (42), respectively, the transformation T ◦
G : uJ → uJms

can be carried out by successively applying (41). It is clear that the number of
operations required by this transformation remains proportional to #G.

Likewise, an analogous local successive application of the steps

P ◦
j−1,0ūj−1 + P ◦

j−1,1d
◦
j = ūj(43)

realizes the transformation (T ◦
G)−1 : uJms → uJG also at an expense of O(#G) flops.

The reader is referred to [15] for the details of these transformations.

The full multiscale transformation will be needed only for the adaptive mesh
refinement and thus involves P ◦ = P̌ . However, the corresponding transformations

Ť G , Ť
−1

G can be efficiently generated through the hierarchical basis transformations
and (15). Therefore we briefly indicate the simple interrelation between the sets G
and {Īj0 ,J ◦

j0+1, . . . ,J ◦
J } in the special case P ◦ = P . To describe this let I+

J := I−J
and for j0 < j ≤ J

J ◦
j := I+

j \ Ij−1, I+
j−1 := I−j−1 ∪

(I+
j ∩ Ij−1

)
.(44)

Thus there is a simple one-to-one correspondence between the set G and the set
J := {(j0, k) : k ∈ Ij0} ∪

⋃J
j=j0+1{(j, k) : k ∈ J ◦

j }. It is important to bear in mind
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that both sets G and J contain index pairs (j, k) where only the second index k refers
to a spatial location as a node. The same node k may have different level indices j, l
depending on the data structure context (l, k) ∈ G or (j, k) ∈ J .

4.3. Refinement strategy. The norm equivalence (19) offers new ways of esti-

mating errors. To see this suppose uJ =
∑
k∈Ij0 uj0,kφj0,k +

∑J
j=j0+1

∑
k∈Jj ďj,kψ̌j,k

is a current approximation to u. Among the many possible examples, consider the
following thresholding scheme for coarsening a given approximation:

(i) Fix a tolerance η > 0.
(ii) For j = j0 + 1, . . . , J , find the largest J̃j ⊂ Jj such that for some fixed α > 0

one has
∑
k∈J̃j |ďj,k|2 ≤ 2α(j−J)η2 and set

d̃j,k :=

{
ďj,k if k ∈ Jj \ J̃j ;
0 if k ∈ J̃j .

Clearly, by (19), ũJ :=
∑

(j,k)∈J\J̃ ďj,kψ̌j,k then satisfies ‖uJ − ũJ‖L2(Ω) ≤ cη, where

c depends only on the constants in (19) for s = 0. Applying an analogous procedure
to 2j ďj,k yields estimates in H1. This strategy imposes higher accuracy for low-

level coefficients. Alternatively one could determine the largest J̃ ⊂ J such that∑
(j,k)∈c̃J |ďj,k|2 ≤ η2 to arrive at the same conclusion. A detailed account of related

strategies for elliptic problems is given in [11].

Conversely, denoting by ∂J those indices reflecting a locally highest level, ele-
ments in ∂J ∩ (J \J̃ ) may be taken to determine the next refinement (again variants
are possible). The corresponding modifications of the meshes G will be described in
the routines below.

We will now describe how the collections G and corresponding trial spaces SG
emerge through a refinement strategy by monitoring the multiscale coefficients uJms
based on the above considerations. Since the coefficients of the complement functions
ψ̌j,k represent high scale fluctuations, whenever for some (j, k) ∈ ∂G the coefficient
|dj,k| is large, this indicates that uJ exhibits strong oscillations of locally high fre-
quency. Such oscillations may be caused by (locally) large grid-Péclet numbers or
by the fact that the current approximation is locally not yet accurate enough. In
both cases a refinement is needed. In particular, the approximate solutions of the
complement problem (35) can be used to control local refinements. Hence a natural
refinement strategy is to refine the trial spaces at locations where even after smooth-
ing such high oscillations are still exhibited by the current approximate solution. It
will be seen later that due to the nature of the full multigrid scheme below, it will
be necessary to coarsen a space. Moreover, it will simplify data management signifi-
cantly when working only with graded sets G. This means that each edge in the mesh
contains at most one hanging node, i.e., the levels of neighboring mesh points differ
at most by one. It turns out that this is a very mild restriction which is satisfied in
most cases automatically. We describe next a scheme that combines all three tasks:
coarsening, refining, and grading. Its input are the current grid G, the set R mark-
ing the last refinement in a prior step (which is needed to organize the coarsening),
the array uJms of wavelet coefficients with highest level J of the current solution, a
vector τ = (τj0+1, . . . , τJ) of tolerances for refinement, and a corresponding vector
τ ′ for coarsening. The latter ones should be somewhat smaller. A typical choice is
τ ′j = τj/2. The choice of the τj will be discussed later in connection with applications;
see section 4.4.
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REF-COARSE (G, R, uJms τ , τ ′) → (R, G).

• R′ := R
• for j = J, J − 1, . . . , j0 + 1

Kj+1 := {k ∈ Jj+1 : ďj+1,k �= 0}
for (j, k) ∈ R′

if (j + 1, l) /∈ R′ ∀ l ∈ Ij+1,k

KGl := {l′ ∈ Jj+1 : gj,1l′,l �= 0}
if |ďj+1,l′ | < τ ′j+1 ∀ l′ ∈ Kj+1 ∩

⋃
l∈Ij+1,k

KGl
R := R \ {(j, k)}

for k ∈ I−j ∩ Jj
if |ďj,k| > τj
Nj(k) := neighbors of k and their neighbors on level j
R := R∪ {(j, l) : l ∈ Nj(k)}

• for j = J, J − 1, . . . , j0 + 2
for (j, k) ∈ R
R := R∪ {(j − 1, l) : supp φj−1,l ∩ supp φj,k �= ∅}

• I+
j0+1 = Ij0+1

• G := ∅
• for j = j0 + 1, j0 + 2, . . . , J

I+
j+1 := ∅

for k ∈ I+
j

if (j, k) ∈ R
I+
j+1 := I+

j+1 ∪ Ij+1,k

else G := G ∪ {(j, k)}
• G := G ∪ {(j + 1, k) : k ∈ I+

j+1}

4.4. The main algorithm. We have by now collected the main ingredients
that will enter the adaptive full multigrid scheme. The basic idea may be sketched
as follows. We begin on a coarse mesh and raise the viscosity so that the grid-
Péclet number is approximately one. This means that the solution to the modified
problem starts to exhibit oscillations while the above multigrid scheme is still efficient.
A (possibly local) refinement based on the multiscale representation of the current
solution is then made according to the above refinement strategy. The viscosity is
reduced by a factor two and the (prolonged) current solution is used as an initial guess
for the problem with lowered viscosity on the refined space. Note that the viscosity
is halved globally even when the refinement is only local. This procedure is repeated
until one either arrives at a prescribed highest level Jmax of highest local resolution
or until the original viscosity is restored. The multigrid iteration on this final mesh
proceeds then until a stopping criterion is met. Thus in the course of nested iteration
the original problem is approached through a sequence of auxiliary problems.

Before describing the algorithmic details a few preparatory remarks are necessary.
By ‖ · ‖X we denote the norm in which the accuracy is to be measured. We will
consider here only X = L2(Ω) and X = H1

0 (Ω), but other choices are conceivable.
The threshold parameters τ , τ ′ appearing in REF-COARSE have the form

τj = κ ‖uJ‖∞ 2(j−J)d/2, τ ′j ≤ τj ,(45)

where κ is a constant controlling the overall accuracy of the approximate solutions.
Note that the tolerances τj require higher relative accuracy on lower levels. In fact, in
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our experiments level-independent thresholds always produced worse results. We use
a fixed choice for the matrices Ľ controlling the splittings of the trial spaces according
either to (Ia) or to (Ib) described in section 3.4. The multiscale transformation T G
appearing below corresponds to the wavelet basis used in REF-COARSE; see sec-
tions 3.2 and 4.3. Finally, tol represents the target accuracy for the discrete systems
and µ is the number of iterations in MG.

FMG (f, µ, tol) → u.
(1) Choose a coarsest level j0, set J = j0 + 1, choose the smallest L such that

PJ(2Lν) < 1, and set νJ := 2Lν. Let G = Ij0+1, R = ∅. Fix Jmax > L and
compute

AJ := aνJ (ΦJ ,ΦJ), fJ := (ΦJ , f), S = {span Φj0 , span Φj0+1}, uJ = 0.

(2) Set u
(0)
J = uJ .

For i = 1, . . . , µ apply MG (J,S,AJ ,fJ ,u
(i−1)
J ) → u

(i)
J .

Set u′
J = u

(µ)
J , uJ = u

(µ−1)
J .

(3) If J = Jmax
compute eJ := ‖uJ − u′

J‖X .
If eJ ≤ tol accept u′

J as solution, set u := u′
J and STOP. Else

Set µ = 1.
Replace uJ by u′

J and go to (2).
(4) Compute u′

ms := T Gu′
J and τ , τ ′ based on u′

J according to (45).
(5) Apply REF-COARSE (G,R,u′

ms, τ , τ
′, ) → (R,G′);

If G′ = G, νJ = ν and J < Jmax − 1, set J = J + 1 and go to (5).
Else
• Set νJ+1 := max {ν, νJ/2};
• Replace J by J + 1;
• Compute initial guess for next iteration:

if (j, k) ∈ G ∩ G′ then uj,k = u′j,k
else if (j, k) ∈ G′\G then uj,k =

∑
l∈I−

j−1
mj−1,0
k,l u′j−1,l

else if (j, k) ∈ G\G′ then uj,k =
∑
l∈I−

j+1
gj,0k,lu

′
j+1,l.

• Replace G by G′;
• Determine the sets I−j , I+

j , j = j0, . . . , J and set Φ◦
j := {φl,k : k ∈

I+
j , k ∈ I−l , l = j0, . . . , j − 1};

• Set S = {span Φj0 , span Φ◦
j0+1, . . . , span Φ◦

J};
• Compute the new stiffness matrix AJ := aνJ (ΦJ ,ΦJ) and right-hand

side fJ = (ΦJ , f);
• Go to (2).

One should note that the approximate solutions uJ are given in the form (40).
Hence the stiffness matrices are always computed in the sparsest format. A multiscale
stiffness matrix is never assembled. Only one step of the multiscale transformation is
used to produce the block matrices. Otherwise it is used to produce the representation
(42) for analysis purposes.

We close this section with some comments on the coarsening step in step (5). This
step is necessary because the variation of the viscosity νj during the refinement process
may cause layers to migrate. This is illustrated by the following simple univariate
example where ν = 2−11, f = 1, γ = 0, and β = β(x) is the ninth-degree truncated
Taylor expansion of −1−sin(4πx). With the above parameters the algorithm produces
25 refinement steps while J = 17 is the highest level of local refinements. As shown by
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Figures 5–10 the peak of intermediate approximate solutions migrates to the left when
proceeding to higher levels and lowering viscosity. Without coarsening one would end
up with unnecessary refinements throughout most of the domain.

Figures 5, 6, and 7 display approximate solutions for various current highest
levels J and corresponding viscosity νJ . The corresponding distributions of nodes
are depicted in Figures 8, 9, and 10 to demonstrate how they evolve in the course of
nested iteration.

5. Numerical results. Algorithm FMG will be tested now on several examples
posing different potential obstructions. Our main interest concerns (i) the reliability
of the algorithm, i.e., all physical relevant effects should be appropriately resolved,
(ii) the performance of the computation, e.g., in comparison with quasi-uniform dis-
cretizations, and (iii) the accuracy of the solution in terms of the involved degrees of
freedom.

The test cases. We consider the following examples: (A) a constant direction of
convection which results in a typical boundary layer, (B) variable convection causing
a “near singularity” at a point in the interior, and (C) the interaction of convection
and reaction. The corresponding convection and reaction coefficients are given by

(A) constant convection:
β1(x, y) = 1, β2(x, y) = 1, γ = 0;

(B) variable convection:
β1(x, y) = 1

2 − x, β2(x, y) = 1
2 − y, γ = 0;

(C) interaction of convection and reaction:
β1(x, y) = 1 + x2, β2(x, y) = x y, γ(x, y) = 10 ( 1

2 − x);

In all cases we have employed finite element spaces spanned by standard bilinear shape
functions on the domain Ω = (0, 1)2. The coarsest level is always j0 = 2, and f = 1 is
always chosen as the right-hand side. We have deliberately dispensed with employing
predetermined solutions because we wanted the singular behavior of the solution to
truly reflect the particular choice of parameters in the variational problem.
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The highest level of (local) refinement is always bounded by some integer Jmax.
Depending on the accuracy requirements and the coefficients in (1) this will sometimes
be attained and sometimes a lower level J = Jc turns out to suffice. All remaining pa-
rameters that have to be specified for the different computations are listed in Table 1.
In particular, the threshold parameters τj = κ ‖uJ‖∞ 2j−J and τ ′j = κ′ ‖uJ‖∞ 2j−J

are characterized by the parameters κ and κ′, respectively.

Table 1
Parameters for the computations.

Case ν κ κ′ µ J
A1 2−13 2× 10−6 1× 10−6 5 14
A2 2−7 1× 10−5 1× 10−6 3 9
B1 2−15 5× 10−5 2.5× 10−5 5 14
B2 2−8 2× 10−4 2× 10−5 3 9
C 2−7 5× 10−5 5× 10−5 2 8

All computations have been carried out on a PC with a Pentium III processor
(600 MHz).

Reliability. Some figures illustrating the numerical results for Cases A1, B1,
and C follow. In Figures 11–16, we display the graph of the approximate solution
and the corresponding adaptive mesh in order to see whether the automatic refine-
ment actually captures the essential features of the solution and avoids unnecessary
refinements.

Case A1. The refinement pattern in Figure 12 looks very appropriate—medium
refinement around the diagonal ridge, strong local refinements at the corners and
along the boundary layers. Of course, anisotropic refinements would be even better,
but the present scheme does not require any a priori knowledge of the structure of
the solution, and whenever alignment with meshlines is violated, isotropic refinements
would evolve anyway.

Case B1. In Figure 14 we see a perfect symmetry and the refinement pattern
accurately reflects the structure of the solution; see Figure 13.

Case C. Overall the test confirms that the algorithm deals with convection and
reaction in essentially the same way. Although the reduction of unknowns is not as
strong as before, one obtains a stable meaningful solution; see Figures 15 and 16.

In all cases we notice that the adaptation process works reliable in the sense
that higher resolution levels occur only near steep gradients, whereas for moderate
variation of the solution a much coarser resolution is recognized to suffice.

In particular, we emphasize that in Cases A1 and B1 we have chosen a fairly small
diffusion without any a priori stabilization in the Galerkin discretization in order to
see how this affects the various algorithmic ingredients. Progressing to extremely
fine local resolutions turns out to put more and more burden on the approximate
decoupling routine DEC (A), and a proper choice of the involved control parameters
becomes essential when ν is of the order of 2−13. So far these parameters are still
set based on experience. A robust automatic adaptation is still subject to further
research.

Performance. In order to demonstrate the benefits of the adaptive algorithm
we compare the results with those for uniform meshes. Here we consider only the
Cases A2 and B2, since the number of refinement levels has to be moderate due to
the high memory requirements of the full grid.
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The results of these computations are collected in the Tables 2 and 3. The pa-
rameter j counts the number of refinements during nested iteration while jc and jf
represent the coarsest, respectively, finest resolution that occurs locally at that stage.
#Φadaptj stands for the actual number of degrees of freedom at the jth stage com-
pared with the dimension #Φj of the corresponding fully refined trial space. νj is
the current viscosity. Employing highly nonuniform grids, we find that the meaning
of grid-Péclet numbers is less clear. Of course, one can define them locally. Pf will
stand for the local grid-Péclet number at the currently highest discretization level,
while Pc refers to the locally coarsest level at stage j. The numerical results will
show that their interpretation is no longer straightforward, particularly since variable
convection will be considered. For instance, it will be seen that the spaces are not
always refined at locations where the local grid-Péclet numbers are large.

Table 2
Case A2.

j jf jc #Φadaptj #Φj νj Pf Pc

3 3 3 49 49 2−3 0.50 0.5
4 4 4 225 225 2−4 0.50 0.5
5 5 5 961 961 2−5 0.50 0.5
6 6 5 3829 3969 2−6 0.50 1.0
7 7 5 7585 16129 2−7 0.50 2.0
8 8 5 15059 65025 2−7 0.25 2.0
9 9 5 29448 261121 2−7 0.125 2.0

Table 3
Case B2.

j jf jc #Φadaptj #Φj νj Pf Pc

3 3 3 49 49 2−5 0.708 0.708
4 4 4 225 225 2−5 0.427 0.427
5 5 5 961 961 2−6 0.464 0.464
6 6 5 2717 3969 2−7 0.482 0.964
7 6 6 3969 16129 2−8 0.482 0.482
8 7 6 4705 65025 2−8 0.245 0.490
9 7 6 5045 261121 2−8 0.245 0.490

According to Table 2 the number of unknowns is reduced by almost a factor
1/9. The Galerkin discretization is stable although Pc = 2 is encountered. While the
number of degrees of freedom has been reduced by a factor of 8.9, the total CPU time
has reduced by a factor of 4.6 in the comparison to the uniform grid.

Table 3 confirms that the savings in terms of grid compression are better than
in Case A2 (a factor 1/52). Note that in this case also Pc remains moderate. The
reduction rates of degrees of freedom and CPU time are 51.8, respectively, 27.4.

We like to emphasize that in Cases A1 and B1 the compression rates are even
much higher. In Case A1 we have #Φadapt14 = 461943 and #Φ14 = 268, 402, 689 and

for Case B1 #Φadapt14 = 65173 and #Φ14 = 268, 402, 689, respectively.

Accuracy. To assess the accuracy of an approximate solution uG with coefficient
array u =: uG on an adaptive mesh G, we will compare it with a highly accurate
fixed reference solution uL that will play the role of the exact solution. The difference
‖uG−uL‖X for X ∈ {L2, H

1} can be evaluated with the aid of the norm equivalences
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(19), which requires only expanding uG and uL in the stable multiscale basis described
earlier.

To interpret the results correctly recall that on uniform grids with meshsize h
piecewise linear approximands can produce at best errors in ‖ · ‖Hs(Ω) of order h2−s,
provided that the approximated function belongs at least to H2(Ω). In terms of
degrees of freedom N the error can therefore decay at best with order N−(2−s)/d in
d spatial dimensions. This remains the best possible order also when using adaptive
approximations. The gain of adaptive schemes is that this best possible order can
be realized under weaker regularity assumptions. The relevant (weaker) regularity
measure is known to be based on a certain scale of Besov spaces; see, e.g., [11].

Therefore we wish to determine how ‖uG − uL‖X relates to the number N of
adaptively generated unknowns. Since for small viscosity H1 is not the right energy
space we are primarily interested in the L2-error, i.e., X = L2. Nevertheless, we
monitor also the H1-error, which is expected to be much larger due to the large
gradients in layer regions.

Recall that the threshold parameter κ is to control the accuracy of the approxi-
mate solutions. It is therefore also of interest to study the dependence of ‖uG −uL‖X
on κ, again mainly for X = L2.

Figures 17 and 18 display the dependence of the H1-error, respectively, the L2-
error on the parameter κ. We see that in Case A2 the L2-error stays essentially
proportional to κ (in the range between κ = 5 · 10−6 and 5 · 10−5) up to a factor of 2
so that κ is a good accuracy measure. As expected the H1-error is much larger.

Figures 19 and 20 show the dependence of the H1- and L2-errors on the number
N of degrees of freedom. In agreement with the dependence on κ the optimal rates
N−1/2, respectively, N−1 seem to be matched. Figures 21 and 22 confirm the same
behavior for the L2-norm in Case B2.

5.1. Concluding remarks. The above examples show that the algorithm FMG
exhibits essentially the same performance in a variety of test cases with different char-
acteristic features. The adaptive refinements reduce the computational complexity
significantly in all cases and seem to stabilize the Galerkin approximations in a reli-
able way. In none of the examples have we used an a priori stabilization technique.
The adaptive meshes appear to reflect the structure of the solutions in all cases very
well. Nevertheless, our tests also show that a proper choice of the threshold parame-
ters is important. The selection of these parameters is at this point still partly based
on heuristics and experience. Likewise the role of appropriate approximate decoupling
becomes more and more crucial when the convection term grows. The above variant
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of SPAI techniques has so far been the only successful scheme that works in the vis-
cosity range under consideration. However, further efforts are needed to increase its
robustness.

So far we have used for simplicity a very crude way of modifying the original prob-
lem in FMG for a proper low-level treatment. Alternatively one could use more so-
phisticated schemes like streamline diffusion or any other stabilization scheme. Since
the stabilization will gradually be removed when moving up to higher levels the pre-
cise tuning of parameters is irrelevant. Likewise, one could employ a weak a priori
stabilization corresponding to the prescribed highest level Jmax if it is not important
to resolve all features of the solution with high accuracy. In fact, it should be clear
that without any a priori stabilization it would be much harder to progress to signif-
icantly higher Reynolds numbers than with conventional stabilized versions. In this
sense the present investigation is to explore the potential of such aspects.
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Abstract. The numerical simulation of physical problems modeled by systems of conservation
laws is difficult due to the presence of discontinuities in the solution. High-order shock capturing
schemes combine sharp numerical profiles at discontinuities with a highly accurate approximation in
smooth regions, but usually their computational cost is quite large.

Following the idea of A. Harten [Comm. Pure Appl. Math., 48 (1995), pp. 1305–1342] and Bihari
and Harten [SIAM J. Sci. Comput., 18 (1997), pp. 315–354], we present in this paper a method to
reduce the execution time of such simulations. It is based on a point value multiresolution transform
that is used to detect regions with singularities. In these regions, an expensive high-resolution shock
capturing scheme is applied to compute the numerical flux at cell interfaces. In smooth regions a
cheap polynomial interpolation is used to deduce the value of the numerical divergence from values
previously obtained on lower resolution scales.

This method is applied to solve the two-dimensional compressible Euler equations for two classical
configurations. The results are analyzed in terms of quality and efficiency.
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1. Introduction. The computation of solutions to hyperbolic systems of conser-
vation laws has been a very active field of research for the last 20 to 30 years and, as a
result, there are now a variety of methods that are able to compute accurate numerical
approximations to the physically relevant solution. The latest addition to the pool of
numerical methods for hyperbolic conservation laws are the modern high-resolution
shock capturing (HRSC) schemes. These schemes succeed in computing highly ac-
curate numerical solutions, typically second- or third-order in smooth regions, while
maintaining sharp, oscillation-free numerical profiles at discontinuities.

State-of-the-art shock capturing schemes usually perform a “delicate art-craft” on
the computation of the numerical flux functions. A typical computation involves at
least one eigenvalue-eigenvector decomposition of the Jacobian matrix of the system,
as well as the approximation of the values of the numerical solution at both sides of
each cell interface, obtained via some appropriately chosen approximating functions.
The numerical result is very often spectacular in terms of resolution power, but the
computational effort also tends to be quite spectacular.

Without doubt, the computational speed of the latest personal computers and
workstations has made it possible for an increasing number of researchers to become
interested in HRSC methods and, as a result, HRSC methods are now being tested
in a variety of physical scenarios that involve hyperbolic systems of conservation laws
(see, e.g., [7, 10, 19] and references therein).

When the underlying grid is uniform, the implementation of most of these shock
capturing schemes is quite straightforward and numerical simulations on uniform grids
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are routinely used to investigate the behavior of the different HRSC schemes in use,
and also their limitations. It is known that some HRSC schemes can produce an
anomalous behavior in certain situations; a catalog of numerical pathologies encoun-
tered in gas dynamics simulations can be found in [20], where it is observed that some
of these pathologies appear only when very fine meshes are used.

When using very fine uniform grids, in which the basic code structure of an HRSC
scheme is relatively simple, we find that the computational time becomes the main
drawback in the numerical simulation. For some HRSC schemes, fine mesh simulations
in two dimensions are out of reach simply because they cost too much. The numerical
flux evaluations are too expensive, and the computational time is measured by days or
months on a personal computer. As an example we notice that a typical computation
of a two-dimensional (2D) jet configuration in [19] is 10 to 50 days on an HP710 or 1
to 5 days on an Origin 2000 with 64 processors.

It is well known, however, that the heavy-duty flux computations are needed only
because nonsmooth structures may develop spontaneously in the solution of a hy-
perbolic system of conservation laws and evolve in time, and this basic observation
has lead researchers to the development of a number of techniques that aim at re-
ducing the computational effort associated to these simulations. Among these, shock
tracking and adaptive mesh refinement (AMR) techniques (often combined with one
another) are very effective at obtaining high-resolution numerical approximations, but
the computational effort is transferred to the programming and the data structure of
the code.

Starting with the pioneering work of Harten [14], a different multilevel strategy
aiming to reduce the computational effort associated to high-cost HRSC methods
entered the scene. The key observation is that the information contained in a mul-
tiscale decomposition of the numerical approximation can be used to determine its
local regularity (smoothness). At discontinuities or steep gradients, it is imperative
to use a numerical flux function that models correctly the physics of the problem, but
in smoothness regions the costly exact value of an HRSC numerical flux can be re-
placed by an equally accurate approximation obtained by much less expensive means.
The multiscale decomposition of the numerical solution can then be used as a tool
to decide in which regions a sophisticated evaluation of the numerical flux function is
truly needed. In smoothness regions, Harten proposes [14] to evaluate the numerical
flux function of the HRSC scheme only on a coarse grid and then use these values to
compute the fluxes on the finest grid using an inexpensive polynomial interpolation
process in a multilevel fashion.

Harten’s approach can be viewed, in a way, as an AMR procedure, in which grids
of different resolutions are considered in the numerical simulation, but in reality it is
far from being an AMR technique. The different grids are used only to analyze the
smoothness of the numerical solution. The numerical values on the highest-resolution
grid need to be always available, because the computation of the numerical fluxes with
the HRSC scheme, when needed, use directly the finest-grid values. This is clearly a
disadvantage with respect to the memory savings that an AMR technique can offer
in certain situations. On the other hand, using the values of the numerical solution in
the direct computation has some nice features. First, it avoids the use of complicated
data structures, which is very useful when one is trying to incorporate the algorithm
into an existing code. Second, the availability of the numerical solution on the finest
grid guarantees that the “delicate art-craft” involved in the direct evaluation of the
numerical fluxes (via a sophisticated HRSC scheme) is performed adequately.
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When memory requirements do not impose a severe restriction (as it often hap-
pens in many 2D, as well as in some three-dimensional (3D), computations), the
techniques proposed in [14, 5, 22, 1] and in this paper can help to reduce the large
running times associated to numerical simulations with HRSC schemes. We view
Harten’s approach as an acceleration tool, which can be incorporated in a straight-
forward manner into an existing code.

The novelty of our approach with respect to the multilevel strategies described in
[14, 5, 22, 1] lies in the multiresolution transform used to analyze the smoothness of
the numerical solution. We use the interpolatory framework, while in the references
mentioned above the cell-average framework is used. In addition, our implementation
incorporates several features that improve the efficiency of the algorithm (see section
3.3), while maintaining the quality of the numerical approximation.

The rest of the paper is organized as follows: In section 2, we briefly describe
the essential features of the HRSC schemes we shall employ in our simulations. In
section 3 we describe the interpolatory framework for multiresolution and its role in
our multilevel strategy, as well as some implementation details. Section 4 examines
the accumulation of error in the multilevel simulation. In section 5 we perform a series
of numerical experiments and analyze the results in terms of quality, i.e., closeness to
the reference simulation, and efficiency, i.e., time savings of the multilevel simulations
with respect to the reference simulation. Finally, some conclusions are drawn in
section 6.

2. Shock capturing schemes for 2D systems of conservation laws. Let
us consider a 2D system of hyperbolic conservation laws:

∂t�U + �f(�U)x + �g(�U)y = �0,(2.1)

where �U is the vector of conserved quantities. We shall consider discretizations of
this system on a Cartesian grid G0 = {(xi = iδx, yj = jδy), i = 0, . . . , Nx j =
0, . . . , Ny} that follow a semidiscrete formulation,

d�Uij
dt

+D(�U)ij = 0,(2.2)

with the numerical divergence D(�U)ij in conservation form, i.e.,

D(�U)ij =
�Fi+1/2,j − �Fi−1/2,j

δx
+

�Gi,j+1/2 − �Gi,j−1/2

δy
.(2.3)

One typically has �Fi+1/2,j = �F (�Ui−k,j , . . . , �Ui+m,j), �Gi,j+1/2 = �G(�Ui,j−k, . . . , �Ui,j+m),

where �F (�w1, . . . , �wk+m) and �G(�w1, . . . , �wk+m) are consistent numerical flux functions,
which are the trademark of the scheme.

In this paper we shall use two numerical flux formulae, which are significantly
different in terms of computational effort:

– The essentially nonoscillatory (ENO) method of order 3 (ENO-3 henceforth)
from [21], which uses the nonlinear piecewise parabolic ENO reconstruction
procedure to achieve high accuracy in space.

– Marquina’s scheme from [8] together with the piecewise hyperbolic method
(PHM) [18] to obtain high accuracy in space (M-PHM henceforth).

In both cases, the reconstruction procedure (piecewise parabolic ENO or piecewise
hyperbolic) is applied directly on the fluxes, as specified by Shu and Osher in [21].
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The ENO-3 scheme uses Roe’s linearization and involves one Jacobian evaluation
per cell interface, while M-PHM uses a flux-splitting technique in the flux computation
that requires two Jacobian evaluations per cell interface. Although M-PHM is more
expensive than ENO-3, it has been shown in [8, 12, 9] that it is a pretty robust scheme
that, in addition, avoids (or reduces) certain numerical pathologies associated to the
Roe solver.

In both cases, a third-order fully discrete scheme is obtained by applying a TVD
Runge–Kutta method for the time evolution as proposed in [21].

3. The multilevel algorithm. As explained in the introduction, the goal of the
multilevel method is to decrease the cpu time associated to the underlying scheme by
reducing the number of expensive flux evaluations. To understand the basic mecha-
nism by which this goal is achieved, let us consider, for the sake of simplicity, Euler’s
method applied to (2.2), i.e.,

�Un+1
ij = �Un

ij − δt D(�U)nij .(3.1)

If both Un and Un+1 are smooth around (xi, yj) at time tn, then (3.1) implies that
the numerical divergence is also smooth at that location; thus we can, in principle,
avoid using the numerical flux functions of the HRSC scheme in its computation. On
the other hand, if a discontinuity appears during the time evolution (or when a steep
gradient makes it imminent), the Riemann solver of the HRSC scheme has to be called
necessarily to compute the numerical divergence if the high-resolution properties of
the underlying scheme are to be maintained.

Consequently, the most important steps in the multilevel algorithm concern the
smoothness analysis of Un and Un+1 (observe that the latter is unknown at time n)

and how this information is used in the computation of D(�U).

3.1. Interpolatory multiresolution. Finite volume schemes for (2.1) produce
numerical values that can be naturally interpreted as approximations to the mean
values of the solution in each computational cell (the cell averages). Because of this,
all applications of Harten’s idea known to us [14, 5, 22, 6, 1, 2, 17] have invariably
used the cell-average multiresolution framework (see [14] for definitions and details)
to analyze the smoothness of the numerical approximation.

In Shu and Osher’s framework, the numerical values can be interpreted as ap-
proximations to the point values of the solution. In a point value framework for
multiresolution, the numerical data to be analyzed are interpreted as the values of
a function on an underlying grid; consequently, in our multilevel strategy the point
value multiresolution framework is used to analyze the smoothness properties of the
numerical approximation.

Multiscale decompositions within the point value framework were initially intro-
duced by Harten [13] (and also independently developed by Sweldens [23]) and have
been extensively analyzed in a series of papers [15, 3]. Here we present only a brief
summary to clarify the notation in the remainder of the paper.

One first defines a set of nested grids {Gl, l = 1, . . . , L} by

(xi, yj) ∈ Gl ⇐⇒ (x2li, y2lj) ∈ G0.(3.2)

The values of a function v on G0 (which is considered the finest resolution level),
(v0
ij)i,j , are the input data. Due to the embedding of the grids, the representation of

the function on the coarser grid Gl, its point values on Gl, is

vlij = v0
2li 2lj , i = 0, . . . , Nx/2l, j = 0, . . . , Ny/2l.(3.3)
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To recover the representation of v on Gl−1 from the representation on Gl (the next
coarser grid), the following procedure is used:

– A set of predicted values is first computed:

ṽl−1
ij = vli/2 j/2 if (xi, yj) ∈ Gl,
ṽl−1
ij = I[(xi, yj); v

l] if (xi, yj) ∈ Gl−1\ Gl,(3.4)

where I(.; .) denotes an rth-order polynomial interpolation.
– The difference between the exact values (3.3), vl−1

ij , and ṽl−1
ij is then repre-

sented by the details, or wavelet coefficients:

dlij = vl−1
ij − ṽl−1

ij , (xi, yj) ∈ Gl−1.(3.5)

Observe that dl2p,2q = 0 because of the interpolation property. Thus even-even
detail coefficients are never computed (or stored).

– Relations (3.4) and (3.5) lead immediately to

vl−1
ij = vli/2 j/2 if (xi, yj) ∈ Gl,
vl−1
ij = I[(xi, yj); v

l] + dlij if (xi, yj) ∈ Gl−1\ Gl.(3.6)

Applying this procedure from l = 1 to L gives an equivalence between the discrete set
v0 and its multiresolution representation: Mv0 = (vL, dL, . . . , d1).

Remark 3.1. In our numerical experiments we use a tensor-product interpolation
procedure of order 4 (r = 4). The corresponding formulae come from standard 2D
polynomial interpolation; explicit details can be found, for example, in [5, section 3].

The point value framework for multiresolution is probably the simplest one, be-
cause the detail coefficients are simply interpolation errors. When the grid is uniform
and the interpolation technique is constructed using a tensor product approach, it is
very simple to analyze the smoothness information contained in the interpolation er-
rors, which can then be used directly as “regularity sensors” to localize the nonsmooth
structures of the solution (compare with the derivation of the regularity sensors in [5]
in the 2D cell-average framework for multiresolution).

3.2. The basic strategy. As observed in [5], the original idea of a multilevel
computation of the numerical flux function (in one dimension) described by Harten
in [14] cannot be used in a robust and general manner in two dimensions. The key
point is then to observe that it is the numerical divergence the quantity that should
be adapted to the multilevel computations. For the sake of simplicity, let us consider
again the simplest ODE solver: Euler’s method. When applying it to the semidiscrete
formulation (2.2), we get

�Un+1
ij − �Un

ij = −δt D(�U)nij ,(3.7)

and this relation shows that a multilevel computation of the numerical divergence
must be carried out within the same framework as the sets �Un,n+1

ij . The idea to use
the numerical divergence instead of the flux for the multilevel computation was a key
step in the development of multilevel strategies in multidimensions in [5, 1]. Once
this fact is recognized, the choice of the particular framework used to analyze the
smoothness information contained in the numerical approximation is not crucial. We
propose to use the point value framework because of its simplicity.

As in [5], the computation of the numerical divergence D(�Un) on the finest grid
is carried out in a sequence of steps. First the numerical divergence is evaluated at
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all points on the coarsest grid GL using the numerical flux function of the prescribed
HRSC scheme. Then, for the finer grids, D is evaluated recursively, either by the
same procedure or with a cheap interpolation procedure using the values obtained on
the coarser grids. The choice depends on the regularity analysis of the approximate
solution, made with the help of its multiresolution representation.

Thus, the main ingredients of the algorithm are the following:
– The multiresolution transform described in section 3.1 to obtain the wavelet

coefficients of �Un.
– A thresholding algorithm which associates to each wavelet coefficient a boolean

flag, blij , whose value (0 or 1) will determine the choice of the procedure to
evaluate D(U). The goal is to use this flag to mark out the nonsmooth regions

of both �Un and �Un+1. This is done as follows:
For a given tolerance parameter ε, the tolerance at level l is defined as
εl = ε/2l. Starting from a zero value for all blij , one applies for each de-
tail coefficient the following two tests:

if |dlij | ≥ εl =⇒ bli−k j−m = 1, k,m = −2, . . . , 2,

if |dlij | ≥ 2r+1εl and l > 1 =⇒ bl−1
2i−k 2j−m = 1, k,m = −1, 0, 1.

The first test takes into account the propagation of information (recall that
the propagation of “real” information is limited by the CFL condition). The
second one aims at detecting shock formation. In a smooth region the local
rate of decay of the detail coefficients is determined by the accuracy of the
interpolation and the local regularity of the function. The second test mea-
sures whether the decay rate is that of a smooth function; if this is not the
case, compression leading to shock formation might be taking place and the
location is also flagged (see [5] for specific details on both tests).

– The multilevel evaluation of the numerical divergence.
For all points (xi, yj) ∈ GL, DL(�U)ij is computed with the prescribed HRSC

scheme. Once the divergence is known on Gl, its value on Gl−1, Dl−1(�U) is
evaluated using the boolean flag:

If blij = 1, compute Dl−1(�U)ij directly (with the HRSC method).

If blij = 0, Dl−1(�U)ij = I[(xi, yj);Dl(�U)].

Letting l go from L to 1 gives us the values of D(�Un) on the finest grid G0.

Remark 3.2. Recall that Dl−1(�U)ij = D0(�U)2l−1i,2l−1j , and thus the direct evalu-

ation of Dl−1(�U)ij is performed by computing the numerical flux functions using the

values of �U on G0: �F (�U2l−1i−k,j , . . . , �U2l−1i+m,j) and �G(�Ui,2l−1j−k, . . . , �Ui,2l−1j+m).
As a consequence, the finest grid, G0, is always needed and no memory savings is
obtained in comparison to the direct method (without multiresolution).

3.3. Some implementation details. In the original work of Harten [14], the
flag coefficients are obtained using a multiresolution transform for each component
of the vector �U . The thresholding algorithm is then applied to the largest resulting
wavelet coefficient, i.e., d̃lij = max(|dij(ρ)|, |dij(mx)|, |dij(my)|, |dij(E)|).

For the Euler equations of gas dynamics, the density retains all the possible
nonsmooth structures of the flow (shocks, contact discontinuities, and corners of rar-
efaction waves); thus it seems appropriate to derive the flag only from the multireso-
lution representation of the density, a modification that has also been implemented by
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Table 3.1
Cpu time in seconds for the overhead steps of the multilevel algorithm. First column for all the

components of �U , second one only for the density.

�U multiresolution ρ multiresolution
MR transform 0.09 0.024
Maximum 0.014 –
Thresholding 0.026 0.027
Total 0.13 0.051

Sjögreen [22]. In our experiments, no significant differences are noted in the quality
of the numerical results obtained by computing the flag from the density only; thus
in the numerical tests we report, the boolean flag is computed using only the multi-
scale information of the density. This option saves time in the overhead associated to
the multiscale algorithm. In Table 3.1, we present the cpu time measured for both
methods for an initial grid G0 of 512× 128 points and 5 levels for the multiresolution
transform.

We observe a reduction of the computational time by a factor of 2 in that case.
In [22], Sjögreen presents numerical simulations for 2D systems of conservation

laws using a “dimension-by-dimension” cell-average multilevel algorithm and uniform
meshes. This means that for the fluxes in the x-direction, �Fi+1/2,j , a one-dimensional
(1D) multilevel algorithm is applied to each grid line j = j0. Then, the same procedure
is applied to each line i = i0 to compute the y-fluxes. The major advantage of
Sjögreen’s implementation lies in its simplicity: only 1D procedures are used for the
multiresolution transform, the thresholding algorithm, and the interpolation process.

We have also implemented Sjögreen’s version in the point value context and have
compared it with our algorithm, in which a fully bidimensional multiresolution trans-
form is used. Qualitatively speaking, the results are very similar and the percentage
of fluxes computed by the solver is the same in both cases. Nevertheless, Sjögreen’s
version turns out to be less efficient than the 2D one and, in our implementation, a
factor of 1.6 is observed between the corresponding cpu times. The difference could
be explained by the fact that each point of the domain is visited two times by the
multiresolution transform and thresholding algorithm (for the x- and y-flux compu-
tations) and that this algorithm requires more memory access.

A Runge–Kutta ODE solver is applied to the semidiscrete scheme (2.2)–(2.3)
to obtain a fully discrete scheme. In [5, 1, 22], a flag vector is computed at the
beginning of each Runge–Kutta step between tn and tn+1, but it is possible to avoid
this computation for the last step. The third-order TVD Runge–Kutta method of
[21] is defined as follows:

�U∗ = �Un − δt D(�Un),
�U∗∗ = (3�Un + �U∗ − δt D(�U∗))/4,

�Un+1 = (�Un + 2�U∗∗ − 2δt D(�U∗∗))/3,(3.8)

and the intermediate steps can be represented on the time axis as in Figure 3.1.
Clearly, �U∗ is an order-1 approximation of �Un+1; thus it contains similar nonsmooth
structures at the same places, and the flag coefficients obtained from its multiresolu-
tion transform could be used to compute �Un+1 from �U∗∗, instead of deriving them
from the �U∗∗ multiresolution transform. This modification reduces the computational
cost of the multilevel algorithm while keeping the same quality in the numerical re-
sults.
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Fig. 3.1. Representation on the time axis of the intermediate steps of the third-order Runge–
Kutta method.

Remark 3.3. The implementation of the multilevel strategy into an existing code
would then amount to the following:

– Define two additional matrices, one to store the scale coefficients of the mul-
tiresolution representation of the density, the other to store the flag coeffi-
cients.

– Include the multiresolution transform routine. Apply it to the density values
according to the guidelines in this section.

– Use the flag to modify the computation of the numerical divergence. Use the
numerical flux function of the scheme only when the flag value is 1.

4. Error analysis. In [14] Harten performs a study of the accumulation of the
error in the multilevel strategy. When the underlying shock capturing scheme is
monotone, Harten shows that the global accumulation error, i.e., the difference be-
tween the true solution and the numerical approximation obtained with the multilevel
algorithm, can be bounded in terms of the thresholding parameters and the local trun-
cation error of the underlying shock capturing scheme. In addition, if the tolerance for
thresholding is of the order of the local truncation error of the scheme, then the mul-
tilevel scheme is of the same order as the underlying shock capturing scheme (see [14]
for details). The main ingredients in his proof are the stability of the multiresolution
transform and the monotonicity of the shock capturing scheme.

The schemes we consider in this paper are not monotone, and an estimate on the
global error cannot be obtained. Keeping in mind that we view the multilevel scheme
as an acceleration tool, and that our target is to lower the cost that is needed to obtain
the numerical solution on the finest grid, we seek only to control the global error
between the multilevel and the reference solution. The nonlinearity of the schemes
we are considering prevents us from carrying out a rigorous analysis similar to that
of [14]; we conjecture that this error can be controlled due to the stability of the
multiresolution transform. In section 5.2, we perform several numerical experiments
that seem to indicate that

||vref − vmult||1 ≤ Cεα(4.1)

for some real number α > 1.

5. Numerical experiments. This section is devoted to the presentation and
analysis of the results obtained with our multilevel algorithm. We focus on two
classical configurations for numerical simulations involving the Euler equations in two
dimensions. A detailed description of the flow structure, for both test cases, can be
found in [24].

Test A: Double mach reflection of a strong shock. The problem involves a Mach
10 shock in air (γ = 1.4) which makes a 60o angle with a reflecting wall. The com-
putational domain is a tunnel 4 units long and 1 unit high, starting at x = 0, y = 0.
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Fig. 5.1. Density reference solution for Test A at time t = 0.2, obtained with 512× 128 points
and M-PHM scheme without multiresolution.

Fig. 5.2. Density reference solution for Test B at time t = 4, obtained with 256 × 80 points
and M-PHM scheme without multiresolution.

Initially the shock extends from the point x = 1
4 at the bottom of the computational

domain to the top boundary. The reflecting wall begins at x = 1
4 on this bottom

wall. Postshock conditions, �Uleft = (8., 57.1597,−33.0012, 563.544), are assigned at
the boundaries located to the left of the shock; the air ahead of the shock is left
undisturbed and has density 1.4 and pressure 1. Outflow conditions are applied at
the right end of the domain, and the values on the top boundary to the right of the
shock are those of undisturbed air.

The finest resolution grid, G0, that we shall consider for this test problem has
512 × 128 points. The density obtained at time t = 0.2 using M-PHM on G0 is
displayed in Figure 5.1. We see that all the features of the flow are appropriately rep-
resented, including the jet-like structure near the reflecting wall. This is our reference
simulation. We shall apply the multilevel algorithm to this test case with L = 5 and
ε = 5× 10−3.

Test B: Mach 3 wind tunnel with a step. The problem begins with a uniform
Mach 3 flow in a tunnel containing a step. The tunnel is 3 units long and 1 unit
wide, and the step is located 0.6 units from the left-hand end of the tunnel and is
0.2 units high. Inflow boundary conditions are applied at the left of the domain and
outflow conditions occur at the right end. Along all the walls of the tunnel, reflecting
boundary conditions are applied. Initially the tunnel is filled with a gamma-law gas
with γ = 1.4, which has density 1.4, pressure 1.0, and velocity 3.

At time t = 4, the flow has a rich and interesting structure that can be accurately
described using M-PHM on a grid with 256× 80 points, which is then considered as
our finest grid, G0, for this test case. In Figure 5.2, we display the density distribution
at time t = 4 obtained with M-PHM on G0. This is our reference simulation. We
shall apply the multilevel algorithm to this test case with L = 4 and ε = 5× 10−3.
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Fig. 5.3. Density field of the multilevel solution and adaptive grids for Test A at time t = 0.1
(top) and t = 0.2 (bottom). Initial grid G0 contains 512×128 points, L = 5 levels, and ε = 5×10−3.

5.1. Test results: Marquina’s scheme. In this first set of experiments we
apply the multilevel algorithm to the M-PHM scheme in order to compute the solution
to the previous test problems.

In Figures 5.3 (Test A), 5.4, and 5.5 (Test B) we display the level curves of the
numerical solution obtained with the multilevel algorithm at different times of the
flow evolution. For each simulation, we also present a second plot displaying only
the points of G0 where the numerical divergence is computed directly with the HRSC
scheme. The graphical display is arranged so that it looks like a structure of adaptive
grids, similar to those used in numerical simulations involving AMR techniques. The
plots of the adaptive grids give a very good indication of the amount of work saved
by the strategy. It must be pointed out that these plots do not represent, as in AMR,
the various grids involved in the computation. We must remember that the multilevel
strategy uses the data on the finest grid for the direct flux evaluations. There is
only one CFL number, dictated by the finest grid, and the memory requirements
correspond to those of the finest grid (in fact they are slightly larger, since we need
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Fig. 5.4. Density field of multilevel solution and adaptive grids for Test B at time t = 0.5 (top)
and t = 1.5 (bottom). Initial grid G0 contains 256× 80 points, L = 4 levels, and ε = 5× 10−3.

two more matrices).
In looking at the plots of level curves, we readily observe that the numerical

simulation is of the same “quality” as the reference simulation. The plots of the
adaptive grids show that the smoothness analysis performed on the wavelet coefficients
is able to localize correctly the nonsmooth structures of the flow. A direct evaluation
of the numerical fluxes is being performed in the neighborhood of all singularities, as
well as in the shock formation process, and, as a result, the numerical solution presents
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Fig. 5.5. Same as Figure 5.4 for the time t = 4.

the sharp shock profiles that are typical of a third-order scheme such as M-PHM.

The plots of the adaptive grids give additional information also. As observed
in [24], the numerical results for Test A are marred by small errors that are due
to the description of the initial data and to the fact that the boundary conditions
on the top boundary are set to describe the exact motion of the initial Mach 10
shock. These errors are identified as nonsmooth behavior by the multiresolution-based
smoothness analysis and, as a consequence, there is some unnecessary refinement in
smooth regions, since no shock formation or evolution is taking place there. It is
important to notice that this phenomenon occurs for both the reference and multilevel
simulations. Through the plots of the adaptive grid structure, the occurrence and
relative importance of these errors can be clearly appreciated.

Notice also the refinement appearing at reflecting walls in both tests. The problem
of dealing with reflecting boundary conditions in high-resolution simulations has been
addressed by various authors in recent papers (see, e.g., [11] and references therein),
and here the multilevel algorithm can also help to detect which areas of the com-
putational domain are displaying a numerical behavior susceptible to improvement.
In addition, it is clear that any improvement with respect to lowering the level of
numerical noise close to boundaries will produce in turn an increase in the efficiency
of the multilevel algorithm, since the unnecessary refinement will be eliminated.

5.2. Quality and efficiency. As discussed in section 4, the question of quality
will be analyzed by measuring the difference between the multilevel solution �Un and
the reference one, �Un

ref . Our objective is to examine the relation between the tolerance

parameter ε and the difference ||�Un − Un
ref ||, measured in some appropriate norm,

which in our case we choose to be the (discrete) l1-norm. To examine the relation

between the tolerance ε and the difference ||�Un−Un
ref ||1, we consider the density, for
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Fig. 5.6. Error e1, for the density (∗) and the pressure (o), between the multilevel algorithm
and the reference one versus the tolerance ε. The dotted line represents the curve of equation: ε1.6.

example, as a representative variable and compute

eρ1 =
1

Np

Nx∑
i=0

Ny∑
j=0

|ρnij − ρnrefij |/‖ρnref‖l1 ,(5.1)

where Np = (Nx + 1)× (Ny + 1) is the total number of points on the finest grid G0.
We apply the multilevel algorithm to Test A with Np = 128 × 32 and L = 3

for different values of the tolerance ε. The error is measured, for the density ρ and
pressure p, at time t = 0.2; results are presented on Figure 5.6. It is readily observed
that both eρ1 and eP1 decrease with ε according to (4.1), with α = 1.6. Numerical
experimentation indicates that this exponent is solution-dependent, but the behavior
is similar in all test cases we have considered (i.e., α > 1).

The results of Figure 5.6 imply that the quality of the numerical solution obtained
with the multilevel scheme, i.e., the closeness to the reference simulation, can be
controlled by adjusting the tolerance suitably.

The goal of the multilevel algorithm is to save time in the evaluation of costly
numerical flux functions; thus an important quantity is the percentage of numerical
divergences computed directly per time step, %f . Table 5.1 (for Test A) and Table 5.2
(for Test B) show the maximum and minimum values for %f in the simulation. Ob-
serve that, for a given test, the finer the grid, the smaller the percentage of direct
flux evaluations, since the direct evaluation of the numerical divergence is carried out
in a neighborhood of the nonsmooth structures of the flow, and the percentage of
computational grid cells involved in these regions decreases when increasing the grid
resolution.

A more concrete measure of the efficiency of the multilevel algorithm with respect
to the reference simulation is given by θiter, the cpu gain for a given iteration, and
θ, the gain for the global simulation. Introducing titerref and titermr as the cpu times at
iteration iter for the reference and the multilevel algorithm, respectively, θiter and θ
are defined as

θiter =
titerref

titermr

and θ =

∑
titerref∑
titermr

.(5.2)
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Table 5.1
Percentage of resolved flux and cpu gain for Test A at time t = 0.2.

Grid size G0 %fmin − %fmax cpu gain θ
128× 32 17.6 – 52.7 1.7
256× 64 8.9 – 33.2 2.45
512× 128 4.5 – 23.2 3.8

Table 5.2
Same as Table 5.1 for Test B at time t = 4.

Grid size G0 %fmin − %fmax cpu gain θ
128× 40 7 – 69.5 0.9
256× 80 2.8 – 45 1.4

Table 5.1 (for Test A) and Table 5.2 (for Test B) show the global gain for each
simulation. It is obvious that the global gain, θ, is problem dependent. In Figure
5.7, we represent θ(t). In the early stages of the computation, when there are very
few nonsmooth structures in the flow, the gain is quite large; as expected, θ(t) is
a decreasing function, and the gain is larger when we compute on finer grids. The
bottom part of Figure 5.7 displays %f(t) for these simulations. It can be observed
that the behavior of θ is roughly inversely proportional to that of %f .

There is an overhead associated to the multilevel computation. In Table 5.3 we
show the cpu time for one step of the multilevel algorithm and one stage of the Runge–
Kutta method. These results have been obtained with Test A and 512 × 128 points
in G0 when %f has its maximum value, 23%. It is worth noting that the overhead
caused by the multiresolution transform and the threshold represents only a small
part of the total cpu time, ≈ 2%, and that most of the time is spent in the numerical
divergence evaluation, ≈ 96%.

To end this section, we apply the multilevel method, with the same underlying
HRSC scheme, to Test A with a very fine grid of 2560 × 640 points. We set L =
7 and ε = 3.10−4. In Figure 5.8 we show a zoom of the double-Mach reflection
region displaying the level curves of the computed density. The small mesh-size of
the underlying grid G0 used for the simulation reduces the numerical viscosity of the
shock capturing scheme and, as a result, we can observe the development of Kelvin–
Helmholtz-type instabilities at the contact discontinuities. Such phenomena are not
observable for lower-resolution grids, but in fact they correspond to physical effects
that have been reported in numerical tests in [16], where a fifth-order shock capturing
scheme is being used, and also observed in real experiments [4].

In this case, the percentage of numerical divergences computed directly with M-
PHM grows from %f = 1% to %f = 10%, which leads to an estimated global gain θ =
7.5. From the practical point of view, it is important to notice that the estimated com-
puting time for the reference simulation, i.e., full M-PHM, on this fine grid is approxi-
mately one month, while the actual time for the multilevel computation was 3–4 days.1

5.3. Test results: ENO schemes. As observed by Sjögreen in [22], a multilevel
strategy like the one described in this paper should lead to a considerable gain in
efficiency with respect to the reference simulation under the following conditions:

1. Large number of grid points.
2. Computationally expensive underlying shock capturing scheme.

1All simulations were done with a 350-MHz PC.
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Fig. 5.7. Time evolution of θ (top) and %f (bottom) for Test A (left) and Test B (right) and
for different initial grid G0. (a) 512× 128, (b) 256× 64, (c) 128× 32, (d) 256× 80, (e) 128× 40.

Table 5.3
Cpu time in seconds for the different steps of the multilevel and reference algorithms for one

Runge–Kutta stage. These values are obtained with Test A and the largest grid 512× 128 and with
%f = 23.

Multilevel algorithm Reference algorithm
Transform 0.06 –
Thresholding 0.08 –
Divergence
Evaluation

6.9 13.8

Other 0.15 0.15
Total 7.2 13.95

We have seen this to be the case in the previous section. In this section we would
like to compare the computational gain of the multilevel strategy when applied to the
M-PHM scheme and to the ENO-3 scheme.

Remark 5.1. It should be mentioned that some entropy corrections, as proposed
in [11], are needed near the reflecting wall when using the ENO-3 scheme to avoid the
occurrence of a carbuncle phenomenon in the case of the finest grid for Test A; these
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Fig. 5.8. Zoom of the double Mach reflection region for Test A at t = 0.2 obtained with
2560× 640 grid points.

Table 5.4
Percentage of resolved fluxes and cpu gain for Test A with ENO-3 fluxes at time t = 0.2.

Grid size G0 %fmin − %fmax cpu gain θ
128× 32 17.6 – 54.2 1.54
256× 64 8.9 – 38.4 2.2
512× 128 4.5 – 25.7 2.9

corrections are unnecessary for Marquina’s scheme. For Test B, a Roe-matrix-related
numerical instability develops for grids of size 256 × 64 or larger, which leads to a
crash of the code [9]. These instabilities can be avoided by using appropriate entropy
corrections on the bottom wall of the wind tunnel as specified in [11], but we will not
pursue this here.

Table 5.4 reports the minimum and maximum percentage of ENO-computed nu-
merical divergences and the global gain θ for the simulation with Test A. Comparing
with the results of Table 5.1, we observe that the gain is not as large as in the case of
the M-PHM-based multilevel scheme but remains significant. This fact is consistent
with Sjögreen’s observations, since the cost of a direct evaluation of the numerical
divergence by the M-PHM scheme is higher than that of the ENO-3 scheme (by a
factor of 2 in our implementation).

It is interesting to display also the gain per iteration θiter as a function of %f .
In Figure 5.9 we represent θiter(%f) for the M-PHM-based and ENO-3-based mul-
tilevel strategies. Notice that this representation is more or less independent of the
considered test case since the time evolution is not taken into account.

We observe that the gain is much more important for the M-PHM multilevel
scheme and small values of %f . Observe also that the difference is reduced when this
percentage increases, a fact that could be easily understood considering the following
(crude) estimate of θiter:

θiter =
Nptf

tmr + tthres +Nf tf + (Np −Nf )tI
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Fig. 5.9. Gain per iteration θiter versus the percentage of resolved fluxes %f for Marquina (∗)
and ENO (o) schemes.

=
tf

1
Np

(tmr + tthres) + λtf + (1− λ)tI
,(5.3)

where tf is the cpu time to compute one value of the numerical divergence with the
HRSC scheme, tI is the cpu time for one interpolation, and tmr and tthres denote,
respectively, the multiresolution transform and thresholding cpu times (which are
essentially negligible, as shown in Table 5.3). Np is the total number of grid points, Nf

represents the number of points where the numerical divergence is evaluated directly,
and λ = Nf/Np.

Considering the same percentage of resolved fluxes for both schemes, i.e., %fM =
%fE(= 100 ∗ λ), we can write

θMiter
θEiter

=
tMf
tEf

1
Np

(ttrans + tthres) + λtEf + (1− λ)tI
1
Np

(ttrans + tthres) + λtMf + (1− λ)tI
∼ 2

λ+ (1− λ) tI
tE
f

2λ+ (1− λ) tI
tE
f

,(5.4)

since in our implementation tMf /tEf ∼ 2.
The function

g(λ) = 2
λ+ (1− λ)β

2λ+ (1− λ)β
(5.5)

is monotonically decreasing and approaches 1 when λ tends to 1. Moreover, the
smaller the ratio β, the faster the convergence to the limit value. In our computations,
the ratio β := tI/tf is approximately 1/56, which leads to g(.4) = 1.01 and explains
the behavior observed on Figure 5.9. When %f ≥ 60% the multilevel algorithm is no
longer computationally competitive with respect to the reference simulation (see also
the first entry in Table 5.2).

6. Conclusions. We have presented a multilevel algorithm designed to reduce
the high computational cost associated to HRSC schemes for hyperbolic systems of
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conservation laws, and we have investigated the application of this multilevel strategy
to state-of-the-art HRSC schemes using standard tests for the 2D Euler equations.

The numerical results presented in this paper point out that there is a significant
reduction of the computational time when using the multilevel algorithm and confirm
Sjögreen’s observations in [22]: the more expensive the flux computation, the better
the efficiency of the multilevel computation with respect to the reference simulation.

Our multilevel strategy follows the basic design principle of Bihari and Harten
in [5], but it is built upon the interpolatory multiresolution framework, instead of
the cell-average framework, as in [1, 2, 5, 6, 22, 17]. Through a series of numerical
experiments, we show that the strategy we propose offers the possibility of obtain-
ing a high-resolution numerical solution on a very fine grid at the cost of the user’s
own numerical technique on a much coarser mesh. Its potential users might be re-
searchers performing computational tests with state-of-the-art HRSC methods and
using uniform grids.

As in [1, 2, 5, 22], our technique works on the discrete values at the highest
resolution level, which need to be always available. There are no memory savings
with respect to the reference simulation. In [6, 17], the authors concentrate on solving
the evolution equations associated to the (cell-average) scale coefficients. While this
option opens the door to what might be an alternative to AMR, a fully adaptive
algorithm with selective refinement and real memory savings, it also suffers, in our
opinion, from some of the drawbacks of AMR: the need of a special data structure
which invariably leads to a very complicated coding structure.

On the other hand, our approach (due in part to the use of the interpolatory
framework) is pretty transparent, even to the nonexpert in multiscale analysis, and
its incorporation into an existing hydrodynamical code is, in principle, much easier.
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[10] F. Eulderink, Numerical Relativistic Hydrodynamics, Ph.D. thesis, University of Leiden, Lei-

den, The Netherlands, 1993.
[11] R. Fedkiw, A. Marquina, and B. Merriman, An isobaric fix for the overheating problem in

multimaterial compressible flows, J. Comput. Phys., 148 (1999), pp. 545–578.
[12] R. Fedkiw, B. Merriman, R. Donat, and S. Osher, The Penultimate Scheme for Systems of

Conservation Laws: Finite Difference ENO with Marquina’s Flux Splitting, UCLA CAM
Report 96-18, UCLA, Los Angeles, CA, 1996.



MULTISCALE ALGORITHMS FOR COMPRESSIBLE FLOWS 823

[13] A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math.,
12 (1993), pp. 153–192.

[14] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation
laws, Comm. Pure Appl. Math., 48 (1995), pp. 1305–1342.

[15] A. Harten, Multiresolution representation of data: A general framework, SIAM J. Numer.
Anal., 33 (1996), pp. 1205–1256.

[16] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, J.
Comput. Phys., 150 (1999), pp. 97–127.

[17] S. Kaber and M. Postel, Finite volume schemes on triangles coupled with multiresolution
analysis, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), pp. 817–822.

[18] A. Marquina, Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar
conservation laws, SIAM J. Sci. Comput., 15 (1994), pp. 892–915.

[19] J. Marti, E. Muller, J. Font, J. Ibanez, and A. Marquina, Morphology and dynamics of
relativistic jets, Astrophys. J., 479 (1997), pp. 151–163.

[20] J. Quirk, A contribution of the great Riemann solver debate, Internat. J. Numer. Methods
Fluids, 18 (1994), pp. 555–574.

[21] C.-W. Shu and S. J. Osher, Efficient implementation of essentially nonoscillatory shock-
capturing schemes. II, J. Comput. Phys., 83 (1989), pp. 32–78.
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A MODEL FOR THE UNSTABLE MANIFOLD OF THE BURSTING
BEHAVIOR IN THE 2D NAVIER–STOKES FLOW∗
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Abstract. Quasi-periodic and bursting behaviors of the two-dimensional (2D) Navier–Stokes
flow are analyzed. The tools used are the proper orthogonal decomposition (POD) method and
the artificial neural network (ANN) method. The POD is used to extract coherent structures and
prominent features from PDE simulations of a quasi-periodic regime and a bursting regime. Eigen-
functions of the two regimes were related by the symmetries of the 2D Navier–Stokes equations.
Three eigenfunctions that represent the dynamics of the quasi-periodic regime and two eigenfunc-
tions associated with the unstable manifold of the bursting regime were derived. Calculations of the
POD eigenfunctions are performed on the Fourier amplitudes in a comoving frame. Inverse Fourier
transform is applied to represent the POD eigenfunctions in both streamfunction and vorticity for-
mulations so that the number of relevant eigenfunctions for streamfunction and vorticity data is the
same. Projection onto the two eigenfunctions associated with the unstable manifold reduces the data
to two time series. Processing these time series through an ANN results in a low-dimensional model
describing the unstable manifold of the bursting regime that can be used to predict the onset of a
burst.

Key words. 2D Navier–Stokes equations, proper orthogonal decomposition, symmetry, neural
networks

AMS subject classifications. 35K55, 58F39, 65M70

PII. S1064827599355013

1. Introduction. The use of the artificial neural network (ANN) in modelling
various real-world problems has shown a remarkable success in diverse areas such as
speech recognition [1], combinatorial optimization [2], image processing, artificial in-
telligence, control systems [3], and pattern recognition [4]. Recently, ANN has been
applied to process nonlinear time series particularly for the prediction of temporally
complicated dynamics [5, 6, 7] and the identification of long-term dynamic behavior
[8] and bifurcation [9]. A neural network is a logical structure in which multiple nodes,
or neurons, operating in parallel, communicate with each other through connecting
synapses. The greatest advantage of a neural network is its ability to model complex
nonlinear relationships without any a priori assumptions about the nature of the rela-
tionships. ANN was also combined with proper orthogonal decomposition to estimate
rock permeability [10], to model fluid flow in porous media [11], and to model cellular
flames [12].

The proper orthogonal decomposition (POD), also known as Karhunen–Loève
decomposition, principal component analysis, and singular value decomposition, has
wide applications in scientific problems for both data compression and feature identi-
fication [13, 14, 15, 16]. Recently, most applications of the POD method have concen-
trated on modelling PDE simulations with optimal POD eigenfunctions to generate
Galerkin systems that behave like the large-scale numerical simulations of the PDE
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[17, 18, 19, 20]. The system of ordinary differential equations (ODEs), thus obtained,
is valid most of the time for a finite range of the bifurcation parameter. However,
if the POD method is used to analyze experimental data when there is no known
mathematical model for the data, then there is no straight way of reducing the data
via a Galerkin projection. Therefore, the use of ANN combined with POD has been
shown to be a feasible approach [12].

The objective of this research is to develop a model for the unstable manifold
of the bursting behavior in the two-dimensional (2D) Navier–Stokes flow known as
Kolmogorov flow. The model will then be used to predict the onset of a burst during
the bursting regime; thus, controlling the chaotic regime or delaying its instability.
To achieve the above objectives, POD in conjunction with ANN is used. The POD
eigenfunctions are obtained from numerical Kolmogorov simulations for a regime char-
acterized by a quasi-periodic behavior at a Reynolds number, Re = 25.7. Those eigen-
functions are related to the POD eigenfunctions of the laminar part of the bursting
regime at Re = 25.77 by the symmetries of the 2D Navier–Stokes equations. The idea
of symmetry was first introduced by Sirovich [21]. He suggested the use of symmetry
operations to enlarge the available dataset in order to get better averaging behavior.
Later on, Aubry, Lian, and Titi [22] have shown that by using a symmetrized dataset,
the resulting POD Galerkin system is equivariant with respect to the symmetry which
is a necessary condition to achieve a representation of the global phase space. Berkooz
and Titi [23] showed that there is no need to apply a symmetry group on an actual
realization since all information gained is contained in the eigenfunctions and eigen-
values of the original experiment. Therefore, the symmetry group should be applied
on the eigenfunctions. They suggested possible computational savings. Smaoui and
Armbruster [17] demonstrated that the computational savings promised in [23] can
only be realized if the eigenfunctions are obtained using the snapshot method.

Using the snapshot method, the difference between the data field at Re = 25.77
and the symmetrized data at Re = 25.7 describes the unstable manifold that leads
toward bursting. A POD analysis of this data reveals that 97% of the energy in the
unstable manifold is contained in two eigenfunctions. Instead of projecting the 2D
Navier–Stokes equations onto these two eigenfunctions, and getting a nonautonomous
2D system of ODEs, we project the unstable data onto those two eigenfunctions to
reduce the data to a small number of time series. Finally, the time series is processed
through an ANN which results in a low-dimensional, nonlinear dynamical model de-
scribing the unstable manifold of the bursting regime.

The remainder of this paper is organized as follows: Section 2 discusses the burst-
ing behavior of the Kolmogorov flow. Section 3 describes the POD analysis and how
it is adapted to Kolmogorov flow. Section 4 presents the ANN model for the unstable
manifold, and we conclude in section 5.

2. The bursting regime of the Kolmogorov flow. The 2D Kolmogorov
flow is the solution of the 2D Navier–Stokes equation with force �f = ( 1

Re
k3 cos ky, 0)

assumed stationary and spatially biperiodic. It was introduced by Kolmogorov in
the late 1950s as an example with which to study transition to turbulence. This 2D
Kolmogorov flow is studied because of the rich symmetries and the lack of boundary
layer associated with it as compared to the Navier–Stokes equations. This will help
us gain insight in the understanding of the behaviors of the three-dimensional Navier–
Stokes equations. For very low macroscopic Reynolds number Re, the only stable flow
is the plane parallel periodic shear flow �u0 = (k cos ky, 0), usually called the “basic
Kolmogorov flow.” In a 2 π-periodic square box the equations are
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∂�u

∂t
+ �u.∇�u +∇p =

1

Re
∇2�u + �f, ∇.�u = 0,

�f =
(

1
Re

k3 cos ky, 0
)
, 0 ≤ x, y ≤ 2π.

(1)

In the usual stream function representation of the flow, (1) becomes

∂∆φ′

∂t
+

∂

∂x

(
∆φ′ ∂φ

′

∂y

)
− ∂

∂y

(
∆φ′ ∂φ

′

∂x

)
=

1

Re
∆2φ′ +

∂f1

∂y
− ∂f2

∂x
.(2)

The stability of the basic Kolmogorov flow, sin ky, is analyzed by perturbing it as
φ′ = φ + sin ky. Thus, the equations for a perturbation of the Kolmogorov flow
reduce to

∂∆φ

∂t
= ∆2φ− kRe

∂

∂x
[∆φ+ k2φ] cos ky−Re

[
∂

∂x

(
∆φ

∂φ

∂y

)
− ∂

∂y

(
∆φ

∂φ

∂x

)]
.(3)

The symmetries of (3) follow from the Euclidean invariance of the Navier–Stokes
equations restricted by the form of the force. All the symmetries are generated by
the following transformations:

Tξ : x → x + ξ,
r : (x, y) → (−x,−y + π

k ),
s : (y, φ) → (−y,−φ),
t : y → y + 2π

k .

(4)

Since (rs)2 = t and (rs)2k = id, the two symmetry operations s and rs generate the
symmetry group of the regular 2k-gon D2k. The complete symmetry group of (3) can
be written as the semidirect product D2k+̇SO(2).

In the simplest case, k = 1, the Kolmogorov flow with 2π-periodic boundary
conditions is not unstable for any value of Re [24, 25, 26], and one is forced to consider
k > 1. Bifurcations of the 2D Navier–Stokes equation have been investigated in
[27, 28, 29, 30, 31, 32] and transitions that occur at higher Reynolds number when k =
8 have been studied in [33, 34, 35]. Recently, symmetries and dynamical information
for all attractors at low Reynolds number when k = 2 have been investigated in
[30, 36]. In [30] most bifurcations that occur at low Reynolds number were analyzed
and it has been shown that the low-dimensional attractor for the 2D Navier–Stokes
flow has a crucial component that lies in the stable eigenspace of the trivial solution.
In this study, we focus on a weakly chaotic regime that occurs at Re = 25.77 for
k = 2 (the laminar states are still stable at Re = 25.70). The most striking feature
of this regime is that the dynamics follows a long laminar regime, then undergoes a
burst and settles down to a laminar regime at the same level as before; then other
explosions follow. Intervals between bursts are not constant and fluctuate randomly.
A study of the Fourier modes [30, 36] shows that

• the laminar regime can be described by a modulated travelling wave with
well-defined symmetries;
• successive laminar intervals may not correspond to identical dynamical states

but rather to a sequence of states mapped onto each other under some group
action.

This kind of behavior was discussed in terms of heteroclinic and homoclinic con-
nections in phase space involving an analysis of the symmetry group of the system
[30, 36]. Information is obtained on the unstable manifold of the hyperbolic tori where
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Fig. 1. (a) Level set for the streamfunction for Re = 25.7. (b) Level set for the vorticity for
Re = 25.7.

Fig. 2. Time evolution of the maximum vorticity at Re = 25.77.

the dynamics is still weakly chaotic and remains for a very long time in a neighborhood
of the tori. Figure 1 shows a typical plot of the streamfunction, φ, and the vortic-
ity, w = −∆φ at Re = 25.7. Figure 2 depicts the maximal vorticity against time
in typical time series at Re = 25.77. Figure 2 reveals a long laminar sequence with
“microbursts” spaced far apart. We will use POD analysis on these “microbursts” to
be able to reveal the trigger mechanism for the bursting behavior.

3. POD. POD is a well-known procedure. It has been used in various fields of
applications with different names [13, 14, 15, 16]. We summarize the main idea only
briefly. One begins with a given inhomogeneous, chaotic and/or random realization
of some state variable u(x), which could be laboratory experimental data or data
created by a large-scale simulation as in [21]. We assume that the average of u(x, t),
defined as

〈u(x, t)〉 =
1

M

M∑
i=1

ui,(5)
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is equal to zero. The data set u (x, t) is defined over a finite spatial domain R and
finite interval M . A scalar product is given as

(u, u′) =

∫
R

u (x, t)u
′
(x, t) dx.(6)

We choose a function ψ1(x) such that the projection of the dataset onto all possible
functions ψ(x), given by

λ1 =
1

M

M∑
i=1

(ψ1(x), ui(x))
2
,(7)

is maximal, where we can normalize (ψ1, ψ1) = 1. Proceeding inductively, we can find
ψ2 with (ψ2, ψ1) = 0, (ψ2, ψ2) = 1 such that

λ2 =
1

M

M∑
i=1

(ψ2(x), ui(x))
2

(8)

is maximal. In this way, we can find a unique orthonormal set of functions ψn which
are the eigenfunctions of the Fredholm-type integral equation∫

R

K (x, y)ψ (y) dy = λψ (x) ,(9)

where K (x, y) is the time-averaged correlation function

K (x, y) = 〈u (x, t)u (y, t)〉 = lim
M→∞

1

M

M∑
i=1

ui(x)ui(y),(10)

approximated by

K (x, y) =
1

M

M∑
i=1

ui(x)ui(y).(11)

The ψn’s are called the empirical eigenfunctions, the coherent structures, etc. It can
be shown that any projection of the data u (x, t) onto a finite set of ψk, given by

uN = PNu =

N∑
k=1

ak (t)ψk (x) ,(12)

yields amplitudes ak that are uncorrelated with respect to the averaging process; that
is,

〈aj (t) ak (t)〉 = λjδjk,(13)

where λj is the variance of the data in the direction of the kth eigenfunction. Fur-
thermore, the error given by

εN = ‖u− uN‖2(14)

is a minimum over all possible sets of orthonormal functions for any given N , where
‖.‖ is the L2-norm. The “energy” of the data is defined as the sum of eigenvalues of the
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correlation function, E =
∑
i λi. We assign an energy percentage to each eigenfunction

based on its associated eigenvalues, i.e., Ek = λk
E .

Since we hope to identify the building blocks of low-dimensional attractors in
spatio-temporally complex data, we assume that we have a high resolution in space
and a comparatively low-dimensional attractor. That is, we assume N 	 M , since
we can sample the attractor with only a few snapshots. Two approaches were known
in the literature [21] for calculating the correlation function. The first is the direct
method in which the covariance matrix is approximated by

C =
1

M

M∑
i=1

ui(x)ui(x)T .(15)

This covariance matrix is an N ×N matrix. For large N , this matrix can become too
large for practical computation. The second method, known as the snapshot method,
makes the computation more tractable [17]. In this case, the practical approach for
calculating the correlation matrix is not to determine the N ×N correlation matrix
but to use the dual approach on the M snapshots, also known as the sample space
setting [21]. We take the snapshot vector uk(x), k = 1, . . . ,M, and determine the
empirical eigenfunctions ψk(x) as an admixture of the given snapshots, i.e.,

ψk (x) =

M∑
j=1

φ
(k)
j uj (x) ,(16)

where φ
(k)
j is the jth component of the kth eigenvector and such that the projection

of the data is maximal on the ψk (x), as in the previous process. The corresponding
eigenvalue problem is then to find the eigenvalues and eigenfunctions of the symmetric
M ×M matrix C with

Cij =
1

M
(ui (x) , uj (x)) =

1

M

N∑
k=1

ui (xk)uj (xk) .(17)

First, we concentrate on a laminar regime characterized by travelling waves that
consist of a travelling structure plus additional time-dependent behavior at Re =
25.70. We perform POD analysis on the Fourier amplitudes in a comoving frame of
the travelling wave and find three eigenfunctions that capture 99.8% of the energy
of the datafield. The inverse Fourier transformation of those three eigenfunctions is
represented in terms of the streamfunction and vorticity formulations in Figures 3
and 4, respectively. The first eigenfunction captures 96.6% of the energy and lies in
the invariant subspace Fix(sTπ). This is shown in Figure 5 by first operating with the
Tπ symmetry on the first streamfunction eigenfunction and by the s symmetry on the
resulting eigenfunction. Figure 6 is the same as Figure 5 except for the first vorticity
eigenfunction. The difference between the original eigenfunction and the symmetrized
one in both streamfunction and vorticity formulations is shown in Figure 5(d) and
Figure 6(d), respectively. The second and third eigenfunctions capture 2.6% and
0.62% of the energy, respectively. Inspection shows that those two eigenfunctions
span a plane in phase space orthogonal to Fix(sTπ). These findings confirm that the
laminar flow can be described as a modulated travelling wave which in phase space
is represented by a torus. If we act with the whole symmetry group on the torus, we
determine the group orbit of the torus. In particular, we can act with t and r on the
solution to obtain different solutions; two solutions in Fix(sTπ) and two in Fix(tsTπ).
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Fig. 3. The first three POD eigenfunctions given in terms of streamfunction.

Fig. 4. The first three POD eigenfunctions given in terms of vorticity.
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Fig. 5. The first POD eigenfunction for the streamfunction (a) for Re = 25.7, (b) for Re = 25.7
after the transformation by Tπ, and (c) for Re = 25.7 after the transformation by sTπ. (d) The
difference between the original POD eigenfunction (a) and the transformed one (c).

Fig. 6. The first POD eigenfunction for the vorticity (a) for Re = 25.7, (b) for Re = 25.7 after
the transformation by Tπ, and (c) for Re = 25.7 after the transformation by sTπ. (d) The difference
between the original POD eigenfunction (a) and the transformed one (c).
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Fig. 7. Real and imaginary part of the Fourier amplitude eiy for Re = 25.77.

Next, we consider a slightly higher Reynolds number, namely, Re = 25.77, that
leads to a bursting behavior (see Figure 2). This Reynolds number varies very little
as compared to the Reynolds number of the laminar regime. If we look closely enough
at the Fourier amplitudes of the mode eiy (see Figure 7), we notice that the laminar
phases in between bursts look very much like the laminar phase at Re = 25.7. In
particular, if we plot the imaginary part versus the real part of the Fourier amplitudes
of the mode eiy, we observe the four modulated travelling waves discussed earlier (see
Figure 8). Therefore, it is reasonable to assume that there exists a close connection
between the stable laminar flow at Re = 25.7 and the laminar phase in between bursts
at Re = 25.77. Figure 8 also shows that the bursting behavior is not associated
with structurally stable heteroclinic cycles. To extract the unstable manifold of the
modulated travelling wave that leads toward bursting, we consider a particular laminar
window of the dataset in Figure 7. This is obtained by considering the data that look
perfectly laminar. These data are contaminated with the dataset associated with the
unstable manifold of the bursting regime, and therefore the eigenfunctions extracted
from it will not correspond to the pure laminar state. As a result, we use the dataset of
the modulated travelling wave at Re = 25.7 to extract the eigenfunctions responsible
for the laminar regime. We then relate these eigenfunctions by the symmetry of
the Navier–Stokes equations in order to obtain the eigenfunctions responsible for the
laminar state between two bursts. This is done by showing that the most energetic
eigenfunction of the data in between two bursts is almost identical up to a phase shift
to one of the four possible laminar phases that appears at Re = 25.70 (see Figure 9).
This phase shift is determined by matching the amplitudes and phase of eix mode.
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Fig. 8. Phase plot of the simulation at Re = 25.77. The (x, y) coordinates are the real and
imaginary parts of the Fourier amplitude eiy.

We then shift the first three eigenfunctions of the laminar case by the phase shift
thus determined and project the data in between two bursts onto these modes. The
difference between this projection and the datafield describes the unstable manifold
that leads toward bursting. A POD analysis of this data reveals that 97% of the energy
in the unstable manifold is contained in two eigenfunctions (see Figure 10). The time
series of the amplitudes of those eigenfunctions can be displayed by projecting the
unstable manifold data onto those two POD eigenfunctions (see Figure 11). To model
the unstable manifold for this particular datafield, we will use ANN on the time series.

4. ANN. ANN can be considered as a nonlinear dynamic system consisting of
a large number of highly interconnected processing nodes. These nodes were inspired
by studies of biological nervous systems and the internal operation of the human
brain. They operate in parallel, communicating with each other through connect-
ing synapses. Each node receives input, computes an activation, and transmits that
activation to other processing nodes. The connection between two nodes is charac-
terized by a weight. Learning occurs while modification of a weight matrix is un-
dertaken. Therefore, what the network computes is highly dependent on how the
nodes are interconnected and on the strengths of the connections or weights between
them. The architecture of a neural network depends on the node characteristics,
network topology, and learning algorithm. A sensitivity study on different neural
network architectures led to the choice of an optimal network topology that consists
of a six-node input layer, two ten-node hidden layers, both with a nonlinear sigmoid
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Fig. 9. (a) The first most energetic eigenfunction for Re = 25.7 given in streamfunction level
set. (b) The first most energetic eigenfunction for Re = 25.77 given in streamfunction level set for
data between two bursts. (c) and (d) are for the first most energetic vorticity eigenfunction. Notice
the shift in x, T3.95.

Fig. 10. The first two most energetic eigenfunction of the unstable manifold given in terms of
streamfunction.

function σ(x) = tanhx, and a two-node output layer with linear transfer function
is used (see Figure 12). The input layer consists of the time series a1(t), a suitable
number of delays [a1(t − ∆), a1(t − 2∆)], and the time series a2(t) with two delays
[a2(t−∆), a2(t− 2∆)]. The output is the predicted values a1(t+P ) and a2(t+P ) of
the time series at time t + P , that is, we have the following mapping:

ai(t + P ) = f(aj(t), aj(t−∆), aj(t− 2∆)); i, j = 1, 2,(18)

where f is a set of nonlinear functions representing the neural network model, ∆ is a
time delay, and P is the prediction time into the future.
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Fig. 11. The data coefficients of the first two eigenfunctions associated with the unstable
manifold.

Fig. 12. ANN paradigm used for the time series of the data coefficients of the unstable manifold.

Once an architecture has been chosen, it remains to select a learning algorithm.
The standard backpropagation learning algorithm has been the most widely used.
The backpropagation algorithm is a gradient descent or steepest descent that uses
the mean square error of the system over a given set of input-output pairs [37]. The
overall error is usually defined as

e =
1

2

∑
p

∑
k

(zk − yk)2p(19)

over all output nodes k and input vector patterns p. In this notation, zk is the target
vector of the kth output node and yk is the actual output vector of the kth output
node. During the training phase, the weights are successively modified in order to
reduce e. The backpropagation algorithm has been demonstrated to be effective in
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learning but is known to have a slow learning convergence rate because the generalized
delta rule is basically a gradient descent scheme with constant step length. Gradient
descent is simply the technique where parameters, such as weights, are moved in the
opposite direction to the error gradient. Each step down the gradient results in a
smaller error until an error minima is reached.

Recently, many learning algorithms and procedures were proposed to improve the
modelling capability and learning convergence rate of the backpropagation algorithm
[38, 39, 40]. Among the procedures proposed is the momentum procedure. It is
basically used to avoid the search process getting stuck in a local minimum rather
than a global one, a detailed description of which can be found in [10]. In this study,
the training algorithm uses the Levenberg–Marquardt variation of Newton’s method
to modify the neural network weights. Newton’s method can be written as

∆w = (JTJ)−1JT e,(20)

where J is the Jacobian matrix of derivatives of each error to each weight, and e is an
error vector. The problem with the above equation is that JTJ may not be invertible.
Thus, the Levenberg–Marquardt algorithm guarantees invertibility when

∆w = (JTJ + µI)−1JT e,(21)

where µ is a scalar. When µ is small the above expression approximates the Gauss–
Newton method, and when it is very large it approximates gradient descent. The
Gauss–Newton method is used because it is faster and more accurate near an error
minimum. Thus, µ is decreased after each successful step and increased only when a
step increases the error.

The optimal network architecture discussed earlier with ∆ = 4, and P = 4,
has been trained using data coefficients obtained from the time series of the unstable
manifold of one of the four possible modulated travelling waves (i.e., data from vectors
corresponding to 420 ≤ t ≤ 530; see Figure 7). The choice of ∆ implies that a
prediction made P time steps into the future past the last actual data coefficients
a1(t), a2(t) will be made using actual dataset at times: a1(t), a1(t − 4), a1(t − 8),
a2(t), a2(t− 4), and a2(t− 8). The training was considered successful when the mean
square error e ≤ 10−4. Figure 13 shows both original and predicted time series during
the training procedure for the first and second data coefficient a1(t) and a2(t). The
neural network model is then tested on a different time series associated with another
unstable manifold (i.e., data from vectors corresponding to 1640 ≤ t ≤ 1720; see
Figure 7). Figure 14 shows the excellent agreement between the original time series
and the one estimated using the neural network model. Different tests were done on
other generated unstable manifolds and excellent prediction has been achieved in each
case.

5. Conclusions. We have shown that the use of ANN in conjunction with POD
for predicting the data coefficients associated with the unstable manifold of the burst-
ing behavior is very successful. The POD analysis was used to analyze and extract co-
herent structures from a bursting behavior and a quasi-periodic behavior. Two types
of dynamics were observed during the bursting regime: a large-scale, low-dimensional
one similar to the one observed in the quasi-periodic regime which can be represented
by three coherent structures. Riding on top of that dynamics is a small-scale dynam-
ics characterized by two coherent structures. Those two coherent structures play a
role in triggering the burst event and hence in the randomness of the time between
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Fig. 13. Time series plot for the training data set of the two data coefficients a1(t) and a2(t).
Original (solid line) and predicted (circle) data set values.

Fig. 14. Time series plot for the testing data set of the two data coefficients a1(t) and a2(t).
Original (solid line) and predicted (circle) data set values.

bursts. Modelling the small-scale dynamics using ANN helps predict the time needed
for the occurrence of a burst. The combination of the two approaches has shown to
be a powerful method capable of accurately producing a model that can be used to
predict the onset of a burst, thus delaying the bursting regime.

This work establishes a foundation for using neural network to predict the small-
scale dynamics of more complicated regimes (e.g., k = 4 and k = 8) which will be the
subject of future studies.
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Abstract. Most minimax theorems in critical point theory require one to solve a two-level
global optimization problem and therefore are not for algorithm implementation. The objective of
this research is to develop numerical algorithms and corresponding mathematical theory for finding
multiple saddle points in a stable way. In this paper, inspired by the numerical works of Choi–
McKenna and Ding–Costa–Chen, and the idea to define a solution submanifold, some local minimax
theorems are established which require us to solve only a two-level local optimization problem. Based
on the local theory, a new local numerical minimax method for finding multiple saddle points is
developed. The local theory is applied, and the numerical method is implemented successfully to
solve a class of semilinear elliptic boundary value problems for multiple solutions on some nonconvex,
non star-shaped and multiconnected domains. Numerical solutions are illustrated by their graphics
for visualization. In a subsequent paper [Y. Li and J. Zhou, Convergence results of a minimax method
for finding critical points, in review], we establish some convergence results for the algorithm.
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1. Introduction. Multiple solutions with different performance and instability
indices exist in many nonlinear problems in natural and social sciences [33, 30, 24,
36, 23]. When cases are variational, the problems can be reduced to solving the
Euler–Lagrange equation

J ′(u) = 0,(1.1)

where J , called a generic energy functional, is a C1-functional on a Banach space H,
and J ′ or ∇J is its Frechet derivative. A solution to the Euler–Lagrange equation
(1.1) is called a critical point of J . The first candidates for critical points are the
local maxima and minima to which the classical critical point theory was devoted
in calculus of variation. Traditional numerical methods focus on finding such stable
solutions. Critical points that are not local extrema are called saddle points, that is,
critical points u∗ of J for which any neighborhood of u∗ in H contains points v, w
such that (s.t.) J(v) < J(u∗) < J(w). In physical systems, saddle points appear as
unstable equilibria or transient excited states. Note that this definition is different
from and much more general than the saddle point in optimization and game theory
in which a splitting structure for the space H is required to be known in advance and
which is therefore not used in critical point theory.
A number c ∈ R is a critical value of J if J(û) = c for some critical point û. For

a critical value c, the set J−1(c) is called a critical level. When the second Frechet
derivative J ′′ exists at a critical point û, then û is said to be nondegenerate if J ′′(û)
is invertible. Otherwise, û is said to be degenerate.
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Stability is one of the main concerns in control and system design. On the other
hand, in many applications, higher maneuverability and performance are desirable, in
particular, in system design for emergency or combat machineries. Unstable solutions
may have much higher maneuverability and performance indices.
Can one find a way to provide a choice or balance between instability and ma-

neuverability or performance indices? Thus one needs to solve for multiple solutions
and then study their individual properties.
Numerically finding such unstable solutions in a stable way is very challenging.

So far, there is virtually no theory existing in the literature to devise such a feasi-
ble numerical algorithm. The objective of this research project is to systematically
develop effective numerical algorithms and corresponding mathematical theory for
finding multiple saddle points in a stable way. To do so, we need to know the local
mathematical structure of a critical point and its connection to a critical point at the
next critical level. We do not intend to establish new existence theorems.
Structure and behavior of critical points have attracted the attention of many

researchers. In 1925, Morse proved that if û is a nondegenerate critical point of a
real function J of n variables, then there exists a neighborhood N (û) of û and a local
homeomorphism h from N (û) into H s.t.

J(h(u)) = J(û) +
1

2
〈J ′′(û)u, u〉 ∀u ∈ N (û).

That is, J behaves locally like a quadratic function around a nondegenerate critical
point. This result, called the Morse lemma, has been extended to a real-valued infinite-
dimensional functional [10]. Therefore, critical levels with a local minimum, if it exists,
at the bottom can be imagined.
The Morse index (MI) of a critical point û of a real-valued functional J is the

maximal dimension of a subspace of H on which the operator J ′′(û) is negative defi-
nite; the nullity of a critical point û is the dimension of the null-space of J ′′(û). Thus,
for a nondegenerate critical point, if its MI = 0, then it is a local minimizer and a
stable solution, and if its MI > 0, then it is a saddle point, an unstable solution.

Definition 1.1. A point v ∈ H is called a descent (ascent) direction of J at a
critical point û if there exists δ > 0 s.t.

J(û+ tv) < (>) J(û) ∀0 < |t| < δ.

Thus J has at least k linearly independent descent directions at a critical point
with MI = k.
Many boundary value problems (BVPs) are equivalent to solving [33]

A(u) = 0(1.2)

for a solution u ∈ H and an operator A : H → H∗. When the problem is variational,
there exists J : H → R s.t.

〈A(u), v〉 = 〈J ′(u), v〉 = lim
t→0

J(u+ tv)− J(u)

t
∀v ∈ H,(1.3)

or A(u) = J ′(u). Thus û is a (weak) solution to (1.2) if and only if û is a critical point
of J .
The following semilinear BVP is our model problem in this paper; it is known

that this model has originated from many applications in physics, engineering, biology,
ecology, geometry, etc. Consider

∆u(x)− �u(x) + f(x, u(x)) = 0, x ∈ Ω,(1.4)
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for u ∈ H with either the zero Dirichlet boundary condition (BC) or the zero Neumann
BC, where Ω is a bounded open domain in R

N , and f is a nonlinear function of
(x, u(x)) with u ∈ H. For the zero Dirichlet BC, we let H = H1

0 (Ω) and � ≥ 0; for the
zero Neumann BC, we let H = H1(Ω) and � > 0, where H1(Ω) is the Sobolev space
W 1,2(Ω) and H1

0 (Ω) = {v ∈ H1 : v(x) = 0, x ∈ ∂Ω} [1]. The associated variational
functional is the energy

J(u) =

∫
Ω

{
1

2
|∇u(x)|2 + 1

2
�u2(x)− F (x, u(x))

}
dx,(1.5)

where F (x, t) =
∫ t
0
f(x, τ)dτ satisfies the assumptions (h1)–(h5) as stated in section 4

and u ∈ H. Then a direct computation shows that a point û ∈ H is a critical point of
J in H if and only if û is a weak solution to the BVP (1.4) and, therefore, a classical
solution to (1.4) by a standard elliptic regularity argument.
Since Ljusternik–Shnirelman (1934), under a deformation assumption, proved

the existence of a saddle point as a minimax solution, i.e., a solution to a two-level
optimization problem

min
A∈A
max
v∈A

J(v)(1.6)

for some collection A of subsets A in H, the minimax principle has become the
most popular approach in critical point theory. Note that there is another minimax
approach in multilevel optimization and game theory, which is a two-level optimization
of the form

min
x∈X
max
y∈Y

J(x, y),

where H = X × Y for some subspaces X and Y . Due to its splitting structure, this
minimax approach prevents us from turning around in a search for a critical point.
Although, it is known that if J ′′(û) is self-adjoint and Fredholm, H has such a splitting
structure around a nondegenerate critical point û according to the Morse theory. But
such a splitting structure depends on û and is not known until one finds û. Thus this
minimax approach does not help in searching for a critical point and is not used in
critical point theory.
It is the mountain pass lemma, proved in 1973 by Ambrosetti–Rabinowitz [3] by

constructing a deformation, that sets a milestone in nonlinear analysis. Since then,
minimax theorems have gained great popularity in the study of nonlinear PDEs and
dynamic systems. Various minimax theorems, such as linking and saddle point theo-
rems, have been successfully established to prove the existence of multiple solutions to
various nonlinear PDEs and dynamic systems [5, 8, 10, 13, 14, 16, 22, 23, 24, 26, 27,
30, 31, 32, 33, 34, 36]. For example, for a semilinear elliptic equation ∆u+ f(u) = 0
with the zero Dirichlet BC, when f(u) is superlinear, it is known that if f is odd,
then infinitely many solutions exist; otherwise, a third sign-changing solution (MI
= 2) exists [34, 5, 9] in addition to a positive and a negative solution.
When multiple solutions exist in a nonlinear system, some are stable and others

are unstable. A stable solution (MI = 0) can be found through local minimization
techniques or a monotone iterative scheme (see, e.g., [2, 7, 11, 15, 18, 19, 28, 29]).
However, relatively little is known in the literature on constructing algorithms to
compute such unstable saddle points in a numerically stable way. One might mention
Newton’s method. Note that zeros and critical points are different concepts. Without
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knowing or using the local structure of a (degenerate) critical point, the usual Newton
method will not be effective or stable. When a local minimization is involved in a
quasi-Newton method, it will lead to a local minimum, in the case of (1.4), the zero.
Most minimax theorems in the literature mainly focus on the existence issue.

They require one to solve a two-level global optimization problem, i.e., (constrained)
global maximizations at the first level and a global minimization at the second level,
and therefore are not for algorithm implementation.
By studying the mountain pass lemma and using an idea from Aubin–Ekeland

[4], in 1993 Choi–McKenna [12] proposed a numerical minimax algorithm, called a
mountain pass method, to solve the model problem basically for a solution with
MI = 1. The algorithm opens a brand new door to numerically compute unstable
solutions. The algorithm has been modified in [17] and further revised in [11]. Since
the function J in [12] has only one maximum along each direction, whether or not
it is a local or global maximum at the first level is not a concern there. The merit
of this algorithm is that (a) at the first level, a maximization is taken over an affine
line starting from 0, and (b) a steepest descent direction is used to search for a
local minimum at the second level. In contrast, the mountain pass lemma requires a
maximization on every continuous path connecting 0 and a given point v at the first
level and then a global minimization at the second level. Thus the method in [12]
cannot be justified by the mountain pass lemma. An earlier result of Ding–Ni [27],
which proved for the model problem the existence of a saddle point as a minimax
solution that requires a unique maximization on each affine line starting from 0 at
the first level and a global minimization at the second level, can only be viewed as a
partial justification.
In [11], for a class of functionals, a very simple scheme called a scaling iterative

method is designed to find a solution with MI = 1. That approach is not based on
functional analysis. A partial justification of that algorithm is also given there.
A high linking theorem for the existence of a third solution (MI = 2) is proved

in [34] by constructing a “local link” at a mountain pass solution. Motivated by this
idea, a numerical high linking method is proposed in [17] by Ding–Costa–Chen to
solve the model problem for a sign-changing solution (MI = 2). The basic idea is to
assume a mountain pass solution w1 has been found, and by using an ascent direction
and a descent direction at w1, one can form a triangle as a “local linking.” Then one
can proceed to find a maximum on this triangle. If the maximum is inside the triangle,
go to the next step; otherwise, deform the triangle so as to contain this point as an
interior point, and continue to search for an interior maximum. This method uses
constrained maximizations at the first level and a local minimization at the second
level. Since in the original version of the high linking theorem, the argument never
left a mountain pass solution, and a global minimization is required at the second
level, the theorem itself cannot serve as a justification of that algorithm. Accordingly,
the theoretical justification of that algorithm will be very difficult. The problem is
that once an iterate has departed a mountain pass solution, the triangle is no longer
a “local linking”; the triangle may degenerate. However, this is the first time in the
literature that the idea of a “local linking” is used to find solutions basically with MI
= 2.
Inspired by the above numerical works, we developed a new minimax method for

finding multiple saddle points. Many numerical results including those presented in
section 5 were obtained in the summer of 1997 and appeared to be very promising.
Then we decided to try to establish some mathematical justification for the algorithm
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and to find out why and under what conditions the algorithm works. This may
eventually help us improve the algorithm. This has been soon proved to be a much
more challenging task. Since we try to set a general framework and at the same time
always keep some model problems in mind, every time a new model problem is solved
numerically, new interesting mathematical questions can be asked. We try to answer
the question in a more general way.
For the purpose of mathematical justification, let us adopt another approach. In

studying a dynamic system, Nehari [25] introduced the concept of a solution sub-
manifoldM, and proved that a global minimizer of the energy functional onM is a
solution to the dynamic system with MI = 1. Ding–Ni used Nehari’s idea to study
the model problem with the zero Dirichlet BC and � = 0. They defined a solution
submanifold

M =
{
v ∈ H1

0 (Ω)|v �= 0,
∫

Ω

[|∇v|2 − vf(v)
]
dx = 0

}
.(1.7)

Under the condition that f ′(t) > f(t)
t , t �= 0, Ding–Ni [27] proved that a global

minimizer of the energy function J on M is a solution with MI = 1 to the model
problem.
Our basic idea to design an algorithm for finding multiple saddle points consists

of three main elements.
(1) First define a solution (stable) submanifoldM s.t. a local minimum point of

J(u) onM yields a critical point. Thus the problem becomes a minimization of J on
the submanifoldM, and a saddle point becomes stable on the submanifoldM. If a
monotone decreasing search is used in the minimization process, the algorithm will be
stable. At a point onM, we can apply, e.g., a steepest descent search to approximate
a local minimizer of J onM.
(2) There must be a return rule. As a steepest descent search usually leaves the

submanifold M, for the algorithm to continue to iterate we need to design a return
rule for the search to return toM.
(3) There must be a strategy to avoid degeneracy. Since we are searching for a

saddle point at a higher critical level, at least, for a new solution, a simple minimiza-
tion may cause degeneracy to an (old) saddle point at a lower critical level. Thus a
strategy to avoid degeneracy is crucial to guarantee that the new critical point found
is different from the old ones. This strategy may also be incorporated in the definition
of the solution submanifold. It can be seen as follows.
(a) Choi–McKenna’s algorithm has a return rule and a strategy to avoid a degen-
eracy to the zero with MI = 0. We will provide a mathematical justification
for their algorithm in section 2; see Theorem 2.1 with L = {0} or Theorem 4.2.

(b) Ding–Costa–Chen’s algorithm has a return rule and a strategy to avoid a
degeneracy to a solution with MI = 1. We will modify their algorithm and
then provide a mathematical justification; see Theorem 2.1 with L = {w1}.

The organization of this paper is as follows. In section 2, we first prove an impor-
tant technical lemma. Then we establish a local minimax characterization of a saddle
point, which can be used to design a numerical minimax algorithm for finding multiple
saddle points. An existence theorem is also proved in this section. Section 3 presents
our numerical minimax algorithm in detail and gives some convergence related prop-
erties. In section 4, we apply our minimax method to solve a class of semilinear
elliptic equations and present some related analysis. Finally, in section 5, we exhibit
some numerical examples for multiple solutions and their graphics to illustrate the
algorithm and theory.
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We do not intend to prove any new existence theorem. Our objective is to develop
numerical algorithms and corresponding mathematical theory for finding multiple
critical points. It is understood that many critical points cannot be approximated.
Only those with “nice properties” can be numerically approximated. We try to classify
those “nice” saddle points through mathematical analysis. It is reasonable that the
hypotheses in our local minimax characterization of saddle points in this paper are
stronger than those in the existence theorems. Our hypotheses will be gradually
localized and generalized as research advances. Methods to check these hypotheses
will also be developed in subsequent papers.

2. Local min-max theorems. Let H be a Hilbert space with inner product
〈, 〉 and norm ‖ ‖, and let J be a real C1-generic energy functional on H. For any
subspace H ′ ⊂ H, denote SH′ = {v|v ∈ H ′, ‖v‖ = 1} the unit sphere in H ′. Let L be
a closed subspace in H, called a base subspace, and let H = L⊕L⊥ be the orthogonal
decomposition, where L⊥ is the orthogonal complement of L in H. For each v ∈ SL⊥

let [L, v] = {tv + w|w ∈ L, t ≥ 0} be the closed half subspace. L can be either finite
or infinite dimensional.

Definition 2.1. A set-valued mapping P :SL⊥ → 2H is called the peak mapping
of J with respect to H = L ⊕ L⊥ if for any v ∈ SL⊥ , P (v) is the set of all local
maximum points of J in [L, v]. A single-valued mapping p:SL⊥ → H is a peak
selection of J with respect to L if

p(v) ∈ P (v) ∀v ∈ SL⊥ .

For a given v ∈ SL⊥ , we say that J has a local peak selection with respect to L at v if
there is a neighborhood N (v) of v and a function p:N (v) ∩ SL⊥ → H s.t.

p(u) ∈ P (u) ∀u ∈ N (v) ∩ SL⊥ .

In a special case when L = {0}, the peak mapping P (v) is the set of all local
maximum points of J along the direction v, for any point v ∈ S.
Most minimax theorems in critical point theory used a (constrained) global max-

imization (on a compact set) at the first level. Thus a solution at the first level always
exists. For algorithm implementation, existence is not enough; we want an approxi-
mation scheme to a solution. Therefore, we use unconstrained local maximization at
the first level. Numerically this is great. However, it then raises three major problems
in analysis. (a) For some v ∈ SL⊥ , P (v) may contain multiple local maxima in [L, v].
In particular, P may contain multiple branches, even U-turn or bifurcation points. (b)
p may not be defined at some points in SL⊥ . (c) The limit of a sequence of local max-
imum points may not be a local maximum point. Thus the analysis involved becomes
much more complicated. Although, it is well known that the energy function (1.5)
of our model problem goes to negative infinity uniformly in any finitely dimensional
subspace (see [30]). Thus, in any finite-dimensional subspace, there must be at least
one maximum point, i.e., P (v) �= ∅. That is, problem (b) will not happen. Problem
(a) is not concerned in the numerical works of Choi–McKenna and Ding–Costa–Chen.
However, for more general settings, all three problems have to be resolved. As for (a),
we use a selection p to choose one branch from the others. Numerically it is done by
following a certain negative gradient flow and developing some consistent strategies
to avoid jumps between different branches. For (b), we need only p to exist locally
around a point v along a negative gradient flow. We are currently working on a min-
orthogonal algorithm where p(v) need only be a local suborthogonal point. This will
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further resolve problem (b). When P contains some U-turn or bifurcation points, if
a saddle point happens to be a U-turn or bifurcation point of P , a local minimax
search at either one of the branches connecting to the point will follow the negative
gradient flow to the saddle point. If a saddle point is not a U-turn or bifurcation
point of P , when a local minimax search is at the same branch of P as the saddle
point, according to our local characterization results, it is not a problem. In the case
when a local minimax search is at a different branch of P connecting to the U-turn
or bifurcation point, we will develop a technique to allow the search to pass through
a U-turn or bifurcation point. We will address this technique in a future article. As
for problem (c), more analysis is required. One of the reasons for problem (c) to take
place is that under the definition of a peak selection p(v), the solution submanifold
M = {p(v) : v ∈ SL⊥} is not closed. In a future paper, we will define a more general
local (orthogonal) selection p(v) with which the new solution submanifold is closed
and contains the current solution submanifold as a subset. Then we prove that a local
minimum point of J on the new solution submanifold also yields a saddle point, and
the implicit function theorem can be used to check if p is continuous (differentiable)
at a given point v, a condition required by all the results we proved in this paper.
This study leads to a completely different approach and will be addressed in a future
paper.
The following technical lemma plays a crucial role in this paper. It describes the

relation between the gradient of J and the variation of a peak selection.
Lemma 2.1. For vδ ∈ SL⊥ , if there is a local peak selection p of J with

respect to L at vδ s.t. (i) p is continuous at vδ, (ii) d(p(vδ), L) > α > 0, and (iii)
‖∇J(p(vδ))‖ > δ > 0, then there exists ε > 0 s.t.

J(p(v(s)))− J(p(vδ)) < −αδ‖v(s)− vδ‖ ∀0 < s < ε

and

v(s) =
vδ + sw

‖vδ + sw‖ , w = − ∇J(p(vδ))‖∇J(p(vδ))‖ .

Proof. Let N (vδ) be a neighborhood of vδ for the local peak selection p. By (iii),
〈∇J(p(vδ)), w〉 < −δ.

Since p(vδ) ∈ [L, vδ], p(vδ) = xδ + tδvδ, where xδ ∈ L and tδ ∈ R, we have tδ > α.
p(vδ) is a local maximum point of J(p(x)) on [L, vδ]. So it is clear that w ∈ L⊥

and w⊥vδ. Due to the continuity, there exist positive numbers ε1, ε2, t1, and t2
with 0 < t1 < tδ < t2 and open balls Bε1,L = {x|x ∈ L, ‖x − xδ‖ < ε1} and
Bε2,L⊥ = {x|x ∈ L⊥, ‖x− tδvδ‖ < ε2} s.t.
(a) p(vδ) is a maximum point of J on [t1, t2]× vδ +Bε1,L,
(b) 〈∇J(x1 + x2), w〉 < −δ for all x1 ∈ Bε1,L, x2 ∈ Bε2,L⊥ ,
(c) tvδ + sw ∈ Bε2,L⊥ for any t ∈ [t1, t2] and s, 0 < s < ε2

2 .
For any x1 ∈ Bε1,L, and t ∈ [t1, t2], by the mean value theorem,

J(tvδ + x1 + sw)− J(tvδ + x1) = 〈∇J(tvδ + x1 + ξw), sw〉 < −sδ.(2.1)

By (a), J(tvδ + x1) ≤ J(p(vδ)), so we have J(tvδ + x1 + sw) − J(p(vδ)) < −sδ.
Since w⊥vδ,

lim
s→0+

∥∥∥∥1s
(

tδvδ + sw

‖tδvδ + sw‖ − vδ

)∥∥∥∥ = 1tδ <
1

α
.(2.2)
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Thus, without loss of generality, we can assume that for s > 0 small

∥∥∥∥ tδvδ + sw

‖tδvδ + sw‖ − vδ

∥∥∥∥ <
s

α
.(2.3)

By our notation

v

(
s

tδ

)
=

tδvδ + sw

‖tδvδ + sw‖ ,

so we have, for sufficient small s,

α‖v
(

s

tδ

)
− vδ‖ < s.(2.4)

Combine (2.1) and (2.4), and we can find ε3 > 0 s.t.

J(tvδ+x1+sw)−J(p(vδ)) < −αδ‖v
(

s

tδ

)
−vδ‖ ∀t ∈ [t1, t2], x1 ∈ Bε1,L, 0 < s < ε3.

Denote D = {tvδ + x1 + sw|s < ε3, t ∈ (t1, t2), x1 ∈ Bε1,L}. Then D is an open
neighborhood of p(vδ) = tδvδ + xδ in the subspace spanned by L, vδ, and w. By the
continuity of p at vδ, there exists positive ε s.t. v(

s
tδ
) ∈ SL⊥∩N (vδ) and p(v( stδ )) ∈ D

for all stδ < ε. Besides, since p(v( stδ )) ∈ [L, v( stδ )], p(v( stδ )) = ctδvδ+x1+csw uniquely
for some constant number c and x1 ∈ Bε1,L with t1 < ctδ < t2 and cs < ε3. Thus

J

(
p

(
v

(
s

tδ

)))
− J(p(vδ)) = J(ctδvδ + x1 + csw)− J(p(vδ))

< −αδ‖v
(

cs

ctδ

)
− vδ‖ = −αδ‖v

(
s

tδ

)
− vδ‖.

The following theorem characterizes a saddle point as a local minimax solution
and serves as a mathematical justification for our algorithm to be proposed.

Theorem 2.1. Let v0 ∈ SL⊥ . If J has a local peak selection p with respect to L
at v0 s.t. (i) p is continuous at v0, (ii) d(p(v0), L) > 0, and (iii) v0 is a local minimum
point of J(p(v)) on SL⊥ , then p(v0) is a critical point of J .

Proof. Suppose that p(v0) is not a critical point of J . By Lemma 2.1, for a
sufficient small positive s, set

w = − ∇J(p(v0))

‖∇J(p(v0))‖ , v(s) =
vδ + sw

‖vδ + sw‖ ,(2.5)

and we have

J(p(v(s)))− J(p(v0)) ≤ −1
2
‖∇J(p(v0))‖‖v(s)− v0‖d(p(v0), L) < 0,

which contradicts the fact that v0 is a local minimum point of J(p(v)) on SL⊥ . Thus
p(v0) must be a critical point of J .

Remark 2.1. Condition (i) is required for a numerical algorithm to be stable
and convergent. Condition (ii) is a separation condition posed by almost all minimax
theorems to have a new critical point. Condition (iii) replaces a global minimization,
used in most minimax theorems in the literature, by a local minimization. Due to the
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local nature of the above characterization and (2.5), it is clear that SL⊥ in condition
(iii) can be localized to be any subset containing v(s) for small s ≥ 0.
To establish an existence result, the following Palais–Smale (PS) condition is used

to replace the usual compactness condition.
Definition 2.2. A function J ∈ C1(H) is said to satisfy the PS condition if

any sequence {un} ∈ H with J(un) bounded and J ′(un)→ 0 has a convergent subse-
quence.

Theorem 2.2. Let J be C1 and satisfy the PS condition. If there is a peak
selection p of J with respect to L s.t. (i) p is continuous, (ii) d(p(v), L) ≥ α for
some positive α, and for any v ∈ SL⊥ , (iii) infv∈S

L⊥ J(p(v)) > −∞, then there exists
v0 ∈ SL⊥ s.t. p(v0) is a critical point of J , and

J(p(v0)) = min
v∈S

L⊥
J(p(v)).

Proof. Since SL⊥ is a closed metrical subspace and J(p(v)) is a continuous func-
tion on SL⊥ , bounded from below, by Ekeland’s variational principle, for any integer
n, there exists vn ∈ SL⊥ s.t.

J(p(vn)) ≤ inf
v∈S

L⊥
J(p(v)) +

1

n
,(2.6)

and for any v ∈ SL⊥ , v �= vn,

J(p(v))− J(p(vn)) ≥ − 1
n
‖v − vn‖.

From Lemma 2.1, for some v in SL⊥ and close to vn,

J(p(v))− J(p(vn)) ≤ −1
2
‖v − vn‖‖∇J(p(vn))‖d(p(vn), L).

Thus

‖∇J(p(vn))‖ ≤ 2

nd(p(vn), L)
<
2

nα
.(2.7)

By the PS condition, {p(vn)} has a subsequence, denoted again by {p(vn)}, converging
to some point u0 ∈ H. Note that p(vn) = tnvn+xn for some scalar tn > 0, vn ∈ SL⊥ ,
and xn ∈ L. It follows from ‖p(vn)− p(vm)‖2 = ‖tnvn − tmvm‖2 + ‖xn − xm‖2 that
{tnvn} is a Cauchy sequence as well. Since ‖vn‖ = 1, ‖tnvn‖ = tn → t0. By our
assumption (ii), t0 ≥ α > 0. Thus vn → v0 ∈ SL⊥ . By the continuity, we have
u0 = p(v0). Then by (2.7), p(v0) is a critical point of J, and, moreover, (2.6) leads to

J(p(v0)) = min
v∈S

L⊥
J(p(v)).

The following corollary is a special case of Theorem 2.2 with L = {0}, which can
be viewed as a mathematical justification of the modified Choi–McKenna algorithm
to find a solution with MI = 1.

Corollary 2.1. Let J ∈ C1(H) and satisfy the PS condition. Let S be the unit
sphere of H and p(v) be a local maximum point of J on {tv|t ∈ (0,+∞)} for each
v ∈ S s.t. (i) p is continuous, (ii) ‖p(v)‖ ≥ α for some α > 0, and for any v ∈ S,
(iii) infv∈S J(p(v)) > −∞; then there exists v0 ∈ S s.t. p(v0) is a critical point of J ,
and, moreover,

J(p(v0)) = min
v∈S

J(p(v)).
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Proof. We can simply apply Theorem 2.2 with L = {0} to draw the
conclusion.

Remark 2.2. To apply Ekeland’s variational principle, a function must be bounded
from below. In general, J is not bounded from below. However, J(p(v)) has a
much better chance to be bounded from below. Therefore, we use condition (iii) in
Theorem 2.2. This condition is satisfied automatically by our model problem; see
section 4.

3. A minimax algorithm for finding critical points. If we define a solution
submanifold by

M = {p(v) : v ∈ SL⊥} ,

then by Theorem 2.1 a local minimum point p(v0) of J on M is a critical point of
J . Numerically, a local minimum point can be approximated by the steepest descent
search. When the steepest descent search leavesM to a point v, a local maximization
on [L, v] yields p(v), a point returned to M. Thus our algorithm can continue to
iterate. Since J ′(p(v(s))) ⊥ L, the search will not degenerate to L, which contains
previously found solutions.

The Flow Chart of a Minimax Algorithm
Step 1. Let n − 1 critical points w1, w2, . . . , wn−1 of J be previously found

and wn−1 have the highest critical value. Set the base space L =
span {w1, w2, . . . , wn−1}. Let v0 ∈ L⊥ be an ascent direction at wn−1 and
ᾱk > 0 be given;

Step 2. For k = 0, solve

wk ≡ p(v0) ≡ t∗0v0 + v∗L = arg max
u∈[L,v0]

J(u);

Step 3. Compute the steepest descent direction dk of J at wk;
Step 4. if ‖dk‖ ≤ ε, then output wn ≡ wk and stop, else goto Step 5;
Step 5. For each 0 < α ≤ ᾱk, denote v

k(α) = vk−α∗dk
‖vk−α∗dk‖ and with the initial guess

u = t∗0v
k(α) + v∗L, solve

p(vk(α)) = arg max
u∈[L,vk(α)]

J(u);

then solve

wk+1 ≡ p(vk+1) ≡ t∗0vk(α∗) + v∗L = arg min
0<α≤ᾱk

J(p(vk(α));

Step 6. Update k = k + 1 and goto step 3.

Remark 3.1. Let us make some remarks on each step in the above algorithm.
In step 1, when we start from some known critical points, if the critical point w0

with MI = 0 is not zero, we should add w0 to the base space L. We first start from w0

to find w1 and so on. As for our model problem, w0 = 0, so L = {0}, and according to
the Morse theory, to find w1, we may use any direction v

0 ∈ H as an ascent direction
of J at w0.
Now assume w1, w2, . . . , wn−1 have been found this way and wn−1 is the one with

the highest critical value. The base space L is spanned by w1, w2, . . . , wn−1. We start
the algorithm with an ascent direction v0 of J at wn−1.
It is clear that the separation condition is quite reasonable to ensure that the

critical point found is not in the base space L spanned by the old critical points and
therefore will be a new one at a higher critical level.
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The idea to choose a direction v0 ∈ L⊥ as an ascent direction is quite useful in
practice. It makes the separation condition easier to satisfy. For example, in section
4, to choose an ascent direction, we always use a functional in H1

0 (Ω) whose peak is
away from the peaks of the known critical points w1, w2, . . . , wn−1. This idea works
very well.
In step 2, we have a simple unconstrained local maximization problem.
In step 3, to find the steepest descent direction dk of J at a point wk is usually

equivalent to solving a linear system. As for the model problem, a direct calculation
shows that the steepest descent direction dk of J at wk can be obtained by solving
the linear elliptic BVP



∆dk(x)− �dk(x) = ∆wk(x)− �wk(x) + f(x,wk(x)), x ∈ Ω,
dk(x) = 0, x ∈ ∂Ω for the zero Dirichlet BC,
∂dk(x)

∂n
=

∂wk(x)

∂n
, x ∈ ∂Ω for the zero Neumann BC,

(3.1)

which can be solved numerically by various finite element, finite difference, or bound-
ary element solvers. Since one important topic in nonlinear analysis is to study how a
variation of the domain affects the profile of a solution [14] and the boundary element
method can easily handle a complex domain or trace a variation of the domain, we
use a boundary element method. Note that for the zero Neumann BC problem, if we

choose an initial ascent direction v0 with ∂v0

∂n (x)|∂Ω = 0, then in every iterate we have
∂dk

∂n (x)|∂Ω = 0 in (3.1).
In step 4, for our model problem, we can use a norm ‖∆dk − l · dk‖L2 < ε to

control the error. Note that this is an absolute error indicator for our model problem,
since

∆dk(x)− l · dk(x) = ∆wk(x)− �wk(x) + f(x,wk(x)).

In step 5, for each point vk(α) = vk − α · dk in the steepest descent direction,
we can find a local maximum p(vk(α)) of J in [L, vk(α)]. We then try to find the
point in the steepest descent direction with the smallest such maximum. We must
follow a consistent way to find a local maximum point of J so that p(v) depends
on v continuously and is kept away from L. Thus we specify the initial guess u =
t∗0v

k(α)+ v∗L in searching for a local maximum in [L, v
k(α)]. This initial guess closely

and consistently traces the position of the previous point wk = t∗0v
k+v∗L. This strategy

is also to avoid the algorithm from possible oscillating between different branches of
the peak mapping P .
The number ᾱ is to enhance the stability of the algorithm. It controls the step-

size of the search along the steepest descent direction to avoid the search going too
far, i.e., to leave the solution (stable) submanifoldM too far to lose stability of the
algorithm.
The following theorem implies that the local minimax algorithm is strictly de-

scending and therefore a stable algorithm.
Theorem 3.1. If dk = ∇J(wk) �= 0, wk �∈ L, and p is continuous at vk, then

J(wk+1) < J(wk).

If p is continuous and d(p(v), L) > α > 0 for all v ∈ SL⊥ , then there exist ᾱk > 0
and d > 0 s.t.
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J(wk+1)− J(wk) < −d‖∇J(wk)‖‖vk+1 − vk‖ ∀k = 1, 2, . . . ,(3.2)

where wk = p(vk) and wk+1 = p(vk+1) are determined in step 5 of the algorithm.
Proof. We have only to prove (3.2). Using the notation in the algorithm scheme,

write

vk+1 = vk(α∗
k) =

vk − α∗
kd
k

‖vk − α∗
kd
k‖ .

Take δ = ‖dk‖/2; by Lemma 2.1, we can find ᾱk > 0, s.t. if ᾱk > s > 0, then

J(p(vk(s)))− J(p(vk)) < −αδ‖vk(s)− vk‖.
In particular, we choose such ᾱk in the algorithm, and 0 < α∗

k ≤ αk is satisfied; with
d = 2α, we have

J(p(vk(α∗
k)))− J(p(vk)) < −d‖dk‖‖vk(α)− vk‖,

i.e., (3.2).
Convergence is always a paramount issue for any numerical algorithm. Due to

multiplicity, degeneracy, and instability of saddle points, general convergence analysis
will be very difficult. More profound analysis is required. We will establish some
convergence results of the algorithm in a subsequent paper [20]. Instead, in section
4, we present some applications of our minimax theorem and method to a class of
semilinear elliptic PDEs.

4. Application to semilinear elliptic PDEs. In this section, we apply our
local minimax method to study the model problem. We use the notations as in [30]
with a slight change. Ω is a smooth bounded domain in R

n. Consider a semilinear
elliptic Dirichlet BVP{

∆u(x) + f(x, u(x)) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(4.1)

where the function f(x, ξ) satisfies the following standard hypotheses.
(h1) f(x, ξ) is locally Lipschitz on Ω̄× R.
(h2) There are positive constants a1 and a2 s.t.

|f(x, ξ)| ≤ a1 + a2|ξ|s,(4.2)

where 0 ≤ s < n+2
n−2 for n > 2. If n = 2,

|f(x, ξ)| ≤ a1 expφ(ξ),(4.3)

where φ(ξ)ξ−2 → 0 as |ξ| → ∞.
(h3) f(x, ξ) = o(|ξ|) as ξ → 0.
(h4) There are constants µ > 2 and r ≥ 0 s.t. for |ξ| ≥ r,

0 < µF (x, ξ) ≤ ξf(x, ξ),(4.4)

where F (x, ξ) =
∫ ξ
0
f(x, t)dt.

In our later numerical computation, we solve problems in R
2, where (h2) is not a

substantial restriction. (h4) says that f is superlinear, which implies that there exist
positive numbers a3 and a4 s.t. for all x ∈ Ω̄ and ξ ∈ R

F (x, ξ) ≥ a3|ξ|µ − a4.(4.5)
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The variational functional associated to the Dirichlet problem (4.1) is

J(u) =
1

2

∫
Ω

|∇u(x)|2dx−
∫

Ω

F (x, u(x))dx, u ∈ H ≡ H1
0 (Ω),(4.6)

where we use an equivalent norm ‖u‖ = ∫
Ω
|∇u(x)|2dx for the Sobolev space H =

H1
0 (Ω).
It is well known [30] that under conditions (h1)–(h4), J is C1 and satisfies the

PS condition. A critical point of J is a weak solution and also a classical solution
of (4.1). 0 is a local minimum point (MI = 0) of J . Moreover, in any finitely
dimensional subspace of H, J goes to negative infinity uniformly. Therefore, for any
finite dimensional subspace L, the peak mapping P of J with respect to L is nonempty.
We need one more hypothesis:

(h5) f(x,ξ)|ξ| is increasing with respect to ξ, or

(h5′) f(x, ξ) is C1 with respect to ξ and fξ(x, ξ)− f(x,ξ)
ξ > 0.

It is clear that (h5′) implies (h5). If f(x, ξ) is C1 in ξ, then (h5) and (h5′) are
equivalent. All the power functions of the form f(x, ξ) = |ξ|kξ with k > 0 satisfy
(h1) through (h5′), and so do all the positive linear combinations of such functions.
Under (h5) or (h5′), J has only one local maximum point in any direction, or, the
peak mapping P of J with respect to L = {0} has only one selection. In other words,
P = p. The proof can be found in [27] and [14].

Lemma 4.1.Under (h5) or (h5′), for any u ∈ H, the function g(t) = J(tu), t ≥ 0,
has a unique local and so a global maximum point.
Let L = {0} and M = {p(v)|v ∈ SL⊥ = SH}, where p(v) is the unique peak

selection of J with respect to L. By the above lemma, it can be easily checked that
M is exactly the solution submanifold (1.7) defined by Ding and Ni. Our definition
displays the essence of why such a solution submanifold works. Our definition is
also given in a more general way. It also works for finding a critical point as a local
minimax solution with a higher MI. Actually, under (h5), the peak selection is not
only unique but also continuous. In other words, M is a topological manifold. The
following theorem is given in a more general form, which mainly states that uniqueness
implies continuity.

Theorem 4.1. Under the hypotheses (h1)–(h5), if the peak mapping P of J with
respect to a finitely dimensional subspace L is singleton at v0 ∈ SL⊥ and for any
v ∈ SL⊥ around v0, a peak selection p(v) is a global maximum point of J in [L, v],
then p is continuous at v0.

Proof. (h4) implies (4.5); namely, F (x, ξ) ≥ a3|ξ|µ − a4, where a3 and a4 are
positive constants depending on F and Ω. It is known that

∫
Ω
|u(x)|µdx is a positive

continuous functional in H and SH ∩ [L, v0] is compact; thus we can write

α0 ≡ min
v∈SH∩[L,v0]

∫
Ω

|v(x)|µdx > 0.

Let α = α0

2 . For each v ∈ SH ∩ [L, v0] there is a neighborhood N (v) of v s.t.∫
Ω

|u(x)|µdx > α ∀u ∈ N (v).

Since (
SH ∩ [L, v0]

)
⊂

⋃
v∈SH∩[L,v0]

N (v)
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and SH ∩ [L, v0] is compact, there exist v1, . . . , vn ∈ SH ∩ [L, v0] s.t.

(
SH ∩ [L, v0]

)
⊂

n⋃
i=1

N (vi) and
∫

Ω

|u(x)|µdx > α ∀u ∈
n⋃
i=1

N (vi).

Note that for each v ∈ SL⊥ and w ∈ SH ∩ [L, v], we can write w = wl + twv with
wL ∈ L and |tw| ≤ 1. Then w0 = wl + twv0 ∈ SH ∩ [L, v0] and ‖w − w0‖2 =
t2w‖v − v0‖2 ≤ ‖v − v0‖2. Thus we can find a neighborhood D of v0 s.t.

(
SH ∩ [L, v]

)
⊂

n⋃
i=1

N (vi) ∀v ∈ D ∩ SL⊥ .

Therefore, we have

∫
Ω

|w|µdx ≥ α ∀v ∈ D ∩ SL⊥ , w ∈ SH ∩ [L, v].(4.7)

For any v ∈ D ∩ SL⊥ , p(v) is a maximum point of J in [L, v]. In particular, p(v)

is a maximum point of J on the half line {tp(v)| t ∈ R
+}. Set w = p(v)

‖p(v)‖ and define

g(t) = J(tw) =
1

2
t2
∫

Ω

|∇w(x)|2 dx−
∫

Ω

F (x, tw(x)) dx.

Then g is positive and increasing near 0 and goes to −∞ as t→∞. A local maximum
is solved from

0 =
dg

dt
|t=t1 = t1

∫
Ω

|∇w(x)|2 dx,−
∫

Ω

w(x)f(x, t1w(x)) dx

or

0 = ‖p(v)‖
∫

Ω

|∇w|2dx−
∫

Ω

wf(x, ‖p(v)‖w)dx.(4.8)

Since ‖w‖ = 1, by using (4.4) and (4.7), we have

1 =
1

‖p(v)‖2
∫

Ω

‖p(v)‖wf(x, ‖p(v)‖w)dx ≥ 1

‖p(v)‖2
∫

Ω

µF (x, ‖p(v)‖w)dx

≥ 1

‖p(v)‖2
∫

Ω

µ(a3‖p(v)‖µ|w|µ − a4)dx

= a3µ‖p(v)‖µ−2

∫
Ω

|w|µdx− 1

‖p(v)‖2
∫

Ω

µa4dx

≥ µa3‖p(v)‖µ−2α− 1

‖p(v)‖2
∫

Ω

µa4dx.

Note that µ > 2, the right-hand side of the last inequality goes to ∞ if ‖p(v)‖ →
∞, and this violates the above inequalities. Therefore, there must exist β > 0 s.t.
‖p(v)‖ ≤ β.
Now let {vn} ⊂ D∩SL⊥ be any sequence s.t. vn → v0. Denote p(vn) = tnvn+xn,

where xn ∈ L. Since ‖p(vn)‖ ≤ β and vn ⊥ xn, we have tn ≤ β and ‖xn‖ ≤ β.
Therefore, we can find a subsequence {vnk} s.t. tnk and xnk converge, respectively,
to t0 and x0. In other words, p(vnk) goes to t0v0 + x0, which lies in [L, v0]. Since
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we assume that p(vnk) is a global maximum point of J in [L, vnk ] for each nk, the
limit point t0v0 + x0 must be a maximum point of J in [L, v0] as well. But by the
assumption, the peak mapping P of J is singleton at v0, so t0v0 + x0 = p(v0). Since
{vn} is arbitrary, by the above argument, p is continuous at v0.
As an immediate conclusion of Theorem 4.1, we have the following continuous

result (see [36, Lemma 4.1]).
Corollary 4.1. Under the hypotheses (h1)–(h5), the only peak selection p of J

with respect to L = {0} is continuous.
Proof. By Lemma 4.1, there is only one peak selection p of J with respect to L =

{0}. In any direction v, the function g(t) = J(tu) possesses only one local maximum
point and therefore a global maximum point of J over the subset {tv|t ∈ R

+}. Thus
from Theorem 4.1, it is continuous at any point.
Moreover, the unique selection p of peak mapping with respect to L = {0} satisfies

all the requirements of Theorems 2.1 and 2.2. Thus we can apply Theorems 2.1 and
2.2 to establish the following existence result.

Theorem 4.2. Under the hypotheses of (h1)–(h5), there exists at least one solu-
tion to

local min
x∈M

J(x),(4.9)

and any such solution is a critical point of J and therefore a solution to problem
(4.1).

Proof. M is the image of the unique peak selection p of J with respect to L = {0}.
By Corollary 4.1, p is continuous. Under the conditions of (h2)–(h4), we know that
(see [30])

J(u) =
1

2
‖u‖2 + o(‖u‖2)

as u → 0. Thus we can find δ > 0 s.t.‖p(v)‖ > δ for any direction v ∈ H. This is
exactly the separation condition in Theorems 2.1 and 2.2. Obviously, J(p(v)) > 0 for
each direction v ∈ H, and thus is bounded from below. Therefore, all the conditions
in Theorems 2.1 and 2.2 are satisfied. Theorem 2.2 states that there is at least one
critical point as a minimax solution, and Theorem 2.1 confirms that any local minimax
solution is a critical point.
By a similar argument as in the proof of the above theorem and taking Lemma 4.1

into account, we can show that for BVP (4.1), for any closed subspace L and any peak
selection p of J with respect to L, we have infv∈S

L⊥ J(p(v)) > δ > 0.
It is known that for BVP (4.1), solution prefers open space. When the domain

has multiple compartments connected by narrow corridors, such as a dumbbell-shaped
domain in section 5 for our computational examples, multiple solutions do exist as
local minimax solutions. The one with the smallest energy is the global minimax
solution, i.e., the ground state.
The following results indicate that under conditions (h1)–(h5′), for L = {0}, the

minimax algorithm is actually a minimization on a differentiable submanifoldM.
Theorem 4.3. Assume that conditions (h1)–(h5′) are satisfied and that there

exist a5 > 0 and a6 > 0 s.t. for s as specified in (h2),

|fξ(x, ξ)| ≤ a5 + a6|ξ|s−1.(4.10)

Then the only peak selection p of J with respect to L = {0} is C1.
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Proof. Set G:SH × R
+ → R, G(v, t) = t − ∫

Ω
v(x)f(x, tv(x))dx. Thus under

(4.10), G is C1. DenoteM = {p(v)|v ∈ SH}, where p(v) is the only peak selection of
J with respect to L = {0}, i.e., p(v) is the maximum point of J on {tv|t > 0}. As in
the proof of Theorem 4.1, for any v, if p(v) = tv, then we have

0 = t−
∫

Ω

v(x)f(x, tv(x))dx.

ThusM is essentially the inverse image of G at 0, i.e.,M = G−1(0), and ‖p(v)‖, as a
positive number, is the solution of t(v) to the equation G(v, t(v)) = 0. On the other
hand,

∂G

∂t
= 1−

∫
Ω

v2(x)fξ(x, tv(x)) dx.(4.11)

For each v0, at each pair (v0, t0) with G(v0, t0) = 0,

0 = 1−
∫

Ω

v2
0(x)

f(x, t0v0(x))

t0v0(x)
dx > 1−

∫
Ω

v2
0fξ(x, t0v0(x)) dx (by (h5′)),

i.e., ∂G∂t < 0 at (v0, t0), provided G(v0, t0) = 0. By the implicit function theorem, the
solution t(v) to the equation G(v, t(v)) = 0 exists uniquely in a neighborhood of each
v0 and is C

1 in v. Therefore, ‖p(v)‖ is a C1 function in v, and so is p(v).
Actually, in the proof, we can see that the solution submanifold, M, is a differ-

entiable manifold because Lemma 2.1 implies

‖∇J |M‖ ≥ δ‖∇J‖ for some δ > 0.

Example 4.1. Let us consider the BVP on a smooth bounded domain Ω ⊂ R
n

for p > 2 :

{
∆u(x) + |u(x)|p−2u(x) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

(4.12)

The associated variational functional is

J(u) =
1

2

∫
Ω

|∇u|2 dx− 1
p

∫
Ω

|u(x)|p dx, u ∈ H = H1
0 (Ω).

For each v ∈ S, let u = tv, t > 0; then

J(tv) =
t2

2

∫
Ω

|∇v|2 dx− tp

p

∫
Ω

|v(x)|p dx = t2

2
− tp

p

∫
Ω

|v(x)|p dx.

Thus

0 =
∂

∂t
J(tv) = t− tp−1

∫
Ω

|v(x)|p dx

leads to

tv =

[
1∫

Ω
|v(x)|p dx

] 1
p−2

> 0.
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The peak selection p of J with respect to L = {0} is

p(v) = tvv =

[
1∫

Ω
|v(x)|p dx

] 1
p−2

v ∀v ∈ S,

a continuously differentiable function, and the solution manifold

M =
{[

1∫
Ω
|v(x)|p dx

] 1
p−2

v : v ∈ S

}

is a differentiable manifold.

5. Computational examples. We have applied our numerical algorithm to
solve many semilinear BVPs with zero Dirichlet BC on various domains, such as
the Lane–Emden equation, the Henon equation, and the Chandrasekhar equation
on a disk, a rectangle, a concentric annulus, a nonconcentric annulus, dumbbell-
shaped domains, and dumbbell-shaped domains with cavities. Here we present the
computational results for the Lane–Emden equation

{
∆u(x) + u3(x) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(5.1)

where the domain Ω is, respectively, a dumbbell-shaped domain, a dumbbell-shaped
domain with cavities (nonsymmetric), and a concentric annulus (highly degenerate).
Here the solution u(x) represents the density, so we are interested only in positive
solutions. In all examples, we use a cos function to create a “mound-shaped” func-
tion as an initial ascent direction v0 and a norm ‖∆û‖L2 = ‖∆u + u3‖L2 < ε to
control the error and terminate the iterate. Some solutions with MI = 1 have been
computed elsewhere; see, e.g., [12, 17, 11] and references therein. It is to the best of
our knowledge that those solutions with higher MI are to be computed for the first
time.

Case 1. We have a dumbbell-shaped domain, as shown in Figure 1.

Fig. 1. A dumbbell-shaped domain.

We use, respectively, the following three “mound” functions as initial ascent di-
rections.
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Fig. 2. The ground state solution w1
1 with MI = 1 and its contours. v0 = v10, ε = 10−4, J =

10.90, umax = 3.652.

Fig. 3. The second solution w2
1 with MI = 1 and its contours. v0 = v20 , ε = 10−4, J =

42.22, umax = 7.037.

Fig. 4. The third solution w3
1 with MI = 1 and its contours. v0 = v30 , ε = 10−4, J =

159.0, umax = 13.63. So far, the existence of such a positive solution is still an open problem.
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Fig. 5. A solution w2 with MI = 2 and its contours. L = [w1
1 ], v0 = v20, ε = 10−4 × 6, J =

53.12, umax = 7.037.

vi0(x) =



cos

( |x− xi|
di

π

2

)
if |x− xi| ≤ di,

0 otherwise,

where x1 = (2, 0), d1 = 1, x2 = (−1, 0), d2 = 0.5, x3 = (0.25, 0), and d3 = 0.2.
If we use L = [w1

1, w2] and v0 = v3
0 to search for a solution with MI = 3, the

algorithm yields a solution with positive and negative peaks. This can be explained
as follows. A function with a larger energy value becomes less stable, and a solution
with a larger MI is also less stable. Note that

J(w1
1) < J(w2

1) < J(w3
1).

When we use L = [w1
1, w2] and v0 = v3

0 to search for a solution with MI = 3, we start
the process at searching for a peak with lower energy for a solution with a lower MI
and then go to search for a peak with larger energy for a solution with a higher MI.
The process becomes very unstable. Now if we switch the order, we start the process
at searching for a peak with higher energy for a solution with a lower MI and then
go to next stage to search for a peak with lower energy for a solution with a higher
MI. The stability of the process is balanced. Thus we use L = [w3

1] and v0 = v2
0 to

find a solution w2
2 with MI = 2 and two positive peaks in the left compartment and

the central corridor. Then we use L = [w3
1, w

2
2] and v0 = v1

0 to search for a positive
solution with MI = 3, and we obtain the following solution as shown in Figure 6.

Case 2. We have a dumbbell-shaped domain with two cavities.
We use, respectively, the following four “mound” functions as initial ascent direc-

tions.

vi0(x) =



cos

( |x− xi|
di

π

2

)
if |x− xi| ≤ di,

0 otherwise,

with

x1 = (2,−0.6), d1 = 0.4, x2 = (−0.5, 0), d2 = 0.2,

x3 = (0.25, 0), d3 = 0.2, x4 = (−1.35, 0), d4 = 0.15.
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Fig. 6. A solution w3 with MI = 3 and its contours. ε = 10−3, J = 212.5, umax = 13.78. This
is the only positive solution with MI = 3 we can find.

Fig. 7. A dumbbell-shaped domain with two cavities.

Fig. 8. The ground state solution w1
1 with MI = 1 and its contours. v0 = v10, ε = 10−4, J =

44.18, umax = 6.664.

Case 3. We have a concentric annulus with inner radius = 0.7 and outer radius
= 1.
The domain is a nice geometric figure. However, due to the symmetry, any solu-

tion being rotated for any angle is still a solution. Thus each solution belongs to a
one parameter family of solutions. For this case, the existence of nonradially symmet-
ric positive solutions has been established by Coffman [13] and Li [22]. The number
of positive peaks that a solution may have depends on the width of the annulus.
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Fig. 9. The second solution w2
1 with MI = 1 and its contours. v0 = v30 , ε = 10−4, J = 153.5,

umax = 12.94.

Fig. 10. The third solution w3
1 with MI = 1 and its contours. v0 = v20, ε = 10−4, J =

165.6, umax = 13.64. Its profile is similar to w3
1 in Figure 4. So far, the existence of such a positive

solution is still an open problem.

Fig. 11. The fourth solution w4
1 with MI = 1 and its contours. v0 = v40, ε = 10−4, J =

286.1, umax = 17.85.
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Fig. 12. A solution w2 with MI = 2 and its contours. L = [w4
1 ], v0 = v20, ε = 10−4 × 6, J =

439.5, umax = 17.85. There are other positive solutions with MI = 2.

Fig. 13. A solution w3 with MI = 3 and its contours. L = [w4
1 , w2], v0 = v10, ε = 10−3, J =

483.6, umax = 17.86. There are other positive solutions with MI = 3.

If we utilize the symmetry, we can find a radially symmetric solution that turns out
to be a local (global) maximum. Otherwise, this case is highly degenerate. When the
boundary is discretized into a polygon, theoretically the case becomes nondegenerate.
However, when the discretization is fine, each solution has other solutions nearby.
The computation becomes even tougher. After several iterations, there are multiple
solutions inside a small neighborhood of the numerical solution. The algorithm may
start to wander around. We have used 384 elements on the outer circle, 192 elements
on the inner circle, and the following “mound” function as an initial ascent direction

for θi =
(i−1)π

4 ,

vi0(x) =



cos

( |x− 0.85(cos θi, sin θi)|
0.15

π

2

)
if |x− 0.85(cos θi, sin θi)| ≤ 0.15,

0 otherwise.
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Fig. 14. A ground state solution w1 with MI = 1 and its contours. v0 = v10, ε = 10−4, J =
289.1, umax = 18.12.

Fig. 15. A solution w2 with MI = 2 and its contours. L = [w1], v0 = v30, ε = 10−4, J =
579.0, umax = 18.12.

Finding multiple saddle points is important for both theory and applications.
However, it is very challenging. Little is known in the literature. We try to de-
velop some numerical algorithms and corresponding mathematical theory for finding
such saddle points in a stable way. It is known that many saddle points cannot be
approximated. One can only numerically approximate those multiple saddle points
with some “nice” properties, e.g., minimax solutions. We classify those saddle points
through mathematical analysis. The results presented in this paper are under some
“reasonably nice” conditions. They provide a mathematical foundation for our fur-
ther research. Meanwhile, those conditions will be further generalized. Methods to
check those conditions (e.g., the continuity or differentiability condition of p) will be
developed as research as this direction progresses.1 So far, the algorithm is still better
than mathematical analysis. It produced many interesting numerical results that go
beyond theoretical results. For example, when the profiles of the solutions in Figures
4 and 10 were presented to nonlinear PDE analysts in 1997 and 1998, they generated

1Results in this project have been obtained and will be presented in a future paper.
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Fig. 16. A solution w3 with MI = 3 and its contours. L = [w1, w2], v0 = v20, ε = 10
−4× 6, J =

868.8, umax = 18.12.

Fig. 17. A solution w4 with MI = 4 and its contours. L = [w1, w2, w3], v0 = v40, ε =
10−3 × 3, J = 1159, umax = 18.12.

warm debates about the existence and the MIs of such solutions. We are pleased to
know that some results on the existence of such solutions have been recently proved
(see [35]). Our algorithm can be used to solve for a critical point which is not a mini-
max solution, e.g., a Monkey saddle point. However, the analysis is beyond the scope
of any minimax principle; a more profound approach is required. As mathematical
analysis in this research progresses, the algorithm will be accordingly modified. Con-
vergence is a paramount issue of any numerical algorithm. The MI of a solution is an
important notion that provides understanding of the local structure of a saddle point
and can be used to measure instability of a saddle point. Although, in the above
numerical examples, we have printed the MI for each numerical solution, it is based
on the way we compute the solution in the algorithm; its mathematical verification
has not been established. Due to the length limitations of this paper, results on those
issues will be addressed in a subsequent paper [20] and future papers [21, 37].

Acknowledgment. The authors would like to thank two anonymous referees for
their helpful comments.



864 YONGXIN LI AND JIANXIN ZHOU

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] H. Amann, Supersolution, monotone iteration and stability, J. Differential Equations, 21

(1976), pp. 367–377.
[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and

applications, J. Funct. Anal., 14 (1973), pp. 349–381.
[4] J. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[5] T. Bartsch and Z. Q. Wang, On the existence of sign-changing solutions for semilinear

Dirichlet problems, Topol. Methods Nonlinear Anal., 7 (1996), pp. 115–131.
[6] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions

of nonlinear elliptic problems, Arch. Ration. Mech. Anal., 114 (1991), pp. 79–94.
[7] L. Bieberbach, ∆u = eu und die automorphen Functionen, Math. Ann., 77 (1916), pp. 173–

212.
[8] H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.,

44 (1991), pp. 939–963.
[9] A. Castro, J. Cossio, and J. M. Neuberger, A sign-changing solution for a superlinear

Dirichlet problem, Rocky Mountain J. Math., 27 (1997), pp. 1041–1053.
[10] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser
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Abstract. In this article, “composition methods (or operator splitting methods)” for au-
tonomous stochastic differential equations (SDEs) are formulated to produce numerical approxi-
mation schemes for the equations. In the proposed methods, the exponential map, which is given by
the solution of an SDE, is approximated by composition of the stochastic flows derived from simpler
and exactly integrable vector field operators having stochastic coefficients. The local and global er-
rors of the numerical schemes derived from the stochastic composition methods are investigated. The
new schemes are advantageous to preserve the special character of SDEs numerically and are useful
for approximations of the solutions to stochastic nonlinear equations. To examine their superiority,
several numerical simulations on the basis of the proposed schemes are carried out for SDEs which
arise in mathematical finance and stochastic Hamiltonian dynamical systems.

Key words. stochastic differential equations, Lie algebra, composition methods (operator split-
ting method), mathematical finance, stochastic Hamiltonian dynamical systems, stochastic nonlinear
system
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1. Introduction. The theory of stochastic differential equations (SDEs) is un-
derstood as a fundamental tool for the description of random phenomena treated in
physics, engineering, economics, and so on. Particularly, as the famous Black–Scholes
option pricing model, the stochastic equations are used to describe the price process of
underlying asset in mathematical finance. However, it is often difficult to obtain the
solutions of SDEs explicitly, and hence there has been increasing interest in numerical
analysis of SDEs. Indeed, many numerical schemes for SDEs have been proposed
(e.g., [8], [15], [23]).

The purpose of the present article is to propose some new numerical schemes
for autonomous SDEs on the basis of “composition methods.” The reasons why we
address this topic are as follows.

In numerical analysis for deterministic ordinary differential equations, whether
or not some special character or structure of the equations is preserved precisely is
an important point in performing reliable numerical calculations. From this point
of view, various numerical methods to realize the characters of differential equations
have been proposed. Indeed, we can find such examples as energy conservative meth-
ods [10], [13], symplectic integrators for Hamiltonian dynamical systems [24], [7], [26],
and composition methods [19], [22]. In particular, the composition methods are useful
to produce numerical schemes which leave some structure or character of general dif-
ferential equations numerically invariant. Hence, it seems to be quite natural that we
investigate the methods for SDEs to produce numerical schemes having the conserva-
tion properties; this is the first reason for setting up the numerical schemes proposed
here.
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Research 11640132 from the Japan Society for the Promotion of Science.
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†Faculty of Economics, Nagoya City University, Nagoya 467-8501, Japan (misawa@econ.nagoya-
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Moreover, in the theory of differential equations, composition methods are known
as operator splitting methods, and they are often utilized for approximation of non-
linear equations to which solutions are not obtained explicitly [25], [12]. From this
viewpoint, we may expect that the methods bring us a convenient and powerful way
of approximations for “stochastic nonlinear” differential equations, and this is the
second reason for our investigation.

We will first outline the original composition methods for ordinary differential
equations. Let X denote vector fields on some space with coordinates x with flows
exp(tX); that is, the solutions of differential equations of the form ẋ(t) = X(x) are
given in the form x(t) = exp(tX)(x(0)). Then, the vector field X is to be integrated
numerically with fixed time step t. In this framework, we can apply composition
methods to the differential equation if we can write X = A + B in such a way that
exp(tA) and exp(tB) can both be calculated explicitly. More generally, this can be
relaxed by approximations of the exponential maps. In the most elementary case, the
method gives the approximation for x(t) through

x̃(t) = exp(tA) exp(tB)(x) = x(t) +O(t2);

the last equality is obtained by using Baker–Campbell–Hausdorff (BCH) formula,
which is well known in Lie algebraic theory.

Thus, in composition methods, we use the exponential representation of solutions
to differential equations as an important tool. To formulate the methods for SDEs,
therefore, one needs a stochastic version of the notion of exponential representation
of solutions. In [16], this topic has been investigated in detail. Hence, in section
2, we first review Kunita’s work on an explicit expression of solutions of SDEs as a
functional of multiple Wiener integrals. We next give a formal extension of Kunita’s
explicit expression of solutions of SDEs, and on the basis of the formal result, we
will propose new schemes for SDEs. Moreover, to estimate the error for the new
schemes, we touch upon some lemmas and a proposition concerning mean-square
order of multiple Wiener integrals.

In section 3, on the basis of the results in section 2, composition methods are
formulated for autonomous SDEs with a one-dimensional Wiener process. Through
these methods, we will obtain some numerical schemes for the stochastic equations.
Then, the approximation error of numerical solutions derived from the schemes must
be estimated. In this paper, we first apply the local error estimation in mean-square
sense to the obtainable numerical solutions. The BCH formula will be useful for cal-
culating the approximation error in a way analogous to that in the deterministic case.
Using the result on local error estimation, we next address global error estimation
for our new schemes. At the present stage, we obtain only local and global error
orders through indirect estimation, and hence such orders will be said to be “in a
weak sense.”

In section 4, in order to examine the superiority of the new schemes, we investigate
some illustrative examples of the numerical simulations using the proposed schemes.
In the first example, the following nonlinear scalar SDE is treated, which is often
adopted as a model of an asset price process in mathematical finance [9]:

dS(t) = S(t)dt+ 2
√

S(t) ◦ dW (t), S(0) = s(> 0).(1.1)

It is known that the value of the solution to this equation is “nonnegative” for any
t ∈ [0, T ]. Through the standard stochastic numerical schemes, however, such a char-
acter of this equation is not always preserved numerically. In contrast with this, we
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will see that our new numerical schemes by composition methods in section 3 leave
the structure invariant numerically, and thereby the first advantage of composition
methods is revealed. In the second and third examples, we examine the second ad-
vantage of composition methods as a tool of approximation for stochastic nonlinear
systems. Particularly, such a superiority is often found in Hamiltonian dynamical
systems through the dimensional splitting methods. Therefore, in the third exam-
ple, we treat the composition methods for “stochastic” Hamiltonian systems. At the
end of that section, to show the advantage of composition methods, we further touch
upon a way to produce numerical schemes which realize the numerical preservation
of conserved quantities for stochastic systems [20], [21].

Some concluding remarks and a discussion of future problems are given in section
5.

Finally, we note the recent remarkable work by K. Burrage and P.M. Burrage [4]
as another numerical approach to SDEs through Lie algebra.

2. Representation of solutions of SDEs. In this section, we first review
Kunita’s work mentioned in section 1 [16]. Next we will give a formal extension
of Kunita’s explicit expression of solutions of SDEs. On the basis of this formal
expression, our new schemes for SDEs are formulated in the next section. At the end
of this section, as a preparation for the error estimation of the new schemes, we will
discuss mean-square order of multiple Wiener integrals dealt with in the representation
of solutions of SDEs.

2.1. Review of Kunita’s explicit expression of solutions of SDEs. In
order to explain Kunita’s main result, we first address Campbell–Hausdorff formula
for n vector fields. Let Y1, . . . , Yn be n C∞ vector fields on a connected C∞-manifold
M of dimension d. Suppose that Y i1···im = [[. . . [Yi1 , Yi2 ] . . .]Yim ], m = 1, 2, . . ., and
their sums are all complete vector fields, where [X,Y ] is the Lie bracket defined by
XY − Y X. Moreover, we assume that the power series

Z =

∞∑
m=1

∑
(i1···im)

ci1···imY
i1···im(2.1)

is absolutely convergent and defines a complete vector field. Here, for a given multi-
index I = (i1, . . . , im), each coefficient ci1···im is determined through (2.3) given below.
Then (2.2) holds

expYn · · · expY1 = expZ.(2.2)

This is the Campbell–Hausdorff formula for n vector fields [16].
We will touch upon the explicit form of the coefficients ci1···im . Let us divide

the multi-index I = (i1, . . . , im) into a sequence of shorter ones Ij , j = 1, . . . , �, and

denote it by Î;

Î = (I1, . . . , Ik1)(Ik1+1, . . . , Ik2) · · · (Ik�−1+1, . . . , Ik�),

where each Ik consists of the same number îk and the numbers îk, k = 1, . . . , k�,
satisfy

î1 > î2 > · · · > îk1 < îk1+1 > · · · > îk2 · · · < îk�−1+1 > · · · > îk� .

We call Î a natural division. Moreover, we denote the number of elements in Ik by
nk, where

∑k�
k=1 nk = m. Divide again each index Ik into jk indices, each of which
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consists of n
(i)
k (i = 1, . . . , jk) elements (hence

∑jk
i=1 n

(i)
k = nk). Then according to

[16], the coefficients ci1···im are given by (2.3):

ci1,···im =
1

m

�−1∑
s=0

∑
∗

�−1Cs(−1)j1+···+jk�−s−1(j1 + · · ·+ jk� − s)−1

× 1

n
(1)
1 ! · · ·n(j1)

1 ! · · ·n(1)
k�

! · · ·n(j�)
k�

!
,(2.3)

where the sum
∑

∗ is taken for all subdivisions of Ik(k = 1, . . . , k�), that is, for positive

integers n
(i)
k (i = 1, . . . , jk; k = 1, . . . , k�) under

∑jk
i=1 n

(i)
k = nk.

Let I ′ be another multi-index of length m such that the natural division is given
by Î ′ = (I ′1, . . . , I

′
k′1
) · · · (I ′k′

�−1
+1, . . . , I

′
k′
�
). We say I and I ′ are equivalent if for each

k, Ik and I ′k contain the same number of elements and k′j = kj(j = 1, . . . , �) hold.
Then we note that cI = cI′ holds.

Now, we proceed to our stochastic systems governed by SDEs. Let us consider
an autonomous SDE of Stratonovich type (e.g., [11], [1]) under the probability space
(Ω,F ,P):

dS(t) = b(S(t))dt+

r∑
j=1

gj(S(t)) ◦ dW j(t)(2.4)

defined on a connected C∞-manifold M of dimension d, where b = (bi)di=1 and
gj = (gij)

d
i=1 (j = 1, . . . , r) are d-dimensional C∞ functions on M , respectively,

and W (t) = (W 1(t), . . . ,W r(t)) is a standard Wiener process. Here S(t) is assumed
to be adapted with a nondecreasing family of sigma-algebra (Ft)t≥0 ⊂ F . Note that
(2.4) is rewritten in the form of SDE of Itô type as follows:

dSt = {b(S(t)) + 1

2

r∑
k=1

d∑
i=1

gik∂igk(S(t))}dt+
r∑
j=1

gj(S(t))dW
j(t),(2.5)

where ∂i = ∂/∂Si. Using the coefficient-functions in (2.4), we define C∞ vector fields
X0, X1, . . . , Xr as follows:

X0 =

d∑
i=1

bi∂i, Xj =

d∑
i=1

gij∂i (j = 1, . . . , r).(2.6)

We will now review Kunita’s result (Lemma 2.1 in [16]). For this purpose, we
begin with notations on multi-index. Let us divide a multi-index I = (i1, . . . , im)
(i1, . . . , im ∈ 0, 1, . . . , r) into shorter ones I1 · · · Iq(q ≤ m), where each Ik consists of

the same element îj . For given positive integers k1 < k2 < · · · < k� = q, we define a
division of I as

∆I = (I1, . . . , Ik1)(Ik1+1, . . . , Ik2) · · · (Ik�−1+1, . . . , Ik�).(2.7)

We call ∆I single or double when each Ik contains a single element or at most two.
Here we remark that ∆I may not be equal to a natural division of I; but if there is
an index Ĩ such that its natural division is equivalent to ∆I, we set c∆I = cĨ in (2.3)
for convention.
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Now suppose that we are given an index I and a divided index ∆I. Moreover,
we set W 0(t) = t. For a single divided index ∆I, we define the multiple Wiener–
Stratonovich integral W∆I(t) as

W∆I(t) =

∫
· · ·
∫
A

◦dW i1(t1) · · · ◦ dW im(tm),(2.8)

where A = {tk1 < · · · < t1 < t, . . . , tk� < · · · < tk�−1+1 < t, tki < tki+1 (i = 1, . . . , �)}.
On the other hand, if ∆I is a double index, we define

W∆I(t) =

∫
· · ·
∫
A

◦dW I1(t1) · · · ◦ dW Ik� (t�),(2.9)

where

W Ik(t) = W ik(t) (Ik : single; Ik = {ik})(2.10)

= t (Ik : double; Ik = {ik, ik} and ik �= 0)

= 0 (Ik = {0, 0}).
Under the notations defined above, Kunita proved the following lemma.

Kunita’s lemma. Suppose that the Lie algebra L = L(X0, . . . , Xr) generated by
X0, . . . , Xr is nilpotent of step p. Then the solution S(t) of (2.4) with S(0) = s is
represented as

S(t) = exp(Yt)(s),(2.11)

where Yt(ω) is the vector field for each t and almost surely (a.s.) ω ∈ Ω given by

Yt =

r∑
i=0

W i(t)Xi +
∑

J;2≤|J|≤p

{∑
∆J

∗
c∆JW

∆J(t)

}
XJ ,(2.12)

and XJ = [[· · · [Xj1 , Xj2 ] · · ·]Xjm ] (J = (j1, . . . , jm)). Here,
∑∗

∆J is the sum for all
single and double divided indices of J , and c∆J are the coefficients determined through
(2.3) for the divided indices of J . Moreover, |J | denotes the length of a multi-index
J .

We remark that (2.11) with (2.12) means that the solution S(t, ω) equals φ(1, s, ω)
a.s., where φ(τ, s, ω) is the solution of the ordinary differential equation

dφ(τ)

dτ
= Yt(ω)(φ(τ)), φ(0) = s,(2.13)

regarding t and ω as parameters.
The proof of Kunita’s lemma is outlined as follows. For a fixed positive integer n

and positive time t, we define δW i
k = W i( kn t)−W i( (k−1)

n t) (i = 1, . . . , r) and define
Zj =

t
nX0 +

∑r
i=1 δW

i
j (t)Xi (j = 1, . . . , n). We further set

Sn(t) = (expZn · · · expZ1)(s).(2.14)

Then, there is a subsequence of Sn(t) converging to S(t) a.s.. On the other hand,
applying the Campbell–Hausdorff formula to the right-hand side of (2.14), we obtain

∑
J



∑
∆J

c∆J
∑

I:Î∼∆J

δW j1
i1
· · · δW jm

im


XJ ,
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where
∑
I:Î∼∆J δW

j1
i1
· · · δW jm

im
means the sum for all indices I such that the natural

division Î is equivalent to ∆J . Then the sum converges to W∆J(t) if ∆J is a single
or double index, and it converges to 0 if ∆J is more than double. Note that the
last assertion corresponds to the following result from formal calculus with respect to
stochastic differentials dt and dW i (i = 1, . . . , r) [11]; dW idW j = δijdt, dtdW

i = 0,
dtdt = 0, and dW idW jdW k = 0. Finally, we can also prove that the sum converges
to the right-hand side of (2.11) with (2.12) a.s..

Remark 2.1. According to Lemma 2.2 in Kunita’s paper [16], we can calculate
the coefficients of XJ in the case of |J | = 2, 3. On account of these results, the vector
field (2.12) is rewritten as

Yt =

r∑
i=0

W i(t)Xi +
1

2

r∑
i<j

[W i,W j ](t)[Xi, Xj ](2.15)

+
1

36

r∑
i=0

r∑
j=1

tW i(t)[[Xi, Xj ], Xj ]

+
1

18

r∑
i<j,k

[[W i,W j ],W k](t)[[Xi, Xj ], Xk]

+
∑

J;4≤|J|≤p

{∑
∆J

∗
c∆JW

∆J(t)

}
XJ (i = 0, 1, . . . , r; j, k = 1, . . . , r).

In (2.15), we define [W i,W j ](t) and [[W i,W j ],W k](t) as multiple Wiener–Stratonovich
integrals of degrees equal to 2 and 3 given by

[W i,W j ](t) =

∫ t

0

W i(τ) ◦ dW j(τ)−
∫ t

0

W j(τ) ◦ dW i(τ)

and

[[W i,W j ],W k](t) =

∫ t

0

[W i,W j ](τ) ◦ dW k(τ)−
∫ t

0

W k(τ) ◦ d[W i,W j ](τ),

respectively.
Note that the condition that Lie algebra L is nilpotent of step p is required only

in order to make the sum in (2.12) finite. This suggests that if L is general, we may
formally represent the solution S(t) of (2.4) as

S(t) = (expYt)(s),(2.16)

where

Yt =

r∑
i=0

W i(t)Xi +
∑

J;2≤|J|

{∑
∆J

∗
c∆JW

∆J(t)

}
XJ ,(2.17)

and this is just the formal expression we want. In what follows, we suppose that one
may obtain the explicit representation of solution (2.16) with (2.17).

Remark 2.2. If the Lie algebra generated by X0, X1, . . . , Xr is of finite dimension,
Ben Arous has proved that the stochastic infinite series in (2.17) actually converges
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before a stopping time. Therefore, in such a case, the representation of solution
(2.16) with (2.17) is well-defined (Theorem 20 in [2]). We will see such examples in
subsections 4.1 and 4.2 of section 4.

Moreover, we restrict ourselves to the SDEs (2.4) with a one-dimensional Wiener
process; that is, we consider

dS(t) = b(S(t))dt+ g(S(t)) ◦ dW (t),(2.18)

where b and g are d-dimensional vector-valued C∞ functions. Then, we may rewrite
(2.17) in a simpler form in terms of Kloeden–Platen’s representation for multiple
Wiener–Stratonovich integrals and multiple Wiener–Itô ones [14]; they are defined by

J(α)(t, s) =

∫ s+t

s

∫ τk

s

· · ·
∫ τ2

s

◦dY (j1)(τ1) · · · ◦ dY (jk−1)(τk−1) ◦ dY (jk)(τk),(2.19)

I(α)(t, s) =

∫ s+t

s

∫ τk

s

· · ·
∫ τ2

s

dY (j1)(τ1) · · · dY (jk−1)(τk−1)dY
(jk)(τk),(2.20)

respectively, where α = (j1, . . . , jk) (ji = 0, 1; i = 1, . . . , k) and

dY (j)(u) =

{
du for j = 0,

dW (u) for j = 1.

In what follows, we denote J(α)(t, s) and I(α)(t, s) by J(α)(t) and I(α)(t), respectively,
if s = 0.

Remark 2.3. Note that J(α)(t, s) can be rewritten in terms of I(α)(t, s) (see
pp. 174–175 in [15]). For example, we have

J(j1) = I(j1) (j1 = 0, 1),(2.21)

J(j1,j2) = I(j1,j2) +
1

2
1{j1=j2=1}I(0) (j1, j2 = 0, 1),(2.22)

J(j1,j2,j3) = I(j1,j2,j3) +
1

2
(1{j1=j2=1}I(0,j3) + 1{j2=j3=1}I(j1,0)) (j1, j2, j3 = 0, 1),

(2.23)
where 1{·} denotes the defining function. In general, any multiple Stratonovich in-
tegral J(α) can be written as a multiple Itô integral I(α) or a finite sum of I(α) and
multiple Itô integrals I(β) satisfying

�(α) + n(α) ≤ �(β) + n(β),(2.24)

where �(α) ={the number of elements of α} and n(α) ={the number of 0’s in the
elements of α} (Remark 5.2.8 in [15]).

In terms of (2.19) and stochastic Stratonovich integration by parts formula for
W i(t) (i = 0, 1) and [W 0,W 1](t), we can rewrite (2.17) in the following form:

Yt = J(0)(t)X0 + J(1)(t)X1 +
1

2
(J(0,1)(t)− J(1,0)(t))[X0, X1](2.25)

+
1

18
{2J(0,1,0)(t)− 2J(1,0,0)(t) + J(0)(t)J(1,0)(t)− J(0)(t)J(0,1)(t)}[[X0, X1], X0]

+
1

18
{2J(0,1,1)(t)− 2J(1,0,1)(t) + J(1)(t)J(1,0)(t)− J(1)(t)J(0,1)(t)}[[X0, X1], X1]

+
1

36
{J(0)(t)}2[[X0, X1], X1] +

∑
J;4≤|J|

KJ(t)XJ .
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Here, in the last term on the right-hand side of the above equation, KJ(t) =
{∑∆J

∗
c∆JW

∆J(t)}, and J = (j1, . . . , j�) (ji = 0, 1; i = 1, . . . , �; � ≥ 4). In terms
of Remark 2.3, this can be described by multiple Wiener–Itô integrals as follows:

Yt = I(0)(t)X0 + I(1)(t)X1 +
1

2
(I(0,1)(t)− I(1,0)(t))[X0, X1](2.26)

+
1

18
{2I(0,1,0)(t)− 2I(1,0,0)(t) + I(0)(t)I(1,0)(t)− I(0)(t)I(0,1)(t)}[[X0, X1], X0]

+
1

18
{2I(0,1,1)(t)− 2I(1,0,1)(t) + I(1)(t)I(1,0)(t)− I(1)(t)I(0,1)(t)}[[X0, X1], X1]

+
1

36
{I(0,0)(t) + {I(0)(t)}2}[[X0, X1], X1] +

∑
J;4≤|J|

HJ(t)XJ ,

where HJ(t) is another version of KJ(t) under each multi-index J , which is derived by
transforming multiple Stratonovich integrals in KJ(t) into Itô ones through Remark
2.3. Therefore, for each multi-index J , HJ(t) is described as a polynomial function of
multiple Itô integrals. In the next section, we will formulate the numerical schemes
for the solution of SDE (2.18) on the basis of (2.16) with (2.26).

2.2. Mean-square order of multiple Wiener integrals. Now, in the re-
mainder of this section, as a preparation for the error estimation for the new schemes
in the next section, we will prove a proposition concerning the coefficients HJ(t) of
XJ for multiple indices J in (2.26). For this purpose, we first touch upon a lemma
for multiple Itô integrals (2.20) proved by Kloeden and Platen (Lemma 5.7.5 in [15]).
Let E[·|Fs] be the conditional expectation with respect to a nondecreasing family of
σ-subalgebra Fs.

Lemma 2.1. For any α = (j1, . . . , jk), (ji = 0, 1; i = 1, . . . , k), and q = 1, 2, . . .,

E[|I(α)(∆t, s)|2q|Fs] = O((∆t)q(�(α)+n(α))) (∆t ↓ 0),(2.27)

where �(α) and n(α) are the indices defined in Remark 2.3; that is, �(α) ={the number
of elements of α} and n(α) ={the number of 0’s in the elements of α}.

Let F (t, s) be a function of multiple stochastic integrals I(α)(t, s). Suppose that

E[{F (∆t, s)}2|Fs] = O((∆t)m) (∆t ↓ 0)(2.28)

holds. Then, in what follows, we call the real number m “mean-square order (MSO)”
of F (t, s).

From Lemma 2.1 we see that MSO of a multiple Itô integral I(α)(t, s) is equal to
�(α) + n(α). Moreover, the following lemma shows that MSO of I(α)(t, s)I(β)(t, s) is
given by �(α)+n(α)+ �(β)+n(β); that is, MSO of a product of multiple Itô integrals
equals the sum of MSO of each of the stochastic integrals.

Lemma 2.2. For any multi-indices α and β,

E[|I(α)(∆t, s)I(β)(∆t, s)|2|Fs] = O((∆t)(�(α)+n(α)+�(β)+n(β))) (∆t ↓ 0)(2.29)

holds.
Proof. Through the Schwartz inequality, we obtain

E[|I(α)(∆t, s)I(β)(∆t, s)|2|Fs] ≤
√
E[{I(α)(∆t, s)}4|Fs]E[{I(β)(∆t, s)}4|Fs].

The lemma is straightforwardly proved using this inequality and Lemma 2.1.
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Remark 2.4. By Lemmas 2.1 and 2.2 together with Remark 2.3, we may verify
that multiple Stratonovich integrals J(α)(t, s) also satisfy the results in Lemmas 2.1
and 2.2. Hence, for a given α, we find that MSO of a multiple Stratonovich integral
J(α)(t, s) is also equal to �(α) + n(α); that is, MSO of J(α)(t, s) agrees with that of
I(α)(t, s) for the same multi-index α.

We now proceed to our goal. Using Lemmas 2.1 and 2.2, we can estimate MSO
of each coefficient of XJ in (2.26) which is given by a polynomial function of multiple
Itô integrals on [0, t]. For example, in the case of |J | = 1, MSOs of the coefficients of
X0 and X1, that is, MSOs of I0(t) and I1(t) are equal to 2 and 1, respectively. In the
case of |J | = 2, MSO of I(0,1)(t) or I(1,0)(t) in the coefficient of [X0, X1] is given by
3, and thereby we can easily prove that MSO of the coefficient (I(0,1)(t)− I(1,0)(t))/2
itself is also equal to 3. In the same manner, we find MSOs of the coefficients of
XJ when |J | = 3; that is, MSOs of the coefficients of [X0, X1], X0] and [X0, X1], X1]
are given by 5 and 4, respectively. Hence, in this case, the least value of MSOs of
the coefficients of XJ equals 4. These facts suggest that we may verify the following
proposition which we wish to establish.

Proposition 2.1. Suppose that k is a given integer greater than or equal to 2,
and that the multi-indices J satisfy |J | = k; that is, J = (j1, . . . , jk) (ji = 0 or 1; i =
1, . . . , k). Then the least value of MSOs of the coefficients HJ(t) of XJ in (2.26) is
equal to k + 1.

Proof. We may prove this by induction. From the above examples, this propo-
sition is obvious in the case of |J | = 2, 3. We assume that the assertion of this
proposition holds for the case of |J | = �(≥ 3). That is, the least value of MSOs of
the coefficients HJ(t) of XJ under J = (j1, . . . , j�) in (2.26) equals �+ 1. Then, note
that under the same J , the least value of MSOs of KJ(t) in (2.25) agrees with that of
HJ(t), since HJ(t) is only another version of KJ(t) in terms of multiple Itô integrals.

Now, let us consider the coefficients K J̃(t) of X J̃ under |J̃ | = �+1. On account of the
definition of multiple integrals W∆J(t) (2.8) or (2.9) with (2.10) in the coefficients,

one may obtain K J̃(t) by adding a stochastic integral with respect to dW or dt to each
multiple integral in KJ(t). Moreover, the following equations show that the MSOs
for the integrals with increments dW and dt correspond to 1 and 2, respectively:

E

[
|
∫ s+∆t

s

dW (τ)|2|Fs
]
= O(∆t), E

[
|
∫ s+∆t

s

dt|2|Fs
]
= O((∆t)

2
) (∆t ↓ 0).

Hence, the least value of MSOs of K J̃(t) is equal to �+2, and thereby, the least value

of MSOs of H J̃(t) is also so. Thus, the assertion in our proposition is proved.

3. Composition methods for numerical integration of SDEs. In this sec-
tion, we will formulate some new stochastic numerical schemes for SDEs on the basis
of composition methods and estimate the approximation errors for the schemes in the
local and global senses.

3.1. Procedures of composition methods for SDEs. We start with a nu-
merical integration of the stochastic equation (2.18) on the discretized time series
in the framework of the previous results on representation of solutions to SDEs. It
adopts a uniform discretization of the time interval [0, T ] with stepsize

∆t =
T

N
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for fixed natural number N . Let tn = n∆t(n = 0, 1, 2, . . . , N) be the nth step-point.
Then, for all n ∈ {0, . . . , N}, we abbreviate Sn = S(tn). Moreover, we use ∆Wn

for n = 0, 1, . . . , N to denote the increments W (tn+1)−W (tn); they are independent
Gaussian random variables with mean 0 and variance ∆t, that is, N(0,∆t)-distributed
random variables.

On account of (2.16), we may find the numerical solutions Sn(n = 0, 1, . . . , N) to
SDE (2.18) by using

Sn+1 = exp (Yn∆t)(Sn) (n = 0, 1, 2, . . . , N − 1),(3.1)

formally, where Yn∆t is a vector field derived by replacing all the multiple Wiener
integrals I(α)(t) = I(α)(t, 0) in (2.26) by I(α)(∆t, n∆t). In the following, I(α)(∆t, n∆t)
is denoted by I(α),n(∆t). Moreover, we set S0 = S(0) = s0. According to the theory
of ordinary differential equations, exp (Yn∆t)(·) is often called the time-∆t map or
exponential map. However, it is usually difficult to find the explicit form of the
exponential map, and hence we need to build an approximation for (3.1).

To do this, we formulate a new stochastic numerical scheme as the following two
procedures, which are composed of the truncation of the vector field (2.26) and a
composition method (or operator splitting method) applied to the exponential map
derived from the truncated vector field.

Procedure 1. For the vector field Yt described by (2.26), we define a “truncated”
vector field Ŷt which is given by a truncation of the higher-order terms with respect
to MSO of the coefficients of XJ in (2.26). Then, we define a numerical sequence
(Ŝn)

N
n=0 through

Ŝn+1 = exp(Ŷn∆t)(Ŝn) (n = 0, 1, . . . , N − 1),(3.2)

where Ŝ0 = S(0) = s0.
Procedure 2. For Ŝn+1 = exp(Ŷn∆t)(Ŝn), we apply a composition method in a

way analogous to that in the theory of ordinary differential equations. Suppose that
the vector field Ŷn∆t is of the form

Ŷn∆t = An∆t +Bn∆t,(3.3)

where exp(An∆t) and exp(Bn∆t) can both be explicitly calculated through (2.13).
Then an approximation to the exponential map of Ŷn∆t is given by exp(An∆t) exp(Bn∆t).
Hence, the sequence of (Ŝn)

N
n=0 in Procedure 1 is approximated by

S̃n+1 = exp(An∆t) exp(Bn∆t)(S̃n) (n = 0, 1, . . . , N − 1),(3.4)

where S̃0 = S(0) = s0.
We regard (S̃n)

N
n=0 as a numerical approximation to the exact discretized solutions

(Sn)
N
n=0.

3.2. Local error estimation for the new numerical scheme. We will es-
timate the approximation error of the numerical scheme described above. For this
purpose, we first examine “local errors in the mean-square sense” for the scheme.
Using this result, we will finally address the “global” error estimation in the next
subsection.

We start with the definition of “local error order” in a manner analogous to that
in [15].
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Definition 3.1. Suppose that S(t) and (S̄n)
N
n=0 are an exact solution and the

numerical approximation solutions to SDE (2.18), respectively. Let Eτ,ξ be the expec-
tation conditioned on starting at ξ at time τ . Then the local error order α is defined
by

Etn,s[|S̄n+1 − Sn+1|2] = O((∆t)2α) (∆t ↓ 0),(3.5)

where tn = n∆t (n = 0, . . . , N−1), Sn = S(n∆t), and | · | denotes the Euclidean norm
on the space Rd. Note that the condition in the expectation (3.5) means Sn = S̄n = s.

We note that the accuracy of a numerical scheme improves with increasing local
order.

Remark 3.1. In the framework of local error order defined by [23], the local order
of S̄n satisfying (3.5) is given by 2α− 1.

On the basis of this definition of local error estimation, we will investigate the
error estimation of our approximation procedures. In what follows, we set Sn = s,
where s is a given value.

Local error estimation for the truncation error in Procedure 1. First,
we investigate the truncation error in Procedure 1. Let Hn

J(∆t) be the coefficient of
XJ in Yn∆t which is represented by a polynomial function of multiple Itô integrals
for a given multi-index J as in (2.26).

Proposition 3.1. Suppose that a truncation vector field Ŷn∆t is given in the
following form:

Ŷn∆t =
∑

J;1≤|J|≤γ
Hn

J(∆t)XJ .(3.6)

That is, we assume the terms in Yn∆t satisfying |J | ≥ γ + 1 are neglected. Then,

Etn,s[|Ŝn+1 − Sn+1|2] = O((∆t)γ+2) (∆t ↓ 0).(3.7)

Proof. In terms of Proposition 2.1, we can easily show that the least value of
MSOs of Hn

J(∆t) in the neglected terms equals γ + 2, since |J | ≥ γ + 1. This
fact, together with the definition of exponential map (see 2.11 with 2.13 [16], [3]),
straightforwardly shows (3.7). Thus, we obtain the local order (γ/2)+1 for numerical
approximation solutions (Ŝn)

N
n=0 in the sense of Definition 3.1.

Remark 3.2. If the Lie algebra generated by X0 and X1 is of finite dimension, our
error estimation derived above agrees with that of truncation of stochastic exponential
maps by [2], since the convergence of (2.17), and hence (2.26), are actually guaranteed
(cf. Remark 2.2). That is, under the assumption that such a convergence holds, the
local error estimation derived above holds exactly. In general, however, our result may
give only a formal error estimation. Indeed, according to [6], when the convergence is
not guaranteed, the asymptotic expansion of stochastic exponential maps is estimated
only in a “probability” sense.

Local error estimation for the composition scheme in Procedure 2.
Next, we will proceed to the local error estimation for Procedure 2. We can carry this
out using the BCH formula [3] together with Lemma 2.2; the formula is given by the
following form:

exp (ε(∆t)X) exp (δ(∆t)Y ) = exp(ε(∆t)X + δ(∆t)Y +
1

2
ε(∆t)δ(∆t)[X,Y ](3.8)

+
1

12
(ε(∆t)2δ(∆t)[X, [X,Y ]] + ε(∆t)δ(∆t)2[Y, [Y,X]]) + · · ·),
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where X and Y are C∞ vector fields, and ε(∆t) and δ(∆t) are any functions of ∆t; in
our case, they correspond to polynomial functions of multiple Itô stochastic integrals
I(α),n(∆t).

Proposition 3.2. Let Ŷn∆t be a truncated vector field given by (3.6). Suppose
that the vector fields An∆t and Bn∆t in a decomposition (3.3) for Ŷn∆t are described
by

An∆t =
∑

J;1≤|J|≤γ
Fn

J(∆t)XJ , Bn∆t =
∑

J;1≤|J|≤γ
Gn

J(∆t)XJ ,(3.9)

respectively, and that the least values of MSOs of Fn
J(∆t) and Gn

J(∆t) in (3.9) are

given by α and β, respectively. If XJα
A and X

Jβ
B , which are vector fields corresponding

to the coefficients with α and β as MSO, respectively, satisfy [XJα
A ,X

Jβ
B ] �= 0, then

Etn,s[|S̃n+1 − Ŝn+1|2] = O((∆t)α+β)) (∆t ↓ 0).(3.10)

Proof. Let Fn
Jα(∆t) and Gn

Jβ (∆t) be the coefficients in (3.9) whose MSOs are
equal to α and β, respectively. Then, in an analogous way to that in Lemma 2.2, we
can prove that

Etn,s[|FnJα(∆t)Gn
Jβ (∆t)|2] = O((∆t)α+β) (∆t ↓ 0).(3.11)

Therefore, on account of the BCH formula (3.8), (3.11), and the definition of α and
β given above, one may find that

(3.12)

Etn,s[|S̃n+1 − Ŝn+1|2] = Etn,s[| exp (An∆t +Bn∆t)(s)− exp (An∆t) exp (Bn∆t)(s)|2]

= Etn,s

[∣∣∣∣ exp (An∆t +Bn∆t)(s)

− exp

(
An∆t +Bn∆t +

1

2
[An∆t, Bn∆t] + · · ·

)
(s)

∣∣∣∣
2
]

= O((∆t)α+β).

Thus, the local order between (S̃n)
N
n=0 and (Ŝn)

N
n=0 is given by (α+ β)/2.

Remark 3.3. By further manipulating the BCH formula to eliminate higher-order
terms, we can obtain various schemes which give higher-order approximations to the
exponential map. For example, the scheme corresponding to “leapfrog,” which is well
known in deterministic numerical analysis, is given by

exp ((∆t)(X + Y )) = exp

(
∆tY

2

)
exp (∆tX) exp

(
∆tY

2

)
+O((∆t)3).(3.13)

In a way analogous to that in (3.4), we define a stochastic leapfrog scheme as follows:

S̃n+1 = exp

(
Bn∆t

2

)
exp (An∆t) exp

(
Bn∆t

2

)
(S̃n) (n = 0, 1, . . . , N − 1).(3.14)

Then, using the BCH formula (3.8) and (3.11) repeatedly, we can find that the local
error for this scheme is given by (α+ 2β)/2 as follows:

Etn,s[|S̃n+1 − Ŝn+1|2] = O((∆t)α+2β).(3.15)
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Thus, we can produce another numerical scheme having a better local order than
that of the scheme (3.4). Moreover, using this scheme as a basis element for further
leapfrog schemes, we may also produce an approximation to exponential map up to
any order in a similar way to that in ordinary numerical analysis.

Total local error estimation for the numerical scheme of Procedures
1 and 2. Finally, we estimate the local error order between the exact discretized
solutions (Sn)

N
n=0 and the numerical approximation solutions (S̃n)

N
n=0. This is easily

carried out by using Propositions 3.1 and 3.2 (or Remark 3.3) for the local orders in
the above two procedures together with

Etn,s[|Sn+1 − S̃n+1|2] ≤ Etn,s[|Sn+1 − Ŝn+1|2] + Etn,s[|Ŝn+1 − S̃n+1|2],(3.16)

and thereby we obtain the following theorem.
Theorem 3.1. Under the conditions of Propositions 3.1 and 3.2,

Etn,s[|Sn+1 − S̃n+1|2] ≤ O((∆t)δ) (∆t ↓ 0)(3.17)

holds, where δ = min(α+ β, γ + 2) in the case of (3.4) and δ = min(α+ 2β, γ + 2) in
the case of (3.14).

On account of Definition 3.1, if (3.17) holds, we may regard (δ/2) as a local order
for the scheme giving the numerical approximation solutions (S̃n)

N
n=0. In this article,

however, we call the value a local order in a “weak sense” for the scheme, since the
estimation of error order is “indirectly” derived from the inequality (3.16).

3.3. Global error estimation and some examples for the new schemes.
Now, we proceed to global error estimation for our schemes. We start with the
definition of “global error order” in a manner analogous to that in [15] mentioned in
Definition 3.1.

Definition 3.2. Suppose that S(t) and (S̄n)
N
n=0 are an exact solution and the

numerical approximation solutions to SDE (2.18), respectively. Moreover, let E0,ξ be
the expectation conditioned on starting at ξ at “initial time” τ . Then the global error
order λ is defined by

E0,s[|S̄N − SN |2] = O((∆t)2λ) (∆t ↓ 0),(3.18)

where SN = S(N∆t), N∆t = T and | · | denotes the Euclidean norm on the space Rd.
Note that the condition in the expectation (3.18) means S0 = S̄0 = s. It is obvious

that the accuracy of a numerical scheme improves with increasing global order.
Remark 3.4. In the framework of global error order defined by [23], the global

order for the numerical solutions S̄n satisfying (3.18) is given by 2λ.
Using Theorem 3.1, we can prove the following lemma and thereby find the global

order of our schemes in a weak sense.
Lemma 3.1. Suppose that the numerical approximation solutions (S̃n)

N
n=0 to SDE

(2.18) given by (3.4) or (3.14) satisfy (3.17); that is, the local order in a weak sense
for the solutions is equal to (δ/2). Then

E0,s[|Sn+1 − S̃n+1|2] ≤ (n+ 1)×O((∆t)δ) (∆t ↓ 0).(3.19)

Proof. Here, we treat only the case of (S̃n)
N
n=0 given by (3.4) because we can

prove (3.19) for the case of numerical solutions by (3.14) in a way analogous to that
shown below.
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We prove this lemma by induction. First, if n = 0, the inequality (3.19) is obvious,
since it reduces to (3.17). We assume that (3.19) holds in the case of n = k−1. Then,
for n = k, we rewrite the left-hand side of (3.19) as follows:

E0,s[|Sk+1 − S̃k+1|2](3.20)

= E0,s[|Sk+1 − exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)

+ exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)− S̃k+1|2]
≤ E0,s[|Sk+1 − exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)|2]
+ E0,s[| exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)− S̃k+1|2],

where exp (A(k+1)∆t) exp (B(k+1)∆t) is the composition exponential map given by

(3.4). Using (3.4) for n = k, that is, S̃k+1 = exp (A(k+1)∆t) exp (B(k+1)∆t)(S̃k),
we may rewrite the first term on the right-hand side in (3.20) in the following form:

E0,s[|Sk+1 − exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)|2] = E[|Sk+1 − S̃k+1|2|Sk = S̃k].

This fact, together with the assumption about the local order for (S̃n)
N
n=0, gives

E0,s[|Sk+1 − exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)|2] ≤ O((∆t)δ).

In a similar manner, using (3.4), we can put the second term on the right-hand side
in (3.20) into the following form:

E0,s[| exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk)− S̃k+1|2]

= E0,s[| exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk − S̃k)|2].

Then, the definition of exponential map [16], [3], together with (3.8) and the assump-
tion of the induction, proves

E0,s[| exp (A(k+1)∆t) exp (B(k+1)∆t)(Sk − S̃k)|2] ≤ k ×O((∆t)δ).

Therefore, we find

E0,s[|Sk+1 − S̃k+1|2] ≤ (k + 1)×O((∆t)δ) (∆t ↓ 0),(3.21)

and hence (3.19) holds for n = k, thus completing the proof.
We note that N∆t = T = constant. Therefore, Lemma 3.1, together with this

fact, straightforwardly proves the following theorem.
Theorem 3.2. Suppose that the local order in a weak sense for numerical ap-

proximation solutions (S̃n)
N
n=0 given by (3.4) or (3.14) is equal to (δ/2). Then

E0,s[|SN − S̃N |2] ≤ O((∆t)δ−1) (∆t ↓ 0).(3.22)

Thus, we can estimate the global error order for our schemes, although the es-
timation is indirectly derived through the inequality (3.22). Hence, on account of
Definition 3.2, if (3.22) holds, we call the value (δ − 1)/2 a global order in a weak
sense for the schemes of (3.4) or (3.14).
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Now, in the following, we will investigate some examples of new numerical schemes
for (2.18), which are derived from the procedures given above, and estimate the local
and global errors on the basis of Theorems 3.1 and 3.2.

Example 3.1. Suppose that a truncated vector field Ŷn∆t in Procedure 1 is given
by

Ŷn∆t = I(0),n(∆t)X0 + I(1),n(∆t)X1,

= ∆tX0 +∆WnX1.(3.23)

On account of (2.26), we see that γ in Proposition 3.1 for this truncated vector field
equals 1. We further set An∆t = ∆tX0 and Bn∆t = ∆WnX1 in the decomposition
(3.3) and assume that the explicit forms of both exponential maps for them are ob-
tained through (2.13). In this case, α and β in Proposition 3.2 become 2 and 1,
respectively, because of Lemma 2.1. Then, the scheme (3.4) can be put into the
following form.

Scheme 3.1.

S̃n+1 = exp (∆tX0) exp (∆WnX1)(S̃n).(3.24)

Assume that [X0, X1] �= 0. Then, through Theorems 3.1 and 3.2, we obtain

Etn,s[|Sn+1 − S̃n+1|2] ≤ O((∆t)3)(3.25)

and

E0,s[|SN − S̃N |2] ≤ O((∆t)2).(3.26)

Thus, we find that the local order and the global order in a weak sense for Scheme
3.1 equals 1.5 and 1, respectively.

Example 3.2. For Ŷn(∆t) in Example 3.1, we set An∆t = ∆tXA
0+∆WnX

A
1 and

Bn∆t = ∆tXB
0+∆WnX

B
1 in (3.3), where X0 = XA

0+XB
0 and X1 = XA

1+XB
1.

We assume that [XA
1, X

B
1] �= 0 and that the explicit forms of both exponential maps

for them are obtained. In this case, α and β in Proposition 3.2 are both equal to 1;
hence the local order of the scheme (3.4) for the above An∆t and Bn∆t becomes 1. In
order to produce a scheme having better accuracy than that of this scheme, we use
(3.14) instead of (3.4).

Scheme 3.2.

S̃n+1 = exp

(
Bn∆t

2

)
exp (An∆t) exp

(
Bn∆t

2

)
,(3.27)

where An∆t = ∆tXA
0 + ∆WnX

A
1 and Bn∆t = ∆tXB

0 + ∆WnX
B

1 under X0 =
XA

0 +XB
0 and X1 = XA

1 +XB
1.

Then, Theorems 3.1 and 3.2 indicate that (3.25) and (3.26) also hold in this case.
That is, the local error order and the global order of this scheme are equal to 1.5 and
1, respectively.

Example 3.3. We will formulate a scheme with better accuracy than that of the
schemes described above. For this purpose, we choose the following vector field as
Ŷn∆t in (3.6):

Ŷn∆t = ∆tX0 +∆WnX1 +
1

2
(I(0,1),n(∆t)− I(1,0),n(∆t))[X0, X1].(3.28)



LIE ALGEBRAIC APPROACH TO NUMERICS OF SDES 881

Then, from (2.26), we see that γ in Proposition 3.1 for this truncated vector field
becomes 2. Moreover, we set

exp (An∆t) = exp (∆tX0)(3.29)

and

exp (Bn∆t) = exp

(
∆WnX1 +

1

2
(I(0,1),n(∆t)− I(1,0),n(∆t))[X0, X1]

)
.(3.30)

Assume that the explicit forms of both exponential maps for these are obtained
through (2.13). In this case, Lemmas 2.1 and 2.2 show that α and β in Proposi-
tion 3.2 are equal to 2 and 1, respectively. Moreover, we adopt (3.14) for these vector
fields which leads to the following scheme.

Scheme 3.3.

S̃n+1 = exp

(
Bn∆t

2

)
exp (An∆t) exp

(
Bn∆t

2

)
(S̃n),(3.31)

where exp (An∆t) is given by (3.29) and exp (Bn∆t/2) is derived by replacing Bn∆t

by Bn∆t/2 in (3.30).
Then, because of Theorems 3.1 and 3.2, we find that

Etn,s[|Sn+1 − S̃n+1|2] ≤ O((∆t)4)(3.32)

and

E0,s[|SN − S̃N |2] ≤ O((∆t)3),(3.33)

and hence conclude that the local order and the global order in a weak sense for
Scheme 3.3 equals 2 and 1.5, respectively.

4. Examples. In this section, we will give several illustrative examples of ap-
plying our new stochastic numerical schemes to SDEs.

4.1. Numerical simulation of a nonlinear asset price process in math-
ematical finance. As was mentioned in section 1, we first work with the following
nonlinear scalar SDE which is often treated as a model of an asset price process of
Bessel type in mathematical finance [9] (cf. Remark 4.1):

dS(t) = S(t)dt+ 2
√

S(t) ◦ dW (t), S(0) = s(> 0).(4.1)

This system has a structure such that the value of solution remains nonnegative for
any t ∈ [0, T ]. In standard stochastic numerical schemes, however, this property is
not always preserved numerically; in particular, if an initial value s is close to zero,
the numerical solutions often go into the domain of negative values in the midst of
numerical simulations. Such troublesome behavior will be observed in the numerical
results given later. In contrast with this, through the results in previous section,
we may obtain a scheme which leaves the structure of the stochastic system (4.1)
invariant numerically. We will examine it now.

First, from (2.6) and (4.1), we see that the vector fields X0 and X1 become

X0 = S
d

dS
, X1 = 2

√
S

d

dS
,(4.2)
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respectively. Here, we note that [X0, X1] = −X1/2, and the Lie algebra generated by
X0 and X1 is of finite dimension. Hence, Remark 2.2 indicates that (2.26) actually
converges in this case.

We proceed to investigate the application of Scheme 3.1 to SDE (4.1). On account
of (3.24), we suppose that An∆t and Bn∆t in (3.3) are given by

An∆t = ∆tX0 = ∆tS
d

dS
, Bn∆t = ∆WnX1 = ∆Wn2

√
S

d

dS
.(4.3)

Then, in view of (2.13), we obtain the exponential maps for An∆t and Bn∆t explicitly
as follows:

exp(An∆t)(s) = s exp (∆t), exp(Bn∆t)(s) = {∆Wn +
√
s}2.(4.4)

Inserting these into (3.24), we find that Scheme 3.1 applied to SDE (4.1) leads to

S̃n+1 =

{
∆Wn +

√
S̃n

}2

exp (∆t),(4.5)

where S̃0 = S(0) = s. Clearly, the numerical solutions derived from our scheme never
take negative values, and this is just the result we want. Moreover, as mentioned in
section 3.3, the local and global orders in a weak sense for this scheme are given by
1.5 and 1, respectively.

Next we will apply Scheme 3.3 to SDE (4.1). On account of (3.29), in this case,
we also obtain s exp (∆t) as exp (An∆t)(s). In contrast with this, (3.30) takes the
form

exp (Bn∆t) = exp

{(
∆Wn − 1

4
(I(0,1),n(∆t)− I(1,0),n(∆t))

)
X1

}
,(4.6)

since [X0, X1] = −X1/2. In a way similar to that of Scheme 3.1, this is also calculated
explicitly as follows:

exp (Bn∆t)(s) =

{
∆Wn − 1

4
(I(0,1),n(∆t)− I(1,0),n(∆t)) +

√
s

}2

,(4.7)

and thereby we obtain the result of Scheme 3.3 applied to SDE (4.1) as

S̃n+1 =

{
∆Wn

2
− 1

8
(I(0,1),n(∆t)− I(1,0),n(∆t)) +

√
ŝ

}2

,(4.8)

together with

ŝ =

{
∆Wn

2
− 1

8
(I(0,1),n(∆t)− I(1,0),n(∆t)) +

√
S̃n

}2

exp (∆t),(4.9)

where S̃0 = S(0) = s. This also indicates that the numerical solutions derived from
this scheme take only nonnegative values. Then, as mentioned in section 3.3, the local
and global orders for this scheme are equal to 2 and 1.5, respectively.

Here, we will examine the numerical solutions of SDE (4.1) given by these schemes.
Then, we will compare these numerical results with those of several standard numerical
schemes. For this purpose, we adopt the Euler–Maruyama scheme (Taylor scheme of
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Table 1
An example of numerical solutions to SDE (4.1) from the Euler–Maruyama scheme (4.10),

Kloeden’s Taylor scheme (4.11), Scheme (4.5) and Scheme (4.8) with (4.9) for an initial value
s = 0.01.

n Euler–Maruyama Kloeden’s Taylor Scheme (4.5) Scheme (4.8)
189 0.0373054 0.014018 0.0140095 0.0140059
190 0.0459159 0.0190609 0.0190539 0.0190461
191 0.0428106 0.0164982 0.01649 0.0164839
192 0.0524778 0.0223075 0.0222992 0.0222907
193 0.0365604 0.0126323 0.0126217 0.0126192
194 0.0190258 4.07906E-03 0.0040724 4.07239E-03
195 0.0120115 1.20801E-03 1.20498E-03 1.20484E-03
196 7.86052E-04 4.42925E-04 4.46361E-04 4.45822E-04
197 2.07421E-03 6.85707E-04 6.89868E-04 6.8875E-04
198 -9.47943E-05 7.45417E-05 7.31484E-05 7.32705E-05

global order 0.5) and Kloeden’s Taylor scheme of global order 1.5 [15], [23]; they are
given in the following forms for the SDE (4.1):

Euler–Maruyama scheme.

Sn+1 = Sn + (Sn + 1)∆t+ 2
√

Sn∆Wn.(4.10)

Kloeden’s Taylor scheme of global order 1.5.

Sn+1 = S n + (Sn + 1)∆t+ 2
√

Sn∆Wn

+ {(∆Wn)
2 −∆t}

+ 2
√
SnI(1,0),n(∆t) +

√
SnI(0,1),n(∆t)

+
1

2
(Sn + 1)(∆t)2.(4.11)

In the schemes (4.5), (4.8) with (4.9), (4.10), and (4.11), ∆Wn, I(1,0),n(∆t), and
I(0,1),n(∆t) are numerically realized by the independent N(0, 1) random numbers γn
and γ̂n (n = 0, 1, . . .) as follows [15]:

∆Wn = γn
√
∆t,

I(1,0),n(∆t) =
1

2

(
γn +

1√
3
γ̂n

)
(∆t)3/2,(4.12)

I(0,1),n(∆t) =
1

2

(
γn − 1√

3
γ̂n

)
(∆t)3/2.

Moreover, we choose T = 1 and N = 1000 here, and hence the stepsize ∆t = 10−3.
Tables 1 and 2 display the results of the numerical solutions from these schemes

listed above for the initial value s = 0.01 and s = 0.001, respectively. (Note: in the
case of Table 2, the scheme (4.10) is excluded.) Here we have used the same sequences
of random numbers for each scheme together with (4.12). As was mentioned in the
introductory part of this section, from these results we observe that the values of
numerical solutions derived from the standard schemes become negative during their
computation if their initial values are close to zero. In contrast with these results,
all of our schemes are free from such problems. Thus, our scheme (4.5) and (4.8)
with (4.9) are superior with respect to numerical realization of the character of SDE
(4.1); that is, nonnegativity of solutions is preserved in contrast to the results of the
standard schemes.
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Table 2
An example of numerical solutions to SDE (4.1) from Kloeden’s Taylor scheme (4.11), Scheme

(4.5) and Scheme (4.8) with (4.9) for an initial value s = 0.001.

n Kloeden’s Taylor Scheme (4.5) Scheme (4.8)
358 4.28647E-03 4.38672E-03 4.27267E-03
359 7.06959E-03 7.19804E-03 7.05171E-03
360 2.92672E-04 3.21066E-04 0.0002912
361 5.76257E-04 6.15458E-04 5.7371E-04
362 2.57058E-03 2.65334E-03 2.56494E-03
363 3.09359E-03 3.18363E-03 3.08695E-03
364 8.20704E-04 8.66758E-04 8.17091E-04
365 2.12819E-04 1.90873E-04 2.14876E-04
366 5.3766E-04 5.01956E-04 5.40526E-04
367 -2.97776E-07 7.52643E-07 7.81725E-10

Table 3
An example of numerical solutions to SDE (4.1) from the Euler–Maruyama scheme (4.10),

Kloeden’s Taylor scheme (4.11), Scheme (4.5) and Scheme (4.8) with (4.9) for an initial value s = 1.

n Euler–Maruyama Kloeden’s Taylor Scheme (4.5) Scheme (4.8)
991 4.33234 4.29109 4.29002 4.29109
992 4.25444 4.21288 4.2118 4.21288
993 3.97593 3.9392 3.93813 3.9392
994 3.72468 3.69204 3.69095 3.69204
995 3.48053 3.4519 3.45081 3.4519
996 3.6467 3.61833 3.61729 3.61834
997 3.79678 3.76838 3.76736 3.76838
998 3.74771 3.71863 3.7176 3.71863
999 3.72407 3.69411 3.69307 3.69412
1000 3.62125 3.5914 3.59035 3.59141

Table 3 displays the results for the initial value s = 1. In Table 3, it is observed
that numerical results of the schemes (4.5) and (4.8) are closer to those of Kloeden’s
scheme (4.11) than to the results of Euler’s scheme (4.10). In particular, the numerical
solutions from (4.8) are very similar to those of (4.11); from theoretical consideration
of local and global orders in section 3.3, these observations are as expected.

Remark 4.1. Let us consider the following SDE:

dS(t) = S(t)dt+
1

1− γ
{S(t)}γ ◦ dW (t), S(0) = s(> 0),

where 0 < γ < 1. This is also often treated as a model of an asset price process in
mathematical finance, and it is a generalization of (4.1). For this process, we can
also construct numerical schemes like those described above in a similar way. Indeed,
Scheme 3.1 for this SDE, of which local and global orders equal 1.5 and 1, respectively,
is given by

S̃n+1 = [{∆Wn + S̃1−γ
n }2]1/{2(1−γ)} exp (∆t),

where S̃0 = S(0) = s. Note that the numerical solutions derived from this scheme
also satisfy nonnegativity.

4.2. Example of Scheme 3.2 for a nonlinear SDE. We study an example
for Scheme 3.2 given by (3.27). Let us consider the following nonlinear scalar SDE:

dS(t) = S(t)dt+ {S(t) + 2
√

S(t)} ◦ dW (t), S(0) = s(> 0).(4.13)
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In this case, the vector fields X0 and X1 are set as

X0 = S
d

dS
, X1 = (S + 2

√
S)

d

dS
,(4.14)

respectively. Then, we remark that [X0, X1] = −
√
S(d/dS), [X0, [X0, X1]] = −[X0,

X1]/2, and [X1, [X0, X1]] = −[X0, X1]/2 hold; hence the Lie algebra generated by
X0 and X1 is of finite dimension. Therefore, as in section 4.1, (2.26) also actually
converges in this case.

We may regard the SDE (4.13) as a linear SDE with the additional random
perturbation 2

√
S(t) ◦ dW (t). On account of this, as An∆t and Bn∆t in (3.27), we

adopt

An∆t = ∆tS
d

dS
+∆WnS

d

dS
, Bn∆t = ∆Wn2

√
S

d

dS
;(4.15)

that is, we set XA
0 = S(d/dS), XA

1 = S(d/dS), XB
0 = 0, and XB

1 = 2
√
S(d/dS).

Then, in view of (2.13), we obtain the exponential maps for them explicitly as follows:

exp(An∆t)(s) = s exp (∆t+∆Wn), exp(Bn∆t)(s) = {∆Wn +
√
s}2.(4.16)

Inserting these equations into (3.27), we find Scheme 3.2 for the SDE (4.13); it is
given by

S̃n+1 =

{
∆Wn/2 +

√
{∆Wn/2 +

√
S̃n}2 exp (∆t+∆Wn)

}2

,(4.17)

where S̃0 = S(0) = s. Then, the theoretical consideration of error stimation in section
3.3 proves that the local and global orders for this scheme equal 1.5 and 1, respectively.

Here, in a way similar to that in section 4.1, we will observe the results of numerical
solutions through this scheme and compare them with the results of the following
Euler–Maruyama scheme and Kloeden’s Taylor scheme for (4.13):

Euler–Maruyama scheme.

Sn+1 = Sn +

{
3

2
(Sn +

√
Sn) + 1

}
∆t+ (Sn + 2

√
Sn)∆Wn.(4.18)

Kloeden’s Taylor scheme of global order 1.5.

Sn+1 = Sn +

{
3

2
(Sn +

√
Sn) + 1

}
∆t+ (Sn + 2

√
Sn)∆Wn(4.19)

+
1

2

(
Sn + 3

√
Sn + 2

)
{(∆Wn)

2 −∆t}

+
3

2

(
Sn +

5

2

√
Sn + 1

)
I(1,0),n(∆t) +

3

2

(
Sn +

11

6

√
Sn + 1

)
I(0,1),n(∆t)

+
1

6

(
Sn +

7

2

√
Sn + 3

)
{(∆Wn)

3 − 3∆t∆Wn}

+
9

8

(
Sn +

17

12

√
Sn +

5

6

)
(∆t)2.

Finally, inserting (4.12) into the schemes (4.17)–(4.19), we obtain numerical solutions
which are shown in Table 4 for the initial value s = 1, T = 1, N = 1000, and
∆t = 10−3.
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Table 4
An example of numerical solutions to SDE (4.13) from the Euler–Maruyama scheme (4.18),

Kloeden’s Taylor scheme (4.19) and Scheme (4.17) for an initial value s = 1.

n Euler–Maruyama Kloeden’s Taylor Scheme (4.17)
991 9.07412 9.83114 9.83382
992 9.77413 10.5897 10.5926
993 9.35542 10.1398 10.1426
994 9.79685 10.6085 10.6114
995 9.86074 10.6656 10.6686
996 9.91146 10.7086 10.7115
997 9.57355 10.3428 10.3456
998 9.27501 10.0183 10.021
999 9.64218 10.4042 10.407
1000 9.47959 10.2216 10.2244

From Table 4 it is also observed that the numerical results of the scheme (4.17)
are closer to those of Kloeden’s scheme than to the results of Euler’s scheme. On
account of local and global orders for each scheme, this is also to be expected.

4.3. Composition method applied to stochastic Hamiltonian dynamical
systems. As mentioned in section 1, composition methods (or operator splitting
methods) are not only a superior integration method for differential equations in
preserving the special character or structure of the equations but also often useful
for approximations of nonlinear equations whose solutions are not obtained explicitly.
The results in sections 4.1 and 4.2 given above show that this is also true in the case
of stochastic systems. As also mentioned, such an advantage is remarkable in the
case of dynamical systems with multiple space dimensions or Hamiltonian dynamical
systems using dimensional splitting methods (e.g., [25], [12]). To illustrate this, we
will investigate numerical schemes by composition methods for stochastic dynamical
systems with “Hamiltonian structure” [20], [21].

First we review stochastic Hamiltonian dynamical systems [20]. Let us consider
the following 2�-dimensional stochastic dynamical system:

d

(
xi(t)
x�+i(t)

)
=

(
∂�+iH0(x(t))
−∂iH0(x(t))

)
dt+

(
∂�+iH1(x(t))
−∂iH1(x(t))

)
◦ dW (t)(4.20)

(i = 1, · · · �),
where x = (xk)2�k=1 and ∂j = ∂/∂xj (j = 1, 2, . . . , 2�), respectively. In (4.20),
Hα(x) (α = 0, 1) are smooth scalar functions on R2�. Formally, one may regard
this as a Hamiltonian dynamical system

d

dt

(
xi

x�+i

)
=

(
∂�+iĤ(x)

−∂iĤ(x),

)
(i = 1, . . . , �)

with a “randomized” Hamiltonian Ĥ given by

Ĥ = H0 +H1γt,

where γt is a one-dimensional Gaussian white noise. With these definitions, we call
(4.20) and Hα (α = 0, 1) an (�-dimensional) stochastic Hamiltonian dynamical system
and the Hamiltonian, respectively.

Now, we proceed to an illustration of our new scheme for stochastic Hamiltonian
systems. For simplicity, we set � = 1 and denote x1(t) and x2(t) by q(t) and p(t),
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respectively. Let us consider the class of Hamiltonian systems with the typical Hamil-
tonian H0 = p2/2 + V0(q) and H1 = p2/2 + V1(q), where V0(q) and V1(q) are any
potential functions. With this notation, (4.20) becomes

d

(
q(t)
p(t)

)
=

(
p(t)

−V ′
0(q(t))

)
dt+

(
p(t)

−V ′
1(q(t))

)
◦ dW (t).(4.21)

In general, this is a stochastic nonlinear system. For this system, the vector fields X0

and X1 become

X0 = p∂q − V ′
0(q)∂p, X1 = p∂q − V ′

1(q)∂p,(4.22)

respectively.
We will apply our scheme to this system. As an important example of the de-

composition of (3.3) for the above system, we choose the following splitting:

An∆t = p(∆t+∆Wn)∂q, Bn∆t = −(V ′
0(q)∆t+ V ′

1(q)∆Wn)∂p.(4.23)

This corresponds to the decomposition mentioned in Scheme 3.2; that is, XA
0 , XA

1 ,
XB

0 , and XB
1 in Scheme 3.2 are given by p∂q, p∂q, −V ′

0(q)∂p, and −V ′
1(q)∂p, respec-

tively. Then we note that exp(An∆t) and exp(Bn∆t) are exponential maps which
correspond to the flows of solutions to the following SDEs, respectively:

d

(
q(t)
p(t)

)
=

(
p(t)
0

)
dt+

(
p(t)
0

)
◦ dW (t),

d

(
q(t)
p(t)

)
=

(
0

−V ′
0(q(t))

)
dt+

(
0

−V ′
1(q(t))

)
◦ dW (t).

Therefore, we can obtain the explicit forms of them; this may be regarded as an
example of dimensional splitting. The results are given by

exp(An∆t)

(
qn
pn

)
=

(
pn(∆t+∆Wn) + qn

pn

)
,

exp(Bn∆t)

(
qn
pn

)
=

(
qn

−(∆tV ′
0(qn) + ∆WnV

′
1(qn)) + pn

)
.

Inserting these equations into (3.27), we finally find Scheme 3.2 for this system as
follows: (

q̃n+1

p̃n+1

)
=

(
q̂n

− 1
2 (∆tV ′

0(q̂n) + ∆WnV
′
1(q̂n)) + p̂n

)
,(4.24)

where (
q̂n
p̂n

)
=

(
p̂n(∆t+∆Wn) + q̃n

− 1
2 (∆tV ′

0(q̃n) + ∆WnV
′
1(q̃n)) + p̃n

)
.(4.25)

As in the example in section 4.2, the local and global orders in a weak sense for
this scheme are equal to 1.5 and 1, respectively. Thus, for the class of stochastic
Hamiltonian dynamical systems with typical Hamiltonians mentioned above, we can
numerically approximate them through our scheme (4.24) with (4.25) and achieve an
accuracy corresponding to Taylor scheme of global order 1.
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4.4. Remark on composition methods and conserved quantities in sto-
chastic dynamical systems. Finally, we remark on numerical schemes for stochas-
tic dynamical systems which preserve “conserved quantities” of the systems. It is well
known that conserved quantities play an essential role to determine the structure of
dynamical systems; hence, it is important to find a numerical scheme which has the
conservation properties for the quantities related to stochastic systems. On the other
hand, composition methods often give such schemes for deterministic systems. There-
fore, we may expect that one may obtain such schemes through our results, which
have the advantage of numerically preserving the conserved quantities for stochastic
systems; and in the remainder of this section, we will briefly examine this feature of
our schemes.

Let us consider d-dimensional stochastic dynamical systems (2.18). Suppose that
a smooth function I = I(S) satisfies

X0I = 0, X1I = 0,(4.26)

where X0 and X1 are the vector fields given by (2.6). According to [20], I(S) becomes
a constant quantity; that is, I(S(t)) = constant holds for the diffusion process S(t)
governed by SDE (2.18).

Under some conditions, we may straightforwardly formulate a stochastic scheme
satisfying numerical preservation of conserved quantities. Assume that the exponen-
tial maps of An∆t = ∆tX0 and Bn∆t = ∆WnX1 are explicitly calculated. Then, it
is obvious that Scheme 3.1 preserves the conserved quantity I numerically because of
the definition of exponential map and (4.26).

Now, we investigate a trivial example of a stochastic dynamical system with a
conserved quantity and the numerical scheme through composition methods. Let us
consider

d

(
S1(t)
S2(t)

)
=

(
S2(t)
−S1(t)

)
dt+

(
S2(t)
−S1(t)

)
◦ dW (t);(4.27)

this is a stochastic system with the conserved quantity I(S) = 1
2 ((S

1)2 + (S2)2),
since (4.26) holds. However, as mentioned in [21], ordinary schemes do not conserve
I(S) numerically. On the other hand, for this system, we adopt Scheme 3.1 with
An∆t = ∆tX0 = ∆t(S2∂1 − S1∂2) and Bn∆t = ∆WnX1 = ∆Wn(S

2∂1 − S1∂2); then
through (2.13), the numerical scheme is explicitly given by

(
S̃1
n+1

S̃2
n+1

)
=

(
cos (∆t) sin (∆t)
− sin (∆t) cos (∆t)

)(
cos (∆Wn) sin (∆Wn)
− sin (∆Wn) cos (∆Wn)

)(
S̃1
n

S̃2
n

)
.

(4.28)
Therefore, for any n, the numerical solutions (4.28) for (4.27) satisfy I(S̃1

n, S̃
2
n) =

constant. Thus, our scheme numerically preserves a conserved quantity I of the
stochastic system (4.27), and this fact also shows the superiority of the scheme derived
through composition methods.

5. Concluding remarks. In this article, we have formulated composition meth-
ods for SDEs, and through these we have proposed some stochastic numerical schemes.
Several illustrative examples show that the new schemes are superior in their conserva-
tion properties related to the character of SDEs, and they are useful for approximating
the solutions to SDEs. Moreover, we have investigated local and global error orders for
our schemes. Finally, we offer some remarks and note some future research problems
related to this work.
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(i) As mentioned in Remark 3.2, we plan to carry out a more detailed analytical
error estimation for our schemes using the result on time asymptotics of exponential
maps for SDEs by [6], since the stochastic series (2.26) is only a formal representation.

(ii) In our error estimation, we have addressed local and global error orders “in a
weak sense” for our new schemes, since we have indirectly estimated the error orders
for numerical solutions using these schemes. To obtain a precise local or global error
order, it would be necessary to carry out a direct error estimation for such numerical
solutions.

(iii) In this article, we have treated the SDEs with a one-dimensional Wiener pro-
cess. However, it often happens that the error order of a numerical method collapses
if there is more than one Wiener process. Hence, it would be important to investigate
the error orders of our schemes in the case of SDEs with a multidimensional Wiener
process. Moreover, in any approach to this problem, account should be taken of the
remarkable work by K. Burrage and P.M. Burrage [4], [5]. In their papers, they have
developed stochastic Runge–Kutta schemes of higher order for such SDEs through
the Magnus formula related to Lie algebra. Therefore, based on their work, we should
be able to improve our composition methods and offer new schemes with high order
for SDEs with a multidimensional Wiener process.

(iv) It is to be noted that Li and Liu [18] and Kunita [17] have studied stochastic
exponential maps for a more general class of stochastic processes (e.g., Lévy processes).
Hence, using their results, it would be interesting to formulate stochastic composition
methods for such general stochastic processes.

The research on these topics will be reported in future papers.
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pp. 28–41.
[11] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes 2nd

edition, North-Holland/Kodansha, Amsterdam/Tokyo, 1989.
[12] A. Iserles, Composite methods for numerical solution of stiff systems of ODE’s, SIAM J.

Numer. Anal., 21 (1984), pp. 340–351.



890 TETSUYA MISAWA

[13] Y. Ishimori, Explicit energy conservative difference schemes for nonlinear dynamical systems
with at most quartic potentials, Phys. Lett. A, 191 (1994), pp. 373–378.

[14] P. E. Kloeden and E. Platen, A survey of numerical methods for stochastic differential
equations, Stochastic Hydrology and Hydraulics, 3 (1989), pp. 155–178.

[15] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, Berlin, 1992.

[16] H. Kunita, On the Representation of Solutions of Stochastic Differential Equations, Lecture
Notes in Math. 784, Springer-Verlag, Berlin, 1980, pp. 282–304.

[17] H. Kunita, Asymptotic self-similarity and short time asymptotics of stochastic flows, J. Fac.
Sci. Univ. Tokyo, Sect. IA Math., to appear.

[18] C. W. Li and X. Q. Liu, Algebraic structure of multiple stochastic integrals with respect to
Brownian motions and Poisson processes, Stochastics Stochastics Rep., 61 (1997), pp. 107–
120.

[19] R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric
composition methods, SIAM J. Sci. Comput. 16 (1995), pp. 151–168.

[20] T. Misawa, Conserved quantities and symmetries related to stochastic dynamical systems, Ann.
Inst. Statist. Math., 51 (1999), pp. 779–802.

[21] T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynam-
ical systems, Japan J. Indust. Appl. Math., 17 (2000), pp. 119–128.

[22] Y. Moreau and J. Vandewalle, A lie algebraic approach to dynamical system prediction, in
Proceedings of the 1996 IEEE International Symposium on Circuits and Systems, Atlanta,
GA, 1996, pp. 182–185.

[23] Y. Saito and T. Mitsui, Simulation of stochastic differential equations, Ann. Inst. Statist.
Math., 45 (1993), pp. 419–432.

[24] M. Suzuki, General theory of higher-order exponential product formulas, Phys. Lett. A, 146
(1990), pp. 319–324.

[25] N. N. Yanenko, A difference method of solution in the case of the multidimensional equation
of heat conduction, Dokl. Akad. Nauk USSR, 125 (1959), pp. 1207–1210.

[26] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990),
pp. 262–269.



MODIFICATION OF A FINITE VOLUME SCHEME FOR LAPLACE’S
EQUATION∗
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Abstract. For Laplace’s equation, we discuss whether it is possible to construct a linear positive
finite volume (FV) scheme on arbitrary unstructured grids. Dealing with the arbitrary grids, we state
a control volume which guarantees a positive FV scheme with linear reconstruction of the solution.
The control volume is defined by a property of the analytical solution to the equation and does
not depend on the grid geometry. For those problems where the choice of the control volume is
prescribed a priori, we demonstrate how to improve positivity of the linear FV scheme by using
corrected reconstruction stencils. The difficulties arising when grids with no geometric restrictions
are used for the discretization are discussed. Numerical examples illustrating the developed approach
to the stencil correction are given.

Key words. Laplace’s equation, finite volume scheme, positivity, stencil correction
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1. Introduction. A discrete Laplace operator is often considered to be a good
model for investigating a discretization of partial differential equations which contain
diffusion operator∇·(D∇). Two important examples are given by convection-diffusion
equations and Navier–Stokes equations with possible applications that include the
problems of fluid dynamics, chemical engineering, and environmental pollution. For
the numerical solution of these equations, what is desirable are discretization schemes
which satisfy a discrete maximum principle (monotone schemes); otherwise one can
expect strong oscillations or even divergency of the solution.

There are two possible approaches for development of monotone schemes on un-
structured grids. The first approach is to use the grids with some geometric constraints
on the triangulation. It is well known that triangulations with no obtuse triangles
allow us to construct monotone schemes. The relevant examples are given in [6, 11].
However, nonobtuse triangulations can be used on very few practical problems. In
the process of the grid generation it is often required to resolve some complicated
features of the problem geometry that makes strict angle control to be difficult.

Looking for a wider class of triangulations, in the two-dimensional case a Delaunay
triangulation [10] is very attractive. For Laplace’s equation, in the two-dimensional
case the Delaunay triangulation provides positivity (that guarantees the discrete max-
imum principle) of the linear finite element/finite volume scheme (Barth [3]). This
important property may be applied for the solution of a wide range of problems,
even more general than discretization of the Laplace equation. For instance, Xu
and Zikatanov [17] developed a linear monotone finite element scheme for convection-
diffusion equations in any spatial dimension. To obtain a positive discretization of
the diffusion operator they assumed the restrictive geometrical conditions which in
the two-dimensional case mean that the triangulation is a Delaunay triangulation.
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Sakovich [16] used a Delaunay triangulation to control the grid quality for the con-
struction of the monotone scheme for the system of two-dimensional conservation
laws. In [16] the Laplace equation has been discretized first on the Delaunay grid.
The coefficients of this discretization have then been exploited to obtain grid quality
functional for the unstructured grids considered in the work.

Although giving us all advantages of using monotone schemes, for many complex
geometries (e.g., multicomponent airfoil configuration) the Delaunay triangulation
does not provide grids optimal in the sense of the accuracy of the solution. In partic-
ular, the Delaunay triangulation does not control the maximum angle, so that nearly
collapsed triangles may appear as the result of grid generation (Barth [4]). On the
other hand, for the equations mentioned above, grid adaptation to the solution usually
results in non-Delaunay meshes, while fully automatic generation of adapted Delau-
nay grids is a technically difficult task for many practical applications. That is why
another approach appears, where the grids with no geometric restrictions are allowed
for the discretization. In the present work, an effort has been made to investigate
whether it is possible to construct a linear positive finite volume (FV) scheme for the
Laplace equation on arbitrary unstructured grids. We demonstrate the impact of grid
geometry on the quality of the FV scheme and discuss to what extent arbitrary grids
are good for the positive discretization.

When dealing with the arbitrary grid cells, it has been shown many times that
for linear FV schemes a proper choice of the control volume allows us to improve the
results of the discretization both on the structured and unstructured grids. Barth
and Linton [5] successfully used the containment dual volume instead of the median
dual on stretched triangulated quadrilateral grids to compute viscous flows. Having
applied the viscous term discretization to the Laplace operator, Delanaye et al. [8]
showed that a correction of the diamond-shaped control volume on Cartesian grids
leads to the more positive scheme and obtained a robust discretization of the viscous
terms in Navier–Stokes equations. Putti and Cordes [13] have proposed a modification
of the control volume that allowed them to obtain the positive discretization of the
Laplace equation on three-dimensional Delaunay meshes. In all these cases the choice
of the control volume has been dictated by the geometry of grid cells.

In the present paper we show that it is possible to derive a convex control volume
which guarantees a positive FV scheme for the Laplace equation and does not depend
on the grid geometry. A property of the analytical solution to the equation is taken
into account for the construction of the control volume. Since a maximum principle is
exploited to obtain the solution on the central node of a cell, the produced FV scheme
is entirely positive on any two-dimensional unstructured mesh.

For those practical applications where the geometry of the control volume is
prescribed by some a priori conditions, we discuss how to improve the measures of
positivity of the linear FV scheme on non-Delaunay meshes. Based on the analysis
of the grid cell geometry, the stencils used for the linear reconstruction are corrected
to obtain a more positive scheme. For some triangles, additional nodes of the trian-
gulation are included into the stencils, while “far” stencil nodes generating negative
scheme coefficients are eliminated from the discretization. This correction technique
gives good results, producing a linear “quasipositive” FV scheme on the arbitrary
meshes.

The results obtained in the work lead us to a better understanding of the diffi-
culties one may expect discretizing the Laplace equation on arbitrary meshes. The
limits of using grids with no geometric restrictions for the positive discretization are
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Fig. 1. The geometry of an FV scheme for Laplace’s equation.

discussed in the conclusions.

2. Control volume for the discrete Laplace operator. We consider Laplace’s
equation with Dirichlet boundary conditions in the unit square Ω̄:

∆u(x, y) ≡ ∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0, (x, y) ∈ Ω = (0, 1)× (0, 1),

u(x, y) = g(x, y), (x, y) ∈ ∂Ω.
(1)

Let a triangulation T be the union of all triangles ti, i = 1, . . . , N, incident to a central
node 0 (see Figure 1). To obtain an FV discretization of (1) on node 0, the contour
integral

∮
∂Vdual

∂u(x, y)

∂n
dl = 0(2)

is calculated over the edges of a control volume Vdual according to Green–Gauss

theorem. For calculating ∂u(x,y)
∂n =(∇u,n) in (2) a linear reconstruction of the solution

u(x, y) in each triangle ti is used:

ui(x, y) = ai0 + ai1x + ai2y.(3)

A standard stencil for the linear reconstruction in triangle ti includes three nodes of
the triangle. Expansion coefficients aik, k = 0, 1, 2, in triangle ti are calculated by the
condition

ui(xk, yk) = u(xk, yk) ≡ uk.

After calculation ∂u(x,y)
∂n and summation over all dual edges, the discrete Laplace

operator on central node 0 is written as a weighted sum of nodal values un of the
solution u(x, y):

L(u) ≡
NT∑
n=0

ωnun = 0,(4)
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where NT is the number of the nodes of the triangulation. The requirement of non-
negativity

ω0 < 0, ωn ≥ 0, n = 1, . . . , NT ,

NT∑
n=0

ωn = 0(5)

guarantees a maximum principle, which must hold for the discrete Laplacean (4) to
provide stability and uniform convergence.

For the standard FV scheme (4) coefficients ωn depend on what control volume
Vdual is used for the discretization. A possible choice is a median dual or a centroid
dual. The discretizations obtained over these control volumes are consistent and
conservative, but they are not positive on arbitrary triangulations. Below we consider
the following problem: For arbitrary triangulation T , find a control volume VL which
provides conditions (5) for the scheme (4).

Let r0 = (x0, y0) be a radius-vector of central node 0: u(r0) = u0. An analytical
expression for the solution to the Laplace equation in point r0 is

u(r0) =
1

2πR

∫
CR

u(x, y)dl,(6)

where CR is the circumference of radius R, the circle center being point r0. Since
triangulation T may contain boundary edges, the value R is restricted by the require-
ment CR ⊂ T to provide u(x, y) being a harmonic function inside the circle CR. Note
that formula (6) expresses a maximum principle for Laplace’s equation.

We calculate integral (6) assuming the linear reconstruction (3) of the solution.
Substituting (3) into (6) and integrating over a circle arc Ai, we obtain the integral
term for triangle ti:

1

2πR

∫
Ai

u(x, y)dl =
1

2πR

∫
Ai

(ai0 + ai1x + ai2y)dl

=
1

2πR

∫ φi2

φi1

(ai0 + ai1x0 + ai2y0 + ai1R cosφ + ai2R sinφ)Rdφ

= u0
δφi

2π
+

R

2π
[ai1(sinφi2 − sinφi1)− ai2(cosφi2 − cosφi1)],

where φi1 and φi2 are the arc angles and δφi = φi2 − φi1. The summation over all
triangles yields

u0 =
u0

2π

N∑
i=1

δφi +
R

2π

N∑
i=1

[ai1(sinφi2 − sinφi1)− ai2(cosφi2 − cosφi1)].

Noting that
∑N
i=1 δφi = 2π, the following condition for a discrete Laplace operator

with the linear reconstruction appears:

N∑
i=1

[ai1(sinφi2 − sinφi1)− ai2(cosφi2 − cosφi1)] = 0.(7)

Since ∇ui = (ai1, a
i
2) and ni+1/2 = (sinφi2,− cosφi2), where ni+1/2 is the unit normal

vector for an interior edge ei+1/2, condition (7) takes the following form:

N∑
i=1

(∇ui,ni+1/2 − ni−1/2) = 0.(8)
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Now let us consider a control volume VL defined as a convex polygon created by
connecting in every triangle ti the endpoints of arc Ai (see Figure 1). For control
volume VL, the difference ni+1/2−ni−1/2 gives a vector, normal to dual edge eiL. The
unit outward normal vector ni to edge eiL is calculated as

ni =
R

|eiL|
(ni+1/2 − ni−1/2);

therefore, a flux Φi across edge eiL is

Φi = |eiL|(∇ui,ni) = R(∇ui,ni+1/2 − ni−1/2).

Multiplying by R and taking into account that in the case of linear reconstruction
(3) the sum (8) is the result of the exact integration, formula (8) transforms into the
following:

∮
∂VL

∂u(x, y)

∂n
dl = 0.(9)

The above results show us that the calculation of the solution on the central node
of the triangulation by using formula (6) with condition (3) is equivalent to the linear
FV discretization over control volume VL. For the discretization over VL, maximum
principle (6) holds; therefore, scheme (4) is entirely positive on any two-dimensional
unstructured mesh.

3. Correction of the stencils used for linear reconstruction. The con-
struction of control volume VL provides us with the positive discretization. However,
on arbitrary grids the convex dual VL is not consistent with the grid cell geometry,
since gaps (or overlappings) appear in a convex dual mesh when stretched grid cells
are considered. Concerning the issue of positivity, our next purpose is to discuss
how far the geometry of the grid cells impacts on the discretization and whether it is
possible to obtain the positive discretization (4) over the given control volume which
completely covers domain Ω.

For the prescribed geometry of dual cell Vdual , the only way to render the fluxes
in (2) closer to those in (9) is to change the approximation of the gradients. The
following example illustrates the situation. Suppose a flux Φ1 obtained as a result of
the discretization on control volume VL in triangle ti is given as follows (index i is
omitted):

Φ1 = (a1n1 + a2n2)|eL|.
Now consider a control volume Vdual different from VL. Provided the same recon-
struction (a1, a2) of the gradient is used, the discretization on control volume Vdual
results in a flux Φ2:

Φ2 = (a1n
dual
1 + a2n

dual
2 )|edual|,

where ndual = (ndual1 , ndual2 ) is the unit vector, normal to control volume edge edual in
triangle ti. Evidently, if it is possible to find in every triangle ti the new approximation
of the gradient

āk = ak
nk|eL|

ndualk |edual|
k = 1, 2,
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Fig. 2. The Delaunay correction: implementation of a circumcircle test to include close nodes
into the reconstruction stencil.

then the positive scheme is guaranteed.
Below we consider modifications of a standard FV scheme obtained by including

other nodes of the triangulation into the reconstruction stencils. In this case the fol-
lowing least squares problem is solved to calculate expansion coefficients ai in triangle
ti:

Ns∑
l=0

(ui(xl, yl)− u(xl, yl))
2 = min,(10)

where Ns is the number of stencil nodes, Ns > 3. Using extended stencils, it is possible
to change the values of ai in (2) and improve the discretization as a result. The crucial
question for such a correction of the reconstruction stencils is how to select additional
nodes.

Since a Delaunay triangulation provides a positive discretization on a dual cell
different from VL, the choice of convex polygon VL as a control volume is not a
necessary condition for the positive discretization. On the other hand, a simple linear
search of the triangulation nodes shows that for many triangulations there is a variety
of extended stencils providing a positive scheme. These facts allow us to suggest an
existence of a more than one way for the stencil correction.

Unlike the linear reconstruction on a 3-point stencil, where it is possible to state
exact conditions of positivity (cf. [3]), a strict geometric analysis of the scheme coef-
ficients in the case of using the least squares method is very laborious and can hardly
lead to production a fast and cheap algorithm for getting a positive scheme. That is
why our present intention is not to obtain a rigorous mathematical formulation but
to develop a reliable empirical approach to the selection of stencils.

The first possible way of stencil correction is based on the following hypothesis.
Consider triangulation T shown in Figure 2. Since it is intuitively clear that it would
be reasonable to include the closest to triangle ti node nc into the reconstruction
stencil in the triangle, the following question arises:

Given triangulation T , differential operator L[u], and polynomial basis set {Ψ}
for a linear reconstruction, what is measure M(T,L[u], {Ψ}) of proximity of stencil
nodes? In other words, what nodes can be considered as being close to reconstruction
stencil ti?
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Based on the theorem (Barth [3]), which states positivity of an FV scheme with
a linear reconstruction on Delaunay triangulations, we suggest that for the Laplace
operator the right answer to the above question is given by a circumcircle criterion
which is the unique characterization of the Delaunay triangulation (Joe [10]). Namely,
if node nc belonging to T lies inside the circumcircle of given triangle ti , it is consid-
ered as being close to the given triangle and should be included into reconstruction
stencil ti. In the general case, if the number k of triangulation nodes lie inside the
circumcircle, they are included into the stencil for the reconstruction in triangle ti by
using the least squares method. This way of the stencil selection we call the Delaunay
correction (DC).

For each grid node where the standard FV scheme is nonpositive, the algorithm
for the Delaunay correction may be written as follows:

1. Define triangulation T as a the union of all triangles ti, i = 1, . . . , N, incident
to the central node, and put all nodes of the triangulation (except of the central
one) into array T−nodes.

2. For each triangle ti ⊂ T , Do:
2.1. Define the reconstruction stencil Si as a set of triangle’s vertices.
2.2. Define circumcircle Ci.
2.3. Form array marked−nodes as a subset of the set T−nodes:
– For each node nk, 1 ≤ k ≤ NT , from the array T−nodes Do:
– If the circumcircle Ci contains the node nk And the node nk /∈ Si Then:
– Add nk to the array marked−nodes.
– EndDo

2.4. Include all nodes from the array marked−nodes into the reconstruction
stencil Si by using the least squares method.

3. EndDo
Now let us discuss another type of the grid cell geometry. For triangulation T

shown in Figure 3, there are no nodes obviously close to triangle ti. On the contrary,
node nf is so far from others that if we were allowed to reconnect the nodes of the
triangulation, it would be natural to connect node ni with node nl and remove nf
from T . Thus, another important for a proper correction of stencils question may be
formulated as follows:

Given triangulation T , differential operator L[u], and basis set {Ψ} for a linear
reconstruction , what nodes have no effect on a discretization of L[u]? In other words,
what nodes in ti can be considered as being far from any other reconstruction stencil?

To answer this question (“inverse” to the previous one), again consider formula
(6) for solution u0 on central node 0. We define the value Rmax as the maximum
radius which holds the requirement CR ⊂ T stated in the previous section (see Figure
3). Evidently, only those R which satisfy

R ≤ Rmax(11)

should be considered in (6). Due to inequality (11) we conclude that for the dis-
cretization of the Laplace operator a characteristic size of the triangulation is not the
maximum edge length but radius Rmax. To make certain that far node nf with the
edge length |ef | � Rmax is odd for the scheme on node 0, let us consider standard
FV scheme (4) on a median dual. According to [3], the coefficient ωnf corresponding
to node nf is calculated as

ωnf =
1

2

(
sin(αi + αl)

sin(αi) sin(αl)

)
,(12)
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Fig. 3. The gradient correction: elimination of a “far” node from the reconstruction stencil.

where angles αi and αl are depicted in Figure 3. It can be seen from the figure that
the more distant node nf is from the central node of the triangulation, the more
obtuse are the angles αi and αl. Obviously, the condition αi + αl ≤ π, necessary for
positive ωnf , fails for far node nf .

To develop a correction technique for the stencils which contain node nf , consider
linear reconstruction (3) on a median control volume in triangle ti. Since the gradient
is constant in triangle ti, the value of ∂u

∂n in (2) is also constant at any point inside
the given control volume in ti

∂u

∂n
≈ ai1n

i
1 + ai2n

i
2 = const = Ci,(13)

where ni = (ni1, n
i
2) is the unit vector, normal to a control volume edge ei. On the

other hand, by definition,

∂u

∂n
= lim

∆t→0

u(r0 + ∆tn)− u(r0)

∆t
,

and we approximately calculate ∂u
∂n at point r0 ∈ ti as

∂u

∂n
≈ u(r∗)− u(r0)

|r∗ − r0| ,(14)
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where r∗ = (x∗, y∗) is an interior point of triangulation T , point r∗ belongs to the
line, normal to edge ei, and u(r0) = u0. The linear reconstruction at point r∗ yields

u(r∗)− u(r0) = a∗0 + a∗1x
∗ + a∗2y

∗ − u0 = a∗1(x
∗ − x0) + a∗2(y

∗ − y0).(15)

Since the components of the normal vector may be calculated as

ni1 =
x∗ − x0

|r∗ − r0| , ni2 =
y∗ − y0

|r∗ − r0| ,

we obtain from (14) and (15)

∂u

∂n
≈ a∗1n

i
1 + a∗2n

i
2 = const = C∗.(16)

In “nice” triangle ti point r∗ ∈ ti; therefore,

a∗1 = a∗1(u0, u
i
1, u

i
2) = ai1, a∗2 = a∗2(u0, u

i
1, u

i
2) = ai2,

and the values Ci and C∗ are the same. In “bad” triangle ti point r∗ belongs to
another triangle tj (see Figure 3), where the gradient depends on the values uj1 and

uj2: a
∗ = (a∗1, a

∗
2) = a∗(u0, u

j
1, u

j
2) = aj �= ai. In this case, when formula (13) is used

for calculating ∂u
∂n , a nonphysical flux across edge ei appears:

(
∂u

∂n

)
false

= C∗ − Ci= (a∗1n
i
1 + a∗2n

i
2)− (ai1n

i
1 + ai2n

i
2) = (aj1 − ai1)n

i
1 + (aj2 − ai2)n

i
2

= (∇ufalse,n
i),

where the false gradient (∇u)false is defined as the difference between the gradients
in triangles tj and ti, respectively. To improve the situation when false gradients
appear, we suggest in “bad” triangle ti to include stencil tj into the reconstruction in
ti by using the least squares method. Another even more radical way is to change the
stencil ti by stencil tj . These corrections change the value of the gradient in triangle
ti that may decrease the nonphysical flux. We refer to such a correction technique as
the gradient correction (GC). Numerical experiments show that for geometry T from
Figure 3 the gradient correction results in the positive scheme when the stencil points
from triangles tj and tm are captured to form extended stencils for triangles ti and
tl, respectively.

The idea of GC correction leads us to the following algorithm.
1. Define triangulation T and all control volume edges ei, i = 1, . . . , N.1

2. For each triangle ti ⊂ T , Do:
2.1 Define the reconstruction stencil Si as a set of triangle’s vertices.
2.2 Define point r∗ as a point of intersection between the line ei and the per-

pendicular dropped to the line ei from the central node of the triangulation.
2.3 Find a triangle tj point r

∗ belongs to.
2.4 If j �= i, include nodes of the triangle tj into the reconstruction stencil Si

by using the least squares method.
3. EndDo

1According to Green–Gauss theorem, it is possible to consider a segment ei created by connection
of the edge midpoints (see Figure 3) instead of treating two median segments in each triangle.
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Concerning practical realization of the suggested correction technique, there are
still some open questions. Thus for the Delaunay correction, it is unclear whether
or not the nodes which lie on a circumcircle boundary should be included into the
reconstruction. Similar questions arise in the implementation of the GC. For instance,
in the case when point r∗ comes to an edge of the triangulation it is possible to include
either one of the adjacent triangles or both of them into the stencil. Also, point r∗

may coincide with a grid node ng or lay outside domain Ω̄.
Since there is no strict mathematical foundation of the suggested algorithms, only

practical recommendations can be given for correct treatment of these cases. One
may find extended discussion based on our numerical experience with the correction
algorithms in [12].

To conclude this section, let us make some remarks on the possible implementa-
tion of the suggested algorithms. Considering the discretization of a given differential
operator on unstructured grids where stretched cells can appear, a most important
problem is how to indicate cells which are “bad” for the discretization. Although
the strict mathematical conditions based on error estimation are obtained for some
important cases (Babuška and Aziz [1]), and stretched triangular cells proved to not
always be bad (Rippa [14]), the general concept of “bad” or “nice” triangles requires
further analysis, its formulation depending upon what differential operator is consid-
ered and what discretization method is used. For the FV discretization of the Laplace
equation, the developed technique provides us with a kind of an empirical indicator
of the “bad”/“nice” triangle, as those triangles where the stencil correction is needed
may be considered as the “bad” ones.

4. Numerical results. The aim of this section is to present numerical validation
of the suggested ways of the stencil correction. Unfortunately, by now we are not able
to formulate precisely under what conditions each correction algorithm should be
implemented. That is why a combined approach is used to correct scheme stencils.
For those nodes where the standard FV scheme (4) is nonpositive, both DC and
GC scheme stencils are constructed. Then the stencil providing the least nonpositive
scheme is selected. This procedure may appear rather costly, but keeping in mind our
present purpose we do not discuss here a computational efficiency of the developed
algorithm.

To assess nonpositivity of the scheme coefficients we use a simple criterion taken
from the work (Coirier [7]). Let us rewrite (4) as

u0 =

NT∑
n=1

αnun,

where αn = −ωn/ω0. Then the value αmin

αmin =
min1≤n≤NT (αn, 0)√∑NT

n=0
α2
n

NT

(17)

is a measure of positivity2 of the scheme coefficients for the given node u0. For
the nonpositive function αmin defined on the grid nodes we introduce the following

2The definition of αmin formally misses the case when ωn < 0 ∀n �= 0, ω0 > 0. In practice,
this case should be treated separately as it indicates strong degeneration of an FV volume cell. The
consideration of this situation is beyond the scope of the paper.
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Table 1
Positivity measures for standard (FV S) and corrected (CS) FV schemes with linear recon-

struction.

Grid αL1
min αCmin

FV S CS FV S CS

G1 −0.191 −9.6 · 10−3 −1.355 −0.354
G2 −0.126 −6.9 · 10−3 −3.593 −0.411
G3 −0.437 −2.42 · 10−2 −1.696 −0.377
G4 −0.188 −4.2 · 10−3 −1.587 −0.241
G5 −0.416 −3.45 · 10−2 −1.438 −0.412
G6 −0.485 −7.2 · 10−3 −1.602 −0.286

quantity:

αL1
min =

∑Ng
m=0 α

m
min

Ng
,

where Ng is the number of mesh nodes. The value αL1
min, as well as αCmin, where

αCmin = min
m
{αmmin},

are used to estimate nonpositivity of the discretization over the whole mesh. Evi-
dently, αL1

min = 0 for an entirely positive scheme.
What are reasonable values for the parameter αmin? Coirier [7] has investigated

a number of different stencils for an FV discretization of the Laplace equation on
adaptive Cartesian grids for further implementing to the Navier–Stokes equations. It
was found that schemes with αL1

min ∼ −10−1÷−10−2 are acceptable for calculating a

low Reynolds number laminar flow. At the same time the discretization with αL1
min ∼

−1.0 proved to be divergent. Delanaye et al. [8] have also considered a discrete
Laplacean on Cartesian meshes. They discovered that the value αL1

min = −1.62 leads

to the loss of the scheme stability. After stencil correction a new value αL1
min = −0.366

provided convergence to the solution. Based on these results, in our work we consider
stencils with αL1

min ∼ −1.0 to be strongly nonpositive.
Our first numerical experiment is to verify that the corrected scheme exhibits

better measures of positivity. A number of grids with various geometries of grid cells
have been generated to test suggested correction algorithms. Generating these “bad”
grids, the main requirement was to produce the most possible number of non-Delaunay
cells, where a standard FV scheme is nonpositive. The grids are shown in Figures 4
and 5.

To calculate the positivity measures, the Laplace equation is discretized in the
unit square with the following boundary conditions:

u(x, 0) = x2, u(0, y) = y2, u(x, 1) = x2 − 1, u(1, y) = 1− y2.(18)

The values of αL1
min and αCmin for the standard FV scheme and the corrected scheme

calculated on the generated grids are shown in Table 1. It can be seen from the table
that the corrected scheme is much more positive than the standard one. Examples of
function αmin(xi, yi) for the standard and the corrected schemes on some of generated
grids are shown in Figure 5.

Grid G2 (see Figure 4) gives us a nice example of how the GC algorithm treats
stretched cells. Fans on the grid are generated using the “torture test” idea (GGNS
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Fig. 4. Examples of “bad” grids used to estimate positivity measures of the corrected FV
scheme; Ng is the number of the grid nodes, φmax is the maximum grid angle (in degrees).

Fig. 5. Function αmin(x, y) for (A) the standard and (B) the corrected FV scheme with the
linear reconstruction.
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team [9]). In this test the following procedure has been implemented to generate a
grid with large angles. At each step of the grid generation, the boundary problem
(e.g., the convection-diffusion equation with Dirichlet boundary conditions in the
considered example) is solved numerically. Given the numerical solution, a new grid
node is always placed in the cell with the maximum solution error and the old triangle
is subdivided into three triangles to increase the maximum angle in the new triangles.
Then the boundary problem is solved again over the new grid, and the above procedure
is repeated until the required value of the maximum angle is reached.

As a result of the grid generation, each of the triangulations with central nodes
A and B shown in Figure 4 comprises 85 nodes. The standard FV discretization
of the boundary problem (18) on median control volume produces the extremely
nonpositive scheme on nodes A and B : αmin(A) = −3.498, αmin(B) = −3.593. For
triangulations A and B, the gradient correction not only renders the scheme positive
(αmin(A) = αmin(B) = 0.0) but also crucially transforms the scheme stencils NA

s and
NB
s . New stencil NA

s for the scheme in node A includes seven nodes while new stencil
NB
s includes only five nodes.

Our next test is to compare convergence to the exact solution for the standard
and the corrected schemes. Due to the strong distortion of the finite volume cells the
“bad” grids generated in the previous test exhibit poor approximation properties that
makes it difficult to assess the convergence rate. That is why for the convergence test
we generate a sequence of model meshes as follows. First, cells of a uniform Cartesian
grid are cut by two diagonals. Then, the central node in each Cartesian cell is moved
down vertically to increase the angle φmax corresponding to the central node. Thus a
parametric family of meshes with different geometry of stencils can be obtained, the
maximum grid angle φmax (π/2 ≤ φmax < π) being a controlling parameter. The
angle φmax = π/2 determines the standard grid considered in the previous test and
provides positive standard FV discretization. For any angle φmax > π/2 the standard
FV scheme is nonpositive.

For the convergence test we solve the following boundary problem in the unit
square:

u(x, 0) = cos(ωx), u(0, y) = exp(ωy), u(x, 1) = cos(ωx) exp(ω), u(1, y) = cos(ω) exp(ωy).
(19)
The analytical solution to the problem is

u(x, y) = cos(ωx) exp(ωy).(20)

The numerical solution is calculated for the value ω = −5.0. The convergence results
for both the standard FV scheme (FVS) and the corrected scheme (CS) are plotted in
Figure 6. The error measured in the L2-norm is shown in the semilogarithmic scale.
The value of φmax has been varied to study how the convergence rate depends on
the maximum grid angle. Figure 6(a) shows the convergence history for the solution
on grids with φmax ≡ φ1 = 2

3π (curves I and I’ in the figure for the CS and FVS,
respectively). Curves II and II’ in the figure present the convergence results for the
value φmax ≡ φ2 = 5

6π. In both cases the corrected scheme converges, although the
rate of the convergence is slower in comparison with that for the standard scheme. Let
us note that for the corrected scheme the approximation over nonsymmetric stencils
may impact on the convergence rate as well as geometric degeneration of the finite
volume cells. These two factors may slow down the convergence rate on the grids with
large values of angle φmax.
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Fig. 6. Convergence test problem (19), (20). The convergence history of (a) the solution and
(b) the gradient for the corrected (curves I, II) and the standard (curves I’, II’) schemes.
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Fig. 7. Convergence test problem with discontinous boundary conditions (21), (22). The con-
vergence history of the solution for the corrected (curves I, II) and standard (curves I’, II’) schemes.

The convergence history for the gradient obtained on grids with the same values of
φmax is shown in Figure 6(b). As can be seen from the figure, the gradient convergence
results are almost the same for both schemes.

For the function u(x, y) considered in the test, the effect of the triangle geometry
on approximation is that increasing the angle φmax leads to the slower convergence
rate for both standard and corrected schemes. In our numerical experiments we have
obtained the slowest convergence rate for the extreme case of φmax = 0.99π.

Now we consider the problem with discontinuous boundary conditions

u(x, 0) = 0, u(0, y) = 0, u(x, 1) = u0, u(1, y) =
2u0

π
arctg

(
th

π

2
tg

πy

2

)
.(21)

The analytical solution to the problem is given by function

u(x, y) =
2u0

π
arctg

(
th

πx

2
tg

πy

2

)
.(22)

Convergence to the exact solution for the FVS and the CS is shown in Figure 7. The
plots are obtained for the same values of angle φ1 (curves I and I’ in the figure for
the CS and FVS, respectively) and φ2 (curves II and II’), the parameter u0 = 0.1.
As one can see from the figure, the convergence rate is slightly different for stencils
with φmax = φ1, while for φmax = φ2 the standard scheme converges noticeably
better. The dependence of the convergence rate on the maximum grid angle is not so
trivial as in the previous example; for a wide range of φmax the greater value of the
maximum grid angle provides the better convergence for both schemes. However, for
angles φmax close to π the degeneration of FV cells becomes as strong as to make the
convergence rate slower.
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Table 2
GMRES convergence test for standard (FV S) and corrected (CS) FV schemes.

N FV S CS Nst FV Sst

181 29 14 181 10
685 95 28 761 20
2665 251 69 3121 43

In our code we use GMRES algorithm (Saad [15]) to solve the algebraic system
of equations obtained as a result of the discretization. The convergence of GMRES
depends on the condition number of the system matrix A. A low rate of the conver-
gence corresponds to a poorly conditioned matrix, while positive definite matrix A
provides the best rate of convergence [15]. That is why the study of the convergence
rate of GMRES may be considered as a stability test for the corrected scheme.

To assess the GMRES convergence rate, the convergence test has been taken from
the PETSc library (Balay et al. [2]). In this test the number of iterations necessary
to meet the convergence is counted, the other GMRES parameters being fixed.

The sequence of “bad” grids with the number N of grid nodes, where the standard
scheme produces a poorly conditioned matrix A, is generated by isotropic refinement
of grid G3 shown in Figure 4. For each “bad” grid, the standard grid with the similar
number Nst of nodes, where the standard FV scheme produces the positive definite
matrix A, is generated by cutting cells of a uniform Cartesian grid by two diagonals.
The convergence rate of GMRES for both the standard (FV S) and the corrected
(CS) schemes on “bad” grids is then compared with the results obtained for the FV
scheme on the corresponding standard grid (FV Sst). Table 2 reports the number of
GMRES iterations needed for the convergence. The test matrix A is generated for
the boundary problem (18).

As one may expect, the “quasi-positive” corrected scheme produces a well-
conditioned system matrix even on “bad” grids and, therefore, requires essentially
fewer number of GMRES iterations than the standard scheme. The GMRES conver-
gence rate for the corrected scheme is close to that obtained for the positive defined
matrix A.

5. The three-dimensional case. In this section, we briefly discuss whether it
is possible to extend the obtained results to the three-dimensional case. Let T be the
volume formed by the union of all tetrahedra ti, i = 1, . . . , N, which have the central
node 0 as a common vertex. Consider a sphere SR of radius R with the center at
the point r0. As in the two-dimensional case, it is possible to introduce a control
volume VL as a convex polyhedron with faces created by setting in each tetrahedron
ti the plane passing through the points of intersection between the sphere SR and
the edges of the tetrahedron. Let us calculate the solution on the central node of the
triangulation by using the formula

u(r0) =
1

4πR2

∫
SR

∫
u(x, y, z)ds.(23)

We assume the linear reconstruction of the solution in each tetrahedron ti:

ui(x, y, z) = ai0 + ai1x + ai2y + ai3z = ai0 + (∇ui, r).(24)

For integration over the sphere the vector r in (24) is

r(x, y, z) = r0 + Rns,(25)
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where ns is the unit vector normal to the sphere surface. Substitution of (24), (25)
into (23) and summation over all tetrahedra yields

u(r0) =
1

4πR2

N∑
i=1

∫
Si
R

∫ [
ai0 + (∇ui, r0 + Rns)

]
ds =u(r0)+

1

4πR

N∑
i=1

∫
Si
R

∫
(∇ui,ns)ds.

(26)
The equality (26) gives us the following condition which may be considered as a finite
volume discretization of the Laplace equation over the sphere SR:

N∑
i=1

∫
Si
R

∫
(∇ui,ns)ds = 0.(27)

It can be seen from (23), (27) that the discretization over the sphere provides us with
the positive scheme. The sufficient condition, which allows us to consider in (27) the
polyhedron VL instead of the sphere SR as a control volume providing the positive
scheme, is that

∫
Si
R

∫
(∇ui,ns)ds ≡

∫
V i
L

∫
(∇ui,ns)ds ∀i = 1, . . . , N,(28)

where the face V i
L of VL belongs to the tetrahedron ti. However, unlike the two-

dimensional case, this condition does not hold for the inscribed polyhedron VL. Let
Siside be the union of the three plane segments of the tetrahedron faces in the tetrahe-
dron ti, each segment being bounded by the edge of V i

L, the circle arc of SiR, and the
edges of ti. To estimate the integral over SiR in (28), we consider for each tetrahedron
ti the auxiliary closed surface Siaux which comprises Siside, the face V i

L, and the part
SiR of the sphere. Since the gradient is a constant vector in each tetrahedron, the
integral (28) may be transformed as

∫
Si
R

∫
(∇ui,ns)ds =

(
∇ui,

∫
Si
R

∫
ds

)
,

where a vector elemental area ds = nsds. According to the gradient theorem,

©
∫∫
Siaux

ds ≡
∫
Si
R

∫
ds+

∫
V i
L

∫
ds+

∫
Si
side

∫
ds = 0.

It is not difficult to see that
∫
Si
side

∫
ds �= 0; therefore, the weight coefficients of the

discretization over the control volume VL are different from those in (27). Thus, in
the three-dimensional case the condition (28) sufficient for the positive discretization
does not hold.

Now we consider a discretization over the prescribed control volume Vdual defined
as a polyhedron with faces ei constructed under some geometric conditions (i.e., me-
dian or centroid dual). As in the two-dimensional case, we suggest that including
close nodes into the reconstruction stencil provides us with a more positive scheme.
Since the results of [13] demonstrate that it is possible to obtain the positive scheme
for the Laplace equation on three-dimensional Delaunay meshes, we believe that a
circumsphere criterion may be used to find the nodes close to the given tetrahedron
ti. If node nc belonging to T lies inside the circumsphere Si , it may be considered as
being close to ti and included into the reconstruction stencil for the given tetrahedron.
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To analyze the behavior of the fluxes in the three-dimensional case we calculate
the directional derivative ∂u

∂n across the face ei in the given tetrahedron ti as

∂u

∂n
≈ u(r∗)− u(r0)

|r∗ − r0| ,(29)

where r∗ = (x∗, y∗, z∗) is defined as the point of intersection between the plane ei and
the perpendicular dropped to this plane from the central node of the triangulation.
Since the components of the unit vector normal to the plane ei may be calculated as

ni1 =
x∗ − x0

|r∗ − r0| , ni2 =
y∗ − y0

|r∗ − r0| , ni3 =
z∗ − z0

|r∗ − r0| ,

the expression (29) is transformed as

∂u

∂n
≈ a∗1n

i
1 + a∗2n

i
2 + a∗3n

i
3 = const = C∗,

provided the linear reconstruction of the solution u(r∗)−u(r0) = a∗1(x
∗−x0)+a∗2(y

∗−
y0)+ a∗3(z

∗− z0) is used. The result of calculation is then compared with the formula

∂u

∂n
≈ ai1n

i
1 + ai2n

i
2 + ai3n

i
3 = const = Ci.

If the value Ci is different from C∗, then we consider ti as the tetrahedron where
the false gradient appears. In this case it is possible to include nodes of the tetrahedron
tj which contains point r∗ into the reconstruction stencil for the given tetrahedron ti
by using the least squares method. This correction may decrease the false gradient.

6. Conclusions. In the present work the analysis of how a discretization of
Laplace’s equation depends on grid geometry has been made. We have demonstrated
the way to construct a control volume for a positive FV scheme with a linear recon-
struction on any two-dimensional unstructured grid. The important result obtained
here is that on arbitrary grids the Laplace operator requires a convex control vol-
ume to provide a positive discretization. This result indicates that grids with highly
stretched cells are not appropriate for constructing the positive scheme, since gaps
(or overlappings) may appear in the convex dual mesh.

For the prescribed geometry of the control volume, we have investigated whether
it is possible to improve the positivity measures of the linear FV scheme on arbitrary
grids by using extended stencils. Although having the empirical nature, the suggested
approach to the stencil correction allows us to treat stretched cells effectively. Nu-
merical experiments show that the developed technique produces a “quasi-positive”
scheme. However, in spite of giving us all advantages of the positive discretization,
the practical applicability of the corrected scheme is restricted. The produced stencils
are nonsymmetric which may lead to the loss of conservativity of the scheme.

The property of positivity is very important and can be considered as a criterion
of a proper discretization of Laplace’s equation as it expresses a maximum principle
which is an inherent feature of the Laplacean. On the other hand, being a natu-
ral property of FV schemes conservativity makes them attractive for many practical
applications. The results obtained in this paper seem to indicate that the proper-
ties of positivity and conservativity are incompatible with each other on arbitrary
grids. This fact demonstrates how far grid quality is crucial for the discretization.
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In our opinion, in order to overcome the incompatibility between these two basic re-
quirements, one should admit that due to space isotropy of the Laplace equation its
discretization needs the grid to be isotropic, in a certain sense. A mesh with all edges
of the same length gives us the simplest example, while a Delaunay triangulation can
be considered as a more general kind of grid with space isotropy.

Grids with stretched cells are “alien” for the Laplace equation. For those prob-
lems, where stretched grids arise as a result of grid adaptation, it may be better
to make a discretization of the full problem operator rather than discretize diffu-
sion terms separately. Meanwhile, the further development of algorithms of fully
automatic Delaunay grid generation is strongly needed to provide us with a positive
discretization which holds the property of conservativity.
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Abstract. Recently an adaptive wavelet scheme could be proved to be asymptotically optimal
for a wide class of elliptic operator equations in the sense that the error achieved by an adaptive
approximate solution behaves asymptotically like the smallest possible error that can be realized
by any linear combination of the corresponding number of wavelets. On one hand, the results are
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1. Introduction. The development of adaptive numerical methods is of enor-
mous current interest. Although such concepts have not yet entered industrial ap-
plications at large, current research developments, for instance, in a finite element
context, indicate their very promising potential [1, 3, 10, 12, 49]. Such hopes and
numerical experiences are, however, contrasted by negative statements proved in the
context of complexity theory. In fact, on a rigorous level not much has been proved
about adaptive finite element schemes in comparison with a priori fixed meshes. To
our knowledge, the only result in this direction is [38], where an adaptive finite ele-
ment scheme for the bivariate Poisson’s equation using piecewise linear elements was
proven to converge without a priori assumptions on the unknown solution such as
the saturation property. On the other hand, in the context of wavelet discretizations,
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nowadays much more is known. In [22] an adaptive wavelet scheme was proved to
converge for a wide class of elliptic operator equations including, in particular, dif-
ferential operators as well as singular integral operators. This result was extended to
saddle point problems in [24].

Moreover, quite recently substantial progress could also be accomplished in the
analysis of the speed of convergence [17]. In [17], an adaptive wavelet scheme has been
developed which is shown to be asymptotically optimal for the same class of elliptic op-
erator equations referred to above in the following sense: its rate of convergence to the
exact solution with respect to the number N of degrees of freedom—i.e., of wavelets
which are used to describe the solution—is the same as the rate of convergence of
the best N -term approximation which would typically be obtained by retaining the
N largest wavelet coefficients of the exact solution. Moreover, the number of floating
point operations required to compute the approximate solution stays proportional to
the number N of wavelets needed to approximate the solution at any desired level
of accuracy. In addition, sorting requires at most the order of N log(N) operations.
The proof of the latter fact is constructive in the sense that the algorithm is described
to the level of detail that the number of arithmetic operations can be rigorously es-
timated. To our knowledge, these are the first rigorously proven convergence rates
accompanied with a corresponding operations count.

The result is interesting from two points of view. First, it is known that the
rate of best approximation either by N -term wavelet combinations or by optimal
adaptive refinement of finite element spaces can be characterized by a certain type of
Besov regularity [36], in contrast to the rate of approximation by uniform refinements
which is determined by Sobolev regularity. Therefore, the above adaptive wavelet
scheme provides an asymptotically better accuracy/work balance than schemes based
on uniform discretizations, e.g., when the solution has isolated singularities or, more
systematically, when the solution lacks Sobolev regularity relative to Besov regular-
ity. However, since the results are asymptotic a more quantitative assessment of the
performance is of equal interest in practical applications. Second, the analysis of the
scheme suggests new algorithmic ingredients centering on an adaptive matrix–vector
multiplication combined with sorting entries of sequences. Therefore the efficient real-
ization of these ingredients and the development of suitable data structures that best
support the conceptual strength of the scheme in practical realizations is a challenging
task. In fact, the realization of that task seems to be essential for a quantitative vali-
dation of the theoretical results which after all are phrased in a necessarily simplified
computational model.

This paper describes the developments of such algorithmic ingredients and cor-
responding data structures and reports numerical results in one and two dimensions.
The paper is organized as follows. In section 2, we briefly review the main theo-
retical facts needed for the understanding of the algorithm and extract from theory
the essential requirements on implementation. Moreover, these considerations will
guide the selection of test examples. Section 3 is devoted to a brief outline of the
new data structures. These structures follow the code design principle of separating
data from the algorithm, i.e., here the adaptive algorithm is realized independently
of the input parameters such as the underlying domain and the choice of the wavelet
basis. In section 4, we present our numerical experiments. The examples are designed
to highlight the effects of different sources of singularities whose occurrence, accord-
ing to the theoretical part, makes adaptive schemes more efficient than nonadaptive
ones. This covers singularities induced by the right-hand side date, by the shape of
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the domain, or by both, as well as the effect of large Sobolev norms versus Besov
norms. To exploit theoretical knowledge for our validation we choose as a test ex-
ample the classical Poisson problem on an L-shaped domain as well as a Helmholtz
problem with small viscosity. In the latter case the energy space differs more and
more from the Sobolev space H1 when the viscosity decreases. This allows us to test
the robustness of the scheme. Moreover, we confirm the quantitative advantage of
the stronger compressibility of higher order wavelets in spite of their larger supports.
Finally, we compare the wavelet scheme with an adaptive finite element scheme. Sev-
eral other examples, figures, and also some movies can be obtained from the web page
http://www.igpm.rwth-aachen.de/adaptive.

2. Theoretical background.

2.1. The abstract problem. The algorithms discussed in this paper apply to
the following scope of problems. Suppose that H is a Hilbert space with norm ‖ · ‖H
induced by the inner product 〈·, ·〉 and that the self-adjoint operator A : H → H ′,
where H ′ is the normed dual of H, is H-elliptic, i.e.,

a(v, w) := 〈Av,w〉 <∼ ‖v‖H‖w‖H and a(v, v) ∼ ‖v‖2H .(2.1)

Here a <∼ b means that a can be uniformly bounded by a constant multiple of b inde-

pendent of any parameters on which a and b may depend. a >∼ b is to be understood

analogously and a ∼ b states that a <∼ b and a >∼ b. Clearly (2.1) implies that A is
an isomorphism from H to H ′, i.e.,

‖Av‖H′ ∼ ‖v‖H , v ∈ H.(2.2)

Thus the equation

Au = f(2.3)

has for any f ∈ H ′ a unique solution which will always be denoted by u. Typical ex-
amples are second order elliptic boundary value problems with homogeneous Dirichlet
boundary conditions on some open domain Ω ⊂ R

d. In this case H = H1
0 (Ω) and

H ′ = H−1(Ω). Other examples are obtained by turning an exterior boundary value
problem into a singular integral equation on the boundary Γ of the domain. For a
formulation in terms of the single layer potential operator one obtains, for instance,
H = H−1/2(Γ) and H ′ = H1/2(Γ); see [19, 45] for details. In the above examples H
is a Sobolev space and one has either H ⊂ L2 ⊂ H ′ or H ′ ⊂ L2 ⊂ H. We sometimes
write H = Ht to indicate the Sobolev regularity although often a closed subspace of
the full Sobolev space determined by boundary conditions is meant. H−t is always
the dual of this particular subspace.

We hasten to add though that A need not be a scalar equation but could as well
represent a system in which case H is typically a product of Sobolev spaces as long
as the above assumptions are fulfilled.

We finally emphasize that H should be viewed as representing the energy space
associated with (2.1) and therefore need not be a Sobolev space. As a typical example
consider Au = −ε∆u+u on Ω ⊂ R

d with homogeneous Dirichlet boundary conditions.
In this case H-ellipticity holds uniformly in ε > 0 for the norm ‖ · ‖2H := ‖ · ‖2L2(Ω) +

ε| · |2H1(Ω).

We are interested in solving (2.3) approximately with the aid of a Galerkin
method, i.e., we pick some finite-dimensional space S ⊂ H and search for uS ∈ S
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such that

〈AuS , v〉 = 〈f, v〉, v ∈ S,(2.4)

where 〈·, ·〉 denotes the standard L2-inner product.
We have paused above to describe a wide class of examples for the following rea-

son. The separation of algorithm and data can be realized for the scheme discussed
below to a significantly higher extent than for more conventional discretizations. The
algorithm remains essentially the same in all the mentioned examples. It is there-
fore no principal limitation to consider only numerical tests for second order elliptic
boundary value problems including, however, the above example of parameter depen-
dent energy spaces. The main point will be that for this class of examples we can
resort to important analytical information that will help to validate and interpret the
numerical results in a more quantitative fashion.

2.2. An equivalent �2-problem. In our context the trial spaces S in (2.4) will
be spanned by elements of a wavelet basis Ψ = {ψλ : λ ∈ J } for H. We will postpone
at this point any technical description of the basis Ψ (which necessarily depends on
the particular setting at hand) but will only list those properties that will be relevant
in the following. The indices λ ∈ J typically encode several types of information,
namely, the scale, often denoted by |λ|, the spatial location, and also the type of
the wavelet. Recall that in a classical setting a tensor product construction yields
2d − 1 types of wavelets [34, 46]. For instance, for wavelets on the real line, λ can
be identified with (j, k), where j = |λ| denotes the dyadic refinement level and 2−jk
signifies the location of the wavelet. In fact, we will require the wavelets to be local
in the sense that diam (suppψλ) ∼ 2−|λ|, λ ∈ J .

These wavelets are usually normalized in L2. What matters in the present case
is that a properly scaled version of Ψ is a Riesz basis for the energy space H. This
means that there exists a diagonal matrix D = diag (ωλ : λ ∈ J } such that each
v ∈ H has a unique expansion v =

∑
λ∈J vλω

−1
λ ψλ =: vTD−1Ψ such that

‖v‖
2(J ) ∼ ‖vTD−1Ψ‖H .(2.5)

For instance, when H = Ht a canonical choice is ωλ = 2t|λ|. When ‖ · ‖2H :=
‖ · ‖2L2(Ω) + ε| · |2H1(Ω) the choice ωλ := 1 +

√
ε2|λ| ∼ a(ψλ, ψλ)

1/2 ensures that (2.5)

holds with constants independently of ε provided that {ψλ}λ∈J and {2−|λ|ψλ}λ∈J are
Riesz bases for L2 and H1, respectively. This will be seen to entail asymptotically
optimal performance of the adaptive wavelet scheme uniformly in ε.

Relations similar to (2.5) are also known to hold for Sobolev spaces in Lp for
p �= 2. Moreover, interpolation between such spaces provides norm equivalences for a
whole range of Besov spaces Bα

q (Lp) [25, 37, 39, 46]. In the present context we will
have to make use of the following special case:

‖d‖
τ (J ) ∼ ‖dTΨ‖Bατ (Lτ ),(2.6)

where the smoothness index α and the integrability index τ are related by τ−1 =
α/d + 1/2.

Once a basis with the above properties is given, the operator equation (2.3) over
a function space H can be transformed into an equivalent matrix equation over the
corresponding sequence space. In fact, the representation of

A := D−1〈Ψ, AΨ〉D−1 :=
(
ω−1
λ ω−1

ν 〈ψλ, Aψν〉
)
λ,ν∈J(2.7)
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of A with respect to the Riesz basis D−1Ψ of H is, because of the norm equivalence
(2.5) in conjunction with ellipticity (2.2), an automorphism on �2 [26, 28].

Theorem 2.1. The function u = dTΨ ∈ H solves the original operator equation
(2.3) if and only if the sequence u := Dd solves the matrix equation

Au = f ,(2.8)

where f := D−1〈Ψ, f〉 = {ω−1
λ 〈ψλ, v〉}λ∈J .

Moreover, denoting by ‖ · ‖ the spectral norm on �2, the matrix A defined by (2.7)
satisfies

‖A‖, ‖A−1‖ <∞.(2.9)

As an immediate consequence there exists a finite number κ such that all finite
sections AΛ :=

(
ω−1
λ ω−1

ν 〈ψλ, Aψν〉
)
λ,ν∈Λ

, Λ ⊂ J , have uniformly bounded condition

numbers

cond2(AΛ) ≤ κ, Λ ⊂ J .(2.10)

Hence the original problem has been reduced to an equivalent well-posed problem
in �2. This fact will be crucial in the following.

2.3. Quasi-sparse matrices. A specific advantage of wavelet discretizations is
that for a large class of elliptic operators (including singular integral operators), the
resulting matrix A exhibits fast decay off the diagonal. More precisely, when H = Ht

and ωλ = 2t|λ|, this takes the form of the following estimate:

2−(|λ′|+|λ|)t|〈Aψλ′ , ψλ〉| <∼
2−||λ|−|λ′||σ

(1 + d(λ, λ′))d+2m̃+2t
, d(λ, λ′) := 2min(|λ|,|λ′|) dist(Ωλ,Ωλ′),

(2.11)
where Ωλ := suppψλ and σ > d/2 is a constant depending on the regularity of the
wavelets ψλ. The validity of (2.11) has been established for a wide range of cases, in-
cluding classical pseudodifferential operators and Calderon–Zygmund operators (see,
e.g., [28]).

It is important to note, however, that (2.11) is only a sufficient condition for the
following compression property of A that will be needed later. A is said to belong to
the class As if there exists a positive summable sequence (αj)j≥0 and for every j ≥ 0
there exists a matrix Aj with at most 2jαj nonzero entries per row and column such
that

‖Aj −A‖ <∼ αj2
−sj .(2.12)

The following fact has been proved in [17].
Proposition 1. Let

s∗ := min

{
σ

d
− 1

2
,
2t + 2m̃

d

}
.(2.13)

Then A belongs to As for every s < s∗.
For matrices with the particular decay properties (2.11) concrete truncation rules

can be given [17]. Given j, set

ãλ,ν :=

{
aλ,ν , ||λ| − |ν|| ≤ j/d and d(λ, ν) ≤ 2j/d−||λ|−|ν|| γ(||λ| − |ν||),
0, else.

(2.14)
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Here γ(n) is any summable sequence, e.g., γ(n) := (1 + n)−2/d.
One should note that because of the locality of the wavelets the first condition in

(2.14) already suffices for local operators A (such as differential operators) which will
be used later in the examples.

2.4. The adaptive strategy. The practical realization of adaptive approxi-
mations to (2.3) in a finite element context is to refine and derefine step by step a
given mesh according to a posteriori local error indicators. The point of view taken
by wavelet schemes is somewhat different. Trial spaces are refined directly by in-
corporating additional basis functions whose selection depends on the previous step.
Specifically, setting for any finite subset Λ ⊂ J our trial spaces will always be of the
form SΛ := span {ψλ : λ ∈ Λ}, where the index set Λ is to be adapted to the solution.
In fact, denoting by uΛ ∈ SΛ always the Galerkin solution determined by (2.4), we
start with some small index set Λ0 (possibly the empty set) and proceed as follows:

Given Λj and uΛj and some fixed θ ∈ (0, 1), find Λj+1 ⊃ Λj as small
as possible such that the new error u − uΛj+1

in the energy norm is
at most θ times the previous error. Obviously, iteration of this step
entails convergence of the resulting sequence of approximations in the
energy norm.

Successively enlarging index sets in this way, one hopes to track the most significant
coefficients in the true wavelet expansion dTΨ = uTD−1Ψ of the unknown solution
u. It is easy to see that the function uΛ =

∑
λ∈Λ ω−1

λ (uΛ)λ ψλ with coefficient vector
uΛ = ((uΛ)λ)λ∈Λ (with respect to the scaled wavelet basis) solves the Galerkin system
(2.4) for S = SΛ if and only if uΛ solves

AΛuΛ = fΛ := f |Λ.(2.15)

Moreover, Theorem 2.1 suggests working completely on the discrete side for both
the finite- and infinite-dimensional problems. Therefore, although uΛ ∈ R

#Λ is a
finite vector, it will sometimes be convenient to view uΛ as a sequence in �2, i.e., all
components of uΛ outside Λ are understood to be zero. Since it will always be clear
from the context which interpretation is meant we will not introduce any notational
distinction between the finite vector uΛ and its canonical injection in �2. Likewise for
v ∈ �2 its restriction to Λ is denoted by v|Λ.

Defining now the discrete energy norm

‖v‖2 := vTAv =: a(v,v),(2.16)

(2.5) and equation (2.9) in Theorem 2.1 say that

‖vTD−1Ψ‖H ∼ ‖v‖ ∼ ‖v‖
2 ∼ ‖Av‖ ∼ ‖Av‖
2 ,(2.17)

so that measuring errors in ‖ · ‖ or ‖ · ‖
2 and for the corresponding functions in the
energy norm ‖ · ‖H is the same up to uniform constants.

Next note that if we can find for a given Λ ⊂ J an index set Λ̂ ⊃ Λ such that for
some β ∈ (0, 1)

‖uΛ̂ − uΛ‖ ≥ β‖u− uΛ‖,(2.18)

Galerkin orthogonality and the Pythagoras theorem ensure the error reduction

‖u− uΛ̂‖ ≤ θ‖u− uΛ‖(2.19)
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with θ :=
√
1− β2. This strategy is also the starting point in [22] and has been

used even earlier in the finite element context; see, e.g., [12, 38]. There, it was
usually assumed to hold for some fixed refinement of the old trial space and therefore
referred to as saturation assumption. However, as in [22] and before for a much more
specialized situation in [38] the scheme described below will guarantee (2.18) without
an a priori assumption like the saturation property. In addition, in contrast to previous
cases, concrete and in some sense asymptotically optimal convergence rates, relating
the error ‖u− uΛj‖ to the number of degrees of freedom Nj = #Λj , will be realized.

To this end, for any Λ̂ ⊃ Λ one has by Galerkin orthogonality

‖uΛ̂ − uΛ‖ >∼ ‖A(uΛ̂ − uΛ)‖
2 ≥ ‖A(uΛ̂ − uΛ)|Λ̂‖
2 = ‖A(u− uΛ)|Λ̂‖
2 .
Thus defining the residual

rΛ := A(u− uΛ) = f −AuΛ,

the above estimate states that for some constant c1 ∈ (0, 1) depending only on the
constants in (2.17)

‖uΛ̂ − uΛ‖ ≥ c1‖rΛ|Λ̂‖
2 .(2.20)

Key idea. If Λ̂ can be chosen such that

‖rΛ|Λ̂‖
2 ≥ a‖rΛ‖
2(2.21)

holds for some fixed a ∈ (0, 1), then, since (2.17) implies ‖rΛ‖
2 >∼ ‖uΛ − u‖, one
infers from (2.20) that there exists a constant β ∈ (0, 1) such that (2.18) and hence
also (2.19) ‖uΛ̂ − u‖ ≤ θ‖uΛ − u‖ holds.

Thus the reduction (2.19) of the error has been reduced to catching the bulk of the
residual rΛ by finding its most significant coefficients in the sense of (2.21). However,
rΛ is in general still an infinite array. So in practice, rΛ has to be approximated
first sufficiently well. This will be realized by exploiting the structure of A and the
knowledge about the right-hand-side data f ; see [17] and the appendix below for
details. Nevertheless, to make the basic mechanisms more transparent we suppress
these issues for a moment and formulate a core ingredient of the refinement strategy
as the following (idealized) routine:

GROW (Λ,uΛ) → (Λ̂,uΛ̂). Given (Λ,uΛ) find the smallest Λ̂ ⊃ Λ such that
‖rΛ|Λ̂‖
2 ≥ a‖rΛ‖
2 .

Note, however, that even if one were able to perform GROW it is by no means
clear whether merely iterating the procedure GROW leads to (in some sense) an
optimal algorithm.

2.5. Best N-term approximation. To obtain a conceptual benchmark it is
important to clarify first what the optimal outcome of an adaptive scheme might be.
If N is the number of degrees of freedom produced by the algorithm and if we wish to
measure the error ‖u− uΛ‖H , the optimal outcome is clearly given by a function uN
which minimizes ‖v−u‖H over all v which are N -term linear combinations of wavelets.
Again Theorem 2.1 and (2.17) imply that, up to a multiplicative uniform constant,
this amounts to defining the corresponding vector uN as the best approximation of
u in �2 by a vector with N nonzero coordinates, i.e., uN is obtained by retaining
the N largest components of u. Of course, since u is not known, uN is not directly
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available. In summary, the best that can be achieved by an adaptive scheme is to
produce approximate solutions uΛ such that ‖u−uΛ‖ has the same asymptotic decay
rate as ‖u− u#Λ‖
2 .

It has been shown in [17] that optimality in the above sense can indeed be ensured
when the iteration of GROW is every so often interrupted by a clean-up step. This
simply means that after several applications of GROW one has to discard all coeffi-
cients in the current approximation uΛ whose modulus is below a certain threshold.
This threshold is chosen so that the current error is at most multiplied by a fixed
uniform constant. While thereby the error gets only worse by a little this will turn
out to have an essential effect on the behavior of the residual with respect to certain
norms that are somewhat stronger than the �2-norm. We summarize this clean-up or
thresholding step as follows.

THRESH (Λ,uΛ)→ (Λ̃,uΛ̃). If ‖u−uΛ‖
2 ≤ ε, find smallest Λ̃ ⊂ Λ such that
‖uΛ − uΛ|Λ̃‖
2 ≤ 4ε.

Note that both routines require us to sort the coefficients with respect to their
modulus.

2.6. An optimal (idealized) algorithm. We next give a rough idealized ver-
sion of an adaptive wavelet scheme whose practical counterpart will turn out to be
optimal with respect to convergence rates as well as work count.

ALGORITHM.
(i) Λ0 = ∅, rΛ0

= f , ε0 := ‖f‖
2 , j = 0, ε given target accuracy.
(ii) Determine (Λj+1,uΛj+1) from (Λj ,uΛj ) such that ‖u − uΛj+1

‖
2 ≤ εj/2 :=
εj+1 as follows.

Set Λj,0 := Λj , uj,0 := uj ;
For k = 1, 2, . . . ,K apply GROW (Λj,k−1,uΛj,k−1

)→ (Λj,k,uΛj,k)
(‖rΛj,k−1

|Λj,k‖
2 ≥ 1
2‖rΛj,k−1

‖
2);
Apply THRESH (Λj,K ,uΛj,K )→ (Λj+1,uΛj+1);
If εj+1 ≤ ε stop; else j + 1→ j, go to (ii).

The maximal (and total) number K of applications of GROW can be shown
to be uniformly bounded, depending only on the constants in (2.17). Moreover, a
detailed description of the fully computable version ALGORITHMc of the above
algorithm is given in the appendix to which the following result refers. In what follows
it will always be assumed that the right-hand-side data 〈f, ψλ〉 are entirely given and
that the computation of the entries of A can be computed on average at unit cost.

Theorem 2.2 (see [17]). The computable version ALGORITHMc always pro-
duces a solution with the desired accuracy after a finite number of steps.

Moreover, assume that A ∈ As for 0 ≤ s < s∗ (recall Proposition 1). If the
solution u to the operator equation (2.3) has the property that for some s < s∗

σN (u) := inf
dλ,λ∈Λ,#Λ≤N

‖u−
∑
λ∈Λ

dλψλ‖ <∼ N−s,(2.22)

then ALGORITHMc generates a sequence uΛj =
∑

λ∈Λj
(uΛj )λω

−1
λ ψλ of Galerkin

solutions to (2.4) satisfying

‖u− uΛj‖ <∼ (#Λj)
−s

.(2.23)

Moreover, the number of arithmetic operations needed to compute uΛj stays pro-
portional to #Λj. The number of operations needed for sorting stays bounded by
(#Λj) log (#Λj).
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It is important to note that the above algorithm does not require any a priori
knowledge about the rate of N -term approximability of the solution. It is shown to
automatically match the rate of best N -term approximation for a certain asymptotic
range depending on the operator and the chosen basis.

2.7. Computational tasks. We add a few comments on the concrete compu-
tational tasks required by the computable version of ALGORITHM. A detailed
account of these routines can be found in the appendix; see also [17], where, in partic-
ular, various parameters are identified that steer the refinement process. Of course,
the central issue is to determine the bulk of rΛ or, equivalently, to find a good ap-
proximation r̄Λ of finite length to rΛ in �2. In this context one faces the following
obvious obstructions. In order to stay within the promised bounds of computational
complexity, one has to employ iterative solvers to determine an approximation ūΛ to
uΛ. One then still faces the problem of approximating the application of the infinite
matrix A to the finitely supported sequence ūΛ by some finite vector wη within a
suitable tolerance η. Approximating also f within that tolerance by a finite vector fη,
one has to deal with the following perturbations of the true residual:

rΛ − (fη −wη)︸ ︷︷ ︸
r̄Λ

= f − fη +A(ūΛ − uΛ) +wη −AūΛ︸ ︷︷ ︸
error

.(2.24)

In the computable version ALGORITHMc the routine GROW works with approx-
imate residuals r̄Λ corresponding to suitable dynamic tolerances η, specified in [17];
see also the appendix below. This amounts to the following tasks:

(1) Determine a sufficiently good approximation fη.
(2) Determine ūΛ by an iterative scheme. This requires repeated matrix–vector

multiplications.
(3) Compute an approximation wη to AūΛ. This requires an (approximate) ap-

plication of the (infinite) matrix A.
(4) Find a best N -term approximation to the resulting approximation (2.24) (or

keep it).
(5) Threshold the current approximate Galerkin solution.

2.8. Adaptive matrix–vector multiplication. Clearly (3) reveals that a core
requirement is the application of the infinite-dimensional operator A to a finite vector
(formally extended by zero entries). Since A is an infinite matrix we also call such an
application of A matrix–vector multiplication. An essential ingredient of the scheme
is therefore the following approximate adaptive matrix–vector multiplication from [17]
(see the appendix).

Proposition 2. Let v be any finitely supported vector and suppose that A ∈ As;
recall (2.12). Defining v[j] := v2j (best N -term approximation in �2 for N = 2j) and

wj := Ajv[0] +Aj−1(v[1] − v[0]) + · · ·+A0(v[j] − v[j−1]),(2.25)

then

‖Av −wj‖
2 <∼ 2−sj ,(2.26)

uniformly in v provided that ‖v − v[j]‖
2 <∼ 2−sj holds uniformly in v.
As a consequence, under the above assumptions on v, the computational work

CW(η) needed to realize an approximation wη to Av such that ‖Av−wη‖
2 ≤ η is
of the order

CW(η) ∼ #suppwη <∼ η−1/s.(2.27)



ADAPTIVE WAVELET SCHEMES 919

It can be shown that only a finite uniformly bounded number of such approximate
matrix–vector multiplications of the form (2.25) will be needed at each stage to fulfill
the accuracy requirements for the next step. In particular, (2.27) will guarantee that
the computational work stays in the desired bounds.

Note next that (1), (4), and (5) involve thresholding of a known array. The way
this is performed here is to discard the largest possible number of small entries so
that a desired accuracy is preserved by this perturbation. The core task there is to
first sort the arrays and then sum successively entries in increasing order. This is also
used in the error control of the fast matrix–vector multiplication (2.25) because the
algorithm should at no stage use any a priori assumption about u.

The above remarks explain the pivoting role of sorting and of the fast approximate
matrix–vector multiplication. We will discuss later some consequences of these facts
for the implementation. In particular, it will be seen that most of the data structures
needed here can be designed independently of the particular application and even of
the particular wavelet basis. The special application (e.g., whether A represents a
differential or integral operator) enters primarily through calling the significant entries
in the columns of A when performing (2.25).

2.9. When does adaptivity pay?. Before discussing the implementation of
the above scheme, we have to address some issues that will later explain the selection
of test examples and subsequent numerical experiments. The guiding questions can
be formulated as follows: (a) Theorem 2.2 asserts asymptotic optimality. It will be
important to quantify how much the Galerkin solutions differ from the true best N -
term approximations. (b) The range of decay rates N−s for which the scheme is
optimal depends, in particular, on the range of compressibility of A. Proposition 1
indicates that this range, in turn, depends on the regularity of the wavelets. However,
higher regularity entails wavelets with larger support. What is the interplay of these
opposing effects? (c) What is the nature of functions u = uTD−1Ψ whose best wavelet
N -term approximation in the energy norm ‖ · ‖Ht , say, or equivalently for which
‖u − uN‖
2 decays like N−s? (d) In which case is the performance of the adaptive
scheme asymptotically better compared with discretizations based on uniform mesh
refinements?

Questions (c) and (d) are closely interrelated and can be answered theoretically.
These answers will help us in properly interpreting subsequent numerical tests. As
for (c), the functions u in question are nearly characterized by a certain Besov reg-
ularity. More precisely, their best wavelet N -term approximation in ‖ · ‖Ht decays
like N−(α−t)/d if u belongs to Bα

τ∗(Lτ∗(Ω)) with 1
τ∗ := α−t

d + 1
2 , α > t. In contrast,

to obtain the same rate by uniformly refined discretizations, u would have to belong
to the much smaller Sobolev space Hα. In fact, Bα

τ∗(Lτ∗(Ω)) is the largest space of
smoothness α in Lτ∗ that is still continuously embedded in the energy space Ht. Thus
adaptivity retains best possible decay rates under weaker regularity requirements on
the approximant. The above Besov spaces admit singularities that may not occur in
corresponding Sobolev spaces. In particular, when (within the compressibility range
of A) the solution u has higher Besov regularity than Sobolev regularity the adaptive
scheme outperforms uniform mesh schemes asymptotically.

Such results have recently motivated a general effort to revisit the regularity of
elliptic boundary value problems in terms of the above scale of Besov spaces and to
identify the instances where this level of smoothness is substantially higher than when
measured in the classical Sobolev scale; see [23] (and also [42]) for Lipschitz domains
and [21] for polygonal domains. These facts will be used to validate our numeri-
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cal test and to select relevant examples. However, our algorithm provides optimal
approximations without any a priori knowledge on the nature of the singularities.

Finally, it should be kept in mind that, aside from such asymptotic considerations,
the quantitative improvement over a uniform mesh scheme, even if the solution u has
arbitrarily high pointwise smoothness, is stronger the more the relevant Sobolev norm
exceeds the corresponding Besov norm, a fact that will be confirmed by the numerical
examples.

3. Data structures and implementation. One key ingredient for the realiza-
tion of the adaptive algorithm presented above is the organization of the data, i.e.,
how to handle the adaptively chosen wavelets so as to best suit the requirements of
the adaptive algorithm. Clearly, since for uniform discretizations the number of un-
knowns is a priori known and can therefore be organized in static vectors containing
all coefficients while this is no longer true for adaptive schemes, a certain overhead of
data management is necessary but should be minimized.

In this section, we highlight the main features of our data structures for two
reasons. First, the requirements of the presented adaptive wavelet algorithm differ
essentially from the demands for more conventional methods such as adaptive finite
element methods. Second, to our knowledge, this is the first consistent design of
appropriate data structures for adaptive wavelet methods.

The description of the method in section 2 reveals the following key requirements
so as

(a) to efficiently insert a new index λ �∈ Λ (GROW),
(b) to efficiently erase an index λ ∈ Λ (THRESH),
(c) for a given index λ to have fast access to the corresponding wavelet coefficient

uλ,
(d) to sort the indices both with respect to the size of the wavelet coefficients

and some “natural” ordering of the indices (which will be discussed in detail
later),

(e) to efficiently perform a loop over all indices λ ∈ Λ for iteratively solving the
linear system AΛuΛ = fΛ in order to determine the Galerkin solution uΛ.

At this stage it is already clear that we cannot use any kind of (classical) matrix–
vector structures since due to (a), (b), and (d) allocation and deallocation would
destroy the efficiency of the method. Note that due to (d) and (e) it is not sufficient
to use only a clever way of storing the coefficients as, e.g., provided by hash tables.
We also need some kind of ordering for the indices. Hence, sophisticated sorted lists
seem to suggest themselves.

Moreover, in order to keep the implementation feasible and reusable we are also
interested in

(f) separating the adaptive algorithm from the particular choice of the wavelet
basis Ψ on Ω. In particular, all geometric information on Ω will be stored in
Ψ, whereas the adaptive algorithm uses Ψ only as a parameter (the adaptive
method should work for all instances of Ψ);

(g) making the use of our data structures as easy as possible.
The issues (a)–(e) can be realized by using certain data structures that are already

provided by the C++-Standard Template Library (STL) [47, 48]. Let us describe these
structures first before we detail the application to our adaptive wavelet scheme.

3.1. Generic programming. The STL provides, among other things, a huge
collection of generic classes. This means that these data structures may have various
parameters in the form of other classes. In C++ such container classes, i.e., classes



ADAPTIVE WAVELET SCHEMES 921

containing some elements of (almost) arbitrary type, are realized by templates. Par-
ticular examples of container classes are key-based data structures that seem to us best
suited to our demands. Moreover, the STL provides certain algorithms that operate
on the containers. These algorithms turn out to be important for task (e).

The STL classes map and multimap depend on three parameters, namely, a key,
a value, and a binary relation compare. Both classes provide a sophisticated kind of
ordered list of objects indexed by a class key and having a certain value. The sorting
is done with respect to compare. The difference of the two classes is that the compare
relation for map has to be total whereas this is not required for multimap.

Let us review the efficiency properties of these STL classes. Let N be the number
of keys in the list and n the number of elements with the same key (n = 1 for map
and n ≥ 1 for multimap). Then, the average complexity to insert, find, and erase an
element is at most O(log(N)), whereas sorting the whole map is at mostO(N log(N)).
This means that requirements (a)–(d) are already fulfilled as long as we are able to
create appropriate instances for key, value, and compare for our adaptive wavelet
method.

The requirement (e), namely, the efficient performance of a loop over all indices
λ ∈ Λ is guaranteed by the separation of data and algorithms, which is the second
main concept of generic programming. So if we have the data structure modeling a
wavelet index, a generic algorithm operating on this structure can be used.

3.2. Realization of the wavelet bases. It now remains to find an appropriate
realization for the wavelet bases Ψ on Ω. The realization of the adaptive method urges
us to realize wavelet bases with sophisticated properties as detailed in section 2.2. It
is meanwhile understood how to construct such bases with the desired properties for
essentially all cases of interest [13, 14, 18, 29, 30, 32].

We will be dealing with domains that can be written as the disjoint union of
smooth parametric images Ωi = κi( ) of the unit cube := (0, 1)d, i.e., Ω̄ =

⋃M
i=1 Ω̄i.

Then, each ψλ, λ ∈ ∇, restricted to Ωi is the image through κi of a linear combination
of tensor product wavelets ψ̂µ on , i.e.,

ψλ|Ωi(x) =
∑

µ∈S(i,λ)

γµ,i ψ̂µ((κi)
−1(x)),

where S(i, λ) is a suitable set of indices of the form µ = (j,k), j := |λ|, and γµ,i are
suitable (matching) coefficients independent of j (in order to ensure global continuity).
To be specific, each wavelet on has the following representation:

ψ̂µ(x̂) =

d∏
ν=1

ϑµν (x̂ν),

where each index µν is of the form µν = (j, eν , kν) and

ϑ(j,eν ,kν) :=

{
ξj,kν if eν = 0,
ηj,kν if eν = 1.

Here ξj,kν and ηj,kν are scaling functions and wavelets on [0, 1], respectively.
Data structure: index. From what has been said so far, it is clear that λ can be

viewed as a quadruple (j, p,e,k), where p denotes the number of the patch, j ≥ j0
the level. The vectors k = (k1, . . . , kd) and e = (e1, . . . , ed) contain the indices kν and
the types eν of the univariate scaling or wavelet functions, respectively, as explained
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above. Of course, the valid ranges for these parameters are determined by the choice
of the wavelet bases on [0, 1].

Next, we define the above-mentioned “natural” ordering of the indices that is
adequate for handling the geometry and the multiresolution spaces. For two indices
λ = (j, p,e,k), λ′ = (j′, p′, e′,k′) we define λ < λ′ if (j, p,e,k) < (j′, p′, e′,k′) in the
usual lexicographic ordering of these vectors.

Finally, the particular construction of Ψ depends on two parameters, namely, the
choice of the wavelet bases on the interval and the geometry of Ω which—besides the
choice of the construction method—determines the coefficients γµ,i. Following the
philosophy of separating algorithm and data, we kept these two data as parameters.

Hence, the construction of an index amounts to the computation of the chosen
wavelet bases on the interval and then to the setup of the whole basis Ψ in the above
form. It is important to stress the fact that this construction has to be done only
once and for all in a preprocessing step and only for the minimum level, say, j0. All
information for higher levels j > j0 can be deduced from that on j0.

Particular choices and used software. As wavelet bases on Ω (which in our tests
will be an interval for d = 1 or an L-shaped domain for d = 2) we choose the
construction from [29], but the other variants would work in the same way. First
numerical results of wavelet methods on the L-shaped domain can be found in [15].
The routines for constructing the wavelets we have used in this paper have been
implemented by Vorloeper and are described in detail in [50].

For the wavelet systems on [0, 1] we choose biorthogonal B-spline wavelets on
the interval as constructed in [27, 31]. A detailed description of C++-software for
constructing wavelets on the interval can be found in [9]. It is based on the Multilevel
Library presented in [7] and [8].

3.3. Computation of matrix and right-hand-side entries. Based upon the
above-described data structures, the adaptive algorithm in section 2 has been realized.
In particular, all routines described in the appendix have been implemented.

For the fast matrix–vector multiplication, we have to identify the set

Λ(λ, J) :=
{
ν = (j′, k′) ∈ ∇ : suppψλ ∩ suppψν �= ∅, |j − j′| ≤ J

}
,(3.1)

which is determined by (2.14). For our example of a second order differential operator
this set contains for a given wavelet ψλ the indices of those wavelet functions, whose
support intersects the support of ψλ along with a cut-off criterion of level differences.
These are exactly the nonvanishing entries of the stiffness matrix in the corresponding
range of level differences.

In one dimension, this is a technical but straightforward task since explicit for-
mulas for the supports of the wavelets are available. The technicalities are due to the
modifications of functions near the end points of the interval. Since the supports of
these functions are not given by the same formula as for the interior functions, several
cases have to be considered.

In two dimensions, the situation is much more involved. This is mainly due to
the fact that also wavelet functions on different patches interact. The corresponding
information can be deduced from member functions of index so that the realization
of the corresponding routine can still be done independently of these parameters.

It remains to address the following two issues:
(i) the computation of the right-hand-side data, i.e., L2-inner products of the

given function f and wavelets as in (2.4), and
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(ii) the computation of the entries of the stiffness matrix. This means the evalu-
ation of the bilinear form a(ψλ, ψν) for any active indices λ, ν.

As for (i), the capability of computing all relevant wavelet coefficients with respect
to the dual basis with sufficient accuracy depends on what kind of information on f
is available. In fact, f as part of the model set up by the user involves in many
cases simple data. Recently significant progress has been made in rendering the
computation of fη very efficient under reasonably general assumptions on f [4, 5, 11].

The second issue (ii) is practically much more delicate. When dealing with piece-
wise polynomial wavelets and constant coefficient differential operators as in the ex-
ample below the requirement of computing the entries at unit cost can certainly be
met. When nonconstant coefficients or nontrivial parametric mappings are involved
this is by far less obvious. In order to be able to validate the convergence behavior of
the scheme at a possibly early stage we employ here a provisional strategy of precom-
puting the relevant matrix entries via a high level scaling function representation. Of
course this module is to be exchanged by more advanced strategies along the follow-
ing possible lines. Schemes for the adaptive computation of products (of derivatives)
of scaling and wavelet functions (also possibly multiplied by a given function) have
recently been developed in [11].

A different strategy aiming at optimal computational complexity in the present
context is proposed in [6]. There a suitable approximation process provides approxi-
mations to the whole summands in (2.25) simultaneously following the lines of [33].

3.4. Conclusions. Let us conclude by comparing the properties of our data
structures with the tasks that have been identified at the beginning of this section.
The use of STL data structures already ensures that the requirements (a)–(e), and
also (f), are in fact met. Moreover, since we made heavy use of existing STL classes,
the implementation could be done in a reasonable amount of time. Finally, since our
data structures are actually special cases of STL classes, their handling coincides with
the corresponding STL classes. These, however, are well documented [48] (also online
[47]) so that an easy application is guaranteed. This means, in particular, that also
other types of wavelet bases can easily be included only by providing the appropriate
interfaces. This holds for other wavelet bases both on the interval and on Ω.

It is clear from the above discussions that a full exploitation of the conceptual
power requires new algorithmic ingredients that largely had to be designed from
scratch. Specifically, for the problem-dependent part, little can be borrowed from
existing software. Consequently, not all parts could be brought to a mature state
yet. Nevertheless, we think that the current summary of affairs will provide valuable
guidelines for further developments.

4. Numerical tests. In spite of the much wider principal scope of applicability,
we confine the numerical tests to second order elliptic boundary value problems in one
and two spatial dimensions. In particular, this allows us to exploit special Besov regu-
larity results for the validation of the schemes especially in situations where adaptivity
is expected to pay off most. Moreover, we consider only a simple L-shaped domain
and refer to [43] for further tests and examples on general two-dimensional domains
with piecewise smooth boundary. However, to study the dependence on parameters
we include Helmholtz-type problems for which the energy space differs more and more
from H1 when the viscosity parameter decreases.

Bearing in mind that adaptivity is expected to pay off in the presence of singular-
ities, in section 4.1 we consider first a one-dimensional model problem where a nearly
singular behavior of the solution is caused only by a strong gradient of the right-hand
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side. Unlike earlier studies of wavelet schemes we do not confine the discussion to
periodic problems.

The second class of examples in section 4.2 is concerned with more sophisticated
problems on nonsmooth domains in R

2. In these cases, there also occur singularities
which are not generated by the right-hand sides but by the shape of the domain. To
our knowledge, such examples have not been studied before in the wavelet context.
Therefore, the quantitative performance of the scheme should be very instructive.

4.1. One-dimensional examples. As a first simple example we consider the
second order boundary value problem

−d2u

dx2
= f on Ω = (0, 1), u(0) = u(1) = 0.(4.1)

The choice of the right-hand side will be discussed later. The variational formulation
of (4.1) reads

〈u′, v′〉 = 〈f, v〉 for all v ∈ H1
0 (0, 1).(4.2)

For the treatment of (4.2) the wavelet basis has to satisfy (2.5) at least for H =
H1(0, 1). Therefore we choose cardinal B-spline wavelets on the interval that are
induced by the generators

ϕ := Nm(x), ϕ̃ := Ñm,m̃(x), m, m̃ ≥ 2,(4.3)

on the real line [16].
Due to (4.2), the trial functions have to satisfy homogeneous Dirichlet boundary

conditions. To facilitate a possibly sparse representation of the right-hand side with
respect to the dual basis, we employ so-called complementary boundary conditions
(cf. [31]), i.e., the primal functions fulfill homogeneous Dirichlet boundary conditions
whereas the dual functions remain unconstrained.

Since here H = H1
0 (0, 1), the diagonal matrix in (2.5) can be chosen as ωλ := 2|λ|.

For the validity of norm equivalences of the form (2.5) in the presence of boundary
conditions, see [31].

4.1.1. Compressibility of the stiffness matrix. To be able to interpret the
results, we have to identify first the range of asymptotic optimality permitted by the
above choice of bases. Theorem 2.2 implies that the asymptotic behavior depends on
the compressibility of the matrix A. In particular, the parameter s∗ defined in (2.13)
provides a range where optimality is guaranteed. However, in the present situation
this criterion is too weak. In fact, we know from [22] that the parameter σ in (2.11)
must satisfy t+ σ < γ where γ bounds the Sobolev regularity of the wavelets. In this
case we have t = 1 and γ = m − 1/2, which gives σ = m − 3/2, i.e., s∗ = m − 2.
Therefore, in the case ϕ = N2, we end up with s∗ = 0, which is clearly useless. Of
course, the condition (2.13) is only sufficient, and in this case a more detailed analysis
of the compression properties is necessary. In fact, for our special case, we have the
following sharper result.

Lemma 4.1. Let A denote the stiffness matrix to (4.1) obtained by B-spline
wavelets of order m as basis functions. Then for any ε > 0 the following compression
estimate holds:

‖A−AJ‖ <∼ 2−J(m−3/2−ε), i.e., A ∈ As for all s < m− 3/2.(4.4)
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Proof. Equation (4.4) can be established directly by using a version of the Schur
lemma: If for the matrix B = (bλ,λ′)λ,λ′∈J there is a sequence ωλ, λ ∈ J and a
positive constant c such that∑

λ′∈J
|bλ,λ′ |ωλ′ ≤ cωλ and

∑
λ∈J
|bλ,λ′ |ωλ ≤ cωλ′ , λ, λ′ ∈ J ,(4.5)

then ‖B‖ ≤ c. We want to use (4.5) for the sequence ωλ = 1 for all λ ∈ J . Let us
briefly sketch the arguments. The first step is to estimate the entries in the stiffness
matrix corresponding to (4.2). Ignoring for the moment the boundary effects, recalling
that derivatives of wavelets are again wavelets (see, e.g., [26]), and using the vanishing
moment property of wavelets, we obtain for any polynomial Pλ′ on Ωλ′ of degree
< m− 1 and j′ ≥ j〈

dψλ
dx

,
dψλ′

dx

〉
=

〈
dψλ
dx
− Pλ′ ,

dψλ′

dx

〉
≤
∥∥∥∥dψλ

dx
− Pλ′

∥∥∥∥
L2(Ωλ′ )

∥∥∥∥dψλ′

dx

∥∥∥∥
L2

<∼
∥∥∥∥dψλ

dx
− Pλ′

∥∥∥∥
L2(Ωλ′ )

2j
′
.

Since d
dxψλ ∈ Hs, s < m− 3/2, a classical Whitney-type estimate therefore yields〈

dψλ
dx

,
dψλ′

dx

〉
<∼ 2j

′
2−j

′(m−3/2−ε)
∣∣∣∣dψλdx

∣∣∣∣
Hm−3/2−ε

<∼ 2j
′
2−j

′(m−3/2−ε)|ψλ|Hm−1/2−ε

<∼ 2j
′
2−j

′(m−3/2−ε)2j(m−1/2−ε) <∼ 2(j−j′)(m−3/2−ε)2j+j
′
,

so that, taking the preconditioning matrix D into account, we get

|aλ,λ′ | <∼ 2(j−j′)(m−3/2−ε), j′ ≥ j.(4.6)

The case j′ < j can be treated analogously,

|aλ,λ′ | <∼ 2(j′−j)(m−3/2−ε), j′ < j.(4.7)

Moreover, the vanishing moment property of wavelets implies that the only nonvanish-
ing entries aλ,λ′ correspond to the wavelets ψλ′ whose supports intersect the singular
support of ψλ. It can be shown that the number of these entries does not depend on
the refinement level. Consequently, we obtain∑

|λ′|=j′
|aλ,λ′ | <∼ 2−|j−j′|(m−3/2−ε).(4.8)

According to (2.14) and (4.5), we have to show that∑
|j−j′|>J

∑
|λ′|=j′

|aλ,λ′ | <∼ 2−J(m−3/2−ε).(4.9)

Let us again first consider the case j′ > j. By using (4.8), we obtain

∑
j′−j>J

∑
|λ′|=j′

|aλ,λ′ | <∼
∞∑

j′=j+J

2(j−j′)(m−3/2−ε) <∼ 2j(m−3/2−ε)2−(J+j)(m−3/2−ε)

<∼ 2−J(m−3/2−ε).(4.10)

The case j′ ≤ j can be treated analogously. The second condition in (4.5) can be
checked in a similar fashion, and hence (4.4) is established.



926 BARINKA ET AL.

4.1.2. Fast matrix–vector multiplication. In view of the pivotal role of the
approximate fast matrix–vector multiplication, we present first some tests of this
ingredient. The error estimate (2.26) indicates that the approximation power of the
fast matrix–vector multiplication is determined by the parameter s∗ which, according
to (4.4), is given by s∗ = m− 3/2. In Figure 4.1, the error ‖Av−wj‖
2 is plotted in
a logarithmic scale for different choices of m and m̃ in (4.3). Since the slopes do not
change when keeping m fixed and varying m̃, we display only one particular choice of
m̃ for each m. In Table 4.1, the values of s∗, the observed values s of the numerical
tests, and the ratio s∗/s are shown. We deduce that the estimate (4.4) derived above
is in fact sharp.
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Fig. 4.1. The slope of error reduction in the fast matrix–vector multiplication.

Table 4.1
Expected and observed slopes for the error of the fast matrix–vector multiplication.

d s∗ s Ratio

2 0.5 0.51 0.98
3 1.5 1.60 0.94
4 2.5 2.70 0.93

4.1.3. Example 1. In our first test case, we choose f corresponding to the
solution

u(x) = 4
eax − 1

ea − 1

(
1− eax − 1

ea − 1

)
,(4.11)

which satisfies the boundary conditions. For our tests, we choose a = 5.0. The exact
solution and the right-hand side are shown in Figure 4.2.

We first compare the computed Galerkin solution with the best N -term approx-
imation. Recall that the convergence rate realized by the adaptive scheme is limited
by the compressibility range of the matrix A which by Lemma 4.1 is s∗ = m − 3/2.
Note that this parameter is related to the regularity of the wavelets. This effect has
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Fig. 4.2. The exact solution and the right-hand side for the one-dimensional example.

no counterpart in uniform discretizations. We expect that the performance of the
adaptive scheme can be improved by increasing the smoothness of the wavelet basis.
At this point, we want to emphasize that in contrast to linear schemes the maximal
approximation order of the adaptive scheme is not limited by the polynomial exact-
ness of the multiresolution analysis but apparently by its regularity. Of course, using
B-spline wavelets both quantities are not far apart from each other. In Figure 4.3 we
have displayed in a logarithmic scale the error for both the best N -term approxima-
tion (lines) and the adaptive algorithm (dots) as N increases. We see that both errors
show almost the same behavior. We also see that the performance of the algorithm
improves as the smoothness of the wavelet bases increases.
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Fig. 4.3. Comparison between best N-term approximation and adaptive algorithm for the one-
dimensional example.

Note that the solution to our test problem has pointwise smoothness of arbitrary
order and therefore belongs to every Sobolev space. Thus, by the discussion in section
2.9, in principle, a uniform refinement scheme provides the same asymptotic order of
approximation for functions in Hm−1/2(0, 1), i.e., in O(N−(m−3/2)). However, as
pointed out at the end of section 2.9, a quantitative gain of efficiency is still possible
if the Hm−1/2-norm of the solution u is large when compared with the corresponding
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norm in the Besov space B
m−1/2
τ∗ (Lτ∗(Ω)), 1/τ∗ = m − 3/2 + 1/2 = m − 1. In our

example, these norms indeed differ significantly as can be seen in Table 4.2. We
have estimated the Besov norms by employing the norm equivalences (2.6), i.e., by
computing weighted sequence norms of wavelet expansions. Figure 4.2 explains the
difference between Sobolev and Besov norms. The boundary layer of the solution u
increases the Sobolev norm but has less influence on the (weaker) Besov norm.

Table 4.2
Sobolev and Besov norms of the exact solution (4.11) to the one-dimensional example.

m Hm−1/2 B
(m−1/2)

(m−1)−1 (L(m−1)−1 )

1.5 6.73 6.73
2 39.4 14.5
2.5 240 47.8
3 1617 275

We have compared the adaptive scheme with uniform refinement in order to get
an impression of the effect of the different sizes of the above-mentioned norms. The
results of these numerical tests are shown in Figure 4.4. They confirm indeed the gain
of efficiency for adaptive schemes for this example as indicated by the comparison of
Sobolev and Besov norms in Table 4.2. In spite of the significant quantitative gain,
the slopes of the curves are indeed the same reflecting equal asymptotic behavior, as
predicted by the above comments.
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example.

In Figure 4.5, we have plotted the sets of wavelet indices that correspond to the
adaptively chosen wavelets. These wavelets are sometimes called active. One observes
that the adaptive algorithm in fact recognizes the strong gradient of the solution u
according to the boundary layer and adds wavelet coefficients locally in these regions.

4.2. Two-dimensional examples. We have tested our algorithm for the Pois-
son and the Helmholtz equations on an L-shaped domain Ω in R

2,

−�u = f on Ω, u|∂Ω = 0, and −ε�u+u = f on Ω, u|∂Ω = 0.(4.12)
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Fig. 4.5. The sets of active indices Λ1, Λ3, Λ4, and Λ6 for the one-dimensional example.

As already said, these problems are interesting because the solution may exhibit
singularities solely caused by the shape of the domain even for smooth right-hand
sides. Moreover, we can test the robustness of the scheme with respect to decreasing
viscosity. We refer to [35, 44, 40] for the classical theory of singularities on polygo-
nal domains, and to [20, 21] for an analysis of these singularities in terms of Besov
smoothness.

4.2.1. Example 1: The Poisson equation, singular solution with smooth
right-hand side. Introducing polar coordinates (r, θ), we define the right-hand side
f in (4.12) corresponding to the solution

u(r, θ) := ζ(r)r2/3 sin( 2
3θ),(4.13)

where ζ ∈ C∞(Ω) is a truncation function defined by

ζ(r) :=
w( 3

4 − r)

w(r − 1
2 ) + w( 3

4 − r)
with w(r) :=

{
e−1/r2 if r > 0,
0 else.

The function u is shown in Figure 4.6. Observe that u is harmonic in the vicinity of
the reentrant corner. Therefore the right-hand side f is C∞ everywhere in Ω which
confirms that the singularity of u is generated by the shape of the domain; see Figure
4.6. To our knowledge so far adaptive wavelet schemes have not been applied yet to
situations of this type.

Due to its singularity at the reentrant corner, the solution u is contained in Hα(Ω)
only for α < 5/3. Consequently, uniform grids yield at best an H1-convergence rate
N−1/3. On the other hand, it is well known that an optimal mesh refinement allows
us to restore the rate N−1/2 in the case of affine finite elements (which would be
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Fig. 4.6. The right-hand side (left) and exact solution (right) to our model problem.
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Fig. 4.7. Comparison of best N-term approximation and adaptive algorithm for the first two-
dimensional example.

obtained by a uniform method if there were no singularity) and one can easily check
that the same holds for the best N -term approximation with piecewise affine wavelets.

Again, we have tested the performance of the adaptive algorithm in this regard.
In Figure 4.7, the errors are shown for increasing N . The continuous line corresponds
to the best N -term approximation. Aside from the quantitatively very good matching,
we observe the optimal rate N−1/2. Similar to the one-dimensional examples it turns
out that the approximation rate of the adaptive scheme can be significantly increased
by using smoother and higher order wavelet bases; see section 4.2.4.

As for the quantitative refinement history, starting with the empty set, the resid-
ual in the first step is influenced only by the wavelet coefficients of the right-hand
side. These wavelet coefficients are small near the vertex due to the fact that u is
harmonic there. Now in the next steps the adaptive scheme has to track down the
singularity at the reentrant corner and add wavelet coefficients there.

Figure 4.8 displays both the approximate solution and the error to the exact
solution. At first, coefficients are added to reduce the error where strong gradients
are induced by the right-hand side, whereas in the subsequent iterations the error
is reduced in the vicinity of the reentrant corner, so that after five iterations the
error is equally distributed. Figure 4.9 shows the sets of active wavelet coefficients
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Fig. 4.8. The first, third, and fifth approximate solutions and the differences to the exact
solution for the first two-dimensional example.
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Fig. 4.9. Index sets for the fifth iteration, first two-dimensional example.

corresponding to the fifth iteration of the adaptive algorithm. The first picture shows
the set of coefficients corresponding to the scaling functions, whereas in the remaining
three pictures we have plotted the three different types of wavelets (corresponding to
e in section 3.2) separately. It is shown in detail which coefficients are added on each
refinement level. We see that the symmetry of the exact solution is reflected by the
similarity of the pictures in the upper right and lower left corner. These two pictures
correspond to tensor product functions of wavelet/generator and generator/wavelet
type, respectively.

4.2.2. Example 2: The Poisson equation, singular right-hand side. In
order to test the quantitative performance of the scheme in the presence of singu-
larities that are induced by the right-hand side, we have constructed, with the aid
of a dual relation of the norm equivalences (2.5), a special right-hand side with an
isolated singularity “far away” from the reentrant corner. This is obtained by setting
all wavelet coefficients of f equal to zero except the ones in the vicinity of one chosen
point. At this specific point, we choose the coefficients as 〈f, ψλ〉 = 2(|λ|/2). Conse-
quently, the resulting functional f is not contained in L2 but only in Hs, s < −1/2.
An approximation of a typical example consisting of the wavelets on the first six levels
is plotted in Figure 4.10.

We expect that the singularity of the right-hand side is reflected by the corre-
sponding solution. In Figure 4.11, we have depicted the Galerkin approximations
with respect to two different iterations of the adaptive algorithm. We see that the
solution indeed behaves as expected, i.e., the singularity of the right-hand side shows
up in a somewhat smeared shape. In this case, the right-hand side dominates the
influence of the domain. Nevertheless, for the last iterations, the singularity caused
by the domain (as in our first example) can again be seen, but its impact is almost
negligible.

4.2.3. Example 3: The Helmholtz equation. We include a test for the
Helmholtz equation (4.12) to see how the scheme copes with different small values of ε.
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Fig. 4.10. A right-hand side with a sharp singularity, second two-dimensional example.
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Fig. 4.11. The first and the last computed Galerkin approximation for a right-hand side with
a singularity, second two-dimensional example.

In this case, if the right-hand side does not vanish at the boundary, the solution has a
boundary layer. For ε = 10−5 we used the sum of the singular solution and a constant
as the right-hand side. The solution to this problem is displayed in Figure 4.12. The
main observations can be summarized as follows: The proper ε-dependent diagonal
scaling explained in section 2.2 leads to uniformly bounded condition numbers of about
the same size as for the Poisson equation uniformly in ε. Note that for decreasing ε
the energy space changes from H1 toward L2. Since we are employing Riesz bases for
both spaces this has no adverse effect on the adaptive scheme, not even in quantitative
terms. Again, the adaptive algorithm produces approximate solutions with an error
of the same order as the best N -term approximation and very good quantitative
matching.

4.2.4. Comparison with finite element schemes. We have also compared
our method with a well-established finite element scheme, i.e., with the software pack-
age Differential Equation Analysis Library (deal.II) which was developed at the IWR
in Heidelberg [2]. This package seemed to be suitable for a meaningful comparison
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Fig. 4.13. Rel. L2- and H1-error for piecewise affine functions.

for the following reasons:
- it is written as an open source code;
- it realizes a fully adaptive finite element scheme, using a refinement strategy
based on a posteriori error estimators developed by Kelly et al. [41];

- it is based on rectangular partitions.
In Figure 4.13 the results are displayed for the Poisson equation with right-hand
side as in Example 1 and piecewise affine finite elements and wavelets. The wavelet
scheme seems to produce a somewhat better accuracy for the same number of degrees
of freedom, but the asymptotic behavior appears to be the same. In Figure 4.14,
a similar comparison is shown for piecewise quadratic functions. Now the wavelet
scheme exhibits a better performance in a much more pronounced way. The predicted
asymptotically better compressibility of the wavelet representation starts to show up
quantitatively. This difference seems to be even more enhanced for the Helmholtz
problem; see Figure 4.15. Because of the different nature of the energy space, we
show here both the L2- as well as the H1-error. This seems to confirm that finite
element preconditioners are usually better suited for H1 problems than for L2-like
problems, while the wavelet scheme shows the same robust behavior in both cases.
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Appendix. The adaptive algorithm ALGORITHMc. In this appendix, we
detail all steps that are needed for the fully computable version ALGORITHMc

described in section 2. Let us first recall some constants that will be needed here. Let
c1, c2 be the constants appearing in the first equivalence of (2.17), i.e.,

c1‖v‖2
2(∇) ≤ ‖v‖2 ≤ c2‖v‖2
2(∇),(A.1)

and let κ ≥ ‖A‖ ‖A−1‖ be an estimate for the condition number ofA, e.g., κ := c2c
−1
1 .

We start with an initialization step that also sets global constants and parameters:
INIT.
(i) Fix some γ in (0, 1].
(ii) Determine F according to ‖f‖
2 ≤ F .
(iii) Determine q1, q2, q3, and q4 such that

(
q3

c2
+

2(1 + γ)(q1 + q2 + q3)

γc1

)
≤ q4,

(
q4

√
κ +

q3

c2

)
≤ 1

10
,

(q1 + q2 + q3 + κ−1q3) ≤ c1

20
.

• Set q0 := κ1/2 + q3/c2, θ :=
√

1− c1
4c2

, and θ̄ := 1− 1
6κ .
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(iv) Define

K := K(κ, θ) :=

[
log 20κ

| log θ|
]
+ 1.(A.2)

We first describe the main algorithm ALGORITHMc. The subroutines will be
detailed below.

ALGORITHMc.
(i) Initialization. Let ε > 0 be the target accuracy. Perform INIT.

Set Λ := ∅, v = 0, and δ := F .

(ii) If δ ≤ c
1/2
1 ε, accept u(ε) := v, Λ(ε) := Λ as the final solution and STOP.

Otherwise, NPROG [Λ,v, δ, f ]→ (Λ̂, v̂, r̂).
(iii) If ‖r̂‖
2 + (q1 + q2 + (1 + κ−1)q3)δ ≤ c1ε accept ū(ε) := ūΛk , Λ(ε) = Λk

as the solution, where ūΛk , Λ(ε) = Λk are the last outputs of NGROW in
NPROG before thresholding.
Otherwise, replace δ by δ/2, v by v̂, and Λ by Λ̂ and go to (ii).

We now list the routines called above in recursive order of their call.
NPROG [Λ,v, δ, f ] → (Λ̂, v̂, r̂). Given a set Λ, an approximation v to the ex-

act solution u of Au = f whose support is contained in Λ and such that ‖v−u‖
2 ≤ δ.
(i) Apply GALERKIN [Λ,v, δ, q3δ/c2]→ ūΛ. Set Λ

0 := Λ, ūΛ0 := ūΛ, k := 0.
(ii) Apply NGROW [Λk, ūΛk , q1δ, q2δ, f , γ]→ (Λk+1, rk).
(iii) If ‖rk‖
2 ≤ c1δ/20 or k = K defined in (A.2) go to (iv).

Otherwise, apply GALERKIN [Λk+1, ūΛk , q0δ, q3δ/c2]→ ūΛk+1 . Replace k
by k + 1, Λk by Λk+1, ūΛk by ūΛk+1 , and go to (ii).

(iv) Apply NCOARSE [ūΛk , 2δ/5]→ (Λ̂, v̂), set r̂ := rk and STOP.
GALERKIN [Λ,v, δ, η]→ ūΛ.
(i) Apply INRESIDUAL [v,Λ, f , c1η6 , c1η6 ] → r. If min

{
θ̄δ, c−1

1 ‖r‖
2 + η/3
} ≤

η, define the output ūΛ to be v and STOP, else go to (ii).
(ii) Set v̄′ := v − 1

c−2r. Replace v by v̄′, δ by θ̄δ, and go to (i).
INRESIDUAL [v,Λ, f , η1, η2]→ r.
(i) Apply APPLY AΛ [v, η1]→ w;
(ii) Apply NCOARSE [PΛf , η2]→ g.
(iii) Set r := g −w.
APPLY A [η,v]→ (w,Λ).
(i) Sort the nonzero entries of the vector v and form the vectors v[0], v[j]−v[j−1],

j = 1, . . . , �logN� with N := #suppv. Define v[j] := v for j > logN .
(ii) Compute ‖v‖2
2(∇), ‖v[0]‖2
2 , ‖v[j] − v[j−1]‖2
2(∇), j = 1, . . . , �logN�+ 1.

(iii) Set k = 0.

(a) Compute Rk := c2‖v − v[k]‖
2(∇) + ak‖v[0]‖
2(∇) +
∑k−1

j=0 aj‖v[k−j] −
v[k−j−1]‖
2(∇).

(b) If Rk ≤ η stop and output k; otherwise replace k by k + 1 and return to
(a).

(iv) For the output k of (iii) and for j = 0, 1, . . . , k, compute the nonzero entries in
the matrices Ak−j (see Proposition 1) which have a column index in common
with one of the nonzero entries of v[j] − v[j−1].

(v) For the output k of (iii), compute wk as in (2.25) and take w(v, η) := wk

and Λ = suppw.
NCOARSE [w, η]→ (Λ, w̄).
(i) Define N := #(suppw) and sort the nonzero entries of w into decreasing or-

der. Thereby one obtains the vector λ∗ := λ∗(w) = (λ1, λ2, . . . , λN ) of indices
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which gives the decreasing rearrangement w∗ = (|wλ1
|, |wλ2

|, . . . , |wλN |) of
the nonzero entries of w; then compute ‖w‖2
2 =

∑N
i=1 |wλi |2.

(ii) For k = 1, 2, . . ., form the sum
∑k

j=1 |wλj |2 in order to find the smallest value

k such that this sum exceeds ‖w‖2
2 − η2. For this k, define K̄ := k and set

Λ := {λj ; j = 1, . . . , K̄}; define w̄ by w̄λ := wλ for λ ∈ Λ and w̄λ := 0 for
λ �∈ Λ.

NGROW [Λ, ūΛ, ξ1, ξ2, f , γ] → (Λ̃, r). Given an initial approximation ūΛ to the
Galerkin solution uΛ supported on Λ.

(i) Apply NRESIDUAL [ūΛ,Λ, f , ξ1, ξ2]→ (Λr, r).

(ii) Apply NCOARSE [r,
√

1− γ2‖r‖
2 ]→ (Λc,PΛcr) and define Λ̃ := Λ ∪ Λc.

NRESIDUAL[v,Λ, f , η1, η2]→ (r, Λ̃).

(i) Apply APPLY A [v, η1]→ (w,Λ1).
(ii) Apply NCOARSE [f , η2]→ (g,Λ2).
(iii) Set r := w − g and Λ̃ := supp r ⊆ Λ1 ∪ Λ2.
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[1] I. Babuška and W. C. Rheinboldt, A posteriori error estimates for finite element methods,
Int. J. Numer. Math. Engrg., 12 (1978), pp. 1597–1615.

[2] W. Bangert and G. Kanschat, Concepts for Object-Oriented Finite Element Software—The
deal.II Library, Preprint 99–43 (SFB 359), IWR, Heidelberg, Germany, 1999.

[3] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential
equations, Math. Comp., 44 (1985), pp. 283–301.

[4] A. Barinka, T. Barsch, S. Dahlke, and M. Konik, Some remarks on quadrature formulas
for refinable functions and wavelets, ZAMM Z. Angew. Math. Mech., to appear.

[5] A. Barinka, T. Barsch, S. Dahlke, M. Konik, and M. Mommer, Quadrature formulas for
refinable functions and wavelets II: Error analysis, J. Comput. Anal. Appl., to appear.

[6] A. Barinka, S. Dahlke, and W. Dahmen, Adaptive Application of Operators in Standard
Representation, in preparation.

[7] A. Barinka, T. Barsch, K. Urban, and J. Vorloeper, The Multilevel Library: Software
Tools for Multiscale Methods and Wavelets, Version 1.0, Documentation, RWTH Aachen,
IGPM Preprint 156, 1998.

[8] T. Barsch, A. Kunoth, and K. Urban, Towards object oriented software tools for numerical
multiscale methods for PDEs using wavelets, in Multiscale Methods for Partial Differential
Equations, W. Dahmen, A. Kurdila, and P. Oswald, eds., Academic Press, New York, 1997,
pp. 383–412.

[9] T. Barsch and K. Urban, Software tools for using wavelets on the interval for the numerical
solution of operator equations, in Concepts of Numerical Software, W. Hackbusch and G.
Wittum, eds.,University of Kiel, Germany, 2000, pp. 13–25.

[10] R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite
element methods, Computing, 55 (1995), pp. 271–288.

[11] S. Bertoluzza, C. Canuto, and K. Urban, On the adaptive computation of integrals of
wavelets, Appl. Numer. Math., 34 (2000), pp. 13–38.

[12] F. A. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic
problems in two and three space dimensions, SIAM J. Numer. Anal., 33 (1996), pp. 1188–
1204.

[13] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method, part I: Construction
and analysis, Appl. Comput. Harmon. Anal., 6 (1999), pp. 1–52.



938 BARINKA ET AL.

[14] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method, part II: Realization
and additional features in 2d and 3d, Appl. Comp. Harmon. Anal., 8 (2000), pp. 123–165.

[15] C. Canuto, A. Tabacco, and K. Urban, Numerical solution of elliptic problems by the
wavelet element method, in ENUMATH 1997, H. G. Bock et al., eds., World Scientific,
Singapore, 1998, pp. 17–37.

[16] A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported
wavelets, Comm. Pure Appl. Math., 45 (1992), pp. 485–560.

[17] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations: Convergence rates, Math. Comp., 70 (2001), pp. 22–75.

[18] A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems, bound-
ary conditions and domain decomposition, Numer. Math., 86 (2000), pp. 193–238.

[19] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM
J. Math. Anal., 19 (1988), pp. 613–626.

[20] S. Dahlke, Wavelets: Construction Principles and Applications to the Numerical Treatment
of Operator Equations, Habilitation thesis, Shaker Verlag, Aachen, 1997.

[21] S. Dahlke, Besov regularity for elliptic boundary value problems on polygonal domains, Appl.
Math. Lett., 12 (1999), pp. 31–36.

[22] S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local
error estimation for elliptic problems, Appl. Numer. Math., 23 (1997), pp. 21–47.

[23] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems, Comm.
Partial Differential Equations, 22 (1997), pp. 1–16.

[24] S. Dahlke, R. Hochmuth, and K. Urban, Adaptive wavelet methods for saddle point prob-
lems, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 1003–1022.

[25] W. Dahmen, Stability of multiscale transformations, J. Fourier Anal. Appl., 2 (1996), pp.
341–361.

[26] W. Dahmen, Wavelet and multiscale methods for operator equations, in Acta Numer. 6, Cam-
bridge University Press, Cambridge, UK, 1997, pp. 55–228.

[27] W. Dahmen, A. Kunoth, and K. Urban, Biorthogonal spline-wavelets on the interval—
stability and moment conditions, Appl. Comp. Harmon. Anal., 6 (1999), pp. 132–196.
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Abstract. Newton–Krylov methods are variants of inexact Newton methods where the ap-
proximate Newton direction is taken from a subspace of small dimension. Here we introduce a new
hybrid Newton-GMRES method where a global strategy restricted to a low-dimensional subspace
generated by GMRES is performed. The obtained process is consistent with preconditioning and
with matrix-free implementation. Computational results indicate that our proposal enhances the
classical backtracking inexact method.

Key words. nonlinear systems, Krylov subspace methods, generalized minimal residual, inexact
Newton, backtracking
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1. Introduction. We consider the numerical solution of systems of nonlinear
equations

F (x) = 0,(1.1)

where F : R
n �→ R

n is continuously differentiable. Inexact Newton methods [6] are
iterative processes for solving (1.1) that result in the following scheme:

Let x0 be given.
For k = 0 until “convergence” do:

Find some η̄k ∈ [0, 1) and s̄k that satisfy

‖F (xk) + F ′(xk)s̄k‖ ≤ η̄k‖F (xk)‖,(1.2)

Set xk+1 = xk + s̄k,

where F ′(x) is the Jacobian matrix and the forcing term η̄k is used to control the
level of accuracy. Clearly, these methods are variants of Newton’s method in which
at each iteration the Newton equation

F ′(xk)s = −F (xk), k ≥ 0,(1.3)

is solved only approximately. Local convergence analysis for inexact Newton methods
[6] shows that if x0 is sufficiently close to a solution x∗ of (1.1) and the ηk’s are
uniformly bounded away from one, then the sequence {xk} converges to x∗.

When the dimension n of the problem is large, a relevant class of inexact Newton
methods is constituted by Newton–Krylov methods [1], [2], [3], [4], [6], [13]: a Krylov
subspace projection method is used to compute s̄k satisfying (1.2). An attractive
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feature of Krylov methods is that they require only the action of the Jacobian F ′

on a vector v. Moreover, for an appropriately chosen scalar ε, this action can be
approximated by finite differences [1], [4], [13]

F ′(x)v ∼ F (x+ εv)− F (x)

ε
,(1.4)

giving rise to a process that is referred to as “matrix-free.”
In order to enhance convergence from arbitrary starting points, hybrid globally

convergent modifications of Newton–Krylov methods have been considered by several
authors (see, e.g., [3], [4], [8], [9], [13], [20]): to a Newton–Krylov method one adds
either a linesearch procedure or a trust-region technique. Among the inexact Newton
methods where a linesearch procedure is used, an inexact Newton backtracking (INB)
method was proposed in [8]. It performs backtracking along the inexact Newton
step s̄k, and computational results on a large set of test problems have shown its
robustness and efficiency [9], [20]. It is worth noting that inexact Newton methods
that incorporate a linesearch procedure based on the Armijo condition [14, p. 40] are
a special case of INB (see [8]).

Also, in the numerical solution of large-scale nonlinear systems and bound con-
strained minimization problems by Newton–Krylov methods there has been much
research in using the information concerning the low-dimensional subspaces that are
built into the process of solving the linear system (see, e.g., [3], [5], [10], [11], [15]).

Here we are concerned with a Newton-GMRES method: a Newton–Krylov method
where GMRES [21] is used to solve (1.3) approximately. We propose a new hybrid
method where a global strategy restricted to a suitable Krylov subspace is performed.
Our globalization strategy consists of two parts. The first is the backtracking proce-
dure of the INB method. The second is a backtracking technique along a piecewise
linear curve that involves the current search direction s̄k and an additional direction
selected in a properly chosen subspace, which is itself obtained using the information
provided by GMRES. Our method is an extension of Newton-GMRES backtracking
techniques designed to improve performance when s̄k is a poor descent direction. We
give extensive numerical tests in support of this claim. Further, we point out that
our method is consistent with efficient matrix-free implementation and with precon-
ditioning.

The paper is organized as follows. In section 2 the Newton-GMRES algorithm
and the INB method are reviewed. In section 3 a hybrid Newton-GMRES paradigm
with globally convergent strategy restricted to a subspace is introduced. Further, the
new hybrid method is proposed and the convergence analysis is given. Its consistency
with restarting and preconditioning procedures is also investigated. Finally, in section
4 we make some comments on the implementation of the new method and give some
numerical results.

2. Preliminaries. Throughout this paper, given a smooth real function f :
R
n �→ R, its gradient is denoted by ∇f ; the vector x̄ = argminx∈S f(x) represents a

minimizer of f in the set S ⊂ R
n, and the vector (matrix) norm is always the 2-norm.

Further, ej denotes the jth unit vector, with its dimension inferred from the context;
(x)i represents the ith component of the vector x, and the closed ball with center y
and radius δ is indicated by Nδ(y). Finally, concerning iterative methods for solving
nonlinear systems (1.1), the term breakdown refers to the case in which an iterate can
not be determined, and the term nonlinear iteration denotes the sequence of steps
that are performed to update the current iterate.
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2.1. Newton-GMRES method. GMRES (generalized minimal residual) is an
iterative method for solving indefinite systems of linear equations [21]. When used to
solve the Newton equation (1.3) approximately, the resulting method is called Newton-
GMRES. The application of GMRES to the Newton equation (1.3) is outlined in the
following algorithm.

Algorithm 1. GNE (GMRES for the kth Newton equation).
Let xk, η̄k be given.
1. Choose s0k. Set m = 0.

Compute r0k = −F ′(xk)s0k − F (xk), βk = ‖r0k‖, v1 = r0k/βk.
2. While ‖rmk ‖ > η̄k‖F (xk)‖ do

GMRES iteration:
2.1. Set m = m+ 1.
2.2. Compute F ′(xk)vm and

hi,m = (F ′(xk)vm)T vi, i = 1, 2, . . . ,m,
vm+1 = F ′(xk)vm −

∑m
i=1 hi,mvi,

hm+1,m = ‖vm+1‖,
vm+1 = vm+1/hm+1,m.

Let H̄m ∈ R
(m+1)×m be the upper Hessenberg matrix whose nonzero

entries are the coefficients hi,j , i = 1, . . . , j + 1, for j = 1, . . . ,m.
2.3. Find the vector ym ∈ R

m that solves the least-squares problem

min
y∈Rm

‖βke1 − H̄my‖.

2.4. Set ‖rmk ‖ = ‖βke1 − H̄mym‖.
3. Define Vm ≡ [v1, v2, . . . , vm] ∈ R

n×m and form

smk = s0k + Vmym .

4. Let s̄k = smk .
Note that a GMRES iteration corresponds to a single value of m in step 2 of the

above algorithm. At each GMRES iteration, smk solves the least-squares problem

min
s∈s0

k
+Km

‖F ′(xk)s+ F (xk)‖,(2.1)

where Km is the Krylov subspace:

Km = span{r0k, F ′(xk)r0k, (F
′(xk))2r0k, . . . , (F

′(xk))m−1r0k}.(2.2)

Step 2.2 is the Arnoldi process [13] for the construction of an orthonormal basis
v1, . . . , vm of Km. From this process it follows that [21]

F ′(xk)Vm = Vm+1H̄m,(2.3)

and so the least-squares problem (2.1) reduces to

min
y∈Rm

‖βke1 − H̄my‖.(2.4)

One iterates until the residual vector

rmk = −F ′(xk)smk − F (xk)
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satisfies ‖rmk ‖ ≤ η̄k‖F (xk)‖, i.e., until s̄k = smk satisfies the stopping criterion (1.2).
Then, the vector s̄k is used to form the Newton iterate xk+1 = xk + s̄k.

Although from (2.1) the residual norm ‖rmk ‖ is nonincreasing with m, GMRES
may stagnate, i.e., the residual norm may remain constant for a number of iterations.
However, in theory GMRES finds the solution of the linear system in at most n it-
erations [21]. In practice, because of rounding errors, GMRES is best thought of as
an iterative method. In fact, the vectors vj computed by the Arnoldi process in step
2.2 may become nonorthogonal as a result of accumulated roundoff errors. Conse-
quently, if a large number of GMRES iterations must be performed, more complex
implementations of step 2.2 are necessary (see [13] and the references cited therein).
A further aspect of the above algorithm we have not yet considered is that the basis
of the Krylov subspace Km must be stored. Namely, in order to perform m itera-
tions one must store m vectors of length n. This may become prohibitive when n is
large. Typically a maximum value mmax of GMRES iterations is fixed. If after mmax

GMRES iterations the norm of the residual is still greater than η̄k‖F (xk)‖, GMRES
is restarted with initial guess s0k equal to smmaxk . The convergence of such a procedure
is not always guaranteed, but the idea works well in practice [21].

2.2. Backtracking strategies. To enlarge the convergence basin of a locally
convergent method, linesearch techniques are often used [7, section 6.5], [18, section
11.2]. They are based upon a globally convergent method for a problem of the form
minx∈RnM(x), where M is an appropriately chosen merit function whose global min-
imum is a zero of F . In these cases, for p a given direction in R

n, the iterate xk+1

has the form xk+1 = xk + λp, where 0 < λ ≤ 1 is such that M(xk + λp) < M(xk).
The existence of such a λ is ensured if p is a descent direction for M at xk, i.e., if
there exists a λ0 > 0 such that M(xk + λp) < M(xk) for all λ < λ0. When M is
differentiable this is equivalent to the following condition [7]:

∇M(xk)T p < 0.

Proposition 3.3 of [4] shows that if M = ‖F‖2/2 or M = ‖F‖, a vector p is a descent
direction for M at xk if ‖F ′(xk)p + F (xk)‖ < ‖F (xk)‖. Thus, from (1.2) s̄k is a
descent direction for these choices of M . Also, note that each GMRES iterate smk ,
m ≥ 0, satisfying ‖F ′(xk)smk + F (xk)‖ < ‖F (xk)‖, is a descent direction for M at xk
even if the residual violates ‖rmk ‖ ≤ η̄k‖F (xk)‖.

To make the linesearch method succeed, the simple decreaseM(xk+λp) < M(xk)
is not sufficient. In fact, to ensure the convergence of {xk} to a minimum of M , at
each iteration a “sufficient decrease” ofM must be required (see, e.g., [7, pp. 116–120],
[8], [19, pp. 36–43]).

In typical linesearch strategies, the step length λ is chosen by using a so-called
backtracking approach. The usual convention is to start with λ = 1 and then to
backtrack, i.e., to reduce λ, until M is sufficiently decreased.

Among the backtracking methods, INB [8] is a globally convergent process where
the kth iteration of an inexact Newton method is embedded in a backtracking strategy.
In what follows, we will restrict our attention to the INB method where GMRES is
used to solve the Newton equations approximately. The kth nonlinear iteration of
this method can be sketched as follows.

Algorithm 2. NGB (Newton-GMRES with backtracking).
Let xk, ηmax ∈ (0, 1), t ∈ (0, 1), 0 < θl < θu < 1 be given.
1. Choose η̄k ∈ [0, ηmax].
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2. Apply Algorithm GNE to compute s̄k = smk such that

‖F (xk) + F ′(xk)s̄k‖ ≤ η̄k‖F (xk)‖.
3. Perform the Backtracking Loop (BL), i.e.,

3.1. Set sk = s̄k, ηk = η̄k.
3.2. While ‖F (xk + sk)‖ > (1− t(1− ηk))‖F (xk)‖ do:

Choose θ ∈ [θl, θu].
Update sk = θsk and ηk = 1− θ(1− ηk).

4. Set xk+1 = xk + sk.
In step 3, the following sufficient decrease in the merit function ‖F (x)‖ is provided:

‖F (xk + sk)‖ ≤ (1− t(1− ηk))‖F (xk)‖.(2.5)

In particular, moving along the direction of the inexact Newton step s̄k, successively
shorter steps sk = sk(η) of the form sk = (1− η)s̄k/(1− η̄k) are selected.

3. NGECB: A hybrid Newton-GMRES method. Here we present a hy-
brid inexact method based on NGB. To provide a thorough description of it, we first
introduce a new general algorithm that serves as paradigm. In this, the backtracking
strategy is augmented with a second global strategy. In particular, we know from
[8] that the backtracking loop BL in step 3 of Algorithm NGB terminates after a
finite number of steps. However, if for reasonable values of the constants t, θl, θu,
relatively few steps do not suffice to decrease ‖F‖, instead of insisting on the direc-
tion s̄k we select different directions and try to decrease the value of an appropriate
merit function M moving from xk along these directions. To be more specific, in
our proposed method, the number of backtracking steps is limited to a number, Nb,
that is fixed in advance. If the linesearch terminates successfully within Nb steps,
the method proceeds as usual. Otherwise, a new procedure is invoked to find a dif-
ferent search direction; the intention is to avoid repeated backtracking steps along a
poor direction. The relevant aspect of our proposal is that such direction is chosen
in a low-dimensional subspace S which involves information already generated during
the GMRES iterations. We shall deliberately not specify the form of this set S. In
fact, the subspace S depends on whether or not restarting and/or preconditioning
are employed in GMRES. Our intention here is to provide a general paradigm; in the
following subsections we will specify our choices for the set S.

The kth nonlinear iteration of the hybrid method we propose belongs to the
following framework.

General paradigm.
Let xk, ηmax ∈ (0, 1), t ∈ (0, 1), 0 < θl < θu < 1, Nb ≥ 0 be given.
1. Choose η̄k ∈ [0, ηmax].
2. Apply Algorithm GNE to compute s̄k = smk such that

‖F (xk) + F ′(xk)s̄k‖ ≤ η̄k‖F (xk)‖.
3. Apply the backtracking loop BL and perform at most Nb iterations.
4. If

‖F (xk + sk)‖ ≤ (1− t(1− ηk))‖F (xk)‖,
set ∆k = sk. Go to step 6.

5. Form the set S by using information provided by Algorithm GNE and
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compute ∆k ∈ S such that

∇M(xk)T∆k < 0 and M(xk + ∆k) < M(xk).

6. Set xk+1 = xk + ∆k.
The above scheme can be viewed as a paradigm for hybrid Newton-GMRES pro-

cesses since step 5 does not specify the form of the subspace S, the choice of the vector
∆k, or the merit function M . Note that the simple condition M(xk+1) < M(xk) is
imposed for each k. However, a “sufficient decrease” of M has to be required in order
to ensure the convergence of {xk} to a minimum of M . Specific implementations of
step 5 in the given paradigm lead to different procedures.

Here we present a Newton-GMRES method where step 5 is performed by using
M = ‖F‖ and a new globalization strategy that will be called ECB (equality curve
backtracking) strategy. The resulting method will be denoted the NGECB (Newton-
GMRES with ECB) method.

In the presentation of the NGECB method, first we take s0k = 0 in GNE and
select ∆k in the Krylov subspace Km defined by (2.2). Namely, we set S = Km in
step 5 of the general paradigm. The convergence analysis of the new process is given
and the modifications needed in the case s0k �= 0 are discussed. Then, the consistency
with preconditioning will be analyzed.

3.1. A globalization strategy restricted to Km. We assume that at most
mmax GMRES iterations are performed in step 2 of Algorithm GNE and that restart-
ing is not employed. Further, we assume that the initial guess s0k = 0 is used. If within
m = mmax GMRES iterations, Algorithm GNE fails to provide a vector s̄k = smk sat-
isfying (1.2), we continue using the last GMRES iterate. This is done letting s̄k = smk
and η̄k = ‖F (xk) + F ′(xk)s̄k‖/‖F (xk)‖ after step 2 of the general paradigm. It is
worth noting that when s0k = 0 is chosen, in Algorithm GNE we have

βk = ‖F (xk)‖ and F (xk) = −βkv1.
To devise a reliable global strategy restricted to a subspace S, first we need to

identify in S descent directions for M = ‖F‖ at xk. In our approach, the choice
S = Km plays a central role since descent directions can be identified in Km at no
additional cost, as follows. Step 3 of Algorithm GNE provides the orthonormal basis
Vm for Km and clearly each vector δ ∈ Km has the form δ = Vmy for some y ∈ R

m.
As a consequence, the problem of decreasing M : R

n → R is replaced by the problem
of decreasing the function g : R

m → R defined by

g(y) = M(xk + Vmy).(3.1)

It is easy to determine if g(y)|y=0 = M(xk) can be reduced. In fact, using (2.3) we
have

F (xk)TF ′(xk)Vm = −βkvT1 Vm+1H̄m = −βkeT1 H̄m,(3.2)

and

∇g(y)|y=0 = (F ′(xk)Vm)TF (xk)/βk = −H̄T
me1.

Further, the inexact Newton step s̄k = Vmym is the solution of the least-squares
problem (2.4), so that

ym = −βk(H̄T
mH̄m)−1∇g(y)|y=0.(3.3)
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Hence, ∇g(y)|y=0 = 0 if and only if ym = 0. Since we need a nonzero inexact Newton
step, it is crucial to requiremmax large enough so that ym �= 0. This way, the existence
of descent directions for M at xk within the subspace Km is guaranteed. Therefore,
we will assume s̄k �= 0 in the following description of the ECB-strategy.

Finally, it is worth noting that the first row of the Hessenberg matrix H̄m gives
the directional derivatives of M at xk along the directions vj . Thus, we determine if
vj is a descent direction at no additional cost. In fact, for any δ ∈ Km the directional
derivative ∇M(xk)T δ is such that

∇M(xk)T δ = ∇M(xk)TVmy = −eT1 H̄my, y ∈ R
m.

Consequently, recalling that vj = Vmej , we get

∇M(xk)T vj = ∇g(y)|Ty=0ej = −eT1 H̄mej = −h1,j , j = 1, . . . , m.(3.4)

Clearly, vj is a descent direction if and only if h1,j > 0.
We are now ready to specify the strategy we use to form the vector ∆k in step

5 of the general paradigm. In fact, the merit function M = ‖F‖ will be used and
a sufficient decrease in M will be ensured applying a backtracking strategy along a
curve σk(η). The curve σk(η) is such that σk(1) = 0 and each trial step satisfies (1.2)
with equality, i.e.,

‖F (xk) + F ′(xk)σk(η)‖ = η‖F (xk)‖.(3.5)

In order to construct σk(η), we model g(y) = M(xk + Vmy) at y = 0 by the
following function:

ĝ(y) = ‖F ′(xk)Vmy + F (xk)‖,

whose steepest descent direction dm at y = 0 is given by

dm = −∇ĝ(y)|y=0 = −∇g(y)|y=0 = H̄T
me1.(3.6)

It is important to note that, by definition of GMRES, s̄k = smk solves (2.1). Namely,
letting smk = Vmym, the vector ym ∈ R

m minimizes the quadratic model ĝ in Km.
Algorithm 3. ECB-strategy.

Let xk, t ∈ (0, 1) be given. Let s̄k be the inexact Newton step and H̄m and Vm be
the matrices defined, respectively, in steps 2.2 and 3 of Algorithm GNE.
1. Choose ε > 0, hmin > 0 and set βk = ‖F (xk)‖.
2. Compute dm using (3.6).
3. Compute αd = argminα∈R

ĝ(αdm): αd = βk ‖dm‖2/‖H̄mdm‖2.
4. Set z = αdVmdm.
5. Form J = {1 ≤ j ≤ m s.t. h1,j ≥ hmin}, D = {ej s.t. j ∈ J}.
6. If D �= ∅

Let ej∗ be such that ‖F (xk + εVmej∗)‖ = minej∈D ‖F (xk + εVmej)‖.
Set vj∗ = Vmej∗ .
Compute αe = argminα∈R

ĝ(αej∗): αe = −FT (xk)F ′(xk)vj∗/‖F ′(xk)vj∗‖2.
If ‖F (xk + αevj∗)‖ ≤ ‖F (xk + z)‖, set z = αevj∗ .

7. Compute

η1 = ‖F ′(xk)z + F (xk)‖/‖F (xk)‖,
η2 = ‖F ′(xk)s̄k + F (xk)‖/‖F (xk)‖.
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Set η = η2.
8. Repeat

Choose θ ∈ [θl, θu]. Set η = 1− θ(1− η).
If η < η1

Let τ = (
η2−η2

2

η2
1−η2

2
)1/2, ẑ = τz + (1− τ)s̄k.

Else
Let τ = (

η2−η2
1

1−η2
1

)1/2, ẑ = (1− τ)z.

Until ‖F (xk + ẑ)‖ ≤ (1− t(1− η))‖F (xk)‖.
9. Set ∆k = ẑ, ηk = η.

In step 8 of the above algorithm, the following decrease condition in ‖F‖ is im-
posed:

‖F (xk + σk(η))‖ ≤ (1− t(1− η))‖F (xk)‖,(3.7)

where t ∈ (0, 1) is a given constant. The backtracking is performed along the piecewise
linear curve σk(η) connecting the point zero, the point z = σk(η1) ∈ Km, and the
inexact Newton step s̄k = σk(η2) ∈ Km. This curve has the form

σk(η) =



τ(η)z + (1− τ(η))s̄k, τ(η) = (

η2−η2
2

η2
1−η2

2
)1/2 if η2 ≤ η < η1,

(1− τ(η))z, τ(η) = (
η2−η2

1

1−η2
1

)1/2 if η1 ≤ η ≤ 1.
(3.8)

Some relevant features characterize z and s̄k. First, s̄k minimizes ‖F ′(xk)s +
F (xk)‖ in Km due to the properties of GMRES and z minimizes ‖F ′(xk)s+ F (xk)‖
along an appropriately chosen direction Vmū ∈ Km, i.e.,

z = ᾱVmū, ᾱ = argmin ĝ(αū).(3.9)

Second, the vector ū is selected from dm and the coordinate vectors ej in R
m as the

most promising descent direction for ĝ at y = 0. This is done taking into account
the value of ‖F‖ according to the following strategy. From (3.4), the set D defined in
step 5 of the ECB-strategy contains the coordinate vectors ej ∈ R

m that are descent
directions for ĝ at y = 0. If D = ∅, we set ū = dm. Otherwise, we consider the
values ‖F (xk + εVmej)‖, ej ∈ D, and choose the vector ej∗ that gives the minimum
value. Then, we form αdVmdm and αeVmej∗ , i.e., the minimizers of ĝ along dm
and ej∗ , respectively. Finally, ū is chosen as either dm or ej∗ depending on whether
‖F (xk + αdVmdm)‖ or ‖F (xk + αeVmej∗)‖ is smaller. Namely, ū = dm if ‖F (xk +
αdVmdm)‖ < ‖F (xk + αeVmej∗)‖, and ū = ej∗ otherwise.

We remark that the path σk(η) is not well defined if η1 = 1. This occurrence
means that there exist no descent directions for ĝ at y = 0 in Km and this case
was previously excluded in the presentation of the ECB-strategy. Moreover, the path
σk(η) is not well defined if η1 = η2. This means that s̄k is parallel to z. In this
case, σk(η) becomes a straight line and the ECB-strategy reduces to a backtracking
technique along s̄k. However, in order to avoid the situation where σk(η) becomes a
straight line, a modification of the ECB-strategy can be considered. If z = αeVmej∗ ,
z can be set equal to αdVmdm; on the contrary, if z = αdVmdm and D �= ∅, one can
take z = αeVmej∗ . Summarizing, the ECB-strategy cannot be used as an alternative
strategy to the backtracking along s̄k only either if s̄k is parallel to both Vmdm and
Vmej∗ or if s̄k is parallel to Vmdm and the setD is empty. Also, it should be mentioned
that in the context of globally convergent Newton-GMRES methods, a relevant trust-
region model restricted to Km was proposed in [3]. It employs a dogleg path based on



948 STEFANIA BELLAVIA AND BENEDETTA MORINI

s̄k and αdVmdm. We note that when s̄k is parallel to Vmdm, this dogleg path reduces
to a straight line, while the outlined modification of the ECB-strategy prevents this
degeneration of σk(η) if D �= 0 and s̄k is not parallel to Vmej∗ . In view of all above
considerations, we will exclude the case η1 = η2 for the remainder of the paper.

The theorem below shows that along the curve σk(η) we satisfy (3.5). Conse-
quently, moving from xk + s̄k to xk along σk(η), the relative residual norm η =
‖F (xk) + F ′(xk)σk(η)‖/‖F (xk)‖ is monotone increasing.

Theorem 3.1. If m > 1 and s̄k provided by Algorithm GNE is such that s̄k �= 0,
along the piecewise curve σk(η), the equality condition (3.5) is satisfied.

Proof. By construction, the vectors s̄k and z satisfy

s̄k = argmin
s∈Km

‖F ′(xk)s+ F (xk)‖, z = argmin
s∈K̄

‖F ′(xk)s+ F (xk)‖,

where K̄ = span{Vmdm} or K̄ = span{vj∗}. Hence, if m > 1 and s̄k �= 0, K̄ ⊂ Km
and η1 > η2. Using [8, Lemma 8.1] the result follows.

Remark 3.1. The proposed NGECB method is consistent with a matrix-free
implementation. To see why, we turn our attention to the given general paradigm and
consider the implementation of Algorithm GNE in step 2 and the implementation of
the ECB-strategy in step 5. Step 2 can be implemented by using (1.4) to approximate
the products F ′(xk)vi, i = 1, . . . ,m. Moreover, considering steps 6 and 7 of the
ECB-strategy, αe and η1 can be computed without explicitly forming the Jacobian
F ′(xk). In particular, if z = αevj∗ , the vector F ′(xk)vj∗ has already been computed
in Algorithm GNE. If z = αdVmdm, from (2.3) we have

αdF
′(xk)Vmdm + F (xk) = αdVm+1H̄mdm + F (xk),

and then we have to perform only two matrix-vector products to compute η1. Fur-
ther, the scalar ε used in the ECB-strategy can be chosen equal to the constant ε
previously used to form the products F ′(xk)vi, i = 1, 2, . . . ,m, by means of (1.4).
This way, vectors of the form F (xk + εvj) are available and the NGECB method can
be advantageously implemented at a low computational cost.

3.2. Convergence analysis. To analyze the NGECB method, we observe that
it belongs to the following framework:

Given x0 and t ∈ (0, 1).
For k = 0 until “convergence” do:

Find a scalar ηk ∈ [0, 1) and a vector ∆k = ∆k(ηk) that satisfy

‖F (xk) + F ′(xk)∆k(ηk)‖ ≤ ηk‖F (xk)‖(3.10)

and

‖F (xk + ∆k(ηk))‖ ≤ (1− t(1− ηk))‖F (xk)‖.(3.11)

Set xk+1 = xk + ∆k(ηk).

The value of ∆k may be s̄k or, alternatively, computed either in the backtracking loop
BL, ∆k(η) = sk with sk = (1 − η)s̄k/(1 − η̄k), η̄k ≤ η ≤ 1, or by the ECB-strategy,
∆k(η) = σ(η), η2 ≤ η ≤ 1.

Next, we show that if the NGECB method does not break down, and if there
exists a limit point x∗ of {xk} such that F ′(x∗) is invertible, then the iterates are
guaranteed to remain near x∗ and
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• F (x∗) = 0 and xk → x∗;
• for k sufficiently large, xk+1 has the form xk+1 = xk+ s̄k. Hence, the ultimate

rate of convergence depends on the choices of the η̄k’s as shown in the local
convergence theory of [6].

On the other hand, the NGECB method can fail in one of the following cases:
• ‖xk‖ → ∞, i.e., {xk} has no limit points;
• {xk} has one or more limit points, and F ′ is singular at each of them;

and it breaks down if
• F ′(xk) is singular for some k;
• the vector s̄k computed by Algorithm GNE is such that s̄k = s0k = 0.

In our analysis we will refer to the theoretical results of [8] for processes that fit into
the above framework, i.e., that generate a sequence {xk} where {∆k} and {ηk} satisfy
(3.10) and (3.11) for all k. For the sake of completeness, we recall these facts.

Theorem 3.2 (see [8, Theorem 3.4]). If
∑∞
k=0(1−ηk) is divergent, then F (xk)→

0.
Theorem 3.3 (see [8, Theorem 3.5]). Let x∗ be a limit point of {xk} for which

there exists a Γ independent of k such that

‖∆k(ηk)‖ ≤ Γ(1− ηk)‖F (xk)‖,(3.12)

whenever xk is sufficiently near x∗ and k is sufficiently large. Then, xk → x∗.
Next, we give sufficient conditions for the NGECB method to not break down

in the backtracking loop in step 8 of the ECB-strategy. Then, we give a global
convergence result.

Lemma 3.1. Assume that ∆k(η) = σk(η), F (xk) �= 0, and there exist ησ ≥ η2
and a constant Γ such that

‖∆k(η)‖ ≤ Γ(1− η)‖F (xk)‖, ησ ≤ η ≤ 1.(3.13)

Let δ > 0 be sufficiently small so that

‖F (x)− F (xk)− F ′(xk)(x− xk)‖ ≤ 1− t
Γ
‖x− xk‖(3.14)

holds whenever x ∈ Nδ(xk). Then, in step 8 of the ECB-strategy, the backtracking
loop terminates with

1− ηk ≥ min

{
1− ησ, θlδ

Γ‖F (xk)‖
}
.

Proof. The proof is a straightforward application of [8, Lemma 5.1].
Remark 3.2. Note that [19, Lemma 3.2.10] ensures the existence of δ such that

(3.14) holds whenever x ∈ Nδ(xk).
The next lemma gives conditions under which (3.13) is satisfied.
Lemma 3.2. Assume that ∆k(η) = σk(η), s̄k �= 0, F (xk) �= 0, and F ′(xk) is

invertible. Then, there exist ησ and Γ such that (3.13) holds.
Proof. If

γk = inf
η2≤η<1

|F (xk)T (F ′(xk)σk(η))|
‖F (xk)‖‖F ′(xk)σk(η)‖

is positive, [8, Lemma 7.2] gives (3.13) with

Γ =
2‖F ′(xk)−1‖

γk
and ησ = max{η2, (1− γ2

k)1/2}.
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We now show that γk > 0. If η1 ≤ η < 1, from (3.8) we have σk(η) = (1− τ(η))z,
where z = αevj∗ or z = αdVmdm. If z = αevj∗ , the assumption h1,j∗ ≥ hmin > 0 in
the ECB-strategy and (3.2), give

γk =
|F (xk)T (F ′(xk)Vmej∗)|
βk‖F ′(xk)Vmej∗‖

=
βkh1,j∗

βk‖F ′(xk)Vmej∗‖ ≥
hmin

‖F ′(xk)Vmej∗‖ > 0.(3.15)

If z = αdVmdm, from (3.2) and (3.6), it follows F (xk)TF ′(xk)Vm = −βkdTm, and thus

γk =
|F (xk)T (F ′(xk)Vmdm)|
βk‖F ′(xk)Vmdm‖

=
‖dm‖2

‖F ′(xk)Vmdm‖ > 0,(3.16)

where the last inequality holds since s̄k �= 0 (see (3.3)).
Finally, if η2 ≤ η < η1, the equality condition (3.5) gives

γk = inf
η2≤η<η1

| − F (xk)TF (xk) + F (xk)T (F ′(xk)σk(η) + F (xk))|
βk‖F ′(xk)σk(η)‖

≥ inf
η2≤η<η1

β2
k(1− η)

βk(βk + ‖F ′(xk)σk(η) + F (xk)‖)
= inf
η2≤η<η1

1− η
1 + η

≥ 1− η1
1 + η1

> 0.(3.17)

Lemmas 3.1 and 3.2 yield the result below.
Corollary 3.1. Assume that ∆k(η) = σk(η), s̄k �= 0, F (xk) �= 0, and F ′(xk) is

invertible. Then, the backtracking loop in step 8 of the ECB-strategy terminates with

1− ηk ≥ min

{
1− η2, 1− (1− γ2

k)1/2,
θlδ

Γ‖F (xk)‖
}

(3.18)

for any δ > 0 sufficiently small so that (3.14) holds whenever x ∈ Nδ(xk).
To prove the global convergence result we need an intermediate result.
Theorem 3.4. Assume that s̄k satisfies

‖F ′(xk)s̄k + F (xk)‖ ≤ η̄k‖F (xk)‖, η̄k ≤ ηmax,(3.19)

for k sufficiently large, and ∆k(η) = σk(η). If x∗ is a limit point of {xk} such that
F ′(x∗) is invertible, then there exists Γ1 independent of k for which

‖∆k(ηk)‖ ≤ Γ1(1− ηk)‖F (xk)‖(3.20)

whenever xk is sufficiently close to x∗ and k is sufficiently large.
Proof. Let δ > 0 be sufficiently small so that F ′(x)−1 exists and ‖F ′(x)−1‖ ≤

2‖F ′(x∗)−1‖ whenever x ∈ Nδ(x∗). Set K = ‖F ′(x∗)−1‖, K1 = supx∈Nδ(x∗) ‖F ′(x)‖,
and suppose that xk ∈ Nδ(x∗) and k is sufficiently large that (3.19) holds.

Lemma 3.2 gives (3.13) with Γ = 2‖F ′(xk)−1‖/γk, dependent of k. To prove the
theorem we now show that there exists γ > 0 such that γk > γ whenever xk ∈ Nδ(x∗).
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First, consider the case η1 ≤ η ≤ 1, i.e., σk(η) = (1− τ(η))z. If z = αevj∗ , from
(3.15) we have γk > hmin/K1. If z = αdVmdm, (3.16) yields

γk ≥ ‖dm‖2
‖F ′(xk)‖‖dm‖ =

‖V TmF ′(xk)TF (xk)‖
βk‖F ′(xk)‖

≥ 1

k2(F ′(xk))

‖V TmF ′(xk)TF (xk)‖
‖F ′(xk)TF (xk)‖ ,

where k2(F ′(xk)) = ‖F ′(xk)‖‖F ′(xk)−1‖. Recalling that in Km there is s̄k satisfying
(3.19), we also have

‖V TmF ′(xk)TF (xk)‖
‖F ′(xk)TF (xk)‖ ≥ 1

k2(F ′(xk))

1− η̄k
1 + η̄k

(see [4, Corollary 3.5]), and we get

γk >
1

4K2K2
1

1− ηmax
1 + ηmax

.

In what follows, we let γ1 be the constant

γ1 = min

{
hmin
K1

,
1− ηmax

4K2K2
1 (1 + ηmax)

}
.(3.21)

Next, we turn our attention to the case η2 ≤ η < η1. Due to (3.17), we need an
upper bound, independent of k, on η1. Using the definition of η1 and the definition
(3.9) of z we have

η1 =
‖F ′(xk)z + F (xk)‖

‖F (xk)‖ =
minα ‖F ′(xk)αVmū+ F (xk)‖

‖F (xk)‖
=
(

1− (F (xk)TF ′(xk)Vmū)2

β2
k‖F ′(xk)Vmū‖2

)1/2

=
(

1− inf
η1≤η<1

(F (xk)TF ′(xk)σk(η))2

β2
k‖F ′(xk)σk(η)‖2

)1/2

,

and from (3.17) and (3.21) we get

γk ≥ 1− η1
1 + η1

≥ 1−
√

1− γ2
1

1 +
√

1− γ2
1

.

Hence, by setting γ = min{γ1, 1−
√

1−γ2
1

1+
√

1−γ2
1

} and Γ1 = 4K/γ, we obtain

‖σk(η)‖ ≤ Γ1(1− η)‖F (xk)‖, min{η2, 1− (1− γ2)1/2} ≤ η ≤ 1,

and the proof is completed.
We are ready to state the global convergence result.
Theorem 3.5. Assume that the NGECB method does not break down, and (3.19)

holds for k sufficiently large. If x∗ is a limit point such that F ′(x∗) is invertible, then
xk → x∗, and F (x∗) = 0. Furthermore, for sufficiently large k, we have ηk = η̄k.
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Proof. Let δ > 0 be sufficiently small so that (3.20) holds whenever x ∈ Nδ(x∗).
Set K2 = supx∈Nδ(x∗) ‖F (x)‖. Assume that xk ∈ Nδ(x∗) and k is sufficiently large
that (3.19) holds.

If ∆k(η) = sk, from [8, Theorem 6.1] we know that there exists a constant, say,
Γ2, independent of k such that (3.12) holds. Then, we conclude that whenever xk is
sufficiently close to x∗, the NGECB method generates a ∆k that satisfies (3.12) with
Γ = min{Γ1,Γ2} independent of k. Hence xk → x∗ because of Theorem 3.3.

If sk is computed in the backtracking loop BL, the backtracking terminates with
ηk such that

1− ηk ≥ min

{
1− η̄k, δθl

Γ‖F (xk)‖
}

(3.22)

(see [8, Lemma 5.1]). Hence, in this case we have

1− ηk ≥ min

{
1− ηmax, δθl

ΓK2

}
.

Further, if the ECB-strategy is used, (3.18) yields

1− ηk ≥ min

{
1− ηmax, 1− (1− γ2)1/2,

θlδ

ΓK2

}
.

But, since xk → x∗, we have xk ∈ Nδ(x∗) for k sufficiently large. Therefore, the
series

∑∞
k=0(1 − ηk) is divergent and Theorem 3.2 yields F (x∗) = 0. Finally, since

‖F (xk)‖ → 0, from (3.22) it follows ηk = η̄k for k sufficiently large.

3.3. Restarting and enlarged subspace ECB-strategy. In typical imple-
mentations of GMRES, a maximum value mmax of m is dictated by storage require-
ments. If a restarted GMRES is applied, GMRES is used iteratively and restarted
every mmax iterations. At each restart the initial guess is set equal to the last com-
puted GMRES iterate. The NGECB method studied in section 3.1 does not cover
this situation, because, in general, after a restart the new initial guess s0k is nonzero.
We now show how to define the NGECB method in this case.

When s0k �= 0, the major impact on our hybrid method is that the vector s̄k
provided by Algorithm GNE belongs to s0k +Km and s0k +Km �= Km. Then, the step
in s0k +Km from xk has the form s0k + Vmy, y ∈ R

m, and g(y) in (3.1) is now given
by g(y) = M(xk + s0k + Vmy). In general, g(0) �= M(xk), and we cannot search for a
decrease of M moving from xk in Km. Hence, following the approach of [3] we let the
contribution of the step s0k be variable, and we search for a descent direction in the
subspace S = span{v1, v2, . . . , vm, s0k}.

Letting W = [w1, w2, . . . , wm+1] ∈ R
n×(m+1) be the orthonormal basis of S such

that wi = vi for i = 1, 2, . . . ,m, we replace the function g given in (3.1) with the
following function:

g(ỹ) = M(xk +Wỹ),

where g : R
m+1 → R.

The model ĝ(ỹ) for M(xk +Wỹ) becomes

ĝ(ỹ) = ‖F ′(xk)Wỹ + F (xk)‖,(3.23)
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where F ′(xk)W = [Vm+1H̄m, F
′(xk)wm+1], and the steepest descent direction for ĝ

at ỹ = 0 is given by

d̃m = − (F ′(xk)W )TF (xk)

‖F (xk)‖ =
1

‖F (xk)‖
( −H̄T

mV
T
m+1F (xk)

−wTm+1F
′(xk)

T
F (xk)

)
.(3.24)

Clearly, there will be descent directions for ĝ at ỹ = 0 in S if F ′(xk)W is not singular.
This is ensured if s0k �∈ Km.

In order to define the equality curve σk, we need the minimizer ŝk of ‖F ′(xk)s+
F (xk)‖ in S. This vector can be easily computed in a matrix-free manner using the
information provided by GMRES, as shown in [3]. Hence, we let σk be of the form
(3.8), where s̄k is replaced by ŝk and z is such that

z = ᾱW ũ, ᾱ = argmin ĝ(αũ).(3.25)

The definition of ũ can be restated along the same lines as in the ECB-strategy.
In particular, ũ is selected among d̃m and the vectors ej ∈ R

m+1 that are descent
directions for ĝ at ỹ = 0. To establish whether the vectors ej are descent directions,
we use the relation

∇ĝ(y)|Ty=0ej = −(d̃m)j , j = 1, . . . ,m+ 1.

Going on as in the proof of Theorem 3.1, it follows that the curve σk constructed
by using ŝk and the vector z defined in (3.25) satisfies (3.5). Therefore, the theoretical
results of section 3.2 hold.

Based upon the preceding discussion, the ECB-strategy can be applied by replac-
ing s̄k with ŝk and rephrasing steps 2–6 as follows.

2. Compute d̃m using (3.24).
3. Compute αd = argminα∈R

ĝ(αd̃m): αd = ‖F (xk)‖ ‖d̃m‖2/‖F ′(xk)Wd̃m‖2.
4. Set z = αdWd̃m.
5. Form J = {1 ≤ j ≤ m+ 1 s.t. (d̃m)j ≥ hmin}, D = {ej s.t. j ∈ J}.
6. If D �= ∅

Let ej∗ be such that ‖F (xk + εWej∗)‖ = minej∈D ‖F (xk + εWej)‖.
Set wj∗ = Wej∗ .
Compute αe = argminα∈R

ĝ(αej∗): αe = −FT (xk)F ′(xk)wj∗/‖F ′(xk)wj∗‖2.
If ‖F (xk + αewj∗)‖ ≤ ‖F (xk + z)‖ set z = αewj∗ .

We point out that the above computations are implementable using only matrix-
vector products. In particular, the evaluation of d̃m does not need the Jacobian
explicitly since the product F ′(xk)wm+1 can be approximated by finite differences.
Moreover, if z = αewj∗ , 1 ≤ j∗ ≤ m, the matrix-vector product F ′(xk)wj∗ has already
been computed by Algorithm GNE. Similarly, the evaluation of αd does not need the
Jacobian explicitly.

Regarding the function evaluations, if in step 1 of the ECB-strategy we take the
scalar ε equal to the one used in (1.4), the vectors F (xk + εWej) are available.

3.4. Preconditioning. In order to increase the convergence rate of Krylov
methods, preconditioning techniques are commonly used. Given the Newton equation
(1.3), preconditioning leads to the equivalent system

PlF
′(xk)PrP

−1
r s = −PlF (xk), k ≥ 0.
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The matrices Pl and Pr are chosen so that the preconditioned system is easier to solve
than the original one. The system is preconditioned on the right if Pl is equal to the
identity matrix I, on the left if Pr = I.

In our case, we need to restrict ourselves to right preconditioning in order to use
the NGECB method. This is because if Pl �= I, the residual of the linear system
is ‖PlF ′(xk)s + PlF (xk)‖. Hence, ĝ should be ‖PlF ′(xk)Vmy + PlF (xk)‖. In other
words, ĝ would be a model for ‖PlF (xk + Vmy)‖ instead of ‖F (xk + Vmy)‖. On the
contrary, right preconditioning does not affect the residual associated to the linear
system. Thus, we consider the linear system

F ′(xk)Prp = −F (xk), p = P−1
r s.

Without loss of generality, we concentrate on the case where a null initial guess for
GMRES, p0k = 0, is chosen and restart is not used. In this case, the Krylov space
generated by GMRES has the form

Kp
m = {r0k, (F ′(xk)Pr)r

0
k, (F

′(xk)Pr)
2r0k, . . . , (F

′(xk)Pr)
m−1r0k},

where r0k = −F (xk) and (2.3) becomes F ′(xk)PrVm = Vm+1H̄m. Clearly, the vector
p̄k in Kp

m such that ‖F ′(xk)Prp̄k +F (xk)‖ ≤ η̄k‖F (xk)‖ gives rise to the approximate
solution s̄k = Prp̄k of (1.3). Consequently, s̄k ∈ PrKp

m and this leads to the low-
dimensional globalization strategy in the subspace S = PrK

p
m.

Following the lines of the unpreconditioned case, since each vector s ∈ PrKp
m is

such that s = PrVmy, y ∈ R
m, the function g(y) in (3.1) becomes

g(y) = M(xk + PrVmy).

Noting that for each s ∈ PrKp
m, the relation

∇M(xk)T s = ∇g(y)|Ty=0y = −eT1 H̄my
holds, then the directional derivatives have the same form of the unpreconditioned
case. Finally, if we let

ĝ(y) = ‖F ′(xk)PrVmy + F (xk)‖,
the application of the ECB-strategy is straightforward.

4. Numerical tests. Our numerical experiments show that the combination of
two backtracking strategies yields a significant benefit in the likelihood of convergence
of an inexact method. To support this claim, we compared performance of NGB and
NGECB methods on several problems.

The tests were conducted on an IBM Risc 3CT workstation using MATLAB 5.2.
The machine precision is εm � 2.10−16. In our implementation, products of the
form F ′(xk)v that are required by Algorithm GNE were approximated by (1.4) with
ε =
√
εm‖xk‖/‖v‖. Note that for v = vj , j = 1, . . . ,m, ε reduces to

√
εm‖xk‖, i.e., it

is independent of j. Also, in order to implement an efficient matrix-free procedure,
this value of ε was used to construct the piecewise linear curve σk in step 6 of the
ECB-strategy. Further, in the ECB-strategy, hmin was set equal to 10εm.

Concerning the forcing terms {η̄k}, we adopted one of the proposals of [9, p. 305]:
we used “Choice 2 safeguard ” with γ = 0.9, α = 2, ηmax = 0.9, η0 = ηmax.

Algorithm GNE was started with s0k = 0. At most mmax = 40 GMRES-
iterations were allowed, and restarting was not employed. If after m = mmax steps



GLOBALLY CONVERGENT NEWTON-GMRES SUBSPACE METHOD 955

‖rmk ‖ > η̄k‖F (xk)‖, NGB and NGECB algorithms continued with the vector provided
in the final GMRES iteration. Namely, the inexact Newton step s̄k was set equal to
smk and η̄k = ‖F ′(xk)s̄k + F (xk)‖/‖F (xk)‖ was used. Right diagonal and ILU(1)
preconditioners were allowed.

In the backtracking loop BL defined in step 3 of NGB and in the backtracking loop
performed in step 8 of the ECB-strategy, the typical values t = 10−4, θl = 0.1, θu =
0.5 were used.

In both algorithms, the iterations were halted when ‖F (xk)‖/√n ≤ 10−6. A
failure was declared if one of the following situations occurred: the maximum of 300
nonlinear iterations was reached, or ‖F (xk−1)‖ − ‖F (xk)‖ ≤ 10−6‖F (xk)‖ was de-
tected. This last occurrence is commonly indicated as a “stagnation” of the nonlinear
iterates [10], [15], and it may indicate that the method did not manage to escape from
a local minimizer of the merit function. Also, a failure of NGB was declared if 50
iterations of the backtracking loop BL failed to produce the sufficient decrease (2.5)
in ‖F‖. Analogously, if in step 8 of the ECB-strategy (3.7) was not verified within 50
backtracking steps, a failure of NGECB was declared.

In order to analyze the computational performance of NGECB, we conducted
experiments with different choices of the parameter Nb. We recall that Nb is the
maximum number of times the backtracking loop BL can be repeated in the NGECB
algorithm, i.e., is the maximum number of backtracks allowed along s̄k before switch-
ing to the ECB-strategy. For the sake of brevity, we will shorten NGECB with Nb = p
to NGECB(p). We emphasize that NGECB(p) reduces to NGB for all the problems
that, at each iteration, require a number of backtracks less than or equal to p. Fur-
ther, the choice Nb = 0 means that we turn off backtracking along the inexact Newton
step. In other words, NGECB(0) uses a globalization strategy where only backtrack-
ing along the piecewise linear curve is performed.

In reporting the results of NGB and NGECB, the following values are given in
the tables:

• NI, number of nonlinear iterations;
• FE, number of function evaluations;
• BT, number of backtracks;
• SW, number of switches to the ECB-strategy. The symbol “*” indicates a

failure. We remark that, due to the backtracking strategies and the matrix-
free implementation, the most significant part of the computational cost is
revealed by FE.

To realistically assess performance of NGECB, numerical experiments were car-
ried out on a large set of problems; see Table 4.1. For each problem, several starting
guesses x0 were used. In particular, letting xs be the standard initial guess used in
literature, ones be the vector in R

n with all components equal to 1, and null be the
zero vector in R

n, we used x0 = ±xs,±2xs,±5xs, ones, 2 ones, 5 ones, null. However,
for several problems we neglected those initial guesses x0 for which we had F (x0) = 0
or singular F ′(x0). Further, the dimension n of each test was varied. Below we will
discuss the results obtained with n given in Table 4.1.

We notice that our test problems display different features: problems with ill-
conditioned Jacobian (P2, P14), problems with singular Jacobian at the solution (P4,
P10, P11), and one parameter-dependent problem (P17).

Our experiments showed a wide array of convergence behaviors: often NGB
needed few or no backtracks to enforce convergence, but at times it was unsuccessful.
On a total of 143 tests, NGB failed 51 times. The most recurrent failure was stag-
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Table 4.1
Nonlinear problems, dimension sizes n, and standard initial guesses xs used in testing.

Pb # Problem name n xs
P1 Countercurrent reactor [16] 512 0.1(1, 2, 3, 4, 5, 4, 3, 2, . . . , 1, 2, 3, 4, 5, 4, 3, 2)
P2 Powell badly scaled [16] 4096 (0, 1, 0, 1, . . . , 0, 1)
P3 Trigonometric [16] 5000 (0, 1, 0, 1, . . . , 0, 1)
P4 Singular Broyden [16] 4096 (−1,−1,−1,−1, . . . ,−1,−1)
P5 Tridiagonal [16] 512 (12, 12, 12, 12, . . . , 12, 12)
P6 Five-diagonal [16] 256 (−3,−3,−3,−3, . . . ,−3,−3)
P7 Seven-diagonal [16] 512 (−3,−3,−3,−3, . . . ,−3,−3)
P8 Premultiplied diagonal ... [12, Pb. D7] 4098 (50, 0.5,−1, . . . , 50, 0.5,−1)
P9 Augmented Rosenbrock [12] 4096 (−1.2, 1,−1, 20, . . . ,−1.2, 1,−1, 20)
P10 Extended Powell singular [16] 4096 (3,−1, 0, 1, . . . , 3,−1, 0, 1)
P11 Extended Cragg and Levy [16] 4096 (1, 2, 2, 2, . . . , 1, 2, 2, 2)
P12 Broyden tridiagonal function [16] 4096 (−1,−1,−1,−1, . . . ,−1,−1)
P13 Broyden tridiagonal problem [16] 4096 (−1,−1,−1,−1, . . . ,−1,−1)
P14 Augmented Powell badly scaled [12] 4096 (0, 1,−4, . . . , 0, 1,−4)
P15 Modified Rosenbrock [12] 4096 (−1.8,−1,−1.8,−1, . . . ,−1.8,−1)
P16 Chemical equilibrium [17] 11000 (3, 3, 3, 3, . . . , 3, 3)
P17 Bratu (α = 10, λ = 1) [3] 4096 (0, 0, 0, 0, . . . , 0, 0)

Table 4.2
NGECB(5) performance for problems P2 and P14.

Problem P2 Problem P14
x0 NI FE BT SW NI FE BT SW

xs 135 1034 589 50 * * * *
2xs 133 1029 589 50 139 1166 589 48
5xs 125 1009 591 49 123 1096 570 49
−xs * * * * * * * *
−2xs * * * * * * * *
−5xs * * * * * * * *
ones 133 1040 599 50 136 1149 583 49

2 ones 134 1031 589 50 137 1147 581 47
5 ones 120 918 515 50 124 1098 570 49
null * * * * * * * *

nation, which occurred for 42 tests; for 10 of them, no backtracks were performed.
We point out that none of these failures can be ascribed to the absence of restarts
in GMRES. In fact, the stopping criterion (1.2) is satisfied within mmax GMRES
iterations in most of the tests. For the remaining tests we verified that stagnation
occurred even if a restarted version of GMRES is used to satisfy (1.2).

First, we fixed Nb = 5 for NGECB. We remark that there is nothing critical about
this choice. However, on the basis of our numerical tests it seems to work well and
serves to prove the effectiveness of our method.

For 98 tests, NGECB(5) reduced to NGB. So we now focus on the remaining
45 tests (problems P2, P4, P5, P6, P7, P8, P9, P11, P14, P15, P16): NGB and
NGECB(5) solved 9 and 24 tests, respectively. Then, the number of failures dropped
from 80% to 47%. In Table 4.2 we summarize results for problems P2 and P14. These
are the only two problems on which NGB failed to converge for all initial guesses; the
most recurrent failure was due to stagnation.

For the 21 tests that were not solved by NGECB(5), we reran NGECB varying
Nb from 0 to 4. This yielded a significant benefit since we managed to solve 6 tests;
see Table 4.3 for results with Nb = 0, 3. Note that, except for P14, all the tests were
solved at a low computational cost.
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Table 4.3
Tests solved by NGECB, p < 5, that were unsuccessful for NGB and NGECB(5).

Pb# x0 NGECB(3) NGECB(0)
NI FE BT SW NI FE BT SW

P6 5xs 20 128 20 3 17 76 3 2
P7 5xs * * * * 17 73 1 1
P8 2 ones 12 59 16 2 * * * *
P14 −2xs 143 1117 516 58 * * * *
P16 xs 19 159 5 1 19 169 3 3
P16 5xs * * * * 23 227 13 6

The computational experiments presented above illustrate that on a total of 143
tests NGB converged 64% of the time, NGECB 85% of the time. Since for 10 failures
no backtracks were performed, and hence cannot be recovered by NGECB, our results
indicate that our hybrid strategy enhances the robustness of NGB. Further, it is worth
noting that only for problems P7 and P16 with x0 = 5xs, the use of Nb = 0 was
crucial to obtain convergence in cases where NGB failed. This underscores that the
improvement in the global convergence properties of NGB is due to the combination
of the linesearch strategies.

We stress the apparent similarity of the ECB-strategy and the dogleg strategy
proposed by Brown and Saad in [3] and already mentioned in section 3.1. They
introduce the quadratic model ‖F ′(xk)Vmy+F (xk)‖2 and minimize it along a dogleg
path based on the inexact Newton step s̄k and the steepest descent direction Vmdm. To
be more precise, this dogleg path has 3 nodes, s̄k, αdVmdm, and zero. On the contrary,
as was seen in the detailed description of the ECB-strategy, the piecewise linear curve
σk(η) connects s̄k, the vector z chosen between αdVmdm and αeVmej∗ , and zero.
Therefore, σk(η) differs from the dogleg curve of [3] when z �= αdVmdm is selected
in step 6 of the ECB-strategy. Let us consider the frequency of taking z �= αdVmdm
in NGECB. Restricting our attention to the 30 tests for which NGECB(5) differs
from NGB and succeeded, we observed that NGECB selected z �= αdVmdm 47% of
the time. To show a conclusive proof that backtracking along the curve σk(η) of
the ECB-strategy can be more robust than backtracking along the dogleg curve, we
considered a modified version of NGECB(p) where only z = αdVmdm can be selected.
We will refer to this modified version as NGDOG(p) (Newton-GMRES dogleg).

Thus, we verified that for some tests, the choice z �= αdVmdm was crucial to ob-
taining convergence. For example, among the tests contained in Table 4.3, NGDOG(p),
0 ≤ p ≤ 5, did not solve problems P6 and P7 with x0 = 5xs. Also, Table 4.4 shows
NGECB(p) and NGDOG(p) applied to problem P8. For the reported initial guesses,
NGB failed to converge. The symbols ND and NV denote the number of times where
z = αdVmdm and z = αeVmej∗ were selected, respectively. One sees that the ECB-
strategy outperformed the dogleg strategy when the standard initial guess is used,
while NGECB reduced to NGDOG when x0 = ones and x0 = 2 ones.

Finally, more insight into the behavior of NGECB may be gleaned by comparing
the overall computational effort of NGB and NGECB. Therefore, we extensively ex-
amined successful runs. At this regard, the results in Table 4.5 are typical: there, we
summarize the results on problem P5 for the full set of starting guesses. Note that
starting with x0 = 2xs NGB failed, but NGECB succeeded. Otherwise, except for
x0 = 5xs, all the methods were successful. Notice that they perform very similarly on
tests requiring a few backtracks (x0 = −xs, −5xs, null) as well as on tests requiring
several backtracks (x0 = xs, 5 ones).
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Table 4.4
Comparison between NGECB(p) and NGDOG(p) with p = 0, 3, 5 for problem P8.

x0 p NGECB(p) NGDOG(p)
NI FE BT SW ND NV NI FE BT SW ND NV

xs 5 15 51 7 1 0 1 * * * * * *
3 15 49 5 1 0 1 * * * * * *
0 * * * * * * * * * * * *

ones 5 16 100 51 3 3 0 16 100 51 3 3 0
3 * * * * * * * * * * * *
0 * * * * * * * * * * * *

2 ones 5 * * * * * * * * * * * *
3 12 59 16 2 2 0 12 59 16 2 2 0
0 * * * * * * * * * * * *

Table 4.5
Comparison between NGB, NGECB(p) with p = 0, 3, 5 for problem P5.

x0 NGB NGECB(5) NGECB(3) NGECB(0)
NI FE BT NI FE BT SW NI FE BT SW NI FE BT SW

xs 63 547 159 58 493 136 2 64 649 215 30 70 617 132 53
2xs * * * 215 3061 1374 121 264 3631 1570 227 269 3001 898 251
5xs * * * * * * * * * * * * * * *
−xs 15 74 4 15 74 4 0 18 86 5 1 18 83 2 1
−2xs 17 70 0 17 70 0 0 17 70 0 0 17 70 0 0
−5xs 19 85 2 19 85 2 0 19 85 2 0 21 90 3 2
2 ones 9 45 0 9 45 0 0 9 45 0 0 9 45 0 0
5 ones 25 152 21 25 152 21 0 30 193 36 2 36 236 44 22
null 10 58 3 10 58 3 0 10 58 3 0 8 54 1 1

One final aspect that should be noted is the comparison of NGECB with an
“exact” version of NGB. Therefore, we ran NGB with a tight stopping criterion for
GMRES, i.e.,

‖F ′(xk)s̄k + F (xk)‖ ≤ max{100εm‖F (xk)‖, 100εm}.(4.1)

In our experience, NGECB proved to be more efficient than the “exact” NGB. This is
due to the choice of forcing terms that gives desirable fast local convergence and also
tends to minimize “oversolving.” In fact, as noted in [9], these forcing terms avoid
wasting effort in the initial stages of the nonlinear iterative method. Obviously, we
obtained a less significant benefit when GMRES converged quickly. Figure 4.1 shows
NGECB and “exact” NGB applied to problems P7 and P8. There the graphs plot the
value of ‖F‖ as a function of the number of F -evaluations required to reach that value
of ‖F‖. One sees that for problem P7, NGECB showed a significant improvement
in the number of function evaluations over the “exact” NGB counterpart. On the
contrary, NGECB performed slightly better on problem P8, where only a few number
of GMRES iterations were necessary to satisfy (4.1).

Summarizing the overall computational experiments, we have tackled 143 com-
monly used tests. We have shown that the introduction of the ECB-strategy enhances
global convergence for cases where NGB fails. Further, although the ECB-strategy
may coincide with a backtracking strategy along the dogleg curve given in [3], we
have shown that in practice NGECB benefits from the possibility of selecting a back-
tracking curve different from the dogleg one. Finally, regarding the computational
effort, the numerical tests suggest that our approach and the classical backtracking
Newton-GMRES method have very similar cost.
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Fig. 4.1. Comparison between NGECB(p), p ≤ 5, and “exact” NGB. Dotted line: NGECB;
solid line: “exact” NGB.
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Abstract. An algorithm is proposed which improves upon the polynomial pseudospectral
method for solving linear two-point boundary value problems. In the latter, the collocation points
are the vertical projection onto the interval of points equidistant or nearly equidistant on the circle,
and they therefore accumulate in the vicinity of the extremities of the interval. Thus the method
is well-suited for solving problems whose solutions have boundary layers but not as good at ap-
proximating solutions with large gradients (shocks) away from the extremities of their domain of
definition. Our idea is to modify the polynomial ansatz by attaching a denominator so as to make
it a rational interpolant. The denominator is then successively optimized in an iterative procedure
with each step consisting of the solution of two problems: an optimization of the denominator for
given values of the approximation to the solution u at the interpolation points and a collocation in
the linear space of the rational interpolants with the just obtained fixed denominator to obtain new
approximate values of u. We show the efficiency of a Galerkin version of the method and discuss the
power of the collocation version with several numerical examples.

Key words. two-point boundary value problems, linear rational collocation, pole optimization
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1. Introduction. The problem. Our aim in the present work is to improve
upon the polynomial pseudospectral method for solving linear two-point boundary
value problems (BVPs)

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ (−1, 1),(1.1a)

u(−1) = u�, u(1) = ur,(1.1b)

where all arising functions belong to C∞[−1, 1] and u� and ur are given real numbers.
We assume that p, q, and f are such that the problem is well-posed. (For condi-
tions guaranteeing the latter, see, e.g., [Kel, p. 12], [As-Ma-Ru, p. 88], or [Sto-Bul].)
The generalization of the method to be presented below to nonlinear problems is
straightforward but does not bring more insight.

The version of the pseudospectral method we have in mind is that consisting of
replacing the solution in (1.1a) by an interpolating polynomial in Lagrangian form
between well-chosen points and collocating at those same points. Since such points are
vertical projections on the interval of points (nodes) equidistant or nearly equidistant
on the circle, they accumulate in the vicinity of the extremities of the interval. As
a consequence, the method is well-suited for solving problems whose solutions have
boundary layers. (This property can even be accentuated by conformally shifting
the points to make them more tilted toward the extremities, e.g., by a sine-map
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[Tan-Tru].) Correspondingly, however, the center nodes are about equidistant and
further from each other than the same number of nodes equidistant on the whole
interval. As a consequence, the pseudospectral method has a hard time approximating
solutions with large gradients (shocks) away from the extremities of their domain of
definition.

Several methods can be used to cope with this difficulty. The most efficient
ones, as measured by the size of the error, are probably methods where the so-
lution is not approximated by a global but by a piecewise interpolant (see, e.g.,
[As-Ch-Ru, Bad-Asc, Lee-Gre]). Here we are interested only in methods which pre-
serve the infinite differentiability of the solution. One of them consists of constructing
and switching in an analytic function that displaces the interpolation points so as to
have them concentrate close to the abscissae where the shocks arise [Mu-Hu-Sl]. To
obtain this function, the method solves a sequence of problems for values of a param-
eter corresponding to stiffer and stiffer problems.

We will instead develop a method that improves on the pseudospectral (polyno-
mial) method without any change in the problem nor in the interpolation/collocation
points. The idea is to modify the ansatz by attaching a denominator to the polyno-
mial so as to make it a rational interpolant, as in [Ber-Mit2] and [Ba-Be-Du]. The
denominator is then successively optimized in an iterative procedure with each step
consisting of the solution of two problems: an optimization of the denominator for
given values of the approximation to u at the interpolation points and a collocation in
the linear space of the rational interpolants with the just obtained fixed denominator
to obtain new approximate values of u.

We will describe the methods for solving these two problems in section 2. Section
3 introduces the then very simple full algorithm, whose viability is motivated in section
4 by a theorem proving that a corresponding Galerkin algorithm yields a sequence
of approximations with a certainly nonincreasing, and in most cases decreasing, error
in the energy norm. Finally, in section 5, we report on numerical experiments that
demonstrate the efficiency of the algorithm.

2. The ingredients of the solution. As just mentioned in the introduction,
the method presented here consists of the iterative application of two algorithms which
we describe in this section.

2.1. The linear rational collocation method for boundary value prob-
lems. This generalization, suggested in [Ber-Bal] and [Ba-Be-Du], of the now classical
polynomial pseudospectral method is the application to BVPs of the corresponding
method for time evolution problems [Bal-Ber2]. It is based on the fact [Ber2, Ber-Mit1]
that every rational function r ∈ RN,N interpolating a continuous function f between
interpolation points x0, . . . , xN can be written in its barycentric form

r(x) =

N∑
j=0

βj
x− xj

f(xj)

/
N∑
j=0

βj
x− xj

(2.1)

for some (nonunique) numbers βj , one per node, called weights of the interpolant.
Here Rm,n denotes the set of all rational functions with numerator degree ≤ m and
denominator degree ≤ n. The polynomial interpolant is the special case of (2.1) in
which the βj ’s are proportional to the barycentric weights

wj := 1
/∏
k �=j

(xj − xi)
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of polynomial interpolation [Hen]. For instance, for equidistant points the wj ’s are

proportional to (−1)j(Nj ), for Čebyšev points cosφj of the first kind they are propor-

tional to (−1)j sinφj and for Čebyšev points of the second kind they are proportional
to (−1)jηj , with ηj = 1 for all j but at the boundary points, where η0 = ηN = 1/2. In
view of the presence in the problem of the boundary values (1.1b) we will restrict our-
selves here to sets of nodes containing the extremities −1 and 1, i.e., Lobatto points
(and in particular to Čebyšev points of the second kind in numerical computations).

For fixed β := [β0, . . . , βN ]T the set of all interpolants (2.1) is a linear space,

which we denote by R(β)
N . The functions

L
(β)
j (x) :=

βj
x− xj

/
N∑
k=0

βk
x− xk

, j = 0, 1, . . . , N,

make up a basis for this space and they satisfy the Lagrange property

L
(β)
j (xi) = δij .(2.2)

In the linear rational collocation method (in barycentric form) for the nodes xj , one
tries to find u as an interpolant

ũ(x) =
N∑
j=0

ũjL
(β)
j (x) ∈ R(β)

N

for some given weights β and some unknown values ũj at the xj ’s, one inserts ũ into
(1.1a), and one collocates at the same interior xj ’s for simplicity. (Collocation points
different from the interpolation points, as in [Fun], are equally possible.) This yields
the following linear system of equations for the ũj :

N∑
j=0

ũjL
(β)
j

′′
(xi) + p(xi)

N∑
j=0

ũjL
(β)
j

′
(xi) + q(xi)

N∑
j=0

ũjL
(β)
j (xi) = f(xi),

i = 1, . . . , N − 1, ũ0 = ur, ũN = u�.

(2.3)

In order to write this expression in a more concise way, we introduce the following
vectors and matrices in R

N−1 (resp., R
(N−1)×(N−1)):

ũ := [ũ1, ũ2, . . . , ũN−1]
T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij := L

(β)
j

′
(xi),

D(2) =
(
D

(2)
ij

)
, D

(2)
ij := L

(β)
j

′′
(xi),

P := diag
(
p(xi)

)
, Q := diag

(
q(xi)

)
,

f := [f(xi)− ur
(
L

(β)
0

′′
(xi) + p(xi)L

(β)
0

′
(xi)

)− u�
(
L

(β)
N

′′
(xi) + p(xi)L

(β)
N

′
(xi)

)
]T ,

i, j = 1, . . . , N − 1.

In view of (2.2), the system (2.3) for the unknown values ũ of the approximant then
reads Aũ = f with

A := D(2) + PD(1) + Q.
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Despite its large condition number for N large, it can be solved very precisely by
Gaussian elimination [Ber1, Tan-Tru], for only the differentiation operator A is ill-
conditioned, not the integration operator A−1. The system can often also be solved
efficiently via iterative methods [Ber1], although the ill-conditioned A then slows down
the convergence. (A conformal shift of the points can improve on this; see [Ber-Bal].)
In our calculations we have alleviated the instability by using the modified Schneider–
Werner formulae [Bal-Ber1, Bal]

D
(1)
ij =




βj/βi
xi − xj

, i �= j,

−
∑
k �=i

D
(1)
ik , i = j,

and

D
(2)
ij =




2D
(1)
ij

(
D

(1)
ii −

1

xi − xj

)
, i �= j,

−
∑
k �=i

D
(2)
ik , i = j

for the differentiation matrices.
In the polynomial case (βj = wj , all j) and with the interpolation points used

here, the convergence of ũ toward the exact solution u is exponential if p, q, and f are
analytic in an ellipse containing [−1, 1]. This can be seen through subtraction (and
use of the exponential convergence of the interpolant of f) if p and q are constant, by
more elaborate theorems [Can-Qua] in general cases. However, this fast convergence
may show up only after too large an N for practical purposes if u has huge gradients
(see the introduction in [Ber-Mit2]). For error bounds through estimates of the norm
of the inverse operator, see the work by Wright and collaborators, from [Cru-Wri] to
[Ahm-Wri].

2.2. Optimal attachment of poles to the interpolating polynomial. It
is intuitively clear, and well known in practice, that rational interpolation can bet-
ter accommodate large gradients. (For literature on rational interpolation, see the
catalogue [Gro].) However, at least for small numbers of nodes, the classical rational
interpolation problem (interpolate a given function, here ũ, between N points by a
r ∈ Rm,n with m + n = N) is hampered by two drawbacks: the nonexistence of
the solution in certain cases, which shows itself in the occurrence of “unattainable
points” [Sto, p. 56], and the possible presence of poles in the interval of interpolation,
a common phenomenon for N small.

To overcome these difficulties, we have suggested in [Ber-Mit2] to complement
the interpolating polynomial ũ with a denominator with, say, P poles z�, � = 1, . . . , P
(and corresponding modification of the numerator so as to maintain interpolation).
In practice, if the real part is to lie in the interval of interpolation, the poles will be
chosen as pairs of conjugate complex numbers, so as to stay with real interpolants.

It has been noted in [Ber3] ([Ber-Mit2] contains a more obvious derivation) that
introducing preassigned poles is easily achieved in the barycentric setting by multi-
plying the weights wj of polynomial interpolation by a multiple of

dj :=

P∏
�=1

(xj − z�), j = 0, . . . , N.(2.4)
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By writing r as

r(x) :=

N∑
j=0

wj

P∏
�=1

(
1− xj

z�

)

x− xj
ũj

/
N∑
j=0

wj

P∏
�=1

(
1− xj

z�

)

x− xj
,

one sees that the polynomial is the case where all z� are at infinity. The suggestion
in [Ber-Mit2] is to move them from there to an optimal position where they minimize
some error functional, which we take here as the norm

J(z) := ‖r′′ + pr′ + qr − f‖∞, z := [z1, . . . , zP ]
T ,(2.5)

of the residual of the differential equation for the approximation r with given values
ũ of the solution u at the xj ’s. The optimization can only decrease the value of J ,
since the interpolation polynomial belongs to the feasible set.

Note that the interpolated values ũj at the nodes are not modified as one dis-
places the poles: interpolation is warranted by the barycentric formula [Wer, Ber2,
Ber-Mit1]—r′ and r′′ do change, however, so that r no longer satisfies (2.3).

Optimizing the poles z� is a nonlinear problem to be solved by iteration. There is
always an optimal z, but, at least in special cases, there can be several of them. (Think
of the case in which all functions arising in (1.1a) are constant.) Whether the optimal
r is unique is an open question [Ber-Mit2]. Nevertheless, in every undetermined case
among our many tests (there were very few such cases, and none for N large enough),
the optimal set was a continuum and the multiplicity could easily be detected from
the divergence of the optimization procedure.

3. The linear rational pseudospectral method with iteratively opti-
mized poles. The algorithm we suggest here for solving (1.1a) improves iteratively
upon the polynomial pseudospectral method. It consists of recursively performing the
two methods described in section 2.

Let the N+1 interpolation points x0, . . . , xN be given, as well as the number P of
poles to be optimized, which are first supposed at infinity (if no information on their
final location is known at the onset). For k = 1, 2, . . ., repeat the following steps.

Step 1. Compute the approximate solution ũ(k) = [ũ
(k)
1 , . . . , ũ

(k)
N−1]

T of (1.1a) by
the linear rational collocation method with βj = wjdj , dj from (2.4) (dj ≡ 1 for
k = 1). This modifies ũ (for k > 1) but not the poles z nor the weights β.

Step 2. For the ũ(k) inherited from Step 1, optimize the location of the poles z

by minimizing J(z). This changes β, but not ũ(k), and yields a new interpolant û(k)

of the latter values.

When do we stop? Roughly speaking, we stop when the decrease in J becomes too
small in comparison with the cost of one more step of the algorithm.

The recurrence of Step 2 makes the algorithm costly. However, for a given problem
and a given N , the cost of the optimized solution is a constant multiple of the cost of
the polynomial method without memory increase, whereas reaching a better precision
by increasing N requires at least a quadratic increase in computing time (when using
iteration methods for solving the systems of equations) and memory. Moreover, at
the outcome, when β and ũ have been computed, evaluating ũ by the formula (2.1) is
exactly as expensive as evaluating the polynomial solution. The algorithm presented
here may therefore be especially interesting in cases in which the time for finding the
solution is not very relevant, but the latter must be evaluated a great many times, as
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in animated graphics or in the use of ũ as the reference solution in optimal control
problems.

Also notice that in certain cases the location of the poles of u may be directly
read from the equations (equations belonging to the Fuchsian class) or approximated
with the WKB theory [Wei]. In which cases the βj are known, there is no need
for optimization and Step 1 yields ũ: this is precisely the method introduced in
[Ba-Be-Du].

4. Motivation: A corresponding Galerkin method. Why should the me-
thod work, i.e., bring improvement as compared to the classical pseudospectral so-
lution? A corresponding Galerkin method, more complicated and computationally
more expensive, gives some indication.

Denote by L the operator which to every function u in some appropriate space V
associates the function on the left-hand side of (1.1a). Then a weak form of the latter
consists of finding u ∈ V for which

a(u, v) := (Lu,Lv) = (f, Lv) ∀ v ∈ V,

where ( , ) is the L2-scalar product in V . (Notice that, in contrast with the classical
Galerkin method, we also apply L to the test functions v.) In an appropriate space,
a(u, v) is a symmetric positive definite form which induces the energy norm

‖v‖2a := a(v, v) = ‖Lv‖22.
We may now introduce the linear rational Galerkin solution of (1.1a) as the function

ũ ∈ R(β)
N such that

a(ũ, ṽ) = (f, Lṽ) ∀ ṽ ∈ R(β)
N .

ũ exists and it is unique because of the symmetry and V -ellipticity of a, and it
notoriously possesses the important property of minimizing the norm ‖ ‖a of the

error in R(β)
N , i.e.,

‖ũ− u‖a = min
v∈R(β)

N

‖v − u‖a.(4.1)

This Galerkin method would replace Step 1 of the algorithm to yield another ũ(k).
In Step 2 we would simply change the norm in (2.5) from ‖ ‖∞ to ‖ ‖2 when
computing û(k). Indeed, since Lu = f , ‖Lr − f‖22 = ‖L(r − u)‖22 = ‖r − u‖2a. And,
again, the optimal attachment of the poles can only decrease J , not increase it.

Because of (4.1), the next Step 1 (with the new β) can in its turn lead only to a
ũ(k+1) with

‖ũ(k+1) − u‖a ≤ ‖û(k) − u‖a ≤ ‖ũ(k) − u‖a,
and so on. We therefore have the following result.

THEOREM. The linear rational Galerkin method with successive optimization of
the poles, as described above, yields, in the energy norm ‖ ‖a, a distance decreasing
sequence of approximations to the solution of (1.1a).

Since the minimum property (4.1) does not hold for the collocation method, the
above result is merely an indication for the success of our algorithm. Still, in all
problems we have solved, the successive optimal attachment of the poles has resulted
in a decrease of J .
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It should be noted, however, that a smaller residual does not necessarily imply an
approximation ũ that is everywhere closer to the exact solution u: on rare occasions,
the error becomes larger at particular points when one takes too small an N (see
Example 1 with N = 12 in Table 1).

5. Numerical examples. We now report on computations performed on four
examples, taken from the literature for the sake of comparison: three are borrowed
from [Gre], the last one from [As-Ch-Ru]. Graphs of the solutions can be found in
those articles.

As mentioned in section 2.1, our interpolation/collocation points have been in
all examples Čebyšev points of the second kind xj := cos jπN , j = 0, . . . , N . We have
solved the systems arising in the linear rational collocation method by means of Gaus-
sian elimination, since for some difficult examples the simple iterative procedure of
[Ber1] did not converge. The optimization of the poles in Step 2 of the algorithm has
been performed as in [Ber-Mit2] by a discrete differential correction algorithm accord-
ing to [Ka-Le-Ta] for small N , by the simulated annealing method of [C-M-M-R] for
larger numbers of nodes. The L∞-norm in (2.5) has been approximated by considering
the values at the 100 equally spaced points

x̂k = −5

4
+

k − 1

K − 1

5

2
, k = 1(1)K, K = 100,

on the interval [−5/4, 5/4] and computing the maximal absolute value at those x̂k
lying in [−1, 1]. (Tests with 1000 points instead of 100 have shown that the results
do not depend much on this number of points.)

The computations were performed in Fortran77 on HP-workstations.
Example 1. The first example is from the classical book [Sto-Bul]. Modified by

the change of variable x = (t+ 1)/2 to take place on the interval [−1, 1], it reads
2y′′(t)− 200y(t) = 200 cos2(πx) + π2 cos(2πx),

y(−1) = y(1) = 0,

and its exact solution is

y(t) =
e−20

1 + e−20
e20x +

1

1 + e−20
e−20x − cos2(πx).

When applying the algorithm with an increasing number of poles P , one notices
that as soon as P ≥ 4, four of the poles have the tendency to arrange themselves
symmetrically about the origin. This is not surprising, in view of the symmetry of the
problem with respect to the imaginary axis. Since the difficulty of the optimization
(the delicate part of the whole algorithm) grows sharply with the number of variables,
it is natural to set the poles in groups of four and to diminish that way the number
of variables from 8 to 2. The results we have obtained are summarized in Table 1.
The first column gives N , the number of nodes minus 1, the second the number P of
optimized poles, the third the residual norm (2.5) achieved by the optimized rational,
the fourth the maximum error of the latter as above but with K = 1000 and the last
the location of one of the four poles—the others being the same with the three other
combinations of signs.

As in all our tests, the residual norm is significantly larger than the maximal error
at the nodes. The results with P = 0 for increasing N document the exponential
convergence of the polynomial pseudospectral method. For every fixed N the first
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Table 1
Results for Example 1.

N P res. norm max. error poles
8 0 1.625e1 8.091e− 03

4 3.797e− 03 1.287e− 05 1.533893345756 + .2662406988685i
12 0 6.614e− 01 1.253e− 04

4 1.218e− 04 7.488e− 07 1.697187497475 + .3184214263790i
8 1.307e− 05 2.572e− 06 1.979358155787 + .5540074636114i

2.199682034625 + .3486755194479i
16 0 8.482e− 03 7.756e− 07

4 3.613e− 07 6.600e− 10 2.020272398591 + .3769170961355i
8 8.918e− 08 6.132e− 10 2.378484979985 + .4356917449111i

2.354705789043 + .6625676279678i
20 0 4.373e− 05 2.230e− 09

4 5.561e− 10 7.491e− 13 2.374930136687 + .4292360606798i
8 3.351e− 11 7.139e− 14 2.808579639418 + .1118393705060i

2.463546688447 + .8565353449894i
24 0 1.061e− 07 6.334e− 13

4 1.057e− 11 2.331e− 15 2.867253541946 + .4497240781784i

set of four poles improves the residual by three to five orders of magnitude and the
maximal error by two to three, a very significant improvement especially spectacular
for small N if one thinks in relative terms. The next four poles diminish the error
by another power of 10. Also note that the poles come to lie to the left and to the
right of the interpolation interval, and quite far from it, in order to best help the large
gradients at the extremities.
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0.0001

0.0001147
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Fig. 1. Error curves in Example 1.

Figure 1 displays the improvement in the error curves for N = 12 and N = 13
with P = 0, 4, and 8 poles. The error pattern is very regular; the attached poles
decrease the amplitude of the oscillations, whereas the abscissae of minimal absolute
error do not move much.
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Table 2
Results for Example 2.

ε N P res. norm max. error poles
10 8 0 4.891e− 02 4.645e− 05

4 1.710e− 05 1.056e− 07 −3.822798824152 + .5226577159388i
3.307176519618 + .8569093409655i

16 0 8.700e− 09 1.448e− 12
4 1.614e− 12 4.996e− 15 −5.914776338155 + 1.410721876941i

6.554571704828 + .4351084000440i
1’000 16 0 1.625e2 8.624e− 03

4 1.128e− 01 5.765e− 05 1.154539048844 + .9101294227218e− 01i
−1.173916424929 + .9092666837900e− 01i

8 1.718e− 02 8.555e− 06 −1.208444348538 + .8067319622931e− 01i
1.190035589264 + .8067319622931e− 01i
−1.175015446979 + .2416780824567i
1.157107610750 + .2416780824567i

32 0 4.228e− 03 7.986e− 09
4 1.280e− 07 4.924e− 11 −1.482150010195 + .1530297156978i

1.459828803300 + .1533252394093i
8 6.092e− 08 2.213e− 11 −1.443519502447 + .1348151975537i

1.446860921493 + .1348151975537i
−1.349189617520 + .5151973185520i
1.388842892110 + .5151973185520i

100’000 64 0 1.243e + 03 6.303e− 04
4 5.896e− 02 1.841e− 06 −1.022761517226 + .1183432049352e− 01i

1.021981828458 + .1171671875346e− 01i
8 8.874e− 03 3.485e− 07 1.031577423248 + .1783176452066e− 01i

1.041577580145 + .1783176452066e− 01i
−1.033999150163 + .1828661035856e− 01i
−1.039643789007 + .1828661035856e− 01i

96 0 3.479e− 01 1.449e− 07
4 7.837e− 06 7.313e− 11 −1.049570684575 + .1712441907944e− 01i

1.048060449714 + .1707769476758e− 01i
8 7.785e− 07 8.839e− 12 1.060163908153 + .2324959883051e− 01i

1.084678672960 + .2324959883051e− 01i
−1.084874191336 + .2342311323713e− 01i
−1.061543283858 + .2342311323713e− 01i

Example 2. The classical problem

u′′ − εu = 0, y(−1) = 1, y(1) = 2

displays boundary layers at the extremities of the interval. Written in such a way as
to avoid overflow for large ε, the solution reads

u(x) =
3

2

eδ(x−1) + e−δ(x+1)

1 + e−2δ
+

1

2

eδ(x−1) − e−δ(x+1)

1− e−2δ
, δ :=

√
ε.

The results, as displayed in Table 2, again show that the first four poles improve
the residual by three to almost five orders of magnitude and that the next four add
one to two more orders. Also note that as ε increases and the layers become more
pronounced, the poles move closer to the extremities of the interval, as could be
expected.

Example 3. The third example in [Gre] is chosen in such a way that the solution
is very oscillatory. Written in a more general way, the problem is
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Table 3
Results for Example 3 with a = 5, N = 16, and various b.

b P res. norm max. error poles
1 0 7.306e− 12 1.548e− 14

4 1.487e− 12 7.147e− 16 −3.969061491605 + 1.199190616608i
−3.943735599518 + 1.613384723663i

3 0 2.557e− 09 5.940e− 13
4 2.146e− 12 9.298e− 16 −3.426065845191 + 3.480961608887i

−3.914409512838 + 2.082303028107i
6 0 1.958e− 07 3.597e− 11

4 1.522e− 11 4.958e− 14 −2.963469235131 + 2.088228035742i
−1.811764925632 + 3.440041199296i

12 0 1.300e− 03 3.042e− 07
4 7.130e− 08 1.910e− 10 −1.723326736175 + 2.022955508355i

−.5129729688333 + 2.461677514156i
25 0 2.028e1 4.226e− 03

4 1.390e− 02 4.670e− 05 −.2205181839708e− 01 + .9416587006262i
−.7564105358912 + .8763852719388i

50 0 4.483e2 6.021e− 01
4 1.642e1 4.370e− 01 −.7940107554821 + .1643196982088i

.1168118878478 + .6287820805492i
100 0 9.562e2 1.494e + 00

4 9.521e1 1.188e + 00 .2857700467848 + 1.076182707013i
−.9531755714520 + .4590791444501e− 01i

u′′(x) +
a

2
u′(x) +

b2

4
u(x) = −ab

2
cos(bx)e−ax,

y(0) = 0, y(1) = sin be−a

and its solution is given by

u(x) = sin(bx)e−ax,

where a and b are two positive real parameters. b controls the frequency of the
oscillations: the bigger b, the larger the number of oscillations and the steeper the
function in each of the latter. As a consequence, the number of optimized poles should
be increased in step with b. This, however, is not possible, in view of the difficulty of
solving optimization problems with large numbers of variables.

The same change of variable as in Example 1 must be made. In Table 3 we
give the numbers obtained with a = 5, N = 16, and increasing b’s. They show that
up to about b = 25 the optimal attachment of few poles yields a very significant
improvement of the solution, a surprising and heartening result. With b = 100, the
case considered by Greengard, the improvement is no longer as pronounced.

Example 4. Finally we comment on results with a problem containing a parameter
which can make for a large slope in the interior of the interval [Hem]:

u′′(x) + εxu′(x) = −π2 cos(πx)− επx sin(πx),

y(−1) = −2, y(1) = 0.

The solution
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Table 4
Results for Example 4.

ε N P res. norm max. error poles
1’000 128 0 2.296e + 00 1.993e− 05

2 5.904e− 03 7.310e− 07 .6062920633592e− 08 + .1395206410123i
4 2.288e− 04 1.110e− 07 .2974300028030e− 01 + .1420450960183i

−.2974266689472e− 01 + .1420450654309i
6 3.603e− 05 3.771e− 08 .4448526224808e− 01 + .1458761717085i

−.5843683359291e− 01 + .1515584585260i
−.7845635113085e− 02 + .1483673955646i

256 0 9.595e− 08 5.107e− 15
5’000 128 0 7.592e + 03 4.804e− 02

2 5.890e + 01 3.106e− 03 −.2094778341082e− 11 + .3545251135656e− 01i
4 3.347e + 00 1.575e− 03 .1195181672283e− 01 + .3329382120232e− 01i

−.1195181670675e− 01 + .3329382120563e− 01i
6 8.687e− 01 4.942e− 04 .3075858832887e− 04 + .4052163419770e− 01i

−.2069484691270e− 01 + .3827521509881e− 01i
.2071355783766e− 01 + .3832010156375e− 01i

256 0 1.079e + 02 1.212e− 04
2 5.306e− 02 7.308e− 06 .1377516301326e− 09 + .5484520957958e− 01i
4 2.779e− 03 1.074e− 06 −.1359393469132e− 01 + .5674245816196e− 01i

.1359390766860e− 01 + .5674245834173e− 01i
6 1.397e− 04 1.285e− 07 .2343737623551e− 01 + .5762784375589e− 01i

−.8821000910677e− 05 + .5787704711284e− 01i
−.2344946569995e− 01 + .5764373665211e− 01i

512 0 7.823e− 07 1.019e− 13
10’000 128 0 3.443e + 04 1.591e− 01

2 1.695e + 02 8.342e− 03 .3037129481257e− 08 + .2076400110120e− 01i
4 7.610e + 01 1.579e− 02 .6528469517688e− 02 + .2011661878536e− 01i

−.6528516151182e− 02 + .2011660618498e− 01i
6 1.057e + 00 3.371e− 03 .1723911982815e− 01 + .2502011085089e− 01i

−.4885557531023e− 06 + .2517679851540e− 01i
−.1723873248392e− 01 + .2502154883629e− 01i

256 0 5.677e + 03 5.680e− 03
2 2.985e + 00 4.197e− 04 .1440703847366e− 06 + .2947450734705e− 01i
4 1.197e− 01 1.146e− 04 .9344224596270e− 02 + .2962289496016e− 01i

−.9345160516667e− 02 + .2962287501417e− 01i
512 0 5.254e− 01 8.860e− 08

u(x) = cosπx+
erf(δx)

erf(δ)
, δ =

√
ε/2,

becomes steeper and steeper at zero as ε grows larger. We have solved the problem
for ε = 100, 500, 1’000, 5’000, and 10’000.

Some of our results with the larger ε are summarized in Table 4. Since for too small
an N the optimization procedure may fail to converge [Ber-Mit2], we give numbers
only for N ≥ 128. They share some common features. For instance, for given ε and
N , the imaginary parts of the optimal poles are quite close to one another. Moreover,
if four poles are optimized, they have the tendency to gather as the vertices of a
rectangle about the origin, where the maximum gradient arises.

As for the errors, the optimization improves the residual by 4–6 digits, much more
than it does with the maximum error (less than 3 digits)—see the comment on the
condition in the conclusion. Nevertheless, with ε = 5’000 and N = 64 or ε = 10’000
and N = 128, attaching poles decreases the maximum error more than doubling N !

Our results are not quite as good as those obtained in [As-Ch-Ru] with the same
example. We recall, however, that they are not comparable, for our method yields
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Fig. 2. Error curves in Example 4.

C∞-approximations of the C∞-solutions of the problems considered in the present
work.

Finally, in Figure 2 we give error curves for a fixed ε-N pair and an increasing
number of attached poles: even with the large gradient the error behaves nicely as P
increases.

6. Conclusion. In the present article we have applied to the solution of two-
point boundary value problems the fact that rational interpolation is often more
efficient than its polynomial counterpart. (We may mention in passing that this fact
has been applied to the solution of Cauchy-type integral equations; see [Dri-Sri] and
[Kai-Nod].) Our approach consists of an iterative improvement of the polynomial
pseudospectral method, which is known to converge exponentially for good interpola-
tion points and infinitely differentiable problems. After having obtained the solution
at some (collocation) points by the polynomial method, we compute (one of the) ra-
tional interpolant(s) of these same values, with a denominator of given degree, by
minimizing the residual of the differential equation. This defines the new linear space
of all rationals interpolating between these same points and sharing that same denom-
inator. We then just have to start again with the solution of the original equation in
the new space, and so on. Although we can prove the effectiveness of a Galerkin ver-
sion of the method, in practice we solve the problem with the much simpler collocation
method.

The computed examples show the somewhat surprising result that one can usually
gain between three and five digits of accuracy in comparison with classical polynomial
collocation, and this almost independently of N . This is especially significant in cases
where the precision obtained with the latter method is low and one does not want to
increase the number of points so as to keep consequent evaluation of the solution as
cheap as possible.

The placement of the poles is a very well-conditioned problem in the sense that
many of their locations around the optimal one yield merely slightly larger residuals.
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The tables show, however, that the gain in the residual error is usually much larger
than the improvement in the precision of ũ. This is probably due in part to the fact
that the computation of the residual is smeared by the ill condition of the differenti-
ation matrices, despite the improvement by the methods in [Bal-Ber1]. We hope to
improve on this in the not too distant future.

Although not our purpose here, the method also seems applicable to problems
whose solution u is not infinitely smooth, in fact, even when u displays discontinuities:
it could then be compared with, e.g., methods which use especially constructed jump
functions such as those advocated by Geer [Gee-Ban] or methods that call upon the
help of several grids and fictious points, as suggested in [Dri-For].

The generalization of the method to elliptic problems in parallelpipeds seems
straightforward. In the two-dimensional case, on a tensor grid in a rectangle, the
ansatz would become

ũ(x, y) =
N∑

j,k=0

ũjkL
(β)
j (x)L

(γ)
k (y) ∈ R(β)

N ⊗R(γ)
N ,

and the new approximation of u would be obtained in Step 2 of the algorithm by
minimizing J(z, t) with respect to the poles z and t = [t1, . . . , tQ] in

r(x, y) :=

N∑
j=0

M∑
k=0

wj

P∏
�=1

(xj − z�)

x− xj

sk

Q∏
m=1

(yk − tm)

y − yk
ũjk

N∑
j=0

M∑
k=0

wj

P∏
�=1

(xj − z�)

x− xj

sk

Q∏
m=1

(yk − tm)

y − yk

(i.e., by optimizing the weights βj = wj
∏P
�=1(xj − z�) and γk = sk

∏Q
m=1(yk − tm)),

where the sk’s denote the polynomial weights in the y-direction.
Another natural extension of the method is its application to time evolution par-

tial differential equations: we intend to address the question in future work [Be-Mi-Tr].

Acknowledgment. The authors wish to thank the anonymous referees whose
comments have improved the present work.

REFERENCES

[Ahm-Wri] A. H. Ahmed and K. Wright, Error estimation for collocation solution of linear
ordinary differential equations, Comput. Math. Appl. Part B, 12 (1986), pp. 1053–
1059.

[As-Ch-Ru] U. Ascher, J. Christiansen, and R. D. Russell, A collocation solver for mixed
order systems of boundary value problems, Math. Comp., 33 (1979), pp. 659–679.

[As-Ma-Ru] U. M. Ascher, R. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, Prenctice-Hall, Englewood
Cliffs, NJ, 1988.

[Bad-Asc] G. Bader and U. Ascher, A new basis implementation for a mixed order boundary
value ODE solver, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 483–500.

[Bal] R. Baltensperger, Improving the accuracy of the matrix differentiation method for
arbitrary collocation points, Appl. Numer. Math., 33 (2000), pp. 143–149.



974 JEAN-PAUL BERRUT AND HANS D. MITTELMANN

[Bal-Ber1] R. Baltensperger and J.-P. Berrut, The errors in calculating the pseudospectral
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Abstract. This paper is concerned with the frictional unilateral contact problem governed
by Coulomb’s law. We define an a posteriori error estimator based on the concept of error in the
constitutive relation to quantify the accuracy of a finite element approximation of the problem. We
propose and study different mixed finite element approaches and discuss their properties in order to
compute the estimator. The information given by the error estimates is then coupled with a mesh
adaptivity technique which provides the user with the desired quality and minimizes the computation
costs. The numerical implementation of the error estimator as well as optimized computations are
performed.

Key words. Coulomb’s friction law, a posteriori error estimates, finite elements, error in the
constitutive relation, optimized computations
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1. Introduction and problem setup. The finite element method is currently
used in the numerical realization of frictional contact problems occurring in many en-
gineering applications (see [13]). An important task consists of evaluating numerically
the quality of the finite element computations by using a posteriori error estimators.
In elasticity, several different approaches leading to various error estimators have been
developed: in particular, the error estimators introduced in [2] based on the residual
of the equilibrium equations, the estimators linked to the smoothing of finite element
stresses (see [22]), and the estimators based on the errors in the constitutive relation
(see [14, 17]). A review of different a posteriori error estimators can be found in [21].

For frictionless unilateral contact problems, the residual based method was con-
sidered and studied in [3] (see also the references quoted therein) using a penalized
approach, and the study of error in the constitutive relation was performed in [5].

In the present paper, we are interested in the more general and currently used
Coulomb’s frictional contact model, and we choose the estimators in the constitutive
relation to quantify the accuracy of the finite element approximations. As far as we
know, there is no literature concerning a posteriori error estimators for Coulomb’s
frictional unilateral contact model. The latter is recalled hereafter.

Let us be given an elastic body occupying a bounded domain Ω in R
2 whose

generic point is denoted x = (x1, x2). The boundary Γ of Ω is Lipschitz and divided
as follows: Γ = ΓD ∪ ΓN ∪ ΓC , where ΓD, ΓN , and ΓC are three open disjoint parts.
We suppose that the displacement field is given on ΓD. (To simplify, we assume
afterwards that the body is clamped on ΓD.) On the boundary part ΓN , a density
of forces denoted F ∈ (L2(ΓN ))

2 is applied. The third part is the segment ΓC , in
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Fig. 1. Setting of the problem.

frictional contact with a rigid foundation (see Figure 1). The body Ω is submitted
to a given density of volume forces f ∈ (L2(Ω))2. Let the notation n = (n1, n2)
represent the unit outward normal vector on Γ and define the unit tangent vector
t = (−n2, n1). Let us denote by µ > 0 the friction coefficient on ΓC .

The problem consists of finding the displacement field u : Ω −→ R
2 and the stress

tensor field σ : Ω −→ S2 satisfying (1.1)–(1.10):

σ(u) = C ε(u) in Ω,(1.1)

divσ(u) + f = 0 in Ω,(1.2)

σ(u)n = F on ΓN ,(1.3)

u = 0 on ΓD,(1.4)

where S2 stands for the space of second order symmetric tensors on R
2, ε(u) =

1
2 (∇u+∇Tu) denotes the linearized strain tensor field, C is a fourth order symmetric
and elliptic tensor of linear elasticity, and div represents the divergence operator of
tensor valued functions.

In order to introduce the equations on ΓC , let us adopt the following notation:
u = unn + utt and σ(u)n = σn(u)n + σt(u)t. The equations modelling unilateral
contact with Coulomb friction are as follows on ΓC :

un ≤ 0,(1.5)

σn(u) ≤ 0,(1.6)

σn(u)un = 0,(1.7)

|σt(u)| ≤ µ|σn(u)|,(1.8)

|σt(u)| < µ|σn(u)| =⇒ ut = 0,(1.9)

|σt(u)| = µ|σn(u)| =⇒ ∃λ ≥ 0 such that ut = −λσt(u).(1.10)

The variational formulation of problem (1.1)–(1.10) has been obtained by Duvaut and
Lions in [8]. It consists of finding u such that

u ∈Kad , a(u,v − u) + j(u,v)− j(u,u) ≥ L(v − u) ∀v ∈Kad ,(1.11)

where

a(u,v) =

∫
Ω

(Cε(u)) : ε(v) dΩ,

j(u,v) =

∫
ΓC

µ|σn(u)||vt| dΓ,

L(v) =

∫
Ω

f .v dΩ+

∫
ΓN

F .v dΓ,
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are defined for any u and v in

V =
{
v ∈ (H1(Ω))2; v = 0 on ΓD

}
.

The notation H1(Ω) represents the standard Sobolev space; · and : stand for the inner
product in R

2 and S2, respectively. In (1.11), Kad denotes the closed convex cone of
admissible displacement fields satisfying the nonpenetration condition

Kad =
{
v ∈ V ; vn ≤ 0 on ΓC

}
.

The first existence result for problem (1.11) has been obtained in [20] when Ω is
an infinitely long strip and if the friction coefficient of compact support in ΓC is
sufficiently small. The extension of these results to domains with smooth boundaries
can be found in [12]. A recent improvement in [9] states existence when the friction

coefficient µ is lower than
√

3−4ν
2−2ν , ν denoting Poisson’s ratio in Ω (0 < ν < 1

2 ). When
the loads f and F are not equal to zero, there is to our knowledge neither uniqueness
result nor nonuniqueness example for problem (1.11). Let us mention that there exists
several laws “mollifying” Coulomb’s frictional contact model (see, e.g., [13, 19] and
the references quoted therein) and that such regularizations lead to more existence
and uniqueness properties.

Our paper is outlined as follows. In section 2, we first recall the convenient set-
ting which consists of separating the kinematic conditions, the equilibrium equations,
and the constitutive relations in order to define the error estimator and to study its
properties. In section 3, we propose two mixed finite element methods for Coulomb’s
frictional unilateral contact problem. We prove the existence of solutions and we
study the discrete frictional contact properties satisfied by such solutions. Section
4 is concerned with the practical construction of such an estimator. In section 5,
several numerical studies in which we compute and couple the estimator with a mesh
adaptivity procedure are performed.

2. The error estimator for Coulomb’s frictional contact problem. The
aim of this section is to introduce the concept of error in the constitutive relation for
the frictional unilateral contact problem. Before defining the estimator, let us begin
with some useful setting and notation.

2.1. The appropriate setting for error in the constitutive relation. To
define the error in the constitutive relation, the contact part ΓC is considered as in
[15, 5] as an interface on which two unknowns w (displacement field) and r (density of
surface forces due to the frictional contact with the rigid foundation) are to be found.
If n = (n1, n2) and t = (−n2, n1) stand for the unit outward normal and tangent on
Γ, we adopt afterwards the notation z = znn+ ztt for any vector z.

The unilateral contact problem with Coulomb’s friction law (1.1)–(1.10) is refor-
mulated by using these quantities, and it consists of finding the displacement field u
on Ω, the stress tensor field σ on Ω, and w, r on ΓC satisfying the following equations
(2.1)–(2.9).
• The displacement fields u and w verify the kinematic conditions

u = 0 on ΓD and w = u on ΓC .(2.1)

• The fields σ and r satisfy the equilibrium equation

−
∫

Ω

σ : ε(v) dΩ+

∫
Ω

f .v dΩ+

∫
ΓN

F .v dΓ +

∫
ΓC

r.v dΓ = 0 ∀v ∈ V .(2.2)
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• The fields σ and u are linked by the constitutive law of linear elasticity:

σ = Cε(u).(2.3)

• The displacement field w = wnn+wtt and the density of forces r = rnn+ rtt
satisfy the unilateral contact conditions with Coulomb’s friction law along ΓC :

wn ≤ 0,(2.4)

rn ≤ 0,(2.5)

rnwn = 0,(2.6)

|rt| ≤ µ|rn|,(2.7)

|rt| < µ|rn| =⇒ wt = 0,(2.8)

|rt| = µ|rn| =⇒ ∃λ ≥ 0 such that wt = −λrt.(2.9)

Let us define the convex cones

K =
{
z;z = znn+ ztt such that zn ≤ 0

}
,

Cµ =
{
s; s = snn+ stt such that sn ≤ 0 and |st| ≤ µ|sn|

}
.

Denoting by IA the indicator function of the set A (i.e., IA(z) = 0 if z ∈ A and
IA(z) = +∞ if z �∈ A), it can easily be checked that the frictional contact conditions
(2.4)–(2.9) can be also written in a more compact form:

IK(w) + ICµ(r) + µ|rn||wt|+ rtwt + rnwn = 0 on ΓC .(2.10)

We begin with recalling the definition of an admissible pair.
Definition 2.1. A pair ŝ = ((û, ŵ), (σ̂, r̂)) is admissible if the kinematic condi-

tions (2.1) and the equilibrium equations (2.2) are fulfilled.
We are now in a position to define the estimator based on the error in the con-

stitutive relation.
Definition 2.2. Let ŝ = ((û, ŵ), (σ̂, r̂)) be admissible. The error estimator e(ŝ)

is as follows:

e(ŝ) =

(
‖σ̂ − Cε(û)‖2σ,Ω + 2

∫
ΓC

(
IK(ŵ) + ICµ(r̂) + µ|r̂n||ŵt|+ r̂tŵt + r̂nŵn

)
dΓ

)1
2

,

(2.11)
where the norm ‖.‖σ,Ω on the stress tensor fields is defined by

‖σ‖σ,Ω =

(∫
Ω

(C−1σ) : σ dΩ

) 1
2

.

Let us notice that the function in the integral term of (2.11) is always nonnegative
at x ∈ ΓC : it is equal to +∞ if ŵ(x) �∈ K or r̂(x) �∈ Cµ; otherwise it is nonnegative
owing to (µ|r̂n||ŵt|+r̂tŵt)(x) ≥ 0 and (r̂nŵn)(x) ≥ 0. To avoid more notation, we will
skip over the regularity aspects of the functions defined on ΓC which are beyond the
scope of this paper and we write afterwards integral terms instead of duality pairings.
The first natural property arising directly from the definition of e(ŝ) becomes the
following property.

Property 2.3. Let ŝ be admissible. Then e(ŝ) = 0 if and only if ŝ = ((û, ŵ),
(σ̂, r̂)) is a solution to the reference problem (2.1)–(2.9).
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Let us define some quantities useful for the forthcoming study.
Definition 2.4. Let ŝ be admissible. The relative error ε(ŝ) is as follows:

ε(ŝ) =
e(ŝ)

‖σ̂ + Cε(û)‖σ,Ω .(2.12)

Given a part E of Ω, the local error contribution εE(ŝ) is defined as

εE(ŝ) =(2.13)(
‖σ̂ − Cε(û)‖2σ,E + 2

∫
ΓC∩E

(
IK(ŵ) + ICµ(r̂) + µ|r̂n||ŵt|+ r̂tŵt + r̂nŵn

)
dΓ

) 1
2

‖σ̂ + Cε(û)‖σ,Ω ,

where ‖σ‖σ,E = (
∫
E
(C−1σ) : σ dΩ)

1
2 .

For the sake of simplicity of notations, we will write ε and εE instead of ε(ŝ) and
εE(ŝ) in the following studies. It is straightforward that

⋃
Ei∩Ej=∅, i �=j

Ei = Ω =⇒ ε2 =
∑
i

ε2Ei .

2.2. Link between the estimator and the other errors. This part is con-
cerned with the relation between the error in the constitutive law and the other errors.
We suppose that a solution to the exact problem (2.1)–(2.9) exists which is satisfied
when µ is small enough (see [9]). The next proposition generalizes former results (see
[5]) obtained in the frictionless case (corresponding to µ = 0).

Proposition 2.5. Let (u,w,σ, r) be a solution to Coulomb’s frictional contact
problem (2.1)–(2.9). Let ŝ = ((û, ŵ), (σ̂, r̂)) be admissible. Then

‖σ − σ̂‖2σ,Ω + ‖u− û‖2u,Ω + 2µ

∫
ΓC

(rn − r̂n)(|ŵt| − |wt|) dΓ ≤ e2(ŝ),(2.14)

where the norm ‖.‖u,Ω on the displacement fields is defined by

‖u‖u,Ω =

(∫
Ω

(Cε(u)) : ε(u) dΩ
) 1

2

=
(
a(u,u)

) 1
2 .

Consequently,

‖σ − σ̂‖2σ,Ω + 2µ

∫
ΓC

(rn − r̂n)(|ŵt| − |wt|) dΓ ≤ e2(ŝ),(2.15)

‖u− û‖2u,Ω + 2µ

∫
ΓC

(rn − r̂n)(|ŵt| − |wt|) dΓ ≤ e2(ŝ).(2.16)

Proof. We begin with noticing that the property obviously holds when ŵ �∈ K
or r̂ �∈ Cµ on a set of positive measure. In such a case, the error estimator is equal
to infinity. Next, we then suppose that ŵ ∈ K and r̂ ∈ Cµ almost everywhere. One
immediately gets

‖σ̂ − Cε(û)‖2σ,Ω = ‖σ̂ − σ + Cε(u− û)‖2σ,Ω
= ‖σ̂ − σ‖2σ,Ω + ‖u− û‖2u,Ω + 2

∫
Ω

(σ̂ − σ) : ε(u− û) dΩ.
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The stress fields σ and σ̂ satisfy the equilibrium equation (2.2) and the displace-
ment fields u and û verify the kinematic conditions (2.1). Hence

‖σ̂ − Cε(û)‖2σ,Ω = ‖σ̂ − σ‖2σ,Ω + ‖u− û‖2u,Ω + 2

∫
ΓC

(r̂ − r).(w − ŵ) dΓ.(2.17)

Developing the integral term yields

∫
ΓC

(r̂ − r).(w − ŵ) dΓ

=

∫
ΓC

r̂nwn dΓ +

∫
ΓC

r̂twt dΓ +

∫
ΓC

rnŵn dΓ +

∫
ΓC

rtŵt dΓ(2.18)

−
∫

ΓC

rnwn dΓ−
∫

ΓC

rtwt dΓ−
∫

ΓC

r̂nŵn dΓ−
∫

ΓC

r̂tŵt dΓ.

Putting together (2.17) and (2.18) in the definition (2.11) of the estimator leads to

e2(ŝ) = ‖σ − σ̂‖2σ,Ω + ‖u− û‖2u,Ω
+ 2

∫
ΓC

r̂nwn dΓ + 2

∫
ΓC

r̂twt dΓ + 2

∫
ΓC

rnŵn dΓ + 2

∫
ΓC

rtŵt dΓ

− 2

∫
ΓC

rnwn dΓ− 2

∫
ΓC

rtwt dΓ + 2

∫
ΓC

µ|r̂n||ŵt| dΓ.

Noting that rnŵn ≥ 0, r̂nwn ≥ 0, and rnwn = 0 on ΓC , we get

e2(ŝ) ≥ ‖σ − σ̂‖2σ,Ω + ‖u− û‖2u,Ω
+ 2

∫
ΓC

r̂twt dΓ + 2

∫
ΓC

rtŵt dΓ− 2

∫
ΓC

rtwt dΓ + 2

∫
ΓC

µ|r̂n||ŵt| dΓ.

According to (2.7)–(2.9), the equality −rtwt = µ|rn||wt| holds on ΓC . Moreover,
r ∈ Cµ and r̂ ∈ Cµ lead to the bounds rtŵt ≥ −µ|rn||ŵt| and r̂twt ≥ −µ|r̂n||wt|.
Consequently,

e2(ŝ) ≥ ‖σ − σ̂‖2σ,Ω + ‖u− û‖2u,Ω + 2µ

∫
ΓC

(|rn| − |r̂n|)(|wt| − |ŵt|) dΓ.

The bound (2.14) is obtained thanks to rn ≤ 0 and r̂n ≤ 0. Both bounds (2.15) and
(2.16) are an obvious consequence.

It is easy to check that no information on the sign of the integral term in (2.14)
is available. This is not at all surprising because the evaluation of such a term corre-
sponds also to the study of the uniqueness for the (quasi-)variational inequality (1.11)
with classical arguments (i.e., by choosing and subtracting two solutions) which does
not lead to a successful conclusion. Nevertheless, the following remark shows that the
integral term can be bounded at least in a particular case.

Remark 2.6. If the exact solution and the admissible solution satisfy wt ≥ 0 and
ŵt ≥ 0 on ΓC (or wt ≤ 0 and ŵt ≤ 0 on ΓC), and if the measure of ΓD is positive,
then inequality (2.14) becomes more relevant since the integral term in (2.14) can be
estimated as follows:
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∣∣∣∣
∫

ΓC

(rn − r̂n)(|ŵt| − |wt|) dΓ
∣∣∣∣ =

∣∣∣∣
∫

ΓC

(rn − r̂n)(ŵt − wt) dΓ
∣∣∣∣

≤ ‖rn − r̂n‖
H− 1

2 (ΓC)
‖wt − ŵt‖

H
1
2 (ΓC)

≤ C‖σ − σ̂‖(L2(Ω))4‖u− û‖(H1(Ω))2

≤ C ′‖σ − σ̂‖σ,Ω‖u− û‖u,Ω
≤ C ′′

(
‖σ − σ̂‖2σ,Ω + ‖u− û‖2u,Ω

)
,

where H
1
2 (ΓC) stands for a fractionally Sobolev space (see [1]) and H− 1

2 (ΓC) is its
dual space. The bounds of ‖rn− r̂n‖

H− 1
2 (ΓC)

and ‖wt− ŵt‖
H

1
2 (ΓC)

are obtained using

Green’s formula and the trace theorem, respectively. Moreover, the norms ‖.‖(H1(Ω))2

and ‖.‖u,Ω are equivalent since meas(ΓD) > 0. In such a case, the integral term can
be removed from (2.14), (2.15), and (2.16), and we come to the conclusion that there
exists a positive constant C such that for small friction coefficients, ‖σ − σ̂‖σ,Ω and
‖u − û‖u,Ω can be bounded by (1/

√
1− µC)e(ŝ). Concerning the general case, we

think that one could reasonably expect that if the exact and admissible solutions are
smooth enough and if the friction coefficient is small, then the integral term multiplied
by 2µ is small in comparison with ‖u− û‖2u,Ω and ‖σ − σ̂‖2σ,Ω.

Remark 2.7. If instead of Coulomb’s law (2.10), one considers a Tresca’s type
friction law,

IK(w) + IC(r) + k|wt|+ rtwt + rnwn = 0 on ΓC ,(2.19)

where k ≥ 0 and where C = {s; s = snn+stt such that sn ≤ 0 and |st| ≤ k}, then the
problem (2.1)–(2.3), (2.19) admits a unique solution (uk,wk,σk, rk) and the bound

‖σk − σ̂‖2σ,Ω + ‖uk − û‖2u,Ω ≤ e2(ŝ)(2.20)

holds for any admissible ŝ = ((û, ŵ), (σ̂, r̂)).
Estimate (2.20) is obtained by following the same points as in the proof of estimate

(2.14). In particular, if k = 0 in (2.19) or equivalently µ = 0 in (2.10), we recover the
frictionless unilateral contact model.

3. The discrete Coulomb’s frictional contact problem. In this section, we
propose and study the properties of two mixed discrete finite element formulations
for Coulomb’s frictional contact in order to implement the error estimator. Let us
mention that a detailed study of several (different) mixed finite element methods for
frictionless and frictional contact problems can be found in [10, 11].

3.1. The mixed finite element formulations. The body Ω is discretized
by using a family of triangulations (Th)h made of finite elements of degree one. For
technical purposes, we assume (in section 3.1 only) that ΓD∩ΓC = ∅ which is generally
not restrictive in engineering applications and that the bilinear form a(., .) is V -
elliptic. Let us denote by h > 0 the discretization parameter representing the greatest
diameter of a triangle in Th. The space approximating V becomes

V h =
{
vh; vh ∈ (C(Ω))2, vh|T ∈ (P1(T ))

2 ∀T ∈ Th, vh = 0 on ΓD

}
,

where C(Ω) stands for the space of continuous functions on Ω, and P1(T ) represents
the space of polynomial functions of degree one on T . On the boundary of Ω, we still
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keep the notation vh = vhnn + vhtt for every vh ∈ V h and we denote by (Th)h the
family of monodimensional meshes on ΓC inherited by (Th)h.

We next introduce two convex sets of Lagrange multipliers denoted M ′
h(g) and

M ′′
h(g). The convex M

′
h(g) is defined by M ′

h(g) =M ′
hn ×M ′

ht(g), where

M ′
hn =

{
ν; ν ∈ C(ΓC), ν|S ∈ P1(S) ∀S ∈ Th, ν ≤ 0 on ΓC

}
,

and for g ∈ −M ′
hn, we define M

′
ht(g) as follows:

M ′
ht(g) =

{
ν; ν ∈ C(ΓC), ν|S ∈ P1(S) ∀S ∈ Th, |ν| ≤ g on ΓC

}
.

We denote by p the number of nodes of the triangulation on ΓC and by ψi, 1 ≤ i ≤ p
the monodimensional basis functions on ΓC . (The function ψi is continuous on ΓC ,
linear on each segment of Th, and equal to 1 at node i and to 0 at the other nodes.)
The second convex M ′′

h(g) is given by M ′′
h(g) =M ′′

hn ×M ′′
ht(g) with

M ′′
hn =

{
ν; ν ∈ C(ΓC), ν|S ∈ P1(S) ∀S ∈ Th,

∫
ΓC

νψi dΓ ≤ 0 ∀1 ≤ i ≤ p

}
.

If g ∈ −M ′′
hn, M

′′
ht(g) is given by

M ′′
ht(g)

=

{
ν; ν ∈ C(ΓC), ν|S ∈ P1(S) ∀S ∈ Th,

∣∣∣∣
∫

ΓC

νψi dΓ

∣∣∣∣ ≤
∫

ΓC

gψi dΓ ∀1 ≤ i ≤ p

}
.

Next, the notation Mh(g) = Mhn ×Mht(g) denotes either M
′
h(g) = M ′

hn ×M ′
ht(g)

or M ′′
h(g) =M ′′

hn ×M ′′
ht(g).

We then introduce an intermediary problem with a given slip limit −µghn, where
ghn ∈Mhn. This problem is denoted by P (ghn) and consists of finding uh ∈ V h and
(λhn, λht) ∈Mhn ×Mht(−µghn) =Mh(−µghn) such that

(P (ghn))




a(uh,vh)−
∫

ΓC

λhnvhn dΓ−
∫

ΓC

λhtvht dΓ = L(vh) ∀vh ∈ V h,∫
ΓC

(νhn − λhn)uhn dΓ +

∫
ΓC

(νht − λht)uht dΓ ≥ 0

∀(νhn, νht) ∈Mh(−µghn).
(3.1)
Problem P (ghn) is the equivalent of finding a saddle-point (uh, λhn, λht) = (uh,λh)
in V h ×Mh(−µghn) verifying

L(uh,νh) ≤ L(uh,λh) ≤ L(vh,λh) ∀vh ∈ V h, ∀νh ∈Mh(−µghn),
where

L(vh,νh) = 1

2
a(vh,vh)−

∫
ΓC

νhnvhn dΓ−
∫

ΓC

νhtvht dΓ− L(vh).

By using classical arguments on saddle-point problems as Haslinger, Hlaváček, and
Nečas [11, p. 338], we deduce that there exists such a saddle-point. The strict con-
vexity of a(., .) implies that the first argument uh is unique. Besides, the assumption
ΓD ∩ ΓC = ∅ allows us to write∫

ΓC

νhnvhn dΓ−
∫

ΓC

νhtvht dΓ = 0 ∀vh ∈ V h, =⇒ νhn = 0, νht = 0.
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Consequently, the second argument λh is unique and P (ghn) admits a unique solution.
It then becomes possible to define a map Φh as follows:

Φh : Mhn −→Mhn,
ghn �−→ λhn,

where (uh, λhn, λht) is the solution of P (ghn). The introduction of this map allows
the definition of a discrete solution of Coulomb’s frictional contact problem.

Definition 3.1. Let Mh(g) = M ′
h(g) or Mh(g) = M ′′

h(g). A solution of
Coulomb’s discrete frictional contact problem is the solution of P (λhn), where λhn ∈
Mhn is a fixed point of Φh.

Proposition 3.2. Let Mh(g) =M ′
h(g) or Mh(g) =M ′′

h(g). Then for any µ,
there exists a solution to Coulomb’s discrete frictional contact problem.

Proof. To establish existence, we use Brouwer’s fixed point theorem.
Step 1. We prove that the mapping Φh is continuous. Set

Ṽ h =
{
vh ∈ V h; vht = 0 on ΓC

}
, Wh =

{
ν; ν ∈ C(ΓC), ν|S ∈ P1(S) ∀S ∈ Th

}
.

Since ΓD ∩ ΓC = ∅, it is easy to check that the definition of ‖.‖− 1
2 ,h

given by

‖ν‖− 1
2 ,h

= sup
vh∈ ˜V h

∫
ΓC

νvhn dΓ

‖vh‖1 ,

is a norm on Wh. The notation ‖.‖1 represents the (H1(Ω))2-norm.
Let (uh, λhn, λht) and (uh, λhn, λht) be the solutions of (P (ghn)) and (P (ghn)),

respectively. On the one hand, we get

a(uh,vh)−
∫

ΓC

λhnvhn dΓ = L(vh) ∀vh ∈ Ṽ h,

a(uh,vh)−
∫

ΓC

λhnvhn dΓ = L(vh) ∀vh ∈ Ṽ h.

Subtracting the previous equalities and using the continuity of the bilinear form a(., .)
gives

∫
ΓC

(λhn − λhn)vhn dΓ = a(uh − uh,vh) ≤M‖uh − uh‖1‖vh‖1 ∀vh ∈ Ṽ h.

Hence, we get a first estimate

‖λhn − λhn‖− 1
2 ,h
≤M‖uh − uh‖1.(3.2)

On the other hand, we have from (3.1)

a(uh,vh)−
∫

ΓC

λhnvhn dΓ−
∫

ΓC

λhtvht dΓ = L(vh) ∀vh ∈ V h,(3.3)

a(uh,vh)−
∫

ΓC

λhnvhn dΓ−
∫

ΓC

λhtvht dΓ = L(vh) ∀vh ∈ V h.(3.4)
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Choosing vh = uh − uh in (3.3) and vh = uh − uh in (3.4) implies by addition that

a(uh − uh,uh − uh)
=

∫
ΓC

(λhn − λhn)(uhn − uhn) dΓ +

∫
ΓC

(λht − λht)(uht − uht) dΓ.(3.5)

Let us notice that the inequality in (3.1) is obviously equivalent to the two following
conditions: ∫

ΓC

(νhn − λhn)uhn dΓ ≥ 0 ∀νhn ∈Mhn,(3.6)

∫
ΓC

(νht − λht)uht dΓ ≥ 0 ∀νht ∈Mht(−µghn).(3.7)

According to the definitions ofM ′
hn and M ′′

hn, we can choose νhn = 0 and νhn = 2λhn
in (3.6), which gives

∫
ΓC

λhnuhn dΓ = 0 and

∫
ΓC

νhnuhn dΓ ≥ 0 ∀νhn ∈Mhn,

from which we deduce that∫
ΓC

(λhn − λhn)(uhn − uhn) dΓ ≤ 0.

Denoting by α the ellipticity constant of the bilinear form a(., .), (3.5) becomes

α‖uh − uh‖21 ≤
∫

ΓC

(λht − λht)(uht − uht) dΓ.(3.8)

To evaluate the latter integral term, let us first introduce the p-by-p mass matrix
M = (mij)1≤i,j≤p on ΓC as

mij =

∫
ΓC

ψiψj dΓ, 1 ≤ i, j ≤ p,(3.9)

and let UT , UT , GN , GN , denote the vectors of components the nodal values of uht,
uht, ghn, and ghn, respectively.
• We begin with considering the mixed method, where Mh(g) = M ′

h(g). From
(3.7), we get

∫
ΓC

λhtuht dΓ ≤
∫

ΓC

νhtuht dΓ ∀νht ∈Mht(−µghn),

or, equivalently,

∫
ΓC

λhtuht dΓ ≤
p∑
i=1

Mi(MUT )i ∀M ∈ R
p such that |Mi| ≤ −µ(GN )i, 1 ≤ i ≤ p.

It is easy to construct a vector M minimizing the sum and yielding the following
bound:

∫
ΓC

λhtuht dΓ ≤ µ

p∑
i=1

(GN )i|(MUT )i|.
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A similar expression can be obtained when integrating the term λhtuht. The two
remaining terms of the integral in (3.8) are roughly bounded as follows:

−
∫

ΓC

λhtuht dΓ ≤ −µ
p∑
i=1

(GN )i|(MUT )i|; −
∫

ΓC

λhtuht dΓ ≤ −µ
p∑
i=1

(GN )i|(MUT )i|.

Finally, (3.8) becomes

α‖uh − uh‖21 ≤ µ

p∑
i=1

(GN −GN )i
(|(MUT )i| − |(MUT )i|

)

≤ µ

(
p∑
i=1

(GN −GN )2i
) 1

2
(

p∑
i=1

(M(UT − UT ))2i
) 1

2

= µ‖GN −GN‖Rp ‖UT − UT ‖Rp,M,(3.10)

where
∣∣|x| − |y|∣∣ ≤ |x − y| and the Hölder inequality have been used. The notations

‖.‖Rp and ‖.‖Rp,M whose definitions are straightforward represent norms on R
p. (The

mass matrix M is nonsingular.) As a consequence, there exist constants C1(h) and
C2(h) depending on h (or equivalently on p) such that

‖GN −GN‖Rp ≤ C1(h)‖ghn − ghn‖− 1
2 ,h

(3.11)

and

‖UT − UT ‖Rp,M ≤ C2(h)‖uht − uht‖L2(ΓC) ≤ C3(h)‖uh − uh‖1,(3.12)

where the trace theorem has been used. Combining (3.10), (3.11), (3.12), and (3.2)
implies that there exists a constant C(h) such that

‖λhn − λhn‖− 1
2 ,h
≤ µC(h)‖ghn − ghn‖− 1

2 ,h
.(3.13)

Hence Φh is continuous.
• In the case where Mh(g) =M

′′
h(g), the proof is analogous: first (3.7) implies

∫
ΓC

λhtuht dΓ ≤
p∑
i=1

(MM)i(UT )i ∀M ∈ R
p such that

|(MM)i| ≤ −µ(MGN )i, 1 ≤ i ≤ p.

Therefore,

∫
ΓC

λhtuht dΓ ≤ µ

p∑
i=1

(MGN )i|(UT )i|.

Expression (3.8) then leads to

α‖uh − uh‖21 ≤ µ

p∑
i=1

(M(GN −GN ))i
(|(UT )i| − |(UT )i|)

≤ µ

(
p∑
i=1

(M(GN −GN ))2i
) 1

2
(

p∑
i=1

(UT − UT )2i
) 1

2

= µ‖GN −GN‖Rp,M ‖UT − UT ‖Rp ,
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and the continuity of Φh is proved following the same arguments as in the first case.
Step 2. Let (uh, λhn, λht) be the solution of (P (ghn)). Taking vh = uh in (3.1)

gives

a(uh,uh)−
∫

ΓC

λhnuhn dΓ−
∫

ΓC

λhtuht dΓ = L(uh).(3.14)

According to

∫
ΓC

λhnuhn dΓ = 0 and

∫
ΓC

λhtuht dΓ ≤ 0,

we deduce from (3.14), the V -ellipticity of a(., .), and the continuity of L(.) that

α‖uh‖21 ≤ a(uh,uh) ≤ L(uh) ≤ C‖uh‖1,

where the constant C depends on the loads f and F . Therefore, we get

‖uh‖1 ≤ C

α
.

In other respects

a(uh,vh)−
∫

ΓC

λhnvhn dΓ = L(vh) ∀vh ∈ Ṽ h,

leads to
∫

ΓC

λhnvhn dΓ ≤M‖uh‖1‖vh‖1 + C‖vh‖1 ∀vh ∈ Ṽ h.

That implies

‖λhn‖− 1
2 ,h
≤M‖uh‖1 + C ≤

(
M

α
+ 1

)
C.

Finally,

‖Φh(ghn)‖− 1
2 ,h
≤ C ′ ∀ghn ∈Mhn,

where C ′ depends only on the applied loads f ,F and on the continuity and ellip-
ticity constant of a(., .). This together with the continuity of Φh proves that there
exists at least a solution of Coulomb’s discrete frictional contact problem according
to Brouwer’s fixed point theorem.

Remark 3.3. From (3.13) when Mh(g) = M ′
h(g) or from the equivalent bound

which is obtained when Mh(g) = M ′′
h(g), we get a (quite weak) uniqueness result

when µ C(h) ≤ 1. That means that uniqueness holds when µ is small enough, where
the denomination “small” depends on the discretization parameter. A more detailed
study would show that we are not able to prove that C(h) remains bounded as h tends
towards 0. Using another mixed finite element formulation (with a single multiplier
instead of two which is not adapted to our a posteriori error estimator) leads to similar
existence and uniqueness results (see [10, 11]).
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3.2. The matrix formulation of the frictional contact conditions. Let us
consider a solution (uh, λhn, λht) ∈ V h ×Mhn ×Mht(−µλhn) of Coulomb’s discrete
frictional contact problem. We are interested in the matrix translation of the frictional
contact conditions

∫
ΓC

(νhn − λhn)uhn dΓ ≥ 0 ∀νhn ∈Mhn,(3.15)

∫
ΓC

(νht − λht)uht dΓ ≥ 0 ∀νht ∈Mht(−µλhn).(3.16)

As before, ΓC contains p nodes of the triangulation and ψi, 1 ≤ i ≤ p, denote the scalar
monodimensional basis functions on ΓC . The p-by-p mass matrixM = (mij)1≤i,j≤p
on ΓC is given by (3.9).

Let UN and UT denote the vectors of components the nodal values of uhn and uht,
respectively, and let LN and LT denote the vectors of components the nodal values
of λhn and λht, respectively. We begin with considering the mixed method, where
Mh(g) =M

′
h(g).

Proposition 3.4. LetMh(g) =M
′
h(g). The vectors UN , UT , LN , LT associated

with a solution of Coulomb’s discrete frictional contact problem satisfy, for any 1 ≤
i ≤ p,

(LN )i ≤ 0,(3.17)

(MUN )i ≤ 0,(3.18)

(LN )i(MUN )i = 0,(3.19)

|(LT )i| ≤ −µ(LN )i,(3.20)

|(LT )i| < −µ(LN )i =⇒ (MUT )i = 0,(3.21)

(LT )i(MUT )i ≤ 0.(3.22)

Proof. From λhn ∈ M ′
hn, we immediately get (3.17). Condition (3.15) is equiva-

lent to
∫

ΓC

νhnuhn dΓ ≥ 0 ∀νhn ∈M ′
hn and

∫
ΓC

λhnuhn dΓ = 0.(3.23)

Choosing in the inequality of (3.23), νhn = −ψi, 1 ≤ i ≤ p, and writing uhn =∑p
j=1(UN )j ψj gives (3.18). Putting λhn =

∑p
i=1(LN )i ψi and uhn =

∑p
j=1(UN )j ψj

in the equality of (3.23) yields

p∑
i=1

(LN )i(MUN )i = 0.

The latter estimate together with (3.17) and (3.18) implies (3.19).
Inequality (3.20) follows directly from λht ∈ M ′

ht(−µλhn). For any 1 ≤ i ≤ p,
choose νht in (3.16) as follows: νht = µλhn at node i and νht = λht at the p− 1 other
nodes. We obtain

∫
ΓC

(νht − λht)uht dΓ = (µLN − LT )i
∫

ΓC

ψiuht dΓ

= (µLN − LT )i(MUT )i ≥ 0.(3.24)
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Similarly, take νht = −µλhn at node i and νht = λht at the p− 1 other nodes. We get
∫

ΓC

(νht − λht)uht dΓ = (−µLN − LT )i(MUT )i ≥ 0.(3.25)

Putting together estimates (3.24) and (3.25) implies (3.21).
It remains to prove (3.22). Define νht in (3.16) as follows: νht =

1
2λht at node i

and νht = λht at the p− 1 other nodes. Therefore
∫

ΓC

(νht − λht)uht dΓ = −1
2
(LT )i

∫
ΓC

ψiuht dΓ = −1
2
(LT )i(MUT )i ≥ 0.

Hence inequality (3.22) is proved.
Proceeding in a similar way when Mh(g) = M ′′

h(g), we obtain the following
proposition.

Proposition 3.5. LetMh(g) =M
′′
h(g). The vectors UN , UT , LN , LT associated

with a solution of Coulomb’s discrete frictional contact problem satisfy, for any 1 ≤
i ≤ p,

(MLN )i ≤ 0,

(UN )i ≤ 0,

(MLN )i(UN )i = 0,

|(MLT )i| ≤ −µ(MLN )i,

|(MLT )i| < −µ(MLN )i =⇒ (UT )i = 0,

(MLT )i(UT )i ≤ 0.

Remark 3.6. We show in the next section that the choice of the method us-
ing M ′

h(g) is quite appropriate and easier than M ′′
h(g) to compute the estimator.

However, most of the finite element codes solving contact problems (with or without
friction) make use of nodal displacements UN , UT and of nodal forces FN , FT as dual
unknowns (and not pressures like LN , LT ) on the contact part ΓC . This means that
the frictional contact conditions are generally (FN )i ≤ 0, (UN )i ≤ 0, (FN )i(UN )i = 0,
|(FT )i| ≤ −µ(FN )i, and so on. This is precisely the choice ofM ′′

h(g) when supposing
that pressures and forces are linked by FN = MLN and FT = MLT . As a conse-
quence, we must also be able to propose a practical computation of the estimator for
this widespread case.

4. Construction of admissible fields. The purpose of this section is to de-
scribe the building of admissible fields û, ŵ, σ̂, r̂ satisfying the kinematic conditions
(2.1) and the equilibrium equations (2.2) to compute the error estimator (2.11). More-
over, in order to obtain a finite value of the error estimator, the displacement fields ŵ
on the contact part ΓC must satisfy the nonpenetration conditions, and the densities
of forces r̂ should belong to Coulomb’s friction cone Cµ on ΓC .

To perform such a construction, we will obviously make use of the finite ele-
ment solution of Coulomb’s frictional contact problem (uh, λhn, λht) ∈ V h ×Mhn ×
Mht(−µλhn) = V h ×Mh(−µλhn) which satisfies




a(uh,vh)−
∫

ΓC

λhnvhn dΓ−
∫

ΓC

λhtvht dΓ = L(vh) ∀vh ∈ V h,∫
ΓC

(νhn − λhn)uhn dΓ +

∫
ΓC

(νht − λht)uht dΓ ≥ 0 ∀(νhn, νht) ∈Mh(−µλhn),
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where Mh(−µλhn) = Mhn × Mht(−µλhn) denotes either M ′
h(−µλhn) = M ′

hn ×
M ′
ht(−µλhn) or M ′′

h(−µλhn) =M ′′
hn ×M ′′

ht(−µλhn).
We begin with building the displacement fields û and ŵ satisfying the kinematic

conditions (2.1) and the nonpenetration conditions.

4.1. Construction of the displacement fields. For both finite element ap-
proaches (i.e.,Mh(g) =M

′
h(g) orMh(g) =M

′′
h(g)) the finite element displacement

field uh verifies the embedding conditions in (2.1).
When Mh(g) = M ′

h(g), the finite element displacement field may not fulfill
the nonpenetration conditions according to Proposition 3.4. At the nodes xj which
are not located on ΓC , we set û(xj) = uh(xj). At the nodes xi lying on ΓC , we
set ût(xj) = uht(xj) and ûn(xj) = min(uhn(xj), 0). Using these nodal values, the
displacement field û is then built in V h (and ŵ = û on ΓC).

When Mh(g) = M ′′
h(g), the finite element displacement field also satisfies the

nonpenetration conditions according to Proposition 3.5. In that case, we simply take
û = uh in Ω (and ŵ = û on ΓC).

4.2. Construction of the stress fields. Let us describe the building of the
stress fields σ̂ and r̂ verifying the equilibrium equations and r̂ ∈ Cµ on ΓC .

4.2.1. Building of r̂ ∈ Cµ on ΓC . When Mh(g) = M ′
h(g), the building is

straightforward. According to Proposition 3.4, we can directly choose r̂ = λh (i.e.,
r̂n = λhn and r̂t = λht).

WhenMh(g) =M
′′
h(g), the situation is more complicated. However, from Propo-

sition 3.5, we are not ensured that the multipliers λh = (λhn, λht) always belong to Cµ
on ΓC (i.e., satisfy λhn ≤ 0 and |λht| ≤ −µλhn) as in the previous case. Nevertheless,
there is in the construction a freedom on the choice of the tangential components r̂t.
Indeed, they can be modified edge by edge by adding a density with null resultant
and moment. More precisely, when the computed multipliers satisfy |λht| > −µλhn
at the node i, it is possible to compute a new density λ̃ht on the edge [i, j] (j is one
of the neighboring nodes) as follows:

λ̃ht = λht − d at node i,(4.1)

λ̃ht = λht + d at node j.

If d ∈ R is chosen such that |λ̃ht| ≤ −µλhn at nodes i and j, then the modification
is satisfying. In such a case, the modified tangential pressure λ̃ht is piecewise linear
on each mesh and possibly discontinuous on ΓC . We finally choose r̂n = λhn and
r̂t = λ̃ht.

4.2.2. Building of σ̂ verifying the equilibrium equations. Next, having
at our disposal r̂, the stress fields σ̂ satisfying (2.2) are to be constructed. It is
straightforward that the stress field obtained from the finite element displacement
field uh with the constitutive relation σh = C ε(uh) does not satisfy the equilibrium
equation (2.2). If we want to compute the error estimator, a stress field σ̂ that
strictly satisfies the equilibrium equations must be obtained. The construction of σ̂
is performed in two steps which can be summarized as follows:
• The first step consists of building densities of forces F̂ on each edge of the mesh

satisfying equilibrium with the body forces f :

∫
E

f .v dΩ+

∫
∂E

ηEF̂ .v dΓ = 0 ∀v such that ε(v) = 0,
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where ηE is a function defined on the boundary of the triangular element E, constant
on each edge of E, equal to 1 or equal to −1 and satisfying ηE+ηE′ = 0 on the common
edge to adjacent elements E and E′. Note that the construction of F̂ is always possible
and it is generally not unique. In the numerical experiments, the nonuniqueness of
F̂ is handled in minimizing (locally, on each patch of elements connected to a node)
the difference (least squares) with the finite element solution. The choice of such a
technique very often leads to satisfactory effectivity indexes (between 1 and 1.5; see
5.3.1 hereafter). The details of these techniques can be found in [18].
• The second step is devoted to the construction of σ̂ locally on each element E

by solving

{
div σ̂ + f = 0 in E,

σ̂n = ηEF̂ on ∂E,

where n stands for the unit outward normal on ∂E.
There are two techniques to compute locally the stress admissible field from the

densities:
1. analytical construction; it is easy to check that there does not exist an σ̂

linear on E due to the stress symmetry requirement. The chosen technique for
determining σ̂ on each triangle E is then to divide E into three subtriangles
and to search σ̂ which is linear on each subtriangle. The details of this
construction can be found in [18];

2. numerical construction by using higher-degree polynomials (see [4]).

5. Numerical studies.

5.1. Mesh adaption. The aim of adaptive procedures is to offer the user a level
of accuracy denoted ε0 with a minimal computational cost. We use the h-version
which is the most widespread procedure of adaptivity currently in use: the size and
the topology of the elements are modified but the same kind of basis functions for
the different meshes are retained. A mesh T ∗ is said to be optimal with respect to a
measure of the error ε∗ if (see [16])

{
ε∗ = ε0,
N∗minimal (N∗: number of elements of T ∗).(5.1)

To solve problem (5.1), the following procedure is applied:
1. An initial analysis is performed on a relatively uniform and coarse mesh T .
2. The corresponding global error ε in (2.12) and the local contributions εE in

(2.13) are computed.
3. The characteristics of the optimal mesh T ∗ are determined in order to mini-

mize the computational costs in respect of the global error.
4. A second finite element analysis is performed on the mesh T ∗.

The optimal mesh T ∗ is determined by the computation of a size modification
coefficient rE on each element E of the mesh T :

rE =
h∗E
hE

,

where hE denotes the size of E and h∗E represents the size that must be imposed to
the elements of T ∗ in the region of E in order to ensure optimality. The computation
of the coefficients rE uses the rate of convergence of the error which depends on the
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used element but also on the regularity of the solution [6]. Therefore, to compute
the coefficients rE , we use a technique detailed in [7] that automatically takes into
account the steep gradient regions. The mesh T ∗ is generated by an automatic mesher
able to accurately respect a map of sizes. Practically, the previous procedure allows
us to divide in two or three the error ε. If the user wishes more accuracy, then the
procedure is repeated as far as a precision close to ε0 is reached (see [6]).

5.2. Examples. We consider two-dimensional plane strain problems where no
body forces are applied. As a constitutive relation in Ω, we choose Hooke’s law of
homogeneous isotropic elastic materials:

σij =
Eν

(1− 2ν)(1 + ν)
δijεkk(u) +

E

1 + ν
εij(u),

where E and ν denote Young’s modulus and Poisson’s ratio, respectively, and the
notation δij stands for Kronecker’s symbol. The implementation is achieved using
CASTEM 2000 developed at the CEA, and an HP-C3000 computer has been used.

Three examples are studied with various friction coefficients. The computations
have been carried out by using the mixed finite element method with Mh(g) =
M ′′

h(g). (See Remark 3.6 for comments.)

5.3. First example. We consider the problem depicted in Figure 2. The dimen-
sions of the rectangular body are 40mm × 160mm, and computations are performed
on the left half of the structure due to symmetry. The material characteristics are
E = 13Gpa, ν = 0.2, and µ = 0.5 is the friction coefficient. The load on the left side
is 10N.mm−2 and the upper side is clamped.

ΓD

NΓ Ω

ΓC

Fig. 2. Setting of the problem.

The initial mesh comprises 1088 three-node elements and 627 nodes for an accu-
racy ε of 9.74% (Figure 3). We show the deformed body in which separation occurs
in Figure 4 and the contributions to the error εE in Figure 5. The contact pressures
are reported in Figure 6. We show the normal pressure −λhn, the friction cone (be-
tween −|λhn| and |λhn|), the tangential pressure −λht, and the modified tangential
pressure −λ̃ht.

Due to the separation on the left part of ΓC and the choice of the finite element
methodMh(g) =M

′′
h(g), we see that the normal pressure does not always satisfy the

convenient sign property. Moreover, at the last mesh on the right part, the tangential
pressure is outside the friction cone. By using the modification of the densities (4.1),
we are able to compute a modified tangential pressure inside the cone which allows
the computing of the statically admissible field. Concerning the normal pressure, the
difficulty cannot be solved by the densities modification. The proposed mixed finite
element method Mh(g) =M

′
h(g) will allow us to solve this difficulty.
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Fig. 3. Initial mesh: 1088 three-node elements, 627 nodes, ε = 9.74%.

Fig. 4. Deformed configuration.

2.10E-02

1.75E-02

3.54E-03

3.92E-05

1.40E-02

7.03E-03

1.05E-02

Fig. 5. Local contributions εE .

  .00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

1.50

1.00

 .50

  .00

  .50

 1.00

 1.50

 2.00

 2.50

Modified tangential pressure

Tangential pressure
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Normal pressure

Fig. 6. Contact pressures.

The prescribed accuracy ε0 is 5%. The optimized mesh is obtained in one step
and comprises 1148 three-node elements and 647 nodes for an accuracy ε of 4.28%
(Figure 7).
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Fig. 7. Optimized mesh: 1148 three-node elements, 647 nodes, ε = 4.28%.

Fig. 8. Setting of the problem.

Fig. 9. Initial mesh: 544 three-node elements, 323 nodes, ε = 1.46%.

5.3.1. Second example. Next, we consider the structure depicted in Figure 8.
The dimensions of the rectangle are 40mm × 80mm, and symmetry conditions are
adopted. We choose E = 13Gpa, ν = 0.2, and a friction coefficient of 0.3. The load
on the upper side is 5N.mm−2, and no embedding conditions are applied. In such a
case, the bilinear form a(., .) is no longer V -elliptic but satisfies some semicoercivity
property (see [11, Theorem 6.3]).

The initial mesh is made of 544 three-node elements and 323 nodes corresponding
to an accuracy ε of 1.46% (Figure 9). The deformed configuration and the map of
local contributions εE are shown in Figures 10 and 11, respectively. In Figure 12, the
normal contact pressure, the friction cone, and the tangential pressure are reported.
We can notice that on the left node, the tangential pressure is outside the cone.
By using the modification of the densities (4.1), we compute a modified tangential
pressure which gives a new pressure inside the cone. Notice that in this example,
we have stick on the contact zone, whereas the body was slipping in the previous
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Fig. 10. Deformed configuration.
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Fig. 11. Local contributions εE .
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Fig. 12. Contact pressures.

example. (See also Proposition 3.5 for some corroboration.)
The prescribed accuracy ε0 is 0.5%. The optimized mesh (obtained in one step)

comprising 1178 three-node elements and 666 nodes for an accuracy ε of 0.57% is
represented in Figure 13.

Next, we again consider the initial mesh in Figure 9, and we compute the effec-
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Fig. 13. Optimized mesh: 1178 three-node elements, 666 nodes, ε = 0.57%.

Table 1
Effectivity indexes.

µ ε (in %) εex (in %) effectivity γ

0.2 1.26 0.93 1.36
0.4 1.50 1.02 1.48
0.6 1.50 1.02 1.48
0.8 1.50 1.02 1.48

tivity indexes as a function of the friction coefficient µ. Since no analytical solution
is available, we use a reference solution denoted uref corresponding to a very re-
fined mesh. The exact error denoted εex and the effectivity index γ can be defined
as follows:

εex =
‖uref − uh‖u,Ω
‖uref + uh‖u,Ω , γ =

e

‖uref − uh‖u,Ω ,

where e is the error estimator defined in (2.11). The results are reported in Table 1.
Note that the frictionless case is not interesting because it corresponds to a pure
compression case, and the error is negligible. The effectivity indexes close to 1 show
the accuracy of the error estimator.

5.3.2. Third example: Numerical extension to two bodies in frictional
contact. We consider the problem of two elastic bodies initially in contact (Fig-
ure 14). The upper body is submitted to a uniform load of 10N.mm−2. We have
adopted symmetry conditions on the lower side of Ω2 in order to avoid a greater

Γ

ΓN

C

Ω1

Ω2

Fig. 14. Setting of the problem.
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Fig. 15. Initial mesh: 640 three-node elements, 370 nodes, ε = 8.51%.

Fig. 16. Deformed configuration.

3.31E-02

5.55E-03

1.10E-02

1.66E-02

2.21E-02

2.76E-02

4.66E-05

Fig. 17. Local contributions εE .

number of singularities, and the lower body is fixed on the left node of its lower
side. The two materials are identical (E = 200GPa, ν = 0.25), the dimensions are
100mm× 100mm and 200mm× 200mm, and the friction coefficient µ is 0.3.

The initial mesh with 640 three-node elements, 370 nodes, and an accuracy ε
of 8.51% is shown in Figure 15. We show the deformed bodies (Figure 16) and
the contributions to the error εE (Figure 17). The contact pressures are drawn in
Figure 18. As in the previous example, the computed tangential pressure is outside
the friction cone (on both extreme meshes), and as before, it can be successfully
modified to compute the estimator.
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Fig. 18. Contact pressures.

Fig. 19. Optimized mesh: 381 three-node elements, 230 nodes, ε = 5.46%.

An accuracy ε0 of 5% is prescribed. The optimized mesh, obtained in one step,
made of 381 three-node elements and 230 nodes for an accuracy ε of 5.46% is shown
in Figure 19.
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[11] J. Haslinger, I. Hlaváček, and J. Nečas, Numerical methods for unilateral problems in solid

mechanics, in Handbook of Numerical Analysis, Vol. IV, P. G. Ciarlet and J. L. Lions, eds.,
North Holland, Amsterdam, 1996, pp. 313–485.
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Abstract. In this paper we present a simple and robust random projection method for under-
resolved numerical simulation of stiff detonation waves in chemically reacting flows. This method
is based on the random projection method proposed by the authors for general hyperbolic systems
with stiff reaction terms [W. Bao and S. Jin, J. Comput. Phys., 163 (2000), pp. 216–248], where
the ignition temperature is randomized in a suitable domain. It is simplified using the equations of
instantaneous reaction and then extended to handle the interactions of detonations. Extensive nu-
merical experiments, including interaction of detonation waves, and in two dimensions, demonstrate
the reliability and robustness of this novel method.
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1. Introduction. An inviscid, compressible, reacting flow is described by the
reactive Euler equations

Ut + F (U)x + G(U)y =
1

ε
Ψ(U),(1.1)

U =




ρ
m
n
e
ρz


 , F (U) =




m
m2/ρ + p
mn/ρ

m(e + p)/ρ
mz


 , G(U) =




n
mn/ρ

n2/ρ + p
n(e + p)/ρ

nz


 ,(1.2)

Ψ(U) =




0
0
0
0

−ρze−Tc/T


 ≡




0
0
0
0

ψ(U)


 .(1.3)

The dependent variables ρ(x, y, t), m(x, y, t), n(x, y, t), e(x, y, t), and z(x, y, t) are
the density, x- and y-momentum, total energy, and the fraction of unburnt fluid,
respectively. The pressure for ideal gas is given by

p = (γ − 1)

(
e− 1

2

(
m2 + n2

)
/ρ− q0ρz

)
,

and the temperature is defined as T = p/ρ. Let (u, v) = (m/ρ, n/ρ) be the velocity.
The parameters q0, Tc, γ, and ε correspond to chemical heat release, ignition tem-
perature, cp to cv ratio, and reaction time, respectively. The equations have been
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nondimensionalized, leaving the choice of these four parameters to completely deter-
mine the problem.

The focus of this paper is on the computations of stiff detonation waves. For these
waves the viscosity is not as important as for the slower deflagration wave solutions.

Equations (1.1)–(1.3) are usually referred to as the reactive Euler equations with
Arrhenius kinetics. When the source term is replaced by

−1

ε
ρzH(T − Tc),

where H(x) = 1 for x > 0 and H(x) = 0 for x < 0, the kinetics is referred to as
the Heaviside kinetics [21]. The difference in the kinetics affect the details of the
detonation layers, which are of width O(ε) with pressure and temperature spikes that
decay exponentially into the postdetonation equilibria.

One of the main numerical challenges for reacting flows is that the kinetics equa-
tions (1.1) often include reactions with widely varying time scales. The chemical time
scales, as characterized by ε, may be orders of magnitude faster than the fluid dy-
namical time scale. This leads to problems of severe numerical stiffness. Actually, the
stiffness issue with the Heaviside kinetics is the more severe one [11]. Even a stable
numerical scheme may lead to spurious unphysical solutions unless the small chemical
time scale is fully resolved numerically.

Numerical methods for such problems have attracted a great deal of attention
in the last decade. In particular, many works have contributed to the analysis and
development of underresolved numerical methods which are capable of capturing the
physically relevant macroscopic solutions without resolving the details of the deno-
tation layers . Of course, when one does not resolve the chemical scale numerically
(using grid size larger than the reaction zone O(ε)), it is impossible to capture the
pressure and temperature spikes in the reaction zone. Thus the best one can hope for
is to capture the speed of detonation, as well as other wave features associated with
the fluid dynamics. It was first observed by Colella, Majda and Roytburd [9] that an
underresolved numerical method, where ε is not resolved by suitably small time steps
and grid sizes, leads to a spurious weak detonation wave that travels one grid per
time step. Since then, lots of attention has been paid to study this peculiar numerical
phenomenon (see [4], [6], [13], [18], [19]). It is known that numerical shock profile,
an essential ingredient in all shock capturing methods, leads to premature chemical
reactions once the smeared value of the temperature in the numerical detonation layer
is above the ignition temperature. Various approaches have been suggested to fix this
numerical problem. For example, in [11], a temperature extrapolation technique was
proposed. In [5] the ignition temperature was artificially raised. In [20] the reaction
time ε was replaced by a larger one, and thus the reaction zone was made much wider
than the physical one. Recently, a modified fractional step method was introduced
[15], where the structure of the Riemann solution of the homogeneous part was used
to determine where burning should occur in each time step. This recipe works within
the framework of the Godunov-type methods.

Recently, we proposed the random projection method as a general and systematic
method to solve hyperbolic systems with stiff reaction term, applicable to reacting
flow problems [1]. Unlike the random choice method of Chorin for reacting flow [7],
which was originated from Glimm’s scheme [12], and requires solving a generalized
Riemann problem for hyperbolic systems with source terms [4], our method is a frac-
tional step method, which combines a standard—no Riemann solver is needed—shock
capturing method for the homogeneous convection with a strikingly simple random
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projection step for the reaction terms. In the random projection step, the ignition
temperature is chosen to be a uniformly distributed random variable between the two
stable equilibria. At each time step, this random projection will move the shock by at
most one grid point. The statistical average, however, yields the correct speed, even
though the small time scale ε is not numerically resolved. In particular, when the ran-
dom number is chosen to be the equidistributed van der Corput sampling sequence
[14], [8] we have proven, for a model scalar problem, a first order accuracy on the
shock speed if a monotonicity-preserving method, which includes all TVD schemes,
is used in the convection step [1], [2]. A large amount of numerical experiments for
one- and two-dimensional detonation waves demonstrate the robustness of this novel
approach.

The generality of the random projection method lies in the fact that it applies to
any shock capturing method for the homogeneous part, while other approaches, such
as the ideas of [7], [15], are restricted to Godunov-type methods that require Riemann
or generalized Riemann solvers.

In this paper, we conduct extensive numerical experiments to examine the ap-
plicability of the random projection method for reacting flows. We focus on stiff
detonation waves and their interactions with other waves, including the interaction of
detonation waves. Since the aim is to test the validity of an underresolved numerical
method, which completely ignores the details of the reaction zone but captures all the
main features of the solution outside the reaction zone, it is adequate to formulate
this method using the reacting flow model of instantaneous reaction (with zone-width
reaction zone, the so-called Chapman–Jouguet (C-J) model [10]), as given by [7], in
which the chemical heat is released instantaneously:

Ut + F (U)x + G(U)y = 0,(1.4)

U =




ρ
m
n
e


 , F (U) =




m
m2/ρ + p
mn/ρ

m(e + p)/ρ


 , G(U) =




n
mn/ρ

n2/ρ + p
n(e + p)/ρ


 ,(1.5)

with equation of state

p = (γ − 1)

(
e− 1

2

(
m2 + n2

)
/ρ− q0ρz

)
,(1.6)

and the fraction of unburnt gas

z =

{
0 if T > Tc,
1 if T < Tc.

(1.7)

Formally, when the reaction time goes to zero, (1.1)–(1.3) with Arrhenius or Heaviside
kinetics reduce effectively to this model. Although this “zero reaction limit” is not
rigorously justified mathematically, the numerical comparisons between the random
projection method based on this model with the resolved calculations based on the
original kinetics of Arrhenius or Heaviside, as carried out later in this paper, do
support the validity of this reduction unless one wants the full details of the reaction
layer.

There certainly are restrictions with the instantaneous reaction model, or more
generally, with any underresolved numerical method. First, if one needs the details of
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the reaction layer, then one does need to numerically resolve the layer by solving the
full equations (1.1)–(1.3) using fine meshes. Second, these methods cannot predict
the instability in overdrive detonation waves, since, by ignoring the reaction layer, the
peak value of pressure, which oscillates due to the instability, cannot be accurately
computed. In order to obtain such fine structures, one has no choice but to use fine
meshes, at least around the reaction zone by using techniques such as the adaptive
mesh refinements.

The random projection method consists of two steps, the first being any standard
shock capturing method for (1.4), followed by a random projection for the fraction
variable z in (1.7), in which the ignition temperature Tc is replaced by a uniformly
distributed random sequence. Here, the convection step is slightly simpler than the
original one proposed in [1], where the full convection equation, including the homoge-
neous part of the species equation in (1.1)–(1.3), is solved. Algorithms for the collision
of detonation waves are also introduced. Many numerical examples, including the C-J
detonation, strong detonation, collisions of detonation with shocks, rarefaction wave,
or another detonation, as well as two dimensional examples, will be used to justify
the robustness of this novel approach.

The paper is organized as follows. In section 2 we provide a random projection
method for the problem (1.4)–(1.7) in one space dimension with general initial data.
Algorithms for multidetonations are also introduced. In section 3 this method is
extended to two space dimension. In section 4 many numerical examples will be
presented. In section 5 some conclusions are drawn.

2. One-dimensional detonations. In this section, we shall describe the ran-
dom projection method for (1.4)–(1.7) in one space dimension. Moreover, we will
describe its implementation for the case of interaction of detonation waves. The
problem to be solved is given by

Ut + F (U)x = 0,(2.1)

U =


 ρ

m
e


 , F (U) =


 m

m2/ρ + p
m(e + p)/ρ


 ,(2.2)

with equation of state

p = (γ − 1)

(
e− 1

2
m2/ρ− q0ρz

)
,(2.3)

and the fraction of unburnt gas

z =

{
0 if T > Tc,
1 if T < Tc.

(2.4)

Let the grid points be xi, i = · · · ,−1, 0, 1, . . . , with equal mesh spacing h =
xi+1 − xi. The time level t0 = 0, t1, t2, . . . are also uniformly spaced with time step
k = tn+1− tn. We use Un

i = (ρni ,m
n
i , e

n
i , (ρz)ni ) to denote the approximate solution of

U = (ρ,m, e, ρz) at the point (xi, tn) = (ih, nk). Our main interest is an underresolved
numerical method which allows k = O(h) � ε and still obtains physically relevant
numerical solutions.

The random projection method is a fractional step method that consists of a
standard shock capturing method for (2.1), denoted by SF (k) for one time step,
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followed by a random projection step for the fraction variable z defined by (2.4)
where Tc, the ignition temperature, is randomized in a suitable domain. Let Un+1 =
SF (k)Un. To obtain zn+1, we replace (2.4) by

zn+1
j =

{
0 if Tn+1

j > θn,

1 if Tn+1
j < θn,

(2.5)

where Tn+1
j = pn+1

j /ρn+1
j and θn is a random number, chosen one per time step,

between two equilibrium temperatures on both sides of the detonation. To be more
precise, consider the initial data

(ρ(x, 0), u(x, 0), p(x, 0), z(x, 0)) =

{
(ρl(x), ul(x), pl(x), 0) if x ≤ x0,
(ρr(x), ur(x), pr(x), 1) if x > x0,

(2.6)

where x0 is a given point. Without loss of generality these data are chosen such that
the detonation, initially at x = x0, moves to the right. The case when the detonation
moved to the left can be treated similarly. Since our projection always makes z either
1 or 0, therefore, at any time step tn, there is an l(n) = j0, j0 an integer, such that

znj =

{
0 if j ≤ l(n),
1 if j > l(n).

(2.7)

Here l(n) is the location of the jump for z in the approximate solution at time tn and
we assume x0 = l(0)h to be a grid point. Let

θn = (Tl − Tr)ϑn + Tr, Tl = min
x<x0

pl(x, 0)

ρl(x, 0)
, Tr = max

x>x0

pr(x, 0)

ρr(x, 0)
(2.8)

with ϑn being the van der Corput sampling sequence on the interval [0, 1].
The van der Corput sequence is an equidistributed sequence with the minimal

deviation among all random sequences [14]. It is obtained as follows: let 1 ≤ n =∑m
k=0 ik2k, ik = 0, 1, be the binary expansion of the integer n. One gets ϑn on [0, 1]

as

ϑn =

m∑
k=0

ik2−(k+1), n = 1, 2, . . . .(2.9)

Since there are other waves in the domain, one cannot project z according to (2.5)
in the whole domain. Instead, we do it around the denotation, a procedure called the
local random projection in [1]. Specifically, we move the jump of z according to the
following algorithm:

Ssp(k) : set l(n + 1) := l(n)− 1;

For l = l(n)− 1, l(n), . . . , l(n) + d, do

l(n + 1) := l if Tn+1
l > θn;

zn+1
j =

{
0 if j ≤ l(n + 1)
1 if j > l(n + 1)

for all j,(2.10)

where d is the number of smeared points in the shock layer. In the above algorithm,
only d + 2 points will be scanned.



STIFF DETONATION CAPTURING 1005

The stability condition for this algorithm, as well as the algorithms for multidet-
onations (2.15) and (2.20), is the usual CFL condition determined by the operator
SF (k) for the convection terms.

In our numerical comparison, we will compare the random projection method
with the deterministic projection method which projects the fraction of unburnt gas,
z, after the convection step according to the fixed ignition temperature Tc in (2.4).

We now extend the random projection method to handle the problems involving
more than one detonation wave. For clarity of presentation we present only the case
of two detonations. It is straightforward to extend to the case where there are more
than two detonations.

Consider (2.1)–(2.4) with initial data

(ρ(x, 0), u(x, 0), p(x, 0), z(x, 0)) =




(ρl(x), ul(x), pl(x), 0) if x ≤ x1,
(ρm(x), um(x), pm(x), 1) if x1 < x < x2,
(ρr(x), ur(x), pr(x), 0) if x2 ≤ x.

(2.11)
These data are chosen such that the two detonations move toward each other; i.e.,
the detonation initially at x = x1 moves to the right and the one initially at x = x2

moves to the left. Thus after some time, the two detonations will collide.
Let

Tl = min
x<x1

pl(x)

ρl(x)
, Tm = max

x1<x<x2

pm(x)

ρm(x)
, Tr = min

x>x2

pr(x)

ρr(x)
(2.12)

and

θ(1)
n = (Tl − Tm)ϑn + Tm, θ(2)

n = (Tr − Tm)ϑn + Tm.(2.13)

Since the projection always makes z either 1 or 0, the profile of z at any time step
is a piecewise constant function. Therefore, at any time step tn, there are l1(n) = j1
and l2(n) = j2 with j1 ≤ j2 integers such that

znj =




0 if j ≤ l1(n),
1 if l1(n) < j < l2(n),
0 if l2(n) ≤ j.

(2.14)

Here we assume that x1 = l1(0)h and x2 = l2(0)h are grid points. Since x1 ≤ x2, then
l1(0) ≤ l2(0). One can use the following algorithm to obtain zn+1 if the positions
of the two detonations at time tn, i.e., l1(n) and l2(n), are known. The detailed
algorithm to find zn+1 is as follows:

Scp(k) : lmid = (l1(n) + l2(n))/2;

set l1(n + 1) := l1(n)− 1;

For l = l1(n)− 1, l1(n), . . . ,min {l1(n) + d, lmid + 1} do

l1(n + 1) := l if Tn+1
l > θ(1)

n ;

set l2(n + 1) := l2(n) + 1;

For l = l2(n) + 1, l2(n), . . . ,max {l2(n)− d, lmid − 1} do

l2(n + 1) := l if Tn+1
l > θ(2)

n ;

zn+1
j =




0 if j ≤ l1(n + 1)
1 if l1(n + 1) < j < l2(n + 1)
0 if l2(n + 1) ≤ j

for all j.(2.15)
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This algorithm still works even after the detonations have collided and then
become extinct. After the detonations have collided, the fraction of unburnt gas
z ≡ 0. From this algorithm, once l1(n) ≥ l2(n) at some time step t = tn, then
l1(n + 1) ≥ l2(n + 1) for the next step. Thus the profile of zn+1 determined from
(2.15) is the zero function.

Another case is when two detonations move away from each other. Consider the
initial data

(ρ(x, 0), u(x, 0), p(x, 0), z(x, 0)) =




(ρl(x), ul(x), pl(x), 1) if x < x1,
(ρm(x), um(x), pm(x), 0) if x1 ≤ x ≤ x2,
(ρr(x), ur(x), pr(x), 1) if x2 < x.

(2.16)
These data are chosen such that the two detonations move away from each other; i.e.,
the detonation initially at x = x1 moves to the left and the one initially at x = x2

moves to the right. In this case, there is no collision of detonations at all.
Let

Tl = max
x<x1

pl(x)

ρl(x)
, Tm = min

x1<x<x2

pm(x)

ρm(x)
, Tr = max

x>x2

pr(x)

ρr(x)
(2.17)

and

θ(1)
n = (Tm − Tl)ϑn + Tl, θ(2)

n = (Tm − Tr)ϑn + Tr.(2.18)

At any time step tn, there are l1(n) = j1 and l2(n) = j2 with j1 ≤ j2 integers such
that

znj =




1 if j < l1(n),
0 if l1(n) ≤ j ≤ l2(n),
1 if l2(n) < j.

(2.19)

The detailed algorithm to find zn+1 is as follows:

Sbp(k) : set l1(n + 1) := l1(n) + 1;

For l = l1(n) + 1, l1(n), . . . , l1(n)− d, do

l1(n + 1) := l if Tn+1
l > θ(1)

n ;

set l2(n + 1) := l2(n)− 1;

For l = l2(n)− 1, l2(n), . . . , l2(n) + d, do

l2(n + 1) := l if Tn+1
l > θ(2)

n ;

zn+1
j =




1 if j < l1(n + 1)
0 if l1(n + 1) ≤ j ≤ l2(n + 1)
1 if l2(n + 1) < j

for all j.(2.20)

Remark 2.1. The algorithms presented in this section reply on the assumption
that initially the detonation front is already formed. Thus it cannot be used to predict
the creation of a detonation from a completely unburned gas (when the initial value of
z is identically zero in the entire domain). Since the detonation will be formed beyond
the initial layer, one can use a refined calculation within the initial layer and then
use the random projection method beyond the initial layer. While one can afford to
resolve the initial layer with a refined computation, it is certainly more advantageous
to use an underresolved numerical method for all later time beyond the initial layer.
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3. The two-dimensional method. In this section, the random projection
method is extended to the two space dimensional problem (1.4)–(1.7). For simplicity,
we consider the detonation waves in a two-dimensional channel. Let the initial data
be

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0), z(x, y, 0)) =

{
(ρl, ul, 0, pl, 0) if x ≤ ξ(y),
(ρr, ur, 0, pr, 1) if x > ξ(y),

(3.1)
where ξ(y) is a given function of y and these data are chosen such that the detonation
moves to the right. Let

θn = (Tl − Tr)ϑn + Tr, Tl =
pl
ρl

, Tr =
pr
ρr

(3.2)

with ϑn (see (2.9) for detail) being the van der Corput sampling sequence on the
interval [0, 1].

Let the grid points (xi, yj) = (ih, jh), i, j = · · · ,−1, 0, 1, . . ., with equal mesh
spacing h. The time level tn = nk, k = 0, 1, 2, . . ., are also uniformly spaced with
time step k. Let Un

i,j =
(
ρni,j ,m

n
i,j , n

n
i,j , e

n
i,j , (ρz)ni,j

)
be the approximate solution of

U = (ρ,m, n, e, (ρz)) at (xi, yj , tn) = (ih, jh, nk). Let SFG(k) be a standard shock
capturing method for (1.4). Notice that, at any time step, for each j, there is an
lj(n) = jn, jn an integer such that

zni,j =

{
0 if j ≤ lj(n),
1 if i > lj(n).

(3.3)

Here, lj(n) is the location of the jump for z at the grid line y = yj in the approximate
solution at time tn = nk. Then the random project algorithm to find zn+1 is as
follows:

S2p(k) : For j do

Set lj(n + 1) := lj(n)− 1,

For l = lj(n)− 1, lj(n), . . . , lj(n) + d, do

lj(n + 1) := l if Tn+1
l,j > θn;

zn+1
i,j =

{
0 if i ≤ lj(n + 1)
1 if i > lj(n + 1)

for all i.(3.4)

The stability condition for this algorithm is still the usual CFL condition deter-
mined from the convection step SFG(k).

Although the above algorithm is written for a detonation traveling in the direction
of the x-axis, little additional effort is needed to extend it to more general cases where
the detonation front moves toward all possible directions. One such example is given in
the next section (Example 4.8) where the detonation is advancing in circular direction.

4. Numerical examples. In order to verify the performance of the random
projection method proposed in this paper, we conduct extensive numerical experi-
ments, including the C-J detonation, strong detonation, collision of a detonation with
a shock, a rarefaction wave, and another detonation. We also give two-dimensional
examples. In our computation, the operators SF (k) and SFG(k) are chosen as the
second order relaxed scheme [17], which is a TVD scheme without the usage of Rie-
mann solvers or local characteristic decompositions. We choose d = 5 in (2.10), (2.15),
(2.20), and (3.4) in our computations in this section.
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In this section, we compare our numerical results with the resolved solutions.
The resolved ones are obtained by solving (1.1)–(1.3) with Heaviside kinetics with
a fractional step approach that consists of a second order relaxed scheme for the
homogeneous part in (1.1) for one time step, followed by an implicit backward Euler
scheme for the chemical reaction. One can see the details in [1] and [11]. Resolved
computations based on the Arrhenius kinetics vary only the detailed structure of the
reaction zones, so it will not be reported here since the goal of the paper is not to
get the accurate reaction zone but all the macroscopic structures outside the reaction
zone.

Example 4.1 (C-J detonation). This is Example 4.1 in [1] revisited. We choose
here the case of ozone decomposition C-J detonation discussed and computed in [9]
and [4]. We use CGS units and the following parameter values:

γ = 1.4, q0 = 0.5196× 1010,
1

ε
= K = 0.5825× 1010, Tc = 0.1155× 1010.

The initial data are taken as the piecewise constant data defining a C-J detonation
as a single wave. (Recall that in the C-J model a C-J detonation corresponds to a sonic
detonation, or, in other words, a sharp reaction wave that moves at minimal speed
relative to the unburnt gas.) The reaction rate K in all the examples is irrelevant for
the projection method but is needed for the resolved calculations. The initial state
was given by

(ρ, u, p, z)(x, 0) =

{
(ρl, ul, pl, 0) if x ≤ 0.005,
(ρr, ur, pr, 1) if x > 0.005,

where pl = p
CJ

= 6.270 × 106, ρl = ρ
CJ

= 1.945 × 10−3, ul = u
CJ

= 4.162 × 104;
and pr = 8.321 × 105, ρr = 1.201 × 10−3, ur = 0. The speed of the sharp front in
this example is D = D

CJ
= 1.088 × 105. In this example, the width of the reaction

zone is approximately 5× 10−5 [4], [9]. This width is irrelevant for the underresolved
calculation but is used for the resolved calculation and for a comparison with the
mesh size to check whether the calculation is resolved or underresolved.

This problem is solved on the interval [0, 0.05]. The “exact” solution is obtained
by using a resolved calculation with h = 5×10−6 (i.e., 10001 grid points on the interval
[0, 0.05]) and k = 5× 10−12. The mesh size and time step resolve the chemical scale.
Now we compare the results obtained by the random projection method and the
deterministic method when the reaction scale is underresolved. We use h = 5× 10−4

(i.e., 101 grid points for the interval [0, 0.05]) and k = 5 × 10−10 and output the
numerical solution at t = 2× 10−7.

Figure 4.1(a) shows the numerical solution by using the random projection method
(2.10), while Figure 4.1(b) shows the numerical solution obtained by the deterministic
method. It can be seen that the random projection method can capture the correct
speed of the discontinuity of the C-J detonation wave even when the chemical reac-
tion scale is not numerically resolved. As mentioned earlier, with an underresolved
method it is impossible to capture the pressure spike which has a width in the order of
reaction scale ε. There are small postshock statistical fluctuations due to the random
nature of the method, but they are at an acceptable level. The deterministic method
produces spurious waves, as was observed in earlier literatures.

In all of the following examples, the deterministic method always produces spu-
rious waves when the chemical scale is not resolved. We will not report those results
and will present only the solutions obtained by the random projection method.
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Fig. 4.1. Numerical solutions of Example 4.1 at t = 2 × 10−7 calculated with h = 5 × 10−4,
k = 5× 10−10. −: “exact” solutions; ++: computed solutions. (a) The random projection method.

Example 4.2 (a strong detonation). This is Example 4.3 in [1] revisited. The
setup of this example is similar to those in Example 4.1 (i.e., γ, q0, K = 1

ε , and Tc
are the same), except that the initial data are changed to

(ρ, u, p, z)(x, 0) =

{
(ρl, ul, pl, 0) if x ≤ 0.005,
(ρr, ur, pr, 1) if x > 0.005,

where ul = 9.162× 104 > u
CJ

, ρl = ρ
CJ

, pl = 8.27× 106 > p
CJ

, and pr, ur, ρr, pCJ ,
u
CJ

, and ρ
CJ

are the same as those in Example 4.1. In this case there is a strong
detonation, a contact discontinuity, and a shock, all moving to the right.

The “exact” solution is obtained similarly as that in Example 4.1. Figure 4.2
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Fig. 4.1 (cont.). (b) The deterministic method.

shows the numerical solutions by the random projection method (2.10) with h =
5 × 10−4 (i.e., 101 grid points for the interval [0, 0.05]) and k = 5 × 10−10 at time
t = 2× 10−7.

Example 4.3 (collision of a detonation with a rarefaction wave). We choose
γ = 1.2, q0 = 50, Tc = 3.0, and 1

ε = K = 230.75. The data are taken from [16]. The
initial state was given by

(ρ, u, p, z)(x, 0) =




(ρl, ul, pl, 0) if x ≤ 10,
(ρm, um, pm, 0) if 10 < x ≤ 20,
(ρr, ur, pr, 1) if 20 < x,

where pl = 40.0, ρl = 2.0, ul = 4.0; pm = 54.8244, ρm = 3.64282; um = 6.2489; and
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Fig. 4.2. Numerical results at t = 2× 10−7 for a strong detonation in Example 4.2 calculated
by the random projection method (2.10). h = 5 × 10−4, k = 5 × 10−10. −: “exact” solutions; ++:
computed solutions.

pr = 1.0, ρr = 1.0, ur = 0. By selecting these data, the “half reaction length” L 1
2

is the spatial unit 1 [16]. This number is used to compare the mesh sizes in resolved
and underresolved numerical experiments.

In this example, there is a right moving detonation, a right moving rarefaction
wave, a right moving contact discontinuity, and a left moving rarefaction wave before
the right moving rarefaction catches the detonation wave.

This problem is solved on the interval [0, 100]. The “exact” solution is obtained by
using a resolved calculation h = 0.005 (i.e., 20001 grid points on the interval [0, 100])
and k = 0.00025.



1012 WEIZHU BAO AND SHI JIN

pressure density

0 20 40 60 80 100
−10

0

10

20

30

40

50

60

70

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

temperature fraction of unreacted gas

0 20 40 60 80 100
0

5

10

15

20

25

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4.3. Numerical results of Example 4.3 involving the collision of a detonation with a
rarefaction wave using the random projection method (2.10). h = 0.25, k = 0.01. −: “exact”
solutions; ++: computed solutions. (a) t = 2 (before collision).

Figure 4.3 shows the numerical solution by using the random projection method
(2.10) with h = 0.25 (i.e., 401 grid points for the interval [0, 100]) and k = 0.01 at time
t = 2 (before collision) and t = 8.0 (after collision), respectively. After the collision,
there are some small downstream wiggles which are numerical artifacts and do not
appear in the resolved calculation.

Example 4.4 (a detonation interacting with an oscillatory profile). The setup
of this problem is similar to those in Example 4.3 (i.e., γ, q0, and Tc are the same),
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Fig. 4.3 (cont.). (b) t = 8 (after collision).

except that we change K = 1000.0 and the initial data to

(ρ, u, p, z)(x, 0) =

{
(ρl, ul, pl, 0) if x ≤ π

2 ,
(ρr(x), ur, pr, 1) if π

2 < x,

where pl = 21.53134, ρl = 1.79463, ul = 3.0151; and pr = 1.0, ρr(x) = 1.0+0.5 sin 2x,
ur = 0.

This problem is solved on the interval [0, 2π]. The “exact” solutions are obtained
by using h = π

10000 (i.e., 20001 grid points on the interval [0, 2π]) and k = h
20 . This is

a resolved calculation.
Figure 4.4 shows the numerical solutions by using the random projection method

(2.10) with h = π
400 (i.e., 801 grid points for the interval [0, 2π]) and k = h

20 at time
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Fig. 4.4. Numerical results of Example 4.4 by the random projection method (2.10). h = π
400

,

k = h
20

. −: “exact” solutions; ++: computed solutions. (a) t = π
20

.

t = π
20 and t = π

5 , respectively.
Example 4.5 (collision of a detonation with a shock, a contact discontinuity, and

a rarefaction). The setup of this problem is similar to those in Example 4.3 (i.e., γ,
q0, K = 1

ε , and Tc are the same), except that we change the initial data to

(ρ, u, p, z)(x, 0) =




(ρl, ul, pl, 0) if x ≤ 10,
(ρm, um, pm, 1) if 10 < x ≤ 40,
(ρr, ur, pr, 1) if 40 < x,

where pl = 54.8244, ρl = 3.64282, ul = 6.2489; pm = 1.0, ρm = 1.0, um = 0.0; and
pr = 10.0, ρr = 4.0, ur = 0.
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Fig. 4.4 (cont.). (b) t = π
5
.

In this example, there is a right moving detonation, a right moving rarefaction, a
stationary contact discontinuity, and a left moving shock before a series of collisions
occur after the detonation catches up with the other waves.

The “exact” solution is obtained similarly as that in Example 4.3. Figures 4.5(a)–
(c) show the numerical solution by using the random projection method (2.10) with
h = 0.125 (i.e., 801 grid points for the interval [0, 100]) and k = 0.005 at time
t = 2 (before collision) t = 4 (between the collisions with the shock and with the
rarefaction), and t = 8.0 (after all collisions), respectively.

This example shows that the random projection method is able to handle the
interactions between the detonation and all other waves of a compressible gas.

Example 4.6 (collision of two detonations). The setup in this example is similar
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Fig. 4.5. Numerical results of Example 4.5 involving the collisions of a detonation with a shock
and then a rarefaction wave by the random projection method (2.10). h = 0.125, k = 0.005. −:
“exact” solutions; ++: computed solutions. (a) t = 2 (before collision).

to those in Example 4.3 (i.e., γ, q0, K = 1
ε , and Tc are the same), except that we

change the initial data to

(ρ, u, p, z)(x, 0) =




(ρl, ul, pl, 0) if x ≤ 10,
(ρm, um, pm, 1) if 10 < x < 90,
(ρr, ur, pr, 0) if 90 ≤ x,

where pl = 30.0, ρl = 1.79463, ul = 3.0151; pm = 1.0, ρm = 1.0, um = 0.0; and
pr = 21.53134, ρr = 1.79463, ur = −8.0.

In this example, there is a right moving detonation, a left moving strong det-
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Fig. 4.5 (cont.). (b) t = 4 (between the collisions with the shock and the rarefaction).

onation, and other waves. After some time, there is a collision between the two
detonations.

The “exact” solution is obtained similarly as that in Example 4.3. Figure 4.6
shows the numerical solution by using the random projection method (2.15) with
h = 0.25 (i.e., 401 grid points for the interval [0, 100]) and k = 0.01 at time t = 4
(before collision) and t = 6.0 (after collision), respectively. After the collisions, the
detonation becomes extinct and two shocks are formed. This example shows that the
random projection is valid even after the detonation disappears.

From the above examples, we can see that the random projection method works
very well for one-dimensional detonation wave problems even if the reaction scale is
not numerically resolved. It not only captures the correct speeds of detonations but
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Fig. 4.5 (cont.). (c) t = 8 (after all collisions).

also is able to handle the interactions between detonations and between a detonation
with other waves of a compressible gas. Its applicability remains after the extinction
of the detonation.

Example 4.7 (a two-dimensional circular detonation front). We consider the
problem (1.4)–(1.7) in a two-dimensional channel; the upper and lower boundaries
are solid walls. We choose γ, q0, K = 1

ε , and Tc the same as those in Example 4.3.
The initial data (3.1) are chosen as pl = 54.8244, ρl = 3.64282, ul = 6.2489, vl = 0.0;
and pr = 1.0, ρr = 1.0, ur = 0.0, vr = 0.0. The corresponding initial setup in one
dimension is a strong detonation. This problem is solved on [0, 300] × [0, 50] with a
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Fig. 4.6. Numerical results of Example 4.6 involving the collision of two detonations by the
random projection method (2.15). h = 0.25, k = 0.01. −: “exact” solutions; ++: computed solutions.
(a) at t = 4 (before collision).

301× 51 mesh, and

ξ(y) =

{
10, |y − 25| ≥ 15,
25− |y − 25|, |y − 25| < 15.

Thus the mesh size h = 1. The time step is chosen as k = 0.01.
Figure 4.7 shows density contours at several different times. One can see that the

triple points, which are the important features of the solution, travel in the transverse
direction and bounce back and forth against the upper and lower walls. On the con-
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Fig. 4.6 (cont.). (b) at t = 6. After collision the detonation becomes extinct and the gas is
completely burned.

trary, the triple points cease to move after some time by using the usual deterministic
method [11].

Example 4.8 (another two-dimensional detonation wave). This is a two-dimensional
example with radial symmetry. The parameters are chosen as

γ = 1.2, q0 = 50, K =
1

ε
= 1000, and Tc = 2.0.

A similar example was used in [15].
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The initial values consist of totally burnt gas inside of a circle with radius 10 and
totally unburnt gas everywhere outside of the circle. Furthermore, the unburnt and
burnt states are chosen in a way analogous to the one-dimensional case, i.e.,

(ρ, u, v, p, z)(x, y, 0) =

{
(ρl, ul(x, y), vl(x, y), pl, 0) if r ≤ 10,
(ρr, ur, vr, pr, 1) if r > 10,

where r =
√

x2 + y2; pl = 21.53134, ρl = 1.79463, ul(x, y) = 10x/r, vl(x, y) = 10y/r;
and pr = 1.0, ρr = 1.0, ur = 0.0, vr = 0.0.

This is a radially symmetric problem, and the important feature is that the deto-
nation front is circular. This problem is solved on the domain [−50, 50]× [0, 50] with
mesh size h = 0.5 and time step k = 0.01. Solid wall boundary conditions are used
along x = 0. Inflow boundary condition is used along x = −50. Outflow boundary
conditions are used along x = 50 and y = 50.

The random projection algorithm for this example is as follows. Notice that at
any time step t = tn, for each j, there are two integers, lj(n) = ln and rj(n) = rn,
such that ln ≤ rn and

zni,j =




1 if j ≤ lj(n),
0 if lj(n) < j < rj(n),
1 if i ≥ rj(n).

(4.1)

Here lj(n) and rj(n) are the left and right locations of the jump for z at the grid
line y = yj in the approximate solution at time tn = nk. Then the random project
algorithm to find zn+1 is as follows:

S̃2p(k) : For j do

Set lj(n + 1) := lj(n) + 1,

For l = lj(n) + 1, lj(n), . . . , lj(n)− d, do

lj(n + 1) := l if Tn+1
l,j > θn,

Set rj(n + 1) := rj(n)− 1,

For r = rj(n) + 1, rj(n), . . . , rj(n) + d, do

rj(n + 1) := r if Tn+1
r,j > θn,

If lj(n + 1) > rj(n + 1) then

lj(n + 1) := rj(n + 1) := (lj(n + 1) + rj(n + 1))/2,

zn+1
i,j =




1 if i ≤ lj(n + 1)
0 if lj(n + 1) < i < rj(n + 1)
1 if i ≥ rj(n + 1)

for all i.(4.2)

The stability condition for this algorithm is still the usual CFL condition determined
from the convection step.

Figure 4.8(a) shows the velocity fields and Figure 4.8(b) shows profiles of the
pressure p, temperature T , and 30 times the mass fraction of unburnt gas, 30z (here
we show 30z, not z itself, for better visualization), on the line y = x (0.0 ≤ x ≤ 50)
by the random projection method (4.2) at time t = 1, t = 2, t = 4, and t = 5,
respectively.
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Fig. 4.7. Numerical density contours for Example 4.7 by the two-dimensional random projection
method (3.4). h = 1.0, k = 0.01.

It can be seen that the detonation front remains circular, and no spurious non-
physical wave is generated when using the random projection method (4.2). On the
other hand, if one uses the deterministic method, the detonation front does not re-
main circular, and spurious nonphysical wave is generated if the same grid size and
time step are used.
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Fig. 4.8. Numerical solutions of Example 4.8 calculated by the two-dimensional random pro-
jection method (4.2) with h = 0.5, k = 0.01. (1): t = 1.0, (2): t = 2.0, (3): t = 4.0. (a) Velocity
fields at different times.
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Fig. 4.8 (cont.). (b) Profiles of pressure p ( - - ), temperature T ( – ), and the fraction of
unburnt gas multiplied by 30, 30z ( - · ) on the line y = x(0 ≤ x ≤ 50) at different times.
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5. Conclusions. In this paper we presented a simple and robust random pro-
jection method for underresolved numerical simulation of stiff detonation waves in
chemically reacting flows. This method is based on the random projection method
proposed by the authors for general hyperbolic systems with stiff reaction terms [1],
where the ignition temperature is randomized in a suitable domain. The method is
simplified using the equations of instantaneous reaction and then extended to handle
the interactions of detonations. Extensive numerical experiments, including inter-
action of detonation waves, and in two dimensions, demonstrate that this method,
although very simple and efficient, is very reliable and robust in calculating a wide
range of problems in reacting flows.

In [3] this method is generalized to multispecies reactions.
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Institute of Technology and the Department of Mathematics of the University of
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Abstract. A simple algorithm is presented for numerical approximation of conformal mappings
for simply connected planar regions. The desired mapping is represented by a normalized polynomial
of degree N , determined by the boundary values which it is presumed to take at the Nth roots of
unity; then its values at the N intermediate 2Nth roots of unity are used to correct the initial guess.
Each iteration, which consists essentially of matrix multiplication and boundary projection, costs
O(N logN) arithmetic operations. Numerical results are provided to confirm linear convergence of
the algorithm.

Key words. numerical conformal mapping, interpolating polynomial

AMS subject classification. 30C30

PII. S1064827599355256

1. Introduction. We present here a method for calculating boundary values of
conformal mappings from the unit disk D0 to simply connected planar domains D.
Following the notation of [4], suppose that the boundary ∂D is parametrized by the
simple closed curve γ : [0, L] → C and that the Riemann mapping f : D0 → D,
normalized by f(0) = 0 (and perhaps f ′(0) > 0 or f(1) = w0), sends the Nth roots
of unity (ζN )j to wj ∈ ∂D. We wish to compute the wj , or, equivalently, the values
σ0, . . . , σN−1 such that γ(σj) = wj . As is well known, f is determined in the interior
of the domain D by its boundary values (see [1], [10]).

The method derived here resembles in some ways that given by Fornberg in [6].
In Fornberg’s method, the starting boundary data, given by an N -tuple of purported
image points 
w∗ = (w∗

j ), determine the set of Fourier coefficients of a boundary

function ζjN �→ w∗
j , and equations are derived for replacing w∗

j with the true values
wj , characterized by the property that the Fourier coefficients with negative indices all
vanish. When this is accomplished, the corresponding Laurent series is a polynomial
and gives an approximation to f .

In our method, in contrast, we start with the interpolating polynomial P = P�w∗

of degree N defined by P (0) = 0, P (ζjN ) = w∗
j . The criterion we use to adjust the

values of w∗
j is that P should send the remaining 2N th roots of unity, ζ

j+(1/2)
N onto

the curve γ as well.

Interpolating polynomials were studied by Wegmann [13]. There it is shown that
for ∂D sufficiently smooth and for N sufficiently large, there is a unique (suitably
normalized) polynomial of degree N + 1 close to f which takes the 2Nth roots of
unity to points cyclicly ordered along ∂D. These polynomials approach f as N →∞.
Two algorithms were derived there for approximating these polynomials. The method
we give here (together with several variants) is much simpler than the aforementioned
one: each iteration consists of two multiplications by fixed matrices (alternatively,
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four discrete Fourier transforms) and two projections to ∂D of the N -tuples thus
obtained.

Although faster methods than that of [6] have been developed, we use an exam-
ple given there for the purpose of numerical comparison, since that example is well
known and there exist in the literature comparisons of that method with others. (See,
for example, [11], [12] for calculations with methods by Fornberg, Theodorsen, and
Wegmann, each of which proves superior in certain instances.) Further, this example
is an excellent illustration of the problems caused by the well-known “crowding” phe-
nomenon [4], [9], that is, the tendency for |f ′| to be much larger at certain parts of
∂D0 than others, especially, in loose terms, at points which are sent farther from the
origin. This causes the images of the grid points to be sparse at some parts of ∂D
and heavily concentrated at others, so a large number of grid points is intrinsically
required for a good approximation over the whole boundary.

One must bear in mind that the error in approximating f stems from two con-
tributions: the error of our method in approximating P and the degree to which P
serves as an approximation to f (as studied in [13]). For an analysis of the inherent
error in using a truncated power series in place of f , see [4]. For methods which
calculate the inverse mapping D → D0, see the references in [9], [10]. In many such
cases the most appropiate algorithm would be a Schwarz–Christoffel method, such
as the excellent algorithm given in [5], which completely eliminates the problem of
crowding for polygons.

The method given here is a “boundary method” in the sense that we are not
concerned explicitly with the values of f(z) for 0 < |z| < 1. Some features of our
method are the following. For a fixed value of N , linear convergence is observed for
most domains. No extra work (e.g., interpolation) is required for doubling the number
of grid points. The method produces the image values wj directly, rather than giving,
say, Taylor coefficients (which would then require an additional calculation to find
the wj). Once these image points are found, the values at general boundary points

P (eiβζjN ) can be obtained easily via a discrete Fourier transform. The simplicity of
the method lends itself to easy programming.

2. Notation and preliminaries. Let the domain D be bounded by the curve
γ(σ) ∈ C, 0 ≤ σ ≤ L, as described in the introduction. For each θ ∈ [0, 2π] there is
σ(θ) ∈ [0, L] such that f(eiθ) = γ(σ(θ)). We can assume that the real-valued function
σ(θ) − θ is continuous and L-periodic. We do not require γ to be parametrized
according to arc length. We will need to be able to calculate the projection ργ(w) to
the boundary ∂D for points w near ∂D. For this it may be helpful to have the complex
derivative γ′ �= 0 available computationally. This would be the case, for instance, if
points along the boundary are given numerically and γ is obtained by cubic spline
interpolation [3]. As an alternative, one may work with ∂D defined implicitly by
an equation F (x, y) = 0 and then will need to make only minor adjustments in the
following, eliminating explicit mention of γ and σ.

Let the number N > 1 of grid points be fixed (normally a power of 2 for ef-
ficiency of calulation) and write ζ = ζN = exp(2πi/N). Given 0 = σ0 < σ1 <

· · · < σN−1 < L, set wj = γ(σj) and abbreviate 
ζ = (ζj) = (1, ζ, . . . , ζN−1),


w = (wj) = (w0, w1, . . . , wN−1) ∈ C
N . The interpolating polynomial taking the

Nth root of unity ζj ∈ ∂D0 to wj and fixing the origin can be expressed as

P�w(z) =

N−1∑
j=0

Q(ζ−jz)wj ,(2.1)



NUMERICAL CONFORMAL MAPPING 1029

where

Q(z) =
z

N

1− zN
1− z =

1

N
(z + z2 + · · ·+ zN )

is the unique polynomial of degree N satisfying Q(0) = 0, Q(1) = 1, Q(ζj) = 0 for
1 ≤ j ≤ N − 1. (Observe that P is not identical to the trigonometric interpolation
polynomial as in [8], [9], often given in barycentric form, and which does not fix the
origin.)

We will follow the convention in [13] of writing scalar functions applied element-
wise to N -tuples when there is no cause for confusion. Thus P�w is characterized
among polynomials of degree ≤ N fixing the origin by the property P�w(
ζ) = 
w.

2.1. Rotation of an N-tuple. Fix β ∈ R and define the “rotated” N -tuple

w[β] ∈ C

N by

(
w[β])j = P�w(ζ
j+β) =

∑
k

Q(ζj−k+β)wk =
∑
k

R
[β]
jkwk,

where R
[β]
jk = r

[β]
j−k and

r
[β]
j = Q(ζj+β) =

1

N
eπiβ(sinπβ)

(
cot
( π
N

(j + β)
)
+ i
)
.(2.2)

(We will always understand subindices of elements of C
N to be taken modulo N .)

Thus R[β] = (R
[β]
jk ) is a circulant matrix [2]; that is, its columns are 
r[β], E
r[β],

E2
r[β], . . . , where the shift operator E : C
N → C

N moves the elements cyclically one
space forward. The point of these definitions is that we can express


w[β] = R[β] 
w .(2.3)

Since 
w[β] can also be interpreted as the convolution 
r[β] ∗ 
w, we know that it can be
evaluated by a fast fourier transform (FFT) (see [8], [9]) implying a computational
cost of O(N logN) multiplications.

The matrix R[β] is a smooth function of β of period N . Since the function
z �→ P�w(ζ

βz) sends 
ζ to 
w[β], by the characterization of our interpolating polynomials
we have PR[β] �w(z) = P�w(ζ

βz) for all β, 
w, and z. Applying this in particular with
β + β′ in place of β yields the matrix relation

R[β]R[β′] = R[β+β′] .

2.2. Half-click matrix C. We shall mainly be interested in the special value
β = 1/2 and make use of the constants

cj = r
[1/2]
j =

1

N

(
−1 + i cot π

N

(
j +

1

2

))
(2.4)

and 
c = (cj), C = R[1/2]. From the symmetry c̄j = c−(j+1), in other words, C̄ = ECT ,

and the fact that C2 = R[1] = E, it follows that C is unitary:

C−1 = C̄T .(2.5)

In summary, we see that given the values 
w of a normalized interpolating polynomial
at the points of 
ζ via a single matrix multiplication (or FFT) we obtain the values C 
w

of the same polynomial at the intermediate points ζ1/2
ζ = (ζ1/2, ζ3/2, . . . , ζN−1/2).
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2.3. Boundary projection. For the present method, the specific algorithm
for approximating the projection ργ(w) of the point w onto the curve γ = ∂D is
of little importance. For most examples in which ∂D is parametrized as γ(σ), we
have proceeded as follows. Note that ργ(w) is defined if γ is sufficiently smooth
and if w is sufficiently close to ∂D, i.e., if 
w lies in a neighborhood of the N -torus
(∂D)N ⊆ C

N . The boundary curve is covered by a fixed number of small disks, and
any point lying outside of all of these disks is simply mapped to the closest of the
centers. For a point w inside one of these disks, centered at, say, γ(s0), first w is
projected orthogonally to a point ŵ lying on the tangent line to γ at γ(s0). This
determines the approximate amount ∆s = |γ(s0) − ŵ|/γ′(s0) by which s0 should be
incremented. One uses s0 + ∆s as the new s0 and ŵ as the new w. This process,
when repeated, converges quadratically to a point ργ(w) on ∂D.

3. Description of the iterative method. With the preliminary material in
hand, the algorithm is quite simple to describe. Consider “guess” values σ∗j and write
w∗
j = γ(σ∗j ). If these values were correct, i.e., if w∗

j = wj , then by the result of [13]

cited above, we may expect (if N is large) that all values of P�w∗(eiθ) lie on or close
to ∂D. This will be true in particular of the values u∗j = P�w∗(ζj+1/2), i.e., for


u∗ = P�w∗(ζ1/2
ζ) = C 
w∗ .(3.1)

On the other hand, if 
w∗ is badly placed, then P�w∗(∂D0) may stray quite far from
∂D, as illustrated in Figure 1. Consider the set ΣN of N -tuples 
w ∈ (∂D)N such that

u = C 
w ∈ (∂D)N and such that the interleaved points w0, u0, w1, u1 . . . , wN−1, uN−1

lie in cyclic order, positively oriented, along ∂D. This is a topological circle lying as
“diagonal” in (∂D)N , and we consider it to be the set of solutions to the (nonnormal-
ized) mapping problem. The composition

Φγ = ργ ◦ C−1 ◦ ργ ◦ C(3.2)

is defined on a neighborhood of (∂D)N and fixes all elements of ΣN . Conversely, as
long as the interleaved values of 
w and 
u lie in cyclic order, and if D is such that the
reasoning in section 5 applies, then any fixed point 
w ∈ (∂D)N of Φ in fact lies on
ΣN and thus is a solution.

Fig. 1. P�w(∂D0), where D is the unit disk, N = 16, and the values σj are displaced from
the grid values 2πj/N by reducing σj+1 − σj by 10% for j �= 0, 7 and increasing the remaining two
intervals accordingly. The target points wj = e2πiσj are marked with a spot (w0 slightly larger), the

origin with a hollow dot, and the intermediate values uj = P�w(ζ
j+(1/2)
N ) with an “x.” Note how the

increased space between the wj tends to push uj outwards, whereas decreasing the space moves it
inwards.
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These considerations suggest the following algorithm: beginning with 
σ∗, define

w∗ = γ(
σ∗) and calculate the successive approximations

(Φγ)
n(
w∗) .(3.3)

As mentioned in the introduction, the approximation of the mapping f via (3.3)
invoves two types of truncation error: first, the discrepancy remaining between the
nth iterate and its limiting value 
w (assuming convergence exists), and, second, the
discrepancy between the best possible degree N polynomial approximation P�w ∈
ΣN and f itself (i.e., our notion of “solution” ΣN may not be adequate for a given
problem).

3.1. Doubling. For many irregular domains, the mapping may be difficult to
calculate because if one begins with an initial guess w∗

j too far from the correct
values, the u∗j may project to the boundary in the wrong order and the iteration
will not approach the true mapping function. Often the difficulty can be avoided
by beginning with a smaller value of N , applying Φγ one or more times, and then
working with 2N points. Happily, we obtain the doubling at no cost, since the most
recently calculated values of ργ(uj), arrived at after half of the calculations involved
in (3.2), can simply be interleaved in between those of wj ; that is, 
w is replaced by

the “doubled” vector (w0, ργ(u0), w1, ργ(u1), . . .) ∈ C
N .

4. Normalization. Repeated application of the operator Φγ of (3.2) does not
need to conserve any reasonable normalization of the polynomials as mapping func-
tions. We describe here two ways of obtaining normalized solutions to the mapping
problem.

4.1. Boundary point normalization. Here we consider the normalization
f(1) = b ∈ ∂D (equivalently, σ0 = 0 where b = γ(0)). Rather than complicate
the iterative procedure by trying to make it produce ∆
w = 0 automatically, we may
rotate the vector 
w back to a normalized position via the operator R[β] of (2.3). The
equation determining the appropriate value of β is nonlinear, hence it is convenient
to use the following approximation procedure.

Consider the quadratic polynomial q(t) determined by

q(−1) = w−1, q(0) = w0, q(1) = w1.

There are in general two values t+, t− for which q(t±) = b. They need not be real
numbers; however, if all four points w−1, w0, w1, b are close together on ∂D and
if this boundary is reasonably smooth, there will be a unique root close to the real
interval [−1, 1]. This leads us to define

β∗ = Re
4(b− w0)

(w1 − w−1)±
√
(w1 − w−1)2 + 8(b− w0)(w1 − 2w0 + w−1)

(choosing the smaller of the two values) and then to replace 
w by ργR
[−β∗] 
w. We

repeat this until w0 is sufficiently close to b. The limit is Ψγ,b 
w, where we define

Ψγ,b = ργR
[−β](4.1)

for an appropriately chosen β, so that by construction (Ψγ,b 
w)0 = b. There is no
difficulty in implementing it computationally; the convergence of this operaton is
quadratic.
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This “correction by rotation” may be applied after each iteration, after every
few iterations, or at the end. If the value w0 has been allowed to wander very far, a
preliminary applicaton of a power En of the shift operator, i.e., a cyclic rearrangement
of the wj , may be necessary as a preliminary step so that w0 is as close to a as possible.

4.2. Normalized first derivative. The other normalization frequently con-
sidered, of interest especially for theoretical considerations, is f ′(0) > 0. Writing
P ′
�w(0) =

∑
j wjQ

′(0) =
∑
wj = a, we see that f(z) = P�w((|a|/a)z) satisfies this nor-

malization. The new grid values f(
ζ) are thus obtained from 
w = P�w(
ζ) as ργR
[−β] 
w,

where β = (N/2π) arg a. It may be necessary to repeat the process until the desired
accuracy is obtained.

5. Justification of convergence. Here we give an analysis, partly heuristic,
of the effect on Φγ(
w) caused by a small change ∆
w in 
w. This will enable us to
conclude that under reasonable conditions the iterative procedure defined in section
3 converges.

Suppose 
w∗ is near the solution set ΣN , and let 
w ∈ ΣN be the closest element
to 
w∗ in the sense of minimizing the L2 norm ‖
w− 
w∗‖2 = (

∑ |wj −w∗
j |2)1/2. Write


w∗ = 
w +∆
w, 
u = C 
w, 
u∗ = C 
w∗ = 
u+∆
u. By linearity, ∆
u = C∆
w, and since C
is unitary,

‖∆
u‖2 = ‖∆
w‖2 .(5.1)

Recall that ργ(uj) = uj by the definition of ΣN . Write

ργ
u
∗ = 
u+ 
d ;(5.2)

that is, dj is the projection of the complex quantity ∆uj parallel to the tangent
direction of ∂D at wj .

We will suppose that N is so large that ∂D is approximated by a straight segment
from wj−√

N to wj+
√
N . Recall that cj is given by (2.4). It will be convenient to

subdivide the indices from −N/2 to N/2 into the following sets:

I1 : 0 ≤ |j| <
√
N ,

I2 :
√
N ≤ |j| < N/4 ,

I3 : N/4 ≤ |j| ≤ N/2 .

We may use as approximations the values

c0 =
−1
N

+
2

π
i+O(N−2) ,

c√N =
−1
N

+
1

π

(
1√
N
− 1

2N

)
i+O(N−3/2) ,

cN/4 =
−1
N

+
i

N
+O(N−2) ,

cN/2 =
−1
N

+O(N−2) .
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For our purposes it will be sufficient to obtain the remaining cj from these values by
linear interpolation over the corresponding j-intervals. With this approximation one
finds that

∑
I1

cj =
−2√
N

+
1

π

(
2
√
N + 1− 1

2
√
N

)
i+O(N−1) ,

∑
I2

cj =
−1
2

+
1

8π
(2
√
N + 2π − 9)i+O(N−1/2) ,

∑
I3

cj =
−1
2

+
1

4
i+O(N−1) .

We will fix j = 0 for the moment for clarity. Thus ∆u0 =
∑N/2
k=−N/2 c−k∆wk.

For |k| near 0 modulo N , ∆wk is approximately parallel to ∆w0; there is no loss in
generality in supposing that this direction is horizontal. We make the simplifying
assumption that all the ∆wk are approximately the same size, say, |∆wk| = δ. Under
this assumption we have

1

δ
|∆u0| ≥

∣∣∣∣∣
∑
I1

c−k

∣∣∣∣∣−
1

δ

∣∣∣∣∣
∑
I2∪I3

c−k∆wk

∣∣∣∣∣ ≥
7

4π

√
N +O(1) .

Now we estimate d0 = Re ∆u0 =
∑N/2
k=−N/2 Re (c−k∆wk). For k ∈ I1 we have

1

δ
Re

∑
I1

c−k∆wk =
−2√
N

+O(N−2)

from the assumption ∆wk ∈ R. However, over I2 and I3 the directions of ∆wk may
upset the cancellation in the sum

∑
cj estimated earlier. We can at least say

1

δ
|d0| ≤ 2√

N
+

1

δ

∣∣∣∣∣
∑
I2∪I3

c−k∆wk

∣∣∣∣∣ ≤
1

4π

√
N +O(1) .

(The dominant contribution of order
√
N in these estimates comes from I2, where

there is likely to be a large amount of cancellation which has not been taken into
account. This cancellation would be favorable to our estimates. On the other hand,
cancellation in I1, caused by ∆wk in opposing directions, would be unfavorable.)

Since the reasoning applies equally well for all j, we conclude from these upper
and lower bounds (equating |wj | again with δ) that

|dj | ≤ A|∆uj |(5.3)

for any A > 1/7 if N is sufficiently large. In particular, ‖
d‖2 ≤ A‖∆
u‖2. Using (5.1),
we may express this as

‖ργC 
w∗ − 
u‖2 ≤ A‖
w∗ − 
w‖2 ;(5.4)

i.e., the operator ργC reduces the L2-distance from vectors to ΣN by a factor less
than 1. The same is evidently true of the operator ργC

−1, and hence by (3.2) of Φγ
as well.
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The above reasoning depends on several assumptions regarding the distribution of
the wj , their relative sizes, the value of N , etc. To the extent that these assumptions
are valid, we infer that the distance of the sequence {Φnγ (
w∗)} to the set ΣN tends to
zero. We can say more. Note that in fact

Φγ(
w
∗) = ργ(
w + C−1 
d) .

Since projection onto ∂D does not increase distance,

|Φγ(
w∗)j − wj | < |(C−1d)j | ≤ ‖C−1d‖2(5.5)

≤ A‖∆
w‖2.(5.6)

We have argued that ‖∆
w‖2 decreases geometrically over successive iterations. There-
fore the wj form a Cauchy sequence as n → ∞, and it follows that Φnγ (w

∗) tends in
fact to an element of ΣN .

6. Computational results. The numerical experiments reported here were car-
ried out on a SPARC 10 workstation, programmed in C and in Mathematica. In
order to take advantage of the FFT algorithm, N is always taken to be a power of
2. From the experiments made, the convergence is linear. For convenience we report
the changes of values in the max norm ‖
v‖∞ = max |vj |; observations with the L2

norm produced no significant differences. Where an explicit formula for the mapping
function is available, we have used this data in the comparisons. Since this does not
hold in most practical problems, we comment first on ways to ensure that the re-
sults obtained are reasonable. Mere convergence of 
w(n) = Φn(
w∗) to 
w is of course
insufficient.

Observe that in the context we are working, the values wj represent most naturally
not the polygon with these points as vertices but rather the image of the unit circle
under the polynomial P�w. This image curve can be calculated exactly using the
rotation operator R[β] of (2.3). We have done this for all of the figures presented in
this article, choosing a number M (= 10) of subdivisions for each of the N subarcs
and applying the rotation matrices R[m/M ] to 
w for m = 1, . . . ,M − 1. The elements
of the resulting M N -tuples were then interleaved and then graphed.

Suppose 
w(n) → 
w ∈ (∂D)N . Whenever there is evidence that the image curves
P�w(n)(∂D0) tend to ∂D (and wrap only once around the domain), it follows from
standard reasoning using the argument principle that the holomorphic functions P�w(n)

in fact converge to a normalized univalent polynomial P . Since clearly P (
ζ) = 
w, we
have P = P�w. As an alternative to checking graphically, one can examine the norm
‖(
w(n))[β] − 
w[β]‖∞ of the discrepancies of the rotated points. At any rate, it is
sufficent to check convergence of the half-click points 
u(n) to verify that the iterations
are approximating a point of ΣN ; we have marked these points in the figures with an
“x”.

Example 1. The diskD = |w−α| < 1 admits as conformal mapping the normalized
Möbius transformation f(z) = α − (α − z)/(1 − αz). Let α = 0.8. We have applied
successive doubling of points from N = 4 up to N = 32 after a single application of
Φγ for each N and then continued to iterate from that point with N fixed. Table 1
shows the changes observed in 
w in the norm ‖ ‖∞ (these are roughly proportional
to the changes in σ) to each iteration from the previous one. For comparison, the
differences between the approximations and the true values w∞ = f(z) are given in
the rightmost column. These are also seen to decrease geometrically.
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Table 1
Changes in �w and discrepancy from true value for mapping to shifted disk, α = .8, N = 32.

Iteration ‖∆�w‖∞ ‖�w − �w∞‖∞
4 1.4 1.2
8 .22 .22

16 .21 .26
32 .098 .14
32 .027 .044
32 .011 .018
32 .0044 .0067
32 .0018 .0023
32 .00074 .0005

N=32 N=32

N=4 N=8 N=16

Fig. 2. Successive doubling of grid points for mapping to a shifted disk. We begin with the 4th
roots of unity as the initial guess. For N = 4, 8, 16 (top row) and 32 (bottom row, left) the image of
the unit circle is shown after a single application of Φγ . The half-click points are interleaved into
the N-tuple obtained, thus effectively doubling N for the next step. For N = 32 we also show the
image after the second iteration. Convergence would not be obtained if the initial guess were the
32nd roots of unity; the last image depicts the corresponding image boundary.

The images of ∂D0 under the interpolating polynomials are drawn for the first five
iterations in Figure 2. Note that for N = 32 the interpolating polynomial gives quite
a good approximation even near the right-hand side of the domain, where extremely
few grid points are mapped due to the crowding phenomenon.

Example 2. We consider the inverted ellipse with mapping function f(z) =
2αz/((1 + α) − (1 − α)z2); the image domain is bounded by the curve γ(σ) =
(eiσ(1− (1− α2) sin2 σ))1/2, 0 ≤ σ ≤ 2π. We will use α = .25.

Starting with the Nth roots of unity, N = 32, iteration of (3.2) yields the results
given in Table 2. The images of ∂D0 under some of the corresponding interpolating
polynomials are shown in Figure 3. After 14 iterations we found the value of the
first coordinate σ0 to be less than 10−11, which indicates that there has essentially
been no wandering of the base point w0, even though no normalization was applied.
This was to be expected due to the symmetry of the domain. Upon further iteration,
we found that while the successive differences ‖∆
w‖∞ continued to manifest linear
convergence, around the 20th iterate the true discrepancy ‖
w − 
w∞‖∞ stabilized at
around 10−4. This clearly reflects the fact that a polynomial of degree N = 32 cannot
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Table 2
Accuracy measurements for inverted ellipse, α = .25, N = 32.

Iteration ‖∆�w‖∞ ‖�w − �w∞‖∞
1 .38 .58
2 .071 .23
3 .046 .16
4 .031 .11
5 .022 .081
6 .017 .058
7 .012 .042

Iteration ‖∆�w‖∞ ‖�w − �w∞‖∞
8 .0094 .03
9 .0071 .021
10 .005 .014
11 .0033 .0085
12 .0021 .0052
13 .0013 .0032
14 .00079 .0019

Fig. 3. Image curves for inverted ellipse of Example 2: iterations 1, 2, 3, and 14 (top two rows).
Magnifications of the middle row near the point w = f(i) (bottom row) shows how the algorithm has
straightened out “knotting” of the boundary.

approximate this domain any better. When we doubled the grid size (using the 
w
just obtained), the discrepancy was reduced to about 10−8 (see Figure 4). We have
observed this type of improvement of the absolute accuracy with increased N in all
examples tested.

Example 3. We give a nondifferentiable example, the square with vertices at
±1± i. Here N is taken to be 32, and the original points are equally spaced along the
perimeter. For the projection ργ we have preferred to use an obvious ad-hoc function
taking advantage of the easy geometry. The true mapping is given by an elliptic

integral, f(z) = az
∫ 1

0
(1 + r4z4)−1/2dr, where a > 0 is chosen so that f(1) = 1. It

can be seen from Figure 5 that a good approximation at the corners requires, apart
from reducing ‖∆
w‖∞, a large number of grid points. As Table 3 confirms, the
approximation of f is not improved by iterating closer to ΣN for fixed N .
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-20

-15

-10

-5

0
lo
g
1
0
‖∆
w
‖ ∞

Iteration

N = 64

N = 32

Fig. 4. Comparison between successive differences (solid lines) and discrepancy from true
value (dotted lines) for the inverted ellipse of Example 2. With N = 32 grid points, after n = 20
the mappings corresponding to Φnγ (�w

∗) no longer approach the true f but rather continue to tend
towards the best possible approximation by a degree-N polynomial. For N = 64 the polynomials
approximate f several orders of magnitude more closely.

Fig. 5. Polynomial approximation of conformal mapping to square domain. The rounding of
the image of ∂D at the corners is not improved even as the iterates converge to a limiting value, as
the number N = 32 of grid points is insufficient.

Example 4. The last example we study is taken from Fornberg [6]. The boundary
of D is defined to be the set of points w such that Fα(w) = 0, where

Fα(w) = ((Re w − .5)2 + (Im w − α)2)(1− (Re w − .5)2 − (Im w)2)− 0.1 .(6.1)

In this example no parametrization of the boundary curve is explicitly needed; the
projection to the boundary was carried out by Newton’s method, that is, replacing w
by w − F (w)|∇F (w)|−2 where ∇F (w) ∈ C is the gradient of F .

For α large, D approximates the disk |w− .5| = 1; see Figure 6. A more detailed
depiction may be found in [6]. For α = .5 the crowding phenomenon has reached the
stage where the distance between consecutive grid points at the upper right edge of
the domain is more than 500 times as large as at the upper left. One consequence of
this is that an initial guess must be rather close to the sought-after values in order
for the algorithm to converge.

To explain the comparative chart given in Table 4, it is necessary to summarize
a few basic features of Fornberg’s method. The initial guess is used to calculate a
matrix and a vector; this step is referred to as an “outer iteration.” Given this data,
a series of “inner iterations” is carried out to arrive at essentially what we have called
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Table 3
Approximations of square, N = 32.

Iteration ‖∆�w‖∞ ‖�w − �w∞‖∞
1 .21 0.23
2 .0089 0.022
3 .00033 0.013
4 .000012 0.012
5 .44×10−6 0.012
6 .16×10−7 0.012
7 .58×10−9 0.012
8 .21×10−10 0.012
9 .78×10−12 0.012

0.5 1.

-1.

0.5

1.
2.0

0

1.0

0.5

Fig. 6. The domains defined by (6.1) for α = 2.0, 1.0, .5. The number N of grid points is given
in Table 4. The vast majority of the image points are concentrated in the upper left-hand area. Note
the wandering of w0 (marked by a spot near the right) allowed by the nonnormalizing algorithm.

here ∆
w. According to [6], the cost of one outer iteration with K inner iterations is
7 + 4K FFTs, whereas the cost of our Φγ is 4 FFTs.

The strategy in Fornberg’s calculation, which we have applied here as well, is
to let the values of α decrease gradually. We have also replicated the strategy of
applying two Newton iterations to bring the points closer to the curve for each new α
and have used a single Newton iteration as an approximation of ργ in calculating Φγ .
To compensate for the increased crowding with decreasing α, at certain moments the
number of grid points is doubled (recall section 3). In [6] the doubling was done by
a fourth-order polynomial approximation, requiring an additional type of calculation
as compared to the present method.

We have found that under the above conditions, our method does not jump well
from α = ∞ to α = 2.0 with N = 128 grid points. In [6] this was accomplished,
starting from 128 equidistant points, in 11 outer iterations, corresponding to 225
FFTs. Instead we have doubled repeatedly from N = 4 to N = 128, utilizing 44
FFTs, and afterwards copied the decrements and doublings in [6]. The results are
gathered in Table 4. To facilitate the comparison, we show the number of FFTs (each
Φγ is 4 FFTs) used at each step.
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Table 4
Comparative results for domain given by (6.1). Increments of the domain parameter α are

paralleled by doubling of grid size N as in [6]; the cost in FFTs for the changes ‖∆�w‖∞ and
“Accuracy of Taylor coefficients” is shown for the two methods. The change ‖∆�a‖∞ of the Taylor
coefficients recalculated from the output of our method is also reported.

Iterating Φγ : Method of [6]:

α N FFTs ‖∆�w‖∞ ‖∆�a‖∞ FFTs Accuracy of
Taylor coefs.

2.0 4 16 .48×10−1

2.0 8 4 .89×10−1

2.0 16 4 .16×10−1

2.0 32 4 .18×10−2

2.0 64 8 .91×10−5

2.0 128 0 —
1.5 128 24 .13×10−8 .70×10−9 96 .14×10−7

1.2 128 36 .45×10−8 .37×10−9 100 .33×10−5

1.2 256 0 — 50 .97×10−8

1.0 256 48 .68×10−7 .63×10−8 108 .17×10−5

1.0 512 0 — 50 .40×10−8

.9 512 44 .53×10−7 .82×10−8 116 .26×10−6

.9 1024 0 — 89 .98×10−10

.8 1024 80 .35×10−8 .33×10−9 155 .42×10−7

.8 2048 0 — 81 .55×10−11

.75 2048 112 .41×10−9 .37×10−10 143 .58×10−9

.72 2048 108 .40×10−8 .35×10−9 151 .40×10−8

.7 2048 108 .95×10−8 .81×10−9 120 .30×10−7

.7 4096 0 — 81 .31×10−11

.68 4096 148 .12×10−9 .97×10−11 151 .38×10−10

.66 4096 148 .53×10−9 .42×10−10 151 .13×10−9

.64 4096 136 .92×10−8 .69×10−9 159 .29×10−8

.62 4096 136 .33×10−7 .23×10−8 140 .19×10−7

.6 4096 144 .48×10−7 .33×10−8 148 .84×10−7

.6 8192 0 — 93 .23×10−10

.58 8192 168 .19×10−7 .12×10−8 167 .78×10−9

.56 8192 188 .14×10−7 .83×10−9 171 .90×10−9

.54 8192 180 .11×10−6 .63×10−8 171 .22×10−7

.54 16384 0 — 77 .28×10−10

.52 16384 180 .46×10−6 .23×10−7 178 .99×10−9

.5 16384 212 .25×10−6 .11×10−7 228 .15×10−7

Several observations are in order regarding the accuracy obtained. As in the
previous examples, we have measured the error given for 
w as the largest change in
wj in the last iteration of Φγ calculated. The error reported in [6] is in terms of the
Taylor coefficients, which is what that method produces directly; these range from
10−7 to 10−11 approximately for the values of α considered here. In each row of
Table 4 from α = 1.5 on, to provide an additional comparison we calculated at the
beginning of the last iteration of Φγ the (Taylor) coefficients 
a∗ = (a∗1, . . . , a

∗
N ) of

P�w∗ from the values obtained for 
w∗. This was accomplished by applying the inverse
Fourier transform and shifting to the left (not included in the FFT count in the table).
After the iteration we similarly calculated the corresponding Taylor coefficients 
a and
have included in Table 4 the maximal difference of aj−a∗j . However, it must be noted
that comparison of this data with that of [6] is complicated by the fact that the results
given there correspond only to the change caused by the “outer iterations.” It may
also be noted that an error of 10−7 in each of N = 16, 384 coefficients of a polynomial
evaluated for |z| = 1 may induce an error of as much as 10−3 in wj , regardless of the
algorithm used to evaluate the polynomial. Since in these calculations we have not
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‖ ∞
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Fig. 7. Comparison of decreasing of ∆w for methods based on Φγ (solid line) and Ψγ,bΦγ
(dotted line). Note that the renormalization by the rotation Ψγ,b has not increased the accuracy of
convergence for the first 8 rotations, but after that point it has impeded loss of convergence coming
from floating of the base point.

applied any normalization as described in section 4, w0 is allowed to “float” along the
boundary; its position is marked by spots near the right-hand side of Figure 6.

One may ask to what extent the changes observed in 
w may be due to this
floating of the base point, which could thus mask how fast 
w is really approaching
the set of solutions ΣN . In another experiment, we took the 2048-point vector 
w
corresponding to α = 0.75 in Table 4 and constructed a new initial guess 
w∗ by
sampling from it N = 256 points defined by w∗

j = w(8j). When Φγ was applied, the

differences ∆
w ceased to decrease at about 10−6. Then we applied to the initial 
w∗ the
algorithm defined by Ψγ,bΦγ . (After each Φγ , a single b was calculated as described
in 4.1 to rotate the initial boundary point approximately to where it had been.) Now
differences as small as 10−9 were obtained in the same number of iterations, as shown
in Figure 7. Thus we see that in the Φγ algorithm, the floating base point phenomenon
has destroyed convergence, which is recovered by renormalizing in each iteration. To
discount the possibility that the sequence obtained with Ψγ,b had better convergence
merely due to a contribution of the additional projection involved in this operation,
in another test several extra iterations of Newton’s method were added to Φγ ; these
made no significant difference.

In contrast, in several other tests, in particular with the examples given in this
paper, the Ψγ,bΦγ method produced little or no acceleration of convergence with
indeed a higher cost in terms of FFTs.

7. Closing remarks. While we have studied exclusively the algorithm obtained
by iterating the operator Φγ (with possible renormalization), we wish to suggest that
the interpolating polynomial P�w is an object of intrinsic interest. Possibly more
sophisticated algorithms could be developed, based on the ideas presented here, to
obtain better convergence. This could involve using R[β] with values other than
β = 1/2, or perhaps using the fact that the derivatives of the P�w at the points of 
ζ
are also readily available computationally.
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The conjugate operator, also known as the Hilbert transform (see [7], [9], [10]),
which transforms a real-valued function on ∂D0 into its conjugate function, involves
integration of the kernel cot(s− t). This looks suspiciously like the multipliers in the
matrix C. It would be interesting to know if our iterative process is the discretization
of an integral operator or some similar concept as N → ∞. Unfortunately, letting
N → ∞ in the four operators composing φγ in (3.2) causes each of them to tend to
the identity operator, which thus gives no information.

We close with the following question. Consider in general N points wj on ∂D
equally spaced according to arc length. These generate N intermediate points uj as
we have seen, not generally lying on ∂D. If the wj are shifted by a fixed amount of
arc length in the same direction, we obtain from them a new set of uj . Since the
linear operators C and E commute, the 
u thus obtained evidently trace out a curve,
in some sense dual to ∂D. What curve is this in general, how does it depend on N ,
and what information can it give us regarding conformal mapping?

Acknowledgment. I am grateful to the referees who pointed out some serious
errors in the first version of this article and supplied several valuable suggestions.
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APPLICATION OF AN INVERSE PROBLEM FOR SYMMETRIC
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Abstract. This paper gives an algorithm for constructing symmetric periodic potential q(x)
of Hill’s equation from given roots of ∆(λ) − 2 = 0. The problem arises from synthesizing dual-
mode ring electrical circuits. In the presented method, the discriminant ∆(λ) of Hill’s equation is
determined from the roots of ∆(λ) − 2 = 0 at first, and then q(x) is constructed from the roots of
∆(λ)± 2 = 0 and ∆(λ) = 0. Examples are provided to verify the algorithm.

Key words. inverse problem, Hill’s equation, dual-mode ring circuit

AMS subject classifications. 94C99, 78A46

PII. S1064827500376211

1. Introduction. In analyzing lossless dual-mode ring circuits with distributed
parameters, it is often required to solve the following Hill’s equation [1]:

−y′′(x) + q(x)y(x) = λy(x),(1.1)

where the real periodic potential function q(x) is related to the characteristic impedance
of the ring circuit and satisfies

q(1 + x) = q(x), q(1− x) = q(x), x ∈ (0, 1).(1.2)

Let y1(x, λ) and y2(x, λ) denote the two linearly independent solutions of (1.1), where
y1(0, λ) = 1, y′1(0, λ) = 0 and y2(0, λ) = 0, y′2(0, λ) = 1. Their Wronskian is given
by W (y1, y2) = y1y

′
2 − y′1y2 = 1, and the Hill’s discriminant is defined by ∆(λ) =

y1(1, λ)+y′2(1, λ). The roots of ∆(λ)−2 = 0, ∆(λ)+2 = 0, and ∆(λ) = 0 are denoted
by λi(i = 0, 1, 2, . . .), µi(i = 1, 2, . . .), and γi(i = 1, 2, . . .), respectively. In intervals
of (−∞, λ0), (λ2i−1, λ2i), and (µ2i−1, µ2i), there exists | ∆(λ) |> 2. These intervals
are instability intervals known as forbidden bands because the solutions of (1.1) are
unbounded on the line [2].

Especially in ring electrical circuits,
√
λi stand for resonating frequencies. The

synthesis of such ring circuits is equivalent to solving the potential function q(x)
from given resonating frequencies

√
λi. Generally, periodic potentials can be uniquely

recovered from norming constants and the zeros of y2(1, λ) [2], [3], but in this practical
case, the norming constants are not known in advance. This paper will show that
although q(x) cannot be uniquely constructed in this case, but under the condition of
(1.2), q(x) can belong only to a function set {qn(x)}, which can be wholly determined.
A practical algorithm is provided and is verified by examples.

∗Received by the editors August 4, 2000; accepted for publication (in revised form) April 18, 2001;
published electronically September 26, 2001.

http://www.siam.org/journals/sisc/23-3/37621.html
†Graduate School of Natural Science, Chiba University 1-33 Yayoi-cho, Inage-Ku, Chiba 263-8522,

Japan and Hunan University, Changsha, 410082, People’s Republic of China (xiao@knight.te.chiba-
u.ac.jp).

‡Department of Electronics and Mechanical Engineering, Chiba University, 1-33 Yayoi-
cho, Inage-ku, Chiba 263-8522, Japan (yashiro@cute.te.chiba-u.ac.jp, guan@cute.te.chiba-u.ac.jp,
ohkawa@cute.te.chiba-u.ac.jp).

1042



APPLICATION OF AN INVERSE PROBLEM 1043

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300 350

λ

(λ2i−1,λ2i)λ0

(µ2i−1,µ2i)

γ2iγ2i−1

∆(λ)

Fig. 1. A general shape of ∆(λ).

2. Recover q(x) from λi’s. Without loss of generality, we assume that
∫ 1

0
q(s)ds

= 0 in the following discussions. A general shape of ∆(λ) is depicted in Figure 1. The
roots are arranged as

λ0 < · · · < γ2i−1 < µ2i−1 ≤ µ2i < γ2i < λ2i−1 ≤ λ2i < · · · .(2.1)

Let αi, βi denote the zeros of y′1(1, λ) and y2(1, λ), respectively. We recall some
necessary results at first.

Lemma 2.1. When q(x) ∈ L2(0, 1) and
∫ 1

0
q(s)ds = 0, we have the following

asymptotic formulae for eigenvalues:

αi = (iπ)2 + ν1i,(2.2)

βi = (iπ)2 + ν2i,(2.3)

λ2i−1 = (2iπ)2 + ν3i,(2.4)

λ2i = (2iπ)2 + ν4i,(2.5)

µ2i−1 = [(2i− 1)π]2 + ν5i,(2.6)

µ2i = [(2i− 1)π]2 + ν6i,(2.7)

γi = [(i− 0.5)π)]2 + ν7i,(2.8)

as λ ↑ ∞, and
∑∞
i=1 ν

2
1i,. . . ,

∑∞
i=1 ν

2
7i all converge. [4], [5].

Lemma 2.2. All entire functions of order 1/2, type 1 can be expressed as a
constant multiple of the canonical product formed from its roots [6].
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∆(λ) , ∆(λ)± 2 are all entire functions of order 1/2 and type 1 [2], [6]. Thus, we
can write

∆(λ) = C1

∞∏
i=1

(
1− λ

γi

)
,(2.9)

∆(λ)− 2 = C2

∞∏
i=0

(
1− λ

λi

)
,(2.10)

∆(λ) + 2 = C3

∞∏
i=1

(
1− λ

µi

)
.(2.11)

The estimates of y1(1, λ) and y′2(1, λ) are y1(λ) = cos(
√
λ)[1 + o(1)] and y′2(λ) =

cos(
√
λ)[1 + o(1)] for λ ↓ −∞ [2]. It follows that ∆(λ) = 2 cos(

√
λ)[1 + o(1)] for

λ ↓ −∞. Therefore, we have

lim
λ→−∞

∆(λ)

2 cos (
√
λ)

= 1.(2.12)

Using cos (
√
λ) =

∏∞
i=1(1− λ

Γi
), Γi = [(i− 0.5)π]2, the left-hand side of (2.12) can be

spelled out as

lim
λ→−∞

∆(λ)

2 cos (
√
λ)

= lim
λ→−∞

C1

∏∞
i=1(1− λ

γi
)

2
∏∞
i=0(1− λ

Γi
)

= lim
λ→−∞

C1

2

∞∏
i=1

1− λ
γi

1− λ
Γi

= lim
λ→−∞

C1

2

∞∏
i=1

(
1 +

λ(γi − Γi)

γi(Γi − λ)

)
.(2.13)

From (2.8), γi − Γi = o(1); therefore
∑∞
i=1

λ(γi−Γi)
γi(Γi−λ) is uniformly convergent at least

in (−∞, 0), as is (2.13). This enables us to pass the limit λ→ −∞ into the product
in (2.13),

lim
λ→−∞

C1

2

∞∏
i=1

(
1 +

λ(γi − (i− 0.5)2)

γi(Γi − λ)

)
=
C1

2

∞∏
i=1

Γi
γi

= 1;(2.14)

hence,

C1 = 2

∞∏
i=1

γi
Γi
.(2.15)

In the same way,

C2 = λ0

∞∏
i=1

λ2i−1λ2i

P 2
i

,(2.16)

C3 = 4

∞∏
i=1

µ2i−1µ2i

Q2
i

,(2.17)
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where Pi = (2πi)2, Qi = [(2i− 1)π]2. As a result, (2.9), (2.10), (2.11) become

∆(λ) = 2

∞∏
i=1

γi − λ
Γi

,(2.18)

∆(λ)− 2 = (λ0 − λ)

∞∏
i=1

(λ2i−1 − λ)(λ2i − λ)

P 2
i

,(2.19)

∆(λ) + 2 = 4

∞∏
i=1

(γ2i−1 − λ)(γ2i − λ)

Q2
i

.(2.20)

These equations show that λi, µi, γi, and ∆(λ) are actually equivalent pieces of
information. If λi are provided, ∆(λ), µi, and γi are all obtainable.

We now prove the following theorem.
Theorem 2.3. y′2(1, λ) = y1(1, λ) = 1

2∆(λ) if q(1− x) = q(x).
Proof. When q(1 − x) = q(x), it is obvious that the eigenvalues corresponding

to the boundary conditions of y′(0, λ) = 0, y(1, λ) = 0 and y(0, λ) = 0, y′(1, λ) = 0
are the same. This means that y1(1, λ) and y′2(1, λ) have the same zeros. Because
y1(1, λ) and y′2(1, λ) are also entire functions of type 1, order 1/2, from Lemma 2.1,
it is reasonable to write y1(1, λ) = Cy′2(1, λ), where C is a constant, and from their
estimates

C = lim
λ→−∞

y1(1, λ)

y′2(1, λ)
= 1,(2.21)

it leads to

y′2(1, λ) = y1(1, λ) =
1

2
∆(λ).(2.22)

This proves the theorem.
With it the following relation can be drawn from the Wronskian of y1 and y2:

y′1(1, λ)y2(1, λ) = y′2(1, λ)y1(1, λ)− 1 =
1

4
[∆(λ) + 2][∆(λ)− 2].(2.23)

Equation (2.23) illustrates that the zeros of y′1(1, λ) and y2(1, λ), i.e., αi, βi, can be
only those values of the zeros of ∆(λ)−2 or ∆(λ)+2, i.e., λi or µi. In order to divide
these zeros, more preparatory results are needed as follows.

Lemma 2.4. If
∫ 1

0
q(s)ds = 0, then λ0 < 0 and α0 < 0, unless q(x) = 0 for all

x[7].
Proof. Let y0(x) denote the eigenfunction corresponding to λ0 or α0; then y0(x) �=

0 for all x because y0(x) has the least oscillation in all the eigenfunctions in both cases.
Write (1.1) as

y′′0 (x)

y0(x)
+ λc − q(x) = 0,(2.24)

where λc = λ0, or α0. Integrating it over (0,1), we get

∫ 1

0

y′′0 (x)

y0(x)
dx+ λc = 0.(2.25)
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Forwarding the integration by part leads to

y′0(x)

y0(x)

∣∣∣1
0

+

∫ 1

0

(y′0(x)

y0(x)

)2

dx+ λc = 0.(2.26)

Recall the boundary conditions of y0(1) = y0(0), y′0(1) = y′0(0) for λc = λ0, and

y′0(1) = y′0(0) = 0 for λc = α0. In both cases,
y′0(x)
y0(x)

∣∣∣1
0

= 0. Therefore λc < 0 unless

y′0(x) = 0 almost everywhere. In the latter instance, y0(x) must be a constant. From

(1.1) and
∫ 1

0
q(x)dx = 0, we can see that q(x) = 0 must hold for all x.

This lemma shows that in (2.23) λ0 ought to be assigned to α0.
Lemma 2.5. The zeros of y1(1, λ) and those of y′1(1, λ) interlace; the zeros of

y2(1, λ) and those of y′2(1, λ) interlace [4].
It follows from Lemma 2.5 that µ2i−1 and µ2i can be assigned only to one zero of

y2(1, λ) and one zero of y′1(1, λ), as well as for λ2i−1 and λ2i.
We conclude these points in Theorem 2.6.
Theorem 2.6. When q(1− x) = q(x), the zeros of y1(1, λ) and y′2(1, λ) coincide

with those of ∆(λ), while αi and βi satisfy

α0 = λ0,

(α2i−1, β2i−1)↔ (µ2i−1, µ2i),

(α2i, β2i)↔ (λ2i−1, λ2i).(2.27)

Here we have used a symbolical expression (α2i−1, β2i−1) ↔ (µ2i−1, µ2i) , which
means that we can choose either α2i−1 to be µ2i−1 and β2i−1 to be µ2i or choose
α2i−1 to be µ2i and β2i−1 to be µ2i−1.

By now, we have shown a method to generate the zeros of y1(1, λ), y′1(1, λ) and
y2(1, λ), y′2(1, λ) from λi provided. It is known that to construct q(x) from the
zeros of y1(1, λ) and y′1(1, λ) or y2(1, λ) and y′2(1, λ) are both overdetermined inverse
classical Sturm–Liouville problems that are uniquely solvable [6], [8]. Theoretically,
the division according to (2.27) is infinite, so there exists an infinite function sequence
qn(x) comprising a same ∆(λ). However, as the width of forbidden band decreases
exponentially fast [3], only a limited number of forbidden bands (say, M) will cause
significant influence on qn(x), or we need to consider only approximately 2M qn(x) for
given λi. Practically, if we just want to obtain a q(x) which comprises the provided
λi , not minding whether q(x) is unique or not, we may simply choose a kind of
combination from (2.27). Also, we can construct several qn(x) and from them select
the most proper one for the practical problem at hand.

3. Algorithm and examples. We detail our algorithm as follows.
(1) Generate ∆(λ) from given λi by (2.19).
It is inconvenient to use (2.19) directly in calculation because the canonical prod-

uct contains infinite terms. From (2.4) we assume that λ2i−1 ≈ λ2i ≈ Pi when i > N .
Then (2.19) becomes

∆̃(λ)− 2 = (λ0 − λ)

N∏
i=1

(λ2i−1 − λ)(λ2i − λ)

P 2
i

∞∏
i=N+1

(Pi − λ)(Pi − λ)

P 2
i

= 4 sin2

√
λ

2

λ0 − λ
λ

N∏
i=1

(λ2i−1 − λ)(λ2i − λ)

(Pi − λ)2
,(3.1)



APPLICATION OF AN INVERSE PROBLEM 1047

where sin
√
λ

2 =
√
λ

2

∏∞
1 (Pi−λPi

) is used. Though (3.1) is an approximate formula for
∆(λ) − 2, it guaranteed that the first 2N zeros are actually those provided. This is
enough in practical applications, where we often care only about a limited frequency
range.

(2) Compute µi, γi (i ≤ 2N) from ∆̃(λ).
(3) Obtain αi and βi from (2.27), while the zeros of y1(1, λ) and y′2(1, λ) are the

same as γi.
(4) Construct q(x) from either the zeros of y1(1, λ) and y′1(1, λ) or from the zeros

of y2(1, λ) and y′2(1, λ). Readers are suggested to [8] for the detailed procedure of
solving these kinds of inverse problems.

We will verify this algorithm by two examples.
Example 3.1. The provided λi are those of q0(x) = cos(2πx). In this case, only

the first forbidden band has significant width, so qn(x) contains two typical potential
functions. The second forbidden band may slightly affect the reconstructed potentials.
The four reconstructed potentials from the combination of the first two pairs of zeros
in (2.27) are shown in Figure 2, while the effect of other forbidden bands are too small
to yield a potential function that can be distinguished from these four potentials.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

x

q1(x)
q2(x)
q3(x)
q4(x)

cos(2πx)

Fig. 2. Example of continuous potential q0(x) = cos(2πx). q1(x) ∼ q4(x) are corresponding to
different choices of the first two pairs of zeros in (2.27).

Example 3.2. The provided λi are those of a rectangular pulse q0(x). In this case,
about 15 forbidden bands have significant width, so we may have about 215 different
potentials that comprise the same λi’s as q0(x) and can also be recovered. In Figure
3, we present only eight of them, which are corresponding to different choices for i ≤ 3
in (2.27), and probably the typical shapes in the set of {qn(x)}. qa(x) in the figures
are constructed from the zeros of y1(1, λ) and y′1(1, λ), while qb(x) are from the zeros
of y2(1, λ) and y′2(1, λ). qa(x) and qb(x) agree very well in all these cases.

We have adopted a parameter Er(λi) to examine the errors of the presented
algorithm. Er(λi) is defined as

Er(λi) =
∣∣∣λi − λ̃i

λi

∣∣∣,(3.2)

where λi are those provided values, and λ̃i are calculated from (1.1) by applying
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Fig. 3. q0(x) is a rectangular pulse. Only 23 qn(x) are constructed here.
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Fig. 4. Er(λi) for 0 ≤ i ≤ 20.

constructed qn(x). Figure 4 shows the Er(λi) of all the (a) ∼ (h) cases in Example
3.2.

4. Conclusion. The inverse problem of constructing q(x) of Hill’s equation from
given roots of ∆(λ)− 2 = 0 has been changed to an inverse classical Sturm–Liouville
problem of constructing q(x) from two eigenvalue sequences, which can be solved
by several established procedures. With the presented algorithm, it is possible to
synthesize a ring electrical circuit that resonates at given frequencies.
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Birkhäuser Verlag, Basel, 1986.
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A NOTE ON PRECONDITIONING NONSYMMETRIC MATRICES∗
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Abstract. The preconditioners for indefinite matrices of KKT form in [M. F. Murphy, G. H.
Golub, and A. J. Wathen, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972] are extended to general
nonsymmetric matrices.

Key words. preconditioner, minimal polynomial
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In [2] preconditioners for real indefinite matrices of KKT form

A ≡
(
A B∗

C 0

)

are presented.1 The preconditioners P are of the following form:

(
A B∗

0 ±CA−1B∗

)
,

(
A B∗

C 2CA−1B∗

)
,

(
A 0
0 CA−1B∗

)
.

The preconditioned matrices P−1A have minimal polynomials of degree at most 4.
Hence a Krylov subspace method like GMRES applied to a preconditioned linear sys-
tem with coefficient matrix P−1A converges in 4 iterations or less, in exact arithmetic.

We extend the preconditioners P in [2] to general matrices A by deriving them
from LU decompositions of A. As before, the preconditioned matrices P−1A and
AP−1 have minimal polynomials of degree at most 4.

Let

A ≡
(
A B∗

C D

)

be a complex, nonsingular matrix where the leading principal submatrix A is nonsin-
gular. Let S ≡ D − CA−1B∗ be the Schur complement with respect to A. Since A
is nonsingular, so is S. The idea is to factor A = LDU such that the preconditioned
matrix L−1AU−1 = D has a minimal polynomial of small degree.

Proposition 1 (extension of Remark 2 in [2]). If

P ≡
(
A B∗

0 S

)
,

then AP−1 =

(
I 0

CA−1 I

)
,

and P−1A and AP−1 have the minimal polynomial (λ− 1)2.

∗Received by the editors September 1, 2000; accepted for publication (in revised form) October
18, 2000; published electronically September 26, 2001.
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1The superscript ∗ denotes the conjugate transpose.
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Proposition 2 (extension of (5) in [2]). If

P ≡
(
A B∗

0 −S
)
,

then

AP−1 =

(
I 0

CA−1 −I
)
,

and P−1A and AP−1 have the minimal polynomial (λ− 1)(λ+ 1).
The preconditioned matrix below is the same, up to permutations, as the one in

[1, section 2.1].
Proposition 3. If

P1 ≡
(

I 0
CA−1 −I

)
, P2 ≡

(
A B∗

0 S

)
,

then

P−1
1 AP−1

2 =

(
I 0
0 −I

)
.

The preconditioned matrix is also similar to P−1A and AP−1, where

P ≡
(
A B∗

C D − 2S

)
,

which is an extension of the preconditioner in [2, p. 7].
Remark 1. Extending the preconditioner in [2, Proposition 1] to general matrices

gives

P ≡
(
A
−S

)
.

It can be derived from the scaled LU decomposition A = LUD, where

L ≡
(

I
CA−1 I

)
, U ≡

(
I −B∗S−1

−I
)
, D ≡

(
A
−S

)
.

The preconditioned matrix is

T ≡ AP−1 = LU =

(
I −B∗S−1

CA−1 −DS−1

)
.

If A is of KKT form with D = 0, then

T 2 − T =

(−B∗S−1CA−1 0
0 I

)
.

Since (T 2−T )2 = T 2−T , the preconditioned matrix T has a minimal polynomial of
degree 4.
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CONSTRUCTION OF NEARLY ORTHOGONAL NEDELEC BASES
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PRECONDITIONED SOLVERS∗
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Abstract. This paper presents a systematic approach to constructing high-order tangential
vector basis functions for the multilevel finite element solution of electromagnetic wave problems.
The new bases allow easy computation of a preconditioner to eliminate or at least weaken the
indefiniteness of the system matrix and thus reduce the condition number of the system matrix.
When these bases are used in multilevel solutions, where the multilevels correspond to the order of the
basis functions, the resulting p-multilevel-ILU preconditioned conjugate gradient method (MPCG)
provides an optimal rate of convergence. We first derive an admissible set of vectors of order p,
and decompose this set into two subspaces—rotational and irrotational (gradient). We then reduce
the number of vectors by making them orthogonal to all previously constructed lower-order bases.
The remaining vectors are made mutually orthogonal in both the vector space and in the range
space of the curl operator. The resulting vector basis functions provide maximum orthogonality
while maintaining tangential continuity of the field. The zeroth-order space is further decomposed
using a scalar-vector formulation to eliminate convergence problems at extremely low frequencies.
Numerical experiments show that number of iterations needed for the solution by MPCG is basically
constant, regardless of the order of the basis or of the matrix size. Computational speed is improved
by several orders of magnitude due to the fast matrix solution of MPCG and to the high accuracy
of the higher-order bases.

Key words. P -multilevel finite element methods, Maxwell’s equations, multilevel precondi-
tioned conjugate gradient method, tangential vector basis functions

AMS subject classifications. 65N22, 65N55, 65F10, 83C50

PII. S1064827500367531

1. Introduction. In 1980, Nedelec defined a set of vector finite element basis
functions having the properties that they are complete to order p in the range space
of the curl operator, that they impose tangential but not normal continuity of the
vector, and that they are unisolvent [1].

In this paper, we will call finite elements based on these functions Nedelec ele-
ments and denote the function space spanned by these elements as Ep(curl). Nedelec
elements have been shown to be important in the solution of electromagnetic field
problems [2], [3]. In particular, [4], [5], [6], [7] showed that these elements eliminate
the problem of spurious modes that plague conventional node based approximations of
the vector wave equation derived from Maxwell’s equations. Numerous authors have
derived alternative forms of the Nedelec bases, both for low-order “edge elements”
[3], [7], [8], [9], [10], [11], [12] and for high-order tangential vector elements [5], [6],
[13], [14], [15], [16], [17], [18], [19], [20], [21]. The goal of these constructions has often
been to make the Nedelec bases interpolatory or hierarchical. Hiptmair [22] recently
provided a general abstract framework for the systematic construction of these vector
bases. With such an abundance of methods, the best choice of bases is often debated.
All of the high-order bases are complete to order p-1 in the range space of the curl

∗Received by the editors February 9, 2000; accepted for publication (in revised form) December
1, 2000; published electronically October 11, 2001.
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operator, so their numerical solutions have the same order of accuracy. This means
that they are all optimal in the sense of requiring the minimum number of unknowns
to obtain a pth-order convergence rate. Nevertheless, the question arises: Does any
particular basis set have advantages over the others?

To answer this question, we need to examine more closely the meaning of the
word “optimal” in the tangential vector finite element framework. In terms of ac-
curacy, an infinite number of optimal, nonunique bases may be constructed in this
space. However, the overall performance of these elements varies greatly when one
considers matrix solution speed. Researchers have found that the convergence of it-
erative matrix solution algorithms such as the conjugate gradient algorithm varies
considerably when the system of equations is created using different tangential vector
finite elements [23], [24]. These papers study the condition number of various basis
sets and compare the convergence behavior of the conjugate gradient algorithm with
preconditioning and without preconditioning. Contrary to common belief, some badly
conditioned matrices converge more rapidly than other better conditioned matrices.
Some preconditioned matrices converge slower than others without preconditioning,
while others converge faster with preconditioning; still others take too many iterations
to converge at all. What is going on?

Let us first note that many positive definite systems of equations do not converge
rapidly without preconditioning. Also, note that although it may take considerable
work, even a matrix with a large condition number can be preconditioned to form
a nearly identity matrix. The convergence rate of the conjugate gradient algorithm
is determined by the matrix after preconditioning and is inversely proportional to
the condition number of the preconditioned matrix, not that of the original matrix.
This explains why the performance of some vector sets is dramatically improved after
preconditioning, while the others are not. Further, in the case of the vector wave
equation, the matrix equation is not positive definite and the conjugate gradient
method is not applicable. However, as shown in [25], [26], [27], if the indefinite nature
of the matrix can be eliminated or at least greatly reduced, then the conjugate gradient
method can be applied. The varying convergence results indicate the sensitivity of the
condition number of the preconditioned matrix to both the preconditioner and the
choice of basis functions. Therefore, the question of which basis to use is intimately
tied to the need to find, with reasonable computational cost, a good preconditioner
for the matrix generated by that basis.

This leads us to answer the “optimal by what criteria” question. We propose that
some high-order tangential vector basis sets are better than others because they are
more amenable to preconditioning. Hence we adopt the following criteria for choosing
the optimum tangential vector basis. The optimum tangential vector finite element
basis set is the one that results in the fastest convergence when the resulting system
of equations is solved by the conjugate gradient algorithm.

A matrix perfectly preconditioned into the identity matrix allows the conjugate
gradient algorithm to converge in one iteration. A mutually orthogonal set of vectors,
with the additional property of mutually orthogonal curls of the vectors, generates
a diagonal system matrix for the vector wave equation. Such vectors are, of course,
the eigenvectors of the associated generalized matrix eigenvalue problem and are too
expensive to compute in general. Even if expense were not a factor, the resulting
system eigenvectors span the entire problem domain, unlike finite element basis func-
tions that are local in nature. However, we may readily compute the eigenvectors of
the element matrices. This leads to the question: Is it possible to have high degrees
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of local orthogonality without violating the property of tangential continuity?
The current work extends Babuska, Griebel, and Pitkaranta [28], where orthog-

onal scalar bases are constructed with nodal elements. Further, the construction of
preconditioners for the p-version of scalar finite elements is given in [29], [30], [31].
Here we construct orthogonal vector bases based on the reduction of the number of
negative eigenvalues and the condition number of the system matrix. Unlike previous
work, we optimize the performance of the iterative solver by explicitly exploiting the
connection between the basis vectors, the system matrix, and the preconditioner.

In the following analysis, we focus on the vector wave equation defined in terms
of the curl-curl operator and requiring tangential continuity. Different differential
equations have different requirements of orthogonality and continuity; an optimal
basis set for one differential equation may not be optimal for another. We begin
in section 2 by deriving the system equation from Maxwell equations. In section 3,
we enumerate our strategy for achieving maximum orthogonality, and in section 4 we
describe how to accomplish each strategy. In section 5, we count the numbers of bases
in various spaces. Section 6 provides details of the multilevel-ILU preconditioned
conjugate gradient method (MPCG) algorithm used to solve the system equation.
Numerical results that demonstrate the effectiveness of the newly constructed set are
presented in section 7, and conclusions are drawn in section 8.

2. System equation. FromMaxwell’s equations, the field in a three-dimensional
discontinuity region Ω satisfies the vector wave equation

∇× 1

µr
∇× ⇀

E − k2εr
⇀

E = 0 in Ω(1)

with the boundary conditions
⇀

H × ⇀
n =

⇀

Ht on ΓH ,
⇀

E × ⇀
n = 0 on ΓE .

Here
⇀

E and
⇀

H are the electric and magnetic fields,
⇀

Ht is the excitation magnetic field

on the boundary,
⇀
n is the outward unit normal to the boundary, εr and µr are the

relative permittivity and permeability of the material, respectively, and k is the free
space wave-number.

Applying Galerkin’s method to (1) gives the system equation

Ae = b,(2)

where

A = S − k2T,

Sij =

∫
1

µr
∇× ⇀

αi ·∇× ⇀
αj dΩ,

Tij =

∫
εr

⇀
αi · ⇀αj dΩ,

(3)

and {⇀αi} is a set of vector basis functions.
3. Strategy. Two vectors

⇀
αi and

⇀
αj are orthogonal in a tetrahedra if they

satisfy

⇀
αi⊥⇀αj ≡

∫
tet

⇀
αi · ⇀αj dΩ = 0 when i 	= j.

To derive orthogonal bases, we employ the following strategy.
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3.1. Admissible space. We first define the maximum space of admissible func-
tions that satisfies tangential continuity across the faces of the tetrahedron and then
search the functions in this space to obtain maximum orthogonality.

3.2. Subspace decomposition. The primary reason for nonconvergence of the
conjugate gradient algorithm is that the coefficient matrix A is either nearly singular
or has many negative eigenvalues [25]. As defined in (3), a number of the eigenvalues
of S are zero, generating many negative eigenvalues in A. The combination of zero
and nonzero eigenmodes from S makes it hard to compute a good approximate inverse
matrix. However, if we decompose the basis vectors into two orthogonal subspaces,
rotational and irrotational (gradient), the contribution of S from the gradient space
vanishes [26], [27]. Thus that part of A becomes negative definite and can be roughly
inverted by an incomplete Cholesky factorization.

To avoid confusion, we note that the rotational subspace we construct is only
approximately rotational because one cannot construct a normally continuous basis
in the tangential vector space. However, for the sake of convenience, we use the
term “rotational” throughout this paper to describe the component remaining after
removing the gradient space.

3.3. Model tetrahedron. An orthogonal vector set over one tetrahedron shape
is not necessarily orthogonal in other shapes. However, we cannot have different
orthogonal basis functions over different elements because the continuity requirement
across the common face of two adjacent tetrahedra would be violated. Therefore,
we use the regular tetrahedron as the canonical shape by which to construct the
orthogonal bases, and we use the same bases in all elements. Most tetrahedra in a
well-made mesh are close to being regular so that we achieve near orthogonality in
these elements. Numerical experiments indicate that using the regular tetrahedron as
the canonical tetrahedron shape works well in practice.

3.4. Symmetrization. Symmetrized basis vectors are independent of tetra-
hedron orientation and avoid mixing degenerate modes. Symmetrized or antisym-
metrized basis vectors provide unique sets of basis functions.

3.5. ST-orthogonal. The construction we present is hierarchical in the geom-
etry of the element: edge-associated vectors are made orthogonal to edge-associated
vectors first, and then to face-associated vectors if there are extra degrees of freedom.
A face-associated vector is made orthogonal to face-associated vectors first, and then
to volume-associated vectors if there are extra degrees of freedom. However, volume-
associated vectors are made orthogonal only to themselves. Taking vector products
between admissible vectors and the orthogonalized vectors generates an underdeter-
mined matrix equation. This equation is solved using singular value decomposition
to find the basis vectors.

To avoid mixing gradient vectors with rotational vectors, it is possible only to
make the gradient vectors orthogonal to the other gradient vectors. On the other
hand, rotational vectors can be made orthogonal to both rotational and gradient
vectors. It is crucial to preserve the complete separation of the gradient space as
discussed in section 3.2. The remaining edge-associated, face-associated, and volume-
associated vectors are made mutually orthogonal not only in the vector space itself,
but also in the range space of the curl operator. This is done by forming S and T
matrices for the vector set and then computing the eigenvectors of the (S, T ) pair.
We call the newly formed eigenvector set ST-orthogonal, because the local S and T
matrices computed from this basis set are diagonal. This leads to diagonal matrices
for the local individual blocks within the global matrix.
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3.6. E0(curl) decomposition. We further decompose E0(curl), the lowest-
order tangential vector space, into rotational and gradient spaces by the scalar-vector
formulation of [32]. Without this decomposition, A becomes singular in the low
frequency limit [32], [33], [34]. With this decomposition, A can be scaled by frequency
into a well-conditioned matrix even at low frequencies. This completes the separation
of rotational and gradient spaces.

4. Orthogonal tangential vectors. Let us define the following terms to be
used in the remainder of the paper.

• Gi
e, G

i
f , G

i
v are additional edge-associated, face-associated, and volume-associated

gradient spaces when the order increases from i− 1 to i, respectively.
• Rie, R

i
f , R

i
v are similar to Gi

e, G
i
f , G

i
v for rotational spaces.

• Ei
e, E

i
f , E

i
v : E

i
e = Gi

e ∪Rie. E
i
f , E

i
v are similar to Ei

e.

• GI
e, G

I
f , G

I
v are gradient spaces of order i, i.e., G

I
e = Gi

e ∪Gi−1
e . . .∪G1

e. G
I
f ,

GI
v are similar to GI

e.
• RIe , R

I
f , R

I
v are similar to GI

e, G
I
f , G

I
v.

• EI
e , E

I
f , E

I
v are similar to GI

e, G
I
f , G

I
v.

• Ei is the tangential vector space for a single tetrahedron with function space
complete to order i.
• Ei(curl) is the tangential vector space of a single tetrahedron with range
space complete to order i.
• F i is the tangential finite element space of a contiguous set of tetrahedra with
function space complete to order i.

• F i(curl) is the tangential finite element space of a contiguous set of tetrahedra
with range space complete to order i.
• P i is a polynomial of degree i.

• P
i
is a homogeneous polynomial of degree i.

P i
e , P

i
f , P

i
v : P

i
e = P i(λ0, λ1), P

i
f = P i(λ0, λ1, λ2), P

i
v = P i(λ0, λ1, λ2, λ3).

• #(A) is the number of vectors in A.
• #(e), #(f), #(v) are the numbers of edges, faces, and tetrahedra for a mesh,
respectively.
• A ⊥ B basis vectors in A are orthogonal to those in B.

4.1. Admissible tangential vectors of order p.

4.1.1. Edge-associated vectors. A vector along edge
⇀

l 01 of a triangle can be
written as

⇀
v= f(λ0, λ1)∇λ0 + g(λ0, λ1)∇λ1,

where the λi’s are simplex coordinates in the triangle, and f and g are polynomials

of degree p. To preserve tangential continuity,
⇀
v must vanish on the other two edges

of the triangle, i.e., on
⇀

l 02 and
⇀

l 12. On edge
⇀

l 02

⇀

l 02 · ⇀v
∣∣∣
λ1=0

= 0.

Since

⇀

l ij ·∇λk =




0, i 	= j 	= k,

1, j = k,

−1, i = k,
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f must include a factor of λ1. By the same reasoning, along
⇀

l 12, g must include a
factor of λ0. Consequently, the admissible edge-associated vector has the form

⇀
v= s(λ0, λ1)λ1∇λ0 + t(λ0, λ1)λ0∇λ1,(4)

where s and t are polynomials of degree p − 1. The tangential components of (4)
are seen to vanish on the faces of the tetrahedron except for the faces sharing edge
⇀

l 01. As long as the coefficients of (4) are common on the edge shared by adjacent
tetrahedra, (4) can be added to a tangential vector without altering its tangential

continuity. The number of independent variables in (4) is #(P p−1
e )× 2 = 2(p+ 1

2 ).

4.1.2. Face-associated vectors. A vector on face ∆012 of a tetrahedron can
be written as

⇀
v= f(λ0, λ1, λ2)∇λ0 + g(λ0, λ1, λ2)∇λ1 + h(λ0, λ1, λ2)∇λ2.

To preserve tangential continuity,
⇀
v must vanish on the other three faces of the

tetrahedron. On face ∆123

⇀
v ×∇λ0

∣∣∣
λ0=0

= 0.

Since

∇λi ×∇λj =
{
0, i = j,
⇀

l kl /V, i 	= j,

where V is the volume of the tetrahedron, this gives

1

V
(g
⇀

l 32 +h
⇀

l 13)|λ0=0 = 0.

Therefore, g and h must include a factor of λ0. By the same reasoning, on face ∆023,
f and h must include a factor of λ1, and on ∆013 f and g must have a factor of λ2.
Consequently, the admissible face-associated vector has the form

⇀
v= s(λ0, λ1, λ2)λ1λ2∇λ0 + t(λ0, λ1, λ2)λ0λ2∇λ1 + u(λ0, λ1, λ2)λ0λ1∇λ2,(5)

where s, t,and u are polynomials of degree p − 2. The tangential components of
(5) vanish at all points on all of the faces of the tetrahedron except for the interior
region of face ∆012. As long as the coefficients of (5) are common on the face shared
by the two adjacent tetrahedra, (5) can be added to a tangential vector without
altering its tangential continuity. The number of independent variables in (5) is

#(P p−2
f )× 3 = 3(p+ 1

2 ).

4.1.3. Volume-associated vectors. Along the lines of the above derivation,
the admissible volume-associated vector in the tetrahedron has the form

⇀
v = s(λ0, λ1, λ2, λ3)λ1λ2λ3∇λ0 + t(λ0, λ1, λ2, λ3)λ0λ2λ3∇λ1

+ u(λ0, λ1, λ2, λ3)λ0λ1λ3∇λ2 + w(λ0, λ1, λ2, λ3)λ0λ1λ2∇λ3,
(6)

where s, t, u, and w are polynomials of degree p−3. Since the tangential components
of (6) vanish on all points on all of the faces of the tetrahedron, (6) can be added to a
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tangential vector without altering its tangential continuity. Vector (6) has no direct
interaction with the adjacent tetrahedra and hence can be eliminated to reduce the
total number of unknowns [37].

For reasons to be discussed later, in three dimensions we will use only the following
subspace of the vectors in (6):

⇀
v = s̄(λ1, λ2, λ3)λ1λ2λ3∇λ0 + t̄(λ0, λ2, λ3)λ0λ2λ3∇λ1

+ ū(λ0, λ1, λ3)λ0λ1λ3∇λ2 + w̄(λ0, λ1, λ2)λ0λ1λ2∇λ3

+ λ0λ1λ2λ3




f̄(λ0, λ1, λ2, λ3)(∇λ0 −∇λ1)

+ ḡ(λ0, λ1, λ2, λ3)(∇λ2 −∇λ3)

+ h̄(λ0, λ1, λ2, λ3)(∇λ2 +∇λ3)


 ,

(6′)

where s̄, t̄, ū, and w̄ are homogeneous polynomials of degree p − 3, and f̄ , ḡ, and h̄
are homogeneous polynomials of degree p− 4. The number of independent variables
in (6′) is

#(P̄ p−3
f )× 4 + #(P̄ p−4

v )× 3 = 4(p−1
2 ) + 3(p−1

3 ).

4.2. Admissible gradient vectors of order p.

4.2.1. Edge-associated vectors. Edge-associated gradient vectors can be writ-
ten as ∇P (λ0, λ1), where P is a polynomial of degree p+1. Comparing ∇P (λ0, λ1) =
∂P
∂λ0
∇λ0 +

∂P
∂λ1
∇λ1 with (4), we must have

∂P
∂λ0

= sλ1 and
∂P
∂λ1

= tλ0. Therefore, P
must include factors of λ0 and λ1. Thus admissible edge-associated gradient vectors
have the form

∇P (λ0, λ1) = ∇(λ0λ1h(λ0, λ1)),(7)

where h is a polynomial of degree p− 1. The number of independent variables in (7)
is #(P p−1

e ) = (p+ 1
2 ).

4.2.2. Face-associated vectors. By the same reasoning, admissible face-
associated gradient vectors have the form

∇P (λ0, λ1, λ2) = ∇(λ0λ1λ2h(λ0, λ1, λ2)),(8)

where h is a polynomial of degree p− 2. The number of independent variables in (8)
is #(P p−2

f ) = (p+ 1
2 ).

4.2.3. Volume-associated vectors. In the same way, admissible volume-
associated gradient vectors have the form

∇P (λ0, λ1, λ2, λ3) = ∇(λ0λ1λ2λ3h(λ0, λ1, λ2, λ3)),(9)

where h is a polynomial of degree p − 3. As was the case with volume-associated
admissible vectors, instead of (9) we use the subspace vectors

∇P (λ0, λ1, λ2, λ3) = ∇(λ0λ1λ2λ3)h̄(λ0, λ1, λ2, λ3),(9′)

where h̄ is a homogeneous polynomial of degree p − 3. The number of independent
variables in (9′) is #(P̄ p−3

v ) = (p3).
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4.3. Symmetrization. Let us define two operators, Os(i, j) andOa(i, j). Os(i, j)
symmetrizes a token by adding its symmetric complement as follows:

Os(i, j)f(. . . λi, . . . λj , . . .) = f(. . . λi, . . . λj , . . .) + f(. . . λj , . . . λi, . . .);

Oa(i, j) antisymmetrizes a token by subtracting its symmetric complement as follows:

Oa(i, j)f(. . . λi, . . . λj , . . .) = f(. . . λi, . . . λj , . . .)− f(. . . λj , . . . λi, . . .).

4.3.1. Edge-associated vectors. Given (4) or (7), we compute Os(0, 1)
⇀
v

(λ0, λ1) and Oa(0, 1)
⇀
v (λ0, λ1).

4.3.2. Face-associated vectors. Given (5) or (8), we compute Os(0, 1)
⇀
v

(λ0, λ1, λ2) and Oa(0, 1)
⇀
v (λ0, λ1, λ2). The face-associated vectors are not sym-

metrized or antisymmetrized with respect to λ2.

4.3.3. Volume-associated vectors. Given (6) or (9), we have the following
four possibilities:

Os(0, 1)Os(2, 3)
⇀
v (λ0, λ1, λ2, λ3),

Os(0, 1)Oa(2, 3)
⇀
v (λ0, λ1, λ2, λ3),

Oa(0, 1)Os(2, 3)
⇀
v (λ0, λ1, λ2, λ3),

Oa(0, 1)Oa(2, 3)
⇀
v (λ0, λ1, λ2, λ3).

4.4. Procedure for constructing hierarchical vector bases of order p.

4.4.1. The procedure. The following algorithm may be used to generate the
correct vector basis:

For i = 1 to p do {
1(a) If i >= 3, start with (9′) and construct Gi

v such that

Gi
v ⊥ GI−1

v .(10)

1(b) If i >= 3, start with (6′) and construct Riv such that

Riv ⊥ (Gi
v ∪ EI−1

v ).(11)

2(a) If i >= 2, start with (8) and construct Gi
f such that

Gi
f ⊥ (GI−1

f ∪GI
v).(12)

2(b) If i >= 2, start with (5) and construct Rif such that

Rif ⊥ (Gi
f ∪ EI−1

f ∪ EI
v ).(13)

3(a) Start with (7) and construct Gi
e such that

Gi
e ⊥ (GI−1

e ∪GI
f ).(14)

3(b) Start with (4) and construct Rie such that
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Table 1
Edge-associated basis components.

Coeff. of λ1∇λ0 Coeff. of λ0∇λ1
R1 1 −1
G1 1 1

G2 2λ0 − λ1 −(2λ1 − λ0)
G3 1086λ20 + 362λ21 − 1008λ0λ1 1086λ21 + 362λ20 − 1008λ0λ1

−234λ0 − 117λ1 − 16 −234λ1 − 117λ0 − 16

Rie ⊥ (Gi
e ∪ EI−1

e ∪ EI
f ).(15)

}
Note the following points about this procedure.

1. One needs to construct the volume-associated basis first, because the face-
associated basis is constructed by making it orthogonal to the volume-associated one.
Similarly, the face-associated basis is constructed before the edge-associated one.

2. As mentioned before, to maximize orthogonality, the constructed Gi
e, R

i
e, G

i
f ,

Rif , G
i
v, and Riv are all made ST-orthogonal in each step. This is done by computing

all of the eigenvectors of the local generalized (S, T ) eigenvalue problem and using
the full set of eigenvectors in the local element as the new basis. This new basis
makes both the local S and T matrices diagonal. By the definition of S and T , this
means that we generate a double orthogonality: not only is the new basis orthogonal
over the tetrahedron, the curls of the new basis functions are also orthogonal. For
a gradient space, the S matrix vanishes, and orthogonality is required only between
the vectors themselves. However, in the case of two dimensional waveguide problems
where the field consists of transverse and longitudinal components, one employs vector
bases to approximate the transverse components and scalar bases to approximate the
longitudinal components. In this case, one may want to derive gradient vector bases
from a set of mutually orthogonal scalar bases.

3. The volume-associated vector basis is constructed differently from the edge-
associated and the face-associated ones. It starts with a homogeneous polynomial
instead of a polynomial of complete degree. This restricts its orthogonality with
higher-dimensional spaces, i.e., four-dimensional space, but does not affect its orthog-
onality with lower-dimensional ones. If desired for some reason, one could construct
the four-dimensional components of the basis first and then construct the volume-
associated components using (6) and (9).

The computed bases up to third order are given in Tables 1–6. Notice in Table 1
that the coefficients of G3

e are not homogeneous. If one starts with a homogeneous
polynomial, it is not possible to simultaneously make it orthogonal to the gradient
space of lower order and to the higher dimensional gradient space.

4.4.2. Finite element vector spaces. Since a tetrahedron has six edges, four
faces, and one volume, Ei can be expressed as

Ei = 6EI
e ∪ 4EI

f ∪ EI
v .(16)

The accuracy of S is two orders lower than that of T ; thus S dominates the accuracy
of A. Since missing gradient bases does not affect the accuracy of S, one may without
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Table 2
Face-associated basis components.

Coeff. of λ1λ2∇λ0 Coeff. of λ0λ2∇λ1 Coeff. of λ0λ1∇λ2
G2 1 1 1

R2 1 1 -2

1 -1 0

G3 2λ0 + λ1 − 2λ2 2λ1 + λ0 − 2λ2 λ0 + λ1 − 4λ2

2λ0 − λ1 −(2λ1λ0) λ0 − λ1
R3 λ1 − λ2 −(λ0 − λ2) λ0 − λ1

393λ0 + 80λ1 − 212λ2 −(393λ1 + 80λ0 − 212λ2) −292λ0 + 292λ1

−131λ0 + 168λ1 − 124λ2 −131λ1 + 168λ0 − 124λ2 −44λ0 − 44λ1
+262λ2

Table 3
Volume-associated basis components.

Coeff. of Coeff. of Coeff. of Coeff. of
λ1λ2λ3∇λ0 λ0λ2λ3∇λ1 λ0λ1λ3∇λ2 λ0λ1λ2∇λ3

G3 1 1 1 1
R3 1 1 -1 -1

0 0 1 -1
1 -1 0 0

penalty decrease the accuracy of T by removing a gradient space of order i. This
results in an associated space, Ei−1(curl):

Ei−1(curl) = Ei − (6Gi
e ∪ 4Gi

f ∪Gi
v).(17)

Similarly, for a finite element mesh, we have

F i = #(e)EI
e ∪#(f)EI

f ∪#(v)EI
v ,

F i−1(curl) = F i − (#(e)Gi
e ∪#(f)Gi

f ∪#(v)Gi
v).

(18)

4.5. Further decomposition of E0(curl). E0(curl) is equal to R1
e. Strictly

speaking, R1
e is only locally rotational, and it can have a global gradient subspace. By

using the scalar-vector formulation in [32], this space may be split into two subspaces
R1
ce and ∇φ1, where R1

ce is a cotree subspace of R
1
e, and φ1 is the first-order nodal

basis

R1
e = R1

ce ∪∇φ1.(19)

The definition of the cotree space and the reason that it resolves convergence prob-
lems at low frequency is provided in [34]. We emphasize that separating the gradient
space from the rotational space for additional orders empowers us to deal with only
R1
e. In addition, ∇φ1 is not orthogonal to R1

ce in (19), and R1
ce still contains signif-

icant low frequency components. Incomplete Cholesky decomposition is not a good
preconditioner because of this.

5. Basis count. Since the higher dimensional space is constructed before the
lower dimensional space, we count the number of basis vectors in three dimensions
first.
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Table 4
The effects of mesh refinement and increasing basis order on the number of MPCG iterations

at 10 GHz.

Element
size Basis order

0 1 2 3
h 1 4 9 14
h/2 1 10 14 17
h/4 1 11 16 20
h/8 1 12 13 16

Table 5
Number of nonzero entries per row.

Basis order

Element size 0 1 2 3

h 2.4 12.8 32.6 63.2

h/2 10.6 28 56.2 102.8

h/4 16.9 39 71.2 124.8

h/8 21.4 44.6 78.6 135.4

Eq. (22) 26 50 90 149

Table 6
Number of unknowns per tetrahedra.

Basis order

Element size 0 1 2 3

h 0.3 2.8 10.8 27

h/2 0.6 4.4 14.4 33.5

h/4 0.9 5.3 16.4 37.0

h/8 1.0 5.8 17.4 38.8

Eq. (20) 1.16 6.32 18.48 40.64

5.1. Volume-associated vectors.

5.1.1. Gi
v. Since the volume-associated gradient space is constructed from (9′)

and satisfies (10), it follows that

#(Gi
v) = #(P̄

i−3
v )−#(P̄ i−4

v )

=

(
i

3

)
−
(
i− 1
3

)

=
1

2
(i− 1)(i− 2)

and

#(GI
v) =

(
i

3

)
.
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5.1.2. Ri
v. Since the volume-associated rotational space is constructed from (6′)

and satisfies (11), it follows that

#(Riv) = #(P̄
i−3
f )× 4 + #(P̄ i−4

v )× 3− [#(Gi
v) + #(P̄

i−4
f )× 4 + #(P̄ i−5

v )× 3]
= i(i− 2)

and

#(EI
v ) =

1

2
(i− 2)(i− 1)(i+ 1).

5.2. Face-associated vectors.

5.2.1. Gi
f. Since the face-associated gradient space is constructed from (8) and

satisfies (12), it follows that

#(Gi
f ) = #(P

i−2
f )− [#(GI−1

f ) + #(GI
v)]

⇒ #(GI
f ) =

1

2
i(i− 1)

⇒ #(Gi
f ) = i− 1.

5.2.2. Ri
f. Since the face-associated rotational space is constructed from (5) and

satisfies (13), it follows that

#(Rif ) = #(P
i−2
f )× 3− [#(GI

f ) + #(E
I−1
f ) + #(EI

v )]

= 3

(
i+ 1

3

)
− [#(GI

f ) + #(R
I−1
f ) + #(EI

v )]

⇒ #(RIf ) =
1

2
(i− 1)(i+ 2)

⇒ #(Rif ) = i

and

#(EI
f ) = (i− 1)(i+ 1).

5.3. Edge-associated vectors.

5.3.1. Gi
e. Since the edge-associated gradient space is constructed from (7) and

satisfies (14), it follows that

#(Gi
e) = #(P

i−1
e )− [#(GI−1

e ) + #(GI
f )]

⇒ #(GI
e) = i

⇒ #(Gi
e) = 1.

5.3.2. Ri
e. Since the edge-associated rotational space is constructed from (4) and

satisfies (15), it follows that

#(Rie) = #(P
i−1
e )× 2− [#(Gi

e) + #(E
I−1
e ) + #(EI

f )]

= 2

(
i+ 1

2

)
− [#(GI

e) + #(R
I−1
e ) + #(EI

f )]

⇒ #(RIe) = 1

⇒ #(Rie) =

{
1, i = 1,

0, i ≥ 2,
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and

#(EI
e ) = i+ 1.

5.4. Ei and Ei − 1(curl). From (16), we see that

#(Ei) = 6×#(EI
e ) + 4×#(EI

f ) + #(E
I
v )

=
1

2
(i+ 1)(i+ 2)(i+ 3),

and also from (17) we observe

#(Ei−1(curl)) = #(Ei)− [6×#(Gi
e) + 4×#(Gi

f ) + #(G
i
v)]

=
1

2
i(i+ 2)(i+ 3).

The numbers of basis functions thus computed are identical to those of Nedelec [1].

5.5. Fi and Fi − 1(curl). From (18), we find that

#(F i) = #(e)×#(EI
e ) + #(f)×#(EI

f ) + #(v)×#(EI
v ),

#(F i−1(curl)) = #(F i)− [#(e)×#(Gi
e) + #(f)×#(Gi

f ) + #(v)×#(Gi
v)].

According to [7], ignoring Dirichlet boundaries, an ideal Delaunay tessellation in three
dimensions obeys the following approximate relationships:

#(e) ≈ #(v)× 1.16,
#(f) ≈ #(v)× 2.

Consequently, the total number of degrees of freedom is linearly proportional to #(v)
and can be estimated from the following equations:

#(F i) ≈ #(v)× 1
2
(i+ 1)(i2 + i+ 0.32),

#(F i−1(curl)) ≈ #(v)× 1
2
i(i2 + i+ 0.32).

(20)

As discussed earlier, using F i does not result in a more accurate solution. F i−1(curl)
is favored because it contains fewer unknowns. Notice, however, that the ratio (i+1)/i
is not significant with higher orders.

When the volume unknowns are eliminated, #(F i) and #(F i−1(curl)) are greatly
reduced to

#(F i) ≈ #(v)× (i+ 1)(2i− 0.84),
#(F i−1(curl)) ≈ #(v)× i(2i− 0.84).(21)

One can also estimate the number of nonzero entries by assuming an ideal Delau-
nay tessellation, where an edge is shared by 5 connecting tetrahedra forming a saucer.
This edge interacts with the surrounding 26 edges (including itself), 15 faces, and 5
tetrahedra. Because a face is shared by 2 tetrahedra, it interacts with 9 edges, 7 faces
(including itself), and 2 tetrahedra. A volume unknown interacts with 6 edges, 4



1066 DIN-KOW SUN, JIN-FA LEE, AND ZOLTAN CENDES

faces, and itself. Therefore, we have the following formula for the number of nonzero
entries for #(F i−1(curl)):

NZ ≈
(
1.16i×NZe + 2(i− 1)i×NZf +

1

6
(i− 1)(i− 2)(2i+ 3)×NZv

)
#(v).(22)

NZe, NZf , and NZv and are calculated as

NZe = 26i+ 15(i− 1)i+ 5

6
(i− 1)(i− 2)(2i+ 3),

NZf = 9i+ 7(i− 1)i+ 2

6
(i− 1)(i− 2)(2i+ 3),

NZv = 6i+ 4(i− 1)i+ 1

6
(i− 1)(i− 2)(2i+ 3).

6. Multilevel preconditioned conjugate gradient method. In this work,
we employ Schwarz methods, often used in the domain decomposition area, and ap-
ply them to form an efficient preconditioner for the conjugate gradient algorithm with
p-type finite elements. In particular, we use a multiplicative Schwarz preconditioner.
This structure can be viewed as an overlapping block Gauss–Seidel preconditioner.
Even without conjugate gradient acceleration, the multiplicative method can take far
fewer iterations than the additive version. This theory is provided in [35]. Convention-
ally, multilevel methods are associated with a nested grid that employs a multilevel of
grids [36]. In this paper, the multilevel algorithm employs a single grid but a multilevel
of basis functions. We may think of the approach presented here as a p-refinement
multilevel method [37], [38] instead of as the more traditional h-refinement multilevel
method, where p refers to the order of the element and h refers to the element size.
We employ Schur factorization to obtain an approximate inverse of the system matrix
and treat it as a preconditioner in the conjugate gradient method. It can be proved
that the current approach is equivalent to a V-cycle multigrid method. An advantage
of the current approach is that it provides a better understanding of the approxima-
tion made in computing the preconditioner. We will call the resulting procedure the
MPCG method.

Numbering unknowns from the lowest level to the highest, i.e., from 1 to p, the
system matrix AP has the following block structure:

AP =




A1,1 A1,2 . . . A1,p

A2,1 A2,2

...

...
. . .

...
...

. . .

Ap,1 . . . . . . Ap,p



.

As in section 4, capital index letters denote the entire hierarchy, and lower case letters
denote the additional unknowns. To utilize the multilevel concept, we write the above
in two-level recursive form:

AP =

[
AP−1 AP−1,p

Ap,P−1 Ap,p

]
.
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The above matrix is factorized by Schur factorization:

AP =

[
A′
P−1 AP−1,p

0 Ap,p

][
I 0

A−1
p,pAp,P−1 I

]
,(23)

A′
P−1 = AP−1 −AP−1,pA

−1
p,pAp,P−1.

When A′
P−1 is approximated by BP−1 = AP−1 and the Ap,p’s are approximated by an

incomplete Cholesky decomposition with thresholding ILU, i.e., Ap,p ≈ Bp,p = LDLT ,
we obtain a multiplicative preconditioner

BP =

[
BP−1 AP−1,p

0 Bp,p

][
I 0

B−1
p,pAp,P−1 I

]
.

We use ILU preconditioners to take advantage of the orthogonality of the basis
functions. When AP−1,p and B−1

p,pAp,P−1 are further removed, we obtain a less ef-
fective additive preconditioner. Although the multiplicative preconditioner requires
approximately one additional matrix multiplication in each conjugate gradient itera-
tion (three matrix vector multiplications versus two for the additive preconditioner),
the saving on the number of conjugate gradient iterations well compensates this cost.
Numerical experiments show that for Ap,p, a thresholding constant of 0.01 is a good
choice.

Matrix Ap has two sets of negative eigenvalues: physical and nonphysical [25],
[26], [27]. Nonphysical ones correspond to the gradient space. Physical ones are the
resonance modes of the system with resonance frequency less than the prescribed
frequency. As discussed in section 3.2, nonphysical ones from p greater or equal
to 1 can be easily preconditioned to positive eigenvalues. However, for E0(curl), the
complete separation of gradient and rotational spaces is not done. In order for MPCG
to converge for indefinite problems, A1,1 has to be decomposed exactly. Otherwise,
the preconditioned matrix will remain highly indefinite such that MPCG will not
converge. Also, the mesh has to be fine enough such that A1,1 accurately contains
the low frequency spectrum below the prescribed frequency.

7. Numerical results. Since Ep(curl) is computationally advantageous, we will
focus on studying it numerically. All computations are performed with a Pentium
II, 550 MHz processor PC. First, we demonstrate the accuracy of the elements by
computing the lowest eigenvalue of a rectangular cavity of dimensions 8×10×16 mm3.
We choose this problem because the fields in the cavity are smooth. The eigenvalues
are computed using the Lanczos algorithm implemented with MPCG. The cavity is
first split into two boxes along the longest dimension, and each box is then broken
into six tetrahedra. This gives the coarse mesh. Splitting the boxes into eight boxes
of equal size gives the next finer mesh, and so on. Therefore, the tetrahedra in the
mesh are not perfectly regular, but they are well shaped. To speed computation of
the system matrix, we precomputed the set of constant matrices [21]. For MPCG,
we start with a zero initial guess and allow the residual norm to go down to less
than 1e-4 of the norm of the right-hand side vector. If the discretization error of
solution is less than 1e-4, we let the residuals go two orders of magnitude less than
the discretization error. The results in Figures 1–5 show the normalized error in the
computed eigenvalues varying the basis order and the element size. P -refinement is
clearly superior to h-refinement and is therefore preferred wherever the solution is
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Fig. 1. Convergence with respect to p-refinement, ke is the exact eigenvalue.

Fig. 2. Convergence of p-refinement plotted versus matrix size.

smooth. As shown in Figure 5 and also expressed in (21), the cost of going to higher
order is small, especially at already high orders. The convergence rates of each basis
order can be computed from the slopes of Figure 3. These agree with the optimal
theoretical rates of 2× p+ 2.

Next, we demonstrate the effectiveness of MPCG. The rectangular box of the
previous example is now treated as a waveguide by sending the TE01 mode through
the faces with dimensions 8×16 mm2. As shown in Figure 6, although the residual
curve is bumpy, it reaches machine precision without stagnation. Table 7 exhibits an
almost constant number of iterations, regardless of the mesh fineness or of the basis
order. In Figure 7, we demonstrate the effect of increasing frequency by several or-
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Fig. 3. Convergence versus h-refinement.

Fig. 4. Convergence of h-refinement plotted versus matrix size.

ders of magnitude. As expected, at low frequencies, the number of iterations is almost
constant. However, at higher frequencies, when the element size exceeds a quarter
wavelength, MPCG starts to oscillate irregularly. At extremely high frequencies, the
finite element solutions are, of course, meaningless since the elements are relatively
large compared to the wavelength of the field. Nevertheless, the matrix A approaches
the positive definite matrix T , and MPCG again converges quickly. Figure 8 compares
h- and p-refinement in terms of CPU time. Again, p-refinement is clearly superior.
In Figure 9, we separate the portions of time spent on CG iterations and on the de-
composition of A1,1. This figure shows that another advantage of p-refinement is that
the time spent on the full decomposition of A1,1 stays constant as p increases. With
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Fig. 5. Comparison of p- and h-refinement for the cavity problem.

Fig. 6. The convergence behavior of MPCG for E1(curl) at 10 GHz.

the problem sizes reported here, CG dominates the computational time. However,
the decomposition of A1,1 will become the bottleneck with much larger problems.
Research on eliminating full decomposition of A1,1 is underway.

Going to higher orders is not without cost. The matrices are denser as seen from
Table 5. Despite this, the higher rates of convergence are worthwhile. We compare the
estimated number of nonzeros per row from (22) with real ones. Real ones approach
the estimated ones for a larger mesh, where the unknowns on Dirichlet boundaries are
only a small portion of the entire domain. The number of unknowns per tetrahedron
is also compared to the estimate from (20) in Tables 3–6.

To examine the reasons why MPCG works so well for indefinite systems, we re-
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Table 7
Comparison between the condition numbers of the original (O) and preconditioned (P) matrices

for a well-shaped and for a distorted mesh at 10 GHz.

Basis order

0 1 2

Element size O P O P O P

h 3.1 1 1.6e2 8.2 3.2e6 1.5e1

h/2 2.2e2 1 4.4e2 1.5e1 9.6e6 6.0e1

distorted 1.4e4 1 3.3e4 4.5e1 1.0e9 1.4e2

Fig. 7. The effect of varying frequency on the number of MPCG iterations for E1(curl).

visit the last problem and study the spectrum of original and preconditioned matrices.
The results are presented in Table 7 and in Figures 10 and 11. Although the original
matrix is highly indefinite due to the presence of the gradient space, at 10 GHz it
is preconditioned into a positive-definite matrix. The condition number of precon-
ditioned matrix grows at a much slower rate than those of the original matrix, as
shown in Table 7. The eigenvalues of the original matrix are real because it is a real
symmetric matrix. On the other hand, the preconditioned matrix is not symmet-
ric, and therefore its eigenvalues are either real or in complex conjugate pairs. The
three clusters in Figure 10(b) help to explain why MPCG converges better than what
would be expected from the computed condition numbers. At higher frequencies, i.e.,
at 35 GHz in Figure 11, the preconditioned matrix is no longer positive definite, and
therefore MPCG starts to oscillate irregularly.

Our derivation is based on a regular tetrahedron, so that the basis vectors derived
above are in general not orthogonal in tetrahedra of arbitrary shape. In complex
problems, the tetrahedra are rarely regular. Thus, the matrix generated by using the
derived basis functions is not less sparse than that obtained by using nonorthogonal
bases. However, we have found empirically that the fill-in generated by the incomplete
Cholesky decomposition is greatly reduced by using the orthogonal bases. Thus, while
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Fig. 8. Comparison of h- and p-refinement for a waveguide problem.

Fig. 9. Computational complexity.

we have not obtained diagonal matrices, we have obtained matrices that are much
more diagonally dominant. Even with an arbitrary mesh, the number of iterations
increases only slightly from low to high order, suggesting that the basis vectors are
quite orthogonal although not perfectly so. In addition, refining the mesh does not
increase the number of iterations. On the contrary, the number of iterations is reduced
with mesh refinement in most cases. The reason for this is that the E0(curl) solution
improves with mesh refinement and so fewer conjugate gradient iterations are required
for convergence with the higher-order solutions. However, if one overrefines the mesh,
the increase in the condition number can make MPCG nonconverging.
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(a) (b)

Fig. 10. Spectrum of the original and preconditioned matrices for the h/2 mesh and p = 1 at
10 GHz.

(a) (b)

Fig. 11. Spectrum of the original and preconditioned matrices for a h/2 mesh and p = 1 at 35
GHz.

Finally, we study the effect of severely distorted tetrahedra. We distort the mesh
by inserting an artificial, rectangular strip of 0.1 mm thickness into the previous
waveguide. As shown in the inserts in Figure 12(a), the surface mesh on the port
is very badly distorted. Although we are able to precondition the problem into a
positive definite matrix, its spectrum, shown in Figure 12(b), spreads out greatly.
The condition numbers of the original matrices increase two orders of magnitude, but
those of the preconditioned matrices do not, as shown in Table 7. This explains why
the number of iterations only increases slightly, from 10 for the h/2 mesh, to 14 for
p = 1, and up to 17 for p = 2. We compare the distorted mesh with the h/2 mesh
because numbers of unknowns are closest in these cases.

If the mesh is not fine enough, the resulting preconditioned matrix is indefinite,
and in this case, MPCG fails. There are two remedies for this problem: one is to
refine the mesh, and the other is to include the E1(curl) bases in A1,1. With mesh
refinement or with enlargement of the lowest level matrix, the nonconverging problem
is overcome. We monitor the diagonal entries in the Cholesky matrix to see if they
have the opposite sign to the corresponding entries in the original matrix. If they
do, this indicates that the Cholesky matrix has different spectral characteristics from
the original matrix. Therefore, the decomposition is unstable, and a refinement or
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(a) (b)

Fig. 12. Spectrum of the original and preconditioned matrices for a distorted mesh and p = 1
at 10 GHz.

enlargement is performed.

8. Conclusions. Tangential vector finite element basis functions are not unique
and can be defined in many ways. This paper suggests that the best choice—indeed
the optimal choice—is that basis set which results in the fastest convergence when the
resulting system of equations is solved by using the conjugate gradient algorithm. The
goal of constructing tangential vector finite element basis functions should therefore
be to allow efficient preconditioning, and thus reduce the condition number of the
system matrix. Computational efficiency results by using basis sets and associated
preconditioners that speed up the conjugate gradient process.

We have shown that the optimal rate of convergence is obtained by using bases
computed using a multistep process in which the admissible basis set is decomposed
into gradient and rotational subspaces, and each vector is made orthogonal to the oth-
ers by computing the eigenvectors of the element submatrix. This orthogonalization
is performed on a regular tetrahedron and is therefore not strictly valid on tetrahedra
of arbitrary shape. Empirical results, however, demonstrate that the orthogonality is
largely preserved with meshes of arbitrary shape, and the resulting global finite ele-
ment matrix is therefore well suited for solution with the conjugate gradient method.
Numerical experiments show that the number of iterations needed for solution by
MPCG is basically a constant, regardless of the order of the basis or of the matrix
size. Computational speed is improved by several orders of magnitude due to the fast
matrix solution of MPCG and to the high accuracy of the higher-order bases.
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Abstract. In this paper, we consider the problem of matching images, i.e., to find a deformation
u, which transforms a digital image into another such that the images have nearly equal gray values
in every image element. The difference of the two images is measured by their L2-difference, which
should be minimized. This yields a nonlinear ill conditioned inverse problem for u, so the numerical
solution is quite difficult. A Tikhonov regularization method is considered to rule out discontinuous
and irregular solutions to the minimization problem. An important problem is a proper choice of the
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1. Introduction. An important problem in two- and three-dimensional medical
image analysis is to match two similar images resulting from different imaging modal-
ities. In brain research, which was our starting point, it is necessary for the analysis of
the organization and variation in the structure of human brains. A good survey of a
part of the practical applications is given in [6]. In this paper, we consider a gray-level
based mapping method of two similar images. The description of the problem and the
numerical algorithms for its solution will be given for the two-dimensional problem.
The extension to three dimensions is obvious and has been done.

In two dimensions, the matching leads to the following problem: find a dis-
placement vector u = (u1, u2)

t (whose components are functions of the variables
x = (x1, x2)

t) that transforms one image T , called the template, into another image
R, called the reference, so that

R(x) = T (x− u(x)).(1.1)

In continuous two-dimensional variables, the reference R and the template T can
be represented by functions T,R : Ω ⊂ R

2 −→ R
≥0 which associate with the pixel

(picture element) (x1, x2) ∈ R
2 its intensity (gray level), T (x1, x2), and R(x1, x2),

respectively. In our example, Ω will simply be the unit square [0, 1]2 ⊂ R
2. A

digital image Bh is a finite-dimensional approximation of a continuous image B with
Bh : Ωh → [0, gmax] ⊂ N

≥0 and maximal gray-level gmax.
We define a map F = T ◦φ, with φ(x) = x−u(x), from the space of displacements
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X into the set Y of images
F : D(F ) ⊂ X −→ Y, F : u 	−→ T (x− u(x)).(1.2)

We consider the subset

D(F ) =
{

u ∈ X
∣∣∣∣ x− u(x) ∈ Ω ∀x ∈ Ω

}

of X . This means that T, and therefore F, are defined. (This restriction can be
avoided by extending T to a larger domain.) Thus, the gray-value matching problem
(1.1) can be identified with an inverse problem

find u in (1.2), so that (1.1) holds approximately.

In general, this problem is ill-posed in the sense of Hadamard. The information
provided from R and the model (1.1) are not sufficient to ensure existence, uniqueness,
and stability of a solution u.

In practical applications, only a noisy version Rδ of the exact data R is given
with

||R−Rδ|| ≤ δ.

In our application, δ is unknown, and we make no assumptions about statistics of the
noise. In the case of perturbed data Rδ, the computation of a proper approximation
uδ of (1.1) requires regularization methods.

In section 2, we will present more precisely the minimization problem studied here,
as well as the assumptions to impose on the model. We use a Tikhonov regularization
for the so-called output least squares functional. It uses a regularization term which
favors smooth transformations. This leads to a nonlinear variational problem similar
to many other approaches in digital image processing or pattern recognition; cf. [1],
[3], [7], [11], [12], [13], and [15].

The first attempts to deal with the issue of medical image matching can be traced
back to Bajcsy and Kovacic [5]. These ideas were further developed in [8] using
successive overrelaxation for a linearized model and in [1] using Fourier and wavelet
representations of a nonlinear functional. In [11] a Landweber iteration scheme was
developed, including the multigrid correction scheme (CS) and a trust region method
for one-dimensional minimization.

The minima of the Tikhonov functional depend significantly on the choice of
the regularization parameter α. Theoretically, decreasing α should give a better
agreement of the images, but in practice a too small α leads to strong artifacts because
of the influence of high-frequency structures in the image data. Increasing α removes
these artifacts and allows only smoother transformations. For further increasing α,
the matching of the images becomes worse.

Our aim is to develop methods for the efficient and robust solution of the matching
problem and to find a good value of the regularization problem without a priori
information.

These methods are described in section 4. In a first approach, a standard multigrid
method and the choice of a suitable regularization parameter are combined. The
second method follows the solution curve for decreasing α. One starts with a relative
large α, which is helpful for the solution method. Then one computes for decreasing
α minimal solutions of the functional consisting of the output least squares part and
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a regularizing part applied to the difference from the previous solution. This process
is stopped at the point where the output least squares functional increases.

Another important idea is to use a nested iteration or full multigrid (FMG) ap-
proach as introduced by Brandt [4]. The solution process starts with the same problem
but a coarser resolution. It is easier to solve the nonlinear problem there and to find
global minima. This solution is the starting point for the next finer resolution and
usually needs only relatively small corrections.

The Euler–Lagrange equations of the Tikhonov functional are a coupled system
of nonlinear PDEs which depend on the regularization parameter. Its discretization
and approximation is described in section 3. Finally, we present some experimental
results for synthetic and real images in section 6.

2. Tikhonov regularization of the nonlinear inverse problem. To find
an approximate solution of (1.1), we measure the L2(Ω) difference of the two images
h(u) = T (x− u)−R(x) = F (u)−R(x) by

D(u) = 〈h(u), h(u)〉L2(Ω) = ||h(u)||2L2(Ω) =

∫
Ω

(F (u(x))−R(x))2dΩ.

Here, D(u) is the so-called output least squares functional with given data R(x).
The inverse problem will be solved by approximatively minimizing D(u), which is a
standard method for inverse problems. We can add further terms related, for example,
to edges without essential changes in the algorithm presented here.

2.1. Tikhonov regularization. To rule out discontinuous and irregular solu-
tions to the minimization problem, it is necessary to introduce a smoothing or regu-
larizing term α||u||2X with a parameter α > 0 for the deformation u. This means that
one minimizes the Tikhonov functional

Jα(u) = ||h(u)||2L2(Ω) + α||u||2X for u ∈ D(F )(2.1)

with an appropriate norm || · ||X for the space X .
The statistical model proposed by Amit, Grenander, and Piccioni [2] for image

restoration leads us to choose ||u||2X = a(u, u) with a bilinear form a and to search for
a solution among the minima of the energy

Jα(u) = ||h(u)||2L2(Ω) + αa(u, u) over D(F ).(2.2)

The parameter α ∈ R
+ allows us to balance the influence of both terms in the

Tikhonov functional Jα(u). For the brain data set, we use a regularizing term of
the form

a(u, v) =

∫
Ω


 2∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)
 dΩ(2.3)

defined on X ⊂ H1(Ω) × H1(Ω). This model assumes that the difference between
the images comes from an elastic deformation of the brain. The elastic constants are
chosen so that the changes in volume are maximal, which corresponds to longitudinal
stretch without lateral shrink. The bilinear form measures the energy of the elastic
deformation, is isotropic in the directions, and is neutral with respect to transla-
tions and rotations but penalizes these transformations by the boundary conditions
introduced in section 2.2.
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This is an appropriate model for the case that the template image T is obtained
by slicing and scanning the brain as described in [5]. Other bilinear forms on H1(Ω)×
H1(Ω) as the Laplacian would give similar results but have no coupling between the
directions as (2.3). Regularization in H2(Ω)×H2(Ω) as by the biharmonic operator
enforces too much smoothness of the displacements.

Total variation based regularization as in [7], [13] is not appropriate in this case,
but useful for other applications, and will be investigated in the future.

2.2. Minimization by a variational equation. With the described form of
regularization in the functional Jα and f(u) = − 1

αh
′(u) · h(u), the Euler–Lagrange

equation for the minimizer u is given by the nonlinear variational equation

a(u, φ) = 〈f(u), φ〉L2(Ω) ∀φ ∈ (H1(Ω))2 = H1(Ω)×H1(Ω).(2.4)

For α very small, this is a singular perturbed problem which is difficult to solve.
Equation (2.4) is the weak form of a nonlinear coupled PDE. For X = (H1(Ω))2,

one obtains Neuman boundary conditions. In our application, it is appropriate to use
X = (H1

0 (Ω))
2 which yields Dirichlet boundary conditions

u(x) = 0 for x ∈ ∂Ω.

(In principle, one has to enforce u ∈ D(F ), but this was no problem in our applica-
tion.) The minimization of the Tikhonov functional is therefore equivalent to finding
a solution of the boundary value problem

E(u(x)) =

{ −α(∆u(x) + grad(div u(x)))− f(u(x)) = 0 for x ∈ Ω,
u(x) = 0 for x ∈ ∂Ω.

(2.5)

3. Discretization, approximation, and solution methods of the nonlin-
ear PDE. For the purpose of the numerical solution of (2.5), we approximate the
infinite-dimensional space X by a finite-dimensional space Xn.

3.1. Discretization. The image Th obtained from the continuous image T can
be considered as a function which is piecewise constant on each pixel of a regular
square grid Gh. For the discretization of the PDE (2.5), we use Gh with the pixel-
centered gridpoints as in Figure 1:

Gh = {x ∈ R
2 : x = (xi, xj) = (h/2 + ih, h/2 + jh), i, j = 0, 1, . . . , n− 1}.

The displacement vector is a grid function uh(xh) = (u1,h, u2,h)
t ∈ (F(Gh))

2 =
F(Gh) × F(Gh) on Gh. (In three-dimensional magnetic resonance (MR), there is a
sampling difference between the x− y-plane and the z-direction. In practice, it is not
necessary to take this into account for the adaptation process. It could be done, but
then the multigrid (MG) components would have to be modified.)

3.2. Computation of the nonlinear functional f(u(x)). The nonlinear
functional f(u(x)) in (2.5) has to be evaluated by discretization. With φ(u) =
φ(x, u) = x− u(x), one gets

f(u) = h′(u) · h(u) = JTh(φ(u)) · Jφ(u) · h(u) = −∇Th(φ(u)) · h(u),

since Jφ(u) = −I2, the 2×2 identity, and JTh(x) = Th′(x) = ∇Th(x)t. For determin-
ing a second order approximation of ∇Th, the right-hand side fh(uh) = (f1,h, f2,h)

t ∈
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Fig. 1. The pixel-centered grid Gh in two-dimensions for 4× 4 pixels.

F(Gh)×F(Gh) for an inner point (xi, xj) of Gh is computed with central differences
by

fh(uh(xi, xj)) =
1

2

(
Thi+1,j − Thi−1,j

h
,
Thi,j+1 − Thi,j−1

h

)t
(Thi,j −Rhi,j),(3.1)

where t denotes the transpose, Thi,j = Th(xi − u1,h(xi, xj), xj − u2,h(xi, xj)) the de-

formed template image, and Rhi,j = Rh(xi, xj) the reference image.

3.3. Approximation of the PDE. The PDE (2.5) is discretized by the finite
difference method using second order approximations. This is done by replacing the
partial derivatives by corresponding difference quotients. This yields the following
second order stencils:

−∆u = −uxx − uyy =
1

h2


 0 −1 0
−1 +4 −1
0 −1 0


uh +O(h2)

and

−uxy = 1

4h2


 1 0 −1

0 0 0
−1 0 1


uh +O(h2).

Therefore, the discrete operator Lh = −∆h − gradh(divh) is represented by

Lh(uh) =




1

h2


 0 −1 0
−2 6 −2
0 −1 0


u1,h +

1

4h2


 1 0 −1

0 0 0
−1 0 1


u2,h,

1

h2


 0 −2 0
−1 6 −1
0 −2 0


u2,h +

1

4h2


 1 0 −1

0 0 0
−1 0 1


u1,h

(3.2)
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for uh = (u1,h, u2,h)
t ∈ (F(Gh))

2. By using (3.2) for all inner gridpoints xh ∈ Gh

and uh = 0 for all boundary gridpoints, together with the discretized form of the
nonlinear functional f(u) as described in (3.1), one obtains a nonlinear system for the
unknown values of the translation vector

Eh(uh(x)) = αLh(uh(x))− fh(uh(x)) = 0.(3.3)

This is the discretized form of the boundary value problem (2.5). The nonlinear
system in two dimensions for typical images with 256× 256 pixels has 217 equations
and unknowns. The corresponding system in three dimensions with 256× 256× 128
voxel has 3 × 223 equations and unknowns. This makes clear that it is extremely
important to use very efficient solvers. Otherwise, in particular the three-dimensional
problem cannot be solved.

3.4. Coarse grid problems and intergrid transfers. In the discretized PDE
(3.3), the nonlinear functional fh(uh) is naturally defined on the fine grid Gh by the
pixel size of the digital images Th and Rh (section 3.2). To use efficient solution
methods like the multigrid full approximation scheme (FAS) [4], [14], for the nonlinear
PDE we have to define the functional fh(uh) also on coarse grids.

The basic idea of the FAS is to smooth the errors of the solution such that they
can be approximated on a coarser grid. On the coarse grid, a defect equation is solved,
and then the coarse grid corrections are interpolated back to the fine grid, where the
errors are smoothed again. The components of the FAS for this problem are described
in the following.

By coarsening the digital images, a corresponding nonlinear functional fH(uH)
can be defined on coarse grids G2lh with l > 0. This means that we approximate the
infinite-dimensional spaces X and Y by a sequence of finite-dimensional subspaces
{Yl}l=0,1,2,... with Yl = Y2lh for the images and {Xl}l=0,1,2,... with Xl = X2lh for the
displacements. The sequences have the properties

XL ⊂ XL−1 ⊂ · · · ⊂ X0 ⊂ · · · ⊂ X and YL ⊂ YL−1 ⊂ · · · ⊂ Y0 ⊂ · · · ⊂ Y.

The images are coarsened by collecting several picture elements into one coarse
picture element. This can be described by the operator Rll−1 : Yl−1 → Yl. This
corresponds to a lowpass filter in digital imaging. This procedure yields a sequence
of coarser and coarser images with containing only information about corresponding
coarse structure. On all grids, the discretization of the PDE is done in the same way
as on the finest grid as described in section 3.1; cf. Figure 2.

Standard components for the intergrid transfers (injection, half weighting, and
full weighting for restriction and linear and bilinear interpolation) in the FAS were
implemented.

4. Approximate solution methods. We now introduce two different methods
for obtaining approximate solutions to the nonlinear problem. We consider the finite-
dimensional Tikhonov functional Jα,h : Gh × Gh → R

≥0. The functional is positive
and continuous. Therefore the Tikhonov functional has at least one global minimum
on X because Jα,h →∞ for ||u||X →∞.

In general, the minimum is not unique. Moreover, a solution of Jα,h depends
crucially on the regularization parameter α. The aim of our methods is to find a
suitable solution of the minimization problem, hopefully a global one, without any a
priori information about the image data and about a suitable choice of α in (2.2).
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Fig. 2. Intergrid transfers.

The regularization parameter α determines the ratio between the influence of the
image least squares differences D(u) and the smoothness a(u, u) of the displacements.
For α too large, the influence of D(u) is damped, and the matching is quite bad
since the images behave as stiff materials. For α too small, the displacements are not
smooth and are useless. Then, the numerical solution is difficult or even impossible.
In particular, for α = 0, each pixel could be mapped onto any other pixel with the
same gray level.

In the first algorithm, we try to choose a deformation which is relatively inde-
pendent of α. In the second algorithm, we solve a sequence of subproblems with
decreasing parameter α. For each subproblem, we determine the parameter α within
the iteration.

4.1. Algorithm 1: Modified FAS for minimizing output least squares
functional. In this section, we will describe a method which incorporates the solution
process and the choice of a suitable regularization in a modified FAS algorithm. We
combine the multigrid idea and the minimization of the functional as follows.

The main components of every multigrid process are the relaxation and the coarse
grid correction. As in standard multigrid methods, the coarse grid correction is deter-
mined by restricting the defect and the current approximation to the coarse grid. The
coarse grid problem is solved approximately, the solution is interpolated to the fine
grid and the solution is added to the fine grid approximation. However, in our case a
proper scaling of the coarse grid correction and of the result of the relaxation yields
significantly faster convergence, in particular for smaller α. Therefore, we proceed as
follows.

On the fine grid an intermediate approximation u
(k+1)
h is computed by a nonlinear

relaxation method for (2.5). We use a nonlinear Jacobi relaxation. With respect to
the discretization and approximation of (2.5), we get

6

h2
u

(n+1)
1,h + f1,h(u

(n+1)) =
1

h2


 1
2 2

1


u

(n)
1,h +

1

4h2


 −1 1

1 −1


u

(n)
2,h

6

h2
u

(n+1)
2,h + f2,h(u

(n+1)) =
1

h2


 2
1 1

2


u

(n)
2,h +

1

4h2


 −1 1

1 −1


u

(n)
1,h
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with initial guess u
(0)
h ∈ D(F ). (On the coarse grids, the restricted defect of the next

finer grid has to be added to the right-hand side.)
Due to the dependence on α, this approximation may result in a bad matching,

as described above. To correct this, the approximation is modified by

u
(k+1)
h = u

(k)
h + ω ·

(
u

(k+1)
h − u

(k)
h

)
.

The parameter ω is the solution of the one-dimensional minimization problem

find ω ∈ R so that ω = arg min
ω∈R>0

D
(
u

(k)
h + ω ·

(
u

(k+1)
h − u

(k)
h

))
.

This approximation and its defect

dh = rhsh − Eh

(
u

(k+1)
h

)

are transferred to the coarse grid as in standard multigrid. On the fine grid, the
right-hand side is given by rhsh = 0 and as described in (4.2) on the coarse grid. On
the coarse grid, we first choose a nonlinear relaxation scheme

uH = uH + vH = RH(uH , vH , dH)(4.1)

for the resulting nonlinear discrete system

EH(uH + vH) = dH + EH(uH)(4.2)

with

uH =
(
u

(1,1)
1 , . . . , u

(n−1,n−1)
1 , u

(1,1)
2 , . . . , u

(n−1,n−1)
2

)
∈ F(GH)×F(GH)

and defect dH ∈ F(GH) × F(GH) on the coarse grid to compute the coarse grid
correction vH in the full approximation scheme.

Again, we choose a parameter ω as the solution of the one-dimensional minimization-
problem

find ω ∈ R so that ω = arg min
ω∈R>0

D(uH + ω · vH).(4.3)

Then the coarse grid correction is

vH = ω · vH
and

unewh = uh + I(vH).

In standard multigrid, a similar scaling is known, but Jα,h would be minimized. Here,
the regularization term is used in determining the direction vH but omitted in choosing
ω. This reduces the influence of α on the final solution.

This two-level algorithm can be converted into a multigrid algorithm in the same
way as in a standard FAS by recursive solution of the coarse grid problem by the two
grid method.
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4.2. Algorithm 2: Iterative Tikhonov regularization. In the previous sec-
tion, we have described an algorithm which computes an approximation for a given
parameter α but which reduces the influence of α on the solution by a one-dimensional
minimization problem within a FAS.

In this section, we present an algorithm which is more complicated than algorithm
1 and is in some respect similar to the solution with the L-curve criterion investigated
by Hansen [9] and Hansen and O’Leary [10]. The L-curve criterion is a practical
method for choosing the regularization parameter α for linear inverse problems. It
was observed that the log-log-graphic presentation of the curve L =

{
x(α), y(α)

}
with the norm x(α) of the regularized solution uα(x) of (2.2) and the corresponding
residual norm y(α) can be useful in studying the problem.

The so-called L-curve method derives its name from the plot of the graph {x(α), y(α)},
which resembles the shape of the letter “L.” Here, the basic idea is that a point on the
graph near the “corner” of the “L” represents a reasonable compromise between data
fit and smallness of the regularizing term. In our situation, the use of the L-curve
criterion is dissatisfying due to the following reasons:

• The description of the L-curve criterion is for linear problems. (This means
that F in (1.2) is a linear operator.) The idea can be generalized to nonlinear
problems, but in general we saw no useful “L.”
• For the iterative solution and the singular perturbation problems, we cannot
compute solutions for small α.
• An important role for minimizing an nonlinear functional is the choice of an
initial guess. This is not taken into account within the L-curve criterion. In
contrast to linear problems, there is no optimal regularization parameter for
an optimal solution.
• The L-curve criterion seems to prefer too smooth solutions in our case with
nonoptimal matching of the images; see Figure 3.

In the following, we introduce a method which may be viewed as an iterated
Tikhonov regularization. The method consists of a sequence of minimization sub-
problems

{
min

u∈D(F )
{||h(u)||2L2(Ω) + αk||u− u(k)||2X }

}
k∈N

(4.4)

whose solutions u = u
(k+1)
α depend on the parameter αk > 0 and on the initial

guess u(k). Each subproblem is well posed for α sufficiently large and can be solved
efficiently by a FAS.

There are two ideas: The first is, not to use a very small α in order to simplify the
solution process. The second is the use of u−u(k) in the regularization term diminishes
the influence of the regularization since u(k) ≈ u but allows only reasonable solutions.
An important issue herein is the determination of the first iterate.

For the numerical implementation of the iterative Tikhonov regularization, we

compute the solution u
(1)
α with relative large α and an initial guess u(0) ∈ D(F ); cf.

section 5. This is done by solving the nonlinear Euler–Lagrange equation (2.5) with a
FAS and initial guess u(0). For the next iteration, we reduce α by a factor 0 < κ < 1

(e.g., κ = 1/2) and take the solution u
(1)
α as the initial guess.

We get a sequence of displacement fields {u(k)}k∈N which successively reduces the
value of the nonlinear functional D(u). We stop the iteration if D(u(k+1)) > D(u(k))
and get the following algorithm.
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Fig. 3. From left to right: 1. Template image T . 2. Reference image R. 3. Template deformed
by the solution of algorithm 1 introduced in section 4.1. 4. Deformed template and superimposed
deformed uniform grid for showing the deformation applied to the template. 5. Template deformed
by the solution of algorithm 2 introduced in section 4.2. 6. Uniform grid deformed by the solution.
7. Template deformed by the solution of the L-curve criterion. 8. Uniform grid deformed by the
solution of the L-curve criterion.
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Algorithm 2: Iterative Tikhonov regularization for minimizing D(u).
k = 0; u(k) = u∗; αk = N � 0;

repeat
compute u(k+1) = argminu∈D(F ) ||h(u)||22 + αk||u(k) − u∗||2X
reduce α = κ · α;

until
(
D(u(k+1)) > D(u(k))

)
.

5. Multiresolution minimization and multilevel image matching. Within
the minimization of the Tikhonov functional (2.1) in sections 4.1 and 4.2, the subsets
Xh ⊂ X and Yh ⊂ Y are given by the number of pixels. This pixel size h is also the
step size of the discretization of the PDE in section 3.

The use of a small discretization parameter h causes two difficulties:
• The adaption process mainly adapts structures with size h and neglects
coarser structures. Therefore the minimization process finds local minima
far from the global one.
• The minimization process requires many iterations with a fine resolution h.

Both difficulties can be avoided to a large extent by considering the Tikhonov func-
tional also on coarser resolutions. The basic principle of this approach is that the
image structures will be matched on that resolution on which they can be repre-
sented. This means that we approximate the infinite-dimensional spaces X and Y by
a sequence of finite-dimensional subspaces, as in section 3.4. We get a sequence of
minimization problems

(Ml) min
ul∈Xl

{
||h(u)||22 + αa(u, u)

}

defined on the spaces Xl. With an interpolation operator I l−1
l : X2lh → X2(l−1)h, we

transform the solution ul ∈ Xl onto the next finer resolution. Then I l−1
l (ul) ∈ Xl−1

is a suitable initial guess for the minimization of Ml−1.

Multilevel image matching.
uL = 0; l = L;

repeat
if (l = L)
compute u∗

L with initial approximation uL;
l = l − 1;

else
ul−1 = I l−1

l (u∗
l );

compute u∗
l−1 with initial approximation ul−1;

endif
l = l − 1;

until l = 1.

6. Results. In order to conclude this paper, we present experimental results for
synthetic as well as MR images. To demonstrate the principle and reliability of the
iterative Tikhonov iteration scheme and the modified FAS described in sections 4.1
and 4.2, we consider the synthetic images shown in Figure 3. These images are quite
different but can be adapted quite well, depending on the required smoothness.

Comparing the synthetic template image (leftmost in Figure 3) with the synthetic
reference image (second left in Figure 3) shows a difference of 1

N ||T (x)−R(x)||L2
≈ 71

with N = 1282 pixels. After the iteration described in sections 4.1 and 4.2 on a
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Fig. 4. Least squares difference D(u(k)) after each FAS-iteration (algorithm 1 in section 4.1)
step for the example in Figure 3.
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Fig. 5. Least squares difference D(u(k)) after each iteration step of the iterative Tikhonov
regularization algorithm (algorithm 2 in section 4.2) for the example in Figure 3.

sequence of the three subspaces X1/32 ⊂ X1/64 ⊂ X1/128, we get a sequence of defor-

mation fields u(k) on every subspace which reduces the difference 1
N ||T (x−u(k)(x))−

R(x)||L2
within the iteration. Figures 4 and 5 show for the algorithms the decreas-

ing least squares difference on the three different resolutions applied to the example in
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Fig. 6. Images of the three experiments with different noise levels. Left: The reference with
added noise Rδ (added noise from top to bottom: 1. 2% salt and pepper noise 2. 5% salt and pepper
noise 3. blurred with 2% salt and pepper noise). Middle: Template image deformed by the solution
of algorithm 2. Right: Uniform grid deformed by the solution of algorithm 2.

Figure 3. The graphs are scaled by work units (WUs) on the finest grid, corresponding
to the effort of a multigrid cycle.

In the examples, a WU of the first algorithm corresponds to approximately a 1
3

WU of the second one. In all examples, we used a FAS with one relaxation before and
one after the coarse grid correction for smoothing the error on three levels: full weight-
ing restriction, bilinear interpolation, and the injection operator for the restriction of
the image data and the approximate solutions.

In the next experiment, we analyze the dependence of the solution on the noise
level ||Rδ − R|| ≤ δ of the reference image R. For this, we added different types of
noise to the synthetic reference images which appear in Figure 3. These images are
shown in Figure 6. We observe that the results (in the middle of Figure 6) obtained by
algorithm 2 are similar to the reference shown in Figure 3, except for artifacts caused
by the added noise. The graphs of the decreasing defect functional D(u) for these
experiments scaled by WUs on the finest grid are shown in Figure 7. As expected, the
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Fig. 7. Least squares difference D(u(k)) after each iteration step of algorithm 2 for the three
experiments shown in Figure 6 and the noise level δ parallel to the abscissa.

decreasing least squares functional on the three different resolutions can be reduced
down to the noise level δ.

For estimation of the registration quality on MR slices, the iterative minimization
algorithms for image matching are applied to a deformed MR template image T (x) and
a MR reference image R(x), shown in Figures 8 and 9. Figure 10 shows the calculated
result T (x − u∗(x)) deformed by the solution u∗ of the minimization problem. The
minimization problem is also solved on three subsets X1/64 ⊂ X1/128 ⊂ X1/256. One
can easily see in Figure 10 how the deformation field produces an image similar to the
reference image. This can be stressed by the graphs in Figures 11 and 12. They show
the decreasing least squares difference D(u) between the images after each iteration
step of the algorithms on different resolutions. The graphs are scaled by WUs on the
finest grid.
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Fig. 8. MR reference image with superimposed contour.

Fig. 9. MR template slice with superimposed contour of the reference slice in Figure 8.

Fig. 10. Deformed template with superimposed contour of the reference slice in Figure 8 and
superimposed deformed uniform grid for showing the deformation applied to the template.
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Fig. 11. Least squares difference D(u(k)) after each iteration step of algorithm 1 for the example
in Figures 8–10.
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Fig. 12. Least squares difference D(u(k)) after each iteration step of algorithm 2 for the example
in Figures 8–10.

7. Conclusion. In this paper, we have introduced a nonlinear model for digital
image matching. This inverse problem is ill-posed and its treatment requires careful
use of regularizing techniques. For Tikhonov regularization, which aims at smooth
solutions, a bilinear form is added. In section 4 we have presented two efficient
methods for solving the problem.

The main advantages of these methods, compared to other known methods, are
the self-controlled choices of the regularization parameter. In other papers [5], [1],
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this problem is not discussed, and therefore in practical applications “trial an error”
methods for the parameter choice are inevitable. On the other hand, the use of a
FAS for solving the nonlinear Euler–Lagrange equations is an essential benefit of the
presented methods. This results in computing time which is linear in the number of
the picture elements. This optimal scaling is important for the treatment of large, in
particular three-dimensional, problems which are in practice unsolvable only with re-
laxation methods. In order to compare our methods with other methods in literature,
Bajcsy and Kovacic [5] use the Jacobi method to determine deformations of a tem-
plate and Christensen et al. [8] use successive overrelaxation (SOR) with checkerboard
update to compute viscous fluid deformations of a template. In practice, due to the
h-dependence convergence rates of the Jacobi method and the SOR, these methods
are rather slow. For instance, the method in [8] has an execution time of 7 days with
a MIPS R440 processor and 10 hours using a massively parallel DECmpp 128 × 64
MasPar computer with a resolution of 128 × 128 × 100 voxel. With this resolution,
our algorithm takes (with a nonoptimized implementation in C++) approximately
one hour on an Ultra-Sparc Workstation.

Acknowledgment. We would like to thank the referees for useful remarks on
the first version of the manuscript.
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[12] M. Piccioni, S. Scarlatti, and A. Trouvé, A variational problem arising from speech recog-
nition, SIAM J. Appl. Math., 58 (1998), pp. 753–771.

[13] L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation-based noise removal algo-
rithms, Phys. D, 60 (1992), pp. 259–268.
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Abstract. A mathematical model to simulate the compression of pharmaceutical powder under
fixed deformation is proposed. This model is an hydrodynamic one, completed with the description
of the porosity in the medium. This study leads to the elaboration of a general monodimensional
model, made of three nonlinear partial derivative equations and a state law for the pressure. The
mathematical resolution of this system is made using a splitting technique and an efficient numerical
method.

Key words. nonconservative hyperbolic systems, conservative hyperbolic systems, splitting
techniques, Lagrange method, pressure terms, diffusion terms
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1. Introduction. Studies on powder compression lead to descriptions of the
compaction processes and also to predictions of the compactibility of powders. The
consolidation mechanisms of a product subject to compression are many:

• elastic deformation,
• fragmentation or plastic deformation,
• mechanical binding,
• thermal effect.

In practice, the products undergo time-dependent deformation imposed by the punch
of a press. At first contact with a powder bed, punch speed varies between 100 and
120 mm/s and decreases to 0 at the point of maximal penetration.

In this work, we propose a mathematical model to simulate the change from
pulverulent state to compact state. With this aim in view, we have studied the
dynamic behavior of powder undergoing deformation.

The experimental device is modelized in one dimension. The die containing the
powder is described in space by [0,1], and the time by [0, T ] (T between 20 and 100
ms). We have decided to modelize the transitional part of the phenomenon and to
follow the vanishing of the vacuum in the powder (evolution of the porosity) during the
compression. This model is based on experimental results in pharmaceutical science,
together with the specialists (see [7], [8], [9], [10]) for physical background.

To implement this model, we have considered that the evolution of the porosity
was bound with the deformation speed tensor, and we have coupled this equation
with the mass and momemtum conservations. Thus, the state law for the pressure is
a function of the relative porosity and the density. Using the quantities

• σ : porosity parameter in [0,1],
• m : mass of powder,
• ρ : real density (without air),
• q : apparent density (with air), q = (1− σ)ρ,
• v : volume,

∗Received by the editors December 1, 1997; accepted for publication (in revised form) March 22,
1999; published electronically October 11, 2001.
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†GRAMM, UFR Math-Info, Université Bordeaux I, Talence, France (godinaud@math.
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• u : particle speed,
• p : pressure,

we get the following nonconservative system (S):




qt + (qu)x = 0,
σt + (σu)x = k(σ)σux,

(qu)t + (qu2 + p)x =
∂
∂x

(ε(q, σ)ux),

+ state law : p = a(σ)b(q),

(1)

where the function k(σ) describes the features of the products and has the properties
[1]

{
0 ≤ k(σ) ≤ 1,
k(1) = 1,

and the diffusion term ∂
∂x (ε(q, σ)ux) allows a display of the phenomenon.

We are going to present the method of resolution for the system. It is a splitting
technique which allows us to treat separately the different physical terms. We will
group the terms in order to reproduce physical phenomena for which one can adapt
a specific numerical method. In, particular, we will perform a Lagrangian treatment
of the convection terms, well adapted to the following of the powder during the com-
pression. This treatment must be conservative. The system (1) is nonconservative,
and we have found a solution to obtain a conservative system equivalent to (1).

This splitting technique leads to degenerated problems, whose solutions are ob-
tained by perturbation methods involving well-posed problems [1], [2], [3].

2. The conservative form. We consider system (1):




qt + (qu)x = 0,
σt + (σu)x = k(σ)σux,

(qu)t + (qu2 + p)x =
∂
∂x

(ε(q, σ)ux),

+ state law : p = a(σ)b(q).

We denote the vector

W =


 q

σ
u


 ,

and system (1) is equivalent to the system

Wt + A(W ) Wx = V,(2)

where the matrix A and the right-hand-side member V are given by

A(W ) =




u 0 q

0 u σ(1− k(σ))

a(σ)b′(q)
q

a′(σ)b(q)
q u




,

V = diffusion term.
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Under the condition

a(σ)b′(q) + σ(1− k(σ))
a′(σ)b(q)

q
> 0(3)

the matrix A(W ) has three real eigenvalues:




λ1 = u +

√
a(σ)b′(q) + σ(1− k(σ))

a′(σ)b(q)
q ,

λ2 = u,

λ3 = u −
√

a(σ)b′(q) + σ(1− k(σ))
a′(σ)b(q)

q .

W is the solution of 


Wt + A(W )Wx = V,

W (0, x) =

{
W l if x < 0,
W r if x > 0.

(4)

We denote by (Hq, Hσ, Hu) the microscopic profile of shock associated with a solution
of (1):

q = ql + ∆qHq(x− ct),(5)

σ = σl + ∆σHσ(x− ct),(6)

u = ul + ∆uHu(x− ct),(7)

where c is constant; Hq, Hσ, and Hu are Heaviside generalized functions [5], [6]; and
∆q = qr − ql, ∆σ = σr − σl, and ∆u = ur − ul.

Replacing q and u with (5) and (7) in the first equation of (1), we get

(c− ul −∆uHu)∆qH ′
q = (ql +∆qHq)∆uH ′

u,(8)

so, by integration in Gs(R),

ql + ∆qHq =
A

(c− ul −∆uHu)
.(9)

We get c, the sound speed, knowing that

{
Hu = Hq = 0 if x < 0,
Hu = Hq = 1 if x > 0,

and so

c =
∆(qu)

∆q
.(10)

Now we replace σ and u with (6) and (7) in the second equation of (1):

(c− ul −∆uHu)∆qH ′
σ = (σl +∆σHσ)(1− k(σl +∆σHσ))∆uH ′

u.(11)

Using the same method, we take the function φ defined by

φ(σ) =

∫
dσ

σ(1− k(σ))
,
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and we get

φ(σl +∆σHσ) = − ln(c− ul −∆uHu) +A,(12)

where A is constant. The speed c is given by

c = u +
∆u

2
coth

∆φ

2
,(13)

where u = 1
2 (ul+ur). Thus, the Rankine–Hugoniot relations for the nonconservative

system (1) are given by

c = u + ∆u
q

∆q
,(14)

c = u + ∆u
1

2
coth

∆φ

2
.(15)

To get a conservative form for system (1), we must find with the jump conditions
(13), (14) a variable w satisfying

w

∆w
=

1

2th∆φ
2

.(16)

Let us consider w = expφ(σ). We obtain




∂w
∂t

= w 1
σ(1− k(σ))

σt,

∂w
∂x

= w 1
σ(1− k(σ))

σx.

This gives

∂w

∂t
+

∂(wu)

∂x
=

w

σ(1− k(σ))
(σt + uσx + σ(1− k(σ))ux),(17)

but σt + uσx + σ(1− k(σ))ux = 0, so we get the next theorem.
Theorem 1. Using the variables q, w = expφ(σ) and u, system (1) is equivalent

to the following conservative system:



qt + (qu)x = 0,
wt + (wu)x = 0,
(qu)t + (qu2 + p)x =

∂
∂x (ε(q, σ)ux),

+ state law : p = g(w)b(q).

(18)

System (18) is equivalent to the system

Wt + B(W ) Wx = V,(19)

where

B(W ) =




u 0 q

0 u w

g(w)b′(q)
q

g′(w)b(q)
q u




.
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The matrix B(W ) has three real distinct eigenvalues, under the condition

g(w)b′(q) + w
g′(w)b(q)

q
> 0.(20)

This condition is always true, because g(w), b(q), g′(w), b′(q), and w are always posi-
tive.

3. Resolution. Let us consider the conservative system (18). We try to build a
strong numerical method to resolve it. This leads us to use a splitting method, dividing
(18) into three subsystems which will be solved separately. The usual numerical
technique consists of taking an approximation of the initial problem [4]. Here, system
(18) will be solved in three steps:

• convection terms,
• pressure terms,
• diffusion terms,

and the global scheme is made of the combination of the schemes adapted to each
step.

3.1. The convection terms. We consider the system of convection terms (C):




qt + (qu)x = 0,
wt + (wu)x = 0,
(qu)t + (qu2)x = 0,
+ state law : p = g(w)b(q).

This system is degenerated: the speed u is a triple eigenvalue and Riemann solvers are
very difficult to realize. The solution of this problem is obtained through perturbation
method involving a well-posed problem. Let us consider the perturbed Riemann
problem (Cε):




qt + (qu)x = 0,
wt + (wu)x = 0,
(qu)t + (qu2)x + ε2px = 0

(21)

with the piecewise constant initial data

(q, w, u) =

{
ql, wl, ul for x < 0,
qr, wr, ur for x > 0.

(22)

For a fixed ε > 0, system (21) is hyperbolic and has three distinct real eigenvalues:

u − cε, u, u + cε,

where

cε = ε

√
g(w)b′(q) + w

g′(w)b(q)
q

.

For ε > 0, the solution of the Riemann problem (21), (22) is made up of three waves:
shock wave, rarefaction wave, or contact discontinuity (see Figure 1).
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Fig. 1.

3.1.1. Eventuality of shock waves. We consider the case where the solutions
of (Cε) are discontinuous. These discontinuities correspond to shock waves propagat-
ing along the trajectories of shock. The velocity of propagation of the shock wave is
given by the Rankine–Hugoniot relations:

ẋ =
∆(qu)

∆q
=

∆(wu)

∆w
=

∆(qu2 + p)

∆(qu)
.

Thus we get two equations of compatibility:

∆u(q∆w − w∆q) = 0,(23)

q+q−∆u2 = ε2∆p∆q,(24)

where q+, q− are the values of q here and of one of the three states 1-shock, 2-contact
discontinuity, and 3-shock. Using (23) and (24), we deduce the following:

1. On the contact discontinuity,

∆u = 0 and ∆p = 0.(25)

2. On the 1-shock or the 3-shock,

∆u2 =
ε2

q+q−
∆p∆q and ∆

(
w

q

)
= 0.(26)

Knowing that p = g(w)b(q) and that g′ and p′ are positive, applying the finite incre-
ments theorem, we obtain

∆p

∆q
≥ 0.

With (26), we deduce




∆u = sε
∆q√
q+q−

√
∆p
∆q ,

s = + 1 : shock with the velocity u+ cε, q increasing (q2 > qr),
s = − 1 : shock with the velocity u− cε, q decreasing (q1 > ql).
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3.1.2. Eventuality of rarefaction waves. The rarefaction waves are the smooth
solutions of the Riemann problem (21), (22). We express w, u, and p as functions of
q: 


w = w(q),
u = u(q),
p = p(q).

Replacing the expressions of w, u, and p in (21), we get

w(q) = w′(q)q,(27)

u′2(q)q2 = ε2p′(q).(28)

Integrating (28) we obtain{
u = u0 + sε(ψ(q)− ψ(q0)),

where ψ(q) =
∫ q
0

√
p′
q dq.

(29)

Taking u0 = ur and u0 = ul,

u = ur + ε(ψ(q2,ε)− ψ(qr)),(30)

u = ul − ε(ψ(q1,ε)− ψ(ql)).(31)

3.1.3. Limit on the perturbed problem (Cε). We have the following situa-
tions.

• Wave u+ c:
1. shock if q decreases: q2 > qr,
2. rarefaction if q increases: 0 < q2 < qr.

• Wave u− c:
1. shock if q increases: q1 > ql,
2. rarefaction if q decreases: 0 < q1 < ql.

In order to characterize the physically allowable solutions, we have the following
theorem.

Theorem 2. When we study the limit for ε −→ 0 of the Riemann problem


qt + (qu)x = 0,
wt + (wu)x = 0,
(qu)t + (qu2)x + ε2px = 0,

(q, w, u) =

{
ql, wl, ul for x < 0,
qr, wr, ur for x > 0,

(32)

supposing that ql and qr are not equal to zero, we get the following:
1. For ul > ur: The solution of (39) converges almost everywhere to the limit:

(q, w, u) =

{
ql, wl, ul for x < u∗t,
qr, wr, ur for x > u∗t,

where u∗ =
√
qlul +

√
qrur√

ql +
√
qr

.

2. For ul < ur: We obtain

(q, w, u) =

{
ql, wl, ul for x < ult,
qr, wr, ur for x > urt.

The proof is detailed in [1], [2].
The study of this convection step permits us to implement the Lagrange method

for the resolution, using the shock velocity u∗.
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3.1.4. Numerical resolution: Finite volume Lagrange method. We de-
note by Ω the space Ω = [0,1]×[0,T ]. We take a regular initial mesh of [0,1]:

0 = x0 < x1 < · · · < xi < · · · < xN = 1, where ∀ i ∈ [0, N ] , xi = ih.

We take a time increment ∆t and we define

0 = t0, t1 = ∆t , . . . , tn = tn−1 +∆t , . . . , tN = T.

We have the following definitions:
• ∀ i ∈ [0, N ], ]xi,xi+1[ is a mesh.
• ∀ i ∈ [0, N ], xi is a node of the mesh.
• ∀ i ∈ [0, N ], Vi is the volume corresponding to the space taken by the material
assigned to the node xi.

For t = 0, we have the representation, where the Vi are centered on the xi.
• In each Vi, we define

mi =

∫
Vi

q dx,

Qi =

∫
Vi

qu dx,

Wi =

∫
Vi

w dx.

We denote by xni the position of the node xi at the time tn. For a quantity α, we shall
denote by αni the corresponding value of α. Now that we have the data necessary for
the computation, let us describe a cycle of the method. Suppose that we know the
solution of the problem {

Ut(x, t) +AU(x, t) = 0,
U(x, 0) = U0(x).

(33)

With Uh(., tn−1) at tn−1, we want to build the solution at tn = tn−1 +∆t. We get
the following.

1. Construction of the mesh at tn (see Figure 2). For i ∈ [0, N ] we define a new
series of nodes xni from the xn−1

i :

xni = xn−1
i + ∆tun−1

i .(34)

The moving of the mesh must stay compatible with the computation, which
means that the series of (xni )i=0,N must be increasing:

xni−1 < xni .(35)
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That means

(xn−1
i − xn−1

i−1 ) + ∆t(un−1
i − un−1

i−1 ) > 0,(36)

which is the condition of stability warranting xni−1 < xni . We must also treat
the case where a cell becomes too long and avoid that its length goes beyond
a fixed value L:

xni − xni−1 < L.(37)

These conditions (36)–(37) involve a restriction on the time step ∆t, so to
treat these problems of stability without restriction of time step, we are going
to present a method of creation/suppression of cells.
• (a) Suppression of cell (see Figure 3): when xni < xni−1.

– (α) Position of impact point I: I=(xI ,dt1) is the point of intersection
of the straight lines stem from xn−1

i and xn−1
i−1 .

– (β) Determination of the new quantities assigned to I:
∗ mI = mn−1

i−1 +mn−1
i .

∗ QI = Qn−1
i−1 +Qn−1

i .

∗ WI = Wn−1
i−1 +Wn−1

i .

∗ uI =

√
qn−1
i−1 un−1

i−1 +
√

qn−1
i un−1

i√
qn−1
i−1 +

√
qn−1
i

using Theorem 2.

– (γ) Determination of xni : The new node xni is given by

xni = xI + (∆t− dt1)uI .

• (b) Creation of cell (see Figure 4): When xni − xni−1 > L, we cut the
cell into two parts and we assign new quantities to the new node.
– (α) Position of the additional point S: S = middle ofxni and xni−1.
– (β) Determination of the new quantities assigned to S:

∗ VS =
xni −xni−1

2 .
∗ mS = Amn

i−1 +Bmn
i .

∗ WS = AWn
i−1 +BWn

i .

∗ uS =
uni−1+u

n
i

2 .
∗ qS = mS

VS
.

∗ QS = mSuS .
– (γ) Determination of A and B: In case of a regular mesh it is logical

to take A and B constant. In our case two successive cells can
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additional point
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Fig. 4.

have very different volume. Therefore, it seems more advisable to
consider A and B as functions of the volume of each cell.

– (δ) Computation of the new quantities assigned to the new mesh:
∗ A and B are constant: We compute the three new mass in
function of the two old, using the conservation of mass. Thus,
we have 


mn
i = 2

3m
n−1
i ,

mn
i−1 =

2
3m

n−1
i−1 ,

mn
S = 1

2m
n
i−1 +

1
2m

n
i .

∗ A and B are functions of the volume: We use the point Sn−1

which is the middle of [xi−1n− 1, xin− 1] and we get


mn
i =

vn−1
i

V n−1
i

mn−1
i ,

mn
i−1 =

vn−1
i−1

V n−1
i−1

mn−1
i−1 ,

mn
S =

vn−1
S

2V n−1
i

mn
i +

vn−1
S

2V n−1
i−1

mn
i−1,

where 


vn−1
S =

xn−1
i

−xn−1
i−1

2 ,

vn−1
i−1 = V n−1

i−1 − vn−1
S

2 ,

vn−1
i = V n−1

i − vn−1
S

2 .

We will compare the results of the two methods in section 4, and
we will see that the good one is the second one, where A and B are
functions of the volume of the cells.

2. Computation of the new V n
i .

3. Computation of mn
i , Qn

i , Wn
i .

4. Distribution of the density and the speed.
Thus, we obtain the solution at tn and we close the treatment for the convection.

3.2. The pressure terms. We recall the system (P):


qt = 0,
wt = 0,
(qu)t + px = 0.

(38)
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Just like the system (C), (P) is degenerate: 0 is a triple eigenvalue. Let us consider
the perturbed system (Pε):


qt + ε2(qu)x = 0,
wt + ε2(wu)x = 0,
(qu)t + ε2(qu2)x + px = 0

(39)

with the piecewise constant initial data:

(q, w, u) =

{
ql, wl, ul for x < 0,
qr, wr, ur for x > 0.

(40)

For a fixed ε > 0, the system (46) is hyperbolic and has three distinct real eigenvalues:

ε2u − εcε, ε2u, ε2u + εcε,

where

cε =

√
g(w)b′(q) + w

g′(w)b(q)
q

.

We proceed as for the system (Cε) and we consider the discontinuous and the regular
solutions of the Riemann problem (39), (40).

3.2.1. Eventuality of shock waves. We have the next three Rankine–Hugoniot
relations:

ẋ =
ε2∆(qu)

∆q
=

ε2∆(wu)

∆w
=

ε2∆(Qu)

∆(Q)
+

∆(p)

∆(Q)
,

where

Q = qu.

This gives two equations of compatibility:

∆u(q∆w − w∆q) = 0,(41)

q+q−ε2∆u2 = ∆p∆q.(42)

From (41) and (42), we deduce the following.
1. On the contact discontinuity:

∆u = 0 and ∆p = 0.(43)

2. On the 1-shock or the 3-shock:

ε2∆u2 =
1

q+q−
∆p∆q and ∆

(
w

q

)
= 0.(44)

With (44), we get


∆u = s
∆q

ε
√
q+q−

√
∆p
∆q ,

s = + 1 : shock with the velocity u+ cε, q decreasing,
s = − 1 : shock with the velocity u− cε, q increasing.

Now we are going to study the regular solutions of the Riemann problem (39), (40).
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3.2.2. Eventuality of rarefaction waves. We express w, u, and p as functions
of q. Replacing w, u, and p in (Pε), we get

w(q) = w′(q)q,(45)

ε2u′2(q)q2 = p′(q).(46)

Integrating (46) we obtain

{
u = u0 + s

ε (ψ(q)− ψ(q0)),

where ψ(q) =
∫ q
0

√
p′
q dq.

(47)

Taking u0 = ur and u0 = ul,

u = ur +
1

ε
(ψ(q2,ε)− ψ(qr)),(48)

u = ul − 1

ε
(ψ(q1,ε)− ψ(ql)).(49)

3.2.3. Limit on the perturbed problem (Pε). We have the following possi-
bilities.

• Wave u+ c:
1. shock if q decreases: q2 > qr,
2. rarefaction if q increases: 0 < q2 < qr.

• Wave u− c:
1. shock if q increases: q1 > ql,
2. rarefaction if q decreases: 0 < q1 < ql.

Therefore, to characterize the solutions, we have the following theorem.
Theorem 3. When we study the limit for ε −→ 0 of the Riemann problem




qt + ε2(qu)x = 0,
wt + ε2(wu)x = 0,
(qu)t + ε2(qu2)x + px = 0,

(q, w, u) =

{
ql, wl, ul if x < 0,
qr, wr, ur if x > 0,

(50)

1. For ql < qr: The solution of (57) is made up of three waves: shock wave
(velocity u− c), contact discontinuity, rarefaction wave (velocity u+ c), and
the density is given by

ψ(q2) − ψ(qr) +
1√
q1ql

(q1 − ql)

√
(p− pl)

(q1 − ql)
;

2. For ql > qr: The solution of (57) is made of three waves: rarefaction wave
(velocity u − c), contact discontinuity, shock wave (velocity u + c), and the
density is given by

ψ(ql) − ψ(q1) − 1√
q2qr

(q2 − qr)

√
(p− pr)

(q2 − qr)
.

The proof is detailed in [1].
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Fig. 5.

3.2.4. Numerical resolution. We denote by ∆t and ∆x the time and space
increments. The resolution of the Riemann problem will give us the values of q and w
through the interfaces of the volumes V n

i , building an approximate Riemann solver.
To compute qn+1

i , wn+1
i , and un+1

i , we integrate on the rectangle (ABCD) the three
equations of the system




qt = 0,
wt = 0,
(qu)t + px = 0,

(51)

and so we get

qn+1
i = qni ,(52)

wn+1
i = wni ,(53)

un+1
i = uni −

∆t

∆x

1

qni
(pnj+1 − pnj ).(54)

(52), (53), and (54) give the new values of q, w, and u after the treatment of the
pressure terms. See Figure 5 for a cycle in time.

3.3. The diffusion term. It remains to solve the following problem:




qut =
∂
∂x (ε(q, σ)ux),

u(x, 0) = u0(x) for x in [0, 1],
u(0, t) = α and u(1, t) = 0 for t in [0, T ].

(55)

3.3.1. The approximate problem. For the space discretization, we use a fi-
nite element method P1. Let us introduce the variational form of the problem.
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For any functions φ and ψ ∈ H1
0(Ω) we define the bilinear form a(.,.) by

a(φ, ψ) =

∫
Ω

εφxψx dx,

and the problem to solve is as follows: Determine u ∈ H1(Ω) with u(0) = α and
u(1) = 0, such that ∀v ∈ H1

0(Ω)

(qut, v) + a(u, v) = 0.(56)

We set 


xi = ih for 0 ≤ i ≤ N,
Ki = [xi, xi+1] for 0 ≤ i ≤ N,
∆t time increment.

We consider the following set:

Vh = { vh ∈ C0(Ω)/vh|Ki ∈ P1(Ki), vh(0) = 0 vh(1) = 0 }.

On Vh we have the approximate scalar product:

(φh, ψh)h = h

N∑
i=0

φiψi for φh, ψh ∈ Vh.

For φh, ψh ∈ Vh we define πhv ∈ Vh by

πhv(xi) = v(xi), 0 ≤ i ≤ N,

and we define

ah(φh, ψh) =
1

h

N∑
i=0

εi + εi+1

2
(φi+1 − φi)(ψi+1 − ψi) for φh, ψh ∈ Vh.

For the time discretization we use an implicit Euler’s method and we obtain the next
approximate problem:




πh(q(u
n+1
h − unh), vh)h + ∆tah(u

n+1
h , vh) = 0 ∀vh ∈ Vh,

u0
h = πhu0,

unh(0) = α and unh(1) = 0.
(57)

Thus, we get a linear system with a tridiagonal matrix, which is very easy to solve.

4. Applications and results. This section is divided into two parts. In the first
subsection, we apply our splitting method to the hydrodynamic model, especially the
Lagrangian treatment of the convection part, with the method of creation/suppression
of cells. The second subsection is devoted to the application of the method to the
whole system described in section 2.

4.1. Application to the hydrodynamic model. Here, we test the Lagrangian
treatment on the convection terms of the hydrodynamic model. There are two tests,
one for the suppression of cells, the other one for the creation of cells. In each case,
we have the representation of the mesh and the density.
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Fig. 6. Suppression of cells: evolution of the mesh.

Fig. 7. Representation of the density.

4.1.1. Suppression of cells. The test (Figures 6 and 7) is achieved with the
data

for x < 0.5

{
Ul = 2,
ρl = 2

and
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Fig. 8. Creation of cells: evolution of the mesh.

Fig. 9. Representation of the density with A and B constant.

for x > 0.5

{
Ur = 1,
ρr = 1.

4.1.2. Creation of cells. The test (Figures 8 and 9) is realized with the data

for x < 0.5

{
Ul = 1,
ρl = 2

and for x > 0.5

{
Ul = 2,
ρl = 1.
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Fig. 10. Representation of the density with A and B function of volume.

We can see with these tests that is better to take into account the volume of the
cells to compute the quantities assigned to the additional point.

4.2. Application to the compression of pharmaceutical powders. The
tests we present here are computed with the whole system (see section 2). The
different functions k(σ), p = a(σ)b(q), and ε(σ, q) for the behavior of powder, the
state law, and the diffusion term can be chosen according to the powder. Here we
have used the functions

• k(σ) = σ,
• p = a(σ)b(q) = σ.q,
• ε(σ, q) = σ2.q.

Figures 11 and 12 show, respectively, the evolution of the porosity in the powder
during the compression and the computed pressure in the powder.

We can see that when the porosity approaches to zero (compact powder), it stays
with this value, so when the powder is compact, it stays compact, and our goal is
achieved.

5. Conclusion. This study leads to implementation of a mathematical model
to simulate the compression of pharmaceutical powders. We have obtained a very
general model which can adapt to a lot of products. The simulations allow one to
infer the behavior of various materials; in particular it permits one to adjust the
different parameters used by the model:

• the function k(σ) which describes the behavior of powder,
• the state law p = a(σ)b(q).

These simulations also permit an analysis of the behavior of the powder during the
compression phase [8], especially the equilibrium between the compaction term (pres-
sure term) and the diffusion term, which represents some phenomena occurring during
the compression. Further, with these simulation of real experiences, it is possible to
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Fig. 11. Evolution of the porosity.

Fig. 12. Evolution of the pressure (computed).

characterize the properties of some new products in order to predict their tableting
behavior.
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in a simple setting is the subject of this paper. We consider planar diffeomorphisms depending on
a parameter; the diffeomorphisms have invariant curves which deform as the parameter changes.
The Lyapunov-type numbers are then monitored as functions of parameter and are related to the
dynamics on the invariant curves. As an example, we consider the delayed logistic map. We also
describe how the invariant curves have been computed.

Key words. invariant curves, invariant manifolds under perturbations, Lyapunov exponents,
Lyapunov-type numbers
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1. Introduction. Assume that M is an invariant manifold of a diffeomorphism
f . If f is perturbed to fε, will M persist, i.e., will fε have a nearby invariant manifold
Mε diffeomorphic toM? This fundamental question has been studied in various works.
Particularly strong results have been obtained by Fenichel [8]. His main assumption is
formulated in terms of two Lyapunov-type numbers, ν(p) and σ(p), which are defined
for every point p ∈ M by using the linearized dynamics of f . Roughly speaking, if
ν(p) < 1 and σ(p) < 1 for all p ∈ M and fε is C1 close to f , then M will persist.
This result makes it important to obtain insight into the Lyapunov-type numbers ν(p)
and σ(p).

If p is a fixed point or a periodic point of f , then ν(p) and σ(p) can be expressed
by the eigenvalues of a suitable matrix. In other cases the determination of ν(p)
and σ(p) involves a limit process, which makes the evaluation nontrivial. If p is a
periodic point of high period, the numerical evaluation of ν(p) and σ(p) is also far from
trivial.

In this paper we consider the simple case where f : R
2 → R

2 is a diffeomorphism
(or f is a diffeomorphism defined on an open subset of R

2) and M = Γ is a smooth,
simply closed curve invariant under f . For this case we will define the numbers ν(p)
and σ(p), describe some of their properties, and study their numerical approximation;
see section 2.
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As an interesting example, in section 3 we will consider the delayed logistic map
fλ(x, y) = (y, λy(1−x)), where λ is a parameter. As λ increases from λ < 2 to λ > 2,
the fixed point

(
λ− 1

λ
,

λ− 1
λ

)

of fλ loses stability, and an invariant curve Γλ is born in a Neimark–Sacker bifurcation;
see, for example, [9, 12]. The breakdown of Γλ, with fλ embedded in a two-parameter
family of maps, has been studied extensively in [2]. In our paper, the main emphasis
is the behavior of the Lyapunov-type numbers for Γλ when λ crosses an interval of
phase locking. In this λ-interval, the map fλ has two seven-periodic orbits on the
curve Γλ. This allows us to compare the numerical approximations that we obtain
for the Lyapunov-type numbers with values that can be computed more directly from
linearizing about the seven-periodic orbits.

The phase-locking λ-interval has a subinterval where the attracting seven-
periodic orbit consists of spiral points. For the corresponding λ-values, the invari-
ant curve Γλ is not C1 but merely continuous, as it winds infinitely often about each
point of the orbit. In agreement with the general perturbation theory of invariant
manifolds, this breakdown of smoothness of Γλ is related to a Lyapunov-type num-
ber approaching the value 1. As we will show, our numerical computations are in
agreement with this observation. We will also show how the Lyapunov-type numbers
may be used to distinguish phase-locked dynamics on Γλ from ergodic dynamics with
irrational rotation number.

In section 4 we describe, for completeness, the algorithm that we used for approx-
imating the invariant curves. The algorithm may be viewed as a discrete version of
the Hadamard graph transform [10]. An application, confirming earlier results of [2],
is given. For related work on computing invariant curves and more general invariant
manifolds we refer to [3, 5, 7, 11, 14, 16, 17, 20, 21], for example.

In principle, the approach described in our paper can be applied to compute
Lyapunov-type numbers for Poincaré maps of continuous-time dynamical systems
such as the periodically forced oscillator of van der Pol. This work, which is in
progress, will extend the results of [6].

The case of an invariant curve of a planar diffeomorphism is clearly a compara-
tively simple case of an invariant manifold. Nevertheless, as our study for the delayed
logistic map shows, the behavior of the Lyapunov-type numbers for a parameter-
dependent problem may be quite rich. They can be related to the geometry of the
curves (e.g., to the appearance of spiral points) as well as to the dynamics on the
curves, which may be phase locked or ergodic. We believe that the numerical ap-
proximation of the numbers, ν(p) and σ(p), which we describe here only in a special
situation, deserves further attention by researchers working on the numerical analysis
of dynamical systems. The numbers are central in the perturbation theory of invariant
manifolds and may give considerable insight into the dynamics.

2. Lyapunov-type numbers. Let f : R
2 −→ R

2 denote an orientation preserv-
ing diffeomorphism and let Γ ⊂ R

2 denote a simply closed C1 curve which is invariant
under f , i.e., f(Γ) = Γ. In this section we will define four Lyapunov-type numbers,
ν(p), ν̄(p), σ(p), and σ̄(p), for every p ∈ Γ and prove some useful properties. Most
of the results are not new and could be inferred from more general theorems in the
literature. However, since our setting is very special, the proofs given here are simple
and, we believe, instructive.
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We refer to [6] for similar discussions of fixed points and periodic orbits in
continuous-time systems. Constancy of the numbers along orbits is well known [8].
As our setting is very special, our results on limits (see Theorems 2.3 and 2.4) are
sharper than more general results on semicontinuous behavior at limit sets [8].

We summarize the results at the end of the section and obtain a rather complete
description of the theoretical behavior of the functions ν(·), ν̄(·), σ(·), and σ̄(·).

Notation. For every p ∈ Γ, let Tp and Np denote a unit tangent and a unit
normal to Γ at p, respectively (see Figure 2.1). We will assume that Tp and Np change
continuously with p. If we have a smooth parameterization z(s) = (x(s), y(s)), 0 ≤
s ≤ L, of Γ with ż(s) �= 0 for all s, then Tp and Np can be obtained as follows: For
p ∈ Γ determine the parameter s with p = z(s) and then compute

�Tp =

(
ẋ(s)
ẏ(s)

)
, Tp =

1

|�Tp|
�Tp, Np =

1

|�Tp|

(
ẏ(s)
−ẋ(s)

)
.

Here |�Tp|2 = (ẋ(s))2+(ẏ(s))2. As a further notation, let Ap denote the Jacobian of f
at p. Since f is an orientation-preserving diffeomorphism, we have det(Ap) > 0.

Fig. 2.1. An invariant circle with the normal Np and the tangent Tp at the point p.

Definition of ap and bp. Invariance of Γ under f implies that ApTp is a multiple
of Tfp,

ApTp = apTfp.(2.1)

(Here fp := f(p).) Since f preserves orientation we have1 ap > 0. The number
ap measures locally contraction (for 0 < ap < 1) or stretching (for ap > 1) of the
dynamics within Γ. One can compute ap by taking a scalar product, ap = 〈Tfp, ApTp〉.
Here 〈u, v〉 = u1v1 + u2v2.

To measure local contraction or stretching of the dynamics toward Γ, we compute
ApNp and decompose

ApNp = cpTfp + bpNfp.(2.2)

1Since f is a diffeomorphism, we have ap �= 0 for all p ∈ Γ. Then, by continuity, either ap > 0
for all p ∈ Γ or ap < 0 for all p ∈ Γ. Suppose that ap < 0 for all p ∈ Γ; then, if p moves around
Γ clockwise, the image point fp would move counterclockwise, contradicting our assumption that f
preserves orientation.
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Then bp = 〈Nfp, ApNp〉 measures this contraction (for 0 < bp < 1) or expansion (for
bp > 1).

Remark 2.1. Equations (2.1) and (2.2) can be written in matrix form as

Ap

(
Tp Np

)
=
(
Tfp Nfp

)(
ap cp
0 bp

)
,(2.3)

where Tp, etc., denote column vectors with two components. Here

det
(
Tp Np

)
= det

(
Tfp Nfp

)
= ±1,

and, therefore, det(Ap) = apbp. Since det(Ap) > 0 and ap > 0 we also have bp > 0.

Definition of ν(p), ν̄(p), σ(p), and σ̄(p). Let p ∈ Γ. Invariance of Γ under f
implies that the complete orbit

fnp, n ∈ Z,(2.4)

lies on Γ; therefore, the numbers afnp and bfnp are well-defined for all integers n. We
will define ν(p) as a measure of attractivity of the dynamics toward Γ along the orbit
(2.4); correspondingly, σ(p) will measure the rate of the ratio2 of attractivity within
and toward Γ along the orbit (2.4).

To define ν(p), one has two possibilities; (1) go forward along the orbit (2.4); or
(2) first go backward from p to f−np, then go forward by n steps, and let n → ∞.
Both processes lead to useful numbers that are generally not equal. In [8], Fenichel
considered overflowing invariant manifolds for which forward orbits are not always
meaningful; therefore, he used the process (2) to define ν(p) and σ(p). We use similar
notation and set

ν(p, n) =
(
bf−1p bf−2p · · · bf−np

)1/n

(2.5)

and ν(p) = lim supn→∞ ν(p, n). If ν(p) < 1, we also define

σ(p, n) =
log
(
af−1p · · · af−np

)

log
(
bf−1p · · · bf−np

)(2.6)

and σ(p) = lim supn→∞ σ(p, n). Going forward along the orbit (2.4) leads to the
following definitions:

ν̄(p, n) =
(
bfp · · · bfnp

)1/n

(2.7)

and ν̄(p) = lim supn→∞ ν̄(p, n). Furthermore, if ν̄(p) < 1, we set

σ̄(p, n) =
log
(
afp · · · afnp

)

log
(
bfp · · · bfnp

)(2.8)

and σ̄(p) = lim supn→∞ σ̄(p, n).

2In general, this is finer than measuring the ratio of the rates.
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Bounds for the Lyapunov-type numbers. Let us show that ν(p), p ∈ Γ, is
always a well-defined number and, if ν(p) < 1, then σ(p) is also a well-defined number,
i.e., the lim sup’s are finite. Completely similar arguments apply to ν̄(p) and σ̄(p).

First, by continuity, there are constants Cj > 1 with

1

C1
≤ ar ≤ C1 and

1

C2
≤ br ≤ C2 for all r ∈ Γ.

This implies 1/C2 ≤ ν(p, n) ≤ C2 for all n and, therefore, ν(p) is well-defined with
1/C2 ≤ ν(p) ≤ C2. Now assume ν(p) < 1 and choose ε > 0 with ν(p) + ε < 1. Then
we have, for all large n,

0 < bf−1p · · · bf−np ≤
(
ν(p) + ε

)n
< 1;

thus

log(bf−1p · · · bf−np) ≤ n log
(
ν(p) + ε

)
< 0,

and thus

1

| log(bf−1p · · · bf−np)|
≤ 1

n log
(

1
ν(p)+ε

) .

Also, from 1/C1 ≤ ar ≤ C1 for all r ∈ Γ, it follows that |log(af−1p · · · af−np)| ≤
n logC1. Since ε > 0 was arbitrary, the previous bounds yield |σ(p, n)| ≤
logC1/ log(1/ν(p)). Therefore, σ(p) is a well-defined number satisfying the same
bound. The number σ(p) may be positive, negative, or zero. For an illustration,
assume

1 > ap = exp(−α) > 0 and 1 > bp = exp(−β) > 0

with α > 0, β > 0 independently of p. Then we have

0 < ν(p, n) = exp(−β) < 1 and 0 < σ(p, n) =
α

β
.

One obtains that σ(p) < 1 iff 0 < α < β, i.e., if the attraction in the normal direction
is stronger than in the tangential direction.

Fixed points. A simple case occurs if p ∈ Γ is a fixed point of f , i.e., fp = p.
Since f−jp = p for j = 1, . . . , n we have (see (2.5) and (2.6))

ν(p, n) = bp, σ(p, n) =
log ap
log bp

;

thus ν(p) = bp and σ(p) =
log ap
log bp

. Clearly, the same expressions are obtained for ν̄(p)

and σ̄(p). Furthermore, by (2.3), the numbers ap and bp are the eigenvalues of Ap.
Here ap is the eigenvalue to the eigenvector Tp, and bp is the other eigenvalue. We
summarize the result.

Theorem 2.1. Let p = fp and let Ap = f ′(p) denote the Jacobian of f . Fur-
thermore, let ap and bp denote the eigenvalues of Ap, where ApTp = apTp with Tp the
tangent vector to Γ at p. Then we have

ν(p) = ν̄(p) = bp and σ(p) = σ̄(p) =
log ap
log bp

.
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Periodic points. Let p ∈ Γ denote a point of period q of f , i.e.,

fp �= p, f2p �= p, . . . , fq−1p �= p, fqp = p.

Introduce the orthogonal matrix Qp = (Tp Np) and the upper triangular matrix

Tp =
(

ap cp
0 bp

)
.

According to (2.3) we have ApQp = QfpTp. Replacing p by fp we also have AfpQfp =
Qf2pTfp. Therefore,

AfpApQp = Qf2pTfpTp.

The argument can be repeated. If Πp denotes the product matrix

Πp = Afq−1p · · ·AfpAp,(2.9)

then

ΠpOp = OfqpTfq−1p · · · TfpTp.(2.10)

By assumption, fqp = p. Therefore, (2.10) says that the matrix product (2.9) is
similar to the upper triangular matrix Tfq−1p · · · TfpTp. Consequently, the eigenvalues
of Πp are

αp = ap afp · · · afq−1p and βp = bp bfp · · · bfq−1p.

(Here ΠpTp = αpTp.) It follows that ν̄(p, q) = β
1/q
p and σ̄(p, q) =

logαp
log βp

.

Using the q-periodicity of fnp, it is not difficult to show that we also have

ν(p) = ν̄(p) = β1/q
p(2.11)

and

σ(p) = σ̄(p) =
logαp
log βp

.(2.12)

Therefore, we have obtained the following result.
Theorem 2.2. Let

O(p) =
{
p, fp, f2p, . . . , fq−1p

}

denote an orbit of period q of f . Form the matrix product Πp in (2.9), where Afjp =
f ′(f jp). Let αp, βp denote the eigenvalues of Πp with αp corresponding to the eigen-
vector Tp which is tangent to Γ at p. Then we have the formulas (2.11) and (2.12)
for the Lyapunov-type numbers.

Constancy along orbits. Each of the functions ν(·), ν̄(·), σ(·), and σ̄(·) is con-
stant along each orbit fnp, p ∈ Γ. To show this for ν̄, for example, note that

(
ν̄(p, n)

)n
= bfp . . . bfnp and

(
ν̄(fp, n)

)n
= bf2p . . . bfn+1p.
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Therefore,

(
ν̄(p, n)

ν̄(fp, n)

)n
=

bfp
bfn+1p

,

and the bound C−1
2 ≤ br ≤ C2 for all r implies

C
−2/n
2 ≤ ν̄(p, n)

ν̄(fp, n)
≤ C

2/n
2 .

For n → ∞ it follows that ν̄(p) = ν̄(fp), which yields constancy of ν̄(·) along the
orbit through p. The arguments for the functions ν, σ, and σ̄ are similar.

Behavior at limits. Assume that an orbit fnp, p ∈ Γ, approaches a fixed point
p+ of f as n → ∞. We claim that, in this case, ν̄(p) = ν̄(p+) and σ̄(p) = σ̄(p+). A
similar result holds for ν and σ if fnp→ p− as n→ −∞.

Theorem 2.3. If fnp→ p+ as n→∞, then

ν̄(p) = ν̄(p+) = ν(p+) and σ̄(p) = σ̄(p+) = σ(p+).

Similarly, if fnp→ p− as n→ −∞, then

ν(p) = ν̄(p−) = ν(p−) and σ(p) = σ̄(p−) = σ(p−).

Proof. Note that the equations ν̄(p+) = ν(p+), etc., at the fixed points have
already been shown in Theorem 2.1. We will prove only that ν̄(p) = ν̄(p+) if f

np→ p+

as n → ∞. The other claims follow similarly. To show the theorem, we first note
that, for any N ∈ N,

log ν̄(fNp, n) =
1

n

n∑
j=1

log bfN+jp.(2.13)

Let ε > 0 be given. Continuity of the function r → log br implies that |log bfN+jp −
log bp+ | ≤ ε for all j ≥ 1 if N = N(ε) is sufficiently large. Therefore, (2.13) yields
|log ν̄(fNp, n) − log ν̄(p+)| ≤ ε for all n ≥ 1. As n → ∞ one obtains |log ν̄(fNp) −
log ν̄(p+)| ≤ ε. However, since ν̄(·) is constant along orbits, ν̄(fNp) = ν̄(p), thus
|log ν̄(p) − log ν̄(p+)| ≤ ε. Since ε > 0 was arbitrary, the equality ν̄(p) = ν̄(p+)
follows.

Orbits that approach periodic orbits. Assume that f has an orbit of period q,

O(p+) =
{
p+, fp+, f2p+, . . . , fq−1p+

}
,(2.14)

which is approached by fnp as n→∞,

dist
(
fnp,O(p+)

)
→ 0 as n→∞.

(Here dist(fnp,O(p+)) = minj |fnp − f jp+|.) We claim that ν̄(p) = ν̄(p+) and
σ̄(p) = σ̄(p+), and that a similar result holds for ν and σ if fnp approaches a periodic
orbit O(p−) as n → −∞. To prove this, we first note that the q points of the orbit
(2.14) are all fixed points of fq,

fq(f jp+) = f jp+, j = 0, . . . , q − 1.(2.15)
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As n→∞, the sequence

fqnp, n = 1, 2, . . . ,(2.16)

approaches precisely one of the fixed points (2.15). To conclude this, we use that the
dynamics of f restricted to Γ is one-dimensional. This implies that the iteration (2.16)
always progresses monotonically between any two fixed points of fq. An approach of
the sequence (2.16) to the orbit (2.14) which oscillates between two or more fixed
points of fq is, therefore, impossible.

Without loss of generality (by renaming p+, if necessary) we may assume that
fqnp→ p+ as n→∞. This yields

fqn+jp→ f jp+ as n→∞ for j = 0, . . . , q − 1.

We have ν̄(p+) = ν̄(fp+) = · · · = ν̄(fq−1p+), and a limit argument as in the proof of
Theorem 2.3 then yields the equality ν̄(p) = ν̄(p+).

Theorem 2.4. Let p ∈ Γ. Assume that fnp approaches a periodic orbit

{p+, fp+, . . . , fq−1p+}

of f as n→∞. Then we have

ν̄(p) = ν̄(p+) = ν(p+) and σ̄(p) = σ̄(p+) = σ(p+).

Similarly, if fnp approaches a periodic orbit {p−, fp−, . . . , fq−1p−} as n→ −∞, then

ν(p) = ν̄(p−) = ν(p−) and σ(p) = σ̄(p−) = σ(p−).

Dense orbits. The restriction of f to the invariant curve Γ can be identified with
an orientation-preserving circle diffeomorphism, which we denote by F . To be precise,
assume that z(s) = (x(s), y(s)), 0 ≤ s ≤ L, parameterizes Γ by arclength s. Then,
for any 0 ≤ s ≤ L, we can write f(z(s)) = z(s̃) with s̃ = s̃(s). The normalization
F (s/L) = s̃(s)/L, 0 ≤ s/L ≤ 1, determines the circle diffeomorphism F , where the
circle is identified with R mod Z.

Let ρ(F ) denote the rotation number of F (see, e.g., [1, 13]). A well-known result
of Poincaré states that ρ(F ) is irrational iff the orbits of F are dense on the circle.
(See, for example, [1, 13].) Consequently, if ρ(F ) is irrational, the orbits fnp with
p ∈ Γ are dense on Γ. We will then show, under a mild smoothness assumption, that
the Lyapunov-type numbers ν(p), etc., are constant functions on Γ.

The result is closely related to Birkhoff’s ergodic theorem; see, for example, [18].
In general, however, one obtains only an almost-everywhere result under the assump-
tions of Birkhoff’s theorem. Since one computes only on a set of (Lebesgue) measure
zero, it is of some interest to know that the almost-everywhere restriction may be
dropped under our special assumptions.

Theorem 2.5. Assume that µ := ρ(F ) is irrational and that F ∈ C2. Then the
functions ν(p) ≡ ν̄(p) and σ(p) ≡ σ̄(p) are constant on Γ.

Remark 2.2. The assumption F ∈ C2 can be weakened. It suffices to assume that
dF/dξ is of bounded variation. The assumption F ∈ C1, however, is not sufficient for
the application of Denjoy’s theorem below.

Our proof of Theorem 2.5 is based on the following lemma.
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Lemma 2.6. Let µ ∈ R be irrational and let φ : R → C denote a continuous,
1-periodic function. Then we have, for all x ∈ R,

1

n

n∑
j=1

φ(x+ µj)→
∫ 1

0

φ(ξ) dξ as n→∞.(2.17)

The convergence in (2.17) is uniform in x.
Proof. (a) First let φ(x) = e2πikx with integer k. For k �= 0 we have

n∑
j=1

φ(x+ µj) = e2πikx qn+1 − q

q − 1 with q = e2πikµ.

(The irrationality of µ ensures q �= 1, of course.) It follows that

∣∣∣
n∑
j=1

φ(x+ µj)
∣∣∣ ≤ 2

|q − 1|

is bounded uniformly in n and x. Therefore, convergence in (2.17) to 0 =
∫ 1

0
φdξ is

uniform in x.
If k = 0, then φ ≡ 1, and uniform convergence in (2.17) is immediate.
(b) Consider any finite sum

φK(x) =

K∑
k=−K

ck e2πikx.(2.18)

Applying (a), we obtain uniform convergence in (2.17) for φ = φK .
(c) Let φ be continuous and 1-periodic. Given any ε > 0, there is a function φK

of the form (2.18) with3

|φ− φK |∞ ≤ ε.(2.19)

Then, by (b), there is an integer N with

∣∣∣ 1
n

n∑
j=1

φK(x+ µj) −
∫ 1

0

φK dξ
∣∣∣ ≤ ε

for all n ≥ N and all x. Together with (2.19) we obtain

∣∣∣ 1
n

n∑
j=1

φ(x+ µj) −
∫ 1

0

φdξ
∣∣∣ ≤ 3ε,

and the lemma is proved.
To prove Theorem 2.5, let φ : R→ R denote any continuous, 1-periodic function

and consider the averages

1

n

n∑
j=1

φ(F jy).(2.20)

3Here |ψ|∞ = maxξ |ψ(ξ)| denotes the maximum norm.
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Let Rµ = Rµ(x) denote the rigid rotation of the circle by angle 2πµ, i.e., Rµ(x) =
(x + µ) mod 1 since the circle is identified with R mod Z. By Denjoy’s theorem
(see [4] or, for example, [1, 13]) the circle map F is topologically conjugate to Rµ,
i.e., there is a circle homeomorphism H with F = H−1 ◦ Rµ ◦ H. We then obtain
F j = H−1 ◦Rj

µ ◦H, thus F jy = H−1(Hy + µj). Substitution into (2.20) yields

1

n

n∑
j=1

φ(F jy) =
1

n

n∑
j=1

φ ◦H−1(Hy + µj),

and, therefore, by Lemma 2.6 the averages (2.20) converge,

1

n

n∑
j=1

φ(F jy)→
∫ 1

0

φ(H−1(ξ)) dξ.(2.21)

The convergence is uniform in y.
Now recall that r → br is a continuous, positive function on Γ and

ν̄(p, n) =
(
bfp . . . bfnp

)1/n

.

Therefore,

log ν̄(p, n) =
1

n

n∑
j=1

log bfjp.

When we identify the invariant curve Γ with the circle R mod Z, the function r → br
corresponds to a positive, continuous, 1-periodic function β(ξ), and log bfjp corre-
sponds to log β(F jy). With these identifications we have

log ν̄(p, n) =
1

n

n∑
j=1

log β(F jy).

Therefore, by (2.21), the sequence log ν̄(p, n) converges to the integral

Int :=

∫ 1

0

φ(H−1(ξ)) dξ with φ(y) = log β(y).

In particular,

ν̄(p) = lim sup
n→∞

ν̄(p, n) = eInt

is independent of p. We claim that we also have ν(p) = eInt for all p ∈ Γ. To prove
this, first note that

1

n

n∑
j=1

φ(x− µj)→
∫ 1

0

φ(ξ) dξ as n→∞

under the assumptions of Lemma 2.6. The arguments, then, are the same as before,

log ν(p, n) =
1

n

n∑
j=1

log bf−jp

=
1

n

n∑
j=1

φ(F−jy)→
∫ 1

0

φ(H−1(ξ)) dξ as n→∞.

Here the functions φ, F , and H are exactly the same as above.
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To prove σ(p) = σ̄(p) = const for p ∈ Γ we note that

σ̄(p, n) =
1
n

∑n
j=1 log afjp

1
n

∑n
j=1 log bfjp

.

The denominator and the numerator can be treated separately by the same arguments
as above. This completes the proof of Theorem 2.5.

Summary and discussion. As above, let F denote the circle map corresponding
to the restriction fΓ of f to Γ, and let ρ(F ) denote the rotation number of F .

If ρ(F ) is irrational, then all orbits fnp, p ∈ Γ, are dense on Γ, and we have

ν(p) = ν̄(p) = C1, σ(p) = σ̄(p) = C2

with constants C1, C2 independent of p.
For the further discussion assume that ρ(F ) = m

q is rational, where the integers

m and q have no common divisor. Then fΓ has at least one orbit of period q. (A
fixed point is considered as an orbit of period 1.) Furthermore, every periodic orbit
of fΓ has period q. On such an orbit, O(p) = {p, fp, . . . , fq−1p}, the Lyapunov-type
numbers are constant, and the two numbers ν(p) = ν̄(p) and σ(p) = σ̄(p) can be
computed in terms of the eigenvalues of a 2 × 2 matrix. This matrix is obtained by
linearizing f about O(p).

If the orbit fnp, p ∈ Γ, is not periodic, then it approaches a q-periodic orbit O(p+)
as n→∞ and a q-periodic orbit O(p−) as n→ −∞. Typically, the two limit orbits,
O(p+) and O(p−), are not the same. Then one can expect that

ν(p+) = ν̄(p+) �= ν̄(p−) = ν(p−)

and

σ(p+) = σ̄(p+) �= σ̄(p−) = σ(p−)

since the linearizations of f about O(p+) and O(p−) are not directly related.
The Lyapunov-type numbers are constant along the orbit {fnp}n∈Z, and we have

shown that

ν(fnp) = ν(p−), ν̄(fnp) = ν̄(p+),

σ(fnp) = σ(p−), σ̄(fnp) = σ̄(p+).

For an illustration, assume that ν(p+) > ν(p−). (In the next section we will give a
simple example where this occurs for two seven-periodic orbits O(p+) and O(p−).)
Since fnp approaches O(p+) for n→∞, but

ν(fnp) = ν(p−) < ν(p+) for all n,

the function ν(·) cannot be continuous at the points of the periodic orbit O(p+). (For
the example, the resulting jump discontinuities of ν(·) at the seven points of O(p+)
are shown in Figure 2.3.) See Figures 2.2–2.5.

This piecewise constant and discontinuous behavior is typical for the functions

ν(·), ν̄(·), σ(·), σ̄(·)(2.22)
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Fig. 2.2. The values of ν̄(θ) for λ =
2.18 and 0 ≤ θ ≤ 2π.

Fig. 2.3. The values of ν(θ) for λ =
2.18 and 0 ≤ θ ≤ 2π.

Fig. 2.4. The values of σ̄(θ) for λ =
2.18 and 0 ≤ θ ≤ 2π.

Fig. 2.5. The values of σ(θ) for λ =
2.18 and 0 ≤ θ ≤ 2π.

in the phase-locked situation under consideration. To see this, assume that p1 and
p2 are two fixed points of f

q, i.e., p1,2 belong to q-periodic orbits of f on Γ. Denote
by C = C(p1, p2) the segment of Γ which lies strictly between p1 and p2 if one moves
from p1 to p2 along Γ counterclockwise, say. Assume that C does not contain any
fixed point of fq. Then we have the following alternative: either (a) for all p ∈ C,

lim
n→∞ fnqp = p2 and lim

n→−∞ fnqp = p1

or (b) for all p ∈ C,
lim
n→∞ fnqp = p1 and lim

n→−∞ fnqp = p2.

In case (a) we have, for all p ∈ C,
ν(p) = ν(p1), ν̄(p) = ν̄(p2),

σ(p) = σ(p1), σ̄(p) = σ̄(p2).

Similarly, in case (b),

ν(p) = ν(p2), ν̄(p) = ν̄(p1),

σ(p) = σ(p2), σ̄(p) = σ̄(p1).
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This shows that the functions (2.22) are constant between consecutive fixed points of
fq on Γ.

Let us summarize the results: If ρ(F ) is irrational, then ν(p) = ν̄(p) and σ(p) =
σ̄(p) are constant on Γ. If ρ(F ) = m/q is rational, then the functions (2.22) are
piecewise constant, and jumps may occur only at fixed points of fq. If ρ(F ) is rational,
then, in general,

ν(p)− ν̄(p) and σ(p)− σ̄(p)(2.23)

differ from zero. This last observation is numerically important, because we can
compute good approximations of the numbers (2.23). If the differences (2.23) are
significantly different from zero, we may conclude that we have phase-locking of f
on Γ. Conversely, if the differences (2.23) are close to zero with high accuracy, then
either ρ(F ) is irrational or we may expect that ρ(F ) = m/q with large q. (This last
conclusion is not rigorous and needs further investigation.) In the latter case, where
ρ(F ) = m/q with large q, the dynamics of f on Γ is close to the ergodic case where
ρ(F ) is irrational. In any case, the numbers (2.23), and the amount by which they
differ from zero, are numerically computable indicators of the degree of phase-locking
of f on Γ. We will demonstrate this by an example in the next section.

3. Numerical results for the delayed logistic map. A simple model for the
discrete-time evolution of the size of a population is given by Nn+1 = λNn(1−Nn−1).
Here Nn is the scaled size of the population in the nth generation and λ > 0 is a
parameter. Define fλ : R

2 → R
2 by fλ(x, y) = (y, λy(1 − x)). If one sets (xn, yn) =

(Nn−1, Nn), then the evolution for Nn corresponds to the planar map

(xn, yn)→ fλ(xn, yn) = (xn+1, yn+1).

The map fλ, λ > 0, has the fixed points, P1 = (0, 0) and P2 = (1 − 1
λ ) (1, 1). Of

interest is the fixed point P2 = P2(λ), which is asymptotically stable for 0 < λ < 2
and unstable for λ > 2. At λ = 2, where P2(λ) loses its stability, a Neimark–Sacker
bifurcation (see, e.g., [12]) occurs, leading to an invariant curve Γ = Γλ of fλ. A
detailed computer-assisted study of the curves Γλ and their breakdown has been
made in [2].

In this paper we are mostly interested in the Lyapunov-type numbers, but we
also briefly describe in the next section how we computed the approximations to
Γλ. Figure 3.1 shows these curves for some λ-values between λ = 2.001 (near the
Neimark–Sacker bifurcation) and λ = 2.27 (near breakdown). Our algorithm yields a
cubic periodic C2 spline through a discrete set of points representing Γλ. The spline
is then used to obtain approximations to tangents and normals of Γλ. These are
needed in (2.1) and (2.2) to obtain ap and bp. Approximations for the Lyapunov-type
numbers, ν(p), σ(p), ν̄(p), and σ̄(p), can then be obtained from (2.5), (2.6), (2.7), and
(2.8). See Figures 3.1–3.3.

Study of ν(p, n), etc., for λ = 2.18. We first fix λ = 2.18 and evaluate
ν(p, n) and ν̄(p, n) using (2.5) and (2.7) for increasing n. The point p is chosen as
the point corresponding to θ = 0 in our parameterization of Γλ, but any other point
p ∈ Γλ would serve the same purpose. The results for ν(p, n) and ν̄(p, n) are shown in
Figure 3.4. For n ≥ 300 (about) the results are practically independent of n, giving
approximations to ν(p) and ν̄(p). It is clearly seen that ν(p) �= ν̄(p), which implies
phase-locking of the dynamics on Γλ.
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Fig. 3.1. Invariant circles for the de-
layed logistic map for various values of λ.

Fig. 3.2. Invariant circles for the
forced oscillator of van der Pol for various
values of λ.

Fig. 3.3. The invariant circle for λ =
2.18 with seven saddles denoted by (�) and
seven sinks denoted by (o).

Fig. 3.4. The values of ν̄(p, n) and
ν(p, n) for λ = 2.18 and 0 ≤ n ≤ 3000.

Study of ν(p, n), etc., for λ = 2.10. If λ = 2.10 then, according to Figure
3.4 of [2], the rotation number ρ of fλ on Γλ is not a rational number with small de-
nominator; i.e., either ρ is irrational or ρ = m1/m2 is rational with large denominator
m2. We have again computed ν(p, n) and ν̄(p, n) for increasing n.

Here we see that there is no significant difference between the two numbers ν(p, n)
and ν̄(p, n) for large n.

The results for ν(p, n) and ν̄(p, n) for λ = 2.10 are shown in Figures 3.5 and 3.6,
respectively.

Study of the λ-dependence of the Lyapunov-type numbers. If n is large
enough, the numbers ν(p, n), etc., practically agree with their limits ν(p), etc. We
found that the choice n = 1,000 was always sufficient for the map fλ under consid-
eration. Furthermore, the numbers ν(p), etc., are independent of p if we ignore the
discontinuities at the sink orbit (for ν(p) and σ(p)) and the saddle orbit (for ν̄(p) and
σ̄(p)) in a phase-locked situation. Thus, for every parameter value λ, we can compute
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Fig. 3.5. The values of ν(p, n) for λ =
2.10 and 0 ≤ n ≤ 3000.

Fig. 3.6. The values of ν̄(p, n) for λ =
2.10 and 0 ≤ n ≤ 3000.

four numbers,

νλ, σλ, ν̄λ, σ̄λ.(3.1)

Numerically, we have obtained these numbers by choosing n = 1,000 in the formu-
lae for ν(p, n), etc., and by choosing p as the point corresponding to θ = 0 in our
parameterization of Γλ. (Any other point p on Γλ would serve the same purpose.)

Our numerical approximations of the functions (3.1) for 2 ≤ λ ≤ 2.27 are shown
in Figures 3.7, 3.9, 3.11, and 3.13.

If the dynamics of fλ on Γλ is phase-locked, then we can compute the numbers
(3.1) also by linearizing fλ about the corresponding periodic orbits and using the
results of section 2. This gives us a possibility of checking the accuracy of the com-
putations. We have carried this out for the λ-interval with rotation number ρ = 1/7,
i.e., for λ1 ≤ λ ≤ λ4, where

λ1 ≈ 2.1763, λ4 ≈ 2.2006.

The results of the comparison are shown in Figures 3.8, 3.10, 3.12, and 3.14. Note
that the solid lines correspond to the computations of the Lyapunov-type numbers
based on eigenvalues; the dotted lines are based on the approximations ν(p, n), etc.,
for large n. The chosen λ-interval in the figures is somewhat larger than [λ1, λ4], but
the solid curves exist only for λ1 ≤ λ ≤ λ4. We will explain below that the numbers
ν̄λ and σ̄λ are, strictly speaking, not defined for λ in a certain subinterval of [λ1, λ4].

The Lyapunov-type numbers in the phase-locked interval with ρ = 1/7.
As shown in Figures 3.8, 3.10, 3.12, and 3.14, the behavior of the Lyapunov-type
numbers as functions of λ is rather complicated. This is in agreement with the rather
complex behavior of the eigenvalues of the linearizations about the periodic orbits,
which we want to discuss in some detail.

For λ1 < λ < λ4 there are two seven-periodic orbits of fλ on Γλ, which we denote
by

O(sa) =
{
q, fλq, f

2
λq, . . . , f

6
λq
}

and O(si) =
{
r, fλr, f

2
λr, . . . , f

6
λr
}

with q = qλ and r = rλ. For λ→ λ1+ and λ→ λ4− the two orbits collide, leading to
a single nonhyperbolic orbit. The orbit O(sa) consists of saddle fixed points of f7

λ and
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Fig. 3.7. The values of ν̄λ for 2 ≤ λ ≤
2.27.

Fig. 3.8. The values of ν̄λ obtained
from eigenvalues for λ1 ≤ λ ≤ λ4 (solid
line).

Fig. 3.9. The values of σ̄λ for 2 ≤ λ ≤
2.27.

Fig. 3.10. The values of σ̄λ obtained
from eigenvalues for λ1 ≤ λ ≤ λ4 (solid
line).

Fig. 3.11. The values of νλ for 2 ≤
λ ≤ 2.27.

Fig. 3.12. The values of νλ obtained
from eigenvalues for λ1 ≤ λ ≤ λ4 (solid
line).
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Fig. 3.13. The values of σλ for 2 ≤
λ ≤ 2.27.

Fig. 3.14. The values of σλ obtained
from eigenvalues for λ1 ≤ λ ≤ λ4 (solid
line).

O(si) consists of sinks. All points can be computed accurately by Newton’s method
applied to f7

λ(p)− p = 0, together with continuation in λ. For λ = 2.18 the orbits are
shown in Figure 3.3. Let

Π
(sa)
λ =

(
f7
λ

)′
(qλ) and Π

(si)
λ =

(
f7
λ

)′
(rλ)

denote the linearizations of fλ about the orbits, and let µ
(sa)
1,2 (λ) and µ

(si)
1,2 (λ) denote

the eigenvalues of these two matrices.

Behavior of ν̄λ and σ̄λ for λ1 ≤ λ ≤ λ4. As stated in Theorems 2.2 and

2.4, the behavior of ν̄λ and σ̄λ is determined by the eigenvalues at the sinks, µ
(si)
1,2 =

µ
(si)
1,2 (λ). However, this is only true as long as the sinks are not of spiral type. In
the present example, the phase-locking interval λ1 ≤ λ ≤ λ4 contains a subinterval,
λ2 < λ < λ3,

λ2 ≈ 2.181, λ3 ≈ 2.196,

where the points of O(si) are spiral points of f7
λ, however. For the eigenvalues µ

(si)
1,2

the following hold:
(1) For λ1 < λ < λ2 and for λ3 < λ < λ4 we have

0 < µ
(si)
1 < µ

(si)
2 < 1.(3.2)

(2) At λ = λ2 and at λ = λ3 we have

0 < µ
(si)
1 = µ

(si)
2 < 1.(3.3)

(3) For λ2 < λ < λ3 the eigenvalues µ
(si)
1,2 form a complex conjugate pair with

0 < |µ(si)
1 | = |µ(si)

2 | < 1.(3.4)

The inequalities (3.2) imply that

0 < σ̄λ < 1 and 0 < ν̄λ < 1(3.5)
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for λ1 < λ < λ2 and for λ3 < λ < λ4. Furthermore, we obtain from (3.3) that

σ̄λ → 1 as λ→ λ2 − or λ→ λ3 + .(3.6)

As λ→ λ1+ or λ→ λ4−, the orbits O(sa) and O(si) collide. At the saddle orbit O(sa)

we have

0 < µ
(sa)
1 < 1 < µ

(sa)
2 for λ1 < λ < λ4.

Together with (3.2) this implies that we have at collision

µ
(si)
2 = µ

(sa)
2 = 1 for λ = λ1 and λ = λ4.(3.7)

Then 0 < µ
(si)
1 < 1 = µ

(si)
2 yields

σ̄λ = 0 for λ = λ1 and λ = λ4.(3.8)

The behavior (3.6) and (3.8) for σ̄λ, as well as 0 < σ̄λ < 1 for λ1 < λ < λ2 and for
λ3 < λ < λ4, is clearly seen in Figure 3.10.

For λ2 < λ < λ3 the seven points of the sink orbit O(si) are spiral fixed points
of f7

λ, which implies that Γλ winds infinitely often about each of the seven sinks. In
particular, Γλ is not smooth at the sinks, but merely continuous. This breakdown
of smoothness of Γλ is consistent with the general perturbation theory of invariant
manifolds (see, e.g., [8]) in view of the limit behavior

σ̄λ → 1 as λ→ λ2 − or λ→ λ3 + .

Since Γλ is not smooth for λ2 < λ < λ3, the Lyapunov-type numbers are, strictly
speaking, not defined in this λ-interval. For νλ(p) and σλ(p) the breakdown of smooth-
ness at the sinks is irrelevant, however, because νλ(p) and σλ(p) are determined by
going along backward orbits. (This holds true unless p ∈ O(si).) For ν̄λ and σ̄λ it is
natural to use the following definitions, in terms of eigenvalues,

σ̄λ = 1 and ν̄λ = |µ(si)
1,2 |.(3.9)

(In case of an attracting spiral, the rates of attractivity toward and within Γλ are the
same; thus σ̄λ = 1. The attractivity toward Γλ is governed by the absolute values

of the eigenvalues; thus ν̄λ = |µ(si)
1,2 |.) The numerical curves (dotted lines) in Figures

3.8 and 3.10, which are based on (2.7) and (2.8), agree reasonably well with the solid
curves, which are based on the eigenvalues.

Remark 3.1. The algorithm that we used to approximate Γλ is robust enough to
ignore the difficulties caused by the presence of the small spirals. They are simply
ignored. According to the computations in [19], the spiral diameters are less than
10−4.

Behavior of νλ and σλ for λ1 ≤ λ ≤ λ4. According to Theorems 2.2 and

2.4, the numbers νλ and σλ are determined by the eigenvalues at the saddles, µ
(sa)
1,2 =

µ
(sa)
1,2 (λ). From the inequalities 0 < µ

(sa)
1 < 1 < µ

(sa)
2 it follows that

0 < νλ =
(
µ

(sa)
1

)1/7

< 1 and σλ =
log
(
µ

(sa)
2

)

log
(
µ

(sa)
1

) < 0.
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As remarked above, we have

µ
(sa)
2 = 1 for λ = λ1 and λ = λ4,

which yields

σλ = 0 for λ = λ1 and λ = λ4.

This predicted behavior of νλ and σλ is clearly seen in Figures 3.12 and 3.14. We also
see reasonable agreement between the results based on (2.5) and (2.6) (for large n)

and the results based on the eigenvalues µ
(sa)
1,2 (λ).

Remark on the accuracy of the computations. In Figures 3.8, 3.10, 3.12,
and 3.14 we show two approximations to the functions ν̄λ, σ̄λ, νλ, and σλ. One ap-
proximation is obtained from eigenvalues, the other by evaluating the formulas for
ν̄(p, n), etc., for n = 1,000. The results of the two computations are in reasonable
agreement, making it rather certain that we do not have major bugs in our codes.
However, the agreement is far from perfect. We are rather sure that the discrepancies
can be traced to inaccurate approximations of the invariant curves Γλ. (See the algo-
rithm in the next section.) One can obtain better approximations of Γλ than we have
used here by increasing the number of mesh points. However, the following difficulty
arises: For λ2 < λ < λ3 the true invariant curves Γλ contain seven (infinite) spirals
of small diameter (< 10−4). If one chooses too many mesh points, these spirals are
no longer ignored by the algorithm and the computations become extremely slow.

4. Invariant curves of planar maps. Our method of computing an invariant
curve of a planar map is a discrete form of the Hadamard graph transformation. As
an analytical tool, the Hadamard graph transform has been used in many works to
establish perturbation results for invariant manifolds. We refer to Fenichel [8], for
example. The constructive nature of the transformation suggests to apply it also in a
numerical context.

For the convenience of the reader, we will describe the transformation—and a
discrete version—here for the simple case of an invariant curve of a planar map. It
should be noted, however, that the approach has much wider applicability.

We first describe the transformation in its analytical form. To this end, let
(θ, r), 0 ≤ θ < 2π, r ≥ 0, denote polar coordinates in the plane. Let g denote a
map from the plane into itself whose representation in polar coordinates is given by

(θ, r)→
(
gan(θ, r), gra(θ, r)

)
,

that is, gan and gra denote the angular and the radial part of the image under g. We
assume that g has an invariant closed curve Γ = g(Γ), which surrounds the origin and
can be represented in the form

Γ : (θ,R∗(θ)), 0 ≤ θ ≤ 2π.

Here R∗ is a positive, 2π-periodic C1 function.
We assume that we know an approximation Rold(θ) to the unknown function

R∗(θ). Then, starting with the graph

Γold : (θ,Rold(θ)), 0 ≤ θ ≤ 2π,(4.1)
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the Hadamard graph transform determines a new graph

Γnew : (θ,Rnew(θ)), 0 ≤ θ ≤ 2π,(4.2)

as follows.
Graph transform: For any 0 ≤ θ < 2π determine 0 ≤ α < 2π with

gan(α,Rold(α)) = θ(4.3)

and then set

gra(α,Rold(α)) = Rnew(θ).(4.4)

Remark. If one assumes that the Lyapunov-type numbers ν(p) and σ(p) of the
invariant curve Γ satisfy

max
p

ν(p) < 1 and max
p

σ(p) < 1(4.5)

and if Γold is sufficiently close to Γ (in C1), then the above equation (4.3) for α is
uniquely solvable.

The transformation which transforms the graph (4.1) into (4.2) via (4.3) and
(4.4) is known as Hadamard’s graph transform. In our context, where the graphs
are simply determined by functions R(θ), we may think of the transform as a map
between functions,

Rold → Rnew = H(Rold).

In an iterative fashion, the process can be repeated, leading to a sequence of functions,

Hk(Rold), k = 1, 2, 3 . . . .

Then, assuming (4.5) and closeness of Γold to Γ, a contraction argument can be applied
to prove convergence,

lim
k→∞

∣∣∣Hk(Rold)−R∗
∣∣∣
∞

.

Here | · |∞ denotes the maximum norm.

Numerical aspects. Let 0 = θ1 < θ2 < · · · < θN < 2π denote a finite grid,4

and let

Rold
i = Rold

i (θi), i = 1, . . . , N,

denote a known grid function. We use these grid values to determine a 2π-periodic
interpolant, denoted again by Rold(θ). In our code we have used periodic cubic splines
for interpolation.

Discrete graph transform: For i = 1, . . . , N , determine 0 ≤ α < 2π with

gan(α,Rold(α)) = θi(4.6)

4In our applications to the delayed logistic map it was always sufficient to work with a uniform
grid.
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and then set

gra(α,Rold(α)) = Rnew(θi).(4.7)

In our code, the scalar equation (4.6) for α is solved by bisection (to obtain a
starting value) and Newton’s method. Assuming convergence of the solutions for
(4.6), the above process defines a transformation between grid functions,

(Rold
i )1≤i≤N → (Rnew

i )1≤i≤N = Hdis((Rold
i )).

Repeated application of the discrete transform Hdis leads to a (finite) sequence of
grid functions,

(
Hdis

)k
((Rold

i )), k = 1, 2, 3, . . . .

We terminate the iteration when the estimate

∣∣∣(Hdis)k+1

((Rold
i ))−

(
Hdis

)k
((Rold

i ))
∣∣∣
2
< tolerance

is satisfied for a given tolerance. Here |·|2 is the discrete L2-norm, which approximates

(
∫ 2π

0
ψ2(θ)dθ)1/2.

Application near a Neimark–Sacker bifurcation. Assume that (x, y) →
fλ(x, y) is a family of smooth maps of the plane, depending smoothly on the real
parameter λ. An example is given by the maps fλ(x, y) = (y, λy(1− x)) of section 3.
Let Pλ = (xλ, yλ) denote a branch of fixed points, fλ(Pλ) = Pλ and let µ1,2(λ) denote
the eigenvalues of the Jacobian f ′

λ(Pλ). It is well known that Pλ is an asymptotically
stable fixed point if maxj |µj(λ)| < 1, whereas Pλ is unstable if maxj |µj(λ)| > 1.

Thus, a loss of stability of Pλ occurs at λ = λ0 if the eigenvalues µ1,2(λ) form a
complex conjugate pair which leaves the unit circle when λ increases from λ < λ0 to
λ > λ0. Then, under some additional assumptions, the map fλ will have an attractive
invariant curve Γλ for λ in some interval λ0 < λ < λ1. For details of this so-called
Neimark–Sacker (or second Hopf or Poincaré–Andronov–Hopf) bifurcation we refer
to [12], for example.

To apply our algorithm for approximating Γλ, we introduce polar coordinates in
the (x, y)-plane which are centered at the bifurcation point Pλ0

= (xλ0
, yλ0

). In other
words, we let

x = xλ0 + r cos θ, y = yλ0 + r sin θ,

and then rewrite the map fλ in terms of (θ, r)-coordinates obtaining gλ(θ, r),

fλ(x, y)⇐⇒ gλ(θ, r).

The algorithm can then be applied to gλ with λ as a continuation parameter. A
computed invariant curve Γλold provides starting values for approximating Γλ, λ =
λold+∆λ. A first approximation to Γλ for λ near the bifurcation value λ0 is provided
by the Neimark–Sacker bifurcation theorem. Results for the delayed logistic map
fλ(x, y) = (y, λy(1− x)) are shown in Figure 3.1.
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Soc. Math. France, 29 (1901), pp. 224–228.

[11] I. G. Kevrekidis, R. Aris, L. D. Schmidt, and S. Pelikan, Numerical computation of in-
variant circles of maps, Phys. D, 16 (1985), pp. 243–251.

[12] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995.
[13] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, New York,

1993.
[14] G. Moore, Computation and parameterization of invariant curves and tori, SIAM J. Numer.

Anal., 33 (1996), pp. 2333–2358.
[15] T. S. Parker and L. O. Chua, Practical Numerical Algorithms of Chaotic Systems, Springer-

Verlag, New York, 1989.
[16] V. Reichelt, Computing invariant tori and circles in dynamical systems, in Numerical Meth-

ods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Vol. Math. Appl.
119, E. Doedel and L. Tuckerman, eds., Springer-Verlag, New York, 2000, pp. 407–437.

[17] V. Reichelt, Berechnung invarianter Mannigfaltigkeiten in dynamischen Systemen, Disserta-
tion, RWTH Aachen, Aachen, Germany, 2000.

[18] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, UK, 1983.
[19] W. Qin, Invariant Curves for the Delayed Logistic Map, manuscript, University of New Mexico,

Albuquerque, NM, 1997.
[20] M. van Veldhuizen, A new algorithm for the numerical approximation of an invariant curve,

SIAM J. Sci. Statist. Comput., 8 (1987), pp. 951–962.
[21] M. van Veldhuizen, Convergence results for invariant curves algorithms, Math. Comp., 51

(1987), pp. 677–697.



A NUMERICAL STUDY OF FETI ALGORITHMS FOR
MORTAR FINITE ELEMENT METHODS∗

DAN STEFANICA†

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 1135–1160

Abstract. The finite element tearing and interconnecting (FETI) method is an iterative sub-
structuring method using Lagrange multipliers to enforce the continuity of the finite element solution
across the subdomain interface. Mortar finite elements are nonconforming finite elements that al-
low for a geometrically nonconforming decomposition of the computational domain into subregions
and, at the same time, for the optimal coupling of different variational approximations in different
subregions.

We present a numerical study of FETI algorithms for elliptic self-adjoint equations discretized by
mortar finite elements. Several preconditioners which have been successful for the case of conforming
finite elements are considered. We compare the performance of our algorithms when applied to
classical mortar elements and to a new family of biorthogonal mortar elements, and we discuss
the differences between enforcing mortar conditions instead of continuity conditions for the case
of matching nodes across the interface. Our experiments are carried out for both two and three
dimensional problems, and include a study of the relative costs of applying different preconditioners
for mortar elements.

Key words. FETI algorithms, mortar finite elements, Lagrange multipliers, domain decompo-
sition
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1. Introduction. The finite element tearing and interconnecting (FETI) method
is an iterative substructuring method using Lagrange multipliers which is actively used
in industrial-size parallel codes for solving difficult computational mechanics problems.
This method was introduced by Farhat and Roux [26]; a detailed presentation is given
in [27], a monograph by the same authors. Originally used to solve second order, self-
adjoint elliptic equations, it has later been extended to many other problems, e.g.,
time-dependent problems [18], plate bending problems [19, 24, 41], heterogeneous elas-
ticity problems with composite materials [43, 44], acoustic scattering and Helmholtz
problems [22, 23, 28, 29], linear elasticity with inexact solvers [32], and Maxwell’s
equations [42, 50]. Another Lagrange multiplier based method, the dual-primal FETI
method, has recently been introduced by Farhat et al. [20] and Farhat, Lesoinne, and
Pierson [21] for two dimensional problems, and a coordinate–free formulation of the
FETI method has been analyzed by Brenner [11].

The FETI method is a nonoverlapping domain decomposition method and re-
quires the partitioning of the computational domain Ω into nonoverlapping subdo-
mains. It has been designed for conforming finite elements and makes use of Lagrange
multipliers to enforce pointwise continuity across the interface of the partition. After
eliminating the subdomain variables, the dual problem, given in terms of Lagrange
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multipliers, is solved by a projected conjugate gradient (PCG) method. Once an ac-
curate approximation for the Lagrange multipliers has been obtained, the values of
the primal variables are obtained by solving a local problem for each subdomain.

It was shown experimentally in [25] that a certain projection operator used in the
PCG solver plays a similar role to that of a coarse problem for other domain decom-
position algorithms and that certain variants of the FETI algorithm are numerically
scalable with respect to both the subproblem size and the number of subdomains.
Mandel and Tezaur later showed that for a FETI method which employs a Dirichlet
preconditioner, the condition number grows at most in proportion to (1+ log(H/h))2

if the decomposition of Ω does not have crosspoints, i.e., the points that belong to the
closure of more than two subdomains, and as C(1+ log(H/h))3 in the general case; cf
[40, 49]. Here, H is the subdomain diameter and h is the mesh size. Using a different
preconditioner, Klawonn and Widlund obtained a FETI method which converges in
fewer iterations than the classical FETI method. In [33], they proved an upper bound
for the condition number of their method for elliptic problems with heterogeneous
coefficients which is on the order of (1 + log(H/h))2; see section 4.3 for more details.

Rixen and Farhat [43, 44] considered a Dirichlet preconditioner with a maximal
number of pointwise continuity conditions at crosspoints, which results in a FETI al-
gorithm with redundant Lagrange multipliers. It was shown in [33] that this algorithm
is equivalent to using the preconditioner of Klawonn and Widlund and nonredundant
multipliers for the FETI method.

In this paper, we study the numerical convergence properties of a family of FETI
algorithms applied to mortar finite elements. Mortar finite elements are noncon-
forming finite element methods that allow for a geometrically nonconforming decom-
position of the computational domain into subregions and, at the same time, for the
optimal coupling of different variational approximations in different subregions. Here,
optimality means that the global error is bounded by the sum of the local approxi-
mation errors on each subregion.

The importance of our study is related to the inherent advantages of mortar
methods over the conforming finite elements. For example, the mesh generation is
more flexible and can be made quite simple on individual subregions. This also makes
it possible to move different parts of the mesh relative to each other, e.g., in a study
of time-dependent problems. The same feature is most valuable in optimal design
studies, where the relative position of parts of the model is not fixed a priori. The
mortar methods also allow for local refinement of finite element models in only certain
subregions of the computational domain, and they are also well suited for parallel
computing; cf. [30].

We have used geometrically nonconforming mortar finite elements. Three FETI
algorithms with different preconditioners for the dual problem have been considered:
the Dirichlet preconditioner of Farhat and Roux [26], the block-diagonal precondi-
tioner of Lacour [34], and the new preconditioner of Klawonn and Widlund [33].
These algorithms have been implemented for both the classical mortar finite elements
of Bernardi, Maday, and Patera [8], and for the new biorthogonal mortar elements
of Wohlmuth [52, 53], in two and three dimensions. Based on the results presented
in this paper, we proposed and analyzed a new FETI algorithm with inexact solvers
applied to three dimensional mortar finite elements in [47]. We note that a study
of a FETI preconditioner for Maxwell’s equations on nonmatching grids has been
completed by Rapetti and Toselli [42].

Our results show that the Dirichlet preconditioner does not perform well in the
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mortar case, since convergence is achieved only after hundreds or thousands of it-
erations. However, the new preconditioner performs satisfactory; i.e., the number of
iterations required to achieve convergence and the condition number of the algorithms
depend only weakly on the number of nodes in each subregion and is independent of
the number of subregions. For each of the three preconditioners, using the biorthog-
onal mortars results in algorithms which require less computational effort and fewer
iterations than those using the classical mortar finite elements.

We have also studied the extra computational effort, due to the complexity of
the mortar conditions, required for the implementation of the FETI algorithm with
the new preconditioner. These costs might have been significant, in particular, in the
three dimensional case. We conclude that the improvement of the iteration count was
enough to offset this extra cost.

In the conforming finite element case, the meshes across the interface match.
Therefore, continuity conditions, as well as mortar conditions, may be enforced across
the interface. We have studied the differences between the FETI algorithms using
both types of constraints in terms of iteration counts and computational costs. We
conclude that the new preconditioner for either continuity conditions or for biorthog-
onal mortars results in the best algorithms.

The rest of the paper is structured as follows. In the next section, we describe
the mortar finite element method. In section 3, we present the classical FETI method
and the Dirichlet preconditioner, and in section 4, we discuss the FETI algorithm for
mortars with two different preconditioners. In sections 5 and 6, we present numerical
comparisons of the performances of three different FETI algorithms for mortar finite
elements, and for two and three dimensional problems, respectively. In the last section,
we discuss the differences between enforcing mortar conditions instead of continuity
conditions for the case of matching nodes across the interface.

2. Mortar finite elements. The mortar finite element methods were first intro-
duced by Bernardi, Maday, and Patera in [8] for low order and spectral finite elements.
A three dimensional version was developed by Ben Belgacem and Maday in [7] and
was further analyzed for three dimensional spectral elements in [6]. Another family
of biorthogonal mortar elements has recently been introduced by Wohlmuth [52, 53].
See also [45] for mortar hp finite elements and [4, 12, 31] for mortar H(curl) ele-
ments. Cai, Dryja, and Sarkis [13] have extended the mortar methods to overlapping
decompositions.

Several domain decomposition methods for mortar finite elements have been
shown to perform similarly to the case of conforming finite elements; cf. [3, 15] for
iterative substructuring methods, [16, 37, 38] for Neumann–Neumann algorithms,
and [36, 48] for the FETI method. For other studies of preconditioners for the mortar
method, see [14] for a hierarchical basis preconditioner and [1, 2] for iterative sub-
structuring preconditioners. Multigrid methods have also been used to solve mortar
problems; cf. [9, 10, 51].

2.1. Two dimensional low order mortar finite elements. For simplicity, we
restrict our presentation to mortar elements used in our numerical experiments, i.e.,
first order mortar finite elements on polygonal domains. The computational domain
Ω is decomposed using a nonoverlapping polygonal partition {Ωi}i=1:N . Let ∂ΩD
be the part of ∂Ω where Dirichlet conditions are imposed. If an edge of a polygon
intersects ∂ΩD, we require that the entire edge belongs to ∂ΩD. The partition is
said to be geometrically conforming if the intersection between the closure of any
two subregions is either empty, a vertex, or an entire edge, and it is geometrically
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Fig. 1. Test functions. Left: classical mortars; right: new mortars.

nonconforming otherwise.
The interface between the subregions {Ωi}i=1:N , denoted by Γ, is defined as the

set of points that belong to the boundaries of at least two subregions.
The mortar finite element space V h is defined as follows: Any mortar function

v ∈ V h vanishes at all the nodes on ∂ΩD. The restriction of v to any Ωi is a P1 or a
Q1 finite element function. We do not require pointwise continuity across Γ. Instead,
we choose a set of open edges of the subregions {Ωi}i=1:N , called nonmortars, which
form a disjoint partition of the interface. The edges of {Ωi}i=1:N , which are part of
Γ and were not chosen to be nonmortars, are called mortars. Across each nonmortar
side γ, we impose weak continuity conditions for v. Let Γ(γ) be the union of the parts
of the mortars that coincides geometrically with γ. Let vγ and vΓ(γ) be the restriction
of v to γ and Γ(γ), respectively. The values of v on the nonmortar γ are then given
by the mortar conditions

∫
γ

(
vγ − vΓ(γ)

)
ψ ds = 0 ∀ ψ ∈ Ψh(γ),(1)

where Ψh(γ) is the space of test functions. Here, Ψh(γ) is a subspace of codimension
two of V h(γ), the restriction of V h to γ. It consists of continuous, piecewise linear
functions on γ that are constant in the first and last mesh intervals of γ; cf. Figure 1.

We note that a nonmortar partition of the interface is always possible; cf. Stefan-
ica [46]. The partition is not unique, but any choice can be treated the same from a
theoretical point of view.

From (1), it results that the interior nodes of the nonmortar sides are not associ-
ated with genuine degrees of freedom in the finite element space V h, while the values
of v at the end points of γ are genuine degrees of freedom. To emphasize this aspect,
we present here the matrix formulation of the mortar conditions, which will be further
used in section 4.

Let v̄γ be the vector of the interior nodal values of v on γ. For simplicity, we
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assume that the mesh is uniform on γ of mesh size h. Let v̄Γ(γ) be the vector of the
values of v at the end points of γ and at all the nodes on the edges opposite γ such
that the intersection of γ and the supports of the corresponding nodal basis functions
are not empty. Then v̄γ is uniquely determined by v̄Γ(γ); the matrix formulation of
the mortar conditions (1) is

Mγ v̄γ −Nγ v̄Γ(γ) = 0,(2)

or, solving for v̄γ , v̄γ = Pγ v̄Γ(γ), with Pγ =M−1
γ Nγ .

We note that Nγ is a banded matrix with a bandwidth of similar size for both the
classical and the new mortars. For the classical mortar method, Mγ is a tridiagonal
matrix and the mortar projection matrix Pγ is a full matrix. The projection of a
nodal basis function from the mortar side results in a function with support equal to
γ. The nodal values of this function decay exponentially to 0 at the end points of γ,
away from the nodes on γ opposite the support of the nodal basis function from the
mortar side.

Since V h(Ωi) ⊂ H1(Ωi), we know that vγ ∈ H1/2(γ). Thus, the test functions
space Ψh(γ) may be embedded in the dual space of H1/2(γ) with respect to the L2

inner product, and therefore Ψh(γ) ⊂ H−1/2(γ). Based on this observation, a space
of discontinuous piecewise linear test functions Ψhnew(γ) for low order mortars has
been developed by Wohlmuth [52]. The test function associated with the first interior
node on γ is the constant 1 on the first mesh interval, decreases linearly from 2 to −1
on the second mesh interval, and vanishes everywhere else. A similar test function
is introduced for the last interior node on γ. The test function for any other node
on γ has the support on the two mesh intervals having the node as an end point; it
increases linearly from −1 to 2 on the first interval and decreases from 2 to −1 on the
second; cf. Figure 1.

The new mortar space has similar approximation properties to the classical mortar
space; cf. [52]. A major advantage of the new mortar finite element space is that the
mortar projection can be represented by a banded matrix, as opposed to the classical
mortar finite element method, where the mortar projection matrix is, in general, a full
matrix. More precisely, for the new mortar method,Mγ = hI is a diagonal matrix and
Pγ = Nγ/h is banded. Therefore, the mortar projection of a nodal basis function on
the mortar side vanishes outside the mesh intervals on the nonmortar which intersect
its support.

2.2. The three dimensional case. For three dimensional problems, the mor-
tars and nonmortars are open faces of the subregions which form the nonconforming
decomposition of the computational domain Ω.

To introduce the mortar finite element space, we follow the outline from the
previous section. Let {Ωi}i=1:N be a nonoverlapping polyhedral partition of Ω. If a
face or an edge of a polyhedron intersects ∂ΩD at an interior point, then the entire
face or edge is assumed to belong to ∂ΩD. The partition is said to be geometrically
conforming if the intersection between the closures of any two subregions is either
empty, a vertex, an entire edge, or an entire face, and it is nonconforming otherwise.

The nonmortars {Fl}Ll=1 are faces of the subregions which form a disjoint partition
of the interface Γ. The faces of {Ωi}i=1:N that are part of Γ and were not chosen to
be nonmortars are called mortars.

We now describe the test functions associated with an arbitrary nonmortar face
F . Let Γ(F) be the union of parts of mortar faces opposite F . The test function
space Ψh(F) is a subset of V h(F), the restriction of V h to F , such that the value of a
test function at a node on ∂Fl is a convex combination of its values at the neighboring
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interior nodes of Fl. If V h(F) is a P1 or a Q1 space, then the dimension of Ψ
h(F) is

equal to the number of interior nodes of F .
The mortar finite element space V h consists of functions v which vanish at all the

nodal points of ∂ΩD. Its restriction to any Ωi is a P1 or a Q1 finite element function.
The values of a mortar function v ∈ V h on any nonmortar face F are given by the
mortar conditions ∫

F

(
vF − vΓ(F)

)
ψ ds = 0 ∀ ψ ∈ Ψh(F).

A version of the new mortars for the three dimensional case, based on biorthogonal
test functions such as those described in section 2.1, has been developed by Wohlmuth.
For details, we refer the reader to [53].

3. The classical FETI algorithm. In this section, we review the original FETI
method of Farhat and Roux [27] for elliptic problems discretized by conforming finite
elements. To simplify our presentation, we discuss only the Poisson equation with
mixed Neumann–Dirichlet boundary conditions. The extension of the algorithm to
the case of other self-adjoint elliptic equations is straightforward.

Let f ∈ L2(Ω). We look for a solution u ∈ H1(Ω) of the mixed boundary value
problem 


−∆u = f on Ω,

u = 0 on ∂ΩD,
∂u
∂n = 0 on ∂ΩN ,

(3)

where ∂Ω = ∂ΩN ∪ ∂ΩD. For unique solvability, we require that ∂ΩD has positive
Lebesgue measure.

On Ω, we consider P1 or Q1 finite elements with mesh size h. The finite element
mesh is partitioned along mesh lines into N nonoverlapping subdomains Ωi ⊂ Ω,
i = 1 : N . Since the finite element mesh is conforming, the boundary nodes of the
subdomains match across the interface. A subdomain Ωi is said to be floating if
∂Ωi ∩ ∂ΩD = ∅, and nonfloating otherwise.

As in other substructuring methods, the first step of the FETI method consists
of eliminating the interior subdomain variables, which results in a Schur complement
formulation of our problem. Let S(i) be the Schur complement matrix of Ωi, and let fi
be the contribution of Ωi to the load vectors. Let S = diag

N
i=1S

(i) be a block-diagonal
matrix, and let f be the vector [f1, . . . , fN ]. We denote by ui the vector of nodal
values on ∂Ωi and by u the vector [u1, . . . , uN ].

If Ωi is a floating subdomain, then S
(i) is a singular matrix, and its kernel is

generated by a vector Zi with entries corresponding to the nodes of ∂Ωi equal to 1
and entries corresponding to all the other nodes equal to 0. Let Z consist of all the
column vectors Zi. Then KerS = RangeZ.

Let B be the matrix of constraints which measures the jump of a given vector
u across the interface; B will also be referred to as the Lagrange multiplier matrix.
Each row of the matrix B is associated with two matching nodes across the interface,
and has values 1 and −1, respectively, at the two nodes, and zero entries everywhere
else. A finite element function with corresponding vector values u is continuous if and
only if Bu = 0.

For a method without redundant constraints and multipliers, the number of point-
wise continuity conditions required at crosspoints, i.e., the points that belong to the
closure of more than two subdomains, and, therefore, the number of corresponding



FETI ALGORITHMS FOR MORTAR METHODS 1141

rows in the matrix B, is one less then the number of the subdomains meeting at the
crosspoint. There exist several different ways of choosing which conditions to enforce
at a crosspoint, all of them resulting in algorithms with similar properties.

An alternative suggested in [43, 44] is to connect all the degrees of freedom at the
crosspoints by Lagrange multipliers and use a special scaling, resulting in a method
with redundant multipliers; see section 4.3 for further details.

Let Wi be the space of the degrees of freedom associated with ∂Ωi \∂ΩD, and let
W be the direct sum of all spaces Wi. If U = RangeB is the space of the Lagrange
multipliers, then S : W → W and B : W → U . Let Bt be the transpose of B. By
introducing Lagrange multipliers λ for the constraint Bu = 0, we obtain a saddle
point Schur formulation of (3),

{
Su + Btλ = f,
Bu = 0.

(4)

3.1. Algebraic formulation. In the FETI method, the primal variable u is
eliminated from (4), and the resulting equation for the dual variable λ is solved by a
PCG method.

We note that S is singular if there exist at least one floating subdomain among the
subdomains Ωi, i = 1 : N . Let S

† be the pseudoinverse of S; i.e., for any b ⊥ KerS,
S†b is the unique solution of Sx = b such that S†b ∈ RangeS. The first equation in
(4) is solvable if and only if

f −Btλ ⊥ KerS.(5)

If (5) is satisfied, then

u = S†(f −Btλ) + Zα,(6)

where Zα is an element of KerS = RangeZ to be determined.
Let G = BZ. Substituting (6) into the second equation in (4), it follows that

BS†Btλ = BS†f +Gα.(7)

An important role in the FETI algorithm is played by V , a subset of U defined
by V = KerGt. In other words, V = KerGt ⊥ RangeG = BRangeZ = BKerS.
Let P = I −G(GtG)−1Gt be the orthogonal projection onto V . It is easy to see that
GtG is nonsingular, by using the fact that KerB∩RangeZ = KerB∩KerS = ∅. Since
P (Gα) = 0, if P is applied to (7), it results that

PBS†Btλ = PBS†f.(8)

We now return to the necessary condition (5). Since KerS = RangeZ, we obtain
that (5) is equivalent to f − Btλ ⊥ RangeZ, which leads to Zt(f − Btλ) = 0 and
therefore to

Gtλ = Ztf.(9)

Let F = BS†Bt, d = BS†f , and e = Ztf . We concluded that we have to solve
the dual problem (8) for λ subject to the constraint (9); with the new notations,

PFλ = Pd,(10)

Gtλ = e.(11)
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We note that, from (7), it follows that α = (GtG)−1Gt(Fλ−d). Therefore, after
an approximate solution for λ is found, the primal variable u is obtained from (6) by
solving a Neumann or a mixed boundary problem on each floating and nonfloating
subdomain, respectively, corresponding to a vector multiplication by S†.

The main part of the FETI algorithm consists of solving (10) for the dual variable
λ, which is done by a PCG method. Since λ must also satisfy the constraint (11), let
λ0 = G(GtG)−1e be the initial approximation. Then Gtλ0 = e and λ−λ0 ∈ KerGt =
V . If all the increments λk − λk−1, i.e., the search directions, are in V , then (11) will
be satisfied.

One possible preconditioner for (10) is of the form PM , where M = BSBt.
When a vector multiplication by M is performed, N independent Dirichlet problems
have to be solved in each iteration step. Therefore, M is known as the Dirichlet
preconditioner. We note that the Schur complement matrix S is never computed
explicitly, since only the action of S on a vector is needed.

Mandel and Tezaur [40] have shown that the condition number of this FETI
method is bounded from above by C(1 + log(H/h))3, where C is a positive constant
independent of h,H. If there are no crosspoints in the partition of Ω, then this
polylogarithmic bound improves to C(1 + log(H/h))2.

We conclude this section with a few comments on the PCG algorithm:
Projected Preconditioned Conjugate Gradient Iteration (PCG)

λ0 = G(GtG)−1e, r0 = Pd− PFλ0, n = 1
while (Mrn−1, rn−1) ≥ tol
wn−1 = Prn−1

zn−1 = Mwn−1

yn−1 = Pzn−1

βn = (yn−1, rn−1)/(yn−2, rn−2) (β1 = 0)
pn = yn−1 + βnpn−1 (p1 = y0)
αn = (yn−1, rn−1)/(Fpn, pn)
λn = λn−1 + αnpn
rn = rn−1 − αnPFpn
n = n + 1

end

In each iteration step of the PCG algorithm, the residual and the search direc-
tions are projected onto the space V , i.e., wn−1 = Prn−1 and yn−1 = Pzn−1. This
projection step plays the role of a coarse problem which is solved in each iteration and
is the reason why the FETI method is numerically scalable, even though it lacks an
explicit coarse space construction. We note that rn−1 ∈ V at every step. Therefore,
it follows that wn−1 = rn−1, and thus only one projection onto V is required per
iteration step. This observation is particularly important for some of the algorithms
suggested in [33].

4. The FETI algorithm for mortars. As we have seen in section 3, in the clas-
sical FETI algorithm the computational domain Ω is partitioned into nonoverlapping
subregions, multiple degrees of freedom are introduced for the matching nodes across
the interface, and pointwise continuity across the interface is enforced by a Lagrange
multiplier matrix B. This methodology is very similar to that used in [5], where a
saddle point formulation for the mortar finite element method has been introduced.

In fact, the FETI method can be applied without any algorithmic changes for a
mortar finite element discretization of Ω, using the nonoverlapping partition {Ωi}i=1:N

considered in section 2. We recall that this partition may be geometrically noncon-
forming and the nodes across the interface do not necessarily match. To keep the
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presentation clear, we assume that each subregion Ωi has a diameter of order H and
that its triangulation has a mesh size of order h. The matrix S is again a block-
diagonal matrix diagNi=1S

(i), where the local Schur complement matrices S(i) are
obtained from the finite element discretizations on individual subregions. We have to
solve the problem

{
Su + Btλ = f,
Bu = 0,

where the matrix B enforces mortar conditions across the interface. The dual problem
is obtained as in section 3.1. It results in solving

PFλ = Pd,(12)

with a PCG method, with initial approximation λ0 = G(GtG)−1e, and with all the
search directions in V .

The price we pay for the inherent flexibility of the mortar finite elements is due to
the fact that the matrix B is more complicated in the mortar case, compared to that
of the classical FETI method with conforming finite elements. The matrix B has one
block, Bγ , for each nonmortar side γ. We adopt the matrix formulation of the mortar
conditions from section 2.1. Let Mγ and Nγ be the matrices which multiply the
nonmortar and mortar nodal values in the mortar conditions across γ, respectively.
Then Bγ consists of the columns of Mγ and −Nγ for the nodes of γ and those on the
mortars opposite γ, and has zero columns corresponding to all the other nodes.

We note that the mortar conditions are all associated with the interior nodes on
the nonmortar sides. Therefore, the problem of choosing the crosspoints constraints
does not arise in the mortar case.

In our numerical experiments, we have implemented three different precondition-
ers suggested in the FETI literature for the dual problem (12). In sections 4.1–4.3,
we present each of them briefly.

4.1. The Dirichlet preconditioner. In [26], Farhat and Roux introduced the
Dirichlet preconditioner for the FETI method

PM = PBSBt.(13)

This preconditioner was shown to perform well for conforming finite elements; see,
e.g., [26] for numerical results and [40] for condition number estimates.

4.2. A block-diagonal preconditioner. In [34, 35], Lacour suggested another
preconditioner designed specifically for a mortar version of the FETI algorithm and
without a counterpart in the conforming case. Let diagBγB

t
γ be the block-diagonal

matrix which has a block BγB
t
γ of size equal the number of interior nodes on γ for

each nonmortar γ. We note that diagBγB
t
γ is the block-diagonal part of the matrix

BBt. In the three dimensional case, each block corresponds to a nonmortar face F ,
and the block-diagonal matrix is diagBFBtF . To simplify our presentation, we will
use the same notation, diagBγB

t
γ , for the three dimensional block-diagonal matrix.

The preconditioner PM is defined as follows:

PM = P (diagBγB
t
γ)

−1BSBt(diagBγB
t
γ)

−1.(14)
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4.3. A new preconditioner. In [33], Klawonn and Widlund studied a FETI
method for elliptic problems with heterogeneous coefficients, discretized by conform-
ing finite elements, and designed a new preconditioner for these types of problems.
They used this preconditioner to show the connection between FETI methods and
Neumann–Neumann methods, in particular the balancing method [39].

In the case of no coefficient jump, as in our Poisson problem, the new precondi-
tioner has the form

PM̂ = P (BBt)−1BSBt(BBt)−1.(15)

Klawonn andWidlund established the following upper bound for the condition number
of their FETI algorithms, which is valid for all cases, including when the partition
contains crosspoints

κ(PM̂PF ) ≤ C (1 + log(H/h))
2
.

In the same paper, it is proven that the preconditioner M̂ with a minimal number
of pointwise continuity conditions at the crosspoints, and therefore of Lagrange mul-
tipliers, results in a similar algorithm as the FETI method with redundant Lagrange
multipliers of Rixen and Farhat [43, 44]. Since the Lagrange multipliers in the mortar
case are not associated with the vertices of the subregions, a FETI algorithm with
redundant multipliers cannot be implemented for mortars.

To use the new preconditioner of Klawonn and Widlund for the FETI method
with mortars, we must show that the matrix BBt is nonsingular in the mortar case.
The number of columns of B is equal to the number of nodes from W , while the
number of rows of B is equal to the number of Lagrange multipliers. Since each
Lagrange multiplier is associated with an interior node on a nonmortar side, it results
that B has fewer rows than columns. Therefore, if we show that the rank of B is
equal to its number of rows, we may conclude that BBt is nonsingular. We consider
the minor of B consisting of the columns corresponding to the interior nodes of the
nonmortars. The resulting block-diagonal square matrix diagMγ is nonsingular, since
each block Mγ is a diagonally dominant matrix for the classical mortar elements, and
the identity matrix for the new mortar elements.

We conclude this section with comments on the difficulties of extending the con-
vergence analysis of the FETI method from conforming finite elements to mortar
elements.

The numerical evidence presented in sections 5.1 and 6.1 strongly suggested that,
in the mortar case, the new preconditioner performed as well as it did in the con-
forming finite element case. Extending the analysis of Klawonn and Widlund to the
mortar case would require establishing the bound

|Bt(BBt)−1Bw|2S ≤ C (1 + log(H/h))
2 |w|2S ∀ w ∈W, Bw ∈ V.(16)

In the conforming finite element case, the matrix BBt is equal to twice the identity
matrix, except for the entries corresponding to crosspoint conditions, where it has a
block-diagonal structure. The inverse matrix (BBt)−1 has the same block-diagonal
structure, and (16) can be obtained by using Sobolev-type inequalities for finite ele-
ment functions (also known as cutoff estimates).

In the mortar finite element case, the matrix BBt is not close to a multiple of the
identity and is no longer block diagonal. There are two types of entries outside the
diagonal blocks. Some correspond to Lagrange multipliers associated with the first and
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last interior points of the nonmortars. Others occur because there exist nodal basis
functions associated with points on the mortar sides, the support of which intersects
more than one nonmortar; see Figure 4 for the sparsity pattern of BBt.

An important consequence of such structure of BBt is that the matrix (BBt)−1

is a full matrix in the mortar case. Therefore, cutoff estimates can no longer be used
to prove (16). An alternative solution would require new tools in order to reduce
the inequality (16) to the two subdomain case. This case would then be solved by
deriving some specific stability estimates for the mortar projection.

5. Numerical results for two dimensional problems. In this section, we
present numerical results for the FETI method for a mortar finite element discretiza-
tion of a two dimensional problem. We have tested each of the three preconditioners
of sections 4.1–4.3 on nonconforming discretizations of the computational domain.

Our interests were three fold:
• to compare the convergence performances of the different FETI precondi-
tioners for mortar methods, based on iteration counts and estimates for the
condition numbers;
• to apply the FETI algorithms for the new mortar finite elements and compare
the iteration counts and the flop counts to those obtained for the classical
mortar finite elements;
• to analyze the extra computational effort, due to the complexity of the mortar
conditions, required for the implementation of the FETI algorithm with the
new preconditioner.

As the model problem in two dimensions, we chose the Poisson equation on the
unit square Ω = [0, 1]2 with zero Dirichlet boundary conditions. The right-hand side
function f in (3) was selected such that the exact solution of the problem is known.

The computational domain Ω was partitioned into 16, 32, 64, and 128 geomet-
rically nonconforming rectangular subregions, respectively; see Figure 2. On each
subregion, we considered Q1 elements of mesh size h, and, to make the comparisons
easier, all the subregions had diameters of the same order, H. For each partition,
the number of nodes on each edge, H/h, was taken to be, on average, 4, 8, 16, and
32, respectively, for different sets of experiments. Across the partition interface Γ the
meshes did not necessarily match. A saddle point formulation of the problem was
used, and mortar conditions were enforced across Γ.

We report the iteration counts and the flop counts of the algorithms. We also
report condition number estimates for the algorithms, obtained directly from the
conjugate gradient iteration. The PCG iteration was stopped when the residual norm
had decreased by a factor of 10−6. All the experiments were carried out in MATLAB.

We now present some implementation details. We did not compute the Schur
complements explicitly, nor their pseudoinverses, but only the stiffness matrices for
each subdomain. To multiply a vector by a Schur complement matrix, we solved, in
each subregion, a Poisson problem with Dirichlet boundary conditions. To multiply
a vector by S†, we solved a Poisson problem with mixed boundary conditions in each
nonfloating subregion and with Neumann boundary conditions in each floating sub-
region; see, e.g., [17]. We stored only the interior-boundary and boundary-boundary
blocks of the local stiffness matrix and the Cholesky factor of the interior-interior
block, which is symmetric and positive definite. To have a uniquely solvable problem
on the floating subregions, we required that the solution of the local Neumann prob-
lem be orthogonal to KerS, i.e., to the constant functions on the subregion. A simple
way of enforcing this orthogonality condition was by adding a Lagrange multiplier



1146 DAN STEFANICA

Fig. 2. Geometrically nonconforming partitions of Ω. Upper left: 16 subdomains; upper right:
32 subdomains; lower left: 64 subdomains; lower right: 128 subdomains.

and storing the LU components of the extended stiffness matrix.

5.1. Convergence properties of the FETI algorithms. We now turn to the
main part of this section, a discussion of the performance of the FETI algorithms for
mortar finite elements with the new preconditioner M̂ , (15), the preconditioner M ,
(14), and the Dirichlet preconditioner M , (13). In Table 1 we report the iteration
count, the condition number approximation, and the flop count for the aforementioned
preconditioners.

The FETI algorithm with the Dirichlet preconditioner M required hundreds of
iterations to converge, and the computational costs were one to two orders of magni-
tude bigger than for the other preconditioners. The iteration count grew faster than
polylogarithmically as a function of the number of nodes on each subdomain edge,
H/h, and appeared to grow linearly with the number of subdomains. The Dirichlet
preconditioner is therefore noncompetitive, since many domain decomposition meth-
ods have convergence rates independent of the number of subdomains. The condition
numbers estimates were on the order of 104–106, unusually large for these types of
algorithms. Moreover, our estimates are likely to be smaller than the actual condition
numbers, since there was no convincing convergence pattern for the condition number
approximation obtained in the iteration; see section 6.1 and Figure 3 therein for more
details. Thus, unlike in the case of FETI algorithms with conforming finite elements,
the Dirichlet preconditionerM did not yield a numerically scalable method for mortar
finite element methods.

The new preconditioner M̂ scaled similarly to M in the conforming case. When
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Table 1
Convergence results; two dimensional geometrically nonconforming partition; classical mortar

elements.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 4 10 4.14 6.9e–1 21 26.95 1.4e+0 111 7.3e+3 7.2e+0
16 8 12 5.14 8.2e+0 21 29.86 1.4e+1 240 4.2e+4 1.6e+2
16 16 13 6.44 1.5e+2 23 36.53 2.6e+2 320 6.5e+4 3.7e+3
16 32 14 7.35 3.4e+3 23 38.03 5.6e+3 348 6.8e+4 7.4e+4

32 4 11 6.53 1.9e+0 23 34.51 3.7e+0 223 1.2e+4 3.5e+1
32 8 13 7.58 1.9e+1 24 45.96 3.5e+1 455 7.1e+4 6.6e+2
32 16 14 8.86 3.5e+2 26 61.97 6.5e+2 528 1.0e+5 1.3e+4
32 32 16 9.79 9.1e+3 27 65.39 1.5e+4 569 1.2e+5 3.2e+5

64 4 14 7.23 6.1e+0 32 47.99 1.3e+1 578 9.1e+4 2.2e+2
64 8 16 8.76 5.7e+1 35 72.62 1.2e+2 1012 7.5e+5 3.5e+3
64 16 18 10.68 1.0e+3 36 91.43 2.0e+3 1266 1.2e+6 7.1e+4
64 32 20 12.40 2.5e+4 39 94.47 4.8e+4 1324 1.4e+6 1.5e+6

128 4 14 7.60 1.3e+1 36 64.53 3.0e+1 1144 9.2e+5 9.2e+2
128 8 17 9.56 1.3e+2 40 82.09 2.9e+2 1350 6.8e+5 1.0e+4
128 16 19 11.73 2.3e+3 41 96.60 4.8e+3 1436 9.9e+6 1.7e+5
128 32 21 13.03 5.7e+4 41 99.82 1.1e+5 – – –

the number of nodes on each subdomain edge, H/h, was fixed and the number of
subdomains, N , was increased, the iteration count showed only a slight growth. When
H/h was increased, while the partition was kept unchanged, the increase in the number
of iterations was quite satisfactory and very similar to that of the conforming case.
The condition number estimates exhibited a similar dependence on the number of
subdomains and on the number of nodes on each subdomain edge.

The block-diagonal preconditioner M had good convergence properties as well.
The iteration counts showed just a small increase when the number of nodes on each
subdomain edge was increased, while the partition was kept unchanged. There seemed
to be a stronger than desired dependence of the iteration counts on the number of
subdomains, which was less than optimal. The condition number estimates followed
a similar pattern but were significantly larger than the condition number estimates
for the new preconditioner M̂ .

Overall, the block-diagonal preconditioner M required about twice as many it-
erations to convergence and twice as much computational effort as M̂ ; cf. Table 1.
Therefore, even though multiplying M by a vector required less computational effort
than when M̂ was used, the increase in the iteration count resulted in flop counts
which were twice as large. This suggests that dropping the nonzero diagonal terms of
BBt relaxed the weak continuity conditions for mortar finite elements more than is
optimal.

We conclude that, among the three preconditioners for FETI algorithms for mor-
tar finite element methods analyzed here, the new preconditioner M̂ is the best.

5.2. New mortars vs. classical mortars. Another objective of our study was
to compare the performance of the FETI algorithms for new mortar element methods
with the performance of the FETI algorithms for classical mortar element methods.

We used the same nonconforming partitions of our computational domain (see
Figure 2) and considered new mortar finite elements on the subdomains. As explained
in section 2.1, the only difference between the two mortars methods is due to different
mortar conditions across the interface Γ. This results in different Lagrange multiplier
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Table 2
Convergence results; two dimensional geometrically nonconforming partition; new mortar ele-

ments.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 4 10 4.20 6.8e–1 18 18.40 1.2e+0 55 897 3.5e+0
16 8 12 5.15 8.1e+0 19 20.85 1.3e+1 70 908 4.7e+1
16 16 13 6.50 1.5e+2 20 25.40 2.3e+2 70 1018 8.0e+2
16 32 14 7.43 3.4e+3 21 30.11 5.1e+3 80 1090 2.0e+5

32 4 11 6.55 1.9e+0 19 23.58 3.0e+0 91 913 1.4e+1
32 8 13 7.61 1.9e+1 20 34.45 2.9e+1 101 1565 1.4e+2
32 16 14 8.87 3.5e+2 22 48.14 5.5e+2 114 1873 2.9e+3
32 32 16 9.80 9.1e+3 23 50.63 1.3e+4 117 2108 6.6e+4

64 4 14 7.29 6.0e+0 27 32.49 1.0e+1 278 1.0e+4 1.1e+2
64 8 16 8.69 5.6e+1 28 43.37 9.6e+1 292 1.6e+4 1.0e+3
64 16 18 10.83 1.0e+3 29 56.19 1.6e+3 297 1.9e+4 1.7e+4
64 32 20 12.57 2.5e+4 31 70.74 3.9e+4 312 2.2e+4 3.1e+5

128 4 14 7.60 1.3e+1 30 41.78 2.4e+1 614 1.0e+5 4.9e+2
128 8 17 9.57 1.3e+2 33 52.36 2.4e+2 677 1.3e+5 4.8e+3
128 16 19 11.75 2.2e+3 35 62.54 4.1e+3 755 1.6e+5 8.9e+4
128 32 21 13.07 5.6e+4 36 66.66 9.7e+4 – – –

matrices B.
We ran the same set of experiments for the new mortars discretization, for precon-

ditioners M̂ ,M , andM . The PCG iteration was stopped when the residual norm had
decreased by a factor of 10−6. We report the iteration count, the condition number
approximation, and the flop counts in Table 2.

Due to the inherent simplification of the Lagrange multiplier matrix B for the
new mortar constraints, we expected the results for the new mortar method to be
similar but somewhat better than those for the classical mortar method. Indeed, this
was confirmed by our numerical results.

The iteration counts for the new preconditioner M̂ were identical to those for
M̂ for classical mortars. The condition number estimates and the flop counts were
slightly smaller than in the classical mortar case but essentially the same. Therefore,
M̂ scaled just as well as in the classical mortar case.

For the new mortar conditions, the matrix BBt had fewer nonzero entries out-
side its block-diagonal structure and fewer terms to be dropped in order to obtain
diagBγB

t
γ . Therefore, the block-diagonal preconditioner M was closer to M̂ than

in the classical mortar case. This resulted in lower iteration counts and condition
numbers for M than in the classical mortar case, and, consequently, in lower flop
counts.

Once again, the iteration counts increased moderately with H/h and seemed to
have a stronger than desired dependence on the number of subdomains. Overall, the
block-diagonal preconditioner still performed worse than M̂ for the new mortars with
iteration counts one and a half times higher and with significantly bigger condition
numbers.

An even greater improvement over the classical mortar case was obtained for
the Dirichlet preconditioner M . The number of iterations required for M in the new
mortar case was less than half the number of iterations required in the classical mortar
case, and a similar improvement can be observed for the flop counts. The condition
number estimates were about an order of magnitude less than for the classical mortar
case.
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Despite these improvements, the FETI algorithm with the Dirichlet precondi-
tioner still required hundreds of iterations to converge and the iteration count ap-
peared to grow linearly with the number of subdomains. The condition number
estimates were on the order of 103–105, much higher than desired. Therefore, as in
the classical mortar case, applying the preconditioner M for the FETI method did
not result in a scalable algorithm.

Once again, among the three preconditioners for FETI algorithms methods, the
new preconditioner M̂ was the best. There was no significant improvement when
using the new mortar elements instead of the classical mortar elements for the FETI
algorithm with optimal preconditioner M̂ .

5.3. Complexity study of the preconditioners. The last topic of this section
is an analysis of how expensive it is to apply the preconditioners M̂ andM , compared
to applying the Dirichlet preconditioner M .

In each iteration step, we compute one vector multiplication by the preconditioner,
which requires solving two systems with the matrix BBt, and diagBγB

t
γ , respectively.

In section 4.2, we mentioned that diagBγB
t
γ is obtained from BBt by eliminating the

nonzero entries outside the diagonal blocks. There are two such types of entries; see
section 4.3 for more details. While in the three dimensional case the sparsity pattern
of BBt is complex, in the two dimensional case there are relatively few nonzero entries;
see Figure 4.

It is easy to see that diagBγB
t
γ has a bandwidth of order H/h, the number

of interior nodes on an arbitrary nonmortar. The matrix BBt is also banded, but
in this case the band depends on the ordering of the nodes on the interface, and
it is possible to have bandwidth of order 1/h. Therefore, multiplying a vector by
(BBt)−1 is potentially an expensive operation. To minimize the effect of these vector
multiplications, we computed the Cholesky factorizations of BBt and diagBγB

t
γ just

once and stored the factors. Then, solving systems with BBt or diagBγB
t
γ amounted

only to one back and one forward solve.
Our results showed that the costs of a vector multiplication by (BBt)−1 were

between two and ten times larger than those associated with (diagBγB
t
γ)

−1. However,
due to the sparsity pattern of BBt, even the costs associated with (BBt)−1 were
relatively small compared to those for other operations performed during one iteration,
e.g., multipling a vector by the Schur complement or by its pseudoinverse; cf. Table 3.
These low relative costs result in very similar flop counts per iteration step for the
two preconditioners, almost identical for the case of many nodes per subdomain edge,
i.e., H/h = 16 and H/h = 32.

As expected, the costs associated with (BBt)−1 in each iteration step decreased
significantly, from six percent to less than .05 percent, when the partition was fixed
and H/h increased, since the costs of multiplying S and S† by a vector rose much
faster than those corresponding to (BBt)−1.

From the flop counts reported in Table 1, it is clear that the improvement of the
iteration count easily offsets the small extra costs due to the complexity of M̂ andM .

6. Numerical results for three dimensional problems. In this section, we
report numerical results for the FETI method for mortar finite element discretizations
of a three dimensional problem. As before, we compare the performance of different
FETI preconditioners and discuss the effects of using the new mortar finite elements
instead of the classical ones. We include a study of the costs of applying the new pre-
conditioner for the for classical mortar elements and more details on the convergence
rate of the condition number approximation for some of our algorithms.
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Table 3
Complexity study of one iteration step for the new preconditioner and the block-diagonal pre-

conditioner; two dimensional geometrically nonconforming partition.

New preconditioner Block-diagonal preconditioner

Mflops for Mflops per Mflops for Mflops per
N H/h (BBt)−1 iteration Ratio (diagBγBtγ)

−1 iteration Ratio

16 4 3.9e–3 6.9e–2 .06 1.4e–3 6.7e–2 .02
16 8 9.7e–3 6.8e–1 .02 4.6e–3 6.7e–1 .007
16 16 2.2e–2 1.1e+1 .002 1.1e–2 1.1e+1 .001
16 32 4.6e–2 2.4e+2 .0002 2.4e–2 2.4e+2 .0001

32 4 1.1e–2 1.7e–1 .07 3.2e–3 1.6e–1 .02
32 8 3.1e–2 1.5e+0 .02 9.9e–3 1.5e+0 .007
32 16 6.5e–2 2.5e+1 .003 2.4e–2 2.5e+1 .001
32 32 1.4e–1 5.7e+2 .0003 5.2e–2 5.7e+2 .00009

64 4 4.1e–2 4.3e–1 .10 6.9e–3 3.9e–1 .02
64 8 1.1e–1 3.5e+0 .03 2.2e–2 3.4e+0 .007
64 16 2.3e–1 5.6e+1 .004 5.4e–2 5.6e+1 .001
64 32 4.7e–1 1.2e+3 .0004 1.2e–1 1.2e+3 .00009

128 4 1.2e–1 9.3e–1 .13 1.4e–2 8.2e–1 .02
128 8 3.1e–1 7.4e+0 .04 4.4e–2 7.2e+0 .006
128 16 6.8e–1 1.2e+2 .006 1.1e–1 1.2e+2 .0009
128 32 1.4e+0 2.7e+3 .0005 2.3e–1 2.7e+3 .00009

As the model problem in three dimensions, we chose the Poisson equation on the
unit cube Ω = [0, 1]3 with zero Dirichlet boundary conditions. The right-hand side
was selected such that the exact solution is known. The computational domain Ω was
partitioned into 8, 16, and 32 nonconforming parallelepipeds, respectively. We chose
these partitions such that in each case there exist floating subdomains, i.e., interior
subdomains.

The subdomains of the partition had diameter of order H, and Q1 elements of
mesh size h were used in each subdomain. The number of nodes on each edge was,
on average, 4, 8, and 16. Across the partition interface Γ the meshes did not match,
and mortar conditions for three dimensional elements were enforced; cf. section 2.2.
This results in a Lagrange multipliers matrix B, which, as explained for the two
dimensional case, plays a very important role in all FETI algorithms.

We report the iteration counts, the condition number approximations, and the
flop counts of the algorithms. The PCG iteration was stopped when the residual norm
had decreased by a factor of 10−6. All the experiments were carried out in MATLAB.

6.1. Convergence properties of the FETI algorithms. We did not compute
the Schur complements explicitly but only stored those components of the stiffness
matrices which were relevant for the multiplication of a vector by the Schur com-
plement matrix and by the pseudoinverse of the Schur complement. We tested the
performance of the same preconditioners as in the two dimensional case, i.e., the new
preconditioner M̂ , cf. (15); the preconditioner M , cf. (14); and the Dirichlet precon-
ditioner M , cf. (13). We report the iteration count, the condition number estimate,
and the flop count of the algorithms in Table 4.

As in the two dimensional case, the FETI algorithm with the Dirichlet precondi-
tioner M did not scale well and required thousands of iterations to converge. Since it
soon became clear that M was not an optimal preconditioner, and due to significant
computational costs, we performed only tests for every partition of Ω in the case of 4
nodes on each edge, and for the 8 and the 16 subdomains partitions for the case of 8
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Table 4
Convergence results; three dimensional geometrically nonconforming partition; classical mortar

elements.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

8 4 11 4.31 1.8e+0 33 55 3.9e+0 866 2.2e+6 9.9e+1
8 8 14 6.54 4.9e+1 33 70 7.3e+1 7984 4.4e+7 1.7e+4
8 16 16 7.90 1.4e+3 38 81 2.4e+3 – – –

16 4 13 6.77 6.6e+0 36 75 9.7e+0 2985 1.2e+7 7.7e+2
16 8 15 8.20 1.6e+2 37 85 1.7e+2 14169 2.7e+8 6.3e+4
16 16 17 9.28 4.1e+3 50 176 6.5e+3 – – –

32 4 14 8.29 3.1e+1 44 141 2.7e+1 4156 3.5e+7 2.4e+3
32 8 16 9.77 1.1e+3 55 350 5.5e+2 – – –
32 16 17 10.69 2.7e+4 69 523 2.9e+4 – – –

nodes on each edge of the subdomains.
The iteration count seemed to be a linear function of the number of subdomains,

and it grew by an order of magnitude when H/h was doubled while keeping the 8 and
the 16 subdomain partitions fixed. The computational costs were also at least two
orders of magnitude bigger than those for the other preconditioners and deteriorated
as the number of nodes per subdomain edge increased.

The condition number estimates followed a similar dependence pattern on H/h
and the number of subdomains. They were on the order of 106–108, much worse than
even in the two dimensional case. In Figure 3, we present the convergence pattern
of the condition number estimates for the eight subdomains partition with H/h = 4.
For M , the PCG iteration was stopped when the residual norm had decreased by a
tolerance factor of 10−6, while for M̂ and M the tolerance was set at 10−10.

For the Dirichlet preconditioner, there was no clear convergence pattern for the
condition number estimates. This suggests that the (extremely large) condition num-
ber approximations reported in Table 4 are just lower bounds for the actual condition
number. For the other two preconditioners, convergence was achieved early in the
iteration count. The estimates reported in Table 4 are within one percent of the
condition number corresponding to a tolerance of 10−10.

The new preconditioner M̂ scaled similarly to the two dimensional case and to the
Dirichlet preconditioner in the conforming case. The number of iterations grew very
slowly when the number of nodes on each subdomain edge (i.e., H/h) was fixed and
the number of subdomains was increased. When the partition was kept unchanged
and H/h was increased, the iteration count increased slightly, and it seemed to have
a polylogarithmic dependence on H/h.

The convergence analysis for the block-diagonal preconditioner M is particularly
interesting in the three dimensional case; M was a possible alternative to M̂ since
it required significantly less computational effort per iteration step. However, our
results showed a much stronger than desired dependence of the iteration count for
M on the number of nodes on each subdomain edge. This dependence grew stronger
as the number of subdomains in the partition increased. The number of iterations
increased with the number of subdomains, another undesirable property. The condi-
tion number estimates followed a similar pattern and were significantly larger than
those corresponding to M̂ . Their relatively large values, on the order of 102, and their
dependence on the number of subdomains were unsatisfactory.
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Fig. 3. Convergence pattern for the condition number; three dimensional geometrically non-
conforming partition, N = 8, H/h = 4. Top left: new preconditioner, tol = 10−10; top right:
block-diagonal preconditioner, tol = 10−10; bottom: Dirichlet preconditioner, tol = 10−6.

Table 5
Convergence results; three dimensional geometrically nonconforming partition; new mortar el-

ements.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

8 4 11 4.46 1.7e+0 29 42 3.3e+0 272 2.8e+4 3.0e+1
8 8 14 6.52 4.8e+1 30 55 6.5e+1 648 4.1e+4 1.3e+3
8 16 16 7.80 1.4e+3 37 66 2.4e+3 720 4.7e+4 4.5e+4

16 4 13 6.69 6.4e+0 33 59 8.8e+0 817 2.2e+5 2.0e+2
16 8 15 8.17 1.6e+2 34 74 1.5e+2 1306 3.0e+5 5.7e+3
16 16 17 9.19 4.1e+3 43 115 5.6e+3 1870 3.5e+5 2.4e+5

32 4 14 8.02 3.1e+1 41 113 2.3e+1 989 4.2e+5 5.3e+2
32 8 16 9.28 1.1e+3 46 219 4.5e+2 1503 6.2e+5 1.4e+4
32 16 17 10.26 2.3e+4 53 331 3.6e+4 – – –

6.2. New mortars vs. classical mortars. In this section, we compare the
performance of the FETI algorithms for new mortar element methods with that of
the FETI algorithms for classical mortar element methods.

Using the same nonconforming partitions of Ω as before, we introduced new mor-
tar finite elements on the subdomains and run the same set of experiments as before.
We report the results in Table 5.

The iteration counts for the new preconditioner were identical to those for classical
mortars. The condition number estimates were slightly smaller than in the classical
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mortar case but essentially the same. The flop counts were between one percent and
five percent smaller than in the classical mortar case. In other words, M̂ scaled as
well as in the classical mortar case.

As explained in the two dimensional case, the new mortar conditions resulted
in simpler mortar conditions. An important consequence was that the off-diagonal
entries of BBt were fewer and smaller in absolute value than in the classical mortar
case. Therefore, the block-diagonal preconditioner M was closer to M̂ than in the
classical mortar case.

This generated a clear improvement for the iteration count and for the condition
number estimate of the block-diagonal preconditioner M . The number of iterations
decreased from the classical mortar case, in particular when the iteration count for
M was higher than desired, e.g., for the partition of Ω into 32 subdomains. It also
resulted in a decrease in the flop counts. However, the iteration count appeared to
depend on the number of subdomains when the number of nodes on each edges was
fixed. The dependence of the iteration count on H/h seemed to be stronger than
polylogarithmic.

The improvement generated by the new mortar method was even more signifi-
cant for the Dirichlet preconditioner. The iteration count decreased to hundreds of
iterations, instead of thousands, as was the case for the classical mortar method. The
condition number estimates were lower by two orders of magnitude, in a range of order
104–105, and the flop counts were one order of magnitude bigger than for the other
preconditioners. However, the FETI algorithm with the Dirichlet preconditioner did
not scale as a good domain decomposition method.

Fig. 4. Sparsity pattern of BBt. Left: two dimensional partition, N = 16, H/h = 8; right:
three dimensional partition, N = 16, H/h = 8.

6.3. Complexity study of the preconditioners. A comparison between the
block-diagonal and the new preconditioner showed that using the preconditioner M
resulted in a method which converged in about three times as many iterations than
when M̂ was used. We recall that, in the two dimensional case, the number of
iterations for the method with M was only about twice as large as that for M̂ . This
appears to be due to the fact that, in the three dimensional case, there are many
nodes, e.g., the nodes on the wire baskets of the subdomains, which influence several
nonmortar conditions. Therefore, the block-diagonal structure of BBt is no longer
as dominant, and many nonzero entries of BBt need to be dropped; see Figure 4
for the differences in the sparsity pattern of BBt for the two dimensional and three
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dimensional cases.
The flop counts for M were less than twice as large as those required for the

convergence of the new preconditioner, even if the FETI method with M required
about three times as many iterations as that with M̂ . Moreover, for partitions with
many subdomains and a small number of nodes on each edge, e.g., for N = 32 and
H/h = 4 or H/h = 8, the complexities of the mortar conditions and of the Lagrange
multiplier matrix B are higher relative to those of the Schur complement and its
pseudoinverse. In these cases, the flop count for the block-diagonal preconditioner was
less than that for the new preconditioner, despite the difference in iteration count.

This suggested that the costs of applying (BBt)−1 were significant in the three
dimensional case, and this was confirmed by our results. In Table 6, we present the
costs of applying (BBt)−1 and diagBγB

t
γ twice during an iteration step, relative to

the total flop count for one iteration step.

Table 6
Complexity study of one iteration step for the new preconditioner and the block-diagonal pre-

conditioner; three dimensional geometrically nonconforming partition.

New preconditioner Block-diagonal preconditioner

Mflops for Mflops per Mflops for Mflops per
N H/h (BBt)−1 iteration Ratio (diagBγBtγ)

−1 iteration Ratio

8 4 3.2e–2 1.5e–1 .22 4.8e–3 1.2e–1 .04
8 8 5.8e–1 2.7e+0 .21 9.2e–2 2.2e+0 .04
8 16 6.8e+0 6.9e+1 .10 1.2e+0 6.4e+1 .02

16 4 1.3e–1 3.9e–1 .34 1.1e–2 2.7e–1 .04
16 8 2.1e+0 6.6e+0 .32 1.8e–1 4.6e+0 .04
16 16 2.2e+1 1.5e+2 .15 1.9e+0 1.3e+2 .02

32 4 6.9e–1 1.3e+0 .55 3.0e–2 6.0e–1 .05
32 8 1.1e+1 2.1e+1 .54 5.0e–1 9.9e+0 .05
32 16 1.2e+2 3.8e+2 .32 5.4e+0 2.7e+2 .02

The costs associated with (BBt)−1 were between 10 and 55 percent of those for
one iteration step. This was much higher than for the two dimensional case, when the
relative costs were at most 13 percent, and as low as .02 percent; cf. Table 3. The costs
associated with (diagBγB

t
γ)

−1 were much smaller, at most 5 percent of those for one
iteration step. This was the reason why the flop counts per iteration were significantly
lower for the block-diagonal preconditioner than for the new preconditioner.

The dependence of the relative cost of applying (BBt)−1 on the number of sub-
domains N and the number of nodes on each edge H/h was similar to that for the two
dimensional case. It increased when H/h was kept fixed while the partition became
more complex, and decreased when the partition was kept unchanged and H/h was
increased. These results are consistent with the increased costs of multiplying a vector
by the Schur complement and the pseudoinverse of the Schur complement when H/h
increases, and the increased complexity of the Lagrange multiplier matrix B when the
partition had more subdomains.

7. Continuity and mortar conditions for matching meshes. In the clas-
sical FETI algorithm, the underlying partition of Ω is geometrically conforming, the
meshes across the interface match, and continuity conditions are enforced across the
interface; cf. section 3. However, it is also possible to require mortar matching across
the interface. It is important to note that using either mortar elements or conforming
finite elements results in approximation errors of the exact solution that are of the
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Table 7
Convergence results; two dimensional geometrically conforming partition; matching grids; and

new mortar constraints.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 4 5 2.18 3.4e–1 5 2.41 3.4e–1 5 3.93 3.3e–1
16 8 5 2.42 2.9e+0 6 2.49 3.5e+0 6 3.92 3.4e+0
16 16 6 3.18 7.2e+1 7 3.27 8.5e+1 7 5.11 8.5e+1
16 32 6 3.59 1.3e+3 7 4.31 1.6e+3 8 6.73 1.8e+3

36 4 7 2.34 1.5e+0 8 3.71 1.6e+0 8 3.76 1.6e+0
36 8 9 2.90 1.4e+1 10 4.70 1.6e+1 11 4.81 1.7e+1
36 16 9 3.70 2.5e+2 10 4.62 2.8e+2 12 6.24 3.3e+2
36 32 10 4.22 6.9e+3 11 5.14 7.6e+3 13 8.11 9.0e+3

64 4 8 2.42 3.5e+0 9 3.93 3.8e+0 9 4.00 3.8e+0
64 8 9 3.09 2.7e+1 11 5.02 3.4e+1 12 5.20 3.5e+1
64 16 11 3.98 7.3e+2 11 5.37 7.2e+2 13 6.77 8.6e+2
64 32 12 4.53 1.4e+4 13 5.55 1.5e+4 15 8.79 1.8e+4

121 4 9 2.45 8.6e+0 10 4.08 9.0e+0 10 4.18 8.9e+0
121 8 10 3.14 6.5e+1 12 5.20 7.7e+1 13 7.10 8.3e+1
121 16 11 4.04 1.2e+3 13 5.73 1.4e+3 15 8.29 1.6e+3
121 32 13 4.66 3.7e+4 14 5.84 4.0e+4 17 9.19 4.8e+4

same order. In particular, for our example, the difference in the discretization errors
corresponding to the two types of elements is negligible.

In this section, we compare the performance of the resulting FETI algorithms for
the two different types of matchings. We considered both two and three dimensional
problems. For mortar finite elements, we tested FETI algorithms with all three pre-
conditioners, while for conforming finite elements we used only the new preconditioner
and the Dirichlet preconditioner. The block-diagonal preconditioner is identical to the
new preconditioner for continuity matchings, since BBt is a block-diagonal matrix.

The convergence results for the classical mortar methods and the new mortar
methods were once again very similar, except for the case of the Dirichlet precon-
ditioner, where the new mortars provided a significant improvement. However, our
main goal was to compare the performance of continuity matchings versus mortar
matchings. Therefore, we present only here the results for the new mortar methods,
which always resulted in better algorithms than the classical mortar methods.

7.1. The two dimensional case. For the two dimensional experiments, the
computational domain Ω, the unit square, was partitioned into 4 × 4, 6 × 6, 8 × 8,
and 11 × 11 congruent squares, and Q1 elements were used in each square. The
meshes match across Γ, and nonredundant pointwise continuity conditions, or mortar
conditions, were used across Γ for comparison purposes. Except for the different
partitions, the experiments have the same parameters as in section 5. We report
the iteration count, the condition number estimate, and the flop count for the FETI
algorithms with new mortar finite elements in Table 7.

When new mortar conditions were used across the interface, computing the La-
grange multiplier matrix B was very simple for matching nodes. In particular, no
computations of integrals resulting from the mortar conditions (1) were necessary.
The new mortar conditions are equivalent to continuity conditions for all matchings
except for those corresponding to the first and last interior nodes on the nonmortar
sides, where the end point nodes are involved as well. Therefore, B was very similar
for the two types of matchings, and BBt was very close to twice the identity matrix.
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Table 8
Convergence results; two dimensional geometrically conforming partition; matching grids; and

continuity constraints.

New precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops

16 4 7 2.17 4.7e–1 18 23.02 1.2e+0
16 8 8 2.91 4.6e+0 19 28.11 1.1e+1
16 16 10 3.90 1.2e+2 20 33.75 2.4e+2
16 32 11 4.47 2.4e+3 21 39.01 4.7e+3

36 4 8 2.18 1.6e+0 24 23.23 4.8e+0
36 8 10 2.93 1.6e+1 26 28.15 4.1e+1
36 16 12 3.91 3.3e+2 26 34.03 7.2e+2
36 32 13 4.50 9.0e+3 28 39.13 1.9e+4

64 4 8 2.19 3.4e+0 25 23.34 1.0e+1
64 8 10 2.95 2.9e+1 28 28.19 8.2e+1
64 16 12 3.90 7.9e+2 28 34.03 1.8e+3
64 32 13 4.51 1.5e+4 29 39.33 3.4e+4

121 4 9 2.21 8.1e+0 27 23.35 2.4e+1
121 8 10 2.99 6.4e+1 29 28.23 1.8e+2
121 16 12 3.92 1.3e+3 29 34.10 3.1e+3
121 32 13 4.54 3.7e+4 30 39.44 8.5e+4

Almost no extra work was required when a system with the matrix BBt had to be
solved.

Another consequence of matching meshes was that BBt had very few nodes out-
side its block-diagonal structure diagBγB

t
γ . Therefore, we expected the convergence

results for the new preconditioner and for the block-diagonal preconditioner to be sim-
ilar. Indeed, the results from Table 7 show that M̂ and M behaved similarly in terms
of iteration counts and condition number estimates, which were just slightly higher
for the block-diagonal preconditioner M . Both preconditioners scaled very well with
the number of subdomains and the number of nodes on each edge. The computational
costs for one iteration step were almost identical, which resulted in better flop counts
for M̂ , even when the iteration counts differed by only one iteration.

In contrast with the other algorithms, the Dirichlet preconditioner M performed
very well for two dimensional problems with matching nodes. The iteration counts
were very small, comparable to those corresponding to M̂ and M . However, since
BBt is close to twice the identity matrix, the computational costs per iteration do
not show a relevant improvement for M . The Dirichlet preconditioner yielded higher
flop counts than the other two preconditioners.

We now turn our attention to the case when pointwise continuity was enforced
across the interface; cf. Table 8. As expected, both the Dirichlet preconditioner and
the new preconditioner had very good scaling properties. In particular, the condition
number estimates were almost constant when H/h was kept fixed and the number

of subdomains was changed. However, M̂ converged in less than half the number of
iterations necessary for M , and the same was true for the computational costs.

For continuity matchings, the vector matrix multiplication by Bt(BBt)−1B is
very easy to compute, since it is close to an operator from the balancing algorithm;
see [33]. It is possible to write the PCG algorithm with the new preconditioner such
that only the product of a vector by Bt(BBt)−1B, and not by (BBt)−1, needs to be
computed.

Using the data from Table 7 and Table 8, we can address the main topic of this
section, finding the best FETI algorithm for conforming partitions of Ω. We compared
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Table 9
Convergence results; three dimensional geometrically conforming partition; matching grids; and

new mortar constraints.

New precond. Block-diag. precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

8 4 8 3.13 7.8e–1 12 4.03 9.8e–1 127 2.9e+4 1.1e+1
8 8 9 3.92 1.9e+1 12 4.78 2.2e+1 212 3.6e+4 3.8e+2
8 16 11 4.41 6.8e+2 13 5.99 7.7e+2 301 4.2e+4 1.8e+4

16 4 8 5.31 2.4e+0 12 7.34 2.3e+0 141 6.5e+4 2.3e+1
16 8 10 7.00 5.5e+1 12 9.39 4.7e+1 233 9.0e+4 8.7e+2
16 16 11 8.32 1.4e+3 13 11.89 1.6e+3 341 1.2e+5 4.1e+4

32 4 9 5.70 3.9e+0 12 11.55 4.0e+0 400 1.6e+5 1.3e+2
32 8 11 8.24 8.8e+1 14 14.99 8.7e+1 630 2.0e+5 3.8e+3
32 16 12 10.31 2.2e+3 15 18.62 2.8e+3 – – –

the new preconditioner for new mortar matchings and for continuity conditions. The
iteration counts and the condition number estimates were slightly lower for the new
mortar case. The flop counts were also better for mortar matchings, since the Lagrange
multiplier matrices had similar structure for the two types of matchings and the costs
per iteration step were almost identical.

We conclude that the new mortar matchings represent an improvement over the
continuity matchings. This might be due in part to the fact that the mortar matching
conditions corresponding to the first and last interior points on the nonmortars replace
the continuity constraints at the crosspoints and their neighboring nodes.

7.2. The three dimensional case. For the three dimensional experiments, the
unit cube was partitioned into 2× 2× 2, 2× 2× 4, and 2× 4× 4 geometrically con-
forming, noncongruent parallelepipeds; Q1 meshes were considered in each subdomain
such that the meshes across the interface matched. Across Γ, nonredundant point-
wise continuity conditions, or biorthogonal mortar conditions, were enforced by using
Lagrange multipliers.

For the mortar matchings, we present convergence results only for the new mortar
method. We run the same set of experiments as in section 6 for all three precondi-
tioners and for 4, 8, and 16 nodes on each subdomain edge. We report the results in
Table 9.

For the three dimensional case, the Lagrange multiplier matrix B was no longer
very close to a multiple of the identity. The mortar matching conditions were different
than the continuity matchings for all the interior nodes on the nonmortar faces with
neighbors on the boundary of the face.

Once again, the new preconditioner M̂ scaled well. The iteration count and the
condition number estimate depended only weakly on H/h and on N , the number of
subdomains in the partition of Ω. A similar behavior was observed for the block-
diagonal preconditioner, at somewhat higher iteration counts. However, due to the
relative complexity of BBt, which was no longer very close to its block-diagonal struc-
ture diagBγB

t
γ , the preconditioner M required less computational effort per iteration

than M̂ . The difference in the iteration counts has thus been compensated, the two
preconditioners resulting in algorithms with very close flop counts.

Unlike in the two dimensional case with matching nodes, the Dirichlet precondi-
tionerM required hundreds of iterations to converge and did not have good scalability
properties. The condition number estimates were on the order of 104–105, and the flop
counts were at least one order of magnitude greater than for the other preconditioners.



1158 DAN STEFANICA

Table 10
Convergence results; three dimensional geometrically conforming partition; matching grids; and

continuity constraints.

New precond. Dirichlet precond.
N H/h Iter Cond Mflops Iter Cond Mflops

8 4 6 1.77 4.6e–1 21 75.54 1.5e+0
8 8 8 2.50 1.4e+1 25 80.30 4.4e+1
8 16 9 3.17 5.3e+2 27 84.25 1.6e+3

16 4 8 3.34 1.4e+0 31 84.12 5.4e+0
16 8 9 4.91 3.4e+1 35 90.73 1.3e+2
16 16 11 6.30 1.3e+3 36 94.35 4.3e+3

32 4 8 4.13 2.6e+0 38 95.51 1.2e+1
32 8 10 6.76 6.0e+1 41 98.12 2.4e+2
32 16 12 8.73 2.2e+3 43 99.82 7.9e+3

The convergence results for pointwise continuity matchings across the interface
are reported in Table 10. The new preconditioner yielded a scalable algorithm with
very low iteration counts and condition numbers. The Dirichlet preconditioner also
resulted in a scalable algorithm but required at least three times as many iterations
as M̂ for convergence. The condition number estimates were much larger as well but
depended weakly on changes of parameters H/h and N . The complexity of the matrix
B was compensated by the improvement in the iteration counts. The flop counts for
M̂ were at least half of those for M .

We conclude this section by discussing the differences between the two types
of matchings for three dimensional problems. The new preconditioner resulted in
the best algorithms for both new mortar and continuity matchings. The iteration
counts and the condition number estimates were slightly lower for the continuity case.
The computational effort per iteration required in the mortar case is greater than in
the continuity case, since BBt is no longer very close to a multiple of the identity.
Coupled with lower iteration counts, this results in better flop counts for the continuity
matching algorithms.
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Abstract. Choosing the regularization parameter for an ill-posed problem is an art based on
good heuristics and prior knowledge of the noise in the observations. In this work, we propose
choosing the parameter, without a priori information, by approximately minimizing the distance
between the true solution to the discrete problem and the family of regularized solutions. We
demonstrate the usefulness of this approach for Tikhonov regularization and for an alternate family
of solutions. Further, we prove convergence of the regularization parameter to zero as the standard
deviation of the noise goes to zero.
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1. Introduction. Linear, discrete ill-posed problems of the form

min
x
‖Ax− b‖2, or, equivalently, A∗Ax = A∗b(1.1)

arise, for example, from the discretization of first-kind Fredholm integral equations
and occur in a variety of applications. We shall assume the following:

1. The full-rank matrix A is m× n with m ≥ n.
2. A is ill-conditioned with no significant gap in the singular value spectrum. (A

gap would make the problem somewhat easier.) The problem is normalized
so that the largest singular value is 1.

3. The right-hand side b consists of true data plus random noise: b = bt + e,
where the components of e are an independent sample from a probability
distribution with mean 0 and standard deviation s.

4. The discretization error caused by making a finite dimensional approximation
to the continuous operator is much smaller than the noise.

5. The system satisfies the discrete Picard condition, which we will define in
section 2 after introducing some notation.

The noise in the measurements, in combination with the ill conditioning of A,
means that the exact solution of (1.1) has little relationship to the noise-free solution
and is worthless. Instead, we use a regularization method to determine a solution
that approximates the noise-free solution. Regularization methods replace the original
operator by a better-conditioned, but related, one in order to diminish the effects of
noise in the data and produce a regularized solution to the original problem. In this
work, we first consider Tikhonov regularization, in which the problem (1.1) is replaced
by

min
x

(‖Ax− b‖22 + λ‖Lx‖22
)
, or, equivalently, (A∗A+ λL∗L)x = A∗b,(1.2)
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where L is a regularization operator chosen to obtain a solution with desirable prop-
erties, such as a small norm (L = I) or good smoothness (L a discrete approximation
to a derivative operator), and λ > 0 is a scalar parameter. Throughout this paper we
will use the 2-norm and denote it by ‖ ∗ ‖.

The central question in Tikhonov regularization is how to choose the parameter λ
in order to produce a solution x close to the true noise-free solution xtrue. Hoerl and
Kennard [11] showed that on average a smaller error is produced using a nonzero λ,
and numerous heuristics have been proposed for the choice of this parameter. Some of
these (e.g., the discrepancy principle [14]) assume that the standard deviation of the
noise is known. Others (e.g., generalized cross-validation [6] and the L-curve [8]) work
with less knowledge of the noise properties. An interesting recent approach of Rust
[17] uses visualization of residual and singular component plots to choose reasonable
parameters. Pierce and Rust [15] minimize the lengths of confidence intervals using
appropriate parameter choices, and Kilmer and O’Leary [13] discuss the choice of
parameters when iterative solution methods are used.

In this work, we propose another rule for parameter choice. We go back to first
principles: among all solutions in a given family such as Tikhonov, we want the
solution that is a minimal distance from the true solution. Kay [12] has developed
asymptotic expressions for this distance as the size of the problem grows large. Others
have determined a Tikhonov parameter by minimizing a bound on this distance; Raus
[16], Gfrerer [5], and Engl and Gfrerer [3] propose minimizing one such bound, while
Hanke and Raus [7] propose an alternative. Rather than using asymptotic results or
minimizing a bound, we compute in section 2 a parameter that approximately mini-
mizes the distance to the true solution to the discretized problem and accomplishes
this goal without a priori knowledge of the standard deviation or distribution of the
noise in the observations. We discuss convergence of this choice in section 3. Section 4
contains a similar development for an alternative to Tikhonov regularization. Section
5 discusses some algorithmic issues, and in section 6 we show the effectiveness of these
methods on numerical examples.

2. Choosing the Tikhonov regularization parameter. In order to analyze
the problem, we convert to the coordinate system of the singular value decomposition
(SVD) of A. For simplicity of exposition, we assume that the regularization operator
L is the identity matrix. A similar development, using the generalized SVD, could be
done for general L (see, for example, [10, sect. 2.1.2]), but the resulting function is
considerably more complicated to compute and minimize.

Suppose A = UΣV ∗, where U and V have orthonormal columns and Σ is a matrix
of zeros except for diagonal entries σ1 ≥ · · · ≥ σn > 0. Exploiting the property that
‖Uz‖ = ‖z‖ and ‖V ∗z‖ = ‖z‖, the problem (1.2) takes the form

min
z
‖Σz − β‖2 + λ‖z‖2 ,

where βi ≡ u∗i b and z = V ∗x. Setting the derivative equal to zero, we find that for a
fixed value of λ, we need to solve the equation

(ΣTΣ+ λI)z = ΣTβ.

Thus, the Tikhonov solution is

xtik =

n∑
i=1

βiσi
σ2
i + λ

vi,(2.1)
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where vi is the ith column of V .
The true solution to the discrete (noise-free) problem is

xtrue =

n∑
i=1

βi − εi
σi

vi,

where εi ≡ u∗i e represents the unknown noise component.
The goal in regularization is to produce a solution as close as possible to the true

solution, so let us (rather naively) try to minimize this distance:

min
λ
‖xtik − xtrue‖2 ≡ min

λ
f(λ) .

Using the singular value representation, we see that

f(λ) =
n∑
i=1

[
βiσi
σ2
i + λ

− βi − εi
σi

]2
.

Setting the derivative equal to zero yields

0 = g(λ) ≡ 1

2
f ′(λ) = −

n∑
i=1

[
βiσi
σ2
i + λ

− βi − εi
σi

] [
βiσi

(σ2
i + λ)2

]

=

n∑
i=1

β2
i λ

(σ2
i + λ)3

−
n∑
i=1

βiεi
(σ2
i + λ)2

.

Now the first summation in this last expression is computable, but the second is not
because the noise values εi are unknown. However, there are two interesting properties
of the second summation.

• First, the terms for i ≈ n tend to be the largest because the denominators
are the smallest.
• Second, the system satisfies the discrete Picard condition, meaning that for
large enough values of the discretization parameter n, the sequence of true
data values {βi − εi} goes to zero faster than the sequence of singular values
{σi}. Thus, for terms with i greater than or equal to some parameter k,
εi ≈ βi.

Therefore, although we cannot compute the function g(λ), we can compute the fol-
lowing approximation to it:

ĝ(λ) ≡
n∑
i=1

β2
i λ

(σ2
i + λ)3

−
n∑
i=k

β2
i

(σ2
i + λ)2

− E
(
k−1∑
i=1

βiεi
(σ2
i + λ)2

)

for a suitable index k, depending on the standard deviation s. Finding the zero of this
function yields an approximation to the optimal value of λ. The last term denotes
the expected value of the quantity. Under assumption 3 of section 1, βi is some true
value plus noise εi, so E(βiεi) = E(ε2i ) = s2, and

ĝ(λ) =

n∑
i=1

β2
i λ

(σ2
i + λ)3

−
n∑
i=k

β2
i

(σ2
i + λ)2

− s2
k−1∑
i=1

1

(σ2
i + λ)2

.(2.2)

As λ increases from zero, this function is monotonically increasing, and we denote the
first zero by λhat and the corresponding solution vector xhat.
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3. Convergence for the Tikhonov parameter choice. We know that we
cannot, in general, compute the optimal Tikhonov parameter. How far do we stray
from the optimal vector when we use a nonoptimal parameter? The following theorem
bounds the relative distance between the optimal solution and the computed one.

Theorem 3.1. Let λopt be the optimal parameter for the Tikhonov family (i.e.,
the (generally uncomputable) one that produces the solution closest to xtrue). Then
for any value of λ,

‖xtik(λopt)− xtik(λ)‖
‖xtik(λopt)‖ ≤ |λopt − λ|

σ2
n + λ

.

Proof. The result follows from the computation

‖xtik(λopt)− xtik(λ)‖2 =
n∑
i=1

(
βiσi

σ2
i + λopt

− βiσi
σ2
i + λ

)2

=

n∑
i=1

β2
i σ

2
i

(
λ− λopt

(σ2
i + λopt)(σ2

i + λ)

)2

≤ (λ− λopt)2
(σ2
n + λ)2

n∑
i=1

(
βiσi

σ2
i + λopt

)2

=
(λ− λopt)2
(σ2
n + λ)2

‖xtik(λopt)‖2 .

Our algorithm for choosing the regularization parameter also behaves well as the
size of the observation noise is decreased.

Theorem 3.2. If we choose the parameter k so that εi ≈ βi for i ≥ k, then in
the limit as the standard deviation s of the noise converges to zero, the solution xhat
produced by our algorithm converges to the correct discrete solution xtrue.

Proof. As the standard deviation of the noise goes to zero, the value k increases
to n+ 1, and the solution to ĝ(λ) = 0 becomes λ = 0, as desired. Thus, as the noise
goes to zero, our solution converges to the noise-free solution.

4. An alternate family of solutions. We have studied how the regularization
parameter might be chosen for one family of solutions, the Tikhonov solutions, which
take the form

xtik =

n∑
i=1

βiσi
σ2
i + λ

vi .

A similar algorithm can be found for other solution families, and in this section we
consider the family

xalt =

n∑
i=1

βi
σi + λ

vi .

This family was proposed by Franklin [4] for Hermitian positive definite A and is also
associated with Lavrentiev [10, p.107]. Ekstrom and Rhoads [2] discussed the use of
the algorithm for convolution problems symmetrized by reordering, and this method
was also considered by Cullum [1].
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In his Regularization Tool Package for Matlab [9], Hansen includes a function
dsvd that can be used to apply the method to general problems. In this more gen-
eral context, there is more than one interpretation. The solution xalt satisfies the
regularized equation

(A+ λUV ∗)x = b .

However, it may be more intuitive to interpret the family as a set of filter factors [10,
sect. 4.2]

σi
σi + λ

,

multiplying the corresponding terms in the least squares solution

n∑
i=1

βi
σi
vi .

To choose the parameter λ, we mimic the procedure in section 2: we naively try
to minimize the distance between our solution and the true one:

min
λ
‖xalt − xtrue‖2 ≡ min

λ
f(λ) .

Using the singular value representation, we see that

f(λ) =
n∑
i=1

[
βi

σi + λ
− βi − εi

σi

]2
.

Setting the derivative equal to zero yields

0 = g(λ) ≡ 1

2
f ′(λ) = −

n∑
i=1

[
βi

σi + λ
− βi − εi

σi

] [
βi

(σi + λ)2

]

=

n∑
i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=1

βiεi
σi(σi + λ)2

.

Again, the first summation in this last expression is computable. The second is not,
because the observation noise values εi are unknown, but the terms for i ≈ n dominate,
and for these εi ≈ βi, so our approximate function becomes

ĝ(λ) ≡
n∑
i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=k

β2
i

σi(σi + λ)2
− E

(
k−1∑
i=1

βiεi
σi(σi + λ)2

)

for a suitable index k that depends on the standard deviation of the noise. Finding
the zero of the function

ĝ(λ) ≡
n∑
i=1

β2
i λ

σi(σi + λ)3
−

n∑
i=k

β2
i

σi(σi + λ)2
− s2

k−1∑
i=1

1

σi(σi + λ)2
(4.1)

yields an approximation to the optimal value of λ.
We have a bound for the relative distance between the optimal solution and the

computed one similar to the Tikhonov case.
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Theorem 4.1. Let λalt be the optimal parameter for the alternate family (i.e.,
the one that produces the solution closest to xtrue). Then for any value of λ,

‖xalt(λalt)− xalt(λ)‖
‖xalt(λalt)‖ ≤ |λalt − λ|

σ2
n + λ

.

Proof. The result follows from a computation similar to that in the proof of
Theorem 3.1.

Again, we can show that the solution converges to the true solution as the obser-
vation noise goes to zero.

Theorem 4.2. If we choose the parameter k so that εi ≈ βi for i ≥ k, then in
the limit as the standard deviation s of the noise converges to zero, the solution xhat
produced by our algorithm converges to xtrue.

Proof. The proof is the same as above.

5. Algorithmic notes. The standard deviation s of the noise is not assumed to
be known, so we estimate it using the last max(m−n, 10) components of the right-hand
side. If |bn| > 3.5s, then we choose k = n. Otherwise we use a T-test to determine
the index k. We choose k as the smallest index, among the values n − 9, n − 14, . . .,
for which a T-test with 0.05 significance level indicates that the sequence βk, . . . , βn
has zero mean. If the mean of the noise-free sequence is likely to be near zero, then
this test would not be appropriate, but many alternatives are available. One would
be to use the Mann–Whitney Test, a nonparametric test to determine whether two
independent groups of sampled data are taken from the same underlying distribution
without making assumptions on the distribution.

A root of either function (2.2) or (4.1) can be found using standard algorithms
(e.g., fzero in Matlab). Since ĝ(0) < 0 for both functions, we can find a lower bound
on the root by searching s, s/10, s/100, . . . for a negative function value. The simple
strategy of searching 100s, 1000s, . . . has proved effective in finding a value for which ĝ
is positive, thus providing the root finder with an initial interval containing the root.

6. Performance of the algorithms. The ideas of the previous sections were
tested using two sets of test problems. In the first, the 200×200 matrix was diagonal,
with entries ranging between 1 and 10−5, evenly spaced on a log scale. The true
solution was assumed to be the vector with elements evenly spaced between 1.0 and
0.9, and 100 sets of random noise were generated for the right-hand side. The value of
the standard deviation of the noise was not made available to the algorithms; instead,
we estimated it as in section 5. We generated solutions using the Tikhonov and the
alternate method and calculated the distance between these computed solutions and
the exact noise-free solution, tabulating the relative x-error ‖x−xtrue‖/‖xtrue‖. Then
we calculated the optimal Tikhonov and alternate solutions, the ones corresponding
to the parameter values that minimize the distance to the noise-free solution. These
optimal solutions, of course, cannot be computed in practical situations since the
noise-free solution is unknown, but the results tell us how far we are from optimal.
We also compared our results with three other methods:

1. We computed the the Tikhonov parameter by minimizing the generalized
cross-validation (GCV) function using Matlab’s fmin with tolerance 1.0e-07.
In some sense this is an unfair comparison, since GCV aims to minimize the
residual norm, not the x-error.
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Table 6.1
Relative errors in experiments on a diagonal matrix of size 200.

Standard dev. Optimal Computed Optimal Computed GCV Hanke–Raus Discrep.
of noise Tikhonov Tikhonov alternate alternate Tikhonov Tikhonov Tikhonov
Mean
1.0e-03 6.17e-01 7.05e-01 6.59e-01 1.12e+00 8.99e-01 8.20e-01 6.80e-01
1.0e-04 4.34e-01 4.61e-01 4.63e-01 4.94e-01 8.37e-01 6.82e-01 5.16e-01
1.0e-05 1.75e-01 2.11e-01 1.79e-01 1.97e-01 7.70e-01 4.97e-01 3.09e-01
1.0e-06 2.18e-02 6.52e-02 2.19e-02 5.34e-02 7.32e-01 4.58e-01 1.38e-01
Median
1.0e-03 6.17e-01 6.43e-01 6.62e-01 6.71e-01 9.01e-01 8.21e-01 6.71e-01
1.0e-04 4.37e-01 4.57e-01 4.66e-01 4.74e-01 8.38e-01 6.83e-01 5.16e-01
1.0e-05 1.73e-01 2.10e-01 1.76e-01 1.95e-01 7.72e-01 4.83e-01 3.07e-01
1.0e-06 2.13e-02 4.10e-02 2.13e-02 3.05e-02 7.35e-01 4.63e-01 1.37e-01

Maximum
1.0e-03 6.46e-01 4.95e+00 6.88e-01 7.34e+00 9.21e-01 8.49e-01 1.62e+00
1.0e-04 4.78e-01 9.86e-01 5.11e-01 9.93e-01 8.68e-01 7.52e-01 5.75e-01
1.0e-05 2.42e-01 2.82e-01 2.60e-01 2.68e-01 7.99e-01 5.89e-01 3.85e-01
1.0e-06 3.41e-02 1.61e-01 3.41e-02 1.40e-01 7.53e-01 4.71e-01 1.83e-01

2. We also compared our results with those of the Tikhonov algorithm of Hanke
and Raus [7], which chooses the parameter by minimizing

f(λ) =
√
1 + 1/λ

√
rT1 (λ)r0(λ) ,

where

x0 = (A∗A+ λI)−1A∗b ,
r0(λ) = b−Ax0 ,

x1 = (A∗A+ λI)−1A∗r0 + x0 ,

r1(λ) = b−Ax1 .

3. We used our estimate of the standard deviation of the noise to apply the
discrepancy principle [14].

The results are summarized in Table 6.1. Several trends are apparent. First,
the average relative x-errors in the solutions computed by our algorithm are within a
factor of 2 of the average relative x-errors for the optimal parameter values. Second,
for large noise in the observations, the Tikhonov solution is on average closer to the
true solution, but for small noise the alternate algorithm does somewhat better than
Tikhonov. Third, the Tikhonov solutions computed by our algorithm are on average
better than the GCV Tikhonov solutions and the Hanke–Raus solutions over the full
range of noise values, and for small noise, the alternate solutions are better too. Our
Tikhonov solutions are better than the discrepancy principle solutions except for a
noise level of 10−3.

The trends in the medians are similar to those of the averages, except that our
values are always better than the discrepancy principle. The maximum relative errors
show that only in the small number of cases in which the standard deviation of the
error fails to be computed accurately are the GCV and Hanke–Raus solutions much
better than our solutions.

Our algorithm for choosing the parameter k tested values in increments of 5.
(See section 5.) Results are relatively insensitive to this increment: for experiments
with noise level 1.0e-03 and increments of 1, 5, or 10, for example, the mean for
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Fig. 6.1. Histograms of the relative errors in the solutions computed for the diagonal matrix
problem with standard deviation of the observation noise equal to 1.0e-03. The horizontal axis
indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.
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Fig. 6.2. Histograms of the relative errors in the solutions computed for the diagonal matrix
problem with standard deviation of the observation noise equal to 1.0e-06. The horizontal axis
indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.
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Table 6.2
Relative errors in experiments on a helioseismatic matrix of size 212× 100.

Standard dev. Optimal Computed Optimal Computed GCV Hanke–Raus
of noise Tikhonov Tikhonov alternate alternate Tikhonov

Mean values:
1.0e-02 5.83e-01 5.75e+04 6.46e-01 5.08e+04 8.87e-01 8.63e-01
1.0e-04 4.58e-01 5.75e+02 4.91e-01 5.08e+02 6.60e-01 5.88e-01
1.0e-06 3.54e-01 3.49e+00 3.71e-01 3.35e+00 5.71e-01 5.71e-01

Median values:
1.0e-02 5.92e-01 6.02e-01 6.49e-01 6.52e-01 8.87e-01 8.63e-01
1.0e-04 4.58e-01 4.90e-01 4.93e-01 4.97e-01 6.61e-01 5.88e-01
1.0e-06 3.54e-01 3.62e-01 3.73e-01 3.75e-01 5.71e-01 5.71e-01

Max values:
1.0e-02 6.11e-01 4.55e+06 6.88e-01 4.00e+06 8.92e-01 8.66e-01
1.0e-04 4.95e-01 4.55e+04 5.18e-01 4.00e+04 6.68e-01 5.88e-01
1.0e-06 3.70e-01 3.10e+02 3.95e-01 2.96e+02 5.74e-01 5.74e-01
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Fig. 6.3. Histograms of the relative errors in the solutions computed for the helioseismatic
matrix problem with standard deviation of the observation noise equal to 1.0e-04. The horizontal
axis indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.

the computed Tikhonov values was between 7.01e-01 and 7.56e-01, while the median
changed by at most 3 in the third significant digit. Similarly, the mean for the
computed alternate values was between 1.06 and 1.34, while the median changed by
at most 1 in the third significant digit.

Histograms of the relative errors are presented in Figures 6.1 and 6.2.
The second experiment used the inverse helioseismatic data of Hansen (helio.mat,

taken from the Regularization Tool Package homepage [9]). The problem is an inte-
gral equation of the first kind modeling internal rotation of the sun as a function of
radius. The matrix A of size 212 × 100 and the true solution x were obtained from
there, and random observation noise was added as before. The right-hand side values
had a mean close to zero, so a rather primitive scheme was used to determine k; it was
determined so that the values bj for j > k were not larger than 3.5 times the estimated
standard deviation. The results (Table 6.2) show that the median relative x-errors
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Fig. 6.4. Histograms of the relative errors in the solutions computed for the helioseismatic
matrix problem with standard deviation of the observation noise equal to 1.0e-06. The horizontal
axis indicates the log of the relative error. The bars have height equal to the number of test problems
yielding errors in that range.

are at most 1.1 times as large as the optimal and at most 0.8 times the GCV values
or the Hanke–Raus values. The trends are similar to the diagonal matrix problem:
when the value of k is estimated well, the new algorithms perform much better than
GCV and Hanke–Raus. However, since the k estimation problem is more difficult
with this right-hand side, the mean and maximum values of the relative errors are
not well behaved.

Still, the histograms of the relative errors presented in Figures 6.3 and 6.4 show
that the new algorithms can be expected to produce much better results than GCV
or Hanke–Raus when the errors are small enough that k is easily estimated.

7. Conclusions. We have proposed a method for choosing a regularization pa-
rameter that approximately minimizes the Euclidean distance between the computed
solution and the noise-free solution, and we have demonstrated by numerical experi-
ments that it produces solutions quite close to optimal.

We have demonstrated the use of these methods of parameter choice when the
SVD of the matrix A can be explicitly computed. If the problem is too large for
this to be practical, the ideas could be used in conjunction with iterative methods
by applying them in the subspace generated by the iteration. For example, the SVD
of the reduced matrix produced by a GMRES iteration could be substituted for the
SVD of the full matrix. The effectiveness of this general methodology is discussed in
[13].
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1. Introduction. One of the most fruitful ways to analyze the effects of dis-
cretization error in the numerical solution of differential equations is to examine the
“modified equations,” which are equations that are exactly satisfied by the (approxi-
mate) discrete solution. These do not actually exist (in general) but rather are defined
by an asymptotic expansion in powers of the discretization parameter. Nonetheless,
if the expansion is suitably truncated, the resulting modified equations have a solu-
tion which is remarkably close to the discrete solution [9] (over relatively short time
intervals). In the case of a Hamiltonian system of ordinary differential equations, the
modified equations are also Hamiltonian if and only if the integrator is symplectic. The
existence of a modified (or “shadow” [4]) Hamiltonian is an indicator of the validity
of statistical estimates calculated from long time integration of chaotic Hamiltonian
systems [20]. In addition, the modified Hamiltonian is a more sensitive indicator than
the original Hamiltonian of drift in the energy (caused by instability). Evidence for
the existence of a Hamiltonian for a particular calculation can be obtained by cal-
culating modified Hamiltonians and monitoring how well they are conserved. Doing
this calculation would normally be complicated and highly dependent on the details of
the method, even if differences are used to approximate higher derivatives. Presented
here is a relatively simple procedure, nearly independent of the internal structure of
the integrator, for obtaining highly accurate estimates for modified Hamiltonians.

Consider a step by step numerical integrator xn+1 = Φh(xn) which evolves an
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approximate solution xn ≈ x(nh) for a system of ordinary differential equations
ẋ = f(x). For such discrete solutions, there exists modified equations ẋh = fh(xh)
defined by an asymptotic expansion such that formally the numerical solution xn =
xh(nh). The modified right-hand-side function fh is defined uniquely by postulating
an asymptotic expansion f0 + hf1 + h2f2 + · · · in powers of h, substituting this into
the equations for the numerical solution, expanding in powers of h, and equating co-
efficients [17, 27, 6, 24]. The asymptotic expansion does not generally converge except
for (reasonable integrators applied to) linear differential equations.

A Hamiltonian system is of the form

ẋ(t) = JHx(x(t)), J =

[
0 I
−I 0

]
,

for some Hamiltonian H(x), x = [qT, pT]T. The modified equation for an integrator
Φh applied to this system is Hamiltonian; i.e., fh = JHh,x(x) for some modified
Hamiltonian Hh(x) if and only if the integrator is symplectic [25, 22]. The integrator
is symplectic if Φh,x(x)JTΦh,x(x) ≡ J . There is theoretical [18, 2, 8, 20] and empirical
evidence that

xn = xh(nh) + very small error

for a very long time, where xh is the solution for a suitably truncated Hamiltonian
Hh. In what follows we assume that Hh is such a Hamiltonian and we neglect the
very small error.

If we plot total energy as a function of time for a numerical integrator such as
leapfrog/Störmer/Verlet applied to a molecular dynamics simulation, we get a graph
like Figure 3. What we observe are large fluctuations in the original Hamiltonian,
as the trajectory moves on a hypersurface of a constant modified Hamiltonian. A
small drift or jump in the energy would be obscured by the fluctuations. A plot
of a modified Hamiltonian might be more revealing. As an example, the plots of
modified Hamiltonians in Figure 4 already show a clear rise in energy in a 400-step
simulation. This indicates that plots of suitable modified Hamiltonians can make it
easier to test integration algorithms for instability and programming bugs. Details of
this and other numerical tests are given in section 2. Before continuing, it is worth
emphasizing that the concern of this paper is stability monitoring—not the monitoring
and enhancement of accuracy, as in [4] and [16].

The goal is to construct an approximate modified Hamiltonian

H[2k](q, p) = Hh(q, p) + O(h2k)

that can be conveniently assembled from quantities, such as forces and energies, al-
ready available from the numerical integration. These requirements do not uniquely
determine H[2k]. We consider the special separable Hamiltonian H(q, p) = 1

2p
TM−1p+

U(q) for which the system is of the form

q̇ = M−1p, ṗ = F (q)
def
= −Uq(q).

A “brute force” approach would be to determine an asymptotic expansion for
Hh and of the quantities available for making an approximation and then to form a
suitable linear combination of the latter. By such a matching of asymptotic expansions
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one could derive the following modified Hamiltonians for the leapfrog method:

H[2](q
n, pn) = H(qn, pn)− 1

8
h2(Fn)TM−1Fn︸ ︷︷ ︸

why?

,(1.1)

H[4](q
n, pn) = H(qn, pn) +

1

4
δ2Un +

1

6
h(pn)TM−1µδFn(1.2)

+
5

24
h2(Fn)TM−1Fn +

1

12
h2(Fn)TM−1δ2Fn,

H[6](q
n, pn) = H(qn, pn) +

11

60
δ2Un +

1

10
h(pn)TM−1µδFn(1.3)

+
17

120
h2(Fn)TM−1Fn +

1

10
h2(Fn)TM−1δ2Fn

+
1

60
h2(µδFn)TM−1µδFn − 1

240
h2(δ2Fn)TM−1δ2Fn.

Here a superscript n denotes evaluation at qn, the centered difference operator is
defined by δwn = wn+1/2 − wn−1/2, the averaging operator is defined by µwn =
1
2w

n+1/2 + 1
2w

n−1/2, and values qn±1, pn±1 are defined in terms of qn, pn by the
leapfrog method:

pn±1/2 = pn ± h

2
Fn, qn±1 = qn ± hM−1pn±1/2, pn±1 = pn±1/2 ± h

2
Fn±1.

Thus, in principle, analytical expressions for the H[2k](q, p) could be produced.
Note. The terms of order h2 in H[4] and H[6] are different; but if expanded in

powers of h, they agree up to O(h4).
An easier and more elegant construction is presented in sections 3–5. The tech-

nique is developed only for splitting methods. It is likely that a similar construc-
tion is also possible for symplectic implicit Runge–Kutta methods. The idea is
to add a new position variable and a conjugate momentum variable to get an ex-
tended Hamiltonian H̄h(y) which is homogeneous of order 2. For such a Hamiltonian
H̄h(yh(t)) ≡ 1

2 ẏh(t)TJ̄yh(t). Thus the problem is reduced to that of forming an
approximation for yh(t) using the numerical solution of an extended Hamiltonian sys-
tem. It is plausible that such a construction might be useful theoretically due to the
availability of robust approximation techniques.

Equation (1.1) for H[2] contains an h2 term which is not needed for achieving
second order accuracy. Similarly, the last terms of H[4] and H[6] are not needed for
fourth and sixth order, respectively. They are present because the given “truncations”
H[2k] are designed to exactly conserve energy for the numerical solution when H is
quadratic. (See sections 4.1 and 5.1.) This is a very useful property because typical
applications, including molecular dynamics, are dominated by harmonic motion. The
existence of a modified Hamiltonian that is exactly conserved for a quadratic Hamil-
tonian is noted in [19, Eq. (4.7b)], and the search for similar methods having this
property was central to the results of this paper. For a quadratic Hamiltonian the
modified Hamiltonian Hh actually exists (if h is not too large), but H[2k] �= Hh. (A
simple derivation of Hh for the one-dimensional case is given in [24].) It should also
be noted that the Hamiltonians H[2k] will not detect numerical instability in the case
of quadratic Hamiltonians H.

2. Numerical experiments. The approximate modified Hamiltonians H[2k](x),
k = 1, 2, 3, 4, defined by (5.3), (4.4), (5.2), and (4.3) are computed and plotted as



PRACTICAL CONSTRUCTION OF MODIFIED HAMILTONIANS 1175

9.95

10.00

10.05

10.10

10.15

10.20

10.25

10.30

0 20000 40000 60000 80000 100000

en
er

gy
 (

kc
al

/m
ol

)

time (fs)

8th order
6th order
4th order
energy
2nd order

Fig. 1. Energy and various truncations of the modified Hamiltonian for decalanine.

functions of time for numerical solutions generated by the leapfrog method. The un-
modified Hamiltonians are those of classical molecular dynamics. The testing was
done with a molecular dynamics program written by the second author, which is
compatible with NAMD [12] but limited in features to facilitate algorithm testing.

The first couple of experiments demonstrate the quality of the modified Hamilto-
nians. The test problem is a 66-atom peptide, decalanine, in a vacuum [1]. The force
field parameters are those of CHARMM 22 for proteins [15, 14] without cutoffs for
nonbonded forces.

Figure 1 shows a plot of the Hamiltonian and second, fourth, sixth, and eighth
order modified Hamiltonian approximations vs. time for 100,000 fs (femtoseconds) for
a step size h = 1 fs with the energy sampled every eighth step. The level graph at the
top is the eighth order truncation, the one just barely beneath it is sixth order, and
the one under that is fourth order. The greatly fluctuating graph is the energy itself,
and the undulating one well below it is the second order truncation. Note how well
the asymptotic theory holds for the higher order truncations—one could not obtain
such flat plots by simply smoothing the original Hamiltonian.

Figure 2 expands the vertical scale to show fluctuations in the eighth, sixth, and
fourth order truncations of modified Hamiltonians.

An explanation is in order concerning the initial drop in energy. The initial
velocities are zero, so integrating backward in time is the same as integrating forward.
Hence the first part of the trajectory is simply the second half of a very unusual
fluctuation. In other words, the initial conditions are atypical, i.e., not properly
equilibrated (with respect to the original Hamiltonian). This is particularly well
revealed by the plot of the second order truncation.

The remaining experiments demonstrate the ability of modified Hamiltonians to
detect instability. The test problem is a set of 125 water molecules harmonically
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restrained to a 10 Å-radius sphere. The water is based on the TIP3P model [11]
without cutoffs and with flexibility incorporated by adding bond stretching and angle
bending harmonic terms (cf. [13]).

Figure 3 shows a plot of the energy vs. time for 1,000 fs for a step size h = 2.5 fs
with the energy sampled every step. Note that the large fluctuations make it difficult
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to determine whether or not there is energy drift.
Figure 4 shows a plot of the sixth and eighth order modified Hamiltonians for

the same step size h = 2.5 fs. An upward energy drift is now obvious. The second
and fourth order approximations are not shown because neither of them was as flat.
Normal mode analysis for this system [10] shows that the 250 fastest frequencies have
periods in the range 9.8–10.2 fs and use of the formula in [24, p. 131] shows that a
2.5 fs step size is 30% of the effective period for discrete leapfrog dynamics. It is
remarkable that the eighth order approximation is the flattest, even for such a large
step size.

Figure 5 shows a plot of the sixth and eighth order modified Hamiltonians for
step size h = 2.15 fs. There is no apparent upward drift of the energy. Theoretically,
instability due to 4:1 resonance [23] should occur for the leapfrog method at h ·
angular frequency =

√
2, which is in the range 2.2–2.3 fs for flexible water.

3. Augmenting the integrator. The integrator is augmented to make it ho-
mogeneous of order 1. This is motivated by the desire to extend results obtained for
homogeneous linear mappings to affine mappings. Affine mappings can be reduced to
homogeneous linear mappings through the use of homogeneous coordinates, in which
the given set of coordinates is augmented by a scale factor, denoted here by α.

We assume that one step of size h for the given method applied to a system
with Hamiltonian H is the composition of exact h-flows for Hamiltonian systems with
Hamiltonians H1, H2, . . . , HL. Each Hl(x) is assumed to be sufficiently smooth on
some domain containing the infinite time trajectory. For example,

1. the leapfrog method for separable Hamiltonian systems H(q, p) = K(p)+U(q)
uses L = 3, H1(x) = 1

2U(q), H2(x) = K(p), and H3(x) = 1
2U(q);

2. the Rowlands method [21] for special separable Hamiltonian systems uses
H1(x) = H3(x) = 1

2U(q)− 1
48h

2Uq(q)TM−1Uq(q) and H2(x) = 1
2p

TM−1p;
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Fig. 5. Sixth and eighth order truncations with step size 2.15 fs.

3. double time-stepping [7, 26] uses L = 5, H1(x) = H5(x) = 1
2U

slow(q) +
1
4U

fast(q), H2(x) = H4(x) = 1
2K(p), and H3(x) = 1

2U
fast(q),

4. Molly [5] does the same as double time-stepping except for the substitution of
U slow(A(q)) for U slow(q), where A(q) is a local temporal averaging of q over
vibrational motion.

We define the homogeneous extension of a Hamiltonian by

H̄(q, α, p, β)
def
= α2H(α−1q, α−1p).

Then H̄ is homogeneous of order 2:

H̄(σy) = σ2H̄(y),(3.1)

where y
def
= [qT, α, pT, β]T. The extended Hamiltonian yields the augmented system

q̇ = αHp(α
−1q, α−1p), ṗ = −αHq(α

−1q, α−1p),

α̇ = 0, β̇ = qTHq(α
−1q, α−1p) + pTHp(α

−1q, α−1p)− 2αH(α−1q, α−1p).

With initial condition α(0) = 1, we have α ≡ 1 and the system simplifies to

q̇ = Hp(q, p), ṗ = −Hq(q, p), β̇ = qTHq(q, p) + pTHp(q, p)− 2H(q, p).

For H(q, p) = 1
2p

TM−1p + U(q), the extended Hamiltonian is H̄(q, α, p, β) =
1
2p

TM−1p + α2U(α−1q) and the simplified augmented system is

q̇ = M−1p, ṗ = −Uq(q), β̇ = qTUq(q)− 2U(q).
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Remark. The association of α with q rather than with p is of practical importance
in that it enables one to get values of β̇ for free whenever ṗ is calculated.

The following proposition shows that the value of the extended Hamiltonian can
be calculated knowing only the solution.

Proposition 1. Let H̄(y) be the homogeneous extension of a given Hamiltonian
H(x), and let y(t) be a solution of the extended Hamiltonian system with α initially
1. Then

H(x(t)) ≡ 1

2
ẏ(t)TJ̄y(t),

where J̄ is the matrix
[

0
−I

I
0

]
of augmented dimension.

Proof. Differentiating (3.1) with respect to σ gives H̄y(y)Ty = 2H̄(y), so

1

2
ẏ(t)TJ̄y(t) =

1

2
(J̄H̄y(y(t)))TJ̄y(t) =

1

2
H̄y(y(t))Ty(t) = H̄(y(t)).

Because H̄ is a homogeneous extension of H, the solution of H̄ “includes” that of H
and we have H̄(y(t)) ≡ H(x(t)).

Of course, the goal is not to calculate the original Hamiltonian for which we know
a formula but not the solution; rather, it is to calculate a modified Hamiltonian for
which we know the solution (at grid points) but not a formula. Therefore, we must
augment the integrator so that its solution at grid points is that of the homogeneous
extension of the modified Hamiltonian. For an integrator that is a composition of
Hamiltonian flows, this is accomplished by using the homogeneous extension of each
of the constituent Hamiltonians. More specifically, we define the augmented method
yn+1 = Ψh(yn) for H̄ to be the composition of exact flows for systems with Hamilto-
nians H̄1, H̄2, . . . , H̄L, where

H̄l(q, α, p, β)
def
= α2Hl(α

−1q, α−1p).

Lemma 1 (commutativity). The method Ψh defined above has a modified Hamil-
tonian

H̄h(q, α, p, β) = α2Hh(α−1q, α−1p),

where Hh(q, p) is the modified Hamiltonian of the original method Φh, i.e., the fol-
lowing diagram commutes:

homogeneous extension

H −→ H̄
discretization ↓ ↓ discretization

Hh −→ H̄h

homogeneous extension

Proof. The modified Hamiltonian H̄h for method Ψh can be expressed as an
asymptotic expansion using the Baker–Campbell–Hausdorf formula [22]. This formula
combines Hamiltonians using the operations of scalar multiplication, addition, and the
Poisson bracket {H,N} = HT

x JNx. It is thus sufficient to show that each of these
three commute with the operation of forming the homogeneous extension. We show
this only for the last of these. The homogeneous extension of the Poisson bracket is

α2Hx(α−1x)TJNx(α−1x).
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This is exactly the same as the (extended) Poisson bracket of α2H(α−1x) and
α2N(α−1x).

Remark. The aim is to discretize the extended Hamiltonian so that this commu-
tativity property holds. Extension of this technique to implicit Runge–Kutta methods
would require an augmentation of the method so that commutativity holds.

The following proposition allows the value of the Hamiltonian to be approximated
from known values of yh(t) at grid points.

Proposition 2. Let xh(t) and yh(t) be the solutions for modified Hamiltonians
Hh and H̄h, respectively. Then

Hh(xh(t)) ≡ 1

2
ẏh(t)TJ̄yh(t).(3.2)

Proof. The proof is similar to that of Proposition 1.

4. Using full step values. This section presents the construction of H[2k] for
even values of k. The idea is to use (3.2) in a judiciously chosen weighted average.

Let yh(t) be the solution of the modified extended Hamiltonian system with initial
condition y(0) = y. It has values yh(jh) = Ψj

h(y), j = 0,±1, . . . ,±k/2. Let πk(t) be
the degree k polynomial interpolant of these values. (For large k it may be preferable,
instead, to use trigonometric interpolation suitably modified [3].)

From Proposition 2, 1
2 π̇k(t)Jπk(t) ≈ H̄h(y). Let

Hk,j
def
=

1

jh

∫ jh/2

−jh/2

1

2
π̇k(t)TJπk(t)dt, j = 2, 4, . . . , k.

The interpolant πk(t) = yh(t) + e(t), where the error e(t) = (t2 − 1
4k

2h2) · · · (t2 −
h2)ty

[k+1]
h (t) and y

[k+1]
h (t)

def
= yh[− 1

2kh, . . . ,
1
2kh, t] with the brackets denoting a (k +

1)th divided difference. Noting that ė(t)TJ̄e(t) = O(h2k+2), we get

Hk,j = H̄h +
1

jh

∫ jh/2

−jh/2

1

2
ẏh(t)TJ̄e(t)dt− 1

jh

∫ jh/2

−jh/2

1

2
yh(t)TJ̄ ė(t)dt + O(h2k+2)

= H̄h +
1

jh/2

∫ jh/2

−jh/2

1

2
ẏh(t)TJ̄e(t)dt + O(h2k+2)

= H̄h +
1

jh/2

∫ jh/2

−jh/2

(
t2 − 1

4
k2h2

)
· · · (t2 − h2)tγ(t)dt + O(h2k+2),

where the second equation is obtained by integration by parts and where γ(t)
def
=

1
2 ẏh(t)TJ̄y

[k+1]
h (t). This can be expressed as an expansion

Hk,j = H̄h + cj1h
k+2γ′(0) + cj3h

k+4γ′′′(0) + · · ·+ O(h2k+2).

By forming a suitable linear combination of the values Hk,j , j = 1, 2, . . . , k/2, it is
expected that one can get H̄h with the first k/2− 1 leading error terms eliminated:

linear combination of the Hk,j = H̄h + O(h2k).

Note. The value π̇k(0)TJ̄πk(0) contains a leading term that is only O(hk), so it
is not useful for eliminating error terms.
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The case k = 2 is the fourth order accurate formula

H[4](x)
def
= H2,2 = H̄h(y) + O(h4).

For the case k = 4, we have

H4,2 = H̄h +
1

h

∫ h

−h
(t2 − 4h2)(t2 − h2)tγ(t)dt + O(h10)

= H̄h +
20

21
h6γ′(0) + O(h8)

and

H4,4 = H̄h +
1

2h

∫ 2h

−2h

(t2 − 4h2)(t2 − h2)tγ(t)dt + O(h10)

= H̄h − 64

21
h6γ′(0) + O(h8),

and hence

H[8](x)
def
=

16

21
H4,2 +

5

21
H4,4 = H̄h(y) + O(h8).

Below are given formulas for H[8] and for H[4] in terms of values of yh(t) at grid
points. Let aj be the jth centered difference of yh(t) at t = 0:

aj =

{
δjyh(0), j = 0, 2, 4, . . . ,
µδjyh(0), j = 1, 3, . . . ,

where the centered difference operator is defined by δw(t) = w(t + h/2)−w(t− h/2)
and the averaging operator is defined by µw(t) = 1

2w(t + h/2) + 1
2w(t− h/2).

The fourth degree interpolant in divided difference form is

π4(t) = yh(0) + t
µδyh(0)

h
+ t2

δ2yh(0)

2h2
+ t(t2 − h2)

µδ3yh(0)

6h3
+ t2(t2 − h2)

δ4yh(0)

24h4
.

Hence,

π4(sh) = a0 + a1s +
1

2
a2s

2 +
1

6
a3s(s

2 − 1) +
1

24
a4s

2(s2 − 1)

and

hπ̇4(sh) = a1 + a2s +
1

2
a3

(
s2 − 1

3

)
+

1

6
a4s

(
s2 − 1

2

)
.

Define

Aij = aT
i J̄aj/(2h),

and we have

1

2
π̇4(sh)TJ̄π4(sh) = A10 − 1

2
A12s

2 +
1

2
A30

(
s2 − 1

3

)
+

1

12
A32s

2(s2 + 1)

− 1

8
A14s

2

(
s2 − 1

3

)

− 1

144
A34s

2(s2 − 1)2 + odd powers of s.
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Averaging over −1 ≤ s ≤ 1 yields

H4,2 = A10 − 1

6
A12 +

2

45
A32 − 1

90
A14 − 1

1890
A34,(4.1)

and averaging over −2 ≤ s ≤ 2 yields

H4,4 = A10 − 2

3
A12 +

1

2
A30 +

17

45
A32 − 31

90
A14 − 107

3780
A34.

Therefore,

H[8](x) =
16

21
H4,2 +

5

21
H4,4(4.2)

= A10 − 2

7
A12 +

5

42
A30 +

13

105
A32 − 19

210
A14 − 1

140
A34.(4.3)

For a second degree interpolant, it follows from (4.1) that

H[4](x) = H2,2 = A10 − 1

6
A12.(4.4)

An implementation of these formulas might calculate H[2k](x
n) for consecutive

values of n in terms of quantities Anij = (ani )TJ̄anj /(2h) defined in terms of centered
differences of yn which can be obtained from the xn. (Only first and higher differences
of βn are needed.)

Example 1. To make this concrete, we calculate H[4](x) for the leapfrog method,
as given by (1.2). The leapfrog method advances one step by

pn+1/2 = pn +
h

2
Fn,

βn+1/2 = βn +
h

2
(−(qn)TFn − 2Un),

qn+1 = qn + hM−1pn+1/2,

pn+1 = pn+1/2 +
h

2
Fn+1,

βn+1 = βn+1/2 +
h

2
(−(qn+1)TFn+1 − 2Un+1).

We have

H[4](q
n, pn) =

1

2h
(µδyn)TJ̄

(
yn − 1

6
δ2yn

)
.

Suppressing the n in the superscript,

y±1 =




q ± hM−1p + 1
2h

2M−1F
1

p± 1
2hF ± 1

2hF
±1

β ± 1
2h(−2U − qTF )± 1

2h(−2U±1 − (q±1)TF±1)


 ,

whence

µδy =




hM−1p
0

hF + 1
4hδ

2F
−2hU − hqTF − 1

2hδ
2U − 1

4hδ
2(qTF )


 , δ2y =




h2M−1F
0

hµδF
not needed


 .(4.5)
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From δ(ab) = δa · µb + µa · δb and µ2 = 1 + 1
4δ

2, we get

δ2(ab) = δ2a · b + 2µδa · µδb + a · δ2b +
1

2
δ2a · δ2b,

so

δ2(qTF ) = h2FTM−1F + 2hpTM−1µδF + qTδ2F +
1

2
h2FTM−1δ2F.(4.6)

Therefore,

H[4](q
n, pn) = H(qn, pn) +

1

4
δ2Un +

1

6
h(pn)TM−1µδFn +

5

24
h2(Fn)TM−1Fn

+
1

12
h2(Fn)TM−1δ2Fn.

4.1. The case of a quadratic Hamiltonian. The following result implies
that, in the case where H(x) is quadratic, the numerical solution exactly conserves an
approximate modified Hamiltonian which is a linear functional of 1

2 π̇(t)TJ̄π(t), where
π(t) is a linear combination of numerical solution values.

Proposition 3. Assume that Φh is the composition of flows for systems with
quadratic Hamiltonians and that Ψh is constructed as in Lemma 1. Then the quantity

H̄∗(y)
def
=
∑
i,j

ai,jΨ
i
h(y)TJ̄Ψj

h(y),

where the sum is taken over a finite set of pairs of integers, is exactly conserved by
method Ψh.

Proof. The mapping Ψh(y) = Sy for some symplectic matrix S because Ψh is the
composition of flows for systems with homogeneous quadratic Hamiltonians. Then

H̄∗(Ψh(y)) =
∑
i,j

ai,j(S
iSy)TJ̄(SjSy)

=
∑
i,j

ai,j(S
iy)TSTJ̄S(Sjy)

=
∑
i,j

ai,jΨ
i
h(y)TJ̄Ψj

h(y).

5. Using intermediate values. This section presents the construction of H[2k]

for odd values of k.
For most numerical integrators one can define “sensible” midstep values

yn±1/2, yn±3/2, . . . , yn±k/2,

and these can be used instead of full step values to get an estimate accurate up to
O(h2k). We assume that Ψh = Ψ̂−1

−h/2 ◦ Ψ̂h/2, where Ψ̂h/2 is a composition of exact

flows of homogeneously extended Hamiltonians.
Remark. It is not necessary that the midstep values be approximations to y(t) at

midpoints nor that Ψh be time symmetric (Ψ−1
h = Ψ−h). All we need is that Ψh =

Ψ2,h ◦Ψ1,h where each of Ψ1,h, Ψ2,h is a composition of exact flows of homogeneously
extended Hamiltonians.
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For example, the leapfrog method separates into half steps Ψ̂−1
−h/2 ◦ Ψ̂h/2 with

Ψ̂h/2 as follows:

pn+1/2 = pn +
h

2
Fn,

βn+1/2 = βn +
h

2
(−(qn)TFn − 2Un),

qn+1/2 = qn +
h

2
M−1pn+1/2.

Remark. For the leapfrog method, the estimate over an interval from (n − 1
2k)h

to (n + 1
2k)h, where k is odd, actually uses only values of energy and forces from the

shorter interval from (n− 1
2k + 1

2 )h to (n + 1
2k − 1

2 )h.
The midstep values are values at midpoints of some function zh(t) which can be

used to construct the Hamiltonian.
Proposition 4. Let zh(t) = Φh/2(yh(t− h/2)). Then

Hh(xh(t)) ≡ 1

2
żh(t)TJ̄zh(t).

Proof. For any real s, we define Ψs
h = sh-flow for ẏ = J̄H̄h,y(y). Then zh(t) =

χh(yh(t)), where χh = Φh/2 ◦ Ψ
−1/2
h . Because χh is symplectic, zh(t) = χh(yh(t))

satisfies a Hamiltonian system with Hamiltonian H̄h ◦ χ−1
h . Also, χh(σz) = σχh(z)

because χh is the composition of flows of Hamiltonians that are second order homo-
geneous, and hence H̄h ◦ χ−1

h is homogeneous of order 2. Therefore,

1

2
żh(t)TJ̄zh(t) ≡ H̄h ◦ χ−1

h (zh(t)) = H̄h(yh(t)).

Let πk(t) be the degree k polynomial interpolant of the values zh(jh) = Ψ̂h/2 ◦
Ψ
j−1/2
h (y), j = ± 1

2 , ± 3
2 , . . . , ±k/2.

As before, let

Hk,j =
1

jh

∫ jh/2

−jh/2

1

2
π̇k(t)TJ̄πk(t)dt, j = 1, 3, . . . , k.

The interpolant πk(t) = zh(t) + e(t), where the error e(t) = (t2 − 1
4k

2h2) · · · (t2 −
1
4h

2)z
[k+1]
h (t) and z

[k+1]
h (t)

def
= zh[− 1

2kh, . . . ,
1
2kh, t]. Similar to before, we get

Hk,j = H̄h +
1

jh/2

∫ jh/2

−jh/2

(
t2 − 1

4
k2h2

)
· · ·
(
t2 − 1

4
h2

)
γ(t)dt + O(h2k+2),

where γ(t)
def
= 1

2 żh(t)TJ̄z
[k+1]
h (t). This can be expressed as an expansion

Hk,j = H̄h + cj0h
k+1γ(0) + cj2h

k+3γ′′(0) + · · ·+ O(h2k+2).

Again, it is expected that a suitable linear combination of the (k + 1)/2 different
values of Hk,j yields H̄h with the first (k + 1)/2− 1 leading error terms eliminated:

linear combination of the Hk,j = H̄h + O(h2k).
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Note. It does not seem possible to combine values obtained from full steps with
those from half steps to further increase the order of accuracy because the error
expansions for the two kinds of averages do not have terms in common that can
cancel.

For k = 1, we have the second order formula

H[2](x)
def
= H1,1 = H̄h(y) + O(h2).

For k = 3, we have

H3,1 = H̄h +
1

h/2

∫ h/2

−h/2

(
t2 − 9

4
h2

)(
t2 − 1

4
h2

)
γ(t)dt + O(h8)

= H̄h +
11

15
h4γ(0) + O(h6)

and

H3,3 = H̄h +
1

3h/2

∫ 3h/2

−3h/2

(
t2 − 9

4
h2

)(
t2 − 1

4
h2

)
γ(t)dt + O(h8)

= H̄h − 3

5
h4γ(0) + O(h6),

whence

H[6](x)
def
=

9

20
H3,1 +

11

20
H3,3 = H̄h(y) + O(h6).

Let bj be the jth centered difference of zh(t) at t = 0 using midstep values

bj =

{
µδjzh(0), j = 0, 2, 4, . . . ,
δjzh(0), j = 1, 3, . . . .

The third degree interpolant is

π3(t) = µzh(0) + t
δzh(0)

h
+

(
t2 − 1

4
h2

)
µδ2zh(0)

2h2
+

(
t2 − 1

4
h2

)
t
δ3zh(0)

6h3
.

Hence,

π3(sh) = b0 + b1s +
1

2
b2

(
s2 − 1

4

)
+

1

6
b3s

(
s2 − 1

4

)

and

hπ̇3(sh) = b1 + b2s +
1

2
b3

(
s2 − 1

12

)
.

Define

Bij = bTi J̄bj/(2h),

and we have

1

2
π̇3(sh)TJ̄π3(sh) = B10 − 1

2
B12

(
s2 +

1

4

)
+

1

2
B30

(
s2 − 1

12

)

+
1

12
B32

(
s2 − 1

4

)2

+ odd powers of s.
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Averaging over − 1
2 ≤ s ≤ 1

2 yields

H3,1 = B10 − 1

6
B12 +

1

360
B32,(5.1)

and averaging over − 3
2 ≤ s ≤ 3

2 yields

H3,3 = B10 − 1

2
B12 +

1

3
B30 +

7

120
B32.

Therefore,

H[6](x) = B10 − 7

20
B12 +

11

60
B30 +

1

30
B32.(5.2)

For a first degree interpolant, it follows from (5.1) that

H[2](x) = B10.(5.3)

Example 2. We calculate H[2](x) for the leapfrog method, as given by (1.1). We
have

H[2](q
n, pn) =

1

2h
(δyn)TJ̄(µyn).

Suppressing the n in the superscript,

y±1/2 =




q ± 1
2hM

−1p + 1
4h

2M−1F
1

p± 1
2hF± 1

2h(−2U − qTF )


 ,

whence

δy =




hM−1p
0
hF

−2hU − hqTF


 , µy =




q + 1
4h

2M−1F
1
p
0


 .(5.4)

Therefore,

H[2](q
n, pn) = H(qn, pn)− 1

8
h2(Fn)TM−1Fn.

Example 3. We calculate H[6](x) for the leapfrog method, as given by (1.3). From
(5.4) we have

δ3y =




hM−1δ2p
0

hδ2F
−2hδ2U − hδ2(qTF )


 , µδ2y =




δ2q + 1
4h

2M−1δ2F
0
δ2p
0


 .

We have δ2q = h2M−1F and δ2p = hµδF from the second part of (4.5), and δ2(qTF )
is given by (4.6). Then
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bT1 J̄b0 = 2hU + hpTM−1p− 1

4
h3FTM−1F,

bT1 J̄b2 = h2pTM−1µδF − h3FTM−1F − 1

4
h3FTM−1δ2F,

bT3 J̄b0 = 2hδ2U + 3h2pTM−1µδF + h3FTM−1F +
1

4
h3FTM−1δ2F,

bT3 J̄b2 = −h3FTM−1δ2F + h3(µδF )TM−1µδF − 1

4
h3(δ2F )TM−1δ2F,

and, therefore,

H[6](q
n, pn) = H(qn, pn) +

11

60
δ2Un +

1

10
h(pn)TM−1µδFn +

17

120
h2(Fn)TM−1Fn

+
1

10
h2(Fn)TM−1δ2Fn +

1

60
h2(µδFn)TM−1µδFn

− 1

240
h2(δ2Fn)TM−1δ2Fn.

5.1. The case of a quadratic Hamiltonian.
Proposition 5. Assume that Φh is the composition of flows for systems with

quadratic Hamiltonians, that Ψh is constructed as in Lemma 1, and that Ψ̂h/2 is as
assumed at the beginning of this section. Then the quantity

H̄∗(y)
def
=
∑
i,j

ai,jΨ̂h/2 ◦Ψi
h(y)TJ̄Ψ̂h/2 ◦Ψj

h(y),

where the sum is taken over a finite set of pairs of integers, is exactly conserved by
method Ψh.

Proof. Because Ψ̂h/2, Ψh are the compositions of flows for systems with homoge-

neous quadratic Hamiltonians, the mappings Ψ̂h/2(y) = S1y and Ψh(y) = S2S1y for
some symplectic matrices S1, S2. Then

H̄∗(Ψh(y)) =
∑
i,j

ai,j(S1S
iSy)TJ̄(S1S

jSy)

=
∑
i,j

ai,j(S1S
iy)T(S1S2)TJ̄S1S2(S1S

jy)

=
∑
i,j

ai,jΨ̂h/2 ◦Ψi
h(y)TJ̄Ψ̂h/2 ◦Ψj

h(y).
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A CHANGING-CHART SYMPLECTIC ALGORITHM
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Abstract. We revive the elementary idea of constructing symplectic integrators for Hamiltonian
flows on manifolds by covering the manifold with the charts of an atlas, implementing the algorithm in
each chart (thus using coordinates) and switching among the charts whenever a coordinate singularity
is approached. We show that this program can be implemented successfully by using a splitting
algorithm if the Hamiltonian is the sum H1+H2 of two (or more) integrable Hamiltonians. Profiting
from integrability, we compute exactly the flows of H1 and H2 in each chart and thus compute the
splitting algorithm on the manifold by means of its representative in any chart. This produces a
symplectic algorithm on the manifold which possesses an interpolating Hamiltonian, and hence it
has excellent properties of conservation of energy. We exemplify the method for a point constrained
to the sphere and for a symmetric rigid body under the influence of positional potential forces.

Key words. symplectic integrators, constrained Hamiltonian systems, rigid body
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1. Introduction and description of the method. Symplectic integrators are
currently very popular for Hamiltonian systems, particularly in view of their stability
and excellent energy conservation. Since the phase space of a number of Hamiltonian
systems of relevant interest (e.g., rigid bodies) is not the Euclidean space R

2n, but a
symplectic manifoldM , symplectic integrators on manifolds are of special importance.

If a manifold does not possess a global system of coordinates, integrations per-
formed using coordinates must necessarily deal with the presence of coordinate sin-
gularities. Probably the simplest idea for overcoming this situation is to consider a
number of different systems of coordinates which have the singularities in different
positions, and hence they form an atlas for M . One then implements an algorithm
within each coordinate system and switches from one to the other during the inte-
gration whenever a coordinate singularity is approached. A changing-chart method
of this kind has indeed been used in early molecular dynamics integrations of di-
atomic molecules [1] (in which case the manifold M is the cotangent bundle of the
two-dimensional sphere), but the adopted algorithm was not symplectic. In fact, as
noticed, e.g., in [13], even using a symplectic algorithm in each chart (e.g., a leapfrog)
does not necessarily produce an algorithm on the manifold which has the stability
and energy conservation of symplectic algorithms.1

To our knowledge, no symplectic changing-chart method has ever been developed.
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1More precisely, of symplectic integrators which possess a global interpolating Hamiltonian; see
section 2.
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From the (vast) literature on the subject, one receives the impression that the presence
of singularities has generally been felt as a serious difficulty for any approach based
on the use of local coordinates (e.g., Euler angles in the rigid body case). A variety
of alternative “geometric” approaches have thus been developed. A number of them
share the common idea of embedding the manifold M in a higher-dimensional space
R

2N for some N > n, where 2n is the dimension of M (see, e.g., [6], [7], [10], [13],
[14], [15], [16], [17]); this achieves the goal of obtaining a global parametrization but
at the price of introducing more variables. In addition, the confinement to M has to
be enforced in some way: for instance, the so called RATTLE algorithm, successfully
applied, in particular, to the rigid body, resorts to the use of 2(N − n) Lagrange
multipliers, so the number of variables to be managed further increases.2 Moreover,
these geometric algorithms are often implicit; i.e., numeric inversions are necessary at
each time-step. Nevertheless, in the literature these geometric schemes are generally
considered superior to changing-charts methods.

In this article we propose a different point of view; namely, we suggest the fol-
lowing.

(i) It is possible to implement changing-chart symplectic algorithms simply by
choosing the algorithms in the individual charts in such a way that they are
the local representatives of a symplectic map on the manifold. This is indeed
enough to ensure, as is crucial, that the trajectories computed in the local
charts are the local representatives of trajectories of a symplectic map on
the manifold (the “geometric integrator”); all properties of the map are then
automatically preserved, up to the round-off errors, by the local algorithms.

(ii) A natural way of implementing this program is by means of the so-called
“splitting methods”; moreover, such an implementation ensures the existence
on the manifold of the so-called “interpolating Hamiltonian”—a rather crucial
fact for symplectic integrators.

(iii) In various situations, this leads to computationally efficient explicit algo-
rithms, which are competitive with other geometric algorithms.

We will discuss the method theoretically in section 2. In addition, in section 3 we will
illustrate the method by means of two examples, which are of interest, for instance,
in molecular dynamics and in celestial mechanics. The first example is the point
constrained to a sphere and subject to conservative forces, for which M = T ∗S2. The
second is the symmetric rigid body in a positional conservative force field; assuming
for the purpose of the discussion that the body has a fixed point, thenM = T ∗SO(3).
We will use an atlas for the sphere made of two systems of spherical coordinates and
an atlas for SO(3) made of two systems of Euler angles.

We now shortly describe the method. We use the following notations: if (M,σ)
is a symplectic manifold and F : M → R is a smooth function, then we denote by
ΦFε the map at time ε of the flow of the Hamiltonian vector field XF of F ; as is well
known, for each ε, ΦFε is a symplectic diffeomorphism from M to itself. (The vector
field XF is assumed to be complete.)

The splitting methods (see, e.g., [18], [19], [17]) are based on the idea of decom-
posing the Hamiltonian as the sum of two or more terms, the flows of which are easily
computable. If

H = H1 +H2,

2For the rigid body, schemes using quaternions [6], [7] require only a normalization of the quater-
nion, but this seems to destroy symplecticity.



SYMPLECTIC INTEGRATION ON MANIFOLDS 1191

then the map

Ψε = ΦH2

ε/2 ◦ ΦH1
ε ◦ ΦH2

ε/2(1.1)

is easily seen to be a symplectic map from M to M , which differs from the flow ΦHε
of H by terms of order ε3. Therefore, Ψε is a symplectic algorithm of second order
on the manifold. (Higher order splitting methods can be constructed; see [18], [19].)
In our application to the two problems mentioned above, we shall take as H1 and H2

the kinetic energy and, respectively, the potential energy. Both H1 and H2 are then
individually integrable, and even more, exact explicit expressions of ΦH1

ε and ΦH2

ε/2 in

coordinates, actually very manageable ones, are easily written. (H1 corresponds in
one case to the geodesic motion on the sphere, in the other case to the Euler–Poinsot
motion of the free rigid body, while in both cases H2 is independent of momenta
and thus trivially integrable.) The fact that ΦH1

ε and ΦH2

ε/2 are computed exactly (up

to the round-off errors) in each coordinate system automatically fulfills the above
requirement (i). In other cases, like the triaxial rigid body, the kinetic energy H1 is
still integrable, but computing ΦH1

ε requires handling elliptic functions. In such cases,
a further convenient splitting of H1, leading to more manageable expressions, could
be preferable; we shall come back to this point in section 5.

As a final remark, we mention that the use of the splitting algorithm (1.1) to
integrate the motion of a (triaxial) rigid body has already been proposed in [17], [16],
[15]; the first of these references also contains numerical integrations of rigid body
motions. The two approaches, however, though similar for the use of (1.1), differ
in the main point; namely, we implement Ψε in coordinates (two systems of Euler
angles), while the point of view of the mentioned references is that, in order to avoid
the coordinate singularities, one should implement the algorithm in a geometric way,
specifically, using a Lie–Poisson integrator (coupled with the consideration of either
rotational matrices or quaternions for the body orientation).

2. Theoretical description of the method. The good energy conservation of
a class of symplectic algorithms is explained in terms of the existence of an “interpo-
lating Hamiltonian flow.” We begin by showing that this is the case for the splitting
method on a manifold. In this context, it is important to distinguish between Hamil-
tonian and locally Hamiltonian flows. (See the remark below for some comments.)
Recall that a vector field X on a symplectic manifold (M,σ) is called Hamiltonian if
the one-form σ(X, ·) is exact and locally Hamiltonian if this one-form is only closed. In
the former case, there exists a Hamiltonian function, namely, a function H :M → R

such that σ(X, ·) = −dH; in the latter case, such functions exist only locally.
By a one-parameter family of analytic symplectic diffeomorphisms on an analytic

symplectic manifold (M,σ) we mean an analytic map

Ψ : I ×M →M, (ε,m) �→ Ψε(m),

where I ⊂ R is an interval containing zero, such that Ψ0 = identity and, for any
ε ∈ I, Ψε is an analytic symplectic diffeomorphism. An elementary generalization of
known results for the Euclidean case M = R

2n, σ =
∑
i dpi ∧ dqi, gives the following

proposition.
Proposition 1. Let Ψε be a one-parameter family of analytic symplectic diffeo-

morphisms on a symplectic manifold (M,σ). Then, for any ε sufficiently near zero,
(i) there exists a locally Hamiltonian (“interpolating”) vector field Xε such that
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Ψε = ΦXεε +O(e−1/ε
)
.(2.1)

Assume, moreover, that Ψε is a composition of a finite number of flows of analytic
Hamiltonian vector fields, each acting for a time which depends analytically on ε:

Ψε = ΦF1

ε1(ε)
◦ ΦF2

ε2(ε)
◦ · · · ◦ ΦFsεs(ε)

for analytic functions εj(ε), which vanish at ε = 0, and analytic functions Fj :M → R.
Then

(ii) the vector field Xε is Hamiltonian.
(iii) If Ψε is an algorithm of order r ≥ 1 for a given Hamiltonian H, that is,

Ψε = ΦHε +O(εr+1),

then the Hamiltonian Kε of Xε satisfies

Kε = H +O(εr).(2.2)

Proof. First note that all statements are true in the Euclidean case: statements
(i) and (iii) are proven, e.g., in [5], while statement (ii) is obvious since R

2n is simply
connected. The fact that statements (i) and (iii) remain true on a manifold is seen
by observing that, within the quoted proof, Xε and Kε are constructed as formal
series, the coefficients of which are commutators of vector fields and Poisson brackets
of functions, respectively. Since these objects are intrinsically defined on the manifold
(i.e., their local representatives commute with the change of charts), the argument of
[5] applies as is to the case of a manifold. Estimates, which allow one going beyond the
formal level and obtaining (2.1), are performed locally within each chart. (Analyticity
is required for this.)

Now let us prove statement (ii). Consider, for simplicity, the case of the compo-
sition of two flows. Then, formally

ΦX1
ε1 ◦ ΦX2

ε2 = Φε1X1
1 ◦ Φε2X2

1 = ΦX1

for a vector field X which is given, as a formal series, by the BCH formula. The
fact that if X1 and X2 are Hamiltonian, then X is also Hamiltonian, not only lo-
cally Hamiltonian, is seen by observing that the terms of the BCH series are built
up of commutators of X1 and X2 and recalling that the commutator of two Hamil-
tonian vector fields is Hamiltonian. (The Hamiltonian is the Poisson bracket of the
Hamiltonians of X1 and X2.) The extension to any number of flows is obvious.

The Hamiltonian Kε is called the interpolating Hamiltonian of the algorithm Ψε
(Modified Hamiltonian is also used.) The existence of the interpolating Hamiltonian
explains the very good energy conservation of symplectic algorithms. Up to quanti-
ties O(e−1/ε), which can easily be made smaller than the round-off even in multiple
precision [2] by taking the step-size ε small enough, the iteration of the symplectic
integrator follows exactly the flow of the nearby vector field Xε. If this vector field is
Hamiltonian (not just locally Hamiltonian), then its Hamiltonian Kε is preserved by
the algorithm up to an exponentially small error. Accumulation of these extremely
small errors produces acceptable overall effects on significantly long integration times.3

3In special situations, the errors on the energy do not accumulate; see [5] and, for numerical
results, [2].
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M

↙z ↘ z′

R
2n

C−−−−−−−−−−−−−→ R
2n

�ψε
�ψ′

ε

R
2n

C−−−−−−−−−−−−−→ R
2n

Fig. 1. The local representatives of the algorithm commute with the change of charts.

Remark. The distinction between the existence of a Hamiltonian interpolating
vector field and a locally Hamiltonian one is important, even though so far it has
not drawn much attention. (For some results, see [5] and [8].) A locally Hamiltonian
interpolating vector field does not ensure energy conservation: any local interpolating
Hamiltonian is conserved by the algorithm, but this conservation law might be broken
by orbits winding around the manifold. Of course, the problem does not exist in
the Euclidean case because of the simple connectedness of R

2n. However, simple
examples demonstrate that, on a manifold, some condition is necessary to ensure the
Hamiltonian character of the interpolating vector field (e.g., M = R × S1 � (I, ϕ),
σ = dI ∧ dϕ, Ψε(I, ϕ) = (I + ε, ϕ)).

By Proposition 1, the algorithm Ψε on M defined by (1.1) has a global inter-
polating Hamiltonian Kε = H1 + H2 + O(ε2). This fact alone makes clear that,
however implemented in local coordinates, this algorithm will exhibit good energy
conservation.

For the sake of the discussion, assume thatM has a symplectic atlas which consists
of just two charts with coordinates z = (q, p) and z′ = (q′, p′). Let C be the change of
chart, so that z′ = C ◦ z. If h = h1+h2 and h

′ = h′1+h
′
2 are the local representatives

of the Hamiltonian H = H1 + H2 in the two charts,
4 then the local representatives

ψε and ψ
′
ε of the map Ψε are

ψε = Φh2

ε/2 ◦ Φh1
ε ◦ Φh2

ε/2, ψ′
ε = Φ

h′
2

ε/2 ◦ Φ
h′
1
ε ◦ Φh

′
2

ε/2.

By construction, these two maps commute with the change of chart, i.e.,

C ◦ ψε = ψ′
ε ◦ C(2.3)

(see Figure 1). It follows that we can freely switch from one chart to the other and keep
following the iteration of the map Ψε on the manifold. In other words, this changing-
chart method is an actual implementation of the algorithm (1.1) on the manifold.
Note that the coordinate systems used, and the adopted criterion for when to switch

4This means that the restriction of H to the first chart equals h ◦ z, etc. Note that h = h′ ◦ C in
the intersection of the chart domains.
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charts, are completely immaterial: different choices may produce more or less simple
and efficient implementations but do not affect the algorithm.5 The implementations
of the changing-chart methods mentioned in the introduction did not satisfy (2.3),
and this makes the difference.

In the next section, we illustrate this procedure on the two cases mentioned in
the introduction, in which H1 is the kinetic energy of an integrable system and H2

is a positional potential. The flow of H2 is trivially integrated: if h2(q) is the local
representative of H2 in a chart with coordinates (p, q), then

(p, q) �→
(
p+ t

∂h2

∂q
(q), q

)
.

The local representatives of H1 depend on both coordinates and momenta, but since
H1 is integrable, in principle one knows the solution in each chart. The crucial step,
on which the efficiency of the algorithm relies, is to have an analytical representation
of the flow ΦH1

ε of the kinetic energy which is suitable for numerical computations.

3. Two examples.

3.1. The point constrained to the sphere. As a first elementary exam-
ple, we consider a point constrained to the unit sphere in R

3 subject to positional
potential forces. The flow ΦH1

ε of the kinetic energy is the geodesic flow on the
sphere and is easily written in any system of coordinates. We used two systems of
spherical coordinates and the corresponding momenta, that we denote (ϕ, θ, pϕ, pθ)
and (ϕ′, θ′, p′ϕ, p

′
θ), relative to two orthogonal frames {ex, ey, ez} and, respectively,

{e′x, e′y, e′z} = {ex,−ez, ey}. The change of charts are given by



cos θ = − sin θ′ sinϕ′,
sin θ =

√
1− cos2 θ,

cosϕ = sin θ′ cosϕ′

sin θ ,

sinϕ = cos θ′
sin θ ,

pθ =
cos θ′ sinϕ′

sin θ p′θ +
cosϕ′

sin θ sin θ′ p
′
ϕ,

pϕ = − cosϕ′ p′θ +
sinϕ′ cos θ′

sin θ′ p′ϕ,




cos θ′ = sin θ sinϕ,
sin θ′ =

√
1− cos2 θ′,

cosϕ′ = sin θ cosϕ
sin θ′ ,

sinϕ′ = − cos θ
sin θ′ ,

p′θ = − cos θ sinϕ
sin θ′ pθ − cosϕ

sin θ sin θ′ pϕ,

p′ϕ = cosϕpθ − sinϕ cos θ
sin θ pϕ.

Due to rotational invariance, both the kinetic energy and the geodesic flow have the
same expression in the two charts, so we write them down only in the first chart. The
kinetic energy is

h1(ϕ, θ, pϕ, pθ) =
p2θ
2
+

p2ϕ

2 sin2 θ
.

The geodesic flow is determined either by integrating Hamilton’s equations or just by
observing that it consists of a uniform translation along a great circle. Consider the
initial datum (ϕ(0), θ(0), pϕ(0), pθ(0)) = (ϕ0, θ0, J, P0) and denote

G =

√
P 2

0 +
( J

sin θ0

)2

, P̂0 =
P0

G
, Ĵ =

J

G
;

5In fact, it is not even necessary that the coordinates z and z′ be symplectic, even though this is
likely to be the simplest choice. If the coordinates are not symplectic, one should repeat the previous
argument by considering not the Hamiltonians and their local representatives but the corresponding
Hamiltonian vector fields.
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G is the norm of the angular momentum and, as pϕ, is an integral of motion. (This
is the reason why we do not append the subscript 0 to G and J .) Then the solution
(ϕ(t), θ(t), pϕ(t), pθ(t)) of the system with Hamiltonian h1 can be written as(

cos θ(t)
pθ(t)
G sin θ(t)

)
=

(
cosGt − sinGt
sinGt cosGt

) (
cos θ0
P̂0 sin θ0

)
,

(
cosϕ(t)
sinϕ(t)

)
=

1

sin θ(t)

(
C −S
S C

) (
cosϕ0

sinϕ0

)

for

C = sin θ0 cosGt+ P̂0 cos θ0 sinGt,

S =
Ĵ

sin θ0
sinGt.

3.2. The symmetric rigid body. We now consider the symmetric rigid body
with a fixed point. (Here symmetric just means that two of the three moments of
inertia relative to the fixed point are equal.) Let {e1, e2, e3} be an orthogonal frame
centered on the body’s fixed point with axes oriented like the principal axes of inertia,
and let I1 = I2 and I3 be the corresponding principal moments of inertia. In order to
obtain an atlas for T ∗SO(3), we consider two systems of standard Euler angles (see
Figure 2), say, q = (ϕ,ψ, θ) and q′ = (ϕ′, ψ′, θ′), relative to different spatial frames
{ex, ey, ez} and, respectively, {e′x, e′y, e′z} = {ez, ex, ey}. These coordinates and their
conjugate momenta p = (pϕ, pψ, pθ) and p

′ = (p′ϕ, p
′
ψ, p

′
θ) are related by the equations




cos θ = sin θ′ sinϕ′,
sin θ =

√
1− cos2 θ,

cosϕ = − cos θ′/ sin θ,
sinϕ = − sin θ′ cosϕ′/ sin θ,
cosψ = −(cosϕ′ sinψ′,

+cos θ′ sinϕ′ cosψ′)/ sin θ,
sinψ = (cosϕ′ cosψ′

− cos θ′ sinϕ′ sinψ′)/ sin θ,
pθ = − sinϕ′ cos θ′

sin θ p′θ,
− cosϕ′

sin θ sin θ′ (p
′
ϕ + cos θ

′p′ψ),

pϕ = cosϕp′θ − sinϕ′

sin θ′ (cos θ
′p′ϕ + p

′
ψ),

pψ = p
′
ψ,




cos θ′ = − sin θ cosϕ,
sin θ′ =

√
1− cos2 θ′,

cosϕ′ = − sin θ sinϕ/ sin θ′,
sinϕ′ = cos θ/ sin θ′,
cosψ′ = −(sinϕ sinψ

− cos θ cosϕ cosψ)/ sin θ′,
sinψ′ = (sinϕ cosψ

+cos θ cosϕ sinψ)/ sin θ′,
p′θ =

cosϕ cos θ
sin θ′ pθ
− sinϕ

sin θ sin θ′ (pϕ − cos θ pψ),
p′ϕ = sinϕpθ

+ cosϕ
sin θ (cos θpϕ + pψ),

p′ψ = pψ.

Here too the kinetic energy has the same form in both coordinate systems, pre-
cisely

h1(q, p) =
p2θ
2I1

+
(pϕ − pψ cos θ)2

2I1 sin
2 θ

+
p2ψ
2I3

.

The components of the angular momentum along the axes ez and e3, namely, pϕ and
pψ, are constants of motion of the free system; their values will hereafter be denoted
J and L, respectively. Also the norm G of the angular momentum vector is constant;
one has

G =

√
p2θ + p

2
ψ +

(pϕ − pψ cos θ
sin θ

)2

.(3.1)
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Fig. 2. The Euler angles ϕ,ψ, θ. (e′ is the unit vector in the direction of ez × e3.)

In the classical textbooks and manuals we consulted, we found the expression of
the solution of the Euler–Poinsot system only in special systems of Euler angles with
the spatial axis ez parallel to the angular momentum. Since this is not sufficient for
our purposes, we computed the solution in a generic system of Euler angles. (This is
elementary in the symmetric case.)

Proposition 2. Consider an initial datum (ϕ(0), ψ(0), θ(0), pϕ(0), pψ(0), pθ(0)) =
(ϕ0, ψ0, θ0, J, L, P0), and let G be the corresponding norm of the angular momentum.
Denote

Ĵ =
J

G
, L̂ =

L

G
, P̂0 =

P̂0

G
, Ω =

G

I1
, Λ =

I1 − I3
I1I3

L.

Then, for all t such that sin θ(t) �= 0, the solution of the system of Hamiltonian h1 is
given by

(
cos θ(t)− Ĵ L̂
pθ(t)
G sin θ(t)

)
=

(
cosΩt − sinΩt
sinΩt cosΩt

) (
cos θ0 − Ĵ L̂
P̂0 sin θ0

)
,(3.2)

(
cosϕ(t)
sinϕ(t)

)
=

1

sin θ0 sin θ

(
C(Ĵ , L̂) S(Ĵ , L̂)
−S(Ĵ , L̂) C(Ĵ , L̂)

) (
cosϕ0

sinϕ0

)
,(3.3)

(
cosψ(t)
sinψ(t)

)
=

1

sin θ0 sin θ

(
C(L̂, Ĵ) S(L̂, Ĵ)
−S(L̂, Ĵ) C(L̂, Ĵ)

)
(3.4)

×
(
cosΛt − sinΛt
sinΛt cosΛt

) (
cosψ0

sinψ0

)
,

where

C(x, y) = y(y − x cos θ0)(3.5)

+
[
sin2 θ0 − y(y − x cos θ0)

]
cosΩt+ P̂0 sin θ0 cos θ0 sinΩt,

S(x, y) = (1− cosΩt)P̂0 sin θ0y + (x− y cos θ0) sinΩt.(3.6)

A proof of this proposition is given in the appendix.
Remark. If the algorithm is regarded as mapping sine and cosine of the angles at

time zero to sine and cosine of the angles at time t, then only four trigonometric func-
tions must be computed, namely, sine and cosine of Ωt and of Λt; all other operations
are algebraic (elementary operations and a few square roots). Developing an efficient,



SYMPLECTIC INTEGRATION ON MANIFOLDS 1197

accurate algorithm for the symmetric rigid body was the original motivation of this
work. We were interested in performing long-time integrations of rigid bodies under
generic potential force fields, so as to investigate the presence of the chaotic behavior
predicted in the works [3] and [4]. We will publish the results of these integrations
somewhere else. We just mention here that the algorithm appeared to be simple,
efficient, and stable. Overall, it seemed to perform exceptionally well.

4. Numerical tests and comparisons. Our algorithm exhibits the typical
very good conservation of energy of the symplectic algorithms which possess an in-
terpolating Hamiltonian.

The best way of illustrating this fact and of enlightening the mechanism under-
neath is probably by means of the comparison with a slightly (but crucially) different
algorithm. Specifically, we consider within each chart a (generalized) leapfrog, namely,
the map ψ̃hε = ψ̃hII ◦ ψ̃hI , where ψ̃hI : (q, p) �→ (qI , pI) and ψ̃hII : (q

I , pI) �→ (qII , pII)
are (implicitly) defined by

ψ̃hI :

{
pI = p− ε

2
∂h
∂q (p

I , q),

qI = q + ε
2
∂h
∂p (p

I , q),
ψ̃hII :

{
qII = qI + ε

2
∂h
∂p (p

I , qII),

pII = pI − ε
2
∂h
∂q (p

I , qII).
(4.1)

The standard leapfrog (or Verlet) algorithm is obtained when h(q, p) is separated,
namely, h(q, p) = h1(p) + h2(q); in such a case, as we have already mentioned, this
algorithm also coincides with the splitting algorithm (1.1). In the two cases considered
above, the point on the sphere in polar coordinates and the symmetric rigid body in
Euler angles, the Hamiltonians are not separated but the generalized leapfrogs ψ̃hε
and ψ̃h

′
ε in the two charts are explicit anyway.

As is well known, the generalized leapfrog ψ̃hε in each chart is symplectic, possesses
an interpolating Hamiltonian, and differs from Φhε by O(ε3). However, the two gen-
eralized leapfrogs do not commute with the change of chart, namely, C ◦ ψ̃hε �= ψ̃h

′
ε ◦ C.

This means that the two algorithms are not the local representatives of a single algo-
rithm on the manifold. In particular, the interpolating Hamiltonians of the individual
algorithms in the two charts are not the local representatives of a single function on
the manifold. The consequence is that each change of chart introduces a change of
order ε2 in the conserved quantity (i.e., the interpolating Hamiltonian of the local
algorithm), and this results typically in a progressive drift of the energy proportional
to ε2 and to the number of chart changes.6

This is illustrated in Figure 3, which refers to the simple case of the spherical
pendulum, namely, a heavy point on the sphere; the potential energy in the two
charts are h2 = cos θ and h′2 = − sin θ′ sinϕ′. All figures report the relative error
in the energy along the same orbit, which has been computed with the splitting
algorithm (solid line) and switching between the two generalized leapfrogs (dotted
line). The two methods are implemented using the same coordinate systems, the same
criterion for switching charts, and the same integration step. The superimposed dots
identify the instants at which the chart is switched. In all figures, the initial datum
is (ϕ, θ, pϕ, pθ) = (π/3, π/3, 1.1, 0.35) (in the first chart) and the integration step is
ε = 0.05. Figures 3(a), 3(b), and 3(c) differ only for the total integration time, which
equals 50, 400, and 1000 time-steps, respectively. The difference between the two
methods is evident: switching charts has no consequence for the splitting algorithm,
while it produces accumulation of errors for the pair of generalized leapfrogs.

6This mechanism was already observed in [13].
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Fig. 3. Error in the energy along an orbit of the spherical pendulum for our algorithm (solid
line) and for a pair of leapfrogs (dotted line). Charts are switched when arcsin θ reaches 0.7 in (a),
(b), and (c), and 0.5 in (d).

In Figures 3(a), 3(b), and 3(c), the chart was changed whenever the colatitude
θ (or θ′) reached the value arcsin(0.7). In Figure 3(d) we used a different criterion
for changing charts, so as to force the change of charts at different instants. Specif-
ically, we changed chart when the colatitude reached arcsin(0.5). Comparison with
Figure 3(a) indicates that this has a consequence for the pair of generalized leapfrogs,
but not for our algorithm, which is completely transparent to the change of charts.

The same behavior is found in the symmetric rigid body. Figure 4 refers to a
rigid body with moments of inertia I1 = I2 = 1 and I3 = 2/3. The potential energy
in the two Euler angles charts introduced in the previous section is

h2(q, p) = sin θ cosϕ+ (sin θ cosψ)2,

h′2(q
′, p′) = − sin θ′ sinϕ′ + (sinϕ sinψ − cosϕ cosψ cos θ)2.

Figures 4(a)–(c) show the energy error on 120 time-steps for the orbit with initial
datum (ϕ,ψ, θ, pϕ, pψ, pθ) = (0.5,−0.45, π/3, 2.2, 0.8, 1.3); the integration step is 0.05
in all cases, while the chart is switched when sinϕ reaches the values 0.7, 0.5, 0.2,
respectively. Figure 4(d) is the same as Figure 4(a) but for a longer integration time.

Remark. Figure 3 indicates that, even within a given chart, the error on the
energy is smaller for the splitting algorithm than for the generalized leapfrog. This
is largely due to the fact that, within our algorithm, the flow of the kinetic energy is
computed exactly, which produces a more stable algorithm. In fact, the leapfrog has a
factor (sin θ)−3 which degrades the precision already at moderate distances from the
singularities. The same situation is met with the symmetric rigid body: Figures 4(a)–
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Fig. 4. Error in the energy along an orbit of the symmetric rigid body in an external potential
computed with our algorithm. The chart is switched when arcsin θ reaches 0.7 in (a) and (d), 0.5 in
(b), and 0.2 in (c).

(c) indicate that the energy conservation does not get worse when the singularities
are approached (up to arcsin(0.2) in the case of Figure 4(c)). In this case, too, the
energy error with a pair of leapfrogs is much bigger.

As a further evidence that the algorithm, though written in coordinates, is nev-
ertheless coordinate independent, let us propose another elementary test. Consider
a Lagrange top that is a heavy symmetric rigid body, and let eg be the unit vector
in the direction of gravity. The component of the angular momentum along eg, that
we shall denote m, is then a constant of motion. Quite clearly, if we use a chart
of Euler angles, relative to a spatial frame {ex, ey, ez} with eg = ez, then m = pϕ,
and since the Hamiltonian is independent of ϕ, m is exactly conserved. Now, since
the algorithm commutes with the change of charts, the same must be true, up to the
round-off errors, in any other chart, for example, a chart of Euler angles relative to
a spatial frame {ex, ey, ez} such that eg has no special direction. This is precisely
what we found numerically: working in double precision, for several choices of eg and
of the initial data, the error we found in m, after many thousands of time-steps and
hundreds of chart changes, was at most of order 10−13, independently of the step-size,
and reduced to 10−30 in quadruple precision. Such an especially good conservation
law is not obvious, for a second order algorithm, and reflects in an essential way its
geometrical nature, while the implementation in coordinates is irrelevant.

5. Conclusions. In our opinion, the method described here has potentially
many advantages and is worthy of further consideration.

A crucial fact which is missing in the present analysis is a comparison with other
methods. We made some comparisons with RATTLE in the case of the point on the
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sphere and found that the two algorithms perform in a comparable way. For the same
step-size, RATTLE was somewhat faster (by about a factor 1.5 to 2, depending on
the potential), but our algorithm was more stable. (The same energy conservation
was obtained, typically, with a step-size bigger by a factor 1.5.)

As is clear, this comparison is not conclusive. In the case of the rigid body, a
thorough comparison with other methods (RATTLE [14], [10], Lie–Poisson integrators
[17], [15], [16], and the methods of [11], [12]) is necessary and is in our programs. As
already remarked, in the case of the rigid body, RATTLE is not explicit and the
codimension 2(N − n) is 12; hence, the algorithm must handle 18 variables and in
addition to a total of 12 Lagrange multipliers.7 Our algorithm instead uses only six
variables, and for a symmetric rigid body it is explicit and fully manageable, requiring
only the evaluation of four trigonometric functions at each time-step. We expect in
this case for our algorithm to be faster. (We guess significantly faster.)

The situation is more delicate for the triaxial rigid body. Since the representation
of the Euler–Poinsot flow in Euler angles uses elliptic functions, the exact integration
of the flow of the kinetic energy might significantly lengthen the integration time.
Alternatives are based on the further splitting of the Euler–Poinsot Hamiltonian as the
sum of two or more integrable Hamiltonians, each of which is (more) easily integrated.
This approach was already proposed and used in [17], [15], [16], though, as already
remarked, not using coordinates. Convenient splittings of the Euler–Poinsot system
are expected to produce quite manageable algorithms with good (perhaps slightly
worse) stability. A careful analysis in our opinion is necessary to evaluate the different
possibilities.

We prefer to leave these tests and comparisons to a dedicated work. In addition
to such tests, of course, it is also important to experiment with the performance of
the algorithm in concrete problems, especially when accuracy is important. As we
have already remarked in section 3, we are presently working on the symmetric rigid
body in order to evaluate the degree of optimality of some previous perturbative
studies; such an investigation is numerically delicate, but the preliminary results are
rather satisfying. Other studies, for example in molecular dynamics, would be of great
interest.

In this regard, we should mention a further positive feature of the splitting
method. The estimate (2.2) on the interpolating Hamiltonian given in Proposition 1
can be further detailed: H−Kε is in fact of the order of ε

r times the biggest of (some
norm of) the Poisson brackets {Fi, Fj}, i, j = 1, . . . , s. Now consider the case in which
one has a nearly integrable Hamiltonian H, say,

H = H1 + µH2, µ� 1.

If one can integrate exactly the flow of H1 and H2, then it is possible to use the second
order splitting algorithm ΦH2

ε/2◦ΦH1
ε ◦ΦH2

ε/2. In this case, the interpolating Hamiltonian

gets the form

Kε = H1 + µ
[
H2 +O(ε2)

]
;

i.e., the correction due to the algorithm remains small with respect to the perturbation
(as is obviously necessary in a perturbation problem) for small ε, with no need to

7There are formulations of RATTLE which use fewer coordinates (e.g., the four Euler parame-
ters; see [9]), so that these numbers can be drastically reduced, but to our knowledge they are not
symplectic.
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Fig. 5. The action-angle coordinates of the symmetric Euler–Poinsot system; m is the angular
momentum, and e′ and e′′ are unit vectors in the directions of ez ×m and, respectively, of m× e3.

reduce ε dependently on µ. This fact is especially useful if one is interested in exploring
numerically the case µ→ 0. Unfortunately, in the case of a triaxial body, this positive
feature is destroyed by a splitting of the Euler–Poinsot Hamiltonian, so for very small
µ the exact integration of H1 via elliptic functions could become competitive.

Anyhow, beyond these special applications, it seems to us that the possibility
described here of constructing changing-chart symplectic algorithms on manifolds,
just by implementing splitting algorithms in coordinates, has a character of simplicity
which makes it of interest by itself, even independently of its performance in specific
situations.

Appendix. Proof of Proposition 2. Probably the simplest way of obtaining
the expressions for the flow of the symmetric Euler–Poinsot system given in Propo-
sition 2 is by referring to the action-angle coordinates (G,L, J, g, l, j) of the system
in which the flow is trivial. These coordinates, which are also known as Andoyer or
Deprit coordinates, are defined as follows: G, L, and J are, respectively, the length,
the component along the symmetry axis, and the component along the z-axis of the
angular momentum vector; their three conjugate angles g, l, and j are defined as
shown in Figure 5, where e1, e2, e3 is an orthonormal frame fixed in the body, with
e3 along the symmetry axis. Clearly, these coordinates are singular when the angular
momentum is aligned with either e3 or ez, namely, for either G = ±L or G = ±J .

The advantage of the action-angle coordinates is that the flow of the symmetric
Euler–Poinsot system is linear in these coordinates. In fact, the Hamiltonian is

H(G,L) =
1

2I1
G2 +

I1 − I3
2I1I3

L2,

and hence the flow is given by G, L, J , j constant and

g(t) = g0 +Ω t, l(t) = l0 + Λ t,(A.1)

where Ω = G/I1 and Λ =
I1−I3
2I1I3

L. Obviously, this solution is valid as long as the sys-
tem stays away from the singularities of the action-angle coordinates; this limitation
will be eliminated below.

In order to prove the proposition, we convert the flow written in action-angle
coordinates to Euler angles. The formulas relating the Euler angles to the action-
angle coordinates which are needed here are as follows:

G =

√
p2θ + p

2
ψ +

(pϕ − pψ cos θ
sin θ

)2

, L = pψ, J = pϕ,(A.2)
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cos g =
Ĵ L̂− cos θ√
1− Ĵ2

√
1− L̂2

, sin g = − pθ sin θ

G
√
1− Ĵ2

√
1− L̂2

,(A.3)

j = ϕ+ α, l = ψ + β,(A.4)

where Ĵ = J/G, L̂ = L/G, the angle α satisfies

cosα =
L̂− Ĵ cos θ
sin θ

√
1− Ĵ2

, sinα =
pθ sin θ

G
√
G2 − J2

,

and the angle β satisfies these same expressions with Ĵ and L̂ interchanged. These
equalities are easily proven. (See, e.g., [3], where a few of them are proven.) In what
follows, we use the notation

Rδ =

(
cos δ − sin δ
sin δ cos δ

)
.

Equations (A.3) and (A.1) together imply

(
Ĵ L̂− cos θ(t)
pθ(t)
G sin θ(t)

)
= RΩt

(
Ĵ L̂− cos θ(t)
pθ(0)
G sin θ(0)

)
,

namely, (3.2). Next, since j = ϕ+ α, one has

(
cosϕ(t)
sinϕ(t)

)
= Rα(t)

(
cos j0
sin j0

)
= Rα(t)R−α(0)

(
cosϕ0

sinϕ0

)
;

a trivial although somewhat lengthy, computation shows that the product of the two
matrices can be written in the form given in (3.3). Finally,

(
cosψ(t)
sinψ(t)

)
= Rβ(t)

(
cos l(t)
sin l(t)

)
= Rβ(t)R−β(0)RΛt

(
cosψ0

sinψ0

)
,

where we have used the fact that planar rotations commute; (3.4) is now obtained by
observing that Rβ(t)R−β(0) equals Rα(t)R−α(0) after switching Ĵ and L̂.

In this way, we have proven the expressions (3.3)–(3.4) for times t such that
the solution remains within the domain of the action-angle coordinates for all times
0 < t′ < t. However, analyticity in t of the solution ensures that these expressions are
in fact valid for all t such that sin θ(t) �= 0. This remains true (continuity is sufficient
for this) even if sin θ had vanished at some earlier time t′ < t.
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Abstract. A numerical method for computing Stokes flows in the presence of immersed bound-
aries and obstacles is presented. The method is based on the smoothing of the forces, leading to
regularized Stokeslets. The resulting expressions provide the pressure and velocity field as functions
of the forcing. The latter expression can also be inverted to find the forces that impose a given
velocity boundary condition. The numerical examples presented demonstrate the wide applicability
of the method and its properties. Solutions converge with second-order accuracy when forces are
exerted along smooth boundaries. Examples of segmented boundaries and forcing at random points
are also presented.

Key words. Stokes flow, immersed boundaries

AMS subject classifications. 76D07, 65M99, 65D32

PII. S106482750038146X

1. Introduction. The numerical method presented here is for the computation
of two- and three-dimensional Stokes flows driven by external forcing. The forces are
applied on volumes or along boundaries, which may be curves, segments, or sets of
disconnected points. In this way, the method applies to moving interfaces, elastic
membranes interacting with a fluid, or flows through an array of fixed obstacles.
Stokes flows are of interest in many physical applications, particularly those in

which the relevant length scales are extremely small or the fluid is extremely viscous.
Many such applications emerge from biology, including the locomotion of bacteria
and other cells, flagellated microorganisms, and flows in small capillaries. Other
applications are the study of free surfaces, such as bubble motion, and flows around
impurities or through a porous medium, which may be modeled as a collection of
point obstacles for dilute cases.
The steady Stokes equations in two or three dimensions are

µ∆u = ∇p− F,(1)

∇ · u = 0,(2)

where µ is the fluid viscosity, p is the pressure, u is the velocity, and F is force. A
fundamental solution of these equations is called a Stokeslet, and it represents the
velocity due to a concentrated external force acting on the fluid at a single point [32,
34, 1, 25]. Other, more singular solutions can also be derived from the Stokeslet by
differentiation. Many important models have been created from the superposition of
these fundamental solutions. Examples are analyses of flagellar motions [17, 16, 24];
the beating motion of cilia [4]; flows between plates, inside cylinders, or in periodic
geometries [26, 27, 15, 33]; and slender body theories [6, 20, 23, 13]. Many of these
analyses make use of images to enforce boundary conditions on the surface of spheres
or planes.
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The singularity in the Stokeslet is proportional to 1/r in three dimensions and
log(r) in two dimensions. Consequently, when forces are concentrated on surfaces
embedded in R

3 (curves in R
2), the expression for velocity is integrable and the flow

is bounded in the vicinity of the surfaces. Most of the works cited above rely on this
fact and the smoothness of the surfaces to get final expressions for the fluid velocity.
When the forces are concentrated along curves in R

3 (points in R
2) or when sur-

faces are not smooth, the situation is more difficult because the velocity formula is sin-
gular. One technique for dealing with this problem is to desingularize the expressions
by introducing a small cutoff parameter in the kernels in order to regularize them. This
approach has been extremely useful for the modeling of vortex motion [7, 3, 21, 14],
interface motion in inviscid fluids [5, 35, 10, 8, 36], and other processes [11, 9, 12]. In
all of these applications, the errors involved have been analyzed extensively and are
well understood.
Our approach here is to consider the forces to be applied over a small ball, where

they vary smoothly from a maximum value at the center to zero on its surface, rather
than being concentrated at points (as Dirac measures). The radius of the support of
the forces is a numerical parameter that can be controlled independently from any
boundary discretization. Sometimes the radius of the ball is infinite, but the forces
decay fast away from the center. From this starting point, expressions for the pressure
and velocity due to this regularized force are derived. These expressions are bounded
in any bounded set and differ only from the standard Stokeslet near the points where
the forces are exerted. The resulting method is applicable to any situation in which
forces drive the motion, whether they are concentrated along interfaces or points. This
gives the method wide applicability. The derivation of the expressions is presented in
section 2 for radially symmetric regularizations and a specific example is presented
in detail. Section 3 contains several numerical examples with particular focus on the
performance of the method. The case of a smooth closed boundary in R

2 is further
developed in section 4, where the velocity expressions can be written in terms of
single and double layer potentials. Recent work by Beale and Lai [2] is used to achieve
second-order accuracy everywhere. The final section contains concluding remarks and
future directions.

2. Equations. We first consider the generic situation in which the forces are
spread over a small ball centered at the points x0. The force is given by

F(x) = f0 φε(x− x0),(3)

where φε is a radially symmetric smooth function with the property that
∫
φε(x)dx =

1. Examples of these functions, called blobs or cutoffs, are

in R
2: φε(x) =

1

πε2
e−|x|2/ε2 and φε(x) =

3ε3

2π(|x|2 + ε2)5/2
,

in R
3: φε(x) =

3

4πε3
e−|x|3/ε3 and φε(x) =

15ε4

8π(r2 + ε2)7/2
.

A typical blob is displayed in Figure 1. The graph shows the same blob with two
different values of the parameter ε, which controls the width, or spreading. A tighter
function (smaller ε) must necessarily be taller for the total integral to be 1. In the
limit ε→ 0, the blob approaches a Dirac delta.



1206 RICARDO CORTEZ

–3 –2 –1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

Fig. 1. Typical blob for two different values of ε.

To derive the solution of the problem in (1)–(2) in the case when the force is given
by (3), we will use the following definitions. Let

Gε(x) be the solution of ∆Gε = φε(x) in infinite space,

Bε(x) be the solution of ∆Bε = Gε(x) in infinite space.

The function Gε(x) is a smooth approximation of the Green’s function

in R
2: G(x) =

1

2π
ln(|x|), in R

3: G(x) =
−1
4π|x|(4)

for |x| > ε. However, for small values of |x|, the function Gε is bounded. Similarly,
Bε(x) is smooth and approximates

in R
2: B(x) =

|x|2
8π
[log(|x|)− 1], in R

3: B(x) =
−|x|
8π

,(5)

which is the solution of the biharmonic equation ∆2B(x) = δ(x).
Taking the divergence of (1) and using (2) we find that the pressure satisfies

∆p = ∇ · F,

which gives the particular solution

p = f0 · ∇Gε.

Now we use this expression to rewrite the equation for u as µ∆u = (f0 ·∇)∇Gε−f0 φε,
whose particular solution is

µu(x) = (f0 · ∇)∇Bε(x− x0)− f0Gε(x− x0).

This might be referred to as a regularized Stokeslet velocity.
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If there are N forces, fk, centered at points xk, the pressure and velocity are given
by

p(x) =

N∑
k=1

fk · ∇Gε(x− xk),(6)

u(x) = Uo +
1

µ

N∑
k=1

{(fk · ∇)∇Bε(x− xk)− fkGε(x− xk)},(7)

where we have added a constant flow Uo to be determined shortly. The functions
Gε and Bε are completely determined by the blob used. They are radially symmetric
just like their singular counterparts. Consequently, the velocity expression can be
modified using the formulas (for r = |x|)

∇Bε = Bε
′(r)

x

r
and (f · ∇)∇Bε = f

Bε
′(r)
r

+ (f · x)x
[
rBε

′′(r)−Bε
′(r)

r3

]
,

which yield for rk = |x− xk|

p(x) =

N∑
k=1

[fk · (x− xk)]

[
Gε

′(rk)
rk

]
,(8)

u(x) = Uo +
1

µ

N∑
k=1

{
fk

[
Bε

′(rk)
rk

−Gε(rk)

]
(9)

+ [fk · (x− xk)](x− xk)

[
rkBε

′′(rk)−Bε
′(rk)

r3
k

]}
.

In two dimensions, one can use (4)–(5) to check that B′(r)/r−G(r) = −G(r)/2−
1/8π, so one can chooseUo =

∑
k fk/8πµ in order to eliminate this remaining constant

flow. In three dimensions, one can simply let Uo = 0.
The method of regularized Stokeslets uses (8)–(9) to find the velocity induced by

given forces. One important property of this formulation is that the flow given by
(7) satisfies the incompressibility constraint ∇ · u = 0 analytically everywhere. This
important property is key in the conservation of fluid volumes bounded by elastic
membranes.

2.1. Deriving Gε and Bε. Since φε is radially symmetric and ∆Gε = φε, we
have that

∆Gε =
1

r
[rGε

′(r)]′ = φε(r)

and

Gε
′(r) =

1

r

∫ r

0

s φε(s)ds.

After integrating once more, we obtain Gε(r). Similarly,

1

r
[rBε

′(r)]′ = Gε(r)

so that Bε(r) can be found in the same way.



1208 RICARDO CORTEZ

2.1.1. A specific choice of blob in two dimensions. We present a concrete
example of the regularized Stokeslet method by deriving the two-dimensional pressure
and velocity formulas for the specific blob

φε(x) =
3ε3

2π(|x|2 + ε2)5/2
.

The corresponding regularized Green’s function is

Gε(r) =
1

2π

[
ln
(√

r2 + ε2 + ε
)
− ε√

r2 + ε2

]

and

Bε
′(r) =

1

8π

[
2r ln

(√
r2 + ε2 + ε

)
− r − 2rε√

r2 + ε2 + ε

]
.

With these functions we can write the final expressions to be used in the numerical
method

p(x) =
N∑
k=1

1

2π
[fk · (x− xk)]


 r2

k + 2ε
2 + ε

√
r2
k + ε2(√

r2
k + ε2 + ε

)
(r2
k + ε2)3/2


 ,(10)

u(x) =
N∑
k=1

−fk
4πµ


ln

(√
r2
k + ε2 + ε

)
−

ε
(√

r2
k + ε2 + 2ε

)
(√

r2
k + ε2 + ε

)√
r2
k + ε2




+
1

4πµ
[fk · (x− xk)](x− xk)




√
r2
k + ε2 + 2ε(√

r2
k + ε2 + ε

)2√
r2
k + ε2


 ,(11)

where rk = |x− xk|.
One can verify that these formulas are consistent with the standard Stokeslet

expressions for the case of a Dirac delta distribution of forces. Taking the limit ε→ 0
in (10)–(11), we obtain the well-known formulas (in R

2)

p(x) =

N∑
k=1

[fk · (x− xk)]

2πr2
k

,(12)

u(x) =

N∑
k=1

−fk
4πµ

ln(rk) + [fk · (x− xk)]
(x− xk)

4πµr2
k

.(13)

Notice that (13) is singular at the point where the force is centered. When the sum is
replaced by an integral, the velocity expression is generally not problematic when the
forces are defined along smooth closed curves, since the kernel is integrable. The same
is not true for the pressure which typically displays discontinuities across boundaries.
A much different scenario is when the forces are defined at disconnected points, not
closed curves. In this case, (12)–(13) cannot be interpreted as discretizations of inte-
grals but simply as the superposition of singular solutions. The singularities in these
formulas make the Stokeslet expression somewhat impractical for computation, since
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Fig. 2. Comparison of the radial factors (in brackets) in (10)–(11) shown by solid lines. The
regularization parameter was set to ε = 1. The dashed lines are the corresponding singular terms in
the Stokeslet formulas (12)–(13).

the evaluation of the expression at a point very close to an xk would lead to extremely
large velocities. The regularization in (10)–(11) provides the necessary stability.
A comparison of the terms in brackets in (10)–(11) for ε = 1 is shown in Fig-

ure 2. The smooth functions eliminate the singularity but approach asymptotically
the Stokeslet expressions for r 	 ε. In practice, the value of ε would be of the same
order of magnitude as the particle separation in the spatial discretizations.

2.2. Finding the forces from the velocities. The numerical method derived
so far can be used directly to compute the flow due to given forces. For example,
elastic membranes interacting with a fluid exert forces given in terms of their config-
uration, which can be computed from the current position of the membrane. There
are situations when the velocity of a given body is known and one is interested in
finding the forces that yield that flow. Equation (9) can be used to impose velocity
boundary conditions on the surface of a body. One can write, for i = 1, . . . , N , the
system of equations

u(xi) =

N∑
j=1

Mij(x1, . . . ,xN ) fj

or, as a matrix equation,

U =MF ,(14)

where, in two dimensions, U and F are 2N ×1 vectors andM is 2N ×2N . Generally,
the matrix M is not invertible. This is most easily seen for the case of a closed
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membrane surrounding the fluid. An arbitrary constant can be added to the normal
component of the forces, causing a change in the pressure but not in the velocities
because of the incompressibility of the fluid. Fortunately, any solution of the system is
acceptable in the present context so that one can add the constraint that the normal
component of the forces sum to zero or simply find any solution of the system via an
iterative process. In this paper, we use GMRES with zero initial guess.
In steady flow problems or in situations where the geometry of the body is fixed,

the matrix and any required factorization need be computed only once. In problems
of moving interfaces, the matrix must be rebuilt at every time step.

3. Numerical examples.

3.1. Example 1: Flow past a cylinder. As a simple numerical experiment,
consider the classical example of a circular cylinder of radius a moving at a constant
speed (1, 0). The exact solution is given by a combination of a Stokeslet and a dipole
at the origin (see [1, p. 245]):

u(x) =
−fo
8π

(
2 ln |x| − a2/|x|2)+ (fo · x)x

4π|x|2
(
1− a2/|x|2)

with

fo =
8π

1− 2 ln(a)
(
1
0

)
.

Note that the velocity is unbounded as |x| → ∞, consistent with two-dimensional
flow due to a nonzero net force (Stokes’s paradox). However, the solution is valid in
a region containing the cylinder.
To compute the solution with the numerical method, we discretize the circle with

N particles, set the velocity at each point to (1, 0), and find a vector of forces that
solves the system in (14). Once the forces are known, we use (11) to find the velocity
on a grid, where the exact solution is also computed for comparison. The parameters
used in this example are a = 0.25, N = 160 (with ∆s = 2πa/N), and ε = 0.25∆s.
Figure 3 shows the contours of the two components of velocity. Each plot shows the
analytic solution (solid) and the computed solution (dashed). The velocities at the
boundary points are computed with the accuracy of the iteration solver for the forces;
in this case, the velocities are within 10−15 of their intended value.
The solutions satisfy ‖u−uexact‖∞ ≤ 2.6×10−3 for the parameters used, although

the error in the velocities is largest near the cylinder and decays nearly as ∼ |x|−2

away from the boundary. In section 4, we explain how to improve on this solution.
The regularization parameter ε is taken to be proportional to the discretization size
∆s, where the proportionality constant depends on the blob φε and on the particular
application. In our experience, this constant is typically less than 1.

3.2. Example 2: Flow past fixed obstacles. As a second example, we con-
sider the problem of a uniform background flow around fixed line obstacles. In this
problem, the boundaries that exert forces on the fluid are not closed curves; they are
disconnected line segments as shown in Figure 4. The background flow is (1, 0) and
two fixed line obstacles of different lengths are placed at different angles relative to
the flow. The boundaries were discretized with 45 particles xk (26 on the top segment
and 19 on the bottom one) separated by a distance ∆s = 0.00447, and the regular-
ization parameter was set to ε = ∆s/2, although the solution is not very sensitive to
this choice.
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Fig. 3. Velocity contours of the flow due to a circular cylinder of radius a = 0.25 moving with
velocity (1, 0). The left graph compares u in (11) (dashed) and the exact solution (solid). The right
graph compares v in the same way.

In this case, the forces on the boundaries must cancel the background flow at
the xk’s, so the left-hand side of (14) was set to velocities corresponding to (−1, 0).
Once the forces are found, the flow at any point x is the flow induced by the forces
plus the background flow. The velocity at the boundaries was no larger than 10−14 in
magnitude. Using this steady flow computed on a regular grid, a cloud of “smoke” was
advected through the obstacles for visualization purposes. This was done by solving an
advection equation with the precomputed steady flow using an upwind method. The
grid covered the region [0, 1]× [0, 0.5] and Neumann boundary conditions were used at
the edge of the computational domain. Three snapshots are shown in Figure 4, where
the fixed segments obstruct the flow and force it to go around and between them.
The same method can be used to compute the flow due to a collection of forces

located at random points or the flow around a collection of point obstacles which
may represent, for example, a porous medium. As an example, we consider a group of
fixed particles placed randomly in a domain blocking a uniform background flow (1, 0).
Figure 5 shows a smaller subdomain containing 53 of the point obstacles and the flow
around them. The forces at the particles are computed so that they remain stationary.
The computational parameter ε was set to 0.03 so as to provide a resolution length
scale.

3.3. Example 3: Quasi-steady flow. In this example, we consider the un-
steady motion of an interface initially given in polar coordinates by r(θ) =

√
r2
o − a2/2+

a cos(2θ), where a is a perturbation amplitude. The area enclosed by this interface
equals πr2

o. The parameters used were ro = 0.25 and a = 0.05 (see Figure 6). Since
we are interested in the interface motion as it relaxes from its initial shape to a circle,
we need to compute the velocity only along the interface using (11). Although the
steady Stokes equations are used to compute the velocity, the time-dependent forces
impose a time scale. The interface was tracked by computing the velocity as a steady
flow at every time step. A similar problem was discussed in [38, 22].
Suppose x(s, t) defines the interface at time t in terms of the arclength parameter
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Fig. 4. Stokes flow around two fixed line obstacles at three different times. The white cloud
(initially a wide vertical stripe at the inflow) represents a quantity advected by the precomputed flow
for visualization.

s. A force

f(s) =
∂2x(s)

∂s2
+
1

ro
n̂(s)

representing the curvature of the interface minus that of the final state is applied so
that the shape will converge to a circle of radius ro. This restoring force vanishes as
the equilibrium state is reached. Following the suggestion in [22], one way to verify
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Fig. 6. Initial shape (solid) and circle of radius ro = 0.25 enclosing the same area.

the shape of the final solution is to compute

rmin(t) =
min

1≤k≤N ‖xk(t)‖ and rmax(t) =
max

1≤k≤N ‖xk(t)‖
and to check their convergence as t→∞. Figure 7 shows these results for a discretiza-
tion corresponding to N = 50 points along the interface (equally spaced at t = 0).
Figure 7(a) is for early times and Figure 7(b) shows the longtime behavior. The fig-
ure shows that both rmax(t) and rmin(t) converge to ro. In addition, the membrane
retains its circular shape indefinitely, indicating that the computation remains stable
for very long times.
The interface will stop moving once the discretization errors dominate the force

giving and indication of the accuracy of the method. Table 1 summarizes the results
for discretizations corresponding to N = 50, 100, and 200. The second column of
the table shows the discretization size for each run. In every case, the regularization
parameter was set to ε = 1.2∆s. We found this to give good results, although the
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Fig. 7. Plot of rmax(t) and rmin(t) showing the distance from the origin to the interface as a
function of time for N = 50 and ε = 1.2∆s. (a) shows the plot for 0 ≤ t ≤ 5 and (b) shows the plot
for 0 ≤ t ≤ 50.

Table 1
Results showing rmin, rmax, area conservation A, and the magnitude of the forces for long

times and various discretizations.

N ∆s rmax − rmin |A(t = 50)− πr2o | ‖f(t ≥ 10)‖∞
50 0.0323193 1.156836×10−6 1.758022× 10−6 5.700275× 10−5

100 0.0161693 0.048211×10−6 0.078004× 10−6 0.323780× 10−5

200 0.0080858 0.012735×10−6 0.016602× 10−6 0.001307× 10−5

differences from other choices were not significant. The third column shows the con-
vergence of the shape to a circle at t = 50; however, these numbers are essentially
constant for t ≥ 10. Note that the numbers indicate quadratic convergence in terms
of ∆s. The fourth column of Table 1 shows the error in the computed area inside the
interface relative to the expected value πr2

o. These numbers remained nearly constant
throughout the runs. The areas were computed by discretizing a boundary integral
using fourth-order finite differences. The errors in the table are within this discretiza-
tion error. Finally, the last column of the table shows the maximum magnitude of
the forces for t ≥ 10 as a function of the discretization. They give an indication of
the errors involved in the numerical method.

4. Modifications for closed, smooth boundaries. The case of a closed,
smooth boundary is the most widely studied and one for which several numerical
methods exist. This is because the situation is simplified by the absence of endpoints
or by the presence of a boundary consisting of disconnected points. Techniques dis-
cussed in [34, 22, 28, 29, 30, 31, 37] are often used to compute accurate solutions of
elliptic problems in general regions. In the context of fluid flow, the computation of
the velocities and pressure far from the boundary or on the boundary are not typically
problematic. The challenge is the computation of the solution at points very close to
but off the boundary. This situation arises, for example, when the velocity is required
in the entire computational domain for the advection of chemicals or solvents.
We present a modified regularization approach that leads to pointwise second-

order accuracy in ε.
We consider a closed boundary parametrized by arclength x(s) for 0 ≤ s ≤ L.
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Our strategy will be to write the solution as a combination of integrals of the form

I1(x, f) =

∫ L

0

f(s) x′(s)×∇G(x− x(s)) ds

and

I2(x, g) =

∫ L

0

g(s) x′(s) · ∇G(x− x(s)) ds

for some functions f(s) and g(s) and Green’s function G. The reason is that Beale
and Lai [2] have developed correction terms that can be added to the trapezoid rule
applied to these integrals that guarantee second-order accuracy. To approximate these
integrals, first we use the identities∫ L

0

x′(s) · ∇G(x− x(s)) ds = 0 for all x off the curve,

∫ L

0

x′(s)×∇G(x− x(s)) ds =

{
1 for x inside the boundary,
0 for x outside the boundary

to rewrite them, for any value of s∗, as

I2(x, g) =

∫ L

0

[x′(s) · ∇G(x− x(s))] [g(s)− g(s∗)] ds

and

I1(x, f) =

∫ L

0

[x′(s)×∇G(x− x(s))] [f(s)− f(s∗)] ds+ χ(x)f(s∗),

where χ(x) = 1 if x is enclosed by the boundary and χ(x) = 0 otherwise. This
formulation gives additional regularity to the integrands. The idea is to discretize
the integrals with the trapezoid rule and to realize that when the evaluation point
x is very near the boundary, i.e., ‖x − x(s)‖ ≤ O(∆s) for some s, the accuracy of
the quadrature is compromised. However, the leading-order error terms can be iden-
tified and subtracted from the quadrature in order to achieve second-order accuracy
pointwise. Therefore,

I1(x, f) =

N∑
k=0

x′(sk)×∇Gε(x− x(sk))[fk − f(s∗)]∆s

+χ(x)f(s∗) + T
(n)
1 (x) + T

(n)
2 (x) +O(∆s2),

where the T (n) terms are corrections associated with the use of Gε in place of G and
the discretization of the integral. Similarly,

I2(x, g) =

N∑
k=0

x′(sk) · ∇Gε(x− x(sk))[gk − g(s∗)]∆s+ T
(t)
1 (x) + T

(t)
2 (x) +O(∆s2).

For each point x where the sum is evaluated we require s∗, which is the value of the
curve parameter that identifies the boundary point closest to x. These formulas have
been derived for the specific cutoff function

φε(r) =
1

πε2
e−r

2/ε2 .
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Refer to [2] for more details.
In order to write formulas for p and u in terms of this type of integrals, it will be

convenient to use the decomposition of the forces

f(s) = f (n)n̂(s) + f (t)x′(s),

where the outward normal vector is n̂(s) = (y′(s),−x′(s)). Based on (12) we have
that

p(x) =

∫ L

0

f(s) · (x− x(s))

2π|x− x(s)|2 ds =

∫ L

0

f(s) · ∇G(x− x(s)) ds

=

∫ L

0

−f (n)(s) x′(s)×∇G(x− x(s)) ds+

∫ L

0

f (t)(s) x′(s) · ∇G(x− x(s)) ds

= −I1(x, f (n)) + I2(x, f
(t)).(15)

From (13) we have

u(x) =

∫ L

0

−f(s)

4πµ
ln |x− x(s)|+ [f(s) · (x− x(s))]

(x− x(s))

4πµ|x− x(s)|2 ds

=

∫ L

0

(−f(s)

2µ

)
G(x− x(s)) ds+

∫ L

0

(x− x(s))
[f(s) · ∇G(x− x(s))]

2µ
ds.

By defining the vector

F(s) =

∫ s

0

−f(α)

2µ
dα,

we can write the first integral as

∫ L

0

F(s) x′(s) · ∇G(x− x(s)) ds = I2(x,F).(16)

The second integral becomes

∫ L

0

(x− x(s))
[f(s) · ∇G(x− x(s))]

2µ
ds

=

∫ L

0

(x− x(s))

2µ
[−f (n)(s)x′(s)×∇G(x− x(s)) + f (t)(s)x′(s) · ∇G(x− x(s))] ds

= I1(x,Q
a) + I2(x,Q

b),

where

Qa(s) = − (x− x(s))f (n)(s)

2µ
, Qb(s) =

(x− x(s))f (t)(s)

2µ
.

Then,

u(x) = I2(x,F) + I1(x,Q
a) + I2(x,Q

b).(17)
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Fig. 8. (a) Computed pressure p along the line (x, 3/10) for N = 100 (dots) using the method
of section 4. Also plotted is the exact (discontinuous) solution. (b) Pressure computed using (10).

4.1. Example 4a: Normal forces on a circle. Consider a circular bound-
ary of radius 1 parametrized by x(θ) = (cos(θ), sin(θ)) and define the forces on the
boundary by

f(θ) = 2 sin(3θ)x(θ)

so that the forces are normal to the boundary. The exact solution is given by

p(r, θ) =

{ −r3 sin(3θ), r < 1,
r−3 sin(3θ), r > 1,

u(r, θ) =




3
8r

2 sin(2θ) + 1
16r

4 sin(4θ)− 1
4r

4 sin(2θ), r < 1,

1
8r

−2 sin(2θ)− 3
16r

−4 sin(4θ) + 1
4r

−2 sin(4θ), r ≥ 1,

v(r, θ) =




3
8r

2 cos(2θ)− 1
16r

4 cos(4θ)− 1
4r

4 cos(2θ), r < 1,

1
8r

−2 cos(2θ) + 3
16r

−4 cos(4θ)− 1
4r

−2 cos(4θ), r ≥ 1.

We note that p is discontinuous across the boundary, but ∂p/∂r, u, ∇u, v, and ∇v
are continuous.
In order to show representative results, we choose to compare the solution along

the line (x, 3/10) for 0 < x < 2. The boundary was discretized with N equally spaced
points, and the regularization parameter was set equal to ε = 2π/16N . Figures 8
and 9 show results for N = 100.
Figure 8(a) displays the computed pressure using the method in section 4. For

larger values of N , the solutions are nearly indistinguishable from one another. The
formula based on (15) is able to capture the jump in the pressure in spite of the use
of regularization. This is because the jump was explicitly included in the formula for
I1(x, f). If instead one used (10) to compute the pressure, the effect of the regular-
ization would be to replace the discontinuity with a rapid but smooth transition over
a region of size O(ε), as shown in Figure 8(b). This, of course, leads to O(1) errors
near the interface.
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Fig. 9. Velocity components u (left) and v (right) along the line (x, 3/10) for N = 100 (dots).
Also plotted is the exact solution (solid).
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Fig. 10. Error in the velocity components along the line (x, 3/10) for N = 100, 200, and 400.

The velocities are C1(R2) and this additional smoothness allows the numerical
method to approximate the velocities very well everywhere, as seen in Figure 9. The
largest discrepancy, however, is still near the boundary. To be more precise, we
compute the error in the solution for the various discretizations. We recall that, in
this example, ε is inversely proportional to N . Figure 10 shows the error in the
velocities and Figure 11 the error in the pressure.
The largest velocity errors are O(10−4), corresponding to the smallest value of

N . More importantly, the L2 norm of these errors, shown in Table 2, decreases by a
factor of about 4 as the number of boundary points N is doubled, indicating that the
pressure and velocity errors are O(ε2) as ε→ 0.

4.2. Example 4b: Tangential forces on a circle. Now consider the same
circular boundary of radius 1 parametrized by x(θ) = (cos(θ), sin(θ)) but define the
forces on the boundary by

f(θ) = 2 sin(3θ)x′(θ)

so that the forces are now tangential to the boundary. The difference between this
and the previous example is significant because of the character of the solution. Here,
p and u are continuous everywhere, but their gradients are discontinuous across the
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Fig. 11. Error in the pressure along the line (x, 3/10) for N = 100, 200, and 400.

Table 2
L2 norm of errors shown in Figures 10–11. When the number of particles is doubled, the errors

decrease by a factor of about 4, showing second order convergence.

N Error in p Error in u Error in v

100 25.35 ×10−4 4.603 ×10−4 4.656 ×10−4

200 6.023 ×10−4 0.781 ×10−4 1.052 ×10−4

400 1.468 ×10−4 0.200 ×10−4 0.248 ×10−4

boundary. The exact solution is

p(r, θ) =

{ −r3 cos(3θ), r < 1,
−r−3 cos(3θ), r > 1,

u(r, θ) =




1
8r

2 cos(2θ) + 1
16r

4 cos(4θ)− 1
4r

4 cos(2θ), r < 1,

− 1
8r

−2 cos(2θ) + 5
16r

−4 cos(4θ)− 1
4r

−2 cos(4θ), r ≥ 1,

v(r, θ) =



− 1

8r
2 sin(2θ) + 1

16r
4 sin(4θ) + 1

4r
4 sin(2θ), r < 1,

1
8r

−2 sin(2θ) + 5
16r

−4 sin(4θ)− 1
4r

−2 sin(4θ), r ≥ 1.

Again we compare the solution along the line (x, 3/10) for 0 < x < 2, which
crosses the boundary at around x = 0.954. The boundary was discretized with N
particles (initially equally spaced), and this time the regularization parameter was set
to ε = ∆s/4. For other values of ε, the results were similar. Figures 12 and 13 show
the results. We note that the corners in the solution (gradient discontinuities) are
captured well with the method.
The errors using N = 100, 200, and 400 are shown in Figure 14. The magnitude

of the errors is comparable to those in the previous example, and the convergence
appears to be second order as well.
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Fig. 12. Computed pressure p along the line (x, 3/10) for N = 100 (dots). Also plotted is the
exact solution (solid).
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Fig. 13. Computed velocity components u (left) and v (right) along the line (x, 3/10) for
N = 100 (dots). Also plotted is the exact solution (solid).

We make one more comment about the choice of the regularization parameter ε in
the present context. While it is usually taken as ε = O(∆s), the errors in computing
integrals of the form

∫ L

0

n̂(s) · ∇G(x− x(s))[f(s)− f(s∗)]ds

or

∫ L

0

x′(s) · ∇G(x− x(s))[g(s)− g(s∗)]ds

are slightly different when the evaluation point x is near, but off, the curve. This is
because

∇G(x− x(s∗)) =
x− x(s∗)

2π|x− x(s∗)|2 =
n̂(s∗)

2π|x− x(s∗)| ,
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Fig. 14. Error in the pressure and velocity components for Example 4b. The errors are measured
along the line (x, 3/10) for N = 100, 200, and 400.
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Fig. 15. Schematic diagram.

which implies that for s ≈ s∗ (see Figure 15)

n̂(s) · ∇G(x− x(s)) ∼ O(1)

|x− x(s∗)| ,

while

x′(s) · ∇G(x− x(s)) ∼ O(s− s∗)
2π|x− x(s∗)| ,

so that the first integrand above is “more nearly singular” than the second. This
somewhat affects the optimal size of ε relative to ∆s.

4.3. Numerical example 5: Computing stresses. We consider a final ex-
ample of flow in a channel obstructed by a semicircular protrusion (see Figure 16).
This problem has been studied in [19] as a model for the adhesion of a cell to the wall
of a channel and the stresses exerted on these cells by fluid flowing within the chan-
nel. Additional numerical studies of this problem are found in [39] and a variant of it
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in [18]. The objective is to determine the stresses along the channel walls, including
the obstruction. It is assumed that the flow is driven by a constant pressure gradient
and has reached a steady state. In our case, the corners where the semicircle meets
the channel wall have not been smoothed with fillets. The velocity inflow and outflow
conditions were assumed to be the parabolic Poiseuille flow, while the fluid velocity
at the channel walls was set to zero.
Using the nondimensionalization in [19], the parameters used were ∆p = 1,

µ = H2/8L2, L = 1, and H = 0.05, where L and H are the length and height of the
channel. The radius of the obstruction was set to R = H/4. A particle separation
of ∆s = 0.0025 was used along the straight horizontal boundaries and approximately
the same on the semicircle and the inflow/outflow ends. The regularization parameter
was set to ε = ∆s/4. To simulate the flow induced by the constant pressure gradient,
a constant force (∆p, 0) was imposed on a grid covering the interior of the channel.
The velocity due to this force was computed on the channel walls using (11). As a
second step, the forces along the channel walls are computed with (14) so that the de-
sired boundary conditions, including the parabolic inflow/outflow, are obtained. The
resulting boundary forces were then used to compute the normal and shear stresses
on the bottom part of the channel. This was done by decomposing the forces into the
normal and tangential components along the channel walls. The results are shown in
Figure 17.
The shear stress has been normalized by the shear stress on a channel without

the obstruction. This allows one to see that away from the obstruction, the shear
stress approaches that of the free channel. Also apparent from the graph is that the
maximum shear stress is nearly three times that of the flat wall. On the other hand,
the normal stress is nearly equal to the pressure which decreases linearly from p(0) = 1
to p(L) = 0. The obstruction merely slightly perturbs this profile. These results are
nearly identical to those shown in Figure 5 of [19] with the exception of the values
at the points where the semicircle meets the wall. In [19], this corner was smoothed
with small fillets to minimize the oscillation observed here, where no smoothing was
used.

5. Concluding remarks. We have introduced a numerical technique for the
computation of force-driven Stokes flows. At the core of the method is the regularized
Stokeslet, which gives the solution due to the regular force field in (3). The standard
Stokeslet is recovered in the limit as the regularization parameter vanishes. Several
examples were presented that demonstrate the use of the method when the forces
are applied at random points, flexible or solid boundaries. The results show that the
motion of the immersed boundaries is captured very well. The volume conservation
is excellent due to the exact satisfaction of the incompressibility condition in the
formula (7). The solution off the boundaries is also computed accurately with a
slightly modified formulation in terms of single and double layer potentials. These
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Fig. 17. Shear and normal stresses along the bottom wall of the channel.

results can be combined when the velocity in the entire domain is required in order
to track other quantities advected by the flow.
Velocity boundary conditions can be satisfied to great precision by inverting the

velocity equation and solving for the forces on the boundaries. Thus far, this has been
done by the iterative procedure GMRES, although other techniques and associated
preconditioners are being considered for future implementations. The resulting forces
can also be used to determine stresses along walls, producing profiles without excess
noise.
There are other singular solutions of Stokes equations that are also important for

many applications. Elements such as dipoles, rotlets, and stresslets can be derived by
applying certain differential operators to the Stokeslet. One can derive the regularized
versions of these elements from the regularized Stokeslet. Regularized dipoles are
already used in other fluid flow applications [5, 10, 35].
Another future direction of research is the extension of this work to three dimen-

sions. In principle, this is already done here, since the derivation of the formulas is
identical. For the simulation of bubbles or waving surfaces, these can be combined
with existing triangulation or other discretization techniques. We expect to report on
this case in a future article.
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Abstract. We consider the a posteriori error analysis of hp-discontinuous Galerkin finite element
approximations to first-order hyperbolic problems. In particular, we discuss the question of error
estimation for linear functionals, such as the outflow flux and the local average of the solution. Based
on our a posteriori error bound we design and implement the corresponding adaptive algorithm to
ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance.
This involves exploiting both local polynomial-degree variation and local mesh subdivision. The
theoretical results are illustrated by a series of numerical experiments.
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1. Introduction. Adaptive finite element methods that are capable of exploit-
ing both local polynomial-degree variation (p-refinement) and local mesh subdivision
(h-refinement) offer greater flexibility and improved efficiency than mesh refinement
methods which incorporate only h-refinement or p-refinement in isolation. The aim
of this paper is to develop the a posteriori error analysis of the hp-version of the dis-
continuous Galerkin finite element method; see [9], and the references cited therein,
and [6] for earlier work in this area. In particular, we shall be concerned with the
derivation of computable error bounds for linear functionals of the solution to scalar
first-order hyperbolic problems. Relevant examples of linear functionals of the so-
lution include the mean value of the field over the computational domain and the
normal flux through the outflow boundary.

The paper is structured as follows. In section 2 we introduce the model problem
and formulate its discontinuous Galerkin finite element approximation. Then, in sec-
tion 3, we derive both a posteriori and a priori error bounds for linear functionals of
the solution. Our a posteriori error bounds stem from a hyperbolic duality argument
and include computable residual terms multiplied by local weights involving the dual
solution; cf. [14, 19]. Guided by our a posteriori error analysis, in section 4 we de-
sign an hp-adaptive finite element algorithm to guarantee both reliable and efficient
control of the error in the computed functional with respect to a fixed user-defined
tolerance. A key question in hp-adaptive algorithms is how to automatically decide
when to h-refine/derefine and when to p-refine/derefine. Here, stimulated by the work
of Ainsworth and Senior [2], we develop a decision mechanism based on the estima-
tion of local Sobolev regularities of the primal and dual solutions by means of the a
priori error bounds from section 3 (see also [23]). The performance of the resulting
hp-refinement strategy is then studied in section 5 through a series of numerical ex-
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periments. In particular, we demonstrate the superiority of using hp-adaptive mesh
refinement over the traditional h-refinement method, where the degree of the approxi-
mating polynomial is kept fixed at some low value. Finally, in section 6 we summarize
the work presented in this paper and draw some conclusions.

2. Model problem and discretization. Let Ω be a bounded open polyhedral
domain in R

d, d ≥ 2, and let Γ denote the union of open faces of Ω. Suppose that
b = (b1, . . . , bd) is a d-component vector function defined on Ω̄ with bi ∈ W 1

∞(Ω),
i = 1, . . . , d, and consider the following subsets of Γ:

Γ− = {x ∈ Γ : b(x) · n(x) < 0} , Γ+ = {x ∈ Γ : b(x) · n(x) > 0} ;

here, n(x) denotes the unit outward normal vector to Γ at x ∈ Γ. The sets Γ−
and Γ+ are referred to as the inflow and outflow boundary, respectively. We shall
suppose that Γ is a.e. noncharacteristic in the sense that the set Γ \ (Γ− ∪ Γ+) has
(d− 1)-dimensional measure zero. Given c ∈ L∞(Ω), f ∈ L2(Ω), and g ∈ L2(Γ−), we
consider the following boundary value problem: find u ∈ H(L,Ω) such that

Lu ≡ b · ∇u+ cu = f, x ∈ Ω ,
(2.1)

u = g, x ∈ Γ− ,

where H(L,Ω) = {v ∈ L2(Ω) : Lv ∈ L2(Ω)} denotes the graph space of the partial
differential operator L in L2(Ω). In addition, we adopt the following (standard)
hypothesis: there exists a vector ξ ∈ R

d and a positive real number δ such that

c− 1

2
∇ · b+ b · ξ ≥ δ2 for a.e. x ∈ Ω .(2.2)

We note that assumption (2.2) ensures the uniqueness of a solution u ∈ H(L,Ω) to
(2.1); cf., for example, [15]. General results concerning the existence and uniqueness
of solutions to boundary value problems for first-order hyperbolic equations are given
in [4], and [10, pp. 215–262]. For the sake of simplicity of presentation, we assume
that (2.2) is satisfied with ξ = 0, and we define c0 ∈ L∞(Ω) by

c20(x) = c(x)− 1

2
∇ · b(x), x ∈ Ω .(2.3)

Clearly, c0(x) ≥ δ > 0 for almost every x ∈ Ω.
2.1. Finite element spaces. Suppose that T is a regular or 1-irregular sub-

division of Ω into disjoint open element domains κ such that Ω̄ = ∪κ∈T κ̄. Thus a
(d − 1)-dimensional face of each element κ in T is allowed to contain at most one
hanging (irregular) node—typically the barycenter of the face. It will be assumed
that T respects the decomposition of Γ into Γ− and Γ+ in the following sense: if a
(d− 1)-dimensional open face e of an element κ lies on Γ, then e is a subset of either
Γ− or Γ+. We shall suppose that the family of subdivisions T is shape-regular (cf.
pp. 61 and 113 and Remark 2.2 on p. 114 in [8], for example) and that each κ ∈ T
is a smooth bijective image of a fixed master element κ̂; that is, κ = Fκ(κ̂) for all
κ ∈ T , where κ̂ is either the open unit simplex or the open unit hypercube in R

d. On
the reference element κ̂ we define spaces of polynomials of degree p ≥ 1 as follows:

Qp = span {x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d} , Pp = span {x̂α : 0 ≤ |α| ≤ p} .
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To each κ ∈ T we assign an integer pκ ≥ 1; collecting the pκ and Fκ in the vectors
p = {pκ : κ ∈ T } and F = {Fκ : κ ∈ T }, respectively, we introduce the finite element
space

Sp(Ω, T ,F) = {u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Qpκ if F
−1
κ (κ) is the open unit hypercube,

and u|κ ◦ Fκ ∈ Ppκ if F−1
κ (κ) is the open unit simplex; κ ∈ T } .

Assuming that T is a subdivision of Ω, we consider the broken Sobolev spaceHs(Ω, T )
of composite index s with nonnegative components sκ, κ ∈ T , defined by

Hs(Ω, T ) = {u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ T } .

If sκ = s ≥ 0 for all κ ∈ T , we shall simply write Hs(Ω, T ).
In the next section, we formulate the hp-version of the discontinuous Galerkin

finite element method (hp-DGFEM, for short) for the numerical solution of (2.1).

2.2. The hp-discontinuous Galerkin method. Given that κ is an element
in the subdivision T , we denote by ∂κ the union of (d − 1)-dimensional open faces
of κ. This is nonstandard notation in that ∂κ is a subset of the boundary of κ. Let
x ∈ ∂κ and suppose that nκ(x) denotes the unit outward normal vector to ∂κ at x.
With these conventions, we define the inflow and outflow parts of ∂κ, respectively, by

∂−κ = {x ∈ ∂κ : b(x) · nκ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · nκ(x) ≥ 0} .(2.4)

For each κ ∈ T and any v ∈ H1(κ) we denote by v+
κ the interior trace of v on

∂κ (the trace taken from within κ). Now consider an element κ such that the set
∂−κ\Γ− is nonempty; then, for each x ∈ ∂−κ\Γ− (with the exception of a set of
(d−1)-dimensional measure zero), there exists a unique element κ′, depending on the
choice of x, such that x ∈ ∂+κ′. Suppose that v ∈ H1(Ω, T ). If ∂−κ\Γ− is nonempty
for some κ ∈ T , then we define the outer trace v−κ of v on ∂−κ\Γ− relative to κ as
the inner trace v+

κ′ relative to those elements κ′ for which ∂+κ′ has intersection with
∂−κ\Γ− of positive (d − 1)-dimensional measure. We also introduce the jump of v
across ∂−κ\Γ−: [ v ]κ = v+

κ − v−κ . Since below it will always be clear from the context
which element κ in the subdivision T the quantities nκ, v

+
κ , v

−
κ and [v]κ correspond

to, for the sake of notational simplicity we shall suppress the letter κ in the subscript
and instead write n, v+, v−, and [v], respectively.

For v, w ∈ H1(Ω, T ), we define the bilinear form

BDG(w, v) =
∑
κ∈T

∫
κ

Lw v dx−
∑
κ∈T

∫
∂−κ\Γ−

(b · n)[w] v+ ds

−
∑
κ∈T

∫
∂−κ∩Γ−

(b · n)w+ v+ ds,

and, for v ∈ H1(Ω, T ), we consider the linear functional

�DG(v) =
∑
κ∈T

∫
κ

fv dx−
∑
κ∈T

∫
∂−κ∩Γ−

(b · n) gv+ ds .

The hp-DGFEM for (2.1) is defined as follows: find uDG ∈ Sp(Ω, T ,F) such that

BDG(uDG, v) = �DG(v) ∀v ∈ Sp(Ω, T ,F) .(2.5)
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We note that

BDG(v, v) =
∑
κ

∫
κ

c20(x)|v|2 dx+
1

2

∑
κ

∫
∂−κ∩Γ−

|b · n| |v+|2 ds

+
1

2

∑
κ

∫
∂−κ\Γ−

|b · n| |[v]|2 ds+ 1

2

∑
κ

∫
∂+κ∩Γ+

|b · n| |v+|2 ds

for all v ∈ H1(Ω, T ) (see, for example, (2.31) in [16]), and therefore BDG(v, v) > 0
for all v ∈ H1(Ω, T ) \ {0}; thus, recalling that (2.5) is a linear problem on the finite-
dimensional linear space Sp(Ω, T ,F), we deduce the existence of a unique solution
uDG in Sp(Ω, T ,F) to (2.5). Further, for each v ∈ H1(Ω, T ),

|�DG(v)| ≤
(∑
κ∈T

∫
κ

c−2
0 (x)|f |2 dx+ 2

∑
κ∈T

∫
∂−κ∩Γ−

|b · n| |g|2 ds
)1/2

×
(∑
κ∈T

∫
κ

c20(x)|v|2 dx+
1

2

∑
κ∈T

∫
∂−κ∩Γ−

|b · n| |v+|2 ds
)1/2

.

Hence, letting |||v|||DG = [BDG(v, v)]
1/2, we deduce the stability of the method in the

sense that

|||uDG|||DG ≤
(∑
κ∈T

∫
κ

c−2
0 (x)|f(x)|2 dx+ 2

∑
κ∈T

∫
∂−κ∩Γ−

|b(x) · n(x)| |g(s)|2 ds
)1/2

.

For the a priori error analysis of (2.5) in the DG-norm ||| · |||DG we refer to the paper
[15]; cf. Lemma 3.9 below. The analysis of the scheme (2.5) with the addition of
streamline-diffusion stabilization has been considered in [16]; see also Bey and Oden
[6]. Here we shall concentrate on the situation when there is no streamline-diffusion
stabilization in the method.

3. A posteriori and a priori error analysis. In many problems of physical
importance the quantity of interest is a linear functional J(·) of the solution. Relevant
examples include the lift and drag coefficients for a body immersed into an inviscid
fluid, the local mean value of the field, or its flux through the outflow boundary of
the computational domain.

Suppose that we wish to control the discretization error in some linear functional
J(·) defined on a linear space which contains H(L,Ω) + Sp(Ω, T ,F). Following the
argument presented in [14] for stabilized continuous finite element approximations,
we do so by deriving an a posteriori bound on the error between J(u) and J(uDG).
We begin our analysis by considering the following dual or adjoint problem: find z in
H(L∗,Ω) such that

BDG(w, z) = J(w) ∀w ∈ H(L,Ω) ,(3.1)

where H(L∗,Ω) denotes the graph space of the adjoint operator L∗ in L2(Ω). Let us
assume that (3.1) possesses a unique solution. Clearly, the validity of this assumption
depends on the choice of the linear functional under consideration. Below, we present
some important examples which are covered by our hypotheses.

Example 1: Mean flow. Consider approximating the (weighted) mean value J(·) ≡
Mψ(·) defined by

J(w) ≡ Mψ(w) =

∫
Ω

wψ dx ,(3.2)
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where ψ ∈ L2(Ω) is a given weight function. In this case the dual problem takes the
following form: find z in H(L∗,Ω) such that

L∗z ≡ −∇ · (bz) + cz = ψ, x ∈ Ω ,
(3.3)

z = 0, x ∈ Γ+ .

Example 2: Point value. Under the assumption that the analytical solution u is a
continuous function in the neighborhood of a given point xc in Ω, the point value u(xc)
may also be approximated. However, now J(w) = w(xc), and when this is inserted
as the right-hand side into the dual problem (3.1), the resulting weak solution z is a
measure rather than a regular distribution; in particular, z does not belong to L2(Ω).
Thus, to avoid technical complications, we mollify the functional J by considering
a nonnegative function ϕ in L1,loc(R

d) whose support is contained in the unit ball
B(0, 1) centered at x = 0 and such that the integral of ϕ over B(0, 1) is equal to
1. Writing ψ(x) = ϕε(x) ≡ ε−d ϕ((x − xc)/ε), Mψ(u) converges to u(xc) as ε → 0.
Further, setting J(w) =Mψ(w) into (3.1) as the right-hand side, for 0� ε < 1 fixed,
now results in a unique solution z in H(L∗,Ω).

Example 3: Outflow normal flux. As a final example, consider the (weighted)
normal flux J(·) ≡ Nψ(·) through the outflow boundary Γ+, defined, for w ∈ H(L,Ω),
by

J(w) ≡ Nψ(w) =

∫
Γ+

(b · n)wψ ds ,(3.4)

where ψ is a given “weight” function in L2(Γ+). A simple calculation based on the
divergence theorem shows that z is the (unique) solution to the following boundary
value problem: find z in H(L∗,Ω) such that

L∗z ≡ −∇ · (bz) + cz = 0, x ∈ Ω ,

z = ψ, x ∈ Γ+ .

For a given linear functional J(·) the proceeding a posteriori error bound will be
expressed in terms of the finite element residual rh,p defined on κ ∈ T by

rh,p|κ = (f − LuDG)|κ,

which measures the extent to which uDG fails to satisfy the differential equation on the
union of the elements κ in the mesh T ; thus we refer to rh,p as the internal residual.
Also, since uDG satisfies only the boundary conditions approximately, the difference
g − uDG is not necessarily zero on Γ−; thus, for each element κ with ∂−κ ∩ Γ− of
positive (d− 1)-dimensional measure, we define the boundary residual rh,p− by

rh,p−|∂−κ∩Γ− = (g − u+
DG)|∂−κ∩Γ− .

With these definitions we observe from (2.5) the following relationship between the
internal and boundary residual:

BDG(u− uDG, v) ≡
∑
κ∈T

(rh,p, v)κ +
∑
κ∈T

((b · n)[uDG], v
+)∂−κ\Γ−

−
∑
κ∈T

((b · n)rh,p−, v+)∂−κ∩Γ− = 0(3.5)
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for all v in Sp(Ω, T ,F). The identity (3.5) is referred to as the Galerkin orthogonality
property of the hp-DGFEM. We remark that the second term on the right-hand side
of (3.5) reflects the fact that while the normal flux (bu) ·n = (b ·n)u of the analytical
solution u is continuous across element interfaces (even if the analytical solution u
is only piecewise continuous on Ω), the normal flux of the numerical solution uDG

is not, due to the choice of the finite element space Sp(Ω, T ,F); for finite element
approximations to (2.1) based on continuous piecewise polynomials, this term is, of
course, equal to zero.

3.1. Type I a posteriori error bound. The starting point of the a posteriori
error analysis is the following general result.

Theorem 3.1. Let u and uDG denote the solutions of (2.1) and (2.5), respectively,
and suppose that the dual solution z is defined by (3.1). Then, the following error
representation formula holds:

J(u)− J(uDG) =
∑
κ∈T

(rh,p, z − zh,p)κ +
∑
κ∈T

((b · n)[uDG], (z − zh,p)
+)∂−κ\Γ−

−
∑
κ∈T

((b · n)rh,p−, (z − zh,p)
+)∂−κ∩Γ−

≡ EΩ(uDG, h, p, z − zh,p)(3.6)

for all zh,p in Sp(Ω, T ,F).
Proof. On choosing w = u − uDG in (3.1) and recalling the linearity of J(·) and

the Galerkin orthogonality property (3.5), we deduce that

J(u)− J(uDG) = J(u− uDG) = BDG(u− uDG, z) = BDG(u− uDG, z − zh,p)

=
∑
κ∈T

(rh,p, z − zh,p)κ +
∑
κ∈T

((b · n)[uDG], (z − zh,p)
+)∂−κ\Γ−

−
∑
κ∈T

((b · n)rh,p−, (z − zh,p)
+)∂−κ∩Γ− ,

and hence (3.6).
Given a linear functional J(·) and a positive tolerance TOL, the aim of the com-

putation is to calculate uDG such that

|J(u)− J(uDG)| ≤ TOL .(3.7)

According to (3.6), a necessary and sufficient condition for this to hold is that the
stopping criterion

|EΩ(uDG, h, p, z − zh,p)| ≤ TOL(3.8)

is satisfied. If (3.8) holds, then J(uDG) is accepted as an accurate representation of
J(u); otherwise, uDG is discarded and a new, improved approximation is computed
on a refined subdivision. In order to ensure that the subdivision is refined only
where necessary, a decision has to be made on each element κ as to whether the
local mesh size hκ and the local polynomial degree pκ are acceptable in relation to
TOL. A convenient approach to obtaining a local refinement criterion which relates
the local discretization parameters hκ and pκ to TOL is to localize EΩ(uDG, h, p, z −
zh,p). More precisely, |EΩ(uDG, h, p, z−zh,p)| is further bounded above by noting that
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EΩ(uDG, h, p, z − zh,p) can be decomposed as
∑
κ χκ, with

χκ = (rh,p, z − zh,p)κ + ((b · n)[uDG], (z − zh,p)
+)∂−κ\Γ−

+((b · n)rh,p−, (z − zh,p)
+)∂−κ∩Γ− ,

and applying the inequality |∑κ χκ| ≤ ∑
κ |χκ|. Thus we arrive at the following

result.
Corollary 3.2. Under the assumptions of Theorem 3.1, the following a poste-

riori error bound holds:

|J(u)− J(uDG)| ≤ E(uDG, h, p, z − zh,p) ,(3.9)

where

E(uDG, h, p, z − zh,p) ≡
∑
κ∈T

ηκ ,(3.10)

and

ηκ = |(rh,p, z − zh,p)κ + ((b · n)[uDG], (z − zh,p)
+)∂−κ\Γ−

−((b · n)rh,p−, (z − zh,p)
+)∂−κ∩Γ− | .(3.11)

Now, a possible local refinement criterion might, for example, consist of checking
whether, on each element κ in the subdivision T , the inequality

ηκ ≤ TOL

N
(3.12)

holds, where N is the number of elements in T . If (3.12) is valid on each element κ
in T , then, according to (3.9), the stopping criterion (3.8) has been reached and the
required error control (3.7) has been achieved. The a posteriori error bound (3.9)–
(3.11), where the difference between the dual solution z and its discrete representation
(e.g. interpolant, quasi-interpolant, or projection) zh,p defined on the primal subdi-
vision T enters into the error estimate as local weight function, will be referred to as
an a posteriori error bound of Type I.

It may seem natural to further bound ηκ in (3.11) by writing

ηκ ≤ |(rh,p, z − zh,p)κ|+ |((b · n)[uDG], (z − zh,p)
+)∂−κ\Γ− |

+|((b · n)rh,p−, (z − zh,p)
+)∂−κ∩Γ− | ≡ ζκ .

We may then consider the a posteriori error bound

|J(u)− J(uDG)| ≤
∑
κ∈T

ζκ .(3.13)

Indeed, we could proceed even further, to eliminate zh,p from the a posteriori error
estimate, by bounding each term in ζκ via the Cauchy–Schwarz inequality and stan-
dard results from approximation theory to estimate the expressions ‖z−zh,p‖L2(κ) and
‖(z− zh,p)

+‖L2(∂−κ) in terms of the discretization parameters hκ and pκ and Sobolev
seminorms of z. For then, finally, the dual solution z may also be eliminated from the
a posteriori error estimate by bounding norms of z by suitable norms of the data for
the dual problem via hyperbolic well-posedness results. The resulting a posteriori er-
ror bound will then, in the spirit of Erikson et al. [11], involve only the residual terms
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rhp, (b ·n)[uDG] and rh,p−, the discretization parameters, the interpolation constants,
and the stability factor of the dual problem; such an estimate will be referred to here
as a Type II a posteriori error bound. We note that the residual-based weighted a
posteriori error bounds of Becker and Rannacher [5] are intermediate between Type
I and Type II bounds, although, due to the locality of the weight, closer in spirit to
those of Type I. For earlier work on Type I and Type II error bounds for finite element
and finite volume approximations to linear hyperbolic problems, we refer to [14, 22].

The seemingly harmless transition from the Type I error bound (3.9)–(3.13) and
the subsequent elimination of the dual solution z en route to a Type II bound can be
detrimental: due to loss of global cancellations the resulting Type II bound may, un-
der mesh refinement, exhibit a rate of convergence inferior to that of |J(u)−J(uDG)|,
resulting in uneconomical meshes and an inefficient adaptive algorithm (see, for exam-
ple, [14]). For this reason we refrain from bounding the terms ηκ further; in particular,
we shall not attempt to eliminate the dual solution z from our a posteriori error bound
by exploiting standard approximation results and the strong stability of the dual prob-
lem. Instead, in the practical implementation of (3.9) we replace z in the bound (3.9)
by an approximation z̃DG, computed by an hp-adaptive discontinuous Galerkin finite
element method on a sequence of auxiliary (dual) subdivisions T̃ of the computational
domain Ω; see section 4.1 below. We then define zh,p as the L2(Ω) projection of z̃DG

onto the “primal” finite element space Sp(Ω, T ,F) over the “primal” subdivision T .
Thus, after decomposing the error representation formula derived in Theorem 3.1 into
terms which are computable, i.e., those involving the numerical approximation z̃DG

to the dual problem, and those that involve the analytical dual solution z, we arrive
at the following result.

Corollary 3.3. Under the assumptions of Theorem 3.1, the following a poste-
riori error bound holds:

|J(u)− J(uDG)| ≤ E(uDG, h, p, z̃DG − zh,p) + |EΩ(uDG, h, p, z − z̃DG)|
≡ EP + ED ,(3.14)

where E and EΩ are defined in (3.10) and (3.6), respectively.
We emphasize here that the key difference between the terms E(uDG, h, p, ·) and

|EΩ(uDG, h, p, ·)| is that in the former the absolute value signs appear under the sum-
mation over the elements κ ∈ T , while in the latter the absolute value sign is outside
the sum. It will be shown through numerical experiments that the true weighting
function z − zh,p appearing in the a posteriori error bound (3.9) may be accurately
approximated by z̃DG − zh,p; indeed, we shall show that ED is typically an order of
magnitude smaller than EP; cf. Table 5.1 and Figures 5.4 and 5.8, below, and [13, 24]
in the case of nonlinear hyperbolic conservation laws. Therefore, ED can be safely ab-
sorbed into EP without compromising the reliability of the adaptive algorithm when
the stopping criterion (3.8) is replaced by

EP ≤ TOL .

By this we mean that the right-hand side of (3.14) remains an upper bound on the
true error in the linear functional J(·), even when the term ED is neglected in the
process of error control for the primal problem.

The hp-DGFEM approximation z̃DG to the dual solution z appearing in EP will be
computed by an hp-adaptive finite element algorithm, on a sequence of “dual meshes”
T̃ , which, in general, differ from the “primal meshes” T . The sequence of dual meshes
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will be generated by means of an a posteriori error bound on

ED = |EΩ(uDG, h, p, z)− EΩ(uDG, h, p, z̃DG)| .
Since EΩ(uDG, h, p, ·) is a linear functional, we can derive an a posteriori bound on ED

by mimicking the process of error estimation for the primal problem described above
with the primal problem replaced by the dual and the functional J(·) substituted by
EΩ(uDG, h, p, ·). As the use of a Type I a posteriori error bound on ED would involve
the solution of the dual to the dual problem, which would then in turn have to be
solved numerically, we shall instead use a crude Type II a posteriori error bound on
ED so as to terminate the potentially infinite succession of mutually dual problems
that would otherwise arise. The crudeness of the Type II bound on ED will be of no
concern: as noted above, numerical experiments indicate that ED � EP, so from the
practical point of view there appears to be little advantage in performing reliable error
control for ED; our aim, when using the Type II bound on ED, is merely to generate an
adequate sequence of finite element approximations z̃DG to the dual solution z which
we can then use to compute EP. The next section is, therefore, devoted to Type II a
posteriori error bounds for the hp-DGFEM.

3.2. Type II a posteriori error bounds. For convenience, in the rest of
this section we shall restrict ourselves to meshes consisting of affine equivalent d-
parallelepiped elements. Generalizations to nonaffine elements may be treated by
constructing meshes consisting of local patches as in [16].

Assuming that m is a positive integer, we define the negative Sobolev norm
‖ · ‖H−m(Ω) in the usual way:

‖w‖H−m(Ω) = sup
v∈C∞

0 (Ω)

|(w, v)|
‖v‖Hm(Ω)

.

Further, we write ‖v‖τ , τ ⊂ ∂κ, κ ∈ T , to denote the (semi-) norm induced by the
(semi-) inner product

〈v, w〉τ =
∫
τ

|b · n| vw ds,

for v, w ∈ L2(τ). Finally, we recall from [16] and [21] the following approximation
results for the finite element space Sp(Ω, T ,F).

Lemma 3.4. Suppose that u|κ ∈ Hkκ(κ), kκ ≥ 1, for some κ in T . Then, there
exists Πhpu in the finite element space Sp(Ω, T ,F), a constant Cint dependent only
on d and the shape-regularity of T , but independent of u, hκ = diam(κ), pκ and kκ,
such that

‖u−Πhpu‖2
L2(κ)

≤ C2
inth

2sκ
κ

1

pκ(pκ + 1)
Φ1(pκ, sκ) |u|2Hsκ (κ) ,

and

‖∇(u−Πhpu)‖2
L2(κ)

≤ C2
inth

2sκ−2
κ Φ1(pκ, sκ) |u|2Hsκ (κ) ,

for 1 ≤ sκ ≤ min(kκ, pκ + 1). Here,

Φ1(p, s) :=
Γ(p− s+ 2)

Γ(p+ s)
+

1

p(p+ 1)

Γ(p− s+ 3)

Γ(p+ s− 1) , 1 ≤ s ≤ p+ 1 .
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Theorem 3.5. Let u and uDG denote the solutions of (2.1) and (2.5), respectively.
Suppose further that the dual problem (3.1) has a unique solution z ∈ H(L∗,Ω) such
that z|κ ∈ Htκ(κ) for each κ ∈ T with 1 ≤ tκ ≤ pκ + 1. Then,

|J(u)− J(uDG)| ≤ C0Cint|z|Ht(Ω,T )



(∑
κ∈T

h2tκ
κ

pκ(pκ + 1)
Φ1(pκ, tκ) ‖rh,p‖2

L2(κ)

)1/2

+

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖[uDG]‖2

∂−κ\Γ−

)1/2

+

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖rh,p−‖2

∂−κ∩Γ−

)1/2

 ,

where C0 depends only on ‖b‖L∞(Ω), the dimension d, and the shape-regularity of T .
Proof. Applying the Cauchy–Schwarz inequality to the right-hand side of (3.9) in

Corollary 3.2 gives

|J(u)− J(uDG)| ≤
∑
κ∈T

‖rh,p‖L2(κ)‖z − zh,p‖L2(κ)

+
∑
κ∈T

‖[uDG]‖∂−κ\Γ−‖(z − zh,p)
+‖∂−κ\Γ−

+
∑
κ∈T

‖rh,p−‖∂−κ∩Γ−‖(z − zh,p)
+‖∂−κ∩Γ−

≡ I + II + III .(3.15)

Exploiting the approximation result stated in Lemma 3.4, together with the Cauchy–
Schwarz inequality, we get

I ≤ Cint

(∑
κ∈T

h2tκ
κ

pκ(pκ + 1)
Φ1(pκ, tκ) ‖rh,p‖2

L2(κ)

)1/2(∑
κ∈T

|z|2Htκ (κ)

)1/2

for 1 ≤ tκ ≤ pκ+1 and κ in T . To bound the approximation error z−zh,p on a subset
τ of the boundary of a given element κ in T , we use the following trace inequality:

‖v‖2
τ ≤ 1

2
C2

0 (‖∇v‖L2(κ)‖v‖L2(κ) + h−1
κ ‖v‖2

L2(κ)
);(3.16)

here, C0 depends only on ‖b‖L∞(Ω), d, and the shape-regularity of T .
Exploiting (3.16), together with Lemma 3.4, gives the following bounds on terms

II and III:

II ≤ C0Cint

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖[uDG]‖2

∂−κ\Γ−

)1/2(∑
κ∈T

|z|2Htκ (κ)

)1/2

,

III ≤ C0Cint

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖rh,p−‖2

∂−κ∩Γ−

)1/2(∑
κ∈T

|z|2Htκ (κ)

)1/2

for 1 ≤ tκ ≤ pκ + 1 and κ in T . Upon inserting the estimates on I, II, and III into
(3.15) the result follows.
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Remark 3.6. As an application of Theorem 3.5, let us consider the problem
of a posteriori error estimation for the hp-DGFEM approximation of the weighted
mean value of the solution u to the model problem (2.1). Choosing J(u) = Mψ(u) in
Theorem 3.5 with the weight function ψ ∈ C∞

0 (Ω) gives

|Mψ(u)−Mψ(uDG)| ≡ |(u− uDG, ψ)|

≤ C0Cint



(∑
κ∈T

h2tκ
κ

pκ(pκ + 1)
Φ1(pκ, tκ) ‖rh,p‖2

L2(κ)

)1/2

+

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖[uDG]‖2

∂−κ\Γ−

)1/2

+

(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ) ‖rh,p−‖2

∂−κ∩Γ−

)1/2

 |z|Ht(Ω).(3.17)

Letting m = maxκ∈T tκ, it follows by the differentiability theorem of Rauch [20] applied
to (3.3) that

‖z‖Hm(Ω) ≤ Cstab‖ψ‖Hm(Ω) ,(3.18)

where Cstab is a positive constant, independent of ψ, called the stability factor of the
dual problem. Denoting by B(h, p, uDG) the expression in the square bracket in (3.17),
we deduce the following Type II a posteriori error bound:

|Mψ(u)−Mψ(uDG)| ≤ C0CintCstab‖ψ‖Hm(Ω)B(h, p, uDG) .

In fact, upon dividing both sides of the last inequality by ‖ψ‖Hm(Ω) and taking the
supremum over all ψ ∈ C∞

0 (Ω)) yields the following Type II a posteriori error bound
in a negative Sobolev norm:

‖u− uDG‖H−m(Ω) ≤ C0CintCstabB(h, p, uDG) .

We note that a bound identical to (3.17) holds for the weighted normal flux Nψ(u)
of u through the outflow boundary Γ+ with ψ a sufficiently smooth weight function
defined on Γ+.

3.3. A priori error bounds. As indicated in the introduction, the hp-adaptive
algorithms for the primal and dual problems will be driven by a posteriori error
bounds: a Type I bound for the primal problem and a Type II bound for the dual
problem. The decision about whether a local h-refinement/derefinement or a local
p-refinement/derefinement is to be performed in the course of mesh adaptation will
be based on assessing the local regularity of the primal and the dual solution. The
estimation of local Sobolev indices which measure local regularity will, in turn, rely on
an a priori bound on the error in the computed functional in terms of Sobolev norms
of the analytical primal and dual solutions u and z, respectively; this will indicate
the expected rate of convergence for |J(u) − J(uDG)| as the finite element space is
enriched, i.e., as h tends to 0 and p tends to infinity, assuming that the primal and
dual solutions have certain Sobolev regularities. The present section is devoted to the
derivation of this a priori error bound.
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We assume for the moment that the data for the problem (2.1) satisfy the following
assumptions:

b · ∇T vh ∈ Sp(Ω, T ,F) ∀vh ∈ Sp(Ω, T ,F) ,
(3.19)

c ∈ S0(Ω, T ,F) , f ∈ Sp(Ω, T ,F) .

Here, ∇T v, v ∈ H1(Ω, T ), denotes the broken gradient of v defined by (∇T v)|κ =
∇(v|κ), κ ∈ T . To ensure that (2.1) is then meaningful (i.e., that the characteristic
curves of the differential operator L are correctly defined), we still assume that b ∈[
W 1

∞(Ω)
]d
.

Remark 3.7. The condition placed on b is required in the proof of the a priori er-
ror bound stated below (Lemma 3.9), cf. [15]; the conditions on the reaction/absorption
term c and the forcing function f are required to ensure that the internal residual rh,p
belongs to the finite element space Sp(Ω, T ,F), cf. Lemma 3.10. However, we shall
see in section 5 that the restrictions (3.19) are not essential in practice for our a priori
error bounds to hold.

Before embarking on the a priori error analysis, we quote from Schwab [21,
Theorem 4.76, p. 208] the following inverse inequality for the finite element space
Sp(Ω, T ,F).

Lemma 3.8. Given v in Sp(Ω, T ,F), there exists a positive constant C, dependent
only on d and the shape-regularity of T , such that

|v|H1(κ) ≤ C
p2
κ

hκ
‖v‖L2(κ)

for all κ in T .

In the following lemma (cf. [15]) we formulate an a priori bound on the error u−uDG

in terms of the DG–norm ‖| · ‖|DG defined in section 2.2. We recall that

‖|v‖|2DG :=
∑
κ∈T

{
‖c0v‖2

L2(κ)
+
1

2
‖v+‖∂−κ∩Γ−+

1

2
‖v+‖2

∂+κ∩Γ+

+
1

2
‖v+ − v−‖2

∂−κ\Γ−

}
,(3.20)

where c0 is the (positive) function defined in (2.3).
Lemma 3.9. Let u and uDG denote the solutions of (2.1) and (2.5), respectively.

Assuming that (3.19) holds and u|κ ∈ Hkκ(κ), kκ ≥ 1, for all κ in T , we have

‖|u− uDG‖|2DG ≤ C
∑
κ∈T

h2sκ−1
κ Φ2(pκ, sκ) |u|2Hsκ (κ)

for any integers 1 ≤ sκ ≤ min(pκ + 1, kκ), κ ∈ T . Here,

Φ2(s, p) =
1

2p+ 1

(
Γ(p+ 2− s)

Γ(p+ s)
+
Γ(p+ 3− s)

Γ(p+ 1 + s)

)

+

(
Γ(p+ 2− s)

Γ(p+ 2 + s)

) 1
2
(
Γ(p+ 3− s)

Γ(p+ 1 + s)

) 1
2

+
Γ(p+ 2− s)

Γ(p+ 2 + s)
,
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and C is a positive constant depending only on d, ‖b‖L∞(Ω), ‖c‖L∞(Ω), and the shape-
regularity of T .

Furthermore, we need the following bound on the internal residual rh,p.
Lemma 3.10. Assuming that the conditions on the data (3.19) hold, there exists

a positive constant C, dependent only on d and the shape-regularity of T , such that

∑
κ∈T

hκ
p2
κ + 1

‖rh,p‖2
L2(κ)

≤ C‖|u− uDG‖|2DG .

Proof. From the Galerkin orthogonality property (3.5) we have

∑
κ∈T

(rh,p, v)κ = −
∑
κ∈T

((b · n)[uDG], v
+)∂−κ\Γ− +

∑
κ∈T

((b · n)rh,p−, v+)∂−κ∩Γ−(3.21)

for any v in Sp(Ω, T ,F). Under the conditions (3.19), the internal residual rh,p
belongs to the finite element space Sp(Ω, T ,F); thereby, choosing v = θrh,p in (3.21),
where θ is in S0(Ω, T ,F) such that θ|κ = θκ > 0, and applying the Cauchy–Schwarz
inequality gives

∑
κ∈T

θκ‖rh,p‖2
L2(κ)

≤
∑
κ∈T

θκ‖[uDG]‖∂−κ\Γ−‖r+
h,p‖∂−κ\Γ−

+
∑
κ∈T

θκ‖rh,p−‖∂−κ∩Γ−‖r+
h,p‖∂−κ∩Γ− .

Exploiting the trace inequality (3.16), together with the inverse inequality stated in
Lemma 3.8, we deduce that

∑
κ∈T

θκ‖rh,p‖2
L2(κ)

≤ C
∑
κ∈T

θκ
p2
κ + 1

hκ

(
‖[uDG]‖2

∂−κ\Γ− +
1

2
‖rh,p−‖2

∂−κ∩Γ−

)
.

Choosing θκ = hκ/(p
2
κ + 1) together with the definition of the DG-norm (3.20) gives

the desired result.
Equipped with Lemmas 3.9 and 3.10, together with the approximation results

stated in Lemma 3.4, we are now in a position to prove the following hp-bound on
the error in the computed functional J(·).

Theorem 3.11. Let u and uDG denote the solutions of (2.1) and (2.5), respec-
tively. Given that u|κ ∈ Hkκ(κ), kκ ≥ 1, and z|κ ∈ H lκ(κ), lκ ≥ 1, for all κ in T , we
have

|J(u)− J(uDG)|2 ≤ C
∑
κ∈T

h2sκ−1
κ Φ2(pκ, sκ) |u|2Hsκ (κ)

×
∑
κ∈T

h2tκ−1
κ Φ1(pκ, tκ) |z|2Htκ (κ)(3.22)

for any 1 ≤ sκ ≤ min(pκ + 1, kκ), 1 ≤ tκ ≤ min(pκ + 1, lκ), κ ∈ T . Here, C is a
positive constant depending only on d, ‖b‖L∞(Ω), ‖c‖L∞(Ω), and the shape-regularity
of T .
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Proof. With terms I, II, and III defined as in the proof of Theorem 3.5 (cf. (3.15)),
we deduce from Lemma 3.4 and (3.16) the following bounds:

I ≤ C

(∑
κ∈T

hκ
p2
κ + 1

‖rh,p‖2
L2(κ)

)1/2

×
(∑
κ∈T

h2tκ−1
κ

p2
κ + 1

pκ(pκ + 1)
Φ1(pκ, tκ) |z|2Htκ (κ)

)1/2

,(3.23)

II ≤ C

(∑
κ∈T

‖[uDG]‖2
∂−κ\Γ−

)1/2(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ)|z|2Htκ (κ)

)1/2

,(3.24)

III ≤ C

(∑
κ∈T

‖rh,p−‖2
∂−κ∩Γ−

)1/2(∑
κ∈T

h2tκ−1
κ

pκ
Φ1(pκ, tκ)|z|2Htκ (κ)

)1/2

,(3.25)

respectively. Collecting the bounds (3.23), (3.24), and (3.25), and exploiting Lemma
3.10, we get

|J(u)− J(uDG)|2 ≤ C‖|u− uDG‖|2DG

∑
κ∈T

h2tκ−1
κ Φ1(pκ, tκ)|z|2Htκ (κ) .

Finally, employing Lemma 3.9 gives the desired result.
Let us now discuss some special cases of the general error bound derived in The-

orem 3.11. We first note that, for fixed s, Stirling’s formula implies

Φ1(p, s) ≤ C(s)p−2s+2 , Φ2(p, s) ≤ C(s)p−2s+1 ,(3.26)

as p → ∞. Thereby, for uniform orders pκ = p, sκ = s, tκ = t, kκ = k, lκ = l, s, t, k
and l integers, and hκ = h for all κ in T , we get the bound

|J(u)− J(uDG)| ≤ C

(
h

p

)s+t−1

p1/2 |u|Hs(Ω)|z|Ht(Ω) ,(3.27)

where 1 ≤ s ≤ min(p+ 1, k) and 1 ≤ t ≤ min(p+ 1, l). Hence, we deduce that

|J(u)− J(uDG)| ≤ C
hs+t−1

pk+l−1
p1/2 ‖u‖Hk(Ω)‖z‖Hl(Ω) ,(3.28)

where 1 ≤ s ≤ min(p + 1, k) and 1 ≤ t ≤ min(p + 1, l); cf. [23]. We note that
in the transition from (3.27) to (3.28) the generic constant C is increased by the
factor (k − 1)k−1(l − 1)l−1. Here, the bounds (3.27) and (3.28) are optimal in h and
suboptimal in p by p1/2; in the case of fixed p, (3.27), (3.28) reduce to the optimal
h-convergence error bound proved in [14] for a stabilized continuous approximation
to u. From (3.28) we may deduce the following a priori error bound:

‖u− uDG‖H−m(Ω) ≤ C
hs+θ−1

pk+m−1
p1/2 ‖u‖Hk(Ω),(3.29)

where 1 ≤ s ≤ min(p+1, k) and 1 ≤ θ ≤ min(p+1,m). In the presence of streamline-
diffusion stabilization, with stabilization of size δ = h/p, the bounds (3.27), (3.28),
and (3.29) can be sharpened to ones that are simultaneously optimal in both h and p.
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The explicit dependence of the error bound stated in Theorem 3.11 on the local
regularity of the primal and dual solutions u and z, respectively, allows us to deduce
that the error in the functional J(·) is exponentially convergent as pκ → ∞ for each κ
in T . To this end, let us assume that z is elementwise analytic in the sense that, for
each κ ∈ T , z|κ has analytic extension to an open set, independent of hκ, containing
κ̄. Then,

∀κ ∈ T ∃dκ > 1 ∃C(z) > 0 ∀s > 0 : |z|Hs(κ) ≤ C(z)(dκ)
ss! [meas(κ)]1/2 .

In order to emphasize the dependence of dκ on the particular function z under con-
sideration, we write dκ(z) in lieu of dκ. Thereby, assuming that z is elementwise
analytic and hκ > 0 is fixed for all κ in T , on setting tκ = ακpκ + 1, where
0 < ακ = (1 + (dκ(z))

2)−1/2 < 1 for all κ ∈ T , it can be shown that
∑
κ∈T

h2tκ−1
κ Φ1(pκ, tκ) |z|2Htκ (κ) ≤ C(z)

∑
κ∈T

h2tκ−1
κ p3

κ e
−2λκpκmeas(κ) ,(3.30)

where λκ is a positive constant on each element κ in the mesh T ; namely,

λκ =
1

2
| logF (ακ, dκ(z))| , where F (α, d) =

(1− α)1−α

(1 + α)1+α
(αd)2α;

see [16] for details. Similarly, assuming that u is elementwise analytic, setting sκ =
βκpκ + 1, where 0 < βκ = (1 + (dκ(u))

2)−1/2 < 1 for all κ ∈ T , we have that
∑
κ∈T

h2sκ−1
κ Φ2(pκ, sκ) |u|2Hsκ (κ) ≤ C(u)

∑
κ∈T

h2sκ−1
κ p2

κ e
−2µκpκmeas(κ) ,(3.31)

where µκ = (1/2)| logF (βκ, dκ(u))|. Thereby, combining (3.30) and (3.31), we deduce
the exponential convergence estimate

|J(u)− J(uDG)|2 ≤ K
∑
κ∈T

h2sκ−1
κ p2

κ e
−2µκpκmeas(κ)

×
∑
κ∈T

h2tκ−1
κ p3

κ e
−2λκpκmeas(κ) ,(3.32)

where K = C(u)C(z).
Remark 3.12. The bound (3.32) indicates that in order to ensure that the error in

the functional J(·) decays exponentially as the degree of the approximating polynomial
is increased, it is only necessary to assume that either u or z is elementwise analytic;
this will be demonstrated numerically in section 5.

4. Implementational issues.

4.1. Numerical approximation of the dual solution. In this section we
formulate the discontinuous Galerkin finite element approximation of the dual problem
(3.1). As stated in section 3, the particular form of the dual problem is dependent
on the functional under consideration. For generality, let us suppose that z is the
(unique) solution to the following problem: find z ∈ H(L∗,Ω) such that

L∗z ≡ −∇ · (bz) + cz = ϕ, x ∈ Ω ,
(4.1)

z = χ, x ∈ Γ+ .
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Clearly, (4.1) covers both the case when the functional J(·) under consideration rep-
resents the local mean value of the solution u and when J(·) is the outflow normal
flux of u; cf. section 3.

As in section 2.1, we define S̃p̃(Ω, T̃ , F̃) to be the finite element space consisting
of piecewise polynomials of degree p̃|κ̃ = p̃κ̃ on a mesh T̃ consisting of shape-regular
elements κ̃ of size h̃κ̃. With ∂+κ̃ defined as in (2.4), we introduce the bilinear form

B̃DG(w, v) =
∑
κ̃∈T̃

∫
κ̃

L∗w v dx+
∑
κ̃∈T̃

∫
∂+κ̃\Γ+

(b · n)[w] v+ ds

+
∑
κ̃∈T̃

∫
∂+κ̃∩Γ+

(b · n)w+ v+ ds

and linear functional

�̃DG(v) =
∑
κ̃∈T̃

∫
κ̃

ϕv dx+
∑
κ̃∈T̃

∫
∂+κ̃∩Γ+

(b · n)χv+ ds

associated with the hp-DGFEM approximation of the dual problem (4.1). Now the
hp-DGFEM for (4.1) is defined as follows: find z̃DG ∈ S̃p̃(Ω, T̃ , F̃) such that

B̃DG(z̃DG, v) = �̃DG(v) ∀v ∈ S̃p̃(Ω, T̃ , F̃) .(4.2)

4.2. Adaptive algorithm. For a user-defined tolerance TOL, we now consider
the problem of designing the hp-finite element space Sp(Ω, T ,F) such that

|J(u)− J(uDG)| ≤ TOL ,(4.3)

subject to the constraint that the total number of degrees of freedom in Sp(Ω, T ,F) is
minimized. Following the discussion presented in section 3, we exploit the a posteriori
error bound (3.14) to construct Sp(Ω, T ,F) such that

EP ≤ TOL .(4.4)

The stopping criterion (4.4) is enforced by equidistributing EP|κ ≡ η̃κ over the ele-
ments κ in the primal mesh T , where η̃κ is defined in a similar manner to ηκ with z
replaced by z̃DG in (3.11). Thus, we insist that

η̃κ ≈ TOL

N
(4.5)

holds for each κ in T ; here, N denotes the number of elements in the mesh T .
Thereby, each of the elements in the primal mesh is flagged for either refinement

or derefinement to ensure that the equidistribution principle (4.5) holds. Once an
element κ has been flagged a decision must be made whether the local mesh size hκ or
the local degree pκ of the approximating polynomial should be adjusted accordingly.
Let us first deal with refinement, i.e., when the local error estimator η̃κ is larger
than the “localized-tolerance” TOL/N . Clearly, if the primal or dual solutions u and
z, respectively, are locally “smooth,” then p-enrichment will be more effective than
h-refinement, since the error will be expected to decay quickly within the current
element κ as pκ is increased. However, if u and z have low regularity within the
element κ, then h-refinement will be performed. Thus, regions in the computational
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domain where the primal and dual solution are locally nonsmooth are isolated from
smooth regions, thereby reducing the influence of singularities/discontinuities as well
as making p-enrichment more effective.

To ensure that the desired level of accuracy is achieved efficiently, an automatic
procedure for deciding when to h- or p-refine must be implemented. To this end, we
first compute the local error indicator η̃κ on each element κ in the mesh T using both
a pκ and a pκ − 1 representation for uDG; we denote the corresponding values of η̃κ
by η̃κ(pκ) and η̃κ(pκ − 1), respectively. Assuming that η̃κ(pκ − 1)  = 0, the perceived
smoothness of the primal and dual solutions may be estimated using the ratio

ρκ = η̃κ(pκ)/η̃κ(pκ − 1);(4.6)

cf. Adjerid, Aiffa, and Flaherty [1] and Gui and Babuška [12], for example. If ρκ ≤ γ,
0 < γ < 1, the error is decreasing as the polynomial degree is increased, indicating
that p-enrichment should be performed. On the other hand, ρκ > γ means that the
element κ should be locally subdivided. The number γ is referred to as the type-
parameter [12]. Clearly, the choice of γ is critical to the success of this algorithm
and will depend on the asymptotic behavior of the quantity of interest. Instead of
assigning an ad hoc value to the type parameter γ, we use ρκ, together with the
a priori error bound (3.22), to directly estimate the local regularities kκ and lκ of
the primal and dual solutions, respectively, on each element κ in T . More precisely,
motivated by (3.28), we assume that on a given element κ in T

η̃κ = EP|κ ≈ Cκ p
−kκ−lκ+1
κ .

Thus, we have that

kκ + lκ = log(ρκ)/ log((pκ − 1)/pκ) + 1.

Ideally, we would like to know kκ and lκ individually. To do so, we compute an
estimate of lκ. The dual regularity lκ may be estimated by calculating the L

2(κ) norm
of the error between the projection of z̃DG in S̃p̃(Ω, T̃ , F̃) onto the finite element spaces
Sp(Ω, T ,F) and Sp−1(Ω, T ,F), together with the approximation results derived in
[3]. Once both kκ and lκ have been determined on element κ, then κ is p-enriched
if either kκ or lκ is larger than pκ + 1; otherwise, the element is subdivided. For
computational simplicity, only one hanging node is allowed on each side of a given
element κ; additionally, we restrict the variation in the polynomial degree vector p to
be at most one between neighboring elements. We note that this approach has been
developed by Ainsworth and Senior [2] in the context of norm control for second-order
elliptic problems.

On the other hand, if an element has been flagged for derefinement, then the
strategy implemented here is to coarsen the mesh in low-error regions where either
the primal or dual solutions u and z, respectively, are smooth and decrease the degree
of the approximating polynomial in low-error regions when both u and z are not
sufficiently regular; cf. [1]. To this end, we again compute the local regularities kκ
and lκ of the primal and dual solutions, respectively, on each element κ in T as
described above. The element κ is then coarsened if either kκ or lκ is larger than
pκ + 1; otherwise, the degree pκ is reduced by one.

The finite element space S̃p̃(Ω, T̃ , F̃) and the finite element approximation z̃DG ∈
S̃p̃(Ω, T̃ , F̃) of the dual solution z will be constructed adaptively at the same time
as Sp(Ω, T ,F). To this end, we note that EΩ(uDG, h, p, ·) is a linear functional on
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H(L∗,Ω), and we define the error indicator

ηκ̃ =
h̃κ̃
p̃κ̃

‖ϕ− L∗z̃DG‖L2(κ̃) +

(
h̃κ̃
p̃κ̃

)1/2 (‖[z̃DG]‖∂+κ̃\Γ+
+ ‖χ− z̃DG‖∂+κ̃∩Γ+

)
(4.7)

for

ED ≡ |EΩ(uDG, h, p, z)− EΩ(uDG, h, p, z̃DG)|.
The error indicator (4.7) arises from a Type II a posteriori error bound on ED upon
setting all constants in the bound (such as the stability factor Cstab of the dual-
dual problem and the interpolation constant Cint) to unity; cf. Theorem 3.5 and
the subsequent Remark 3.6 with m = 1, and note that Φ1(pκ̃, 1) is O(1) by (3.26).
The hp-adaptive algorithm for the dual problem will be based on the fixed fraction
strategy outlined in [19]. Consequently, the absolute size of ηκ̃(p̃κ̃) is insignificant:
only the relative sizes of these quantities matter; in particular, this justifies setting
all constants to unity in the dual error indicator (4.7). Once the elements have been
flagged for refinement/derefinement, h̃κ̃ and p̃κ̃ are altered accordingly by estimating
the local regularity l̃κ̃ of the dual solution on the mesh T̃ as above by calculating ηκ̃
using a p̃κ̃ and p̃κ̃ − 1 representation of z̃DG, together with the a priori bound (3.29).

For related work concerning the design of automatic hp-adaptive mesh refine-
ment algorithms, we refer, for example, to the articles by Bey, Oden, and Patra [7],
Mavripilis [17], and Rachowicz, Oden, and Demkowicz [18].

5. Numerical experiments. In this section we present a number of experi-
ments to numerically verify the a priori error bounds derived in section 3, as well as
to demonstrate the performance of the hp-adaptive algorithm outlined in section 4.2.

5.1. Example 1. In this example we let Ω = (−1, 1)2, b = (2 − y2, 2 − x),
c = 1 + (1 + x)(1 + y)2, and f is chosen so that the analytical solution to (2.1) is

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8);(5.1)

cf. [15]. Furthermore, we choose the functional of interest J(·) to represent the mean
flow of u over Ω, i.e., J(·) ≡ Mψ(·), where Mψ(·) is given by (3.2); here, we define the
weight function ψ so that the solution of the corresponding dual problem (3.3) is

z = 4 sin(π(1 + x)/2) sin(π(1 + y)/2) e−(2+x+y)2/2.

Thus, the true value of the mean flow of u over Ω is Mψ(u) = 3.9381.
Here, we investigate the asymptotic behavior of the hp-DGFEM on a sequence

of successively finer square and quadrilateral meshes for different p. In each case the
quadrilateral mesh is constructed from a uniform N × N square mesh by randomly
perturbing each of the interior nodes by up to 10% of the local mesh size; cf. [16].

In Figure 5.1 we present a comparison of the error in the functional |J(u)−J(uDG)|
with the mesh size h for p = 1, 2, 3. Here, we observe that |J(u)−J(uDG)| converges to
zero at the rate O(h2p+1) as the mesh is refined for each fixed p, thereby confirming
Theorem 3.11 in the case when the assumptions on the data (3.19) are violated;
cf. Remark 3.7. Finally, we investigate the convergence of the hp-DGFEM with p-
enrichment for fixed h. Since the true solution (5.1) is a (real) analytic function, we
expect to observe exponential rates of convergence; cf. section 3. Indeed, Figure 5.2
clearly illustrates this behavior: on the linear-log scale, the convergence plots for each
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10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1

1

1

3

5

7

|J
(u
)
−

J
(u

D
G
)|

h

p = 1

p = 2

p = 3

Squares

Quads

Fig. 5.1. Example 1. Convergence of the hp-DGFEM with h-refinement.
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Fig. 5.2. Example 1. Convergence of the hp-DGFEM with p-refinement.

p become straight lines as the degree of the approximating polynomial is increased.
Furthermore, we observe from Figures 5.1 and 5.2 that the h- and p-convergence,
respectively, of the hp-DGFEM is robust with respect to mesh distortion.

5.2. Example 2. Here we consider a compressible hyperbolic problem subject
to discontinuous inflow boundary condition with b = (2y2 − 4x+1, 1+ y), c = 0, and
f = 0. The characteristics enter the computational domain Ω from three sides of Γ,
namely, from x = 0, y = 0, and x = 1, and exit Ω through y = 1. Thus, we may
prescribe

u(x, y) =




0 for x = 0, 0.5 < y ≤ 1,
1 for x = 0, 0 ≤ y ≤ 0.5,
1 for 0 ≤ x ≤ 0.75, y = 0,
0 for 0.75 < x ≤ 1, y = 0,
sin2(πy) for x = 1, 0 ≤ y ≤ 1.
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Fig. 5.3. Example 2. (a) Analytical solution to the primal problem; (b) Analytical solution
to the dual problem; (c) Internal residual term ‖rh,p‖L2(κ) on a 65 × 65 mesh with p = 1; (d)
Weighting term ‖z − zh,p‖L2(κ) on a 65 × 65 mesh with p = 1; (e) Product of (c) and (d), i.e.,
‖rh,p‖L2(κ) ‖z − zh,p‖L2(κ) on a 65× 65 mesh with p = 1.

In this example we choose the functional of interest J(·) to represent the normal flux
through the outflow boundary Γ+, i.e., J(·) ≡ Nψ(·), where Nψ(·) is given by (3.4);
here, we define the weight function ψ by

ψ = 2 + arctan((x− 1/2)/ε) for 0 ≤ x ≤ 1, y = 1,

where ε = 0.02. Thereby, the true value of the outward normal flux is Nψ(u) =
2.0203. The analytical solutions to both the primal and dual problems are shown in
Figures 5.3(a) and 5.3(b), respectively. Furthermore, to understand how the terms
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Table 5.1
Example 2. hp-mesh refinement algorithm.

Mesh DOF |Nψ(u− uDG)| EP ED θ EP/ED
1 16 6.112× 10−2 2.964× 10−2 5.707× 10−2 0.48 0.52
2 36 8.763× 10−2 6.169× 10−2 2.807× 10−2 0.70 2.20
3 90 3.547× 10−2 3.201× 10−2 4.803× 10−3 0.90 6.66
4 280 6.036× 10−3 5.496× 10−3 1.603× 10−3 0.91 3.43
5 702 1.472× 10−3 1.811× 10−3 1.158× 10−4 1.23 15.64
6 1904 4.107× 10−5 2.482× 10−4 3.941× 10−6 6.04 62.98
7 3679 2.502× 10−5 3.506× 10−5 3.353× 10−6 1.40 10.46
8 6414 5.715× 10−7 2.675× 10−6 3.320× 10−7 4.68 8.06
9 10493 9.012× 10−8 4.524× 10−7 2.083× 10−8 5.02 21.72
10 14107 3.175× 10−8 1.092× 10−7 9.175× 10−9 3.43 11.90

in the a posteriori error bound (3.14) interact with each other, in Figures 5.3(c) and
5.3(d), we have plotted the L2(κ) norm of the internal residual rh,p and the exact
weight function z − zh,p on a 65 × 65 mesh with p = 1. Here, we observe that
‖rh,p‖L2(κ) is large in the vicinity of the discontinuities as we would expect, while the
weight function ‖z − zh,p‖L2(κ) is large in the region where the layer in ψ enters the
computational domain through Γ+. The product of these two quantities is shown in
Figure 5.3(e); here, we observe that the discontinuity emanating from (x, y) = (0, 0.5)
will have very little effect on the error in the linear function Nψ(·) (see below).

In Table 5.1 we show the performance of the adaptive algorithm presented in
section 4.2 for TOL = 10−7; we note that this level of accuracy may be far beyond
what is of practical importance but is chosen to illustrate that the true error and the
bound EP exhibit the same asymptotic behavior as the finite element space S

p(Ω, T ,F)
is enriched. In Table 5.1 we show the mesh number, the number of degrees of freedom
(DOF) in Sp(Ω, T ,F), the true error in the functional |Nψ(u − uDG)|, the error
bound EP, the remaining error ED (which in general will be noncomputable), the
effectivity index θ = EP/|Nψ(u − uDG)|, and the ratio of EP and ED. Here, we
see that initially on very coarse meshes EP slightly underestimates the true error
in the functional; however, as the finite element space is enriched the error bound
overestimates |Nψ(u)−Nψ(uDG)| by a consistent factor in the range 1–6. Furthermore,
we see that the remaining error term ED is about an order of magnitude smaller than
the computable part of the a posteriori error bound EP; this numerically justifies
neglecting this term in the construction of the stopping criterion (4.4) for the design
of our adaptive algorithm for the primal problem.

In Figure 5.4 we plot the results shown in Table 5.1; in particular, we plot |Nψ(u)−
Nψ(uDG)|, EP, and ED using hp-refinement against the square root of the number of
DOF on a linear-log scale. We see that after the initial transient, the error in the
computed functional using hp-refinement becomes a straight line, thereby indicating
exponential convergence; cf. Remark 3.12. Furthermore, in Figure 5.4 we plot the
true error in the linear functional using h-refinement; here, we clearly observe the
superiority of the adaptive hp-refinement algorithm. Indeed, on the final mesh the true
error in the linear functional using hp-refinement is almost three orders of magnitude
smaller than the true error in Nψ(·) when h-refinement is employed.

Finally, in Figures 5.5 and 5.6 we show the primal and dual meshes after six
and nine adaptive mesh refinements, respectively. For clarity, in each case we show
the h-mesh alone, as well as the corresponding distribution of the polynomial degree
and the percentage of elements with that degree. From Figure 5.5, we see that the
elements in the primal mesh have been refined along the first discontinuity emanating
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Fig. 5.5. Example 2. Mesh 7: Primal (top: 235 elements, 303 nodes, and 3679 DOF) and
dual (bottom: 493 elements, 616 nodes, and 6781 DOF) h- and hp-meshes. Here, Nψ(u − uDG) =
2.502× 10−5, EP = 3.506× 10−5, and θ = 1.40.

from (x, y) = (0.75, 0), since the dual solution has a layer in this region as well. In
contrast, elements lying on the second discontinuity in the primal problem, which
emanates from (x, y) = (0, 0.5), have been less refined, since the dual solution is
smooth here, and hence the corresponding weights involving z̃DG − zh,p are inactive;
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Fig. 5.6. Example 2. Mesh 10: Primal (top: 565 elements, 719 nodes, and 14107 DOF) and
dual (bottom: 445 elements, 564 nodes, and 13629 DOF) h- and hp-meshes. Here, Nψ(u− uDG) =
3.175× 10−8, EP = 1.092× 10−7, and θ = 3.43.

cf. Figure 5.3(e). Furthermore, the mesh for the dual solution is concentrated within
the steep layer in the weight function ψ; the inherent smoothing in the dual problem
introduced by the compressible nature of b leads to p-refinement in this layer as the
flow moves away from Γ+. The same behavior is observed in Figure 5.6 for the primal
and dual solutions.

5.3. Example 3. In this final example, we consider the same primal problem
presented in section 5.2. Furthermore, we again let J(·) denote the normal flux
through the outflow boundary Γ+, i.e., J(·) ≡ Nψ(·), where Nψ(·) is given by (3.4);
however, here we define the weight function ψ by

ψ =

{
1 + sin(2π(4x− 1)) for 1/4 ≤ x ≤ 3/4,
0 otherwise.

In this case, the true value of the outward normal flux is Nψ(u) = 0.9175. In Figures
5.7(a), 5.7(b), and 5.7(c) we plot the analytical to the dual problem, the weight
function ‖z−zh,p‖L2(κ), and the product of the weight function ‖z−zh,p‖L2(κ) with the
L2(κ) norm of the internal residual rh,p (see Figure 5.3(c) for the plot of ‖rh,p‖L2(κ)),
respectively. From Figure 5.7(b), we see that the weighting term ‖z − zh,p‖L2(κ) is
large in the vicinity of the discontinuities emanating from Γ+. By multiplying these
terms by ‖rh,p‖L2(κ) (cf. Figure 5.7(c)), we see that the discontinuity originating from
(0.75, 1) will dominate the error in the outward normal flux Nψ(·); however, there
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Fig. 5.7. Example 3. (a) Analytical solution to the dual problem; (b) Weighting term ‖z −
zh,p‖L2(κ) on a 65×65 mesh with p = 1; (c) Product of (b) and Figure 5.3(c), i.e., ‖rh,p‖L2(κ) ‖z−
zh,p‖L2(κ) on a 65× 65 mesh with p = 1.

are visible peaks emanating from the top of the sin function as well as the second
discontinuity located at (0.25, 1).

In Figure 5.8 we show the performance of the adaptive algorithm for TOL = 10−6.
We note that since both the primal and dual solutions are nonsmooth, we no longer
expect to observe exponential convergence of the error in the functional Nψ(·); thus,
here we plot the same quantities as in Figure 5.4 against the number of degrees of
freedom in Sp(Ω, T ,F) on a log-log scale. We clearly observe that the error bound
EP overestimates the true error by a consistent factor between 1–10. Furthermore, as
in the previous example, the remaining error term ED is about an order of magnitude
smaller than EP, thereby justifying the absorption of ED into EP. In addition, in
Figure 5.8 we plot the true error in the linear functional using h-refinement; here,
we observe that the true error in Nψ(·) is (almost) always smaller if hp-refinement is
employed. Indeed, on the final mesh the true error in Nψ(·) is almost two orders of
magnitude smaller if hp-refinement is employed as opposed to h-refinement only.

Finally, in Figures 5.9 and 5.10 we show the primal and dual meshes after six and
nine adaptive mesh refinements, respectively. From Figure 5.9, we see that the primal
mesh has only been h-refined in a small neighborhood of the two discontinuities in u
as they exit the computational domain Ω. Furthermore, from Figure 5.10, we now see
that the h-mesh has been refined in the vicinity of the discontinuity emanating from
(x, y) = (0, 0.5), while the h-mesh has in fact been coarsened in the region containing
the second discontinuity originating from (x, y) = (0.5, 0). In this latter region, the
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10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Degrees of freedom

|Nψ(e)| (hp–ref)
|Nψ(e)| (h–ref)

EP (hp–ref)

ED (hp–ref)

Fig. 5.8. Example 3. Comparison between h- and hp-adaptive mesh refinement.
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Fig. 5.9. Example 3. Mesh 7: Primal (top: 82 elements, 116 nodes, and 1603 DOF) and dual
(bottom: 2629 elements, 3167 nodes, and 12316 DOF) h- and hp-meshes. Here, Nψ(u − uDG) =
3.568× 10−6, EP = 6.164× 10−6, and θ = 1.73.

local polynomial degree has been enriched as the primal solution u is smooth here.
Finally, Figures 5.9 and 5.10 show that the dual mesh has been extensively h-refined in
the vicinity of both discontinuities with the degree p of the approximating polynomial
increased as we move into the parts of the computational domain where the dual
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Fig. 5.10. Example 3. Mesh 10: Primal (top: 145 elements, 194 nodes, and 3609 DOF) and
dual (bottom: 7630 elements, 9280 nodes, and 34451 DOF) h- and hp-meshes. Here, Nψ(u−uDG) =
1.072× 10−7, EP = 5.505× 10−7, and θ = 5.14.

solution z is smooth.

6. Concluding remarks. In this article we have developed the a posteriori er-
ror analysis of the hp-version of the discontinuous Galerkin finite element method.
In particular, by using a hyperbolic duality argument, we have derived computable
error bounds for linear functionals of the solution, such as the mean flow of the field
over the computational domain Ω and the normal flux through the outflow bound-
ary Γ+. Furthermore, based on our a posteriori error bound, we have designed and
implemented a fully automatic adaptive algorithm that is capable of exploiting both
local mesh subdivision and local polynomial-degree enrichment. Numerical experi-
ments have been presented which clearly highlight the superiority of such a general
adaptive strategy over the traditional h-refinement method, where the degree of the
approximating polynomial p is kept fixed at some low value.

REFERENCES

[1] S. Adjerid, M. Aiffa, and J. E. Flaherty, Computational methods for singularly per-
turbed systems, in Singular Perturbation Concepts of Differential Equations, J. Cronin
and R. E. O’Malley, eds., AMS, Providence, RI, 1998.

[2] M. Ainsworth and B. Senior, An adaptive refinement strategy for hp–finite element compu-
tations, Appl. Numer. Maths., 26 (1998), pp. 165–178.
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1, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Hei-
delberg, Germany, 1996.

[6] K. S. Bey and J. T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conser-
vation laws, Comput. Methods Appl. Mech. Engrg., 133 (1996), pp. 259–286.

[7] K. S. Bey, J. T. Oden, and A. Patra, A parallel hp-adaptive discontinuous Galerkin method
for hyperbolic conservation laws, Appl. Numer. Math., 20 (1996), pp. 321–336.

[8] D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cam-
bridge University Press, Cambridge, UK, 1997.

[9] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, The development of discontinuous
Galerkin methods, in Discontinuous Galerkin Finite Element Methods, B. Cockburn,
G. Karniadakis, and C.-W. Shu, eds., Lect. Notes Comput. Sci. Eng., 11, Springer-Verlag,
Berlin, 2000, pp. 3–50.

[10] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and
Technology, Vol. 6: Evolution Problems II, Springer-Verlag, Berlin, 1992.

[11] K. Erikson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for
differential equations, Acta Numer., (1995), pp. 105–158.
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Abstract. A new family of Monte Carlo schemes is introduced for the numerical solution
of the Boltzmann equation of rarefied gas dynamics. The schemes are inspired by the Wild sum
expansion of the solution of the Boltzmann equation for Maxwellian molecules and consist of a novel
time discretization of the equation. In particular, high order terms in the expansion are replaced
by the equilibrium Maxwellian distribution. The two main features of the schemes are high order
accuracy in time and asymptotic preservation. The first property allows to recover accurate solutions
with time steps larger than those required by direct simulation Monte Carlo (DSMC), while the
latter guarantees that for the vanishing Knudsen number, the numerical solution relaxes to the local
Maxwellian. Conservation of mass, momentum, and energy are preserved by the scheme. Numerical
results on several space homogeneous problems show the improvement of the new schemes over
standard DSMC. Applications to a one-dimensional shock wave problem are also presented.

Key words. Boltzmann equation, Monte Carlo methods, Wild sums, fluid-dynamic limit, Euler
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1. Introduction. When a gas is near thermodynamical equilibrium, a detailed
kinetic description is unnecessary, and the evolution of the moments can be described
by Euler or Navier–Stokes equations. From a computational point of view, these
equations are much less expensive than the full Boltzmann equation.

Far from thermodynamic equilibrium, the equation of gas dynamics do not give
a satisfactory description of the physical system, and the full kinetic description is
necessary.

The departure from local thermodynamic equilibrium can be measured by the
so-called Knudsen number, which is the ratio between the collisional mean free path
of the molecules and the characteristic length of variation of macroscopic variables.
When the Knudsen number is small, then the distribution function is close to the local
Maxwellian. Collisions occur at a fast rate, and a kinetic treatment of the system is
very expensive, because of the large ratio of time scales between macroscopic and
microscopic effects. One may say that the system is numerically stiff [10]. Because of
the stiffness, standard explicit schemes for the numerical solution of the Boltzmann
equation become extremely expensive in this case.

If the Knudsen number is uniformly small in the region one is interested in, then
one should use a gas dynamic description of the system. There are several circum-
stances, however, where the Knudsen number varies over several orders of magnitude.
In such cases, a standard kinetic treatment would be too expensive and a pure gas
dynamic approach inappropriate. Domain decomposition methods have been pro-
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posed for this problem, in which the computational domain is divided into an aero-
dynamic region in which the system is treated by gas dynamic equations (Euler or
Navier–Stokes), and a Boltzmann region, where a kinetic treatment is used. Suitable
boundary conditions make the two regions coupled together [5]. Such schemes can
be very effective in treating large scale problems, but they are quite complicated to
implement, and they require a great care by the user.

In some recently developed Monte Carlo methods, a different approach is taken
with the goal of constructing simple and efficient numerical methods for the solution
of the Boltzmann equation in regions with a large variation in the mean free path
[16, 15].

These algorithms are based on a suitable time discretization of the Boltzmann
equation, first introduced in [9], which has the following properties: for the large
Knudsen number, it is a time discretization of the Boltzmann equation of a given
order, and when the Knudsen number vanishes, the numerical solution tends to the
local Maxwellian. We will call this last property asymptotic preservation. In addition,
the time discretization preserves mass, momentum, and energy.

Although the paper deals mainly with the space homogeneous case, the real mo-
tivation for the development of these Monte Carlo methods is their use for spatially
dependent problems. In that case, standard splitting can be used, and the evolution of
the system is obtained by alternating a collision step, which is space homogeneous in
each space cell, and a convection step, which describes the free flow of the molecules.
In the limit of the very small Knudsen number, the collision step replaces the dis-
tribution function by a local Maxwellian with the same moments. A Monte Carlo
method based on such time discretization will behave as a sort of stochastic kinetic
scheme for the underlying Euler equations of gas dynamics. Such a limit scheme was
introduced by Pullin [18].

The plan of the paper is the following. In the next section, we give a short
introduction on the Boltzmann equation and some of its relevant properties. In section
3, we introduce the time relaxed (TR) discretizations, starting from the Wild sum
expansion, and making use of some of its properties. Section 4 is devoted to the
derivation of time relaxed Monte Carlo (TRMC) methods. The section starts with
a review of direct simulation Monte Carlo (DSMC), in particular of the Nanbu–
Babovsky scheme [1], which is revisited and reinterpreted in a new light. A detailed
description is given of TRMC algorithms. In the last section, we show some numerical
tests performed with the new schemes. In particular, it is shown that it is possible to
obtain the same accuracy of the Nanbu–Babovsky scheme with a lower computational
cost. We conclude the paper with a plan of future extensions and improvements.

2. Time discretizations of the Boltzmann equation.

2.1. The Boltzmann equation. We consider the Boltzmann equation [7]

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f),(2.1)

supplemented with the initial condition

f(x, v, t = 0) = f0(x, v),(2.2)

where f = f(x, v, t) is a nonnegative function describing the time evolution of the
distribution of particles which move with velocity v in the position x at time t > 0.
The parameter ε > 0 is the Knudsen number and is proportional to the mean free
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path between collisions. The bilinear collision operator Q(f, f) describes the binary
collisions of the particles and is given by

Q(f, f)(v) =

∫
R3

∫
S2

σ(|v − v1|, ω)[f(v′)f(v′∗)− f(v)f(v∗)] dω dv∗.(2.3)

In the above expression, ω is a unit vector of the sphere S2 so that dω is an element
of area of the surface of the unit sphere S2 in R

3. Moreover, (v′, v′∗) represent the
postcollisional velocities associated with the precollisional velocities (v, v∗) and the
collision parameter ω; i.e.,

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω).(2.4)

The kernel σ is a nonnegative function which characterizes the details of the binary
interactions. In the case of inverse kth power forces between particles, the kernel has
the form

σ(|v − v∗|, θ) = bα(θ)|v − v∗|α,(2.5)

where α = (k − 5)/(k − 1). For numerical purposes, a widely used model is the
variable hard sphere (VHS) model [3], corresponding to take bα(θ) = Cα where Cα,
is a positive constant. The case α = 0 is referred to as the Maxwellian gas, whereas
the case α = 1 yields the hard sphere gas.

2.2. Fluid-dynamical limit. During the evolution process, the collision oper-
ator preserves mass, momentum, and energy; i.e.,

∫
R3

Q(f, f)φ(v) dv = 0, φ(v) = 1, v, v2,(2.6)

and in addition it satisfies Boltzmann’s well-known H-theorem∫
R3

Q(f, f) log(f)dv ≤ 0.(2.7)

From a physical point of view, Boltzmann’s H-theorem implies that any equilibrium
distribution function, i.e., any function f for which Q(f, f) = 0, has the form of a
locally Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )3/2
exp

(
−|u− v|2

2T

)
,(2.8)

where ρ, u, and T are the density, mean velocity, and temperature of the gas defined
by

ρ =

∫
R3

f dv, u =
1

ρ

∫
R3

vf dv, T =
1

3ρ

∫
R3

[v − u]2f dv.(2.9)

As ε→ 0, the distribution function approaches the local Maxwellian (2.8). In this
case, the higher order moments of the distribution f can be computed as function of
ρ, u, and T , by using (2.8), and we obtain to the leading order the closed system of
compressible Euler equations of gas dynamics
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∂ρ

∂t
+∇x · (ρu) = 0,

∂ρu

∂t
+∇x · (ρu⊗ u) +∇xp = 0,(2.10)

∂E

∂t
+∇x · (Eu+ pu) = 0,

p = ρT, E =
3

2
ρT +

1

2
ρu2.(2.11)

2.3. Time discretizations. The time integration of the Boltzmann equation
represents a challenging problem, since the nonlinear collision operator becomes highly
stiff near the fluid regime (ε� 1). An additional limitation is given by the high com-
putational cost required for evaluating the fivefold collisional integral. The starting
point is the usual first order splitting in time of (2.1), which consists of solving sepa-
rately a purely convective step (i.e., Q ≡ 0 in (2.1)) and a collision step characterized
by a space homogeneous Boltzmann equation (i.e., ∇xf ≡ 0 in (2.1)). Clearly, after
this splitting, almost all the main difficulties are contained in the collision step. For
this reason, in what follows we will fix our attention on the time discretization of the
homogeneous Boltzmann equation

∂f

∂t
=

1

ε
Q(f, f).(2.12)

Let us consider the simple forward Euler scheme

fn+1 = fn +
∆t

ε
Q(fn, fn),(2.13)

which has been widely used in simulation. It leads to a stability condition which
requires the time step ∆t to be of order ε. Thus for small values of ε the scheme is
unusable for practical purposes.

On the other hand, the use of fully implicit schemes for (2.12), like the backward
Euler method

fn+1 = fn +
∆t

ε
Q(fn+1, fn+1),(2.14)

requires the solution of a large nonlinear system of algebraic equations, and this makes
the method prohibitively expensive.

Alternatively, semi-implicit discretizations have been proposed [20] based on tak-
ing only the function f(v) implicitly in (2.3), whereas f(v′), f(v′∗), and f(v∗) are
evaluated explicitly. This gives rise to unconditionally stable schemes that have the
same cost of an explicit scheme. Unfortunately, these schemes do not possess the cor-
rect fluid limit as ε→ 0, and, in addition, except for Maxwell molecules, the numerical
solution does not preserve the conserved quantities.

High order extensions of the previous schemes can be developed. At present,
however, the practical interest of high order schemes is strongly reduced by the high
computational cost required by multiple evaluations of the fivefold integral (2.3).

In the next sections, following the approach presented in [9], we will show how
it is possible to construct unconditionally stable schemes for the space homogeneous
equation that are accurate for a wide range of Knudsen numbers, while avoiding the
solution of nonlinear algebraic equations.
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3. The TR schemes. As proposed in [9], a general idea for deriving robust
numerical schemes, that is, schemes that are unconditionally stable and preserve the
asymptotic of the fluid-dynamic limit, for a nonlinear equation like (2.12), is to re-
place high order terms of a suitable well-posed power series expansion by the local
equilibrium. We will call this class of schemes TR schemes. Here we will first derive
the schemes as presented in [9], and then we will show how it is possible to generalize
this approach.

3.1. Derivation. Let us consider a differential system of the type

∂f

∂t
=

1

ε
[P (f, f)− µf ] ,(3.1)

with the same initial condition (2.2), and where µ 
= 0 is a constant and P a bilinear
operator.

Let us replace the time variable t and the function f = f(v, t) using the equations

τ = (1− e−µt/ε), F (v, τ) = f(v, t)eµt/ε.(3.2)

Then F is easily shown to satisfy

∂F

∂τ
=

1

µ
P (F, F )(3.3)

with F (v, τ = 0) = f0(v).
Now, the solution to the Cauchy problem for (3.3) can be sought in the form of

a power series

F (v, τ) =

∞∑
k=0

τkfk(v), fk=0(v) = f0(v),(3.4)

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k∑
h=0

1

µ
P (fh, fk−h), k = 0, 1, . . . .(3.5)

Making use of the original variables, we obtain the following formal representation of
the solution to the Cauchy problem (2.12):

f(v, t) = e−µt/ε
∞∑
k=0

(1− e−µt/ε)kfk(v).(3.6)

Remark 3.1. The method was originally developed by Wild [22, 6] to solve the
Boltzmann equation for Maxwellian molecules. Here we describe the method under a
more general hypothesis on P , as derived in [9]. We emphasize that the representation
(3.6) is not unique, and other well-posed power series expansions can be obtained in
a similar way [9].

Finally, note that expansion (3.6) continues to hold also if µ is a function of v.
Unfortunately, this choice leads to nonconservative schemes.

From this representation, a class of numerical schemes can be naturally derived.
In [9], the following class of numerical schemes, based on a suitable truncation for

m ≥ 1 of (3.6), has been constructed:

fn+1(v) = e−µ∆t/ε
m∑
k=0

(1− e−µ∆t/ε)kfnk (v) + (1− e−µ∆t/ε)m+1M(v),(3.7)
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where fn = f(n∆t) and ∆t is a small time interval. The quantity M (referred to as
the local Maxwellian associated with f) is the asymptotic stationary solution of the
equation.

It can be shown that the schemes obtained in this way are of order m in time.
Furthermore, we have [9] the following proposition.

Proposition 3.1. The schemes defined by (3.7) satisfy the following:
(i) Conservation.

If P (f, g) is a nonnegative bilinear operator such that there exist some func-
tions φ(v) with the following property,

∫
R3

P (f, f)φ(v) dv = µ

∫
R3

fφ(v) dv,(3.8)

and the initial condition f0 is a nonnegative function, then fn+1 is nonneg-
ative for any µ∆t/ε and satisfies

∫
R3

fn+1φ(v) dv =

∫
R3

fnφ(v) dv.(3.9)

(ii) Asymptotic preservation (AP).
For any m ≥ 1, we have

lim
µ∆t/ε→∞

fn+1 = M(v).(3.10)

3.2. Application to the Boltzmann equation. Now we apply the previous
general approach to the Boltzmann equation and related kinetic models. To this aim,
we will need a bound on the loss term, which is essential in most numerical methods.

Let us consider the space homogeneous problem

∂f

∂t
=

1

ε
Q(f, f).(3.11)

Problem (3.11) can be written in the form (3.1), taking

P (f, f) = Q+(f, f) + f(v)

(
µ−

∫
R3

∫
S2

σ(|v − v∗|, ω)f(v∗) dω dv∗

)
,(3.12)

where

Q+(f, f, ) =

∫
R3

∫
S2

σ(|v − v∗|, ω)f(v′)f(v′∗) dω dv∗,(3.13)

and the constant µ must satisfy

µ ≥
∫

R3

∫
S2

σ(|v − v∗|, ω)f(v∗) dω dv∗.(3.14)

In general, the previous condition cannot be satisfied for all v ∈ R
3. The usual

way to overcome this difficulty is to replace the kernel σ with the following bounded
kernel σb:

σb(|v − v∗|, ω) = min {σ(|v − v∗|, ω), σ̄} , σ̄ > 0.
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In this case, it is enough to choose µ = 4πρσ̄ in order to satisfy (3.14).
Note that, in a particle method, there is a natural bound σ̄ on the cross section

due to the finite number of velocities, and therefore it is always possible to satisfy
(3.14).

It is a simple exercise to verify that Proposition 3.1 holds with φ(v) = 1, v, v2.
Let us consider the first order scheme, in which fk, k ≥ 2, is substituted by the

local Maxwellian (2.8). With the notations of the previous sections, the scheme reads

fn+1(v) = (1− τ)fn(v) + τ(1− τ)fn1 (v) + τ2M(v),(3.15)

where τ = 1− e−µ∆t/ε. The results from the last two subsections show that the
approximation defined by (3.15) is well defined independently of the Knudsen number
and, by Proposition 3.1, has the correct moments and converges towards the correct
fluid-dynamic limit.

Remark 3.2. In the case of Maxwell molecules, the method simplifies consid-
erably. In fact, since the collision kernel does not depend on the relative velocity
σb = σb(ω), we simply have P (f, f) = Q+

σ̄ (f, f) and µ = 4πρσ̄, where

σ̄ =
1

4π

∫
S2

σb(ω)dω.(3.16)

3.3. Generalized TR schemes. The approach we have seen in the previous
sections can be generalized using different weight functions to combine the influence of
the high order coefficients appearing in the Wild sum (3.6). In general, such schemes
can be written as

fn+1 =

m∑
k=0

Akfk +Am+1M,(3.17)

where the coefficients fk are given by (3.5).
The weights Ak = Ak(τ) are nonnegative functions that satisfy the following

proposition.
Proposition 3.2. Let the weights Ak = Ak(τ) be nonnegative functions that

satisfy the following.
(i) Consistency.

lim
τ→0

A1(τ)/τ = 1, lim
τ→0

Ak(τ)/τ = 0, k = 2, . . . ,m+ 1.(3.18)

(ii) Conservation.

m+1∑
k=0

Ak = 1, τ ∈ [0, 1].(3.19)

(iii) Asymptotic preservation (AP).

lim
τ→1

Ak(τ) = 0, k = 0, . . . ,m;(3.20)

then (3.17) is a consistent discretization of problem (3.1) that satisfies Proposition
3.1.

The proof is a simple exercise, and we leave it to the reader.
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A choice of functions which satisfies the previous requirements is given by

Ak = (1− τ)τk, k = 0, . . . ,m, Am+1 = τm+1,(3.21)

which correspond to the scheme (3.7). A better choice of parameters is [16]

Ak = (1−τ)τk, k = 0, . . . ,m−1, Am = 1−
m∑
k=0

Ak−Am+1, Am+1 = τm+2,(3.22)

which corresponds to take fm+1 = fm, fk = M , k ≥ m+ 2 in (3.6).
However, other choices are possible; and it is an open problem, the determina-

tion of the optimal set of functions Ak, that satisfies the previous requirements and
guarantees the most accurate approximation.

3.4. Stability analysis of the TR schemes. In this paragraph, we report
some results related to the stability of the TR schemes. In particular, we show that
the first and second order TR schemes are L-stable [16].

Let us apply the TR scheme to the test equation

y′ = λy(3.23)

with y(0) = 1 and λ ∈ C−.
The equation can be written in the form

y′ = P (y, y)− µy,

with P (f, g) = 1
2 (µ + λ)(f + g), and µ is a positive constant such that |λ| < µ. The

numerical solution after one time step is given by

y1 =

m∑
k=0

Akyk.(3.24)

The m + 1 term vanishes because the equilibrium solution is zero. The term yk can
be explicitly computed by applying formula (3.5). A simple calculation yields

yk =
1

k!

k∏
j=1

(j + a) =
Γ(k + 1 + a)

Γ(k + 1)Γ(1 + a)
, k = 0, . . . ,m,(3.25)

where a = λ/µ and Γ denotes the usual Γ-function. The numerical solution after one
time step, called the function of absolute stability, is therefore a function of a real
parameter τ and a complex parameter a such that

Rm(τ, a) =

m∑
k=0

Ak(τ)yk(a),

where τ = 1−exp(−µ∆t) is the relaxed time, and a is a complex number a ∈ C−, |a| ≤
1. Here we give definitions of A- and L-stability which are the natural generalization
of the standard definition [10] to the case where the function of absolute stability
depends on an additional real parameter.
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Definition 3.3.
(i) We say that the scheme is A-stable if

|R(τ, a)| ≤ 1 ∀τ ∈ [0, 1], a ∈ C−, |a| ≤ 1.

(ii) We say that the scheme is L-stable if it is A-stable and

lim
τ→1

R(τ, a) = 0 ∀a ∈ C−, |a| ≤ 1.

It is clear that, because of the asymptotic preserving properties, if a TR scheme
is A-stable it is also L-stable.

Here we recall the main result about the stability of first and second order TR
schemes with weights given by (3.21).

The functions of absolute stability for these schemes are

R1(τ, a) = (1− τ)[1 + τ(1 + a)],(3.26)

R2(τ, a) = (1− τ)

[
1 + τ(1 + a) +

1

2
τ2(1 + a)(2 + a)

]
.(3.27)

We have the following theorem [16].
Theorem 3.4. The schemes defined by (3.21) for m = 1 and m = 2 are A-stable,

i.e.,

|R1(τ, a)| ≤ 1 ∀τ ∈ [0, 1], a ∈ C−, |a| ≤ 1,

|R2(τ, a)| ≤ 1 ∀τ ∈ [0, 1], a ∈ C−, |a| ≤ 1.

4. TRMC methods. In this section, we describe the TRMC method for the
evolution of the density function f . We shall include the description of the classical
DSMC no-time counter algorithm, so that it will be easier to make a comparison
between the new formulation and the previous one.

We develop the algorithms first in the simple case of constant cross sections
(Maxwellian molecules) and then for the Boltzmann equation for VHS gas.

4.1. DSMC methods. Here we will describe the classical DSMC method in the
general framework we have introduced in the previous sections. More specifically, we
consider the Nanbu–Babovsky algorithm [14, 1]. The convergence of this scheme has
been proved by Babovsky and Illner [2].

The kinetic equations we are considering can be written in the form

∂f

∂t
=

1

ε
[P (f, f)− µf ].(4.1)

In particular, for the Boltzmann equation for Maxwellian molecules, we have
P (f, f) = Q+(f, f) (see Remark 3.2), whereas for general kernels with cut-off, P (f, f)
is given by (3.12).

We assume that f is a probability density; i.e.,

ρ =

∫
R3

f(v, t) dv = 1.

Let us discretize time and denote by fn(v) an approximation of f(v, n∆t). The
forward Euler scheme applied to (4.1) writes

fn+1 =

(
1− µ∆t

ε

)
fn +

µ∆t

ε

P (fn, fn)

µ
.(4.2)
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This equation has the following probabilistic interpretation: a particle with velocity
vi will not collide with probability (1 − µ∆t/ε), and it will collide with probability
µ∆t/ε, according to the collision law described by P (fn, fn)(v).

We remark here that the probabilistic interpretation of (4.2) breaks down if ∆t/ε
is too large because the coefficient of fn on the right-hand side may become negative.
This implies that the time step becomes extremely small when approaching the fluid-
dynamic limit. Therefore, the classical DSMC method becomes almost unusable near
the fluid regime.

For clarity of exposition, let us first consider kinetic equations for which P (f, f) =
Q+(f, f); i.e., the collision kernel does not depend on the relative velocity of the
particles.

An algorithm based on this probabilistic interpretation was proposed by Nanbu
[14].

In its first version, Nanbu’s algorithm was not conservative; i.e., energy and mo-
mentum were conserved only in the mean but not at each collision. A conservative
version of the algorithm was introduced by Babovsky [1]. Instead of selecting single
particles, independent particle pairs are selected, and conservation is maintained at
each collision. The expected number of particles that collide in a small time step ∆t
is Nµ∆t/ε, and the expected number of collision pairs is Nµ∆t/(2ε). The algorithm
for evolving the density up to time t = ntot∆t is the following.

Algorithm 4.1 (DSMC for Maxwell molecules).
• compute the initial velocity of the particles, {v0

i , i = 1, . . . , N},
by sampling them from the initial density f0(v)
• for n = 1 to ntot

given {vni , i = 1, . . . , N},
◦ compute {vn+1

i } as follows:
◦ set Nc = Iround(µN∆t/(2ε))
◦ select Nc pairs (i, j) uniformly among all possible pairs,
and for those
◦ perform the collision between i and j, and
compute v′i and v′j according to the collisional law

◦ set vn+1
i = v′i, v

n+1
j = v′j

◦ set vn+1
i = vni for all particles that have not been selected

end for
During each step, all the other N − 2Nc particle velocities remain unchanged.

Here, by Iround(x), we denote a suitable integer rounding of a positive real number
x. In our algorithm, we choose

Iround(x) =

{
[x] with probability [x] + 1− x,
[x] + 1 with probability x− [x],

where [x] denotes the integer part of x.
The postcollisional velocities are computed through relations

v′i =
vi + vj

2
+
|vi − vj |

2
ω, v′j =

vi + vj
2

− |vi − vj |
2

ω,(4.3)

where ω is chosen uniformly in the unit sphere, according to

ω =


 cosφ sin θ

sinφ sin θ
cos θ


 , θ = arccos(2ξ1 − 1), φ = 2πξ2,(4.4)
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and ξ1, ξ2 are uniformly distributed random variables in [0, 1].
Note that this approach is equivalent to sampling the postcollisional velocity

according to P (f, f)/µ, where µ = 4πσ and σ is the constant cross section.
The above algorithm has to be modified when the scattering cross section is not

constant. In this case, a simple algorithm is obtained by using an upper bound σ̄ of
the scattering cross section and the acceptance-rejection technique.

Algorithm 4.2 (DSMC for VHS molecules).
• compute the initial velocity of the particles, {v0

i , i = 1, . . . , N},
by sampling them from the initial density f0(v)
• for n = 1 to ntot

given {vni , i = 1, . . . , N},
◦ compute an upper bound σ̄ for the cross section
◦ set µ = 4πσ̄
◦ set Nc = Iround(µN∆t/(2ε))
◦ select Nc dummy collision pairs (i, j) uniformly
among all possible pairs, and for those
◦ compute the relative cross section σij = σ(|vi − vj |)
◦ if σ̄Rand < σij

◦ perform the collision between i and j, and
compute v′i and v′j according to the collisional law

◦ set vn+1
i = v′i, v

n+1
j = v′j

else
◦ set vn+1

i = vni , v
n+1
j = vnj

◦ set vn+1
i = vni for the N − 2Nc particles that have not been selected

end for
The new velocities v′i and v′j are computed using (4.3) and (4.4).
The upper bound σ̄ should be chosen as small as possible, to avoid inefficient

rejection, and it should be computed fast.
An upper bound can be derived taking σ̄ as

σmax = max
vi,vj

σ(|vi − vj |).(4.5)

Classically, since this computation would require O(N2) operations, instead of (4.5)
it is preferable to use an upper bound of σmax given by

σmax ≤ σ̄ = σ(2∆v), ∆v = max
i
|vi − v̄|, v̄ =

∑
i

vi/N.(4.6)

For the general collisional kernel, the algorithm is slightly modified by introducing
the angular dependence. In this case, the collision is always performed, and the new
velocities are extracted according to the differential cross section. Then a rejection is
used to decide whether the collision is accepted.

Remark 4.1. Note that if the time step is small enough, only a small fraction
of particles, let us say Nc, will collide. The computational cost of the collisions is
therefore O(Nc). On the other hand, the cost of the computation of the upper bound
σ̄ is O(N), which may be much larger than O(Nc). A possible way to overcome
this difficulty is to update at each time step the value of the upper bound σ̄ only if
it increases. This may be done as follows. During the computation of the collision
between particles i and j, let ṽi and ṽj denote the new particle velocities. Then the
quantity ∆v is updated according to

∆v = max(∆v, |ṽi − v̄|, |ṽj − v̄|).(4.7)
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At the end of the collision loop, the upper bound on the cross section is computed as

σ̄ = σ(2∆v).

In space nonhomogeneous calculations, assuming that there are several collisional time
steps during a convection time step, the bound can be computed according to (4.6)
the first time step and then updated as described above.

4.2. TRMC methods. The first order TRMC algorithm is based on the TR
schemes

fn+1 = A0f
n +A1f1 +A2M.(4.8)

The probabilistic interpretation of the above equation is the following: a particle
extracted from fn will not collide with probability A0; it will collide with another
particle extracted from fn with probability A1; or it will be replaced by a particle
sampled from a Maxwellian with probability A2.

In this formulation, the probabilistic interpretation holds uniformly in µ∆t/ε,
at variance with standard DSMC, which requires µ∆t/ε < 1. Furthermore, as
µ∆t/ε → ∞, the distribution at time n + 1 is sampled from a Maxwellian. In this
limit, the density fn+1 relaxes immediately to its equilibrium distribution. In a space
nonhomogeneous case, this would be equivalent to the particle method for Euler equa-
tions proposed by Pullin [18].

The Monte Carlo schemes described above are conservative in the mean. It is
possible to make it exactly conservative by selecting collision pairs uniformly, rather
than individual particles, and by using a suitable algorithm for sampling a set of
particles with prescribed momentum and energy from a Maxwellian [19].

The conservative version of the methods can be formalized in the following algo-
rithm.

Algorithm 4.3 (first order TRMC for VHS molecules).
• compute the initial velocity of the particles, {v0

i , i = 1, . . . , N},
by sampling them from the initial density f0(v)
• for n = 1 to ntot

given {vni , i = 1, . . . , N},
◦ compute an upper bound σ̄ of the cross section
◦ set τ = 1− exp(−ρσ̄∆t/ε)
◦ compute A1(τ), A2(τ)
◦ set Nc = Iround(NA1/2)
◦ perform Nc dummy collisions, as in Algorithm 4.2
◦ set NM = Iround(NA2)
◦ select NM particles among those that have not collided,
and compute their mean momentum and energy
◦ sample NM particles from the Maxwellian with the above
momentum and energy, and replace the NM selected particles
with the sampled ones
◦ set vn+1

i = vni for all the N − 2Nc −NM particles that
have not been selected

end for
A second order Monte Carlo scheme is obtained by the TR scheme

fn+1 = A0f
n +A1f1 +A2f2 +A3M(4.9)
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with

f1 =
P (fn, fn)

µ
, f2 =

P (fn, f1)

µ
.

Given N particles distributed according to fn, the probabilistic interpretation of
scheme (4.9) is the following: NA0 particles will not collide; NA1 will be sampled from
f1 (as in the first order scheme); NA2 will be sampled from f2; i.e., NA2/2 particles
sampled from fn will undergo dummy collisions with NA2/2 particles sampled from
f1; and NA3 particles will be sampled from a Maxwellian.

Once again, the methods can be made conservative using the same techniques
adopted in the first order scheme. The various steps of the method can be summarized
in the following algorithm.

Algorithm 4.4 (second order TRMC for VHS molecules).
• compute the initial velocity of the particles, {v0

i , i = 1, . . . , N},
by sampling them from the initial density f0(v)
• for n = 1 to ntot

given {vni , i = 1, . . . , N},
◦ compute an upper bound σ̄ of the cross section
◦ set τ = 1− exp(−ρσ̄∆t/ε)
◦ compute A1(τ), A2(τ),A3(τ)
◦ set N1 = Iround(NA1/2) , N2 = Iround(NA2/4)
◦ select N1 +N2 dummy collision pairs (i, j) uniformly
among all possible pairs
◦ for N1 pairs
◦ compute the relative cross section σij = σ(|vi − vj |)
◦ if σ̄Rand < σij

◦ perform the collision between i and j, and
compute v′i and v′j according to the collisional law

◦ set vn+1
i = v′i, v

n+1
j = v′j

◦ for N2 pairs
◦ compute the relative cross section σij = σ(|vi − vj |)
◦ if σ̄Rand < σij

◦ perform the collision between i and j,
compute v′i and v′j according to the collisional law and
store them

◦ select 2N2 particles from fn

◦ perform the collision of these selected particles with the
second set of 2N2 particles that have collided once
◦ update the velocity of the 4N2 particles with the outcome
of the 2N2 collisions (of particles that have never collided
before with particles that collided once)
◦ set NM = Iround(NA3)
◦ replace NM particles with samples from Maxwellian, as in Algorithm 4.3
◦ set vn+1

i = vni for all the N − 2N1 − 4N2 −NM particles that
have not been selected

end for
Similarly, higher order TRMC methods can be constructed. For example, a third

order scheme is obtained from

fn+1 = A0f
n +A1f1 +A2f2 +A3f3 +A4M(4.10)
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with

f1 =
P (fn, fn)

µ
, f2 =

P (fn, f1)

µ
, f3 =

1

3µ
[2P (fn, f2) + P (f1, f1)].

We omit for brevity the details of the resulting Monte Carlo algorithm.
We remark here that the TR scheme is a direct consequence of the time discretiza-

tion of the Boltzmann equation. In this respect, the choice of a particular Monte Carlo
scheme used to model the collision is not crucial. Here we considered a commonly
used Monte Carlo scheme. If a different technique is used to model the collision, then
the same technique could be used in conjunction with the TR discretization.

5. Numerical results. In this section, we present some numerical results for
the new TRMC method and compare them with the standard DSMC method.

5.1. Space homogeneous results. First we consider homogeneous test prob-
lems for the Kac equation [12] and for the Boltzmann equation for Maxwell molecules.
Exact solutions are known in these special situations, and so we can compare the ac-
curacy of the different schemes. In our tests, we have performed a single run with
a number of particles sufficiently large to control the effects of the fluctuations. We
express the results as a function of the scaled time variable t/ε, which we denote again
by t, in order to simplify the notations.

5.1.1. Test I: Kac equation. In the first test, we compare the different Monte
Carlo methods using an exact solution of the Kac equation [12]. This test is used to
check the accuracy of the methods using different time steps.

The Kac equation is a simplified one-dimensional model of the Boltzmann equa-
tion for Maxwell molecules characterized by

Q(f, f)(v) =
1

2π

∫ 2π

0

∫
R

[f(v′)f(v′∗)− f(v)f(v∗)] dv∗ dθ,(5.1)

where

v′ = v cos θ − v∗ sin θ, v′∗ = v sin θ + v∗ cos θ.(5.2)

An exact solution for this equation is [4, 13]

f(v, t) =
1

2C3/2

[
3

2
(C − 1) + (3− C)

v2

C2

]
exp (−v2/C)

with C(t) = 3− 2 exp(−√πt/16).
The previous TR schemes can be applied directly to (5.1), taking

P (f, f) =
1

2π

∫ 2π

0

∫
R3

f(v′)f(v′∗) dv∗ dθ,(5.3)

and µ = ρ.
The density function f has been reconstructed on a regular grid, by convolving

the particle distribution by a suitable mollifier [8]

f(VI) =
1

N

N∑
j=1

WH(VI − vj),(5.4)
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Fig. 1. Test I (Kac equation). Details of the distribution function at time t = 2.0 for ∆t = 1.0.
Exact (line), DSMC (+), first order TRMC (�), second order TRMC (∗), third order TRMC (◦).

where

{VI = Vmin + I∆V, I = 1, . . . , Ng}.

The smoothing function WH is given by

WH(x) =
1

H
W
( x

H

)
, W (x) =




3/4− x2 if |x| ≤ 0.5,
(x− 3/2)2/2 if 0.5 < |x| ≤ 1.5,

0 otherwise.

The value H = 0.2 has been selected as a good compromise between fluctuations
and resolution. The simulations are performed for t ∈ [0, 8] by starting with N =
5× 104 particles.

In Figure 1 we present the numerical results obtained at time t = 2 for the different
schemes with the same time step ∆t = 1.0, which represents the upper bound for the
stability of DSMC.

It is evident that all TRMC schemes gives a better representation of the solution,
especially near the local extrema.

Figure 2 shows the results of the L2-norm of the error for the same test. At the
bottom of the same figure, we show how it is possible to use larger time steps in
TRMC schemes with respect to DSMC without any deterioration of the accuracy.

5.1.2. Test II: Maxwell molecules. Next we perform the same kind of accu-
racy test in the case of the Boltzmann equation for Maxwell molecules in the two-
dimensional case. An exact solution to this equation [4, 13] is given by

f(v, t) =
1

2πC

[
1− (1− C)

C

(
1− v2

2C

)]
exp

(
− v2

2C

)
,(5.5)

where C(t) = 1− (1/2) exp(−t/8).
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Fig. 2. Test I (Kac equation). L2 norm of the error vs time. DSMC (+), first order TRMC
(�), second order TRMC (∗), third order TRMC (◦). Top: Time step ∆t = 1.0. Bottom: DSMC
with ∆t = 0.25, first order TRMC with ∆t = 0.5, second order TRMC with ∆t = 0.75, third order
TRMC3 with ∆t = 1.0.
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Fig. 3. Test II (Maxwell molecules). L2 norm of the error vs time. DSMC (+), first order
TRMC (�), second order TRMC (∗), third order TRMC (◦). Top: Time step ∆t = 1.0. Bottom:
DSMC with ∆t = 0.25, first order TRMC with ∆t = 0.5, second order TRMC with ∆t = 0.75, third
order TRMC3 with ∆t = 1.0.

The comparison with the exact solution is obtained by reconstructing the function
on a regular grid of spacing ∆v = 0.25 by the “weighted area rule” [11].

All the simulations have been performed for t ∈ [0, 16] by starting with N = 105

particles.
In Figure 3 we show the L2 norm of the error in time for both DSMC and TRMC

schemes. In the first picture, we report the results obtained with the same time step
∆t = 1.0. The results confirm the gain of accuracy of the TRMC methods on the
transient time scale. Next, the results obtained with different time steps, chosen in
such a way that the different errors are roughly the same, are also reported.

5.2. Shock wave profiles. The last test problem deals with the numerical so-
lution of the space nonhomogeneous Boltzmann equation for hard sphere molecules
(VHS, for α = 1) with Cα = 1. We present some numerical results for one-dimensional
stationary shock profiles. In particular, we have computed the structure of the shock
for different Knudsen numbers, from the rarefied regime up to the fluid limit. In all
our numerical tests, the gas is initially at the upstream equilibrium state in the left
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Fig. 4. Shock wave profiles (rarefied regime): DSMC(+) and first order TRMC (×) (left
column), second order (∗) and third order (◦) TRMC (right column) for ε = 1.0 and ∆t = 0.025.
From top to bottom: ρ, u, T . The line is the reference solution.

half-space and in the downstream equilibrium state in the right half-space. The up-
stream state is determined from the downstream state using the Rankine–Hugoniot
relations [21].

In the present calculations, the downstream state is characterized by

ρ = 1.0, T = 1.0, M = 3.0,

where M is the Mach number of the shock. The downstream mean velocity is then
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Fig. 5. Shock wave profiles (intermediate regime): DSMC(+) and first order TRMC (×) (left
column), second order (∗) and third order (◦) TRMC (right column) for ε = 1.0 and ∆t = 0.0025
for DSMC, ∆t = 0.025 for TRMC. From top to bottom: ρ, u, T . The line is the reference solution.

given by

ux = −M
√
(γT ), uy = 0,

with γ = 2 since we have considered a two-dimensional monatomic gas in velocity
space.

The infinite physical space is truncated to the finite region [−7.5, 7.5]. A suitable
stabilizing technique [3] has been used to keep the number of particles constant during
the time evolution. We report the result obtained with the different schemes using
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Fig. 6. Shock wave profiles (fluid regime): First order TRMC (×) for ε = 10−6 and ∆t = 0.025.
From top to bottom: ρ, u, T .

50 space cells and 500 particles in each downstream cell. Since we are computing a
stationary solution after a fixed initial time, we can strongly improve the accuracy
of the Monte Carlo solution by averaging in time the solution itself. To this aim, we
started accumulating statistics at time t = 5, and we average up to t = 20, which
corresponds approximatively to 1500 time steps. The reference solution in the rarefied
and intermediate regime is obtained using the DSMC method with 200 space cells and
500 particles in each downstream cell and averaging over approximatively 8000 time
steps. All the results are reported on the space interval [−4.5, 4.5].

In Figure 4 we plot the result obtained in the rarefied regime (ε = 1) using the
different Monte Carlo methods. The computational cost of the methods is compara-
ble, since here we are far from the fluid limit. As expected, the results show that,
essentially, the TRMC methods and the DSMC method are equivalent and provide a
good description of the rarefied shock.

Next we consider the intermediate regime (ε = 0.1). Two different time steps have
been used for DSMC, a convection time step ∆t and a collision time step ∆tcoll =
∆t/10. The collision time step for TRMC is equal to the convection time step. The
results show that, despite the larger time step, the accuracy of the solution obtained
with TRMC schemes is essentially the same of DSMC (see Figure 5).

Finally, we give the result of the computations close to the Euler limit (ε = 10−6).
The profiles obtained with the TRMC methods are reported in Figure 6. Due to the
small Knudsen number, the DSMC method is unusable in practice in this test. Note
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that the TRMC methods are all equivalent to Pullin’s method. Thus we have plotted
only one approximate solution.

Conclusion and future works. In this paper, a new family of schemes is pro-
posed for the numerical solution of the Boltzmann equation.

The schemes have been tested on several problems for the Boltzmann equation,
and they provide good results compared with standard Monte Carlo methods.

There is still a lot to do to improve the accuracy and robustness of the schemes. In
particular, the optimal choice of the coefficients Ak, k = 1, . . . ,m, is still an open prob-
lem. Several possibilities are presently under consideration. The first one corresponds
to choosing the coefficients in such a way that some moments of the distribution func-
tion for Maxwellian molecules are computed exactly. It is well known, in fact, that
exact closure for the moment equations is possible in the case of Maxwellian molecules
[23]. The same coefficients could then be used for VHS molecules.

A second alternative is to compute several terms of the Wild sum expansion. If
the weights of the expansion decay fast enough, the computation can be done very
efficiently by a recursive algorithm, even for large values of k. The recursive tree can
eventually be truncated and the corresponding value of fk substituted by sampling
from a Maxwellian. Such an approach is very promising and is considered in [17].

REFERENCES

[1] H. Babovsky, On a simulation scheme for the Boltzmann equation, Math. Methods Appl. Sci.,
8 (1986), pp. 223–233.

[2] H. Babovsky and R. Illner, A convergence proof for Nanbu’s simulation method for the full
Boltzmann equation, SIAM J. Numer. Anal., 26 (1989), pp. 45–65.

[3] G. A. Bird, Molecular Gas Dynamics, Oxford University Press, London, 1976.
[4] A. V. Bobylev, Exact solutions of the Boltzmann equation, Dokl. Akad. Nauk SSSR, 225

(1975), pp. 1296–1299 (in Russian).
[5] J. F. Bourgat, P. LeTallec, B. Perthame, and Y. Qiu, Coupling Boltzmann and Euler

equations without overlapping, in Domain Decomposition Methods in Science and Engi-
neering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 377–398.

[6] E. A. Carlen, M. C. Carvalho, and E. Gabetta, Central limit theorem for Maxwellian
molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000),
pp. 370–397.

[7] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York,
1988.

[8] L. Desvillettes and R. E. Peralta Herrera, A vectorizable simulation method for the
Boltzmann equation, RAIRO Modél. Math. Anal. Numér., 28 (1994), pp. 745–760.

[9] E. Gabetta, L. Pareschi, and G. Toscani, Relaxation schemes for nonlinear kinetic equa-
tions, SIAM J. Numer. Anal., 34 (1997), pp. 2168–2194.

[10] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, Springer-Verlag, New York, 1987.

[11] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill,
New York, 1981.

[12] M. Kac, Probability and Related Topics in Physical Sciences, Lectures in Appl. Math., Inter-
science Publishers, London, New York, 1959.

[13] M. Krook and T. T. Wu, Formation of Maxwellian tails, Phys. Rev. Lett., 36 (1976),
pp. 1107–1109.

[14] K. Nanbu, Direct simulation scheme derived from the Boltzmann equation, J. Phys. Soc. Japan,
49 (1980), pp. 2042–2049.

[15] L. Pareschi and R. E. Caflisch, Implicit Monte Carlo methods for rarefied gas dynamics I:
The space homogeneous case, J. Comput. Phys., 154 (1999), pp. 90–116.

[16] L. Pareschi and G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann
equation, Transport Theory Statist. Phys., 29 (2000), pp. 415–430.

[17] L. Pareschi and B. Wennberg, A recursive Monte Carlo method for the Boltzmann equation
in the Maxwellian case, Monte Carlo Methods Appl., 7 (2001), pp. 349–358.

[18] D. I. Pullin, Direct simulation methods for compressible inviscid ideal gas flow, J. Comput.



TIME RELAXED MONTE CARLO METHODS 1273

Phys., 34 (1980), pp. 231–244.
[19] D. I. Pullin, Generation of normal variates with given sample, J. Statist. Comput. Simulation,

9 (1979), pp. 303–309.
[20] G. Russo and R. E. Caflisch, Implicit methods for kinetic equations, in Rarefied Gas Dy-

namics: Theory and Simulations, Progress in Aeronautics and Astronautics 159, AIAA,
New York, pp. 344–352.

[21] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.
[22] E. Wild, On Boltzmann’s equation in the kinetic theory of gases, Proc. Cambridge Philos.

Soc., 47 (1951), pp. 602–609.
[23] C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell Kinetic Theory of a Simple

Monatomic Gas, Academic Press, New York, 1980.



CONDITIONS OF NONDEGENERACY OF THREE-DIMENSIONAL
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Abstract. Numerical solutions of partial differential equations in three dimensions often use
hexahedral cells composing a computational grid. After the grid is constructed, it is first of all verified
whether the grid is unfolded or not. For such a test in this paper, conditions of nondegeneracy are
found for hexahedral cells which are given by eight corner points and generated by the trilinear map
from a unit cube to a region defined by these points. The conditions include necessary conditions
and two sets of sufficient conditions. They are found as conditions of positivity of the Jacobian of
the trilinear map. Thus, the conditions which guarantee the invertibility of the trilinear map from
a unit cube to a hexahedron are given. How general the nondegeneracy conditions are is shown by
a numerical experiment. Formulas of the Jacobian of the trilinear map are obtained, and following
from them, as a separate result, a formula of a volume of a cell is obtained.

Key words. grid generation, hexahedral cells, positivity of the Jacobian of the trilinear map,
conditions of nondegeneracy of cells, formula of a volume of a cell
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Introduction. For grid generation methods, good grid quality tests are needed.
In the two-dimensional case [1, 2], the tests are suggested in [3]. Among them, in
the first place, there is the criterion of nondegeneracy of cells since this criterion
is a common requirement for a computational grid and a major objective of grid
generation algorithms. Therefore, both a mathematician developing a grid generation
method and a practicing engineer must care about this. Such tests are very important,
especially, in three dimensions when a visualization of a grid is complicated. The
purpose of the present research was to find this criterion for a grid consisting of
hexahedrons generated by a trilinear map of a unit cube. Hexahedral cells are often
used [4] by finite difference and finite element methods. As a result, the conditions
of nondegeneracy of cells were found. The obtained conditions were briefly presented
in [5]. In this paper, conditions of nondegeneracy and their deduction are given in
detail.

Earlier, the problem of nondegeneracy of hexahedral cells (the problem of invert-
ibility of the trilinear map) was investigated in a number of works; see, for example,
[6, 7, 8].

In section 1, the criterion of nondegeneracy of cells is formulated in terms of
positivity of the Jacobian of the transformation used for generation of cells. Formulas
of the Jacobian are obtained in section 2. In section 3, both necessary and sufficient
conditions of positivity of the Jacobian are found. The conditions are formulated as
restrictions on the volumes of tetrahedrons with the vertices located at the corners
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Fig. 1.1. Three-dimensional cells: (a) hexahedron; (b) dodecahedrons.

of hexahedral cells. (The faces of tetrahedrons are planar.) The formulas of the
Jacobian are written in the form of polynomials with the coefficients proportional to
the volumes of tetrahedrons. The results of computations for hexahedrons randomly
selected by the computer are presented. The results give the success rate of the
obtained conditions as well as examples of hexahedral cells, the nondegeneracy of
which is verified by means of these conditions.

In section 4, a new formula of a volume of a cell is derived. Formulas of a
volume of a cell published in [4, 9] are rather complex and demand a large amount
of computations. Efficient volume computation and another formula of a cell volume
were suggested in [10]. The formula obtained in this work is similar to [10] but requires
computation of volumes of ten tetrahedrons.

1. Generation of ruled hexahedral cells. Let eight points zi1i2i3 = (z1
i1i2i3

,
z2
i1“i2i3

, z3
i1i2i3

), i1, i2, i3 = 0, 1 be given. The trilinear map

z(y) = a000 + a100y
1 + a010y

2 + a001y
3

+ a110y
1y2 + a101y

1y3 + a011y
2y3 + a111y

1y2y3(1.1)

of the unit cube P = {y = (y1, y2, y3) : 0 ≤ yl ≤ 1, l = 1, 2, 3} defines the ruled cell
with the corners zi1i2i3 = z(i1, i2, i3), i1, i2, i3 = 0, 1. The vectors ai1i2i3 are found
from the following relations:

a000 = z000, a111 = z111 − z110 − z101 − z011 + z100 + z010 + z001 − z000,

a001 = z001 − z000, a011 = z011 − z010 − z001 + z000,

a010 = z010 − z000, a101 = z101 − z100 − z001 + z000,

a100 = z100 − z000, a110 = z110 − z100 − z010 + z000.
(1.2)

The concept of the ruled cell and techniques of generation of grids by such cells can
be found, for example, in [4, 9]. In two dimensions, the ruled cell is a quadrilateral. If
all eight corners of the cell are different, the edges of the cube are transformed by the
trilinear map to straight line edges of the hexahedron, and the faces of the cube are
transformed to ruled surfaces of the second order or planes (Figures 1.1, 3.1, and 3.2).

Many of the grid properties can be controlled by the Jacobian matrix of the
map used for generating a grid or a cell [11]. The criterion of nondegeneracy of a
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cell is usually formulated in terms of positivity of the Jacobian (the determinant of
the Jacobian matrix) of such a map [7, 8, 12, 13]. A grid element or a cell is said
to be nondegenerate (noninverted, valid, unfolded, nonsingular) if the Jacobian is
positive. In the general case, the nonzero Jacobian does not globally guarantee a
one-to-one correspondence of the map ([13, Example 1.3.4, p. 9]). It guarantees only
locally. In the case of a trilinear map (smooth map) from a cube (a domain), the
nonzero Jacobian in the whole cube (including boundary) globally guarantees a one-
to-one correspondence of the map ([8, Theorem 1, p. 8-4]). Positivity of the Jacobian
provides the same orientation of edges of a cell that a unit cube has. Nondegeneracy
of the joint grid is attained by the nondegeneracy of all its cells [8].

The Jacobian of map (1.1),

J(y1, y2, y3) =
∂
(
z1, z2, z3

)
∂(y1, y2, y3)

= det

(
∂zi

∂yj

)
i=1,2,3, j=1,2,3

,

is equal to the triple scalar product

J =

[
∂z

∂y1
,
∂z

∂y2
,
∂z

∂y3

]
,(1.3)

where

∂z

∂y1
= a100 + a110y

2 + a101y
3 + a111y

2y3,

∂z

∂y2
= a010 + a110y

1 + a011y
3 + a111y

1y3,(1.4)

∂z

∂y3
= a001 + a101y

1 + a011y
2 + a111y

1y2.

The properties of the Jacobian are studied in [6, 7, 8, 12]. In two dimensions, a bilinear
map of a unit square is considered. Its Jacobian is a linear function. If the Jacobian
is positive at the corners of the square, then due to linearity the Jacobian will be
positive everywhere in the square. The converse is also true. In two dimensions, if
the Jacobian is positive, then the cell is convex, and the condition of nondegeneracy
of cells is equivalent to the condition of convexity of cells [8, 12, 13].

A three-dimensional case is much more complicated. Since the faces of the cell
can be nonplanar, the cell can be nonconvex. In [6] it is implied that the Jacobian in
three dimensions is positive everywhere if and only if the Jacobian is positive at the
corners of a cube. In [7] this statement is shown to be false. It is also demonstrated
that for the positivity of the Jacobian in the interior of the cube the positivity of the
Jacobian on the edges of the cube is not sufficient. The Jacobian in [7] is written in
terms of polynomials, the coefficients of which are the values of the Jacobian on the
edges.

2. The Jacobian of the trilinear map. For each point zi1i2i3 , i1, i2, i3 = 0, 1,
consider the vectors (Figure 1.1(a))

pi1i2i3 = zī1i2i3 − zi1i2i3 , qi1i2i3 = zi1 ī2i3 − zi1i2i3 ,
ri1i2i3 = zi1i2 ī3 − zi1i2i3 , ui1i2i3 = zi1 ī2 ī3 − zi1i2i3 ,
vi1i2i3 = zī1i2 ī3 − zi1i2i3 , wi1i2i3 = zī1 ī2i3 − zi1i2i3 ,
di1i2i3 = zī1 ī2 ī3 − zi1i2i3 .

(2.1)



CONDITIONS OF NONDEGENERACY. VOLUME OF CELLS. 1277

z110

z011z001

z101

z111

z000

z100

–q000

q100

(a)

z010

r100

–r000

(b)

–r000

(c)

r010

–r100

r000

r110
–r010

(d)

Fig. 2.1. Vectors ai1i2i3 : (a) a110; (b) a101; (c) a011; (d) a111.

Here and hereafter, 0̄ = 1, 1̄ = 0. The vectors p, q, r are directed along the edges,
the vectors u, v, w play the role of “diagonals” of the faces, and vectors d are “inner
diagonals” of the cell.

The vectors (2.1) have the properties

p0i2i3 = (−1)i1pi1i2i3 ,

qi10i3 = (−1)i2qi1i2i3 ,(2.2)

ri1i20 = (−1)i3ri1i2i3 , i1, i2, i3 = 0, 1,

and they can also be represented by vector sums; for example,

rī1i20 = (−1)i3(v − p)i1i2i3 ,

ri1 ī20 = (−1)i3(u− q)i1i2i3 ,(2.3)

qi10ī3 = (−1)i2(u− r)i1i2i3 .
Consider the decompositions of the coefficients (1.2) with respect to vectors (2.1)

(see Figure 2.1):

a100 = p000, a010 = q000, a001 = r000,

a110 = −q000 + q100 = w010 − p000 −w010 + p010 = −p000 + p010,

a101 = −r000 + r100 = v000 − p000 − v000 + p001 = −p000 + p001,

a011 = −r000 + r010 = u000 − q000 − u000 + q001 = −q000 + q001,(2.4)

a111 = −a101 + r110 − r010 = −a101 − p010 + v010 − v010 + p011

= p000 − p001 − p010 + p011 = −a011 − r100 + r110

= r000 − r010 − r100 + r110 = −a011 − q100 + u100 − u100 + q101

= q000 − q001 − q100 + q101.

By (2.4), vectors (1.4) can be obtained in the form

∂z

∂y1
= p000(1− y2)(1− y3) + p010y

2(1− y3) + p001y
3(1− y2) + p011y

2y3,

∂z

∂y2
= q000(1− y1)(1− y3) + q100y

1(1− y3) + q001y
3(1− y1) + q101y

1y3,(2.5)

∂z

∂y3
= r000(1− y1)(1− y2) + r100y

1(1− y2) + r010y
2(1− y1) + r110y

1y2.
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Using properties (2.2) and formulas (2.5), we compute the Jacobians at the corners

Ji1i2i3 = J(i1, i2, i3) = δi1i2i3 [p,q, r]i1i2i3 = 6V pqri1i2i3
, i1, i2, i3 = 0, 1.

Here and hereafter, δi1i2i3 = (−1)i1+i2+i3 , and lower indices related to brackets refer to
each element inside brackets. The value Ji1i2i3 is six times the volume of a tetrahedron
with the corner zi1i2i3 and edges pi1i2i3 , qi1i2i3 , ri1i2i3 (the notation V pqri1i2i3

). The
notations of such type will be used to designate the volumes of tetrahedrons with the
corner zi1i2i3 and the edges corresponding to superscripts.

Lemma 2.1. The Jacobian of trilinear map (1.1) can be written in the form

J =
1∑

i1,i2,i3=0

αi1i2i3Yi1
2Yi2

2Yi3
2

+

3∑
k=1

1∑
il,im=0,

(klm)=(123)

(
1∑

ik=0

βkikilim

)
yk(1− yk)Yil2Yim2(2.6)

+
3∑
k=1

1∑
ik=0




1∑
il,im=0,

(klm)=(123)

γkikilim


Yik

2yl(1− yl)ym(1− ym)

+

1∑
i1,i2,i3=0

κi1i2i3y
1(1− y1)y2(1− y2)y3(1− y3),

where Yil = il + (−1)il(1− yl), l = 1, 2, 3, il = 0, 1 (Yil = 1− yl if il = 0 and Yil = yl

if il = 1),

αi1i2i3 = [p0i2i3 ,qi10i3 , ri1i20], κi1i2i3 = [p0i2i3 ,qi10ī3 , rī1 ī20],(2.7)

β1i1
i2i3

= β1
i1i2i3 = [p0i2i3 ,qi10i3 , rī1i20], γ1i1

i2i3
= γ1

i1i2i3 = [p0i2i3 ,qi10ī3 , ri1 ī20],

β2i2
i3i1

= β2
i1i2i3 = [p0i2i3 ,qi10i3 , ri1 ī20], γ2i2

i3i1
= γ2

i1i2i3 = [p0i2i3 ,qi10ī3 , rī1i20],

β3i3
i1i2

= β3
i1i2i3 = [p0i2i3 ,qi10ī3 , ri1i20], γ3i3

i1i2
= γ3

i1i2i3 = [p0i2i3 ,qi10i3 , rī1 ī20],

and indices k, l,m form the permutation of the cycle (123); i.e., k, l,m are equal to the
values 1, 2, 3, 2, 3, 1, 3, 1, 2, respectively. (The last one is denoted by (klm) = (123).)

Proof. Substituting (2.5) into (1.3) gives

J =


 1∑
i2,i3=0

p0i2i3Yi2Yi3 ,

1∑
i1,i3=0

qi10i3Yi1Yi3 ,

1∑
i1,i2=0

ri1i20Yi1Yi2


.

We shall decompose the triple scalar product of sums of vectors into a sum of triple
scalar products. First we obtain

J =

1∑
i2,i3=0

[
p0i2i3Yi2Yi3 ,

1∑
i1=0

(qi10i3Yi1Yi3 + qi10ī3Yi1Yī3),Ri2

]
,

where

Ri2 =

1∑
j1=0

(
rj1i20Yj1Yi2 + rj1 ī20Yj1Yī2

)
=

1∑
j1,j2=0

rj1j20Yj1Yj2 , i2 = 0, 1.
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Now we decompose with respect to the sum containing vectors qi10i3 and take common
factors of vectors out of the sign of the triple scalar product. We get

J =

1∑
i1,i2,i3=0

[p0i2i3 ,qi10i3 ,Ri1i2 ]Yi1Yi2Y
2
i3

+

1∑
i1,i2,i3=0

[p0i2i3 ,qi10ī3 ,Ri1i2 ]Yi1Yi2Yi3Yī3 ,

where

Ri1i2 = ri1i20Yi1Yi2 + rī1i20Yī1Yi2 + ri1 ī20Yi1Yī2 + rī1 ī20Yī1Yī2 = Ri2 , i1, i2 = 0, 1.

Now decompose the rest of the triple scalar products (with respect to the sum Ri1i2).
Using the relations YilYīl = yl(1 − yl), il = 0, 1, l = 1, 2, 3, we obtain (2.6) and
(2.7).

Let us introduce the notations α1i1
i2i3

= α2i2
i3i1

= α3i3
i1i2

= αi1i2i3 .
Lemma 2.2. The following relations are valid for coefficients (2.7):

αi1i2i3 = [p0i2i3 ,qi10i3 , ri1i20] = δi1i2i3 [p,q, r]i1i2i3 = Ji1i2i3 = 6V pqri1i2i3
(2.8)

β1
i1i2i3 = [p0i2i3 ,qi10i3 , rī1i21] = δi1i2i3 [p,q,v]i1i2i3 = 6V pqvi1i2i3

,

β2
i1i2i3 = [p0i2i3 ,qi10i3 , ri1 ī20] = δi1i2i3 [p,q,u]i1i2i3 = 6V pqui1i2i3

,(2.9)

β3
i1i2i3 = [p0i2i3 ,qi10ī3 , ri1i20] = δi1i2i3 [p,u, r]i1i2i3 = 6V puri1i2i3

,

1∑
il,im=0

(klm)=(123)

γkikilim
=

1∑
il,im=0

(klm)=(123)

(
γ̄kikilim

+ µkikilim

)
=

1∑
il,im=0

(klm)=(123)

γ̄kikilim
(2.10)

=

1∑
il,im=0

(klm)=(123)

(
−αkikilim + βlilimik + βmimikil

)
,

µ1i1
i2i3

= µ1
i1i2i3 = δi1i2i3 [q,u, r]i1i2i3 ,

γ̄1i1
i2i3

= γ̄1
i1i2i3 = δi1i2i3 [d,q, r]i1i2i3 = 6V dqri1i2i3

,

µ2i2
i3i1

= µ2
i1i2i3 = δi1i2i3 [v,p, r]i1i2i3 ,

(2.11)
γ̄2i2
i3i1

= γ̄2
i1i2i3 = δi1i2i3 [p,d, r]i1i2i3 = 6V pdri1i2i3

,

µ3i3
i1i2

= µ3
i1i2i3 = δi1i2i3 [q,p,w]i1i2i3 ,

γ̄3i3
i1i2

= γ̄3
i1i2i3 = δi1i2i3 [p,q,d]i1i2i3 = 6V pqdi1i2i3

,

1∑
i1,i2,i3=0

κi1i2i3 =

1∑
i1,i2,i3=0

3∑
k=1

βki1i2i3 − 2

1∑
i1,i2,i3=0

αi1i2i3 = 2κ̄000 + 2κ̄111,(2.12)

κ̄lll = δlll[u,v,w]lll = 6V uvwlll , l = 0, 1,(2.13)
1∑

i1,i2,i3=0

3∑
k=1

γki1i2i3 =

1∑
i1,i2,i3=0

αi1i2i3 + 4(κ̄000 + κ̄111),

(2.14)
1∑

i1,i2,i3=0

3∑
k=1

βki1i2i3 = 2

1∑
i1,i2,i3=0

αi1i2i3 + 2(κ̄000 + κ̄111).

(2.15)
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Proof. Obviously, (2.8) and (2.9) are valid by (2.2) and (2.3).
Now we prove (2.10) and (2.11). It is seen that

γ1
i1i2i3 = [p0i2i3 ,qi10ī3 , ri1 ī20] = [(−1)i1p, (−1)i2(u− r), (−1)i3(u− q)]i1i2i3

= −δi1i2i3 [p,q, r]i1i2i3 + δi1i2i3 [p,q,u]i1i2i3 + δi1i2i3 [p,u, r]i1i2i3

= −αi1i2i3 + β2
i1i2i3 + β3

i1i2i3

and

γ1
i1i2i3 = [p0i2i3 ,qi10ī3 , ri1 ī20] =

[
(−1)i1(d− u), (−1)ī2q, (−1)ī3r

]
i1 ī2 ī3

= δi1 ī2 ī3 [d,q, r]i1 ī2 ī3 + δi1 ī2 ī3 [q,u, r]i1 ī2 ī3 = γ̄1
i1 ī2 ī3

+ µ1
i1 ī2 ī3

.

Because of
∑1
i2,i3=0 µ

1
i1i2i3

= 0 ([q,u, r]i100 = [u − r,q − r,−r]i101 = [q,u, r]i101 =
[q,u, r]i111 = [q,u, r]i110, i1 = 0, 1), the first formula from (2.10) is valid. Similarly,
we can prove other relations from (2.10) and (2.11). Also note that if all µki1i2i3 = 0,
i1, i2, i3 = 0, 1, k = 1, 2, 3, the faces of the cell are planar.

Let us prove further (2.14). We have

γ̄1
i1i2i3 + γ̄2

i1i2i3 + γ̄3
i1i2i3

= δi1i2i3 ([d,q, r] + [p,d, r] + [p,q,d])i1i2i3 = δi1i2i3 ([p− r,q,d] + [p,d, r])i1i2i3

= δi1i2i3
(
[v,u− r,w − r]i1i2 ī3 +

[
pi1i2i3 ,qi1i2i3 + vi1 ī2i3 , ri1i2i3

])
= δi1i2i3

(
([v,u,w]− [v, r,w]− [v,u, r])i1i2 ī3 + [p,q, r]i1i2i3

+
[
pi1i2i3 ,vi1 ī2i3 , ri1i2i3

])
= δi1i2i3

(
[p,q, r]i1i2i3 + ([v,u,w]− [v, r,w]− [v,u, r] + [v − r,w − u,−r])i1i2 ī3

)
= δi1i2i3

(
[p,q, r]i1i2i3 + ([w,v,u]− [v, r,w]− [v,u, r] + [v, r,w] + [v,u, r])i1i2 ī3

)
= δi1i2i3 [p,q, r]i1i2i3 − δi1i2i3 [u,v,w]i1i2 ī3 .

Relations (2.13) (since [u,v,w]lll = [−u,w− u,v− u]ll̄l̄ = [u,v,w]ll̄l̄ = [u,v,w]l̄l̄l =
[u,v,w]l̄ll̄, l = 0, 1) finally leads to

γ̄1
i1i2i3 + γ̄2

i1i2i3 + γ̄3
i1i2i3 = αi1i2i3 + κ̄lll,

where l = 0 if δi1i2i3 = −1, and l = 1 if δi1i2i3 = 1. Then (2.10) implies (2.14)
and (2.15).

Next we prove (2.12). For each κi1i2i3 , consider the representation

κi1i2i3 =
[
p0i2i3 ,qi10ī3 , rī1 ī20

]
=
[
(−1)i1p, (−1)i2(u− r), (−1)i3(d−w)

]
i1i2i3

= δi1i2i3 ([p,u,d] + [p,d, r] + [p,w,u]− [p,w, r])i1i2i3 .

Since

δi1i2i3 [p,u,d]i1i2i3 = δi1i2i3 [u− d,p− d,−d]̄i1 ī2 ī3 = −δī1 ī2 ī3 [p,u,d]̄i1 ī2 ī3
δi1i2i3 [p,w,u]i1i2i3 = −δi1i2i3 [−p,d− p,q− p]̄i1i2i3 = −δi1i2i3 [p,q,d]̄i1i2i3

= γ̄3
ī1i2i3

,

−δi1i2i3 [p,w, r]i1i2i3 = −δi1i2i3 [−p,q− p,v − p]̄i1i2i3 = −β1
i1i2i3 ,

δi1i2i3 [p,d, r]i1i2i3 = γ̄2
i1i2i3 ,
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we have
∑1
i1,i2,i3=0 δi1i2i3 [p,u,d]i1i2i3 = 0. Hence, the relation (2.12) is proved by

(2.10) and (2.15).
Therefore, the Jacobian of the map can be represented by the sum of polyno-

mials of the sixth degree (second degree in each of variables). The coefficients of
the polynomial are expressed in terms of the volumes of tetrahedrons of four types
(2.8), (2.9), (2.11) (γ̄ki1i2i3), (2.13). Tetrahedrons (2.8) are formed by three edges
(with the common corner), tetrahedrons (2.9) by two edges and “diagonal” of one of
adjacent faces, tetrahedrons (2.11) (γ̄ki1i2i3) by two edges and “inner diagonal” of the
cell, tetrahedrons (2.13) by “diagonals” of faces. The total number of tetrahedrons is
8 + 24 + 24 + 2 = 58.

Lemmas 2.1 and 2.2 allow us to prove the theorem.
Theorem 2.3. The Jacobian of trilinear map (1.1) is a polynomial of the degree

not higher than fourth (second in each of variables). It can be written in the form

J =
1∑

i1,i2,i3=0

αi1i2i3Yi1Yi2Yi3(Yi1 + Yi2 + Yi3 − 2)

+

3∑
k=1

1∑
il,im=0

(klm)=(123)

(
1∑

ik=0

βkikilim

)
yk(1− yk)YilYim .(2.16)

Proof. Substitute (2.10) and (2.12) in (2.6). Because of Yil + Yīl = 1, il = 0, 1,
l = 1, 2, 3, the factors of coefficients αi1i2i3 , β

k
i1i2i3

are equal to

Yi1Yi2Yi3 − Yi1Yī2Yī3 − Yī1Yi2Yī3 − Yī1Yī2Yi3 − 2Yī1Yī2Yī3 = Yi1 + Yi2 + Yi3 − 2,

YinYim + YinYīm + YīnYim + YīnYīm = 1,

n �= m �= k, n,m = 1, 2, 3,

respectively. This proves (2.16).
Since Yi1 + Yi2 + Yi3 − 2 = 1− Yī1 − Yī2 − Yī3 , the formula (2.16) can be reduced

to the following one:

J =

1∑
i1,i2,i3=0

αi1i2i3Yi1Yi2Yi3 +

3∑
k=1

1∑
il,im=0

(klm)=(123)

(
1∑

ik=0

(
βkikilim − αkikilim

))
yk(1− yk)YilYim .

(2.17)
Formula (2.17) requires computations of eight volumes of tetrahedrons (2.8) and

12 triple scalar products

δi1i2i3
[
pi1i2i3 ,pī1 ī2i3 ,pi1i2 ī3

]
=

1∑
i1=0

(
β1
i1i2i3 − αi1i2i3

)
,

δi1i2i3
[
qī1 ī2i3 ,qi1i2i3 ,qi1i2 ī3

]
=

1∑
i2=0

(
β2
i1i2i3 − αi1i2i3

)
,(2.18)

δi1i2i3
[
rī1i2 ī3 , ri1 ī2i3 , ri1i2i3

]
=

1∑
i3=0

(
β3
i1i2i3 − αi1i2i3

)
.

Expressions for J on the edges have the form

J
(
y1, y2, y3

) ∣∣∣∣ yl=il
ym=im

= αk0ilim
(
1− yk)2 + αk1ilimy

k2
+
(
βk0ilim + βk1ilim

)
yk
(
1− yk),

(klm) = (123), il, im = 0, 1.(2.19)
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Using (2.19), the formula (2.17) can be rewritten in the following terms of values
of J on the edges as in [7]:

J =

1∑
i1,i2=0

J
(
i1, i2, y

3
)
Yi1Yi2 +

1∑
i1,i3=0

J
(
i1, y

2, i3
)
Yi1Yi3(2.20)

+

1∑
i2,i3=0

J
(
y1, i2, i3

)
Yi2Yi3 − 2

1∑
i1,i2,i3=0

J (i1, i2, i3)Yi1Yi2Yi3 .

Apparently, if
∑1
ik=0 β

k
i1i2i3

can be expressed in terms of the values Ji1i2i3 , J 1
2 i2i3

,

Ji1 1
2 i3

, Ji1i2 1
2

(see (3.1)), then J can be represented as a polynomial with coefficients
that are the values of J at the corners and midpoints of edges. Such representation
is also given in [7].

If a hexahedral cell is a parallelepiped, then

αi1i2i3 = α000 = βki1i2i3 , k = 1, 2, 3, i1, i2, i3 = 0, 1,(2.21)

and the formula for the Jacobian (2.17) becomes

J = α000(1− y1 − y2 − y3) + α100y
1 + α010y

2 + α001y
3.(2.22)

(In [7] the coefficients α000, α100, α010, α001 from (2.22) are the values J000, J100,
J010, J001, respectively.) Using (2.21) and (2.22), we have

J = α000 = const.

3. Positivity of the Jacobian of a trilinear map.

3.1. Necessary conditions. The condition J > 0 implies the inequalities

J (i1, i2, i3) = αi1i2i3 > 0, i1, i2, i3 = 0, 1;(3.1)

J
(
y1, y2, y3

) ∣∣∣∣∣ yk= 1
2

yl,ym=il,im

=
1

4

1∑
ik=0

(
αkikilim + βkikilim

)
> 0, (klm) = (123), il, im = 0, 1;

J
(
y1, y2, y3

) ∣∣∣∣∣ yk=ik

yl,ym= 1
2

=
1

8

1∑
il,im=0

(
βlilimik + βmimikil

)
> 0, (klm) = (123), ik = 0, 1;

J

(
1

2
,
1

2
,
1

2

)
=

1

16


 1∑
i1,i2,i3=0

3∑
k=1

βki1i2i3 −
1∑

i1,i2,i3=0

αi1i2i3


 > 0,

which compose the necessary conditions of nondegeneracy of a cell.

3.2. Sufficient conditions 1. The polynomials corresponding to the coefficients
from (2.6) in the interior of the cube P are positive. Hence, if coefficients αi1i2i3 are
positive, and the rest of the coefficients are greater than or equal to zero, then the
Jacobian is positive in the interior. It is easy to see that J is positive on the boundary.

Since the coefficients γki1i2i3 ,
∑1
i1,i2,i3=0 κi1i2i3 can be expressed in terms of αi1i2i3 ,

βki1i2i3 , the conditions of the positivity of the Jacobian (sufficient conditions 1) have
the form
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αi1i2i3 > 0, i1, i2, i3 = 0, 1;(3.2)
1∑

ik=0

βkikilim ≥ Bkilim , (klm) = (123), il, im = 0, 1;

1∑
il,im=0

γkikilim
=

1∑
il,im=0

(
βlilimik + βmimikil

− αkikilim
)
≥ Γkik , (klm) = (123), ik = 0, 1;

2κ̄000 + 2κ̄111 =

1∑
i1,i2,i3=0

3∑
k=1

βki1i2i3 − 2

1∑
i1,i2,i3=0

αi1i2i3 ≥ K,

where αi1i2i3 , β
k
i1i2i3

are calculated according to formulas (2.8), (2.9), and

Bkilim = Γkik = K = 0.(3.3)

The conditions (3.2) and (3.3) are satisfied, in particular, for hexahedral cells with the
same orientation of vectors of 58 tetrahedrons (2.8), (2.9), (2.11), (2.13), correspond-
ing to coefficients αi1i2i3 , β

k
i1i2i3

, γ̄ki1i2i3 , κ̄000, κ̄111, that a cube has (right-handed
orientation). Also note that necessary conditions coincide with (3.2), where equal-
ity signs are excluded (strict inequality form of (3.2)) and the following expressions
are used:

Bkilim = −
1∑

ik=0

αkikilim , Γkik = −
1∑

il,im=0

αkikilim , K = −
1∑

i1,i2,i3=0

αi1i2i3 .

It is clear that necessary conditions assume a wider range of values for αi1i2i3 , β
k
i1i2i3

than sufficient conditions 1. Both conditions include 27 inequalities (for 8 corners,
12 edges, 6 faces, and the interior part of a cell).

The expression for J is also positive if (2.18) and (2.8) are positive. However,
these conditions restrict (in comparison with (3.2)) the set of values of αi1i2i3 , β

k
i1i2i3

for which J is positive. Therefore, sufficient conditions 1 are more general conditions.
Thus, the result of sections 3.1 and 3.2 is the following theorem.
Theorem 3.1. In order that the Jacobian of trilinear map (1.1) be positive in

the whole cube P including boundary,
1. it is necessary that conditions (3.1) be satisfied;
2. it is sufficient that conditions (3.2) with parameters (3.3) be satisfied.

3.3. Necessary and sufficient conditions of positivity of the Jacobian
on the edges. Consider the quadratic trinomial

f(y) = −ay2 + (a+ α1 − α0)y + α0,(3.4)

where a, α0, α1 are parameters, and a �= 0.
Lemma 3.2. Function f(y) (3.4) is positive on the segment [0, 1] if and only if

the parameters a, α0, α1 satisfy the inequalities

α0 > 0, α1 > 0,(3.5)

a+ α0 + α1 > −2
√
α0α1.(3.6)

Proof. Since f ′(y) = −2ay + a + α1 − α0, the extremum of function (3.4) y∗ =
1
2 + α1−α0

2a belongs to the segment [0, 1] if∣∣∣∣α1 − α0

2a

∣∣∣∣ ≤ 1

2
.
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Let fM = max[0,1] f(y), fm = min[0,1] f(y), αM = max(α0, α1), αm = min(α0, α1).
The discriminant of quadratic trinomial (3.4) has the form

D = (a+ α1 − α0)
2 + 4aα0 = (a+ α1 + α0)

2 − 4α0α1.(3.7)

Inequalities (3.5) are obvious. Assume that they are satisfied.
Consider the following five cases.
1. If a > max[(α1 − α0), (α0 − α1)], then the function f(y) has a maximum at

the point y = y∗, y∗ ∈ [0, 1], fM = f(y∗) > 0, fm = αm.
2. In the case 0 ≤ a ≤ max[(α1 − α0), (α0 − α1)] the function f(y) has a maxi-

mum at the point y = y∗, y∗ /∈ [0, 1], fM = αM , fm = αm.
3. If min[(α1−α0), (α0−α1)] ≤ a < 0, the function f(y) has a minimum at the

point y = y∗, y∗ /∈ [0, 1], fM = αM , fm = αm.
4. If −α1−α0− 2

√
α0α1 < a < min[(α1−α0), (α0−α1)], the function f(y) has

a minimum at the point y = y∗, y∗ ∈ [0, 1], fM = αM , fm = f(y∗) > 0.
5. If a ≤ −α1 − α0 − 2

√
α0α1, then the function f(y) has a minimum at the

point y = y∗, y∗ ∈ [0, 1], fM = αM , but fm = f(y∗) ≤ 0.
Cases 1–5 imply (3.6).

Note. If a = 0, then necessary and sufficient conditions of positivity for f coincide
with (3.5).

For quadratic trinomial (3.4), also consider the sufficient conditions of its positiv-
ity involving inequalities (3.5) and the conditions

a+ α1 + α0 > −2αj (a+ 3αj̄ + αj > 0), j = 0, 1,(3.8)

or their equivalent form with max/min operation

a > max[−3α0 − α1,−α0 − 3α1] = −min[3α0 + α1, α0 + 3α1],

arising from cases 1–5 above and the condition D < 0 for (3.7). If (3.5) holds, then
the value a = 0 satisfies inequalities (3.8). Therefore, for any values of parameter
a, for the positivity of function f (3.4), sufficient conditions (3.5) and (3.8) will be
considered.

Polynomials (2.19) can be reduced to the form (3.4), where

a = φ3
i1i2 = β3

i1i21 + β3
i1i20 − αi1i21 − αi1i20, α1 = αi1i21, α0 = αi1i20, y = y3;

a = φ2
i1i3 = β2

i11i3 + β2
i10i3 − αi11i3 − αi10i3 , α1 = αi11i3 , α0 = αi10i3 , y = y2;

a = φ1
i2i3 = β1

1i2i3 + β1
0i2i3 − α1i2i3 − α0i2i3 , α1 = α1i2i3 , α0 = α0i2i3 , y = y1

(3.9)

for J(i1, i2, y
3), J(i1, y

2, i3), J(y1, i2, i3), respectively. The following theorem follows
from Lemma 3.2 and (3.4) and (3.9).

Theorem 3.3. Necessary and sufficient conditions of positivity of J on the edges
of the cube have the form

αi1i2i3 > 0, i1, i2, i3 = 0, 1;
1∑

ik=0

βkikilim > −2
√
αk0ilimα

k1
ilim

, (klm) = (123), il, im = 0, 1.(3.10)

Note. If for some edges the value a turned out to be equal to zero, then corre-
sponding restrictions on coefficients βki1i2i3 can be excluded from conditions (3.10).
(In this case, such restrictions are satisfied.)



CONDITIONS OF NONDEGENERACY. VOLUME OF CELLS. 1285

Now we reduce the expression for the Jacobian J on the faces yl = 0, 1, l = 1, 2, 3,
and the general formula (2.17) to the form (3.4).

Using (2.20), the Jacobian for the face y3 = 0 can be written as

J(y1, y2, 0) = g(y1, y2)

= J(0, y2, 0)(1− y1) + J(1, y2, 0)y1 + J(y1, 0, 0)(1− y2)

+ J(y1, 1, 0)y2 − J(0, 0, 0)(1− y1)(1− y2)− J(0, 1, 0)(1− y1)y2(3.11)

− J(1, 0, 0)y1(1− y2)− J(1, 1, 0)y1y2

= −(φ2
00(1− y1) + φ2

10y
1)y22

+ (φ2
00(1− y1) + φ2

10y
1 + J(y1, 1, 0)− J(y1, 0, 0))y2 + J(y1, 0, 0).

Here, a = a2
00(y1) = φ2

00(1−y1)+φ2
10y

1, α1 = J(y1, 1, 0), α0 = J(y1, 0, 0), y = y2, and
φ2
i10

, i1 = 0, 1, are defined in (3.9). A similar representation in the form of quadratic
trinomial is valid with respect to the variable y1.

The representations (3.4), where

a = a3
i10(y

2) = φ3
i10(1− y2) + φ3

i11y
2, α1 = J(i1, y

2, 1), α0 = J(i1, y
2, 0), y = y3;

a = a3
0i2(y

1) = φ3
0i2(1− y1) + φ3

1i2y
1, α1 = J(y1, i2, 1), α0 = J(y1, i2, 0), y = y3;

a = a2
0i3(y

1) = φ2
0i3(1− y1) + φ2

1i3y
1, α1 = J(y1, 1, i3), α0 = J(y1, 0, i3), y = y2,

(3.12)

will be used for the faces y1 = i1, i1 = 0, 1 y2 = i2, i2 = 0, 1, y3 = i3, i3 = 0, 1,
respectively.

The Jacobian in the general case can be represented in the form of a quadratic
trinomial in one variable with fixed two other variables. For example,

J(y1, y2, y3) = −A3
00y

32
+ (A3

00 + J(y1, y2, 1)− J(y1, y2, 0))y3 + J(y1, y2, 0),(3.13)

where A3
00 = A3

00(y
1, y2) = a3

00(y
1) + (a3

01(y
1) − a3

00(y
1))y2, and a3

01(y
1), a3

00(y
1) are

defined in (3.12).

An attempt to find necessary and sufficient conditions of positivity of the Jacobian
using its representation in the form of a quadratic trinomial fails since even in the case
of faces (3.12) the discriminant (3.7) of quadratic trinomial (3.4) is a fourth-degree
polynomial in one variable; in the case (3.13), the discriminant will be the polynomial
in two variables. Because of the above reasons an analysis of the discriminant on the
property of having fixed sign fails. However, using conditions (3.5) and (3.8), it is
possible to find sufficient conditions more general than (3.2).

3.4. Sufficient conditions 2. To obtain sufficient conditions 2, we shall write
down (3.5) and (3.8) for different representations (3.4).

Sufficient conditions for the edges include relations (3.5), (3.8), and (3.9).

Sufficient conditions of positivity of the Jacobian on the faces of a cell are con-
ditions (3.5), (3.8), and (3.12). Substituting (3.12) into (3.5) and (3.8) gives the
conditions of positivity of polynomials (3.4) with the following parameters for the
planes:
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y1 = i1, i1 = 0, 1 :

a = 3φ2
i11 + φ2

i10; α0 = φ3
i10 + αi100 + 3αi101, α1 = φ3

i11 + αi110 + 3αi111, y = y2;

a = φ2
i11 + 3φ2

i10; α0 = φ3
i10 + 3αi100 + αi101, α1 = φ3

i11 + 3αi110 + αi111, y = y2;

y2 = i2, i2 = 0, 1 :

a = 3φ1
i21 + φ1

i20; α0 = φ3
0i2 + α0i20 + 3α0i21, α1 = φ3

1i2 + α1i20 + 3α1i21, y = y1;

a = φ1
i21 + 3φ1

i20; α0 = φ3
0i2 + 3α0i20 + α0i21, α1 = φ3

1i2 + 3α1i20 + α1i21, y = y1;

y3 = i3, i3 = 0, 1 :

a = 3φ1
1i3 + φ1

0i3 ; α0 = φ2
0i3 + α00i3 + 3α01i3 , α1 = φ2

1i3 + α10i3 + 3α11i3 , y = y1;

a = φ1
1i3 + 3φ1

0i3 ; α0 = φ2
0i3 + 3α00i3 + α01i3 , α1 = φ2

1i3 + 3α10i3 + α11i3 , y = y1.

(3.14)

In turn, considering conditions (3.5) and (3.8) for polynomials (3.4) and (3.14),
together with conditions (3.5) and (3.12), we obtain sufficient conditions of positivity
of J on the faces of a cell.

Write down conditions (3.5) and (3.8) for the plane y3 = 0. They have the form

Φ2
i10 + Ai100 + 3Ai110 > 0,(3.15)

Φ2
i10 + 3Ai100 + Ai110 > 0, i1 = 0, 1,

3Φ1
10 + Φ1

00 + 3Φ2
10 + Φ2

00 + A000 + 3A010 + 3A100 + 9A110 > 0,

3Φ1
10 + Φ1

00 + Φ2
10 + 3Φ2

00 + A100 + 3A110 + 3A000 + 9A010 > 0,(3.16)

Φ1
10 + 3Φ1

00 + Φ2
10 + 3Φ2

00 + A110 + 3A010 + 3A100 + 9A000 > 0,

Φ1
10 + 3Φ1

00 + 3Φ2
10 + Φ2

00 + A010 + 3A000 + 3A110 + 9A100 > 0,

where

Φkij = φkij , Aij0 = αij0, k = 1, 2, i, j = 0, 1.(3.17)

Conditions (3.15) and (3.17) are equivalent to conditions (3.5), and (3.16) and (3.17)
are equivalent to conditions (3.8) for the face y3 = 0. Apparently, conditions (3.5) for
the face y3 = 0 coincide with conditions (3.8) for the edges y1 = 0, 1, y3 = 0.

Using (3.5) in (3.11),

g(y1, i2) = αi2 = J(y1, i2, 0) > 0, i2 = 0, 1,(3.18)

conditions (3.15)–(3.17), and the conditions for Ai1i20 = αi1i20,

Ai1i20 > 0,(3.19)

we get the conditions of positivity for function g (3.11) in the square 0 ≤ y1, y2 ≤ 1.
Now consider the Jacobian in the general case. By representation (3.13), J > 0

in the cube P , if conditions (3.5) for (3.13),

αi3 = J(y1, y2, i3) > 0, 0 ≤ y1, y2 ≤ 1, i3 = 0, 1,(3.20)

are satisfied, and if conditions (3.8), also for (3.13),

g0(y
1, y2) = A3

00 + 3J(y1, y2, 1) + J(y1, y2, 0) > 0,(3.21)

g1(y
1, y2) = A3

00 + J(y1, y2, 1) + 3J(y1, y2, 0) > 0(3.22)
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are satisfied. Conditions (3.21) and (3.22) hold if inequalities (3.15)–(3.16) and (3.18)–
(3.19) for functions g = gl(y

1, y2) from (3.21) and (3.22) are satisfied for the following
parameters:

Φk00 = 3φk01 + φk00, Φk10 = 3φk11 + φk10, k = 1, 2,(3.23)

Ai1i20 = 3αi1i21 + αi1i20 + φ3
i1i2 , i1, i2 = 0, 1, l = 0;

Φk00 = φk01 + 3φk00; Φk10 = φk11 + 3φk10, k = 1, 2,(3.24)

Ai1i20 = αi1i21 + 3αi1i20 + φ3
i1i2 , i1, i2 = 0, 1, l = 1.

The conditions (3.16), (3.23), and (3.24) (8 inequalities) are equivalent to conditions
(3.8) for the general form of J . The conditions (3.20), gl(y

1, 0) > 0, and (3.15) and
(3.23)–(3.24) give conditions (3.8) for planes y3 = 0, 1, y2 = 0, 1, y1 = 0, 1, respec-
tively (6 × 4 = 24 inequalities); conditions (3.19), (3.23), and (3.24) give conditions
(3.8) for the edges y1 = 0, 1, y2 = 0, 1; inequalities (3.20) also give conditions (3.8)
for the edges y1 = 0, 1, y3 = 0, 1. Adding to the above conditions the conditions (3.8)
for the rest of edges (the conditions of the form (3.18) must be satisfied for (3.20),
for the edges there will be 12× 2 = 24 inequalities) and 8 conditions αi1i2i3 > 0 yield
sufficient conditions 2 of positivity of J in the cube. There will be 64 inequalities. We
shall formulate them in the following theorem using the equivalent form of inequalities
(as for (3.8)) with min operation and notations αi1i2i3 , β

k
i1i2i3

.
Theorem 3.4 (sufficient conditions 2). In order that the Jacobian of trilinear

map (1.1) be positive in the whole cube P including boundary, it is sufficient that
conditions (3.2) (in strict inequality form), where

Bkilim = −2 min(αk0ilim , α
k1
ilim

), (klm) = (123), il, im = 0, 1;

Γkik = −2 min
jl,jm=0,1

(
2αkikjljm +

1∑
il=0

βliljmik +

1∑
im=0

βmimikjl

)
, (klm) = (123), ik = 0, 1;

K = −2 min
j1,j2,j3=0,1


3αj1j2j3 + 2


 1∑
i2,i3=0

γ1
j1i2i3 +

1∑
i1,i3=0

γ2
i1j2i3 +

1∑
i1,i2=0

γ3
i1i2j3




+
1∑

i1=0

β1
i1j2j3 +

1∑
i2=0

β2
j1i2j3 +

1∑
i3=0

β3
j1j2i3

)
,

be satisfied.
Note. In sufficient conditions 2 the strict inequality form of (3.2) is considered:

from inequalities (3.2) equality signs are excluded.
It is obvious that cells satisfying sufficient conditions 1 satisfy sufficient condi-

tion 2. Sufficient conditions 2 are more general than sufficient conditions 1 but de-
mand more computations. It is possible to show that when sufficient conditions 1 are
satisfied, necessary conditions (3.1) also hold (but not vice versa). Really, considering
the form of sufficient conditions 2 without min operation and summing inequalities
corresponding to each min operation, we have system of inequalities (3.1).

3.5. Numerical results. To see how general the obtained conditions are, a
numerical experiment was carried out. The corners of a hexahedron were selected
randomly. Of 107 hexahedrons randomly generated by the computer only 36251 were
found to have positive Jacobians at the corners of a cell. From them only 14622 cases
satisfied necessary conditions for edges, 14010 cases satisfied necessary conditions for
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(a) (b)

Fig. 3.1. Hexahedral cell satisfying sufficient conditions 1: (a) edges; (b) faces.

(a) (b)

Fig. 3.2. Hexahedral cell satisfying sufficient conditions 2: (a) edges; (b) faces.

Table 3.1
Corner points of cells.

Figure 3.1 3.2
Values i1, i2, i3 z1i1i2i3 z2i1i2i3 z3i1i2i3 z1i1i2i3 z2i1i2i3 z3i1i2i3

0,0,0 0.94058 0.95360 0.43885 0.70048 0.70080 0.19745
0,0,1 0.88002 0.45455 0.35625 0.92840 0.03615 0.11635
0,1,0 0.70707 0.93755 0.41895 0.26458 0.42831 0.00110
0,1,1 0.16146 0.78644 0.30840 0.35206 0.06901 0.44930
1,0,0 0.54506 0.73818 0.88086 0.11448 0.89730 0.36412
1,0,1 0.22399 0.30102 0.40037 0.56794 0.84961 0.67088
1,1,0 0.45779 0.94522 0.74387 0.10908 0.31775 0.30655
1,1,1 0.24743 0.61450 0.65427 0.64597 0.73848 0.99582

faces, and 14004 cases satisfied necessary conditions for the whole cell. The Jacobian
was positive in 11582 cases. Sufficient conditions 1 were satisfied in 33.63% of the
cases (from the number 11582), while sufficient conditions 2 were satisfied in 63.91%
of the cases. In 11660 cases the Jacobian was positive on the edges (conditions (3.10));
99.33% of them had positive Jacobian everywhere in the whole cell.

In Figures 3.1 and 3.2 there are hexahedrons nondegeneracy of which was checked
by means of sufficient conditions 1 and 2, respectively. Figures 3.1(a) and 3.2(a) show
the edges of cells, while Figures 3.1(b) and 3.2(b) show the faces of cells (hidden lines
are removed). The corners of cells for Figures 3.1 and 3.2 are given in Table 3.1.

All computations were performed on a personal computer. A computer code first
generated a hexahedron for each case and then checked different types of conditions.
For all cases, necessary conditions were checked. For some cases, necessary and suffi-
cient conditions on the edges, sufficient conditions 1, and sufficient conditions 2 were
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checked. Besides checking all these conditions, in some cases a special algorithm of a
search for a minimum of the Jacobian in the whole cube was applied. On the personal
computer Pentium 3 (800 MHz), such a test of 107 cases demanded about 1 minute
of computation (58 seconds). The test of sufficient conditions 2 (as the most expen-
sive) for 107 nondegenerate cells required about one and half minute of computation
(95 seconds).

Numerical result showed the following.

1. Necessary conditions allowed the exclusion of a great number of cells which
were degenerate.

2. In less than one third of cases when the Jacobian was positive at the corners
of a cell the Jacobian was positive everywhere in the cell. Therefore, it would
be unreliable to draw a conclusion about the invertibility of the Jacobian on
the basis of positive Jacobians at the corners of a cell.

3. Necessary and sufficient conditions of positivity of the Jacobian on the edges
(provided that necessary conditions (3.1) were satisfied) in a large percent-
age of cases gave positive Jacobians everywhere in the cell. However, these
conditions did not also guarantee the invertibility of the trilinear map.

4. Sufficient conditions 2 permitted recognition of the nondegeneracy of cells in
most of the cases.

4. A formula of a volume of a cell.

Theorem 4.1. The volume of a ruled hexahedral cell is

V =
1

12


 1∑
i1,i2,i3=0

αi1i2i3 + κ̄000 + κ̄111


 =

1

2


 1∑
i1,i2,i3=0

V pqri1i2i3
+ V uvw000 + V uvw111


.

Proof. Integrate the Jacobian J . Using (2.17) gives

V =

∫∫∫
0≤yl≤1

Jdy1dy2dy3 =
1

24

1∑
i1,i2,i3=0

3∑
k=1

βki1i2i3

=
1

4

1∑
i1,i2,i3=0

(
V pqvi1i2i3

+ V pqui1i2i3
+ V puri1i2i3

)
,(4.1)

and then (2.15) implies the above formula.

This formula requires computation of only 10 volumes of tetrahedrons.

It is possible to see that (if volumes V pqri1i2i3
, V uvw000 , and V uvw111 are positive) the

volume of the ruled cell is equal to one-half of a sum of volumes of two dodecahedrons
with planar faces, with the same corners zi1i2i3 , edges pi1i2i3 , qi1i2i3 , ri1i2i3 , and with
different u, v, w (or faces) (see Figure 1.1(b)).

5. Conclusions. The conditions obtained allow the establishment of nondegen-
eracy of a general class of cells. If necessary conditions of positivity of the Jacobian
in the whole cell (or necessary and sufficient conditions of positivity of the Jacobian
on the edges of the cell) are not satisfied, the cell is degenerate. If sufficient con-
ditions 1 or 2 hold, the cell is nondegenerate. Sufficient conditions 1 demand fewer
computations than sufficient conditions 2.

In the case of cells satisfying necessary conditions but not satisfying sufficient con-
ditions 2 there is nothing for it but to find numerically the minimum of the Jacobian
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in the cube using, for example, one of the obtained representations. If the minimum
is positive, the cell is nondegenerate. Otherwise, it is degenerate.

The formula of a volume of a cell is simple and does not demand verification of
numerous conditions and computations as in [4, 9].

Acknowledgment. I devote this work to the memory of my teacher, academi-
cian of the Russian Academy of Sciences, Anatolii F. Sidorov. I am thankful to him
for the discussion of part of the results.
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A MULTIGRID METHOD ENHANCED BY KRYLOV SUBSPACE
ITERATION FOR DISCRETE HELMHOLTZ EQUATIONS∗
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Abstract. Standard multigrid algorithms have proven ineffective for the solution of discretiza-
tions of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES
iterations at coarse levels and as an outer iteration. We demonstrate the algorithm’s effectiveness
through theoretical analysis of a model problem and experimental results. In particular, we show
that the combined use of GMRES as a smoother and outer iteration produces an algorithm whose
performance depends relatively mildly on wave number and is robust for normalized wave numbers
as large as 200. For fixed wave numbers, it displays grid-independent convergence rates and has costs
proportional to the number of unknowns.

Key words. Helmholtz equation, multigrid, Krylov subspace methods
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1. Introduction. Multigrid algorithms are effective for the numerical solution
of many partial differential equations, providing a solution in time proportional to
the number of unknowns. For some important classes of problems, however, standard
multigrid algorithms have not been useful, and in this paper we focus on developing
effective multigrid algorithms for one such class, the discrete Helmholtz equation.

Our main interest lies in solving exterior boundary value problems of the form

−∆u− k2u = f on Ω ⊂ R
d,(1.1)

Bu = g on Γ ⊂ ∂Ω,(1.2)

∂u

∂n
= Mu on Γ∞ ⊂ ∂Ω,(1.3)

that arise in the modeling of time-harmonic acoustic or plane-polarized electromag-
netic scattering by an obstacle. The boundary Γ represents the scattering obstacle,
and the boundary operator B can be chosen so that a Dirichlet, Neumann, or Robin
boundary condition is imposed. The original unbounded domain is truncated to the
finite domain Ω by introducing the artificial boundary Γ∞ on which the radiation
boundary condition (1.3) approximates the outgoing Sommerfeld radiation condition.
Depending on what type of radiation condition is chosen, M can be either a (local)
differential operator or a global integral operator coupling all points on Γ∞ (see [16]).
The data for the problem are given by the right-hand side f and the boundary data
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g. In the most common case, f ≡ 0 and −g is the boundary data of an incident
plane wave. The critical parameter is the wave number k, which is positive in the
case of unattenuated wave propagation. Due to the radiation boundary condition,
the solution of (1.1)–(1.3) is a complex-valued function u : Ω→ C.

Discretization of (1.1)–(1.3) by finite differences or finite elements leads to a linear
system of equations

Au = f(1.4)

in which the coefficient matrixA is complex-symmetric, i.e., not Hermitian. Moreover,
for large values of the wave number k, it becomes highly indefinite.

This indefiniteness has prevented multigrid methods from being applied to the
discrete Helmholtz equation with the same success as these methods have enjoyed
for symmetric positive-definite problems. Some proposed multilevel strategies for
the Helmholtz equation impose restrictions on the coarse grid, requiring that these
grids be sufficiently fine for the algorithm to be convergent [2, 6, 10, 31, 35]; such
restrictions limit the utility of these techniques. It is also possible to precondition
the indefinite Helmholtz problem with preconditioners for the leading (second order)
term [4, 5, 17, 36], although the effectiveness of this approach is limited for problems
with large wave numbers. Our aim in this work is to identify the difficulties arising
in a standard multigrid iteration for the Helmholtz equation and to analyze and test
techniques designed to address these difficulties. In particular, in section 2, we show
there are difficulties with both of the main multigrid components, smoothing and
coarse grid correction. Standard smoothers such as Jacobi or Gauß–Seidel relaxation
become unstable for indefinite problems since there are always error components—
usually the smooth ones—that are amplified by these smoothers. The difficulties
with the coarse grid correction are usually attributed to the poor approximation of
the Helmholtz operator on very coarse meshes, since such meshes cannot adequately
resolve waves with wavelength λ = 2π/k of which the solution primarily consists. We
show, however, that although the coarse grid correction is inaccurate when coarse grid
eigenvalues do not agree well with their fine-grid counterparts, coarse meshes can still
yield useful information in a multigrid cycle.

Our approach for smoothing is to use standard damped Jacobi relaxation when
it works reasonably well (on fine enough grids) and then to replace this with a Krylov
subspace iteration when it fails as a smoother. Earlier works by Bank [2] and Brandt
and Ta’asan [12] have employed relaxation on the normal equations in this context.
Krylov subspace smoothing, principally using the conjugate gradient method, has
been considered by a variety of authors [3, 8, 9, 30, 32].

For coarse grid correction, we identify the type and number of eigenvalues that
are handled poorly during the correction, and we remedy the difficulty by introducing
an acceleration for multigrid; that is, we use multigrid as a preconditioner for an
outer Krylov subspace iteration. This approach has been used by many authors; see,
e.g., [7, 22, 25, 26, 31, 35]. In some settings, where it is used for positive-definite
systems [7, 22], the Krylov subspace method accelerates the multigrid computations,
but multigrid alone is also rapidly convergent and improvements in performance are
not dramatic. A significant point in the present study is that multigrid does a poor
job of eliminating some modes from the error. As a result, it converges slowly and
even diverges in some cases, and the outer Krylov subspace iteration is needed for the
method to be robust. (This phenomenon is also observed for the convection-diffusion
equation in [25, 26].) Any Krylov subspace method is an option for both the smoother
and the outer iteration; we use GMRES [28].
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A different approach for adapting multigrid to the Helmholtz equation, based on
representing oscillatory error components on coarse grids as the product of an oscil-
latory Fourier mode and a smooth amplitude—or ray—function, has been developed
by Brandt and Livshits [11]. The standard V-cycle is augmented by so-called ray cy-
cles, in which the oscillatory error components are eliminated by approximating the
associated ray functions in a multigrid fashion. This wave-ray methodology has also
been combined by Lee et al. [23] with a first-order system least-squares formulation
for the Helmholtz equation. Results in [11, 23] suggest that these techniques may be
somewhat more efficient than the methods of this paper, but they are considerably
more difficult to implement, and it is unclear whether they can be generalized to
handle variable coefficient problems.

An outline of the paper is as follows. In section 2, we perform a model problem
analysis, using a one-dimensional problem to identify the difficulties encountered by
both smoothers and coarse grid correction, and supplementing these observations
with an analysis of how dimensionality of the problem affects the computations. In
section 3, we present the refined multigrid algorithms and test their performance on
a set of two-dimensional benchmark problems on a square domain. In particular, we
demonstrate the effectiveness of an automated stopping criterion for use with GMRES
smoothing, and we show that the combined use of GMRES as a smoother and outer
iteration produces an algorithm whose performance depends relatively mildly on wave
number and is robust for wave numbers as large as 200. In section 4, we show the
performance of the multigrid solver on an exterior scattering problem. Finally, in
section 5, we draw some conclusions.

2. Model problem analysis. Most of the deficiencies of standard multigrid
methods for solving Helmholtz problems can be seen from a one-dimensional model
problem. Therefore, we consider the Helmholtz equation on the unit interval (0, 1)
with homogeneous Dirichlet boundary conditions

−u′′ − k2u = f, u(0) = u(1) = 0.(2.1)

This problem is guaranteed to be nonsingular only if k2 is not an eigenvalue of the
negative Laplacian, and we will assume here that this requirement holds. The problem
is indefinite for k2 > π2, which is the smallest eigenvalue of the negative Laplacian.

Finite difference discretization of (2.1) on a uniform grid containing N interior
points leads to a linear system of equations (1.4) with the N ×N coefficient matrix
A = Ah = (1/h2) tridiag(−1, 2,−1) − k2I , where h = 1/(N + 1) denotes the mesh
width and I denotes the identity matrix. Under the assumptions on k above, it is
well known (see [29]) that for sufficiently fine discretizations, the discrete problems
are also nonsingular. We also assume that all coarse grid problems are nonsingular.

The eigenvalues of A are

λj =
2(1− cos jπh)

h2
− k2 =

4

h2
sin2 jπh

2
− k2, j = 1, . . . , N,(2.2)

and the eigenvectors are

vj =
√
2h [sin ijπh]Ni=1, j = 1, . . . , N.(2.3)

The choice of Dirichlet boundary conditions in (2.1) allows us to perform Fourier
analysis using these analytic expressions for eigenvalues and eigenvectors. In exper-
iments described in section 3, we will examine how our observations coincide with
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performance on problems with radiation conditions, which are nonsingular for all k
[20]. Aspects of the algorithm that depend on the dimensionality of the problem will
be considered at the end of this section.

2.1. Smoothing. For the smoothing operator, we consider damped Jacobi re-
laxation, defined by the stationary iteration

um+1 = um + ωD−1rm = um + ωD−1Aem,

where rm = f −Aum and em = A−1f − um denote the residual and error vectors at
step m, respectively. D = (2/h2− k2)I denotes the matrix consisting of the diagonal
of A, and ω is the damping parameter. The associated error propagation matrix
is Sω = I − ωD−1A, and the eigenstructure of this matrix governs the behavior
of the error em+1 = Sωem. Since D is a multiple of the identity matrix, Sω is a
polynomial in A and hence shares the same system of orthonormal eigenvectors (2.3).
The eigenvalues of Sω are

µj = 1− ω

(
1− cos jπh

1− 1
2k

2h2

)
, j = 1, . . . , N.(2.4)

Thus, the eigenvalue µj of Sω is the damping factor for the error component corre-
sponding to the eigenvalue λj of A.

We now consider the effects of damped Jacobi smoothing on three levels of grids:
fine, coarse, and intermediate.

2.1.1. Fine grids. The fine-grid mesh size is determined by accuracy require-
ments on the discretization, and this allows us to make certain assumptions on the
size of h versus k on the fine grid. Recall that the wavelength λ associated with a
time-harmonic wave with wave number k > 0 is given by λ = 2π/k. The quantity

λ

h
=

2π

kh
=

2π

k
(N + 1)

is the number of mesh points per wavelength. We will enforce the condition

λ/h ≥ 10 or, equivalently, kh ≤ π/5,(2.5)

which is a rule of thumb for approximability of second order discretizations commonly
used in engineering computations [19]. We also note that, for reasons of stability, a
bound on the quantity h2k3 is also required [20]; for high wave numbers this bound
is more restrictive than the bound on kh.

As a consequence of (2.5), the quantity multiplying the smoothing parameter ω
in (2.4) will vary between about −1/4 and 9/4 for j = 1, . . . , N , and plain Jacobi
smoothing (ω = 1) results in a slight amplification of the most oscillatory modes as
well as of the smoothest modes. One can adjust ω so that the most oscillatory mode
is damped, and this is the case as long as ω < ω1 := (4−2k2h2)/(4−k2h2). For Sω to
be an effective smoother, ω is usually chosen to maximize damping for the oscillatory
half of the spectrum. This leads to the choice

ω0 =
2− k2h2

3− k2h2
,(2.6)

which is equal to the familiar optimal value of 2/3 for the Laplacian [24, p. 11] when
k = 0 and equals 0.61 when λ/h = 10. However, the smoothest mode is amplified for
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Fig. 2.1. The damping factors for the damped Jacobi relaxation plotted against the eigenvalues
of A (+) for ω = 1, ω = ω0, and ω = ω1 (N = 31, k = 3π).

any positive choice of ω when the discrete problem is indefinite, and this is the case for
the discrete Helmholtz operator (1.4) when k2 > π2. As can be seen from (2.4), more
smooth-mode eigenvalues of Sω become larger than one in magnitude as h is increased,
thus making damped Jacobi—as well as other standard smoothers—increasingly more
unstable as the mesh is coarsened.

Figure 2.1 shows the damping factors µj for each of the eigenvalues λj of A for
wave number k = 3π on a grid with N = 31. The maximal amplification occurs for
the smoothest mode, corresponding to the leftmost eigenvalue of A. When ω = ω0

this amplification factor is approximately equal to

ρ = ρ(kh) =
1

1− 1
3k

2h2
.(2.7)

Figure 2.2 shows how ρ varies with kh. Limiting this largest amplification factor, say,
to ρ ≤ 1.1, would lead to the mesh size restriction kh ≤ 0.52, somewhat stronger than
(2.5). One also observes that, for kh >

√
6, this mode is once again damped.

In summary, the situation on the finest grids is similar to the positive-definite
case, except for the small number of amplified smooth modes whose number and
amplification factors increase as the mesh is coarsened.

2.1.2. Very coarse grids. As the mesh is coarsened, the eigenvalues of A that
correspond to the larger eigenvalues of the underlying differential operator disappear
from the discrete problem, while the small ones—those with smooth eigenfunctions—
remain. This means that, for a fixed k large enough for the differential problem to
be indefinite, there is a coarsening level below which all eigenvalues are negative.
For the model problem (2.1), this occurs for kh > 2 cos(πh/2) for any fixed k > π.
In this (negative-definite) case, the damped Jacobi iteration is convergent for ω ∈
(0, ω2), with

ω2 =
2− k2h2

2 sin2(πh/2)− 1
2k

2h2
,
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Fig. 2.2. The variation of the damping/amplification factor of the smoothest mode as a function
of kh for ω = ω0.

and the spectral radius of Sω is minimized for ω = 1. This would permit the use of
(undamped) Jacobi as a smoother on very coarse grids, but we shall not make use
of this.

2.1.3. Intermediate grids. What remains is the difficult case: values of kh for
which the problem is not yet negative definite but for which a large number of smooth
modes are amplified by damped Jacobi relaxation. Jacobi smoothing and other stan-
dard smoothers are therefore no longer suitable, and it becomes necessary to use a
different smoothing procedure. In [12] and [18] it was proposed to replace classical
smoothers with the Kaczmarz iteration, which is Gauß–Seidel relaxation applied to
the symmetric positive-definite system AA∗v = f for the auxiliary variable v defined
by A∗v = u . This method has the advantage of not amplifying any modes, but it
suffers from the drawback that the damping of the oscillatory modes is very weak. In
the following section we propose using Krylov subspace methods such as GMRES for
smoothing. These methods possess the advantage of reducing error components on
both sides of the imaginary axis without resorting to the normal equations.

2.2. Coarse grid correction. The rationale behind coarse grid correction is
that smooth error components can be well represented on coarser grids, and hence
a sufficiently good approximation of the error can be obtained by approximating
the fine-grid residual equation using the analogous system on a coarser mesh. This
assumes both that the error consists mainly of smooth modes and that the solution
of the coarse grid residual equation is close to its counterpart on the fine grid. In this
section, we present an analysis of what goes wrong for the Helmholtz problem.

2.2.1. Amplification of certain modes. Assume the number of interior grid
points on the fine grid is odd, and consider the next coarser mesh, with n = (N−1)/2
interior points. We identify R

N and R
n, respectively, with the spaces of grid functions

on these two meshes that vanish at the endpoints, and we indicate the mesh such
vectors are associated with using the superscripts h and H. Let eh = u − uh denote
the fine-grid error, let rh = f −Ahuh denote the residual, and let H = 2h denote the
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coarse mesh size. Let the coarse-to-fine transformation be given by the interpolation
operator I hH : R

n → R
N ,

[
I hHwH

]
i
:=

{
wH
i/2, i even,

1
2 [w

H
(i−1)/2 +wH

(i+1)/2], i odd,
i = 1, . . . , N.

The following indication of what can go wrong with the (exact) coarse grid cor-
rection was given in [12]: consider a fine-grid error eh = vh consisting of only the
smoothest eigenvector vh of Ah with associated eigenvalue λh. The fine-grid residual
is thus given by rh = Aheh = λhvh, and, since we are assuming that vh is smooth,
its restriction r̂H := IHh rh = λhIHh vh to the coarse grid will again be close to an
eigenvector of the coarse grid operator AH but with respect to a slightly different
eigenvalue λH . The coarse grid version of the correction is

eH = (AH)−1r̂H = λh(AH)−1IHh vh ≈ λh

λH
IHh vh.

Hence the error on the fine grid after the correction is

eh − I hHeH ≈ vh − λh

λH
I hHIHh vh =

(
1− λh

λH

)
vh,(2.8)

where we have assumed that the smooth mode vh is invariant under restriction fol-
lowed by interpolation. This tells us that, under the assumption that the restrictions
of smooth eigenvectors are again eigenvectors of AH , the quality of the correction
depends on the ratio λh/λH . If the two are equal, then the correction is perfect,
but if the relative error is large, the correction can be arbitrarily bad. This occurs
whenever one of λh, λH is close to the origin and the other is not. Moreover, if λh

and λH have opposite signs, then the correction is in the wrong direction.
We now go beyond existing analysis and examine which eigenvalues are problem-

atic in this sense for finite differences; a similar analysis can also be performed for
linear finite elements. Consider the coarse grid eigenfunctions vHj = [sin ijπH]nj=1. To
understand the effects of interpolation of these grid functions to the fine grid, we must
examine both the first n fine-grid eigenfunctions {vhj }nj=1 and their complementary

modes {vhN+1−j}nj=1; these are related by
[
vhN+1−j

]
i
= (−1)i+1

[
vhj
]
i
. As is easily

verified, there holds [13]

I hHvHj = c2jv
h
j − s2jv

h
N+1−j , j = 1, . . . , n,(2.9)

with cj := cos jπh/2 and sj := sin jπh/2, j = 1, . . . , N .
If full weighting is used for the restriction operator IHh : R

N → R
n, we have

componentwise

[
IHh uh

]
i
:=

1

4

([
uh
]
2i−1

+ 2
[
uh
]
2i
+
[
uh
]
2i+1

)
, i = 1, . . . , n,

and the relation I hH = 2
(
IHh
)�

. The following mapping properties are easily estab-
lished:

IHh vhj =



c2jv

H
j , j = 1, . . . , n,

0, j = n+ 1,

−c2jvHN+1−j , j = n+ 2, . . . , N,

(2.10)
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with cj and sj as defined above.

If AH denotes the coarse grid discretization matrix, then the corrected iter-
ate ũh := uh + I hH(A

H)−1rH possesses the error propagation operator C := I −
I hH(A

H)−1IHh Ah. Denoting the eigenvalues of Ah and AH by {λhj }Nj=1 and {λHj }nj=1,
respectively, we may summarize the action of C on the eigenvectors using (2.9) and
(2.10) as follows.

Theorem 2.1. The image of the fine-grid eigenfunctions {vhh }Nj=1 under the
error propagation operator C of the exact coarse grid correction is given by

Cvhj =




(
1− c4j

λhj
λHj

)
vhj + s2jc

2
j
λhj
λHj

vhN+1−j , j = 1, . . . , n,

vhn+1, j = n+ 1,(
1− c4j

λhj
λHN+1−j

)
vhj + s2jc

2
j

λhj
λHN+1−j

vhN+1−j , j = n+ 2, . . . , N.

(2.11)

As a consequence, the two-dimensional spaces spanned by a smooth mode and its
complementary mode are invariant under C : C [vhj , v

h
N+1−j ] = [vhj , v

h
N+1−j ]Cj with

Cj :=


1− c4j

λhj
λHj

c2js
2
j
λhN+1−j
λHj

s2jc
2
j
λhj
λHj

1− s4j
λhN+1−j
λHj


 , j = 1, . . . , n.(2.12)

The following result shows the dependence of the matrices Cj on kh.

Theorem 2.2. Using the notation defined above, there holds

Cj =


s2j

(
1− k2c2j

λHj

)
c2j

(
1 +

k2c2j
λHj

)

s2j

(
1 +

k2s2j
λHj

)
c2j

(
1− k2s2j

λHj

)

 , j = 1, . . . , n.(2.13)

Moreover,

lim
kh→0

Cj =

[
s2j c2j
s2j c2j

]
, lim

kh→∞
Cj =

[
s2j (1 + c2j ) s2jc

2
j

s2jc
2
j c2j (1 + s2j )

]
, j = 1, . . . , n.

(2.14)

Proof. Both (2.13) and (2.14) are simple consequences of (2.12) and the represen-
tation (2.2) of the eigenvalues λhj .

Application of the error propagation operator to a smooth mode vhj gives

Cvhj = C [vhj , v
h
N+1−j ]


 1

0


 = [vhj , v

h
N+1−j ]Cj


 1

0


.

If the entries of the first column of Cj are small, then this mode is damped by
the coarse grid correction. However, if the (1, 1)-entry is large, then this mode is
amplified; and if the (2, 1)-entry is large (somewhat less likely), then the smooth
mode is corrupted by its complementary mode. As seen from (2.13), these difficulties
occur whenever λHj is small in magnitude. From the limits (2.14), it is evident that no
such problems arise in the symmetric positive-definite case (a fact that is well known),
but they also do not occur when kh is very large, i.e., when the coarse grid Helmholtz
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operator is negative definite. These observations can be extended by returning to
(2.8) and using (2.2), wherein it holds that

λhj
λHj

=
4s2j/h

2 − k2

4s2jc
2
j/h

2 − k2
= 1 +

s4j
s2jc

2
j − (kh/2)2

.(2.15)

That is, the coarse grid correction strongly damps smooth error modes for either very
small or very large values of kh, but it may fail to do so in the intermediate range
where s2jc

2
j ≈ (kh/2)2 for some index j associated with a smooth mode.

We also note that in the limit k = 0 the eigenvalues of Cj are 0 and 1, so that Cj

is a projection, and in this case the projection is orthogonal with respect to the inner
product induced by the symmetric and positive-definite operator Ah. The projection
property is lost for k > 0, since the coarse grid operator as we have defined it fails
to satisfy the Galerkin condition AH = IHh AhI hH . (The Galerkin condition is, how-
ever, satisfied, e.g., for finite element discretizations with interpolation by inclusion.)
Moreover, regardless of the type of discretization, the term Ah-orthogonality ceases
to makes sense once k is sufficiently large that Ah is indefinite.

2.2.2. Number of sign changes. In this section, we determine the number of
eigenvalues that undergo a sign change during the coarsening process. In light of the
discussion above, this number gives an indication of the number of smooth modes
that are not eliminated from the error by coarse grid correction. Since these modes
are not properly handled by the multigrid algorithm, another construction is needed
to reduce the error associated with them. In the next section, we will introduce an
outer Krylov subspace iteration designed for this task.

This is the only aspect of the algorithm that significantly depends on the dimen-
sionality of the problem. Thus, here we are considering the Helmholtz equation (1.1)
on the d-dimensional unit cube (0, 1)d, d = 1, 2 or 3, with homogeneous Dirichlet
boundary conditions. We consider standard finite differences (second order three-
point, five-point, or seven-point discretizations of the Laplacian in one, two, or three
dimensions, respectively), as well as the class of low order finite elements consisting
of linear, bilinear, or trilinear elements.

We first state the issue more precisely using finite differences. In d dimensions,
the eigenvalues of the discrete operator on a grid with mesh size h and N grid points
in each direction are

λhI =

d∑
i=1

4

h2

(
sin2 jiπh

2

)
− k2, I = {j1, . . . , jd}, ji = 1, . . . N.(2.16)

For any fixed multi-index I, this eigenvalue is a well-defined function of h that con-
verges to the corresponding eigenvalue of the differential operator as h → 0. Our
concern is the indices for which this function changes sign, for these are the trouble-
some eigenvalues that are not treated correctly by some coarse grid correction. As
the mesh is coarsened, the oscillatory modes (ji > N/2 for some i) are not repre-
sented on the next coarser mesh, but the smooth-mode eigenvalues {λHI } are slightly
shifted to the left with respect to their fine-grid counterparts {λhI}, and some of these
eigenvalues change sign at some point during the coarsening process.

The following theorem gives a bound, as a function of k, on the maximal number
eigenvalue sign changes occurring on all grids.

Theorem 2.3. For finite difference discretization of the Helmholtz equation with
Dirichlet boundary conditions on the unit cube in d dimensions (d = 1, 2, 3), the
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number of eigenvalues that undergo a change in sign during the multigrid coarsening
process is bounded above by



k
(

1
2 − 1

π

) ≈ 0.18 k, d = 1,

k2
(

1
8 − 1

4π

) ≈ 0.045 k2, d = 2,

k3
(

1
24

√
3
− 1

6π2

)
≈ 0.0072 k3, d = 3.

(2.17)

For the finite element discretizations, the number of sign changes is bounded above by



k
(

1
π − 1√

12

)
≈ .030 k, d = 1,

k2
(

1
4π − 1

24

) ≈ .038 k2, d = 2,

k3
(

1
6π2 − 1

216

) ≈ .012 k3, d = 3.

(2.18)

Proof. For finite differences, let η−fine denote the number of negative eigenvalues
on some given fine grid, and let η−lim denote the number of negative eigenvalues of
the continuous Helmholtz operator. Because eigenvalues (2.16) with the same index
I shift from right to left with grid coarsening, it follows that

η−lim ≤ η−fine ;(2.19)

this is an equality for all fine enough grids, as the discrete eigenvalues tend to the
continuous ones. To identify η−lim, consider the continuous eigenvalues

λ� = π2�2 − k2, � ∈ N (d = 1),

λ�,m = π2(�2 +m2)− k2, �,m ∈ N (d = 2),

λ�,m,n = π2(�2 +m2 + n2)− k2, �,m, n ∈ N (d = 3).

It is convenient to view the indices of these eigenvalues as lying in the positive
orthant of a d-dimensional coordinate system. The negative eigenvalues are contained
in the intersection of this orthant with a d-dimensional sphere of radius k/π centered
at the origin. Let N denote this intersection, and let N̂ denote the d-dimensional
cube enclosing N . The number of indices in N̂ is �k/π�d, and the number in N is
ρ�k/π�d, where

ρ =




(
k
π

)
/
(
k
π

)
= 1, d = 1,

1
4π
(
k
π

)2
/
(
k
π

)2
= π

4 , d = 2,
1
8 · 4

3π
(
k
π

)3
/
(
k
π

)3
= π

6 , d = 3

is the ratio of the volume of N to that of N̂ . It follows that

η−lim =



k · 1

π , d = 1,

k2 · 1
4π , d = 2,

k3 · 1
6π2 , d = 3.

(2.20)

Now consider the eigenvalues of discrete problems. Again, since sign changes
occur from right to left with coarsening, the mesh size that yields the maximum
number of negative eigenvalues is the smallest value h for which the discrete operator
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is negative semidefinite. With N mesh points in each coordinate direction, this is
equivalent to

d sin2 Nπh

2
=

(
kh

2

)2

, d = 1, 2, 3.

Thus, h = 2
√
d/k, and

η−max =

(
k

2
√
d

)d
=



k · 1

2 , d = 1,

k2 · 1
8 , d = 2,

k3 · 1
24

√
3
, d = 3.

Combining (2.19) with the fact that η−fine ≤ η−max, it follows that

η−max − η−fine ≤ η−max − η−lim.

The latter difference, shown in (2.17), is then a bound on number of sign changes.
For finite elements, we are concerned with the eigenvalues of the coefficient matrix

Ah, but it is also convenient to consider the associated operator Ah defined on the
finite element space V h. The eigenvalues of Ah are those of the generalized matrix
eigenvalue problem

Ahuh = σhM huh,(2.21)

where M h is the mass matrix. These eigenvalues tend to those of the continuous
operator. Moreover, since V H is a subspace of V h, the Courant–Fischer min-max
theorem implies that eigenvalues σh and σH with a common index shift to the right
with coarsening (or to the left with refinement). In addition, since M h is symmet-
ric positive definite, Sylvester’s inertia theorem implies that the number of negative
eigenvalues of Ah is the same as that of (2.21). It follows from these observations that
the maximal number of negative eigenvalues of Ah is bounded above by the fine-grid
limit η−lim.

This is also a bound on the number of sign changes. It can be improved by
examining the eigenvalues of Ah more closely. Using the tensor product form of the
operators, we can express these eigenvalues as

λhj1,j2,j3 = κj1µj2µj3 + µj1κj2µj3 + µj1µj2κj3 − k2µj1µj2µj3 ,(2.22)

where h = 1/(N + 1), the indices j1, j2, j3 run from 1 to N , and

κj =
1

h
(2− 2 cos jπh), µj =

h

6
(4 + 2 cos jπh).(2.23)

Consider the requirement λhj1,j2,j3 ≤ 0 for all indices j1, j2, j3, so that Ah is negative
semidefinite. This is equivalent to

κj1
µj1

+
κj2
µj2

+
κj3
µj3
≤ k2.

Since the expression κj/µj is monotonically increasing with j, the largest eigenvalue
in d dimensions equals zero if

k2 = d · κN
µN

= d · 6
h2

1− cosNπh

2 + cosNπh
≈ d · 12

h2
,
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Fig. 2.3. Indices of eigenvalues undergoing a sign change during coarsening of an N ×N finite
element grid with kh = π/5, kH = 2π/5 (left) and during further coarsening of the next coarser
(n× n) grid with kh = 2π/5, kH = 4π/5 (right).

i.e., h =
√
12d/k. For this value of h, there are η−max = (k/

√
12d)d negative eigen-

values, and, on coarser meshes, the problem remains negative definite. Consequently,
none of these η−max quantities undergo a sign change, giving the bound η−lim − η−max of
(2.18).

Figure 2.3 gives an idea of how sign changes are distributed for bilinear elements in
two dimensions. At levels where the changes take place, the indices of the eigenvalues
lie in a curved strip in the two-dimensional plane of indices. Typically, there is one
level where the majority of sign changes occur. As k is increased and h decreased
correspondingly via (2.5), the shape of these strips remains fixed, but the number of
indices contained in them grows like O(h−d) = O(kd). (Note, however, that (2.5) is
not needed for the analysis.) The behavior for finite differences is similar.

The remedy suggested in [12] for these difficulties consists of maintaining an
approximation of the eigenspace V H of the troublesome eigenvalues. A projection
scheme is then used to orthogonalize the coarse grid correction against V H , and the
coefficients of the solution for this problematic space are obtained separately. Since
it involves an explicit separate treatment of the problematic modes, this approach is
restricted to cases where there are only very a small number of these.

Finally, we note that although the closed forms for the eigenvalues studied here are
restricted to rectangular domains, we expect the trends displayed to be general. For
example, the direction of shifts of eigenvalues, derived from the form of the matrices for
finite differences and from the Courant–Fischer theorem for bilinear elements, will be
the same for general domains. This assertion is also largely borne out by experiments
on a nonsquare domain shown in section 4.

3. Incorporation of Krylov subspace methods. In view of the observations
about smoothing in section 2.1 and coarse grid correction in section 2.2, we modify
the standard multigrid method in the following way to treat Helmholtz problems:

• To obtain smoothers that are stable and still provide a strong reduction of
oscillatory components, we use Krylov subspace iteration such as GMRES as
smoothers on intermediate grids.
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• To handle modes with eigenvalues that are either close to the origin on all
grids—and hence belong to modes not sufficiently damped on any grid—or
that cross the imaginary axis and are thus treated incorrectly by some coarse
grid corrections, we add an outer iteration; that is, we use multigrid as a
preconditioner for a GMRES iteration for (1.4).

We will demonstrate the effectiveness of this approach with a series of numerical
experiments. In all tests the outer iteration is run until the stopping criterion

‖rm‖/‖r0‖ < 10−6

is satisfied, where rm = f −Aum is the residual of the mth GMRES iterate and the
norm is the vector Euclidean norm. The multigrid algorithm is a V-cycle in all cases;
the smoothing schedules are specified below.

3.1. GMRES accelerated multigrid. We begin with an experiment for the
one-dimensional Helmholtz equation on the unit interval with forcing term f = 0 and
inhomogeneous Dirichlet boundary condition u(0) = 1 on the left and Sommerfeld
condition on the right. We discretize using linear finite elements on a uniform grid,
where the discrete right-hand side f is determined by the boundary conditions. We
apply both a V-cycle multigrid algorithm and a GMRES iteration preconditioned
by the same V-cycle multigrid method. The smoother in these tests is one step
of damped Jacobi iteration for both presmoothing and postsmoothing, using ω =
(12− 4k2h2)/(18− 3k2h2), the analogue of (2.6) for finite element discretization that
provides maximal damping of oscillatory modes. The initial guess was a vector with
normally distributed entries of mean zero and variance one, generated by the Matlab
function randn.

Table 3.1 shows the iteration counts for increasing numbers of levels beginning
with fine grids containing N = 256, 512, and 1024 elements, for wave numbers k = 4π
and k = 8π, which correspond to two and four wavelengths in the unit interval,
respectively.

Table 3.1
Iteration counts for multigrid V-cycle as an iteration and as a preconditioner for GMRES

applied to the one-dimensional model Helmholtz problem with damped Jacobi smoothing. A dash
denotes divergence of the iteration.

256 elements 512 elements 1024 elements
k = 4π k = 8π k = 4π k = 8π k = 4π k = 8π

# levels MG GMRSMGGMRS MGGMRSMGGMRS MGGMRSMGGMRS
2 7 3 7 4 7 3 7 3 7 3 7 3
3 7 5 7 6 7 5 7 5 7 5 7 5
4 7 6 9 7 7 5 7 6 7 5 7 5
5 7 6 76 10 7 6 8 7 7 5 7 6
6 16 8 – 13 7 6 69 10 7 6 7 7
7 – 9 – 16 13 8 – 13 7 6 50 10
8 – 11 – 16 – 9 – 16 9 8 – 12
9 – 11 – 17 – 11 – 16 – 9 – 16
10 – 11 – 17 – 11 – 16

We observe first that both methods display typical h-independent multigrid be-
havior until the mesh size on the coarsest grid reaches kh ≈ π/2. (With 256 elements,
this occurs for k = 4π with 6 levels, coarsest mesh h = 1/8, and for k = 8π with 5
levels, coarsest h = 1/16.) At this point both methods require noticeably more iter-
ations, the increase being much more pronounced in the stand-alone multigrid case.
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Table 3.2
Iteration counts for the two-dimensional problem for fine grids with k = 4π and k = 8π on

128× 128 and 256× 256 meshes. A dash denotes divergence of the iteration.

128× 128 elements 256× 256 elements 512× 512 elements
k = 4π k = 8π k = 4π k = 8π k = 4π k = 8π

# levels MG GMRSMGGMRS MGGMRSMGGMRS MGGMRSMGGMRS
2 12 7 12 7 12 7 12 7 12 6 12 6
3 12 7 12 7 12 7 12 7 12 6 12 6
4 12 7 22 11 12 7 12 8 12 6 12 7
5 13 8 – 33 12 7 21 11 12 7 21 7
6 – 15 – 64 12 8 – 34 12 7 – 11
7 – 19 – 64 – 15 – 64 12 8 – 33
8 – 19 – 63 – 15 – 63

When yet coarser levels are added, multigrid diverges, whereas the multigrid precon-
ditioned GMRES method again settles down to an h-independent iteration count,
which does, however, increase with k.

Table 3.2 shows the same iteration counts for the two-dimensional Helmholtz
problem on the unit square with a second order absorbing boundary condition (see
[1, 14]) imposed on all four sides and discretized using bilinear quadrilateral finite
elements on a uniform mesh. Since the problem cannot be forced with a radiation
condition on the entire boundary, in this and the remaining examples of section 3,
an inhomogeneity was imposed by choosing a discrete right-hand side consisting of
a random vector with mean zero and variance one, generated by randn. The initial
guess was identically zero. (Trends for problems with smooth right-hand sides were
the same.) In addition, for all two-dimensional problems, we use two Jacobi pre- and
postsmoothing steps whenever Jacobi smoothing is used. The damping parameter ω
is chosen to maximize damping of the oscillatory modes. For the grids on which we
use damped Jacobi smoothing this optimum value was determined to be ω = 8/9. The
results show the same qualitative behavior as for the one-dimensional problem, in that
multigrid begins to diverge as coarse levels are added while the GMRES-accelerated
iteration converges in an h-independent number of iterations growing with k, although
with a larger number of iterations than in the one-dimensional case.

A natural question is whether corrections computed on the very coarse grids,
in particular those with meshes containing fewer than ten points per wavelength
(2π/k < 10), make any contribution at all towards reducing the error. We investigate
this in a sequence of experiments with GMRES accelerated multigrid with k = 8π,
where we omit all calculations—be they smoothing or direct solves—on an increasing
number of coarse levels.

The results, for a one-dimensional example with 512 elements and a two-dimen-
sional example with 2562 elements are in Table 3.3. The leftmost entries of the table
show the iteration counts when no coarse grid information is used, i.e., for GMRES
with preconditioning by two steps of Jacobi iteration. Reading from left to right,
subsequent entries show the counts when smoothings on a succession of coarser grids
are included, but no computations are done at grid levels below that of the coarsest
grid. For the rightmost entry, a direct solve was done on the coarsest mesh; this is a full
V-cycle computation. The results in two dimensions indicate improved performance
for coarse grids with mesh width less than 1/16, which corresponds to four points
per wave; performance degrades, but not dramatically so, for coarser meshes. For
the one-dimensional test, the coarse grid at level two, which has only two points per
wavelength, still accelerates the outer iteration. These results also show that multigrid
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Table 3.3
Iteration counts when varying amount of course grid information is used. Table entries further

to the right result from using more multigrid levels than those to the left. Test problems are k =
8π with 512 elements in the one-dimensional example and 2562 elements in the two-dimensional
example.

No V-Cycle Full V-cycle
↓ ↓

1D h−1 for coarsest grid 512 256 128 64 32 16 8 4
GMRES iterations 152 78 42 25 18 17 16 16

2D h−1 for coarsest grid 256 128 64 32 16 8 4 2
GMRES iterations 387 173 89 57 52 64 63 63

is dramatically superior to simple Jacobi-preconditioned GMRES.

These results show that, although multigrid by itself may diverge, it is nevertheless
a powerful enough preconditioner for GMRES to converge in an h-independent number
of steps. Two additional questions are whether replacing the unstable Jacobi smoother
with a Krylov subspace iteration leads to a convergent multigrid method and how
sensitive convergence behavior is as a function of the wave number k. We address the
former in the following section.

3.2. GMRES as a smoother. In this section we replace the unstable Jacobi
smoother with GMRES smoothing. We use GMRES on all levels j where khj ≥
1/2 and continue using damped Jacobi relaxation when khj < 1/2. This choice is
motivated by the discussion at the end of section 2.1.1, and it ensures that the largest
amplification factor for the Jacobi smoother does not become too large. The results
of section 2.1.2 show that we could switch back to Jacobi smoothing for very coarse
meshes, but we have not explored this option.

3.2.1. Nonconstant preconditioners. This introduces a slight complication
with regard to the outer GMRES iteration when multigrid is used as a preconditioner.
The inner GMRES smoothing steps are not linear iterations, and therefore a different
preconditioner is being applied at every step of the outer iteration. A variant of
GMRES able to accommodate a changing preconditioner (known as flexible GMRES
(FGMRES)) is due to Saad [27]. It requires the following minor modification of the
standard (right preconditioned) GMRES algorithm: if the orthonormal basis of the
(m+1)st Krylov space Km+1(AM−1, r0) in the case of a constant preconditionerM is
denoted by Vm+1 = [v1, . . . , vm+1], then the Arnoldi relation AM−1Vm = Vm+1H̃m

holds with an (m+ 1)×m upper Hessenberg matrix H̃m. If the preconditioning and
matrix multiplication step

zm := M−1vm, w := Azm,

is performed with a changing preconditioner M = Mm, this results in the modified
Arnoldi relation

AZm = Vm+1H̃m,

where Zm = [z1, . . . , zm]. The residual vector is now minimized over the space
span{z1, . . . , zm}, which need no longer be a Krylov space. This requires storing
the vectors {zj} in addition to the orthonormal vectors {vj}, which form a basis of
span{Azj : j = 1, . . .m}.
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Table 3.4
Manually optimized GMRES smoothing schedule for the two-dimensional model Helmholtz prob-

lem: “J” denotes Jacobi smoothing and “D” denotes a direct solve. The FGMRES algorithm uses
the multigrid V-cycle as a preconditioner.

256× 256, k = 4π, omax = 6

# levels Smoothing schedule MG FGMRES
6 J J J J 13 D 8 6
7 J J J J 13 16 D 8 6
8 J J J J 13 16 1 D 8 6
9 J J J J 13 16 1 0 D 8 6

128× 128, k = 8π, omax = 7

# levels Smoothing schedule MG FGMRES
4 J J 25 D 9 7
5 J J 25 39 D 9 7
6 J J 25 39 24 D 9 7
7 J J 25 39 16 2 D 9 7
8 J J 25 39 16 2 0 D 9 7

256× 256, k = 8π, omax = 7

# levels Smoothing schedule MG FGMRES
5 J J J 23 D 9 7
6 J J J 23 42 D 9 7
7 J J J 23 39 0 D 9 7
8 J J J 23 38 0 0 D 9 7
9 J J J 23 38 0 0 0 D 9 7

256× 256, k = 16π, omax = 10

# levels Smoothing schedule MG FGMRES
4 J J 34 D 12 10
5 J J 38 29 D 12 10
6 J J 35 20 6 D 12 10
7 J J 35 20 6 3 D 12 10
8 J J 35 20 6 3 0 D 12 10
9 J J 35 20 6 3 0 0 D 12 10

256× 256, k = 32π, omax = 18

# levels Smoothing schedule MG FGMRES
3 J 34 D 21 18
4 J 39 39 D 22 18
5 J 35 33 5 D 23 18
6 J 35 33 5 3 D 23 18
7 J 35 33 5 3 2 D 23 18
8 J 35 33 5 3 2 0 D 23 18
9 J 35 32 6 5 3 0 0 D 23 18

3.2.2. Hand-tuned smoothing schedules. Numerical experiments with a fixed
number of GMRES smoothing steps at every level did not result in good performance.
To get an idea of an appropriate smoothing schedule, we proceed as follows. For given
k, we calculate the number omax of FGMRES iterations needed with j-level multigrid
preconditioning, where we use Jacobi smoothing on all grids for which khi < 1/2 and
do a direct solve at the next coarser grid, making j grids in all. We then replace
the direct solve on the coarsest grid of the j-level scheme with GMRES smoothing
on this grid, coupled with a direct solve on the next coarser grid, and determine the
smallest number mj of GMRES smoothing steps required for the outer iteration to
converge in omax steps. For example, for the first line of Table 3.4, six outer FGMRES
steps were needed for a 5-level scheme, and then m5 = 13 GMRES smoothing steps
were needed for the outer iteration of the new 6-level preconditioner to converge in
six steps. When the number mj has been determined, we could fix the number of
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GMRES smoothing steps to mj on this grid, add one coarser level, determine the
optimal number of GMRES smoothing steps on the coarser grid, and continue in this
fashion until the maximal number of levels is reached. This approach is modified
slightly by, whenever possible, trying to reduce the number of smoothings on finer
levels once coarser levels have been added. This is often possible, since replacing the
exact solve on the coarsest grid with several GMRES smoothing steps often has a
regularizing effect, avoiding some damage possibly done by an exact coarse grid cor-
rection in modes whose eigenvalues are not well represented on the coarse grid. This
hand-tuning procedure gives insight into the best possible behavior of this algorithm.

In contrast to classical linear smoothers, whose damping properties for different
modes is fixed, the damping properties of GMRES depend on the initial residual. In
particular, since GMRES is constructed to minimize the residual, it will most damp
those modes that lead to the largest residual norm reduction. For this reason, we
will favor postsmoothing over presmoothing to prevent the unnecessary damping of
smoother modes that should be handled by the coarse grid correction. We do include
two GMRES presmoothing steps to avoid overly large oscillatory components in the
residual prior to restricting it to the next lower level, which could otherwise lead to
spurious oscillatory error components being introduced by the coarse grid correction.

The results are shown in Table 3.4. The entry “D” denotes a direct solve on the
corresponding level, and “J” indicates that damped Jacobi smoothing was used on
this level. Looking at the smoothing schedules, we observe a “hump” in the number
of GMRES smoothing steps on the first two levels on which GMRES smoothing is
used. Below this, the number decreases and is often zero for the coarsest levels.
However, GMRES smoothing still helps on levels which are extremely coarse with
regard to resolution of the waves: in the case k = 32π, for instance, performing three
GMRES smoothing steps on level 4 (which corresponds to 1/2 point per wavelength)
still improves convergence.

We remark that the number of outer iterations in all these tests, for both precon-
ditioned FGMRES and stand-alone MG, is the same as for the corresponding two-grid
versions of these methods, so we cannot expect faster convergence with respect to the
wave number k. We also note that the number of iterations for multigrid is very close
to that for FGMRES with multigrid preconditioning. We believe this is because the
relatively large number of GMRES smoothing steps on intermediate levels eliminates
lower frequency errors, and this mitigates the effects of axis crossings. We will return
to this point in section 3.4.

3.3. A stopping criterion based on L2-sections. Hand tuning as in the
previous section is clearly not suitable for a practical algorithm. In this section, we
develop a heuristic for finite element discretizations that automatically determines
a stopping criterion for the GMRES smoother. This technique is based on an idea
introduced in [32].

We briefly introduce some standard terminology for multilevel methods applied
to second order elliptic boundary value problems on a bounded domain Ω ⊂ R

2 (see
[34]). We assume a nested hierarchy of finite element spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ V = H1(Ω)

in which the largest space VJ corresponds to the grid on which the solution is sought.
We require the L2-orthogonal projections Q� : V → V�, defined by

(Q�u, v) = (u, v) ∀v ∈ V�, � = 1, . . . , J,
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where (·, ·) denotes the L2-inner product on Ω. Let Φ� = {φ(�)
1 , . . . , φ

(�)
n� } denote the

basis of the finite element space V� of dimension n� used in defining the stiffness and
mass matrices. By the nestedness property V� ⊂ V�+1, there exists an n�+1 × n�
matrix I�+1

� whose columns contain the coefficients of the basis Φ� in terms of the
basis Φ�+1, so that, writing the bases as row vectors,

[φ
(�)
1 , . . . , φ(�)

n�
] = [φ

(�+1)
1 , . . . , φ(�+1)

n�+1
]I�+1
� .

The stopping criterion we shall use for the GMRES smoothing iterations is based
on the representation of the residual r� of an approximate solution ũ� of the level-�
equation as the sum of differences of L2-projections,

r� = (I −Q�−1)r� + (Q�−1 −Q�−2)r� + · · ·+ (Q2 −Q1)r� +Q1r�,

which we refer to as residual sections. The following result for coercive problems,
which was proven in [32], shows that the error u� − ũ� is small if each appropriately
weighted residual section is small.

Theorem 3.1. Assume the underlying elliptic boundary value problem is H1-
elliptic and H1+α-regular with α > 0. Then there exists a constant c independent of
the level � such that the H1(Ω)-norm of the error on level � is bounded by

‖u� − ũ�‖1 ≤ c


‖Q1r�‖+

�∑
j=2

hαj ‖(Qj −Qj−1)r�‖

 .(3.1)

The boundary value problem (1.1)–(1.3) under consideration is not H1-elliptic
and therefore does not satisfy the assumptions of this theorem. We have found,
however, that the bound (3.1) suggests a useful stopping criterion: terminate the
GMRES smoothing iteration on level � as soon as the residual section (Q� −Q�−1)r�
has become sufficiently small. To obtain a formula for the computation of these
sections, assume the residual r� is represented by the coefficient vector r� in terms of
the dual basis of Φ�. The representation of Q�−1r� with respect to the dual basis of
Φ�−1 is then given by the coefficient vector I�−1

� r� ∈ C
n�−1 , where I�−1

� := (I��−1)
�.

Returning to the representation with respect to the basis Φ�−1 requires multiplication
with M−1

�−1, so that we obtain

‖Q�−1r�‖2 = (Q�−1r�, Q�−1r�) = (I�−1
� r�)

�M−1
�−1I�−1

� r�.

If the sequence of triangulations underlying the finite element spaces V� is quasi-
uniform, then the mass matrix of level � is uniformly equivalent to the identity scaled
by hd, where d denotes the dimension of the domain. For the case d = 2 under
consideration, this means that the Euclidean inner product on the coordinate space
C
n� , denoted by (·, ·)E , when scaled by h2

� , is uniformly equivalent (with respect to
the mesh size) to the L2-inner product on V�. Therefore, the associated norms satisfy

ch2
�‖v�‖2E ≤ ‖v�‖2 = v�

� M�v� ≤ Ch2
�‖v�‖2E ∀v� ∈ V�,

where v� is the coordinate vector of v� with respect to Φ�. Using this norm equivalence
it is easily shown that

c‖(I − h2
�/h

2
�−1I��−1I�−1

� )r�‖E ≤ h�‖(I −Q�−1)r�‖
≤ C‖(I − h2

�/h
2
�−1I��−1I�−1

� )r�‖E
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for some constants c and C uniformly for all levels �. As a result, the residual sections
may be computed sufficiently accurately without the need for inverting mass matrices.

In [32], it was suggested that the GMRES smoothing iteration for a full multigrid
cycle be terminated as soon as the residual section on the given level is on the order
of the discretization error on that level. For the problem under consideration here, we
shall use the relative reduction of L2-sections as a stopping criterion, so that roughly
an equal error reduction for all modes is achieved in one V-cycle. On the first level
on which GMRES smoothing is used, we have the additional difficulty that many
eigenvalues may be badly approximated on the next-coarser level. For this reason,
it is better to also smooth the oscillatory modes belonging to the next lower level
and base the stopping criterion on the residual section (I −Q�−2)r� instead; we will
use this “safer” choice on all levels. Numerical experiments with optimal smoothing
schedules have shown the relative reduction of this residual section to scale like kh�,
so that we arrive at the stopping criterion

∥∥∥∥r − h2
�

h2
�−2

I��−1I�−1
�−2 (I��−1I�−1

�−2 )
�r

∥∥∥∥
E

≤ γkh�.(3.2)

A complete description of the multigrid V-cycle algorithm starting on the finest
level � is as follows.

Algorithm 3.1. ũ� = MG(u
(0)
� , f�). Multigrid V-cycle with GMRES smoothing

on coarse levels

if � = 1
ũ� := A−1

� f�
else

if kh� < 1/2

perform m1 steps of damped Jacobi smoothing to obtain u
(1)
�

else

perform 2 steps of GMRES smoothing to obtain u
(1)
�

endif

u
(2)
� := u

(1)
� + I��−1MG(0, I�−1

� (f� −A�u
1
� ))

if kh� < 1/2
perform m2 steps of damped Jacobi smoothing to obtain ũ�

else
perform GMRES smoothing until stopping criterion (3.2) is satisfied
or m = mmax to obtain ũ�

endif
endif

In the multigrid V-cycle, Algorithm 3.1 is used recursively beginning with the
finest level and iterated until the desired reduction of the relative residual is achieved
on the finest level. In the FGMRES variant, Algorithm 3.1 represents the action of
the inverse of a preconditioning operator being applied to the vector f�.

3.4. Experiments with automated stopping criterion. We now show how
the multigrid solver and preconditioner perform with the automated stopping criterion
for GMRES smoothing. Each method is applied to the two-dimensional Helmholtz
problem on the unit square with a second order absorbing boundary condition and
random right-hand side data. In these tests, we used γ = 0.1 in (3.2), and we also im-
posed an upper bound mmax on the number of GMRES smoothing steps, terminating
the smoothing if the stopping criterion is not satisfied after mmax steps; we tested two
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Table 3.5
Iteration counts for multigrid and multigrid-preconditioned FGMRES for various fine-grid sizes

and wave numbers. In all cases, GMRES smoothing is performed on levels for which kh > 1/2 and
the smoothing is terminated by the L2-section stopping criterion or when mmax smoothing steps are
reached. A dash denotes divergence.

Multigrid MG-preconditioned FGMRES
N\k 2π 4π 8π 16π 32π 64π 2π 4π 8π 16π 32π 64π

mmax = 40
64 12 12 13 7 8 9
128 12 12 13 16 7 8 9 13
256 12 12 13 17 27 7 8 9 13 20
512 12 12 13 16 27 78 7 8 9 13 21 36

mmax = 20
64 12 12 13 7 8 9
128 12 12 13 22 7 8 9 16
256 12 12 13 21 201 7 8 10 16 37
512 12 12 13 21 331 — 7 8 10 16 36 80

values, mmax = 40 and mmax = 20. At fine-grid levels, where damped Jacobi smooth-
ing is used, the number of presmoothings and postsmoothings was m1 = m2 = 2.

We present three sets of results. Table 3.5 shows iteration counts for a variety
of wave numbers and mesh sizes. Table 3.6 examines performance in more detail
by showing the automatically generated smoothing schedules for two wave numbers,
k = 8π and k = 32π. Finally, to give an idea of efficiency, Table 3.7 shows an
estimate for the operation counts (multiplications) required for the problems treated
in Table 3.6.

Table 3.6
Smoothing schedules with automated stopping criterion for selected parameters.

k = 8π, mmax = 40
Grid # levels Smoothing schedule Iterations

FGMRES 64× 64 6 J 20 17 11 2 D 9
128× 128 7 J J 19 16 11 2 D 9

MG 64× 64 6 J 16 17 11 2 D 13
128× 128 7 J J 18 16 11 2 D 13

k = 8π, mmax = 20
Grid # levels Smoothing schedule Iterations

FGMRES 64× 64 6 J 19 17 12 2 D 9
128× 128 7 J J 18 16 11 2 D 9

MG 64× 64 6 J 16 17 11 2 D 13
128× 128 7 J J 18 16 11 2 D 13

k = 32π, mmax = 40
Grid # levels Smoothing schedule Iterations

FGMRES 256× 256 8 J 34 38 22 1 0 0 D 20
512× 512 9 J J 33 38 22 1 0 0 D 21

MG 256× 256 8 J 32 36 18 1 0 0 D 27
512× 512 9 J J 32 37 19 1 0 0 D 27

k = 32π, mmax = 20
Grid # levels Smoothing schedule Iterations

FGMRES 256× 256 8 J 20 20 18 1 0 0 D 37
512× 512 9 J J 20 20 18 1 0 0 D 36

MG 256× 256 8 J 20 20 16 1 0 0 D 201
512× 512 9 J J 20 20 16 1 0 0 D 331
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Table 3.7
Operation counts (in millions) for selected parameters with mmax = 40.

k = 8π k = 32π
Grid MG FGMRES MG FGMRES

64× 64 13.2 13.3
128× 128 24.0 22.1
256× 256 61.2 43.2 1091.2 971.1
512× 512 196.6 148.1 1418.1 1377.8

We make the following observations on these results:

• For low wave numbers, the number of iterations of stand-alone multigrid is
close to that for FGMRES. The difference increases as the wave number in-
creases, especially for the case mmax = 20. For large enough k, multigrid
fails to converge, whereas MG-preconditioned FGMRES is robust. This be-
havior is explained by the results of section 2.2.2. For large wave numbers,
the increased number of amplified modes eventually causes multigrid to fail;
a larger number of smoothing steps mitigates this difficulty, presumably by
eliminating some smooth errors. The (outer) FGMRES iteration handles this
situation in a robust manner.
• The automated stopping criterion leads to smoothing schedules close to those
obtained by hand tuning (see Table 3.4), and correspondingly similar outer
iteration counts.
• The operation counts shown in Table 3.7 suggest that MG-preconditioned
FGMRES is more efficient than stand-alone multigrid even when the latter
method is effective. Operation counts for MG-preconditioned FGMRES with
mmax = 20 (not shown) indicate that the costs for this strategy, which uses
more outer iterations but fewer smoothing steps than when mmax = 40, are
essentially the same, although the larger number of outer FGMRES steps
requires more memory to store more fine-grid vectors.
• For fixed wave number, outer iteration counts are mesh independent, so that
standard “multigrid-like” behavior is observed. The costs per unknown (for
fixed k and smoothing schedule) also display textbook multigrid efficiency,
i.e., they are constant. However, because Jacobi smoothing is less expensive
than GMRES smoothing, during the initial stages of mesh refinement the
operation counts grow at less than a linear rate.
• The growth in outer iteration counts with increasing wave number is slower
than linear in k. The operation counts increase more rapidly, however, be-
cause of the increased number of smoothing steps required for larger wave
numbers.

We also note that GMRES has nontrivial storage requirements; we expect other
Krylov subspace methods with lower storage requirements (e.g., QMR [15] or Bi-
CGSTAB [33]) to perform in a similar manner.

4. Application to an exterior problem. As a final example we apply the
algorithm to an exterior scattering problem for the Helmholtz equation as given in
(1.1)–(1.3). The domain Ω consists of the exterior of an ellipse bounded externally by
a circular artificial boundary Γ∞ on which we impose the exact nonlocal Dirichlet-to-
Neumann (DtN) boundary condition (see [21]). The source function is f = 0; forcing
is due to the boundary condition on the boundary Γ of the scatterer, given by
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Fig. 4.1. Contour plot of the solution of the Dirichlet problem with wave number k = 8π.

u(x, y) = g(x, y) or
∂u(x, y)

∂n
=

∂g(x, y)

∂n
, (x, y) ∈ Γ,

with data g(x, y) = −eik(x cosα+y sinα) representing a plane wave incident at angle α
to the positive x-axis. The solution u represents the scattered field associated with the
obstacle and incident field g; the resulting total field u+g then satisfies a homogeneous
Dirichlet or Neumann boundary condition on Γ, respectively. An angle of incidence
α = π/4 was chosen to avoid a symmetric solution. The problems were discretized
using linear finite elements beginning with a very coarse mesh which is successively
refined uniformly to obtain a hierarchy of nested finite element spaces. The finest
mesh, obtained after five refinement steps, contains 32768 degrees of freedom. Several
combinations of k and h were tested, where in each case kh < 0.5 on the finest
mesh. Figure 4.1 shows a contour plot of the solution u of the Dirichlet problem for
k = 8π. The computations make use of the PDE Toolbox of the Matlab 5.3 computing
environment.

The problems were solved using both the stand-alone and FGMRES-accelerated
versions of multigrid, with GMRES smoothing using the residual section stopping
criterion with γ = 0.1, outer stopping criterion requiring residual reduction by a
factor of 10−6 as in section 3, and zero initial guess. We used the maximal number of
levels in all examples with the exception of the Dirichlet problem for k = 8π, where
we also varied the number of levels from six down to two. The results are shown
in Table 4.1. The table gives the wave number k and the length of the ellipse E in
wavelengths λ = 2π/k. The third column gives the maximum value of kh on the finest
mesh and the fourth column indicates the number of levels used in each computation.
The last two columns list the iteration counts.

We observe that the preconditioned iteration performs well in all cases with a
growth in number of iterations slower than linear in k. The stand-alone multigrid
variant performs less well in comparison, requiring more than 100 steps to converge
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Table 4.1
Iteration counts for the exterior scattering problem with Dirichlet or Neumann plane wave data

on the boundary of an ellipse for various wave numbers, grid sizes, and numbers of levels. A dash
denotes divergence.

k Size E[λ] (khmax)fine # Levels MG FGMRES
Dirichlet problem

2π 1 .10 6 36 13
.21 5 27 12
.42 4 26 12

4π 2 .21 6 38 16
.42 5 27 14

8π 4 .42 6 41 20
5 — 28
4 100 26
3 41 16
2 41 13

Neumann problem
2π 1 .10 6 — 21

.21 5 37 15

.42 4 21 12
4π 2 .21 6 — 28

.42 5 53 21
8π 4 .42 6 — 32

in several cases and even diverging in one case. This is particularly the case for the
Neumann problem, where the superiority of the preconditioned variant is even more
pronounced. For the Neumann problems we also notice a slight growth in iteration
counts for fixed k and decreasing h.

5. Conclusions. The results of this paper show that the addition of Krylov
subspace iteration to multigrid, both as a smoother and as an outer accelerating
procedure, enables the construction of a robust multigrid algorithm for the Helmholtz
equation. GMRES is an effective smoother for grids of intermediate coarseness, in that
it appears not to amplify any error modes and in addition tends to have a regularizing
effect on the contribution to the coarse grid correction coming from smoothing on a
given level. The combination of our multigrid algorithm as a preconditioner with
FGMRES is effective in handling the deficiencies of standard multigrid methods for
the Helmholtz equation, and the outer FGMRES acceleration is necessary, particularly
for high wave numbers. In addition, results in the paper indicate that grids too coarse
to result in a meaningful discretization of the Helmholtz equation may still provide
some useful information for coarse grid corrections. Using an automated stopping
criterion based on L2-sections of the residual leads to smoothing cycles that are close
to hand-tuned optimal smoothing schedules.

An important aspect of our algorithm is that it consists of familiar building blocks
and is thus easily implemented. For very large wave numbers for which the discretiza-
tion must not only keep kh but also k3h2 small, the grid hierarchy will contain more
grids fine enough to use Jacobi smoothing, thus making the algorithm more efficient.
The result is a multigrid method that appears to converge with a rate independent of
the mesh size h and with only moderate dependence on the wave number k. Finally,
the numerical results show that we are able to effectively solve Helmholtz problems
with wave numbers of practical relevance.
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Abstract. In this paper we study the application of the Sobolev gradients technique to the prob-
lem of minimizing several Schrödinger functionals related to timely and difficult nonlinear problems
in quantum mechanics and nonlinear optics. We show that these gradients act as preconditioners over
traditional choices of descent directions in minimization methods and show a computationally inex-
pensive way to obtain them using a discrete Fourier basis and a fast Fourier transform. We show that
the Sobolev preconditioning provides a great convergence improvement over traditional techniques
for finding solutions with minimal energy as well as stationary states and suggest a generalization of
the method using arbitrary linear operators.
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1. Introduction. The observation of nature reveals that many unforced con-
tinuous systems tend to accommodate into stationary configurations, in which the
distributions of mass, charge, velocity, etc., do not change throughout time. In the
language of mathematical modeling all configurations are represented by points of a
certain space of functions, ψ(x) ∈W , while the tendency of the system to lie into any
of these states is given by a functional, E(ψ) : W → R, the energy, whose minima
are precisely those stationary “states.” For this reason it is possible to see many
physical problems written as variational principles of the type “find ψ ∈W such that
E(ψ) : W → R achieves a minimum on W .” In most situations the functional to be
minimized has a dependence on ψ of the form

E(ψ) =

∫
f (∇ψ(x), ψ(x)) dnx.(1.1)

However, a complete analytical description of the minima of the functional E(ψ) is
usually not possible. In this paper we will introduce several techniques for performing
this study numerically, focusing on the minimization of E(ψ) subject to physical
constraints.

From a practical point of view, this problem is similar to that of finding the
minima of a real function defined over a finite-dimensional space, such as R

n. First,
a definition of derivative of the functional, ∇E(ψ), must be chosen. If the domain
of the functional W is equipped with some scalar product, we may use the Fréchet
derivative which is given by a first order expansion of the functional around a function
ψ,

E(ψ + δ) = E(ψ) + 〈δ,∇E(ψ)〉+ 〈∇E(ψ), δ〉+O
(
‖δ‖2

)
.(1.2)
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The critical points, ψc, are defined as the points where the first order variation
of the functional vanishes for any perturbation δ. That is, the derivative vanishes in
a weak sense:

〈δ,∇E(ψc)〉 = 0 ∀δ.(1.3)

Just like in the finite-dimensional case it is possible to show that any minimum
of the functional must also be a critical point. Thus a common approach is to solve
(1.3) and verify a posteriori which solutions are actually minima of the functional.
If W = L2(Rn), this procedure gives us the well-known Euler–Lagrange equations of
the problem, which is a partial derivatives equation (PDE):

∂f

∂ψ̄
−∇ · ∂f

∂∇ψ̄ = 0.(1.4)

However, we have no guarantee of reducing the complexity of the problem, as it
is by no means trivial to solve (1.4). We are also likely to obtain more solutions than
we actually need, since not only minima, but also maxima and saddle node points,
will satisfy the Lagrange equations.

To avoid these problems some other methods are used which aim at finding the
minima of the functional directly, constructing minimizing sequences, {ψi}, whose
limit is a minimum of the functional: ψc = limi→∞ ψi. These methods will be dis-
cussed in the following sections.

The outline of this paper is as follows. In section 2 we recall the definition of
Sobolev gradients as given in [2, 3]. We derive a formal solution to the problem
of finding these gradients which is based on the inversion of a positive Hermitian
operator. In section 3 we derive an explicit expression for the Sobolev gradients in
the trigonometric Fourier basis and comment on its implementation using fast Fourier
transforms.

In sections 4 and 5 we apply the previous tools to two physical problems. Us-
ing descent techniques with Sobolev gradients over Fourier spaces we will find the
ground states of a Bose–Einstein condensate in a rotating magnetic trap and the ex-
cited states for coupled laser beams propagating through a nonlinear medium. Both
physical systems are modeled by nonlinear equations of Schrödinger type and present
difficulties when traditional minimization techniques are used. We comment on the
great improvements that are achieved using Sobolev gradients. Finally in section 6
we summarize our results and offer some conclusions.

2. Sobolev gradients.

2.1. Direct solutions of the variational problem. There are two traditional
approaches to the problem of finding the minima of a functional using a discrete basis.
The first one expands the unknown solution using a Fourier basis {φk}, ψ =

∑
k ckφk,

and defines a new functional over the finite-dimensional space

E({ck}) ≡ E
(∑

ckφk

)
.(2.1)

The functional is then minimized using methods which are well known from the do-
main of finite-dimensional problems, e.g., Newton’s method or nonlinear conjugate
gradient.

This procedure is quite straightforward and there is a huge amount of literature
and tools which can be immediately applied to (2.1). However, for some types of
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problems one has to deal with highly nonlinear algebraic equations with many terms
on each equation, something which is computationally too expensive to work with.

The second approach involves what is known as descent techniques. The idea
is to manipulate the original functional (1.1) building an analytic equation for a
minimizing trajectory in the target space W . This equation is then discretized and
solved on a suitable basis. In the continuous steepest descent version, the trajectory
ψ(t) : R→W is continuous and defined by a PDE which involves the gradient of the
functional (1.2),

∂ψ

∂t
= −∇E.(2.2)

The discrete steepest descent technique is computationally cheaper since instead of
requiring an integrator for the PDE it constructs a sequence of estimates to the
minimum, {ψk+1 = ψk + λk∇E(ψk)}, by locally minimizing E(ψk + λ∇E) with
respect to the real parameter λ.

In this paper we deal only with descent techniques. The first and most important
reason is that we will work with the definition of ∇E(ψk) trying to improve its conver-
gence. As was already shown in [3], this work pays off: a good choice of the gradient
improves convergence by several orders of magnitude. The second motivation is that
by focusing on the gradient, we find that our algorithms will be essentially indepen-
dent on the descent method, which leaves space for further improvement. For instance,
one might apply these techniques to a nonlinear conjugate gradient method—which
dynamically adjusts the search direction, dk ≡ ∇E(ψk), with an estimate that takes
into account the history of the evolution. Finally, by working with (2.2) or its discrete
version we avoid the complex nonlinearities that arise in other methods, and we will
have a more ample choice of Fourier basis to work with.

2.2. Boundary conditions. Before proceeding with the study of Sobolev gra-
dients, we must make more precise the boundary conditions of our functional spaces.
In this paper we will compare applications to several problems of physics in which
the solutions concentrate on a narrow region of space and decrease exponentially as
we move out of this region, that is,

|ψ(r)| = O(e−|r|2), |r| → ∞.

Naturally, computers allow us to study only a small region of space, which means
we have to introduce some reasonable boundary conditions and hope that the solutions
of this simplified problem do not deviate much from the original one.

In our case we will perform our study with functions which are defined over a
d-dimensional rectangular volume, Ω ≡ {x ∈ Πi[ai, bi]} (see section 2.13), and we will
impose zero boundary conditions on the sides of this box.

2.3. Ordinary gradients. It is customary in the literature to work in spaces
which are equipped with an L2 scalar product and its corresponding norm

〈ψ, φ〉L2 ≡
∫

Ω

ψ̄φ,(2.3)

‖ψ‖2L2 ≡
∫

Ω

|ψ|2.(2.4)
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If one does so and works with (1.2) as well as the boundary conditions, then the
formal definition of the gradient is one of Lagrange’s:

∇E(ψ) =
∂E

∂ψ̄
−∇ ∂E

∂
(∇ψ̄) .(2.5)

We will refer to this definition as the “ordinary” gradient to distinguish it from the
different definitions that we will derive below.

2.4. Sobolev gradients. Following the ideas from [3] we will move our problem
to a different space, which is the Sobolev space of functions, such that ψ and its
derivatives, ∇ψ, have a well-defined L2-norm:

H
1 ≡ {ψ/ψ,∇ψ ∈ L2}.(2.6)

This Sobolev space will also be equipped with a scalar product and a norm:

〈ψ, φ〉 ≡
∫

Ω

[
ψ̄(x)φ(x) +∇ψ̄(x) · ∇φ(x)] dnx,(2.7)

‖ψ‖2 ≡
∫

Ω

[|ψ|2 + |∇ψ|2] dnx.(2.8)

To obtain a new explicit expression for the gradient of the functional in the
Sobolev space we will follow a less rigorous derivation than in [2]. Performing a first
order expansion of our functional around a trial state ψ we obtain

E(ψ + εδ) = E(ψ) + ε

∫
Ω

[
δ̄
∂E

∂ψ̄
+∇δ̄ ∂E

∂(∇ψ̄)
]

(2.9)

+ ε

∫
Ω

[
∂E

∂ψ
δ +

∂E

∂(∇ψ)∇δ
]
+O(ε2).

Here the bars over δ and ψ denote complex conjugation.
We have to turn this expression into something like (1.2). This means that we

have to find some function, φ ≡ ∇SE, which is the gradient and satisfies

∫
Ω

[
δ̄
∂E

∂ψ̄
+∇δ̄ ∂E

∂(∇ψ̄)
]
=

∫
Ω

[
δ̄φ+∇δ̄∇φ] = 〈δ, φ〉,(2.10)

∫
Ω

[
∂E

∂ψ
δ +

∂E

∂(∇ψ)∇δ
]
=

∫
Ω

[
φ̄δ +∇φ̄∇δ] = 〈φ, δ〉.(2.11)

If we use the boundary conditions to integrate by parts and then impose that any of
these equalities be satisfied for all perturbations δ, the problem has a formal solution
which is given by a Lagrange equation,

(1−�)φ =
∂E

∂ψ̄
−∇ ∂E

∂(∇ψ̄) .(2.12)

In consequence, our formal expression for the Sobolev gradient of E(ψ) finally reads

∇SE ≡ (1−�)
−1∇E.(2.13)

Here ∇SE stands for the Sobolev gradient, ∇E is the ordinary one, and (1 −�)−1

represents the inverse of a linear and strictly positive definite operator.
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3. Sobolev gradients on discrete Fourier spaces. As mentioned above, we
will work with functions which are defined over a rectangular Ω with side lengths
given by Li = bi − ai. We customarily define an orthogonal set of basis functions,
φn = eiknx, over Ω, where {kn = 2π(n1

L1
, . . . , nd

Ld
), ni ∈ Z}.

It is well known that it is possible to expand any continuous function f(x) with
periodic boundary conditions using this basis:

f(x) =
+∞∑

n=−∞
f̂nφn(x),(3.1)

where

f̂n =
1

V

∫
Ω

φ̄n(x)f(x).(3.2)

In the previous formula V = ΠiLi is the volume of Ω and arises because of the
lack of normalization of the basis functions, a common practice which saves some
computation time.

To discretize the problem we will work within the set of functions sampled over
a set of evenly spaced points from Ω, {xn = (n1h1, . . . , ndhd), ni = 0, . . . , Ni − 1}.
Here hi represents the spacing along the ith dimension, n is a vector of nonnegative
integers, and we denote a sampled function by an index, as in fn ≡ f(xn).

Due to this procedure our previous Fourier basis is now redundant. We can choose
finite subset of functions that represent any sampled function. These functions are
given by {kn = 2π(n1

L1
, . . . , nd

Ld
), ni = −Mi + 1, . . . ,Mi}, where Mi = [Ni/2] is the

integer quotient of Ni divided by 2. In this basis a sampled function is given by an
expansion which reads

fm =
∑
n

f̂nφn(xm)(3.3)

and which makes use of the same coefficients as (3.2).
The advantage of the finite Fourier basis over other approaches is that it provides

an approximant of any function whose error is of order O(Li/Ni)
p, where p is the

maximum differentiability of the sampled function. Furthermore, there is a numeri-
cally efficient method known as the fast Fourier transform (FFT), which allows one

to compute the Fourier coefficients up from the sampled function, fn → f̂m, and vice
versa [1].

Solving (2.13) numerically in a discrete Fourier basis is simple. Let us say that we
have computed the ordinary gradient and that its sampled version has some Fourier
coefficients

∇E(xn) =
∑

êmφm(xn),(3.4)

and let us assume that there exists a certain solution to (2.13) and that it has another
discrete Fourier expansion

∇sE(xn) =
∑

ŝmφm(xn).(3.5)

Then by virtue of (2.13)

ŝm =
êm

1 + k2
m

;(3.6)
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that is, in the sampled space the Sobolev gradient represents a preconditioning of the
ordinary gradient such that the most oscillating modes are more attenuated. Further-
more, due to this very simple expression, computing the Sobolev preconditioning is
computationally cheap and involves only minor changes to existing computer codes
based on Fourier transforms.

4. Applications to quantum mechanics.

4.1. The problem. In this section we apply the Sobolev gradients technique to
a timely problem from quantum physics. The system that we will study is a dilute
gas of bosonic atoms which are cooled down to ultralow temperatures at which their
dynamics become synchronized. When the temperature is low enough, the gas or
“condensate” may be described using a single complex wave function, ψ(x, t), which
is ruled by the so-called Gross–Pitaevskii equation, a type of nonlinear Schrödinger
equation that for a Bose gas in a rotating trap reads [4]

i∂tψ(x, t) =

[
−1

2
�+ V (x) + g|ψ(x, t)|2 − ΩLz

]
ψ(x, t).(4.1)

Here g ∈ R
+,Ω ∈ R, Lz = i (x1∂2 − x2∂1) is a Hermitian operator whose expected

value 〈Lz〉 =
∫
ψ̄Lzψ represents the angular momentum of the condensate along an

axis of the trap, and the equation has been properly adimensionalized.

There is a conserved quantity associated to (4.1) which is called the energy func-
tional of the condensate

E(ψ) =
1

2

∫ {
|∇ψ|2 + ψ̄

[
V (x) +

1

2
g|ψ|2 − ΩLz

]
ψ

}
dnx.(4.2)

Our objective in this part of the work will be to find the solutions which are the
minima of the energy subject to a restriction of the L2-norm

∫
|ψ|2 ≡ N.(4.3)

The particular value of N is imposed by the experimental conditions and remains
constant throughout evolution. Furthermore, without this restriction the absolute
minimum of the energy is always reached at the trivial solution ψ = 0.

In quantum mechanics the variational formulation of the problem is traditionally
converted into a Lagrange equation (1.4), which is nothing but the Gross–Pitaevskii
equation for the so-called stationary states. In short the word “stationary” refers to
solutions of the type

ψ(x, t) = e−iµtφµ(x).(4.4)

The pair {µ, φµ(x)} satisfies a nonlinear eigenvalue problem

µφµ(x) =

[
−1

2
�+ V (x) + g|φµ(x)|2 − ΩLz

]
φµ(x).(4.5)

Due to the difficulty of solving problem (4.5) directly we will try to find a direct
solution to the variational problem.
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4.2. Numerical methods: Imaginary time evolution. We can search the
minima of (4.2) using descent techniques modified to account for the restriction on
the norm (4.3). The first way to do this is to use a version of the continuous steepest
descent which is known as imaginary time evolution. We can summarize this method
with the following set of equations:

ν(x, τ) =

√
N

‖σ‖2L2

σ(x, τ),(4.6)

∂σ

∂τ
(x, τ) = −∇E(ν),(4.7)

∇E(ν) =

[
−1

2
�+ V (x) + g|ν|2 − ΩLz

]
ν.(4.8)

Here we see that ν(x, τ) evolves continuously maintaining a fixed L2-norm N and
following the direction of decreasing energy given by ∇E. Indeed it is easy to show
that ∂

∂τ [E(ν(x, τ))] ≤ 0. Hence, the limit given by

φ(x) = lim
τ→∞ ν(x, τ)(4.9)

is at least a critical point of the energy, if not a minimum.1

From a practical point of view, the simplest way to find the minimizer using
imaginary time evolution is to repeatedly integrate (4.7) for a very short time, ∆t,
apply (4.6) for the newly found σ(x, t+∆t), and use the new estimate for ν to redefine
σ ≡ ν and repeat the procedure until convergence. This way one avoids the problem
that according to (4.7) the norm of σ may grow indefinitely. The same consideration
applies to the remaining methods that we will present here.

Although the method from (4.7) was derived using an ordinary gradient, nothing
prevents us from applying our Sobolev preconditioning and all results should still be
valid. If we do so, our new equations are

ν(x, τ) =

√
N

‖σ‖2L2

σ(x, τ),(4.10)

∂σ

∂τ
(x, τ) = −∇SE(ν),(4.11)

∇SE(ν) = (1−�)
−1

[
−1

2
�+ V (x) + g|ν|2 − ΩLz

]
ν(4.12)

and the critical point is still given by (4.9).

4.3. Numerical methods: Minimization of the free energy. While the
imaginary time evolution is easy to understand and to implement, the fact that it
performs the descent over a path of functions with a certain norm makes it too re-
stricted and sometimes too slow. A different approach is to define a new functional
called free energy with a Lagrange multiplier that takes care of the restriction on the
norm. In quantum mechanics this free energy is usually defined as

FQM (ψ) = E(ψ)− µN(ψ),(4.13)

1As is common with these local minimization procedures, it remains the problem that iterations
may be trapped in a critical point which is not a minimum. Linear stability analysis may then be
applied to check the validity of the solution.
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because it preserves the linear form of the equations. Since our equations are already
nonlinear we define a free energy functional more conveniently as

F (ψ) = E(ψ) +
1

2
(N(ψ)− λ)

2
.(4.14)

First and most important, it is not difficult to show that any absolute or rela-
tive minimum of F (ψ) is also a minimum of E(ψ) subject to (4.3) with a nonlinear
eigenvalue given by µ = N(ψ)− λ.

Second, as we will prove in Appendix A, F (ψ) must have at least one finite norm
minimum, something which cannot be easily assured for FQM .

The practical advantage of our new functional consists in that fixing λ and Ω we
can perform a continuous descent over the whole domain of F (ψ) without renormaliz-
ing the solution on each iteration—i.e., the search space is larger. The new equation
that we must integrate is thus

∂ν

∂τ
(x, τ) = −∇F (ν) = −

[
−1

2
�+ V (x) + g|ν|2 − ΩLz

]
ν.(4.15)

Using Sobolev preconditioning, we derive the following from (4.15):

∂ν

∂τ
(x, τ) = −∇SF (ν) = − (1−�)

−1

[
−1

2
�+ V (x) + g|ν|2 − ΩLz

]
ν.(4.16)

In both cases the actual solution is still given by the limit of (4.9).

4.4. Numerical results. Up to this point we have shown four different numer-
ical methods, two of them incorporating Sobolev preconditioning ((4.11) and (4.16))
and two without it ((4.7) and (4.15)). We have compared the efficiency of these
methods for several test situations. The details of our study are as follows.

All methods have been implemented using the discrete Fourier basis mentioned
above. This applies both to the calculation of derivatives and to the application of the
Sobolev preconditioning. We restricted our simulations to two-dimensional problems
with a radially symmetric potential, V (x) = 1

2 |x|2, over a grid of 128×128 points.
Practical experience with more complex problems shows that our results generalize
to higher dimensionality and denser grids.

Due to the requirements of the method, both variants of imaginary time evolution
((4.7) and (4.11)) are integrated using a Runge–Kutta–Fehlberg method, where the
tolerance is adapted as the solution converges to its target. On the other hand, instead
of performing a continuous descent for both variants of the free energy descent ((4.15)
and (4.16)), we found it more convenient and faster to perform a discrete steepest
descent.

All programs have been implemented using the tensor-algebra environment called
Yorick [6], an interpreted environment which is capable of fast numerical computations
and which can be equipped with the FFTW library [7]. Execution times are given for
a Digital Personal workstation 500au, but the programs run equally well on modest
personal computers with Pentium-II processors and less than 64 Mb of memory.

As a test case we have considered three situations. Case A is the simplest one,
corresponding to a stationary trap Ω = 0, an intense nonlinearity g = 100, and
starting the minimization with a radially symmetric Gaussian of unit width, that is,
ψ0 ∝ e−|x|2 , a shape which is similar to that of the true ground state.

Cases B and C involve a rotating condensate with Ω = 0.6 and g = 100. Under
these conditions the functional achieves both an absolute minimum, which is the same
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Fig. 4.1. Evolution of error, ε2 ≡ ‖ψ − ψexact‖2, through different minimization processes for
continuous steepest descent with Sobolev preconditioning (lower solid line) and without it (dashed
line) and for imaginary time evolution with Sobolev preconditioning (upper solid line) and without
it (dotted line). Plots (a) to (c) correspond, respectively, to the cases A, B, and C described in the
text. Both axes, error and number of iterations, are in a logarithmic scale.

Table 4.1
Iterations and computation time for each minimization method: Imaginary time without (IT)

and with (ITS) Sobolev preconditioning and free energy without (FE) and with (FES) Sobolev pre-
conditioning. Shown are results for the initial data described in the text (cases A, B, and C).

Methods IT ITS FE FES

Case A Iterations 1320 945 2850 55
Time (s) 416 371 285 13

Case B Iterations 1630 615 3210 320
Time (s) 468 242 75 9

Case C Iterations 64195 2665 108505 1455
Time (s) 19863 1165 10861 168

as that found in case A, and a local minimum. The local minimum is a solution of
vortex type, a topological defect, whose behavior near zero is ψ ∝ (x1 + ix2)/|x|2.

For this reason we designed two test cases with different initial conditions. Case B
starts with a Gaussian profile with a centered vortex or ψ0 ∝ |x|e−|x|2(x1 + ix2)/|x|2.
In this case all methods are trapped on the local minimum with the centered vortex.

Finally, a third set of simulations, case C, uses the same parameters {Ω = 0.6, g =

100} but starts from a nonsymmetric initial state, ψ0 ∝ |x|e−|x|2((x1 − y1) + i(x2 −
y1))/|x− y|2 which is close to the vortex solution but belongs to the basin of attraction
of the ground state. Here all minimization methods require more computational work
since they must find a path out of the local minimum, and it is precisely in this case
where the differences between methods are best shown.

In Figure 4.1 and Table 4.1 we summarize the results of the simulations. In
case A it is apparent that the Sobolev preconditioning has a positive influence over
convergence, with an astonishing result of 55 steps for the steepest descent with free
energy. A similar behavior is found in case B.

In case C, the Sobolev preconditioning enhances convergence speed by two orders
of magnitude. An intuitive explanation of why the steepest descent with a Sobolev
gradient takes less steps to converge will be discussed in detail in Appendix B.

5. Applications to nonlinear optics.

5.1. The model. In this section we consider a model for a pair of incoherently
interacting light beams. To be precise we will study the light field of each beam, u(x, t)
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and w(x, t), propagating through a weakly nonlinear saturable optical medium. This
system may be modeled by the Cauchy problem

i∂tu = −�u+
u

1 + κ(|u|2 + |w|2) ,(5.1)

i∂tw = −�w +
w

1 + κ(|u|2 + |w|2)(5.2)

for the complex functions u,w : R
2×R

+ → C, which vanish at infinity and satisfy the

initial data u(x, 0) = u0(x) and w(x, 0) = w0(x). Here κ ∈ R
+, −� = ∂2

∂x2 + ∂2

∂y2 is
the Laplacian operator which accounts for the diffraction of light, and the nonlinear
term (1 + |u|2 + |w|2)−1 models the saturable interaction among the beams.

Let us define the two-component vector

Ũ(x, t) =

(
u(x, t)
w(x, t)

)
;(5.3)

then the energy functional for the system reads

E(Ũ) =

∫ [
−Ũ†�Ũ +G(|Ũ |2)

]
dnx,(5.4)

where G(ρ) = 1
κ2 (ln (1 + κρ)− κρ). The analysis of this section may be generalized

to more general nonlinearities with only minor changes to G(ρ).

5.2. Stationary solutions. We are interested in stationary solutions, which are
of the form

Ũ(x, t) =

(
eiµut 0
0 eiµwt

)
U(x) = eiMtU(x).(5.5)

The equations for the stationary solutions now are of elliptic type,

MU = −�U +G′(|U |2)U,(5.6)

with zero Dirichlet boundary conditions at infinity. Again this formulation poses a
nonlinear eigenvalue problem for the pair {M,U}.

The stationary solutions are critical points of the energy functional subject to a
constraint on the L2-norm of each component. That is, defining

Nu =

∫
|u|2dnx,(5.7)

Nw =

∫
|w|2dnx,(5.8)

the first order variation of the energy around U0 for fixed Nu and Nw must be zero:

δE

δU

∣∣∣∣
Nu,Nw

= 0.(5.9)

The particular fixed values of {Nu, Nw} represent the total intensity of each beam of
light.
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Fig. 5.1. (a) Density profile of a ground state for Nu = Nw = 30. (b) Norms Nu = Nw = N

as a function of the nonlinear Lagrange multipliers λu = λw = λ.

5.3. Ground states. In principle there are many different stationary solutions
of (5.6). However, if we focus on the ground states (stationary solutions of minimal
energy) we can apply some of the methods that we mentioned in section 4 with minor
modifications to account for the higher dimensionality of the problem. For instance,
one may define a free energy functional

F (U) = E(U) +
1

2
(Nu − λu)

2
+

1

2
(Nw − λw)

2
(5.10)

and minimize it using a discrete steepest descent with Sobolev preconditioning.

By performing this minimization using different parameters {λu, λw} one obtains
nodeless localized solutions for u and w as shown in Figure 5.1. The precise values of
λu and λw determine the norm of each component.

Let us remark that, up to a global factor, the ground state has the same shape
in both envelopes. That is,

u0(x) = N
√
ξ ρ(|x|, N),(5.11)

w0(x) = N
√

1− ξ ρ(|x|, N) ∀ξ ∈ [0, 1].

The common shape ρ depends on the total intensity N = Nu +Nw, and it is the one
that fixes the values of µu and µw. For this reason if we had chosen the traditional
definition of the free energy FQM (U) = E(U) + µuNu + µwNw we would have found
an infinite degeneracy which prevents convergence to the desired values of {Nu, Nw}.
This problem is removed by the use of our nonlinear Lagrange multipliers and the
{λu, λw} parameters.

5.4. Excited states. In the field of guided light waves there is a great interest
on the properties of solutions of (5.6) which are not ground states, the so-called excited
states. Minimization methods based on the energy functional (see section 4) cannot
be applied to this task since excited states are not necessarily local minima of the
energy. Instead, a variational principle somehow equivalent to (5.6) must be defined.

Let us rewrite (5.6) as the application of a nonlinear operator

f(U) ≡ [−�−M + I(|U |2)]U = 0,(5.12)
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Fig. 5.2. (a) Vortex-mode vector solitons and (b) their norms Nu, Nw, Ntotal = Nu + Nw
as a function of µu for µw = 1. (d) Dipole-mode vector solitons and (c) their norms Nu, Nw,
Ntotal = Nu +Nw as a function of µu for µw = 1.

define the error functional

F (U) ≡
∫

f(U)†f(U) ≥ 0,(5.13)

and take our variational principle to be find U0 such that F reaches an absolute
minimum F (U0) = 0.

With this principle and Sobolev preconditioning our descent technique becomes

∂ν(x, τ)

∂τ
= −∇SF (ν) = − (1−�)

−1∇F,(5.14)

and it may be proven that U0(x) = limτ→∞ ν(x, τ). The ordinary gradient ∇F reads

G ≡ (−�+ I(|U |2))U,(5.15)

∇F = (−�+ I(|U |2))G+ I ′(|U |2) (U†G+G†U
)
U.(5.16)

Its calculation using a discrete Fourier basis is straightforward.
There are several advantages to this approach. The first one is that F (U) makes

no distinction between ground and excited states: any stationary state with the right
eigenvalues µi = Mii is a local minimum of this new functional. The second one is
that we do not need to add any Lagrange multipliers to F (U) since they are already
present in the M operators. Finally we expect the minima of F (U) to be finite,
discrete, and separated so as to avoid problems with descent methods being trapped
on critical points that are not minima. Indeed, it is very easy for teach the computer
to know when this accidental trapping happens since any absolute minimum of F
must also be a zero of it, F (U0) = 0.

A remarkable feature of the method that we have outlined above is that to distin-
guish among the different excited states we have to change both the ad hoc eigenvalues,
{µu, µw}, and the initial data of the minimization method.

We have concentrated on two types of excited states of particular interest for
applications: the first one is called the vortex vector soliton [8], its features being
summarized in Figures 5.2(a)–(b). Choosing different initial data for the minimization
process, we obtain a second type of excited states which are called dipole-mode vector
solitons [9]. An example of these asymmetric solutions is depicted in Figure 5.2(d).
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Fig. 5.3. Different unstable multisolitonic configurations arising from (5.14) with a change of
the initial conditions for fixed µu = −1, µw = −0.3, κ = 0.5.

Depending on the parameters µu,w we find different norms of the solution. The fact
that our method allows the finding of these nonsymmetric stationary states is very
interesting since conventional approaches to the problem have severe difficulties. In
fact, the application of the Sobolev preconditioning not only greatly enhances the
convergence but is necessary for obtaining convergence.

Nevertheless the method works equally well for more complicated stationary so-
lutions. In Figure 5.3 we show several exotic solutions that are obtained by solving
(5.14) with different initial conditions. All of those states are dynamically unstable
and could have not been found with traditional minimization methods.

5.5. Performance and grid refinement. In this section we want to analyze
the performance of the method from section 5.4 and to introduce a multigrid-like
technique to improve convergence rates while looking for more accurate solutions.

The idea of the multigrid technique is to use solutions from coarse-grain grids to
calculate better approximations on finer grids [10]. Roughly the algorithm consists
of setting a coarse-grain initial data, solving the equation or the variational principle
with this initial data until the error is small enough, interpolating the result over
a finer grid, and iterating using this new grid until both the error and the spatial
discretization of the solution are the ones we desire.

Since we are already working with Fourier modes over discrete grids the logi-
cal choice for our algorithm is indeed Fourier interpolation. The idea is to use the
expansion from (3.3) outside of the original grid, that is,

ψ(new)(x) ≡
∑
n

cne
iknx ∀x ∈ Ω.(5.17)

This approximation is then discretized over a finer grid, resulting in an expansion
with a larger number of modes,

ψ(new)
m =

∑
n

c(new)eik
(new)
n xm ,(5.18)

which may be used as the starting point for further iteration.
In our case we have used only two different grids, one with 32×32 points (coarse

grid) and another with 64×64 points (fine grid). We have used two different initial
data for our minimization method: either a pair of Hermite modes which resemble
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Fig. 5.4. Dependence of the L2 error on the number of iterations when looking for (a) a vortex-
mode vector soliton or (b) a dipole-mode vector soliton. We show results for a grid with 32 × 32
points (solid), 64×64 points (dotted), and 64×64 points starting from an interpolation of the 32×32
solution (dashed).

Table 5.1
Results for the search of stationary solutions of (5.1)–(5.2) with and without grid refinement.

Shown are the results for different initial data. The initial data named “interpolated solution”
corresponds to taking as initial data the approximated solution on the 32× 32 grid.

Initial data type
Interpolated Interpolated

Hermite modes solution Hermite modes solution
for vortex solitons for vortex for dipole solitons for dipole

Grid 32×32 64×64 64×64 32×32 64×64 64×64
Iterations 540 2101 812 496 1206 496
Time (s) 106 2006 757 60 1141 466

the desired shape or the solution of the coarse grid interpolated over the finer grid.
As both the evolution of the error in Figure 5.4 and the computation times in Table
5.1 show, interpolation saves a significant amount of time. Indeed, the interpolated
solution with only 32×32 Fourier modes is already a good approximation for the fine
grid, as it shows the small change of the error in Figure 5.4

6. Conclusions. In this paper we have shown a numerically efficient way to
improve the convergence of several minimization methods using the so-called Sobolev
gradients and applied it to different problems which involve nonlinear Schrödinger
equations. We have also proven that these gradients represent a preconditioning over
the traditional definition of gradients on L2. In Appendix B we suggest a generaliza-
tion of this method to different vector spaces and scalar products.

We have presented two different methods for solving our minimization problems:
a traditional one, the imaginary time evolution, and a new one, the minimization of
a nonlinear free energy. Both methods have been shown to be suitable for Sobolev
preconditioning, giving us two new methods that we call preconditioned imaginary
time evolution and a preconditioned free energy.

We have implemented all four methods using a discrete Fourier basis and an
FFT. With these tools we have shown that the Sobolev preconditioning becomes an
inexpensive additional step over existing methods. The four resulting solvers have
been applied to several realistic problems, and in all tests the nonlinear free energy
with the Sobolev preconditioning showed the best convergence rates. Indeed the
Sobolev preconditioning has an important effect on convergence, which can be as
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good as gaining two orders of magnitude over the traditional techniques. Furthermore,
in contrast to what happens with finite differences [2], the preconditioning may be
applied without significant computational cost.

We have derived a new method for finding excited states of coupled nonlinear
Schrödinger equations. This method introduces a new variational principle which is
not based on an energy functional but on finding the zeros of a nonlinear operator
which corresponds to the equation to be solved. We have also shown how to improve
convergence using Fourier interpolation and a two-grid method as a source for better
initial approximations of the iterative method. This approach may be extended to
more sophisticated multigrid methods.

Appendix A. Existence of minimizers for the nonlinear free energy
functional. In this appendix we want to prove the existence of minimizers for the
free energy (4.14). Let us write the free energy functional in the following form:

F (ψ) =

∫
ψ̄AΩψd

nx+

∫
g

2
|ψ|4dnx+

1

2
(N − λ)

2
,(A.1)

where N =
∫ |ψ|2dnr and

AΩ = −1

2
�+ V (x)− ΩLz, Ω ∈ [0, 1),(A.2)

is a positive Hermitian operator AΩ ≥ µmin > 0.
Let us also define the following spaces of functions defined over R

n. We will work
in Lp spaces:

Lp =

{
ψ : R

2 → C / ‖ψ‖p :=

(∫
|ψ(x)|pdnx

)1/p

< +∞
}
.(A.3)

Also of interest will be the space of functions over which AΩ is well defined:

HΩ =

{
ψ : R

2 → C / ‖ψ‖Ω :=

(∫
ψ̄(x)AΩψ(x)

)1/2

< +∞
}
.(A.4)

Let us remark that the dimensionality of the space, R
2, is important, since for n ≤ 2

it follows that HΩ ⊂ L4.
With the preceding notation we will state the following relevant theorem.
Theorem A.1. The free energy functional F given by (A.1) has at least one

absolute minimum in the set given by the inequalities

0 < ‖ψ‖2Ω ≤ λ‖ψ‖22 ≤ λ(λ− µmin).

Proof. The first step of the proof will be to show that the domain of F is indeed
the whole space HΩ. Using the positivity of the AΩ operator we show that

‖ψ‖2 ≤ √µmin‖ψ‖Ω,(A.5)

which means that HΩ ⊂ L2. We need Sobolev’s inequality [11]

‖ψ‖k ≤ ‖ψ‖1−d
2 ‖∇ψ‖d2,(A.6)
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where d = n/2 − n/k, n is the dimensionality of the space, and for us d = 1/2.
Applying this inequality we obtain the following bound:

‖ψ‖4 ≤
√
‖ψ‖2‖∇ψ‖2 ≤ µ

1
4
min‖ψ‖Ω,(A.7)

which means that HΩ ⊂ L4. Since ‖ · ‖2, ‖ · ‖4, ‖ · ‖Ω < +∞ inside HΩ we conclude
that F as given by (A.1) is well defined over the whole space.

F is also continuous. To prove it let us rewrite the free energy functional as

F (ψ) = ‖ψ‖2Ω +
g

2
‖ψ‖44 +

1

2
(‖ψ‖22 − µ)2,(A.8)

and using the bounds (A.5) and (A.7) one shows that

|F (ψ)− F (ξ)| ≤ δ(ε) ∀ξ : ‖ψ − ξ‖Ω ≤ ε,(A.9)

where the constant δ(ε) is given by ε and ‖ψ‖4.
We will also need to show that F is coercive:

lim
‖ψ‖→∞

F (ψ)

‖ψ‖ ≥ α > 0.(A.10)

Using (A.8) one may show that indeed

F (ψ)

‖ψ‖Ω ≥ ‖ψ‖Ω,(A.11)

and thus the quotient tends to infinity as the norm grows. The continuity and coerci-
tivity of F allow us to use Theorem 1 of [12, section 1.2], which states the existence
of at least one minimizer {inf F (u) : u ∈ X} of F provided it is a weakly lower
semicontinuous and coercive application F : X → R in the reflexive Banach space X.

So we know that there is at least one minimum, but we do not know where to
look for it. Let us now show how the λ parameter allows us to select different targets
for the minimization problem. To do so we define a real one-dimensional function for
any given direction ψ ∈ HΩ,

f(k) ≡ F (kψ).(A.12)

This function is nothing but a polynomial over k,

f(k) = kNaψ + k2N2uψ

2
+

1

2
(kN − λ)

2
,(A.13)

where aψ =
∫
ψ̄Aψ/N and uψ = g

2

∫ |ψ|4/N2 are constants that depend only on the
precise direction ψ.

By differentiating the polynomial and imposing k = 0 we find that f ′(0) < 0 at
the origin for all possible directions. This means that, as we mentioned above, our
Lagrange “multiplier” λ allows us to avoid the useless solution, ψ = 0.

Furthermore, we can restrict the location of the minimizer to a surface of a certain
norm. By differentiating f(k) we reach

(aψ − λ) +Nk(uψ + 1) = 0.(A.14)
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This equation has a single solution which gives us the norm of minimal energy along
the ψ-direction,

Nmin(ψ) = max

{
0,

λ− aψ

uψ + 1

}
≤ λ− µmin,(A.15)

a value which is bounded above by our Lagrange multiplier λ.
From (A.14) it also follows that for any absolute minimum of the functional ψmin,

the expected value of the AΩ operator must be bounded by the L2-norm

∫
ψ̄minAψmin = ‖ψmin‖2Ω ≤ λN(ψmin).(A.16)

Otherwise the trivial solution ψ = 0 would have less energy than ψmin. We can thus,
instead of working with an unknown surface, delimit the location of the minimum to
a set which is given by two inequalities, (A.15) and (A.16):

W = {ψ ∈ HΩ : 0 < N(ψ) ≤ λ− µmin, ‖ψ‖2Ω ≤ λN(ψ)}.(A.17)

There are several practical consequences of this theorem. First, it states that the
problem of finding the minima of E(ψ) subject to fixed norm has one solution, i.e.,
there exists at least one ground state. Second, but equally important, it proves our
Lagrange penalizer 1

2 (N − µ)2 to be specially well suited for this problem since it
avoids both the useless solution ψ = 0 and those with too large norm. And finally it
gives us a bounded set in which the minimizer must be. Indeed we can extend this
result by proving that we can restrict our search space to a compact superset of W .

Theorem A.2. Any absolute minimum, ψ, of the functional F given by (A.1)
lays inside the compact set of L2,

Ū = {ψ ∈ L2 : ‖ψ‖2Ω ≤ λ‖ψ‖22 ≤ λ(λ− 1)}.

Proof. For the type of spaces that we work with, a set is compact iff it is closed
and we can build an ε-net for any positive number ε. The ε-net is a finite set Kε =
{ν1, . . . , νk} such that for each ψ ∈ Ū there is an element ν ∈ Kε verifying ‖ψ−ν‖Ω <
ε. Thus compactness is equivalent to the possibility of building an arbitrarily good
approximation of our minimizer using a finite but sufficiently large basis of functions.

It is evident that the set Ū is closed in the subspace HΩ of L2. Let {un} ∈ Ū be
a convergent sequence and let u be their limit. Since for each element of the sequence

‖un‖Ω ≤
√
λ‖un‖2 < λ(λ− 1)(A.18)

it is also obvious that

‖u‖Ω ≤
√
λ‖u‖2 ≤ λ(λ− 1),(A.19)

thus also the limit belongs to Ū .
The compactness of the closed set Ū essentially follows from the fact that the

eigenstates of AΩ form a complete basis of HΩ, and that the eigenvalues of AΩ form
a monotonously growing unbounded set of positive numbers. These eigenstates are of
the form

φn,l = P l
n(|x|)

x1 + ix2

|x|2 e−|x|2/2,(A.20)
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where P l
n are Laguerre’s generalized polynomials and the corresponding eigenvalues

are

AΩφn,l = µn,lφn,l = (2n+ (1− Ω)l + 1)φn,l, n, l ∈ N ∪ {0}.(A.21)

Let us choose any natural number k such that k+1 > λ. We can split the whole
space as a direct sum HΩ = Hk+1

0 ⊕H∞
k+1, where

Hk
j = lin{φn,l : j ≤ 2n+ l < k}.(A.22)

The important point is that since Hk+1
0 is isomorph to R

m for some natural number
m, and Ūk = Ū ∩Hk+1

0 lays inside a compact m-dimensional ball of radius
√
λ− 1,

then we can always find an ε-net for Ūk. Furthermore, by separating

ψ = ψa + ψb, ψa ∈ Ūk, ψb ∈ H∞
k+1,(A.23)

and using the definition of Ūk we show that the projection of ψ outside of Ūk can be
made arbitrarily small:

‖ψb‖22 ≤
λ

k + 1
N.(A.24)

A direct consequence of this is that for k > λN/ε, an ε-net of Ūk is also an ε-net of
Ū , which proves the compactness.

Finally, by inspecting the eigenvalues of AΩ and using (A.15)–(A.16) it is not
difficult to see that the absolute minimum of F must lay in Ū .

Appendix B. Extending the Sobolev gradients. We have shown that re-
defining the gradient turns out to be a kind of preconditioning over the original choice
of the direction of descent. Let us assume that our functional has the following form:

E(ψ) =

∫
ψ̄Aψ + f(|ψ|2,x),(B.1)

where A is a nonnegative Hermitian operator that may involve some derivatives. Let
us also assume that H is a suitable space equipped with the following scalar product:

〈ψ, φ〉 =
∫

ψ̄ (1 +A)φ,(B.2)

which is indeed a scalar product because A|H ≥ 0.
Let us rewrite the energy functional in the following way:

E(ψ) = 〈ψ,ψ〉+
∫

f(|ψ|2,x)− |ψ|2.(B.3)

The Sobolev gradient in H is

∇AE = ψ + (1 +A)−1 [∂1f − ψ] ,(B.4)

while the so-called ordinary gradient is ∇E = Aψ + ∂1f. Hence the preconditioning
nature of the method is recovered:

∇AE = (1 +A)
−1∇E.(B.5)
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We can thus think that the new choice of the scalar product aims at making the
linear part of the energy functional close to some quadratic form, 〈ψ,Bψ〉, such that
the new operator B is almost the unity. In our example, indeed, Bψ = ψ. We believe
that this preconditioning will both enhance the directions of decreasing energy and
have a smoothing effect on the nonlinear part. However, the problem is complicated
and we know of no proof that these arguments are of general applicability.
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Abstract. A modified finite difference approximation for interface problems in Rn, n = 1, 2, 3,
is presented. The essence of the modification falls in the simultaneous discretization of any two
normal components of the flux at the opposite faces of the finite volume. In this way, the continuous
normal component of the flux through an interface is approximated by finite differences with second-
order consistency. The derived scheme has a minimal (2n + 1)-point stencil for problems in Rn.
Second-order convergence with respect to the discrete H1-norm is proved for a class of interface
problems. Second-order pointwise convergence is observed in a series of numerical experiments
with one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) interface problems.
The numerical experiments presented demonstrate advantages of the new scheme compared with
the known schemes which use arithmetic and harmonic averaging of the discontinuous diffusion
coefficient.

Key words. finite volume method, interface problems, finite differences, elliptic problems with
variable coefficients
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1. Introduction. Elliptic problems with discontinuous coefficients (often called
interface problems) arise naturally in mathematical modeling processes in heat and
mass transfer, diffusion in composite media, flows in porous media, etc. These pro-
cesses are described by the model diffusion equation

−∇(K∇u) = f(x) for x ∈ Ω,(1.1)

subject to various boundary conditions. Here Ω ⊂ Rn is a bounded polyhedra, and
K(x) is a symmetric and uniformly positive definite matrix in Ω which may have
a jump discontinuity across a given surface Γ. Due to the nature of the processes,
often the fluxes across Γ, defined as −K∇u · n, where n is the normal unit vector
to Γ, are smooth, although the coefficients and the derivatives of the solution are
discontinuous. Often the surfaces of discontinuity of the coefficient matrix K(x) are
called interfaces. The assumption that the solution and the normal component of
the flux are continuous through the interface is physical and is often used to close
the mathematical problem. In this paper we derive a new class of finite difference
schemes for second-order elliptic equations with diagonal coefficient matrix K(x) =
diag(k1(x), . . . , kn(x)). The derived schemes are based on finite volume techniques
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and use two main assumptions: (1) both the right-hand side f(x) and the normal
components of the flux across the interface are smooth enough; (2) the interfaces Γ
(i.e., the surfaces where the coefficients ki(x) have jumps) are parallel to the grid
planes (lines).

In the one-dimensional (1-D) case, the first assumption reduces just to the smooth-
ness of the right-hand side f(x). In the multidimensional case, these two assumptions
are much more complicated and restrictive. First, the interfaces have to be planes
parallel to the coordinate planes. Second, the smoothness properties of the solution
will depend on the smoothness of the boundary of the domain, the smoothness of the
interface Γ, and the ratio of the coefficient jumps in a pretty complicated manner.
Some particular results in this direction can be found in the fundamental work of Kon-
dratiev [11]. In general, when the normal component of the flux is smooth it makes
sense to use schemes with better approximation properties away from the corners and
the points of intersection of the interface Γ with itself or with the boundary ∂Ω.

Finite difference schemes obtained from discretization of the balance equation over
a finite number of control volumes have been widely used in computational practice
for differential equations. In the early stages, these were finite difference schemes
on rectangular meshes with quite complicated treatment of the coefficients and the
right-hand side (see, for example, the classical books [14, 16] and references therein).
In [20, 21], Tikhonov and Samarskii derived an O(h2m+1)-accurate finite difference
scheme, where m ≥ 0 is an arbitrary integer, for two-point boundary value problems.
The coefficients of the scheme are, in general, certain nonlinear functionals of the
differential equation coefficients, which were assumed to be piecewise smooth.

Further, in [18] Shashkov has extended the balance equation approximation idea
to a large class of differential operators (including divergence, gradient, and curl)
on quite general quadrilateral grids (see also [7]). This new approach has produced
discrete operators which approximate the corresponding differential operators and
have the same properties as the continuous ones. For example, the discrete gradient
is adjoint in a special inner product to the discrete divergence.

In recent years, the finite volume approach has been combined with finite element
method techniques in a new development which is capable of producing accurate
approximations on general triangular and quadrilateral grids (see, e.g., [2, 3, 4, 10,
12, 15]). The main advantages of the method are compactness of the discretization
stencil, good accuracy, and local discrete conservation. In all of these discretization
methods, it is assumed that the possible jumps of the diffusion coefficient are aligned
with the finite element partitioning. This means that inside each finite element the
diffusion coefficient is sufficiently smooth, and the jumps may occur only at the finite
element boundaries.

A straightforward application of the finite volume method to a generic interface
problem results in a scheme which uses harmonic averaging of the coefficient. This
is particularly important in the case of discontinuous coefficients (see, for example,
[16]). Inspecting these schemes, one easily sees that the normal component of the flux
at the interface is discretized with a local truncation error O(h). In this paper we
present a modification of the classical finite volume method so the normal component
of the flux in the new scheme has O(h2)-local truncation for interface problems with
smooth normal flux. Note that we do not suppose that the interfaces are aligned with
finite volume surfaces. However, we assume that the interfaces are orthogonal to the
coordinate axes. Our approach can be viewed as a defect correction of the standard
scheme with harmonic averaging of the coefficient, since it takes into account the next
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term in the Taylor expansion of the flux. This correction does preserve the standard
(2n + 1)-point overall stencil and uses data only from the neighboring 2n cells. We
were able to increase the order of the local truncation error and at the same time
preserve the standard stencil by discretizing the normal components of the flux at the
opposite sides of the finite volume as a couple.

Recently, Il’in [9] and LeVeque and Li [13] have derived second-order finite dif-
ference approximations of the two-dimensional (2-D) interface problem using similar
assumptions about the normal flux through the interface. However, in order to get
a second-order scheme, Il’in [9] uses a larger stencil than the compact (2n+ 1)-point
stencils for problems in Rn, while LeVeque and Li [13] use Taylor expansions for the
solution around the interface. The latter paper does not consider the discretization
of the fluxes, and this can be viewed as a disadvantage when the problem requires
their accurate reconstruction, e.g., with velocities in porous media or the heat fluxes
in thermal problems. Below we propose a homogeneous difference scheme for a class
of 1-D, 2-D, and three-dimensional (3-D) elliptic problems with variable discontinu-
ous coefficients with arbitrarily located interfaces. The coefficients of the scheme are
obtained from the coefficients of the differential equation by a simple formula. The
approach of LeVeque and Li from [13] requires solving small systems of linear equa-
tions for determining these coefficients at each point near the interface. Moreover, our
scheme is easily extendible to fine-scale inhomogeneities of the coefficients (finer than
the grid size). However, our approach deals only with interfaces orthogonal to the
coordinate axes, while the approach from [13] can treat arbitrarily located interfaces.

Below we summarize advantages and disadvantages of the new scheme in compar-
ison with known ones for grids not aligned with the diffusion coefficient jump. On the
positive side are the following features of the new scheme: (1) the scheme has O(h2)-
local truncation error for the normal component of the flux; recall that the standard
schemes with arithmetic and harmonic averaging of the coefficient at the interface
have, in general, local truncation error O(1) and O(h), respectively; (2) the proposed
scheme is algebraically equivalent to a scheme which is second-order consistent with
the interface differential problem; (3) the numerical experiments for problems with
large jumps of the diffusion coefficient demonstrate that the new scheme is orders of
magnitude more accurate than the scheme which uses harmonic averaging.

On the negative side are the following two main disadvantages: (1) in general, the
scheme is only asymptotically (for h→ 0) locally conservative; (2) the corresponding
matrix is a nonsymmetric M -matrix; this will add some costs to the solution method
for the algebraic problem. However, the numerical experiments on a wide class of
problems with discontinuous coefficients show that the scheme is so accurate that
these two disadvantages cannot diminish the value of the method.

We have run several numerical experiments in order to validate the new scheme
and to compare it with the known schemes. These experiments include solving 1-D,
2-D, and 3-D interface problems with known analytical solutions, as well as solving a
2-D problem with a singular solution. Also, we considered problems where the inter-
faces are aligned with the finite volume surfaces, as well as problems with arbitrarily
located interfaces, orthogonal to the coordinate axes. Pointwise second-order conver-
gence is observed in numerical experiments. Note that the accuracy of the new scheme
observed in our experiments is almost uniform with respect to the jump of coefficients,
and it is comparable with the accuracy of the solution of the Poisson equation with
a constant diffusion coefficient. What is even more interesting is that this conclusion
is valid not only for the case of interfaces aligned with the finite volume boundaries
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but also for the nonaligned case. Meanwhile, for problems with large jumps of the
coefficients, the accuracy of the scheme with harmonic averaging is very sensitive to
the jump size, and its accuracy is orders of magnitude less than the accuracy of the
new scheme. Numerical experiments for the so-called thin lenses problem are espe-
cially interesting. In this case our scheme provides very accurate results even on very
coarse grids, in considerable contrast with the other known schemes.

The paper is organized as follows. Section 2 is devoted to the derivation and
study of modified finite volume schemes for 1-D problems. Section 3 contains the
formulation of the new finite volume scheme for multidimensional interface problems.
Finally, section 4 summarizes and discusses the results of the numerical experiments
of a series on interface problems in Rn, n = 1, 2, 3.

2. Modified finite volume discretization for 1-D problems. In order to
illustrate our approach, we shall first consider the 1-D case and rewrite (1.1) into its
mixed form: find u(x) such that

∂W

∂x
= f(x), W = −k(x)∂u

∂x
, 0 < x < 1, u(0) = 0, u(1) = 0.(2.1)

Here k = k(x) > k0 is a known diffusion coefficient, W (x) is the flux dependent
variable, and f(x) is the given source term. Conditions for continuity of the function
and of the flux through interface points ξ are added:

[u] = [W ] = 0 for x = ξ.(2.2)

Here [u] denotes the difference of the right and left limits of u at the point of disconti-
nuity. The main assumptions for this problem are (1) the coefficient k(x) has a finite
number of jump discontinuities and in the closed intervals between the jumps k(x) is
twice continuously differentiable; (2) the right-hand side f(x) is continuous and has
the continuous first derivative on the closed interval [0, 1].

We introduce a standard uniform cell-centered grid x0 = 0, x1 = h/2, xi =
xi−1 + h, i = 2, . . . , N , xN+1 = 1, where h = 1/N . Note that the endpoints x = 0
and x = 1 are part of the grid, but they are at h/2 distance from their neighboring
grid points. This type of shifted grid is slightly inconvenient for Dirichlet boundary
conditions, but it is natural and very convenient for computations when the boundary
condition involves the flux W . The internal grid points can be considered as centered
around the volumes Vi = (xi− 1

2
, xi+ 1

2
), where xi+ 1

2
= xi +

1
2h, xi− 1

2
= xi − 1

2h. The
values of a function f defined at the grid points xi are denoted by fi. Nonuniform grids
can be treated in a similar way. A reason to work with cell-centered grids is that they
are widely used, say, in the computational fluid dynamics. Considering, for example,
nonisothermal fluid-structure interaction problems, one has to solve problems close
to the one considered here. However, our approach is defined locally, at a particular
finite volume level, and it can work with standard vertex-based grids as well.

The finite volume method exploits the idea of writing the balance equation over
the finite volume Vi, i.e., integrating (2.1) over each volume Vi:

Wi+ 1
2
−Wi− 1

2
= h ϕi, ϕi =

1

h

∫ x
i+ 1

2

x
i− 1

2

f(x)dx, i = 1, 2, . . . , N.(2.3)

Next, we rewrite the flux equation in the form

−∂u

∂x
=

W (x)

k(x)



FINITE VOLUME APPROXIMATION 1339

and integrate this expression over the interval (xi, xi+1):

−(ui+1 − ui) = −
∫ xi+1

xi

∂u

∂x
dx =

∫ xi+1

xi

W (x)

k(x)
dx.(2.4)

We assume that flux W (x) is two times continuously differentiable on the interface so
it can be expanded around the point xi+ 1

2
in Taylor series

W (x) =Wi+ 1
2
+ (x− xi+ 1

2
)
∂Wi+ 1

2

∂x
+
(x− xi+ 1

2
)2

2

∂2W (η)

∂x2
, η ∈ (xi, xi+1).

(2.5)
After replacing the first derivative of the flux at xi+ 1

2
by a two-point backward dif-

ference, we get the following approximation of (2.4):

−(ui+1 − ui) =Wi+ 1
2

∫ xi+1

xi

dx

k(x)
(2.6)

+
Wi+ 1

2
−Wi− 1

2

h

∫ xi+1

xi

(x− xi+ 1
2
)

k(x)
dx+O(h3).

Finally, we rewrite this equation in the following basic form:

−kHi+ 1
2

ui+1 − ui
h

=Wi+ 1
2
+ ai+ 1

2
(Wi+ 1

2
−Wi− 1

2
) + ψi,(2.7)

where

kHi+ 1
2
=

(
1

h

∫ xi+1

xi

dx

k(x)

)−1

, ai+ 1
2
= kHi+ 1

2

1

h2

∫ xi+1

xi

x− xi+ 1
2

k(x)
dx, ψi = O(h2).

(2.8)
Here kHi+ 1

2
is the well-known harmonic averaging of the coefficient k(x) over the cell

(xi, xi+1), which has played a fundamental role in deriving accurate schemes for dis-
continuous coefficients (see, e.g., [14, 16]). This presentation of the flux W (x) is a
starting point for our discretization. Since we have assumed that the flux is smooth,
then the consecutive terms in the right-hand side in (2.7) are O(1), O(h), and O(h2),
respectively. Truncation of this sum after the first term produces the well-known
scheme of Samarskii [16] with harmonic averaging of the coefficient. This scheme
is O(h)-consistent at the interface points and second-order accurate in the discrete
H1-norm. Further, we call this scheme the harmonic averaging (HA) scheme. The
scheme we shall derive takes the two terms of the presentation (2.7) and disregards
the ψi-term. Let Fi+ 1

2
and Fi− 1

2
denote the approximation to the exact fluxes Wi+ 1

2

andWi− 1
2
, respectively, and let yi denote the approximate values of the exact solution

u(xi). Thus we get the following relations:

−kHi+ 1
2

yi+1 − yi
h

= Fi+ 1
2
+ ai+ 1

2
(Fi+ 1

2
− Fi− 1

2
),(2.9)

−kHi− 1
2

yi − yi−1

h
= Fi− 1

2
+ ai− 1

2
(Fi+ 1

2
− Fi− 1

2
).(2.10)

The two relations above allow us to derive the final expression for Fi+ 1
2
− Fi− 1

2
,

which is needed in the balance equation (2.3): subtract (2.10) from (2.9) to get

(1 + ai+ 1
2
− ai− 1

2
)(Fi+ 1

2
− Fi− 1

2
) = −kHi+ 1

2

yi+1 − yi
h

+ kHi− 1
2

yi − yi−1

h
.(2.11)
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Since the grid points x0 and xN+1 are shifted by h/2 from their neighbors, the finite
difference equations at x1 and xN have to be modified. Combining (2.11) with (2.3),
we get the following finite difference approximation of the differential problem (2.1):

Lhyi = ϕi for i = 1, . . . , N,(2.12)

where

Lhyi ≡




−4
3

1

h

(
kH3

2

y2 − y1

h
− kH1

2

2y1

h

)
for i = 1,

−
(
1 + ai+ 1

2
− ai− 1

2

)−1 1

h

(
kHi+ 1

2

yi+1 − yi
h

− kHi− 1
2

yi − yi−1

h

)
, i 	= 1, N,

−4
3

1

h

(
−kHN+ 1

2

2yN
h
− kHN− 1

2

yN − yN−1

h

)
for i = N.

(2.13)
Here in the first and last difference equations, we have explicitly imposed the homoge-
neous boundary conditions y0 = 0 and yN+1 = 0. Further, in the text we refer to this
approximation as a scheme using the improved harmonic averaging (IHA) scheme.

Remark 2.1. For ai+ 1
2
= ai− 1

2
= 0, the operator Lh is the well-known finite

difference operator corresponding to harmonic averaging of the diffusion coefficient,
which is second-order accurate in the discrete H1-norm (see, e.g., [16]).

Remark 2.2. Near the boundary the discretization (2.13) has a special form
due to the use of a cell-centered grid. The well-known discretization for such grids
uses the factor 1 instead of 4

3 . Although the difference scheme with the factor 1 is
not consistent with the differential problem at the points x1, xN , it is proven (see, for
example, [23]) that this does not influence the order of convergence of the scheme.
We prefer the factor 4

3 because the fluxes at x = 0 and x = 1 are O(h2)-accurate
in this case. Moreover, the numerical experiments of numerous test problems with
continuous and discontinuous coefficients showed that the constant in the convergence
was smaller when the discretization (2.12)–(2.13) was used.

Remark 2.3. Alternative ways for deriving three-point approximations of 1-D
problems in the framework of the finite element method are discussed, for example, in
[1, 5, 22]. In the latter work, the finite element spaces involve the local solutions of
the problem (2.1), while in the former work the schemes are derived by the dual mixed
hybrid formulation.

In our computations for comparison of the performance of the new scheme, we also
use the scheme (2.12) in which ai+ 1

2
= ai− 1

2
= 0 and kHi+ 1

2
is replaced by 0.5(ki+ki+1).

This scheme is referred to as the arithmetic averaging (AA) scheme.
Accurate computations of the fluxes are needed in many applications. The fol-

lowing expression approximates the continuous flux with second-order accuracy (even
at the interface):

Fi+ 1
2
=
−kHi+ 1

2

yi+1−yi
h

(
1− ai− 1

2

)
− kHi− 1

2

yi−yi−1

h

(
ai+ 1

2

)
(
1 + ai+ 1

2

)(
1− ai− 1

2

)
+ ai+ 1

2
ai− 1

2

=Wi+ 1
2
+O(h2).

The new scheme approximates the fluxes to second-order accuracy, independent
of the positions of the discontinuity of the coefficient k(x). The price we paid is the
necessity to evaluate the expressions kHi+ 1

2
and ai+ 1

2
−ai− 1

2
with an error no larger than

O(h2). We shall assume that any point ξ where the coefficient k(x) is discontinuous
is known and can be presented in the form ξ = xi + θh for some i and 0 ≤ θ ≤ 1.
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Obviously, if θ = 0 or θ = 1 (i.e., when the interfaces are aligned with grid nodes),
then ai+ 1

2
−ai− 1

2
= O(h2). Thus, disregarding this term and taking into account that

kHi+ 1
2
= k(xi+ 1

2
) + O(h2), we end up with a scheme which is the same as those ob-

tained from finite difference or linear finite element approximations. Further, if the
diffusion coefficient k(x) has jump discontinuities and 0 < θ < 1, but the flux is still
smooth, the second term in the right-hand side in (2.6) will be essential to derive a
better approximation. Note that accounting for this second term is the main differ-
ence between our approach and the standard finite volume discretization of interface
problems. In short, this term does not affect the order of convergence, but it allows us
to improve the constant of convergence in the case of discontinuous coefficients and
to derive more accurate difference schemes.

Now we consider some particular realizations of this scheme. If the point of
discontinuity ξ is in the subinterval [xi, xi+1]: ξ = xi + θh, where 0 ≤ θ ≤ 1, then the
approximation of the integral in kHi+ 1

2
is done by splitting it into integrals over (xi, ξ)

and (ξ, xi+1) and then applying the trapezoidal or midpoint rule for each integral. This
approach will produce accurate enough evaluation of kHi+ 1

2
. The following formula will

be only O(h)-accurate:

kHi+ 1
2
≈
(

θ

ki
+
1− θ

ki+1

)−1

.

Note that in the case of piecewise constant coefficients, this formula is exact. However,
it is based on the use of left and right rectangular quadrature formulas, and it might
not be accurate enough in the general case. Second-order accurate evaluation of the
integrals is given by

kHi+ 1
2
≈
[
θ

2

(
1

ki
+

1

kξ−0

)
+
1− θ

2

(
1

ki+1
+

1

kξ+0

)]−1

.(2.14)

Note that kξ−0, kξ+0 are known from the second interface condition (2.2).
Further, we continue with the second integral in (2.8). Our aim is to obtain a

second-order approximation for the flux W (x). We again split the integral into two
integrals and apply the following trapezoidal rule for each of the two integrals:

1

h2

∫ xi+1

xi

(x− xi+1)

k(x)
dx =

1

h2

∫ ξ

xi

(x− xi+ 1
2
)

k(x)
dx+

1

h2

∫ xi+1

ξ

(x− xi+ 1
2
)

k(x)
dx

=
θ

2

(
θ − 0.5
kξ−0

− 0.5
ki

)
+
1− θ

2

(
0.5

ki+1
+

θ − 0.5
kξ+0

)
+O(h2).(2.15)

The case of piecewise constant coefficient k(x) is very important for the applications.
In this case the formulas presented above are exact and reduce to

kHi+ 1
2
=

(
θ

ki
+
1− θ

ki+1

)−1

and ai+ 1
2
=
1

2

θ(1− θ)(ki − ki+1)

(1− θ)ki + θki+1
.(2.16)

Obviously, if the point of discontinuity ξ is a midpoint of the grid, i.e., ξ = xi+ 1
2
, then

θ = 1/2 and

kHi+ 1
2
= 2

(
1

ki
+

1

ki+1

)−1

and ai+ 1
2
=
1

4

(
ki − ki+1

ki + ki+1

)
.
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It is reasonable to assume that the step size h is so small that if there is a jump in the
coefficient k(x) in the interval (xi, xi+1), then k(x) is smooth at the two neighboring
intervals (xi−1, xi) and (xi+1, xi+2). Thus

1 + ai+ 1
2
− ai− 1

2
= 1 +

θ(1− θ)

2

(
ki − ki+1

(1− θ)ki + θki+1

)
+O(h2) ≥ 1/2.

Similarly, we also have an estimate from above: 1 + ai+ 1
2
− ai− 1

2
≤ 3/2. These two

estimates will guarantee that the finite difference scheme is well conditioned.
The following result is valid.
Proposition 1. Assume that the coefficient k(x) is a piecewise C1-function and

has a finite number of jump discontinuities, the grid is such that the discontinuities
are at the points xi+ 1

2
, and the source term f(x) is a C1-function on (0, 1). Then

the finite difference scheme (2.12), (2.8), (2.14), (2.15) is second-order accurate in the
discrete H1-norm; i.e., the error ei = u(xi)− yi satisfies the estimate

||e||H1 ≡ ||y − u||H1 ≡
(

N∑
i=1

kHi−1/2(ei − ei−1)
2/h

)1/2

≤M h2.

The second-order of accuracy inH1 follows from the second-order of discretization
for the fluxes by using the classical technique for deriving a priori estimates for the
solution of the finite difference scheme (see, e.g., [16, 17]).

Remark 2.4. Note that if f(x) ≡ 1, then W ′′(x) ≡ 0 and the local truncation
error is identically zero. This means that the IHA scheme is exact (i.e., it reproduces
exactly the solution at the grid points) for problems with a piecewise constant diffu-
sion coefficient and a constant right-hand side, while the HA scheme is exact only
for homogeneous problems. Thus the HA scheme reproduces exactly piecewise linear
solutions, while the IHA scheme reproduces exactly piecewise quadratic solutions.

3. Modified finite volume discretization for 3-D problems. In this sec-
tion we shall introduce the finite difference scheme for the equation (1.1) in R3 with
homogeneous Dirichlet boundary conditions on a rectangular domain Ω. Now we in-
troduce the flux W = −K(x)∇u. If the diffusion coefficient is discontinuous on a
certain surface (so-called interface denoted by Γ), then two conditions for continuity
of the solution and the normal component of the flux through the interface are added:

[u] = 0, [W · n] = 0, x ∈ Γ,(3.1)

where [g] denotes the difference of the limit values of the function g from both sides
of Γ and n is the unit vector normal to Γ.

In this paper we consider multidimensional problems that can be discretized in
a coordinatewise way. This means that the interfaces are parallel to the faces of
the finite volumes, and the diffusion coefficient matrix K(x) is a diagonal. Thus the
discretization of a 3-D problem is obtained as a tensor product discretization of three
1-D problems (like the one investigated in the preceding section).

The finite volume approach is used for discretizing the above equation on cell-
centered grids which are tensor products of grids in each direction. The grid sizes and
the number of the nodes in the xi-direction is hi and Ni for i = 1, 2, 3. The grid points
are denoted by (x1,i, x2,j , x3,k), where 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, 0 ≤ k ≤ N3. The
values of the unknown function are related to the volumes’ centers. The discretization
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at the internal points is based on the local flux balance for the finite volume around
the point. For the finite volume VP corresponding to node P this balance is

∫
∂VP

W · nds = h1h2h3ϕP , ϕP =
1

h1h2h3

∫
VP

f(x)dx.(3.2)

Here n is the unit outward normal to the volume boundary ∂VP . Next, we approxi-
mate the integrals over the volume faces by the midpoint rule to get

h2h3 (We −Ww)+h3h1 (Wn −Ws)+h1h2 (Wt −Wb) = h1h2h3ϕP +O(h2).(3.3)

Subscripts with capital lettersW,E, S,N,B, T are used to denote the values at the
west, east, south, north, bottom, and top neighboring grid points; and the subscript P
is used for the center of the stencil, while w, e, s, n, b, t stand for the respective values
in the center points of the control volume faces. For example, We = −k1

∂u
∂x1
|xe is the

flux through a face perpendicular to the axis x1 at the point xe = (x1,i+ 1
2
, x2,j , x3,k),

and the grid point P is denoted by xP = (x1,i, x2,j , x3,k). The grid point east of P is
denoted by xE = (x1,i+1, x2,j , x3,k), while that north of P is xN = (x1,i, x2,j+1, x3,k),
etc. Further, we approximate the differences We −Ww, Wn −Ws, and Wt −Wb as
1-D fluxes in the directions x1, x2, and x3, correspondingly, using formula (2.11) in
each direction.

In the particular case when the diffusion coefficient is a constant within any finite
volume and the interfaces are aligned with finite volume surfaces (i.e., θ = 0.5), the
finite volume scheme, approximating the 3-D problem and preserving second-order
of discretization for the normal components of the fluxes through interfaces, can be
written as

h2h3µ
−1
1

[
kHe

yE − yP
h1

− kHw
yP − yW

h1

]
+ h3h1µ

−1
2

[
kHn

yN − yP
h2

− kHs
yP − yS

h2

]

+ h1h2µ
−1
3

[
kHu

yT − yP
h3

− kHd
yP − yB

h3

]
= h1h2h3ϕP ,(3.4)

where

µ1 =

[
1 +

1

4

(
k1,P − k1,E

k1,P + k1,E
+

k1,P − k1,W

k1,P + k1,W

)]
,

µ2 =

[
1 +

1

4

(
k2,P − k2,N

k2,P + k2,N
+

k2,P − k2,S

k2,P + k2,S

)]
,

µ3 =

[
1 +

1

4

(
k3,P − k3,T

k3,P + k3,T
+

k3,P − k3,B

k3,P + k3,B

)]
.

Here kHe stands for harmonic averaging of k1(x) in the direction east from P , i.e., over
the interval (x1,i, x1,i+1), k1,P is its value at the point P , etc. These finite difference
equations are written for all internal points except those for which the (2n + 1)-
stencil includes points at the boundary. For these points, essentially one has to add
the modification of the approximation at the direction of the neighboring boundary
point. Such modification has been introduced for 1-D problems in section 2 (see
formulas (2.12)–(2.13)). To close the system to this set of finite difference equations,
we add the equations accounting for the Dirichlet boundary conditions.

Note that in the case when the interfaces are not aligned with the finite volume
surfaces (but are orthogonal to the axes), the multidimensional θ-HA scheme, as well
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as the multidimensional θ-IHA scheme, are derived as tensor products of the respective
1-D schemes.

It is obvious that the finite difference scheme can be written as a linear system
of algebraic equations with a nonsymmetric M -matrix. If the coefficients ki(x), i =
1, . . . , n, are C2-functions in the whole domain, then the factors µ1, µ2, and µ3 are all
of the order O(h2) and the nonsymmetry is negligible. On the other hand, µi > 1/2,
i = 1, 2, 3, for grids with jump discontinuities of the coefficient ki(x) parallel to the
grid faces, regardless of the size of the jump. Therefore, although the condition
number of the linear system will depend on the size of the jump, this dependence will
be the same as in the case of arithmetic or harmonic averaging. The finite difference
scheme (3.4) is the IHA scheme that has been used in our numerical experiments for
both 2-D and 3-D problems, in the case when the interfaces are aligned with the finite
volume surfaces. The multidimensional θ-HA scheme and θ-IHA scheme are used in
the nonaligned case.

4. Numerical experiments. A series of computational experiments were per-
formed in order to experimentally study the accuracy and the convergence rate of the
new scheme and to compare it with known schemes for 1-D, 2-D, and 3-D interface
problems. Two kind of problems were solved in 1-D and 2-D cases. The first one is
a problem with the known analytical solution with the right-hand side being calcu-
lated from the known solution. The second one is a problem with the right-hand side
identically equal to 1. Note that in the 1-D case this problem also has an analytical
solution. Only problems with known analytical solutions are solved in the 3-D case.

The relative discrete maximum norm (denoted as C-norm) of the solution error is
calculated as max |u− y|/max |u|. Also, the relative discrete L2-norm of the solution

error is computed as (
∑
V meas(V )(u− y)2)

1
2 /max |u|. Here the operations max and

the summation are considered over all grid nodes. The relative C- and L2-norms
of the error are reported in the tables below for cases when the analytical solution
is known. In all tables we have used the following shorthand notations: B stands
for the problem when k(x) ≡ 1; i.e., we solve the Poisson equation; AA stands for
schemes with arithmetic averaging; HA stands for schemes with harmonic averaging;
and, finally, IHA is used for a heading with the results obtained by the new scheme
which uses improved harmonic averaging.

4.1. Numerical experiments for 1-D problems. Results from the problem
computation with exact solution uex = 1

k sin(
πx
2 )(x− 1

2 )(1 + x2) and diffusion coeffi-
cient equal to 1 for 0 < x < 0.5 and equal to 10−4 for 0.5 < x < 1 are presented in
Tables 4.1 and 4.2.

The results from solving the Dirichlet problem with the right-hand side identically
equal to 1 are presented in Tables 4.3 and 4.4. The diffusion coefficient in this case
is 1 for 0 < x < 0.4, 10−3 for 0.4 < x < 0.7, and 10 for 0.7 < x < 1. Note that this
problem has a piecewise quadratic solution.

The results from numerical experiments in the 1-D case demonstrate that the
new scheme has a much smaller constant of convergence than the scheme based on
harmonic averaging. Both schemes asymptotically converge with second-order, as
predicted by the theory. Tables 4.3 and 4.4 confirm the theory that the IHA scheme
is exact for interface problems with piecewise quadratic solutions.

4.2. Numerical experiments for 2-D problems. Here we consider an iso-
tropic case, i.e., ki(x) = k(x), i = 1, . . . , n. First of all, a 2-D interface problem with a
different coefficient in four subregions and with a known analytical solution is solved.
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Table 4.1
1-D problem with uex = 1

k
sin(πx

2
)(x− 1

2
)(1+x2); k = {1, 10−4} in two subregions, respectively;

the relative C-norms of the error and their ratios.

k = {1, 10−4}
Nodes Case AA Case HA Case IHA
12 4.95d-2 – 4.49d-3 – 5.41d-4 –
22 2.34d-2 2.12 1.28d-3 3.51 1.98d-4 2.73
42 1.13d-2 2.07 3.24d-4 3.95 5.90d-5 3.35
82 5.60d-3 2.02 8.14d-5 3.98 1.60d-5 3.69
162 2.78d-3 2.01 2.04d-5 3.99 4.17d-6 3.84

Table 4.2
1-D problem with uex = 1

k
sin(πx

2
)(x− 1

2
)(1+x2); k = {1, 10−4} in two subregions, respectively;

the relative L2-norms of the error and their ratios.

k = {1, 10−4}
Nodes Case AA Case HA Case IHA
12 2.25d-2 – 2.39d-3 – 2.58d-4 –
22 1.01d-2 2.23 6.20d-4 3.85 9.50d-5 2.72
42 4.78d-3 2.11 1.58d-4 3.92 2.91d-5 3.26
82 2.32d-3 2.06 4.00d-5 3.95 8.02d-6 3.63
162 1.14d-3 2.04 1.00d-5 4.00 2.10d-6 3.82

Table 4.3
1-D problem −(ku′)′ = 1, u(0) = 0, u(1) = 1; k = {1, 10−3, 10} in two subregions, respectively;

the relative C-norms of the error and their ratios.

k = {1, 10−3, 10}
Nodes Case AA Case HA Case IHA
12 5.39d-1 – 1.06d-1 – 3.6d-15 exact
22 3.02d-1 1.78 2.70d-2 3.93 3.3d-15 exact
42 1.55d-1 1.95 6.63d-3 4.07 5.1d-15 exact
82 7.89d-2 1.96 1.65d-3 4.02 5.3d-15 exact
162 3.98d-2 1.98 4.13d-4 3.99 1.0d-14 exact

exact ≡ the difference scheme is exact for this problem.

Table 4.4
1-D problem −(ku′)′ = 1, u(0) = 0, u(1) = 1; k = {1, 10−3, 10} in three subregions, respectively;

the relative L2-norms of the error and their ratios.

k = {1, 10−3, 10}
Nodes Case AA Case HA Case IHA
12 2.89d-1 – 5.79d-2 – 1.3d-15 exact
22 1.62d-1 1.78 1.48d-2 3.91 1.4d-15 exact
42 8.34d-2 1.94 3.63d-3 4.08 1.1d-15 exact
82 4.24d-2 1.97 9.04d-4 4.02 1.2d-15 exact
162 2.14d-2 1.98 2.26d-4 4.00 2.7d-15 exact

exact ≡ the difference scheme is exact for this problem.

We compute the solution using schemes obtained from HA and IHA averaging of the
diffusion coefficient. The notations HA and IHA are preserved for the case when θ = 1

2 ,
while notations θ-HA and θ-IHA are used for other values of θ. Two sets of values for
the diffusion coefficient in the four subregions are used in order to demonstrate the
influence of the size of the jump discontinuity on the accuracy of the schemes. The
results from these computations are presented in Tables 4.5 and 4.6 for the first set
and in Tables 4.7 and 4.8 for the second set.
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Table 4.5
2-D problem with uex = 1

k
sin(πx

2
)(x− xξ)(y − yξ)(1 + x2 + y2) and k = {10−2, 1, 10−4, 10+6}

in four subregions with interfaces at x = xξ and y = yξ; the relative C-norms of the error and their
ratios.

k(x, y) ≡ 1 xξ =
1
2
, yξ =

1
2
(aligned) xξ =

1
3
, yξ =

1
3
(nonaligned)

Grid Case B HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 2.09d-4 – 1.75d-2 – 3.34d-4 – 1.91d-2 – 4.48d-4 –
22x22 5.74d-5 3.6 5.97d-3 2.9 7.64d-5 4.4 9.56d-3 2.0 1.45d-4 3.1
42x42 1.75d-5 3.7 1.80d-3 3.3 1.94d-5 3.9 2.10d-3 4.6 4.02d-5 3.6
82x82 4.11d-6 3.8 5.03d-4 3.6 4.97d-6 3.9 7.03d-4 3.0 1.10d-5 3.7
162x162 1.06d-6 3.9 1.36d-4 3.7 1.26d-6 3.9 1.64d-4 4.3 2.80d-6 3.9

Table 4.6
2-D problem with uex = 1

k
sin(πx

2
)(x− xξ)(y − yξ)(1 + x2 + y2) and k = {10−2, 1, 10−4, 10+6}

in four subregions with interfaces at x = xξ and y = yξ; the relative L2-norms of the error and their
ratios.

k(x, y) ≡ 1 xξ =
1
2
, yξ =

1
2
(aligned) xξ =

1
3
, yξ =

1
3
(nonaligned)

Grid Case B HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 7.79d-5 – 2.80d-3 – 8.05d-5 – 3.66d-3 – 9.72d-5 –
22x22 2.16d-5 3.6 7.98d-4 3.5 1.71d-5 4.7 1.41d-3 2.6 3.50d-5 2.8
42x42 5.93d-6 3.6 2.09d-4 3.8 4.30d-6 4.0 2.90d-4 4.9 9.48d-6 3.7
82x82 1.58d-6 3.8 5.34d-5 3.9 1.12d-6 3.8 8.12d-5 3.6 2.66d-6 3.6
162x162 4.09d-7 3.9 1.35d-5 4.0 2.87d-7 3.9 1.92d-5 4.2 6.82d-7 3.9

Table 4.7
2-D problem with uex = 1

k
sin(πx

2
)(x − xξ)(y − yξ)(1 + x2 + y2) and k = {10, 10−1, 103, 1} in

four subregions with interfaces at x = xξ and y = yξ; the relative C-norms of the error.

k(x, y) ≡ 1 xξ =
1
2
, yξ =

1
2
(aligned) xξ =

1
3
, yξ =

1
3
(nonaligned)

Grid Case B HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 2.09d-4 – 2.32d-3 – 2.32d-4 – 8.47d-4 – 2.84d-4 –
22x22 5.74d-5 3.6 7.72d-4 3.0 6.88d-5 3.4 2.14d-4 4.0 6.20d-5 4.6
42x42 1.75d-5 3.7 2.33d-4 3.3 1.92d-5 3.6 8.98d-5 2.4 1.10d-5 5.6
82x82 4.11d-6 3.8 6.50d-5 3.6 5.09d-6 3.8 2.08d-5 4.3 4.30d-6 2.6
162x162 1.06d-6 3.9 1.74d-5 3.7 1.31d-6 3.9 6.60d-6 3.2 6.40d-7 6.7

Table 4.8
2-D problem with uex = 1

k
sin(πx

2
)(x − xξ)(y − yξ)(1 + x2 + y2) and k = {10, 10−1, 103, 1} in

four subregions with interfaces at x = xξ and y = yξ; the relative L2-norm of the error.

k(x, y) ≡ 1 xξ =
1
2
, yξ =

1
2
(aligned) xξ =

1
3
, yξ =

1
3
(nonaligned)

Grid Case B HA scheme IHA scheme θ-HA scheme θ-IHA scheme
12x12 7.79d-5 – 4.11d-4 – 6.18d-5 – 1.70d-4 – 6.37d-5 –
22x22 2.16d-5 3.6 1.20d-4 3.4 1.65d-5 3.8 4.30d-5 4.0 1.99d-5 3.2
42x42 5.93d-6 3.6 3.31d-5 3.6 4.75d-6 3.5 1.14d-5 3.8 3.32d-6 6.0
82x82 1.58d-6 3.8 8.34d-6 4.0 1.26d-6 3.8 2.84d-6 4.0 1.25d-6 2.7
162x162 4.09d-7 3.9 2.11d-6 4.0 3.31d-7 3.8 7.24d-7 3.9 2.10d-7 6.0

Let us discuss the results presented in Tables 4.5–4.8. The scheme with harmonic
averaging of k(x) is O(h2)-accurate. The new scheme also converges with second-
order, but the constant in front of the convergence factor is two orders of magnitude
smaller for the example with large jumps of the coefficients. This means that in
practical computations the new scheme allows computations on significantly coarser
grids in comparison with known schemes. The accuracy of the new scheme is almost
uniform with respect to the size of the jump discontinuity, as one can observe from
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the tables, and it is comparable with the accuracy of computing the Poisson equation
with a constant coefficient (denoted as Case B in the tables). An interesting fact is
that the IHA scheme preserves this behavior even in the case when interfaces are not
aligned with the finite volume boundaries. At the same time, the accuracy of the
HA scheme depends on the jump discontinuity. Note that the larger the jump of the
coefficient, the better the advantages of the IHA scheme are seen.

The results in the nonaligned case need special discussion. It was observed in
the experiments that the θ-schemes converge uniformly (with respect to refinement of
the grid) with second-order only if the grid is refined in a such a way that θ remains
constant. In our experiments θ varies from one grid to the next, and this is the
reason for the nonmonotone values obtained for the ratios of the norms of the error
on consecutive grids. A possible explanation of such a behavior is that the reminder
term is different for the cases 0 ≤ θ ≤ 0.5 and 0.5 ≤ θ ≤ 1. This phenomenon needs
further detailed investigations.

As a second 2-D example, an interface problem with the right-hand side identically
equal to 1 is considered. Dirichlet boundary conditions on the east and west sides and
zero Neumann boundary conditions on the north and south sides are prescribed. The
computed problem is also known as a thin lenses problem: the diffusion coefficient is
very small within two thin lenses and is equal to 1 elsewhere. In our computations the
lenses are {0.4 < x1 < 0.9; 0.2 < x2 < 0.25} and {0.2 < x1 < 0.8; 0.7 < x2 < 0.75}.
The diffusion coefficient of the lenses has value 10−4. The analytical solution of the
problem is not known. The solution of the problem has singularities around corners
of the lenses, and u ∈ W 1+β

2 , where β ∼ 1
3 for our examples. (For details see [19].)

The computed solutions are presented in Figure 4.1 for the AA scheme, in Figure 4.2
for the HA scheme, and in Figure 4.3 for the IHA scheme. The left plot on any figure
presents the solution on a coarse 22×22 grid, while the right plot presents the solution
on a fine 162 × 162 grid. Note that only one layer of grid cells in the x2 direction is
laying inside a lens on the coarse grid.

The maximum values of the computed numerical solutions are presented in Ta-
ble 4.9. In this case we refine the grid by tripling the number of nodes in any direction
so we have nested grids, and we can monitor the value of the numerical solution at a
fixed grid point on the plane.
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Fig. 4.1. 2-D thin lenses computations with the AA scheme. Left: grid 22 × 22. Right: grid
162× 162.
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Fig. 4.2. 2-D thin lenses computations with the HA scheme. Left: grid 22 × 22. Right: grid
162× 162.
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Fig. 4.3. 2-D thin lenses computations with the IHA scheme. Left: grid 22 × 22. Right: grid
162× 162.

Table 4.9
2-D thin lenses problem; the maximum value of the numerical solution.

Grid AA HA IHA
22× 22 1.0000 7.1186 3.9940
62× 62 2.2620 4.3444 3.9952
182× 182 3.3417 4.0356 3.9961
542× 542 3.7970 4.0012 3.9965

Solutions computed by the IHA scheme are very close to the exact solution even
when coarse grids are used. (The first three digits of the maximum value of the
solution are correct even on the coarsest grid.) This fact is confirmed by the plots on
Figure 4.3, as well as by the data in Table 4.9. At the same time, the HA scheme
produces rough approximation to the solution on the coarse grid. The AA scheme is
practically unusable for coarse grids and produces inaccurate solutions even on a very
fine grid.
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It should be noted that, in addition to the thin lenses problem, we have also
computed the above example in the cases when the diffusion coefficient takes value
10−4 in larger domains (say, in an internal square which cover several grid nodes
in each direction, etc.). In all cases the IHA scheme produces much better results
than the HA scheme. However, improved harmonic averaging seems to be especially
efficient for the thin lenses problems. A possible explanation for this phenomenon is
that in the case of the thin lenses problems, the solution behaves in some subregions
as a function of one variable; therefore, the scheme reduces to a scheme for a 1-D
problem. As we know, for f(x) ≡ 1, this scheme is exact.

4.3. Numerical experiments for 3-D problems. We solved a 3-D problem
(suggested in [6]) with nonhomogeneous Dirichlet boundary conditions and the known
solution uex = 1

k (x1 − 0.5)(x2 − 0.5)(x3 − 0.5) sin(πx1

2 )(1 + x2
1 + x2

2 + x2
3), where

k is a constant over each of the eight corners of this cube. More precisely, k =
{102, 103, 107, 108, 10−2, 10−1, 103, 104} in the eight corners, counting from the left to
the right, and from the bottom to the top. Interfaces are aligned with the finite
volume surfaces in this case, i.e., θ = 0.5. The results from the numerical experiments
are presented in Tables 4.10 and 4.11. In all cases we use the discretization of the
boundary conditions reported in [8]. Tables 4.10 and 4.11 show that the numerical
solution of the interface problem, obtained with the new scheme (3.4), is at least
two orders more accurate than the numerical solutions, computed with the other two
schemes. Table 4.10 shows that the AA scheme does not have a satisfactory accuracy,
especially in the maximum norm. The HA scheme is much better, and the new IHA
scheme produces the best results. We note that the solution computed with the
new scheme on the coarsest grid with 183 points is more accurate than the solution
computed by the HA scheme on the finest grid. The same observation can be made
when comparing the arithmetic and harmonic averaging schemes. The HA scheme will
need approximately 1611 nodes to produce the solution with the accuracy achieved
by the new scheme on an 183-node grid. It can be also observed from Tables 4.10
and 4.11 that the constant of convergence of the new scheme does not depend on the
jump of discontinuity in this example, and it is practically equal to the constant from
the convergence rate of the scheme for Poisson’s equation.

Table 4.10
3-D problem with eight subregions; the relative C-norm of the error.

Grid B AA HA IHA
183 7.35d-5 2.05d-1 6.13d-3 8.43d-5
343 1.51d-5 1.13d-1 2.10d-3 1.62d-5
663 2.29d-6 5.90d-2 6.53d-4 3.71d-6

Table 4.11
3-D problem with eight subregions; the relative L2-norm of the error.

Grid B AA HA IHA
183 8.26d-6 1.01d-2 3.70d-4 9.40d-6
343 2.18d-6 4.59d-3 1.03d-4 1.86d-6
663 5.93d-7 2.19d-3 2.71d-5 4.31d-7

5. Conclusions. A family of new difference schemes for self-adjoint second-order
elliptic equations with discontinuous coefficients is derived via a finite volumes ap-
proach. A new scheme, based on improved harmonic averaging of the coefficient, has
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second-order accuracy under the following assumptions: (1) the diffusion coefficient
matrix K(x) is diagonal; (2) the interfaces are planes perpendicular to the coordinate
axes; (3) the normal (to the boundaries of a given finite volume) component of the
flux is continuously differentiable at the finite volume boundaries. Second-order con-
vergence of the new scheme in the maximum-norm is observed in various numerical
experiments for problems in Rn, n = 1, 2, 3. The numerical experiments also demon-
strate that the new scheme is much more accurate than the known schemes in solving
interface problems, especially in the cases of large jumps of the coefficient. The ad-
vantages of the new scheme are better seen in solving multidimensional problems with
many interfaces and the thin lenses problems.
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Abstract. A multilevel algorithm for reordering sparse symmetric matrices to reduce the wave-
front and profile is described. The algorithm is a combinatorial algorithm that uses a maximal
independent vertex set for coarsening the adjacency graph of the matrix and an enhanced version
of the Sloan algorithm on the coarsest graph. On a range of examples arising from practical appli-
cations, the multilevel algorithm is shown to produce orderings that are better than those produced
by the Sloan algorithm and are of comparable quality to those obtained using the hybrid Sloan al-
gorithm. Advantages over the hybrid Sloan algorithm are that the multilevel approach requires no
spectral information and less CPU time.
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1. Introduction. We consider a multilevel algorithm for ordering sparse sym-
metric matrices for the small wavefront and profile. The resulting ordering may be
used to construct a row order for use with the row-by-row frontal method applied
to a matrix with a symmetric sparsity pattern (see [27]). Since we are primarily
concerned with matrices that are positive definite, we work only with the pattern of
the matrix and do not take into account permutations needed for stability. In cases
where the matrix is nondefinite, or is symmetric only in its sparsity pattern, the actual
factorization may be more expensive and require more storage.

Minimizing the profile of a matrix is known to be an NP-complete problem [23].
A number of heuristic algorithms have been proposed, including the Cuthill–McKee
[4], reverse Cuthill–McKee [9, 24], Gibbs–King [12], Gibbs–Poole–Stockmeyer [11],
and Sloan [31] algorithms (see also [5, 22, 27]). More recently, spectral orderings
based on the Fiedler vector of the Laplacian matrix associated with a matrix have
been developed [1, 25, 26]. Kumfert and Pothen [22] propose combining an enhanced
version of the second phase of the Sloan algorithm with the spectral ordering. The
resulting hybrid Sloan algorithm (hereafter referred to as the Hybrid algorithm) has
been shown to give significantly better orderings for large problems than either the
spectral method or the Sloan method alone. This has been confirmed by Reid and
Scott [27], who provide efficient implementations of the Sloan and Hybrid algorithms
within the HSL 2000 [15] code MC60.

One reason for the success of the Hybrid algorithm is that the spectral algorithm
takes a global view of the graph of the matrix. This global view is fed into the Sloan
algorithm as a priority vector, and the Sloan algorithm then performs local refinement.

The spectral algorithm has also been used in the area of graph partitioning [14, 30].
More recently, researchers have found that, for large graphs, a multilevel approach
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[2, 13, 18, 33] can also provide good partitionings, while being much faster, because
the calculation of the Fiedler vector of a large matrix is avoided. A number of efficient
and high-quality graph partitioning codes based on the multilevel approach have been
developed [14, 18, 33]. The success of the multilevel approach in graph partitioning
motivated the work reported in this paper.

In this paper, we describe a multilevel Sloan algorithm for the ordering of sparse
symmetric matrices. Numerical tests on a range of problems illustrate that the mul-
tilevel algorithm yields orderings that are better than those from the Sloan algorithm
and are of comparable quality to the Hybrid algorithm. The main advantage of the
multilevel approach over Hybrid is that it does not require any spectral information.
Moreover, it is less expensive than the Hybrid algorithm.

The paper is organized as follows. In section 2, definitions and terminology are
introduced, and the Sloan and Hybrid algorithms are recalled. In section 3, our
multilevel approach is presented. Numerical results comparing our method with the
Sloan and the Hybrid algorithms are given in section 4. Section 5 summarizes our
findings and considers possible future directions for research.

We remark that while the writing of the present paper was in progress, our atten-
tion was brought to a report by Boman and Hendrickson [3]. In this report, Boman
and Hendrickson propose using a multilevel method for envelope reduction. Their al-
gorithm combines a multilevel approach with a 1-sum local refinement procedure (see
section 3.1). Boman and Hendrickson found that the implementation of the Sloan
algorithm developed by Kumfert and Pothen [22] often produced better envelopes
and required less CPU time than their multilevel approach. This led Boman and
Hendrickson to conclude that “Since the Sloan algorithm has recently been shown to
be a fast and good algorithm for envelope reduction, we expect that the multilevel
algorithm can be improved by replacing our 1-sum local refinement with a modified
version of the Sloan algorithm.” Although we were originally unaware of it, this paper
takes up their challenge of combining the idea of a multilevel approach with the Sloan
algorithm.

2. Background.

2.1. Definitions. We first need to introduce some nomenclature and notation.
Let A = {aij} be an n × n symmetric matrix. At the ith step of the factorization
of A, row k is said to be active if k ≥ i and there exists a column index l ≤ i such
that akl �= 0. The ith wavefront fi of A is defined to be the number of rows that are
active during the ith step of the factorization. The maximum and root-mean-squared
(RMS) wavefronts are, respectively,

F (A) = max
1≤i≤n

{fi}

and

rmsf(A) =

(∑n
i=1 f

2
i

n

) 1
2

.

The profile of A is the total number of entries in the lower triangle when any zero
ahead of the first entry in its row is excluded, that is,

P (A) =

n∑
i=1

max
aij �=0

{i + 1− j}.(2.1)

It is straightforward to show that
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P (A) =

n∑
i=1

fi.

The matrix envelope Env(A) is P (A) − n. For a frontal solver these statistics are
important because

• the memory needed to store the frontal matrix is F 2;
• P is the total storage needed for the factorized matrix;
• the number of floating-point operations when eliminating a variable is pro-

portional to the square of the current wavefront size.
Our goal therefore is to construct an efficient ordering algorithm that reduces the
above quantities.

It is often convenient when developing ordering algorithms to treat the matrix A
in terms of its adjacency graph. An undirected graph G is defined to be a pair (V,E),
where V is a finite set of vertices (or nodes) and E is a finite set of edges defined as
unordered pairs of distinct vertices. In a weighted graph, each vertex and edge has a
weight associated with it. The adjacency graph G(A) of the square symmetric matrix
A comprises the vertices V (A) = {1, 2, . . . , n} and the edges

E(A) = {(i, j) | aij �= 0, i > j} .
Two vertices i and j are said to be neighbors (or to be adjacent) if they are connected
by an edge. The notation i↔ j will be used to show that i and j are neighbors. The
adjacency set for i is the set of its neighbors, that is,

adj(i) = {j | j ↔ i, i, j ∈ V }.
The degree of i ∈ V is deg(i) = |adj(i)|, the number of neighbors. If X is a subset of
V , its adjacency set is defined to be

adj(X) =
⋃
j∈X

adj(j)\X.

Observe that, given the graph representation of a symmetric matrix, the ith
wavefront can be defined as the vertex i plus the set of vertices adjacent to the vertex
set {1, 2, . . . , i}, that is,

fi = adj ({1, 2, . . . , i}) ∪ {i} .
A path of length k in G is an ordered set of distinct vertices {v1, v2, . . . , vk, vk+1}

with vi ↔ vi+1 (1 ≤ i ≤ k). Two vertices are connected if there exists a path between
them. A graph G is connected if each pair of distinct vertices is connected. The
distance, dist(u, v), between two vertices u and v in G is the length of the shortest
path connecting them. The eccentricity of a vertex u is defined to be

ec(u) = max{dist(u, v) | v ∈ G}.
The diameter of G is then

δ(G) = max{ec(u) | u ∈ G}.
A vertex u is a peripheral vertex if its eccentricity is equal to the diameter of the
graph, that is, ec(u) = δ(G). A pseudoperipheral vertex u is defined by the condition
that, if v is any vertex for which dist(u, v) = ec(u), then ec(v) = ec(u). The pair u, v
of pseudoperipheral vertices define a pseudodiameter.

Throughout our discussion, it is assumed that the matrix A of interest is irre-
ducible so that its adjacency graph G(A) is connected. Disconnected graphs can be
treated by considering each component separately.
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2.2. The Sloan algorithm. The Sloan algorithm [31] is widely used for profile
and wavefront reduction. The algorithm, which uses the adjacency graph of the
matrix, has the following two distinct phases:

1. selection of a start vertex s and an end vertex e,
2. vertex reordering.

The first phase looks for a pseudodiameter of the graph and chooses s and e to be
the endpoints of this pseudodiameter. A pseudodiameter may be computed using a
modification of the Gibbs–Poole–Stockmeyer algorithm. (See [27] for details of an
efficient approach.) In the second phase, the chosen start vertex is numbered first,
and a list of vertices that are eligible to be numbered next is formed. At each stage of
the numbering, the list of eligible vertices comprises the neighbors of the vertices that
have already been renumbered and their neighbors. The next vertex to be numbered
is selected from the list of eligible vertices by means of a priority function. The priority
of vertex i is given by P (i), where

P (i) = −W1inc(i) + W2dist(i, e)(2.2)

and (W1,W2) are positive weights. The first term (the “local” term), inc(i), is the
amount by which the wavefront will increase if vertex i is ordered next. The second
term (the “global” term), dist(i, e), is the distance between i and the end vertex e.
Thus, a balance is maintained between the aim of keeping the wavefront small and
bringing in vertices that have been left behind (far away from e). A vertex has a high
priority if it causes either no increase or only a small increase to the current front
size and is at a large distance from the end vertex e. The best choice for the weights
(W1,W2) is problem dependent, but Sloan suggested that weights (2, 1) usually gave
satisfactory results for his test problems. Once an ordering for the vertices of the
weighted graph has been obtained, an ordering for A can be constructed.

Duff, Reid, and Scott [5] extended Sloan’s algorithm to vertex-weighted graphs
obtained from finite element meshes and used the resulting orderings to generate
element assembly orderings for the frontal method. The vertex-weighted graph is
derived from the unweighted graph by “condensing” vertices to form supervertices.
Vertices i and j are condensed into a supervertex if

i ∪ adj(i) = j ∪ adj(j).(2.3)

The weight of a supervertex is the number of unweighted vertices it represents. The
use of condensing can sometimes reduce the size of the graph considerably, thus re-
ducing the time required for reordering.

The implementation of Sloan’s algorithm was further enhanced by Kumfert and
Pothen [22] in a number of ways.

• Sloan [32] used a simple search method to manage the priority queue but
noted that, for large problems, using a binary heap would be the method of
choice. Kumfert and Pothen implemented the use of a binary heap and were
able to achieve a considerable efficiency gain. They also analyzed the time
complexity of their efficient implementation.
• They applied the Sloan algorithm to the vertex-weighted graph so that it

mimics what the algorithm would do on the corresponding unweighted graph.
This resulted in smaller wavefront sizes.
• They divided their test problems into two classes and showed that, by using

different weights for each class, for some problems the wavefront sizes obtained
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by the Sloan algorithm could be substantially reduced. However, they were
not able to predict a priori to which class a given problem belongs.

Most recently, Reid and Scott [27] have provided a Fortran implementation of
Sloan’s algorithm in HSL 2000 [15] as routine MC60. This code uses and extends the
ideas of Kumfert and Pothen. MC60 optionally uses the vertex-weighted graph. For
efficiency on problems of all sizes, when managing the priority queue, the code starts
by using the simple search used by Sloan and switches to using a binary heap if the
number of eligible vertices exceeds a given threshold. By default, MC60 tries both
the pairs of weights (2, 1) and (16, 1). Alternatively, the user can supply the weights.
The code also allows the user to provide a global priority vector to be used in place
of the distance dist(i, e) in the priority function. This enables MC60 to be used to
implement the Hybrid algorithm of Kumfert and Pothen [22], which we discuss in the
next section.

Throughout the rest of this paper, when referring to the Sloan algorithm, we
mean the enhanced version of the algorithm as implemented within MC60.

2.3. The Hybrid algorithm. The first term in (2.2) affects the priority func-
tion in a local way by giving higher priority to vertices that will result in a small (or
negative) increase to the current wavefront. This is done in a greedy fashion without
consideration of the long-term effect. The second term acts in a more global manner,
ensuring vertices lying far away from the end vertex are not left behind. The second
phase of the Sloan algorithm can therefore be viewed as an algorithm that refines the
ordering implied by the distance function dist(i, e).

The distance function in (2.2) can be replaced by other orderings that provide
a global view. In particular, Kumfert and Pothen [22] proposed using a spectral
ordering. The spectral algorithm associates a Laplacian matrix L = {lij} with the
symmetric matrix A as follows:

lij =




−1 if i �= j and i↔ j,
deg(i) if i = j,

0 otherwise.
(2.4)

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian
matrix is called a Fiedler vector [7, 8]. The spectral algorithm orders the vertices of
G(A) by sorting the components of the Fiedler vector into monotonic order. The same
permutation is applied to the original matrix to obtain the spectral ordering. This
approach has been found to produce small profiles and wavefronts [1], although it is
much more computationally expensive. (This is illustrated in [22].) An analysis of the
spectral method for envelope reduction has been presented by George and Pothen [10].

The spectral algorithm has also been used in the context of graph partitioning
[14], where it has been found that results can be improved by incorporating a lo-
cal refinement step. This refinement performs local optimizations and smoothes out
local oscillations that may be present. In the context of wavefront reduction, the
Hybrid algorithm of Kumfert and Pothen [22] combines the spectral algorithm with
a modified version of the second phase of the Sloan algorithm. It appears that it is
this combination of global and local ordering algorithms that accounts for the good
performance of the Hybrid algorithm, particularly for very large problems.

The Hybrid algorithm, as presented in [27], chooses as the start vertex s the first
vertex in the spectral ordering and replaces (2.2) with the priority function

P (i) = −W1inc(i)−W2 ν p(i).(2.5)
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Here ν is a normalizing factor and p(i) is the position of vertex i in the spectral
ordering, also referred to as its global priority value. ν is chosen so that the factor for
W2 varies up to dist(s, e), as in (2.2). On the basis of their numerical experimentation,
Reid and Scott [27] propose the pairs of weights (1, 2) and (16, 1). Note that (1, 2) is
recommended instead of the pair (2, 1) used by default in their implementation of the
Sloan algorithm. Reid and Scott argue that the global priority based on the spectral
ordering has been found to be better than that obtained from a pseudodiameter,
justifying a larger value for W2 in this case. Numerical experiments [22, 27] have
shown that, for large problems, in terms of the quality of the orderings produced, the
Hybrid method can significantly outperform the Sloan algorithm. The Hybrid method
does, however, require significantly more CPU time because it is more expensive to
compute the Fiedler vector than it is to find a pseudodiameter for A. This is illustrated
in section 4.

Through the use of (2.5), the modified second phase of Sloan’s algorithm locally
refines the spectral ordering. We therefore refer to this phase as Sloan refinement
and denote by SloanRefine(G, p) the algorithm that takes the graph G together with
a global priority vector p and uses (2.5) to return a refined ordering for G.

3. The multilevel ordering algorithm. The matrix ordering algorithm pro-
posed in this paper is based on a multilevel approach. Given the adjacency graph
G(A), a series of graphs is generated, each coarser than the preceding one. The coars-
est graph is then ordered. This ordering is recursively prolonged to the next finer
graph, local refinement is performed at each level, and the final ordering on the finest
graph gives an ordering for A.

3.1. The multilevel approach. In the context of graph partitioning, the mul-
tilevel approach generates a series of coarser and coarser graphs [2, 13, 19, 33]. The
aim is for each successive graph to encapsulate the information needed to partition its
“parent,” while containing fewer vertices and edges. The coarsening continues until
a graph with only a small number of vertices is reached. This can be partitioned
cheaply. The partitions on the coarse graphs are recursively prolonged (usually by
injection) to the finer graphs with further refinement at each level.

One of the first uses of a multilevel approach for the partitioning of undirected
graphs was reported by Barnard and Simon [2]. Motivated by the need to reduce
the time for computing the Fiedler vector, Barnard and Simon combined a multilevel
approach with a spectral bisection algorithm. It was soon realized [13, 20, 33] that
the multilevel approach can be used to advantage with a good local optimizer. In
graph partitioning, the Kernighan–Lin algorithm [21] is used and, combined with the
multilevel approach, has proved very successful at rapidly computing high quality
partitions.

Boman and Hendrickson [3] propose adopting a multilevel approach for profile
and wavefront reduction. They introduce a weighted 1-sum metric

σ1(A) =

n∑
i=1

∑
j↔i, j<i

wij(i− j),

where wij are edge weights, and aim to minimize σ1(A). The edge weights are all
one on the finest graph; on the coarser graphs, edge weights are assigned as edges
are collapsed. (See [3] for details.) Although Boman and Hendrickson’s objective
is to minimize the matrix envelope of A, they report finding it more efficient and
effective to work with the 1-sum. Boman and Hendrickson propose combining a
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multilevel approach with a refinement algorithm that is similar to the Kernighan–Lin
algorithm and is based on swapping consecutive vertices. The gain in swapping each
such pair of vertices k and k + 1 is calculated initially and then updated during the
refinement. The gain from a swap is measured using the weighted 1-sum. Boman and
Hendrickson compare their approach with an implementation of the Sloan algorithm
that incorporates the enhancements of Kumfert and Pothen [22] (referred to by Boman
and Hendrickson as the fast Sloan). Boman and Hendrickson conclude that “The fast
Sloan algorithm operates in the same performance range and often produces better
envelopes in less time than the multilevel algorithm, but not always.” Since, in turn,
the Hybrid algorithm significantly outperforms Sloan for large problems, the multilevel
algorithm of Boman and Hendrickson is not competitive with the Hybrid algorithm
in terms of ordering quality.

As recognized by Boman and Hendrickson in their concluding remarks, because
the reordering phase of the Sloan algorithm provides a good local refinement algo-
rithm, it is of interest to try and use it directly with the multilevel approach. This
combining of Sloan with the multilevel approach forms the basis of our multilevel
wavefront reduction algorithm. The algorithm has three distinct phases: coarsening,
coarsest graph ordering, and, finally, prolongation and refinement. We discuss each
of these phases and then, in section 3.5, we outline our multilevel Sloan algorithm.

3.2. The coarsening phase. There are a number of ways to coarsen an undi-
rected graph. The most popular method in graph partitioning is based on edge col-
lapsing [13, 20], in which pairs of adjacent vertices are selected and each pair is
coalesced into one new vertex. Because of its success for graph partitioning, coars-
ening using edge collapsing was the first strategy we employed when developing our
multilevel wavefront reduction algorithm. However, we found that, while we were able
to improve on the wavefronts obtained using the Sloan algorithm, the results were of
a poorer quality than those given by the Hybrid algorithm. Full details and com-
parisons are given in the report [17]. This led us to consider alternative coarsening
strategies.

In [2], a maximal independent vertex set of a graph is chosen as the vertices for
the coarse graph. An independent set of vertices is a subset of the vertices such that
no two vertices in the subset are connected by an edge in the graph. An independent
set is maximal if the addition of an extra vertex always destroys the independence.
An algorithm for constructing a maximal independent set is discussed below. Edges
of the coarse graph are formed through a process based on the Galerkin product (see
section 3.5 for details), which effectively links two vertices in the maximal independent
vertex set by an edge if their distance apart is no greater than three. Figure 3.1
illustrates a graph G with 788 vertices, together with two levels of coarsening using
this method, giving graphs with 332 and 94 vertices, respectively.

The coarsening process is applied recursively until one of the following is achieved:
• The number of levels exceeds a preset limit.
• The number of vertices in the coarsest graph is less than a preset number

(chosen to be 100 in this study, but see section 4.4 for further discussions).
• The ratio of the number of vertices in two successive graphs exceeds a preset

constant (0.8 in this study).
The last condition is necessary to avoid a slow reduction between fine and coarse graph
sizes that can lead to a high algorithmic complexity for the multilevel algorithm.

3.2.1. Maximal independent vertex set algorithm. When used for the mul-
tilevel spectral algorithm, a maximal independent set is chosen in a greedy fashion
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Fig. 3.1. Graph coarsening based on the maximal independent vertex set: the original graph G
with 788 vertices (left); G1 with 332 vertices (center); G2 with 94 vertices (right).

by picking unmatched vertices at random and, when a vertex is picked, masking its
neighboring vertices as matched [1, 2]. Hereafter this method of coarsening is referred
to as the simple greedy approach.

We adopt a more sophisticated approach that yields comparable quality of order-
ings but requires less CPU time. (See section 4.3 for a comparison.) Our algorithm is
based on that of Ruge and Stüben [28], which has been used successfully in the field of
algebraic multigrid. This algorithm was designed for unsymmetric matrices; we have
modified it for symmetric matrices. At each step, each vertex in V lies in one of three
sets: it is either uncolored (VU ), it is in the maximal independent set (VC), or it is
not a candidate for the maximal independent set (VF ). Each vertex has a gain value
associated with it, indicating the preference for this vertex to belong to VC . Initially,
each vertex i is uncolored (lies in VU ) and is assigned a gain value gain(i) equal to
its degree. The gains are held in a priority queue. At each step, an uncolored vertex
with the highest gain is removed from the queue and is moved into VC . Its neighbors
are then moved into VF . They are also removed from the queue. For each such new
vertex in VF , the gain values of its uncolored neighbors are increased by one. The
procedure is repeated until the queue is empty (that is, until all the vertices belong
to either VC or VF ).

In this algorithm, the gain of an uncolored vertex is always equal to the number
of neighbors in VU plus twice the number of neighbors in VF . An uncolored vertex
with a large number of neighbors in VF is therefore more likely to be moved into
VC . This ensures that VF vertices are well “covered” by VC vertices, yielding a
more uniform distribution of VC vertices and allowing a more aggressive coarsening
compared with the simple greedy approach. Our maximal independent vertex set
algorithm is outlined below.

Maximal independent vertex set algorithm.
• initialization:

– VC = ∅
– VU = V
– for each vertex i ∈ V

gain(i) = deg(i)
• do while VU �= ∅

– imax : gain(imax) = maxj∈VU (gain(j))
– VU = VU\{imax}
– VC = VC ∪ {imax}
– for each vertex j ∈ adj(imax) ∩ VU
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VU = VU\{j}
for each vertex k ∈ adj(j) ∩ VU

gain(k) = gain(k) + 1

3.3. The coarsest graph ordering. Because the coarsest graph has a small
number of vertices and edges, it can be reordered quickly using any standard pro-
file reduction algorithm. We have used both the Sloan and the Hybrid algorithms
and present results for both approaches (using the MC60 implementation of these
algorithms) in section 4.

3.4. The prolongation and refinement phase. During the prolongation
phase, the vertices of the fine graph are given global priority values by mapping
the coarse graph ordering onto the fine graph. This mapping can be represented
by a prolongation matrix P . If the coarse and fine graphs have nc and nf vertices,
respectively, the prolongation matrix is of order nf × nc.

When coarsening is based on a maximal independent vertex set, the coarse graph
vertices comprise the maximal independent set of the fine graph. The global priority
value of a vertex in the fine graph that belongs to the maximal independent set
is defined as the position of this vertex in the coarse graph ordering. The global
priority value of a fine graph vertex not in the maximal independent set is calculated
by averaging the global priority values of its neighbors that belong to the maximal
independent set. (By definition there is at least one such neighbor.) For each coarse
graph vertex j, let fine(j) be the index of this vertex in the fine graph. For each fine
graph vertex i, define mdeg(i) to be the number of neighboring fine graph vertices
that belong to the maximal independent set. The prolongation matrix P = {pij} has
entries

pij =




1 if i = fine(j),
1

mdeg(i) if i↔ fine(j), i �= fine(j),

0 otherwise.

(3.1)

The global priority values are refined using the second phase of the enhanced Sloan
algorithm (that is, by using the priority function (2.5)) to give the final ordering for
the fine graph.

3.5. The multilevel algorithm. We can now formulate our multilevel wave-
front reduction algorithm. For this it is convenient to introduce some further notation.
The subscripts f and c are used to represent fine and coarse graph quantities, respec-
tively. For example, Gf denotes the fine graph with nf vertices and Gc is the graph
with nc vertices obtained after coarsening (nc < nf ). We will associate with Gf an
nf × nf matrix Af which has zero diagonal entries and nonzero off-diagonal entries
aij if and only if vertices i and j are adjacent in Gf . Ac is defined analogously.

If P denotes an nf × nc prolongation matrix, the coarse graph may be expressed
as the Galerkin product

Ac ← PT Af P.

This expression means that the matrix product PTAfP is computed and the matrix
Ac is obtained by setting the diagonal entries of the resulting matrix to zero.

The global priority vector p of a graph is a vector with entries p(i), where p(i) is
the global priority value of vertex i. This vector indicates the preferred ordering of the
vertices. For the Hybrid algorithm, the global priority vector is obtained by ordering



MULTILEVEL ALGORITHM 1361

the vertices based on the values of the Fiedler vector. Note that the global priority
vector need not be a permutation vector. We let CoarsestOrder(G) be an algorithm
that returns an ordering for the coarsest graph G and recall that SloanRefine(G, p0)
denotes the algorithm that takes the graph G, and a global priority vector p0, and
returns a refined ordering for G using (2.5) with p = p0.

With this notation, if MinSize is the preset number of vertices beyond which
there is no further coarsening, our multilevel wavefront reduction algorithm can be
formally presented as follows. The starting point is the fine graph Gf and associated
matrix Af .

Function MultilevelOrder(Gf ).

• If nf < MinSize, then
– pf = CoarsestOrder(Gf )
– return pf

• The coarsening phase:
– set up the nf × nc prolongation matrix P
– Ac ← PT Af P
– pc = MultilevelOrder(Gc)

• The prolongation and refinement phase:
– p0

f = P pc
– pf = SloanRefine(Gf , p0

f )
– return pf

Figure 3.2 illustrates the multilevel algorithm applied to the test problem bcsstk11
(see the appendix). Notice that on the coarsest level, the lower right-hand part of the
matrix after reordering (bottom right) has no nonzero entries. This is because the
graph corresponding to the bcsstk11 matrix has nine components, eight of which are
small, and coarsening gives eight isolated vertices on the coarsest level. Since diagonal
elements are not displayed, after reordering there is an 8× 8 null matrix in the lower
right-hand part of the coarsest matrix.

Figure 3.3 presents a simple example of the two-level ordering algorithm using a
maximal independent vertex set. The vertices v3, v6 are chosen to form the maximal
independent set. Vertex v1 has one neighbor in the maximal independent set; therefore
mdeg(v1) = 1. Similarly, mdeg(v4) = 1, and mdeg(v2) = mdeg(v5) = 2. Thus from
(3.1), the prolongation matrix is

P =




1 0
1
2

1
2

1 0
1 0
1
2

1
2

0 1



.

It follows that the Galerkin product is

PTAfP =
1

4




2 0
1 1
2 0
2 0
1 1
0 2




T 


0 1 1 0 0 0
1 0 1 0 1 1
1 1 0 1 1 0
0 0 1 0 1 0
0 1 1 1 0 1
0 1 0 0 1 0







2 0
1 1
2 0
2 0
1 1
0 2




=

(
8.5 3.5
3.5 2.5

)
.
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Fig. 3.2. An illustration of the multilevel algorithm using problem bcsstk11. The original matrix
(top left) of order 1473 is coarsened twice to give the coarse matrices on the left (of order 162 and
30, respectively). The coarsest matrix is ordered (bottom right), prolonged, and refined to give the
final ordering (top right) for the original matrix. The multilevel algorithm gives a RMS wavefront
of 46.55, which is smaller than that given by the Sloan algorithm (51.40) and the Hybrid algorithm
(47.76), and significantly smaller than the RMS wavefront of the original matrix (104.34).

Setting the diagonal to zero gives the coarse graph matrix

Ac =

(
0 3.5

3.5 0

)
,

which corresponds to the coarse graph in Figure 3.3 (middle).
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Fig. 3.3. A graph (top left) is coarsened using the maximal independent vertex set (shaded
and circled) to give the coarse graph (middle). The coarse graph is ordered, and this ordering is
prolonged to give the priority vector for the fine graph (top right). Numbers in ellipses are the coarse
graph ordering, and numbers in squares are global priority values.

Assuming the coarse graph is ordered as pc(u1) = 1, pc(u2) = 2, the global
priority vector for the fine graph is

p0
f = Ppc =

1

2




2 0
1 1
2 0
2 0
1 1
0 2




(
1
2

)
=




1
1.5
1
1

1.5
2



.(3.2)

This is shown on the right-hand side of Figure 3.3.

4. Numerical results. In this section, our multilevel approach is compared with
the Sloan and Hybrid algorithms on a large set of test problems. All the codes used
to obtain the reported results are written in Fortran. The experiments are performed
on a COMPAQ computer with a 300 MHz Alpha EV5 processor, using the DIGITAL
Fortran 90 V5.2 compiler.

The MC60 code of Reid and Scott [27] is used in the experiments for the Sloan
algorithm, for ordering the coarsest graph, and for subsequent refinement. The spec-
tral ordering needed for the Hybrid algorithm is computed using a multilevel Fiedler
vector code written by the first author. The algorithm implemented by this Fiedler
code is similar to that described in [2]. Coarsening based on heavy edge collapsing is
used, and, on the coarsest graph, vertex weights and edge weights are not used in the
computation of the Fiedler vector.

The coarsest graph ordering algorithm CoarsestOrder is taken to be either the
Sloan or the Hybrid algorithm. We denote by Sloan(MIV ,K) (and Hybrid(MIV ,K))
the multilevel algorithm that uses the Sloan (respectively, Hybrid) algorithm on the
coarsest graph together with the MIV (maximal independent vertex set) coarsen-
ing scheme on up to K levels. Thus Sloan(MIV , 1) is the Sloan algorithm and
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Hybrid(MIV , 1) the Hybrid algorithm. Similarly, Sloan(MIV , 3) is the multilevel
algorithm, with maximal independent vertex set coarsening and a maximum of three
levels, with the Sloan algorithm used on the coarsest graph.

Our suite of 101 test problems is listed in alphabetical order in the appendix. The
problems are all symmetric and range in order from 66 (dwt66) to 224,617 (Halfb).
We have included all the nontrivial symmetric problems of order at least 1000 from
MatrixMarket (http://math.nist.gov/MatrixMarket). In addition, we have the Ever-
stine test set [6], which, although small by today’s standards, is widely used as a test
set for profile and wavefront reduction algorithms. The Everstine problems are avail-
able from the Harwell–Boeing Sparse Matrix Collection (http://www.cse.clrc.ac.uk/
Activity/SparseMatrices). We also have all the test problems used by Kumfert and
Pothen [22], together with some additional finite element problems supplied by Chris-
tian Damhaug of Det Norske Veritas, Norway. Included in the appendix are the
initial RMS wavefronts (rmsf) for each matrix and the ratio, ρ, between the RMS
wavefronts before and after reordering with the Hybrid algorithm. In general, the
Hybrid algorithm substantially improves the ordering (although there are a small
number of exceptions, notably problems bscctk13, bcsstk17, and bcsstm13).

4.1. Multilevel Sloan algorithm. Figure 4.1 compares the RMS wavefront for
the Sloan and the Hybrid algorithms with the multilevel algorithm Sloan(MIV ,K).
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Fig. 4.1. A comparison of the RMS wavefronts for the Sloan, the Hybrid, and the
Sloan(MIV ,K) algorithms.

In this and subsequent figures, comparisons are given with respect to the Hybrid
algorithm so that the RMS wavefront for each algorithm is divided by the correspond-
ing RMS wavefront for the Hybrid algorithm and geometrically averaged over the test
cases to give a relative score for the algorithm. The smaller the score, the better the
algorithm. With this metric, the Hybrid algorithm always has a score of one. To
show the effect of matrix order, the scores for each algorithm for matrices of order
greater than 37× 3k(1 ≤ k ≤ 8) are plotted separately in the figure with the number
of matrices over the threshold printed in brackets. A log scale is used for the x-axis
(matrix order).
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A number of interesting features can be observed. The first observation is that,
relative to the Hybrid algorithm, the RMS wavefront given by the Sloan algorithm
deteriorates as the order of the matrix increases. Overall, the RMS wavefront for the
Sloan algorithm is about 13% greater than for the Hybrid algorithm, while for the
largest 10 matrices, it is about 40% more. This deterioration further confirms the
earlier findings reported in [22, 27].

The second observation is that, as the number of levels increases, the multi-
level orderings improve. The multilevel algorithm without a preset maximum number
of levels, Sloan(MIV ,∞), produces orderings of comparable quality (within 3.5%)
to the Hybrid algorithm and, in terms of CPU time (Figure 4.2), is substantially
faster in our experiments, requiring about half the time of the Hybrid algorithm.
Since Sloan(MIV ,∞) is generally no more expensive in terms of CPU time than
Sloan(MIV ,K) with K > 2, and it produces the smallest RMS wavefronts, we rec-
ommend not imposing a maximum number of levels on the multilevel algorithm. Thus
we have a combinatorial algorithm for wavefront reduction that performs as well as
the Hybrid algorithm in less time.
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Fig. 4.2. A comparison of the CPU times for the Sloan, the Hybrid, and the Sloan(MIV ,K)
algorithms.

The above results were obtained using the modified version of the Ruge and
Stüben [28] algorithm for selecting a maximal independent set. As discussed in sec-
tion 3.2.1, a simple greedy algorithm can be used instead. The Ruge and Stüben
algorithm selects coarse vertices by maximizing the number of neighbors in VF and
VU . In general, this gives a more aggressive coarsening and fewer dense matrices on
the coarse graphs. The result is that a multilevel algorithm based on the Ruge and
Stüben approach requires less CPU time than the simple greedy algorithm. This is
illustrated in Figure 4.3, where Sloan(MIV ,∞) is compared with Sloan(MIVG ,∞),
with the latter denoting the multilevel algorithm using the simple greedy approach
for selecting the maximal independent set. Sloan(MIV ,∞) clearly takes less CPU
time while yielding orderings of comparable quality.
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Fig. 4.3. A comparison of the multilevel algorithms based on two approaches of selecting a
maximal independent vertex set. Sloan(MIV ,∞) is based on the Ruge and Stüben algorithm [28].
Sloan(MIVG,∞) is based on the simple greedy algorithm. All results are relative to the Hybrid algo-
rithm. The left y-axis is used for RMS wavefront (rmsf) and profile; the right y-axis for CPU time.

Figure 4.3 also includes the profile for the Sloan(MIV ,∞) and Sloan(MIVG ,∞)
orderings relative to the Hybrid orderings. As can be seen, the trend for the profile
is very similar to that of the RMS wavefront. In the remainder of this paper, we will
present only RMS wavefront results.

4.2. Sloan versus Hybrid on the coarsest graph. The coarsest graph has
only a small number of vertices, and so it can be rapidly ordered using any appropriate
algorithm. In the results presented in the previous section, the Sloan algorithm was
used, but the Hybrid algorithm can be used instead. This gives the multilevel Hybrid
algorithm, Hybrid(MIV ,K).

Figure 4.4 compares the RMS wavefront for this algorithm with that for the
Sloan and the Hybrid algorithms. We see that, for any preset maximum number
of levels K, results for the Hybrid(MIV ,K) algorithm are comparable to those for
the Hybrid algorithm. Even if there are only two levels, the quality of the ordering
on the coarsest (level 2) graph is such that the application of a prolongation and
refinement step is able to produce a high quality ordering on the fine graph. This is
in contrast to Sloan(MIV , 2), where, on the coarsest graph, the Sloan algorithm does
not yield such a good ordering. As the number of levels increase, the performance of
Sloan(MIV ,K) is comparable to Hybrid(MIV ,K), indicating that, because the Sloan
algorithm performs well on small problems, in terms of quality, the choice between
the Sloan and the Hybrid algorithms on the coarsest graph is not important when
that graph is small. However, using the Sloan algorithm has the advantage of not
requiring the computation of any spectral information.

The fact that the quality of the Hybrid(MIV ,K) orderings varies little with the
number of levels K indicates that the multilevel process based on the maximal inde-
pendent vertex set combined with Sloan refinement is of good quality, in the sense



MULTILEVEL ALGORITHM 1367

1

1.1

1.2

1.3

1.4

>37 (101) >111 (97) >333 (88) >1K (72) >3K (44) >9K (32) >27K (19) >81K (9)

R
M

S
 w

av
ef

ro
nt

 s
iz

e 
(r

el
at

iv
e 

to
 H

yb
rid

)

matrix order (number of matrices)

Hybrid
Sloan

Hybrid(MIV,2)
Hybrid(MIV,3)
Hybrid(MIV,4)
Hybrid(MIV,5)

Hybrid(MIV,infinity)

Fig. 4.4. A comparison of the RMS wavefronts for the Sloan, the Hybrid, and the
Hybrid(MIV ,K) algorithms.

that it preserves, if not enhances, the quality of the ordering achieved on the coarsest
graph using the Hybrid algorithm.

The CPU time comparisons for the Sloan, the Hybrid, and the Hybrid(MIV ,K)
algorithms are given in Figure 4.5. The Hybrid(MIV ,K) algorithm needs about half
the CPU time of the Hybrid algorithm. For small K, it is slightly more expensive
than Sloan(MIV ,K) because of the extra cost associated with using the Hybrid algo-
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algorithms.
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rithm on the coarsest graph. For large K, the main disadvantage of Hybrid(MIV ,K)
compared with Sloan(MIV ,K) is that Hybrid(MIV ,K) requires the computation of
a spectral vector on the coarsest graph.

We are primarily interested in how the multilevel approach performs on large
problems. Table 4.1 lists the RMS wavefronts for the Hybrid, Sloan(MIV ,∞), and
Hybrid(MIV ,∞) algorithms for each of the test problems of order greater than 10000.
The smallest wavefront for each problem (and those within 3% of the smallest) are
given in bold. It can be seen that, although the three algorithms on average pro-
duce orderings with similar RMS wavefronts, their behavior on individual matrices
can differ significantly. This is typical of heuristic-based algorithms and, for a given
problem, which algorithm will produce the best ordering cannot be predicted a priori.
Table 4.2 reports the CPU timings for the three algorithms. The multilevel algorithms
Sloan(MIV ,∞) and Hybrid(MIV ,∞) require a similar amount of time, and both are
faster than the Hybrid algorithm.

Table 4.1
RMS wavefronts for the Hybrid, the Sloan(MIV ,∞), and the Hybrid(MIV ,∞) algorithms on

matrices of order > 10000.

Identifier Order Hybrid Sloan(MIV ,∞) Hybrid(MIV ,∞)
shuttle eddy 10429 62.55 60.55 59.75
bcsstk17 10974 286.99 229.63 240.93
bcsstk18 11948 204.26 197.25 195.37
bcsstk29 13992 193.63 192.74 192.74
barth5 15606 84.20 97.11 97.75
pds10 16558 566.94 680.36 680.36
copter1 17222 401.04 370.33 378.2
e40r0000 17281 162.94 162.38 162.34
Crplat2 18010 244.61 254.16 255.84
tandem vtx 18454 288.62 287.30 282.07
ford1 18728 99.42 108.95 109.56
bcsstk30 28924 303.03 296.99 321.30
Thread 29736 1857.44 1940.28 1864.85
bcsstk31 35588 531.99 526.19 558.09
finance256 37376 179.18 130.42 116.95
bcsstk32 44609 471.84 578.90 618.11
skirt 45361 621.77 738.62 743.59
nasasrb 54870 336.84 344.67 337.29
Srb1 54924 327.74 333.39 332.48
copter2 55476 597.79 726.00 572.89
finance512 74752 137.16 114.58 127.21
onera dual 85567 563.14 697.67 632.99
tandem dual 94069 451.83 436.37 440.46
MT1 97578 1035.08 1187.96 971.93
ford2 100196 305.05 327.58 343.31
Shipsec1 140874 1538.23 1666.05 1434.77
Fullb 199187 1867.09 1955.66 1992.47
Fcondp2 201822 1713.82 1542.18 1559.93
Troll 213453 3657.43 2343.68 2887.74
Halfb 224617 1347.94 1431.09 1486.26

4.3. Sensitivity of the multilevel algorithm to the priority function
weights. So far, we have established that a multilevel Sloan algorithm based on
a maximal independent vertex set gives orderings of comparable quality to the Hy-
brid algorithm and is significantly faster. Since Kumfert and Pothen [22] showed that
the choice of weights can have a very important influence of the quality of Sloan’s
ordering, in this section we look at the sensitivity of the multilevel algorithm to the
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Table 4.2
CPU time (in seconds) for the Hybrid, the Sloan(MIV ,∞), and the Hybrid(MIV ,∞) algo-

rithms on matrices of order > 10000.

Identifier Order Hybrid Sloan(MIV ,∞) Hybrid(MIV ,∞)
shuttle eddy 10429 0.68 0.36 0.36
bcsstk17 10974 2.97 0.88 0.89
bcsstk18 11948 1.57 0.65 0.65
bcsstk29 13992 3.52 1.43 1.44
barth5 15606 0.97 0.60 0.59
pds10 16558 4.61 1.78 1.76
copter1 17222 1.85 1.40 1.39
e40r0000 17281 3.46 1.12 1.14
Crplat2 18010 4.63 2.07 2.04
tandem vtx 18454 2.20 0.96 0.95
ford1 18728 1.09 0.63 0.62
bcsstk30 28924 11.21 4.44 4.53
Thread 29736 25.60 10.29 10.17
bcsstk31 35588 8.07 3.01 3.01
finance256 37376 4.64 1.85 1.81
bcsstk32 44609 10.79 4.74 4.70
skirt 45361 15.18 6.12 6.10
nasasrb 54870 13.32 6.38 6.29
Srb1 54924 14.17 6.86 6.81
copter2 55476 8.13 3.89 3.79
finance512 74752 8.51 3.96 3.81
onera dual 85567 6.80 4.35 4.29
tandem dual 94069 7.38 4.65 4.53
MT1 97578 52.88 21.44 21.22
ford2 100196 6.78 4.16 4.11
Shipsec1 140874 56.85 18.47 18.40
Fullb 199187 64.32 29.34 28.24
Fcondp2 201822 57.53 26.95 26.74
Troll 213453 65.50 28.93 29.30
Halfb 224617 65.30 30.83 29.91

choice of weights used in the priority function (2.5), first when ordering the coarsest
graph and, second, during the prolongation and refinement stages.

We have seen that, with an unlimited number of levels, the coarsest graph order-
ing based on both the Sloan algorithm (Sloan(MIV ,∞)) and the Hybrid algorithm
(Hybrid(MIV ,∞)) yield orderings of similar quality. Following Reid and Scott [27],
when the Sloan algorithm is used on the coarsest graph, two orderings are generated
from the weight pairs (2, 1) and (16, 1), and the better of the two is chosen. Figure 4.6
illustrates the effect of using a single pair of weights. If we generate only one ordering
based on a single pair of weights (chosen among (64, 1), (16, 1), (4, 1), (2, 1), (1, 1),
(1, 2), (1, 4), (1, 16), and (1, 64)), the quality of the final ordering obtained using the
multilevel algorithm is not as good, although the difference is usually less than 10%.
If instead of the pairs (2, 1) and (1, 16) we use (1, 2) and (1, 16), the difference in
the quality of the final ordering is extremely small, indicating that the precise choice
for the weights is not critical. As the coarsest graph can be ordered very quickly
because of its small size, if it is important to obtain the smallest possible wavefront, it
may be worthwhile to try a number of different weights and choose the best ordering
among them.

We have also looked at the sensitivity of the ordering to the choice of weights
for the prolongation and refinement stage of the multilevel algorithm. In all the
experiments reported so far, we have used the weights (1, 2) and (16, 1). This choice
was recommended in Reid and Scott [27] for the Hybrid algorithm, where it was
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Fig. 4.6. The effect of the weights used in the coarse graph ordering on the RMS wavefront of
the multilevel algorithm. The Sloan(MIV ,∞) algorithm is used with either a single pair of weights
(chosen from (64, 1), . . . , (1, 64)) or the two pairs (1, 2) and (16, 1) on the coarsest graph. All results
are relative to Sloan(MIV ,∞) with the weights (2, 1) and (16, 1) on the coarsest graph.

argued that a larger W2 in (2.5) is preferred when p(i) is of good quality. Figure 4.7
illustrates the effect of varying the first pair of weights on the quality of the ordering
given by Sloan(MIV ,∞). In this experiment, the second pair is fixed at (16, 1), while
the first pair is allowed to vary between (4, 1) and (1, 16). We see using (W1,W2)
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Fig. 4.7. The effect of the first pair of weights during the refinement process on the RMS
wavefront of the multilevel algorithm Sloan(MIV ,∞). The second pair of weights is fixed at (16, 1).
All results are relative to the Hybrid algorithm.
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with W2 slightly larger than or equal to W1 is beneficial. In general, the pairs (1, 1),
(1, 2), and (1, 4) yield similar RMS wavefronts. We performed further experiments
that showed the same conclusion can be drawn for the Hybrid(MIV ,∞) algorithm.

4.4. Effect of the size of the coarsest graph. In the multilevel ordering
algorithm, a parameter MinSize is used to control the size of the coarsest graph.
Further coarsening is not carried out once the size of the current graph is less than
MinSize. We have chosen MinSize = 100 in our work.

On small graphs, the Sloan algorithm is competitive with the Hybrid algorithm,
but its competitiveness deteriorates as the size of the graph increases. Since we use
the Sloan algorithm on the coarsest graph we do not, therefore, want this graph to
be too large. Conversely, coarsening down to a very small number of vertices is not
recommended either because applying the Sloan algorithm to such a graph does not
feed into the refinement process any more information than would be given by a
random ordering of the coarsest graph. Figure 4.8 demonstrates the effect of MinSize
on the quality of the Sloan(MIV ,∞) ordering. It is seen that MinSize = 50 or 100
gives the best results, but the precise choice of MinSize is not critical. A value that
is either too small or too large causes deterioration in the quality of the ordering,
although all the values tested yielded orderings that were within 8% of the RMS
wavefront given by the Hybrid algorithm.
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Fig. 4.8. The effect of the size of the coarsest graph (MinSize) on the multilevel algorithm
Sloan(MIV ,∞). All results are relative to the Hybrid algorithm.

5. Conclusions and future work. In this paper, a multilevel reordering al-
gorithm for minimizing the profile and wavefront of sparse symmetric matrices has
been developed. This algorithm, which combines a coarsening strategy based on a
maximal independent vertex set with the Sloan or Hybrid algorithm on the coarsest
graph, has been found to give orderings of similar quality to that of the best existing
algorithm (the Hybrid algorithm of Kumfert and Pothen [22]), while being signifi-
cantly faster. Of particular note is the multilevel Sloan algorithm. In common with
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the Sloan algorithm, this is a combinatorial algorithm, but it produces much better
orderings, particularly for large problems. With no limit imposed on the maximum
number of levels, the multilevel Sloan algorithm has been shown to yield orderings of
similar quality to that of the Hybrid algorithm with the advantage of not requiring
any spectral information.

We are investigating the possibility of further improving the multilevel algorithm
so that it consistently outperforms the Hybrid algorithm, not only in terms of CPU
time but also in ordering quality. We believe that to achieve this goal it may be
necessary to utilize the vertex and edge weights of the coarse graphs. We are looking
at whether we can include this information in the reordering and refinement of the
coarse graphs. Another possible way of improving the multilevel algorithm is to use
a more sophisticated ordering algorithm on the coarsest graph and then to look at
translating improvements in the quality of the ordering on the coarsest graph into
corresponding improvements on the original fine graph.

It may also be possible to extend our multilevel approach to the ordering of
unsymmetric matrices for use with frontal solvers. This will build on the work of
Scott [29] on row ordering algorithms and the work of Hu, Maguire, and Blake [16]
on applying a multilevel algorithm for reordering unsymmetric matrices into bordered
form.

Appendix. The test problems.

Table A.1
The suite of test problems. rmsf is the initial RMS wavefront and ρ is the ratio between the

RMS wavefronts before and after reordering with the Hybrid algorithm.

Identifier |V | |E| rmsf ρ
1138 bus 1138 1458 87.00 6.88
barth 6691 19748 2673.11 42.86
barth4 6019 17473 404.62 7.56
barth5 15606 45878 284.36 3.38
Baug 9600 232980 1459.93 6.07
bcspwr06 1454 1923 57.68 4.92
bcspwr07 1612 2106 61.00 4.99
bcspwr08 1624 2213 64.35 5.46
bcspwr09 1723 2394 308.51 21.86
bcspwr10 5300 8271 1294.66 47.68
bcsstk08 1074 5943 239.84 3.87
bcsstk11 1473 16384 104.34 2.22
bcsstk12 1473 16384 104.34 2.22
bcsstk13 2003 40940 229.18 0.97
bcsstk14 1806 30824 115.23 1.24
bcsstk15 3948 56934 263.35 1.51
bcsstk17 10974 208838 261.87 0.91
bcsstk18 11948 68571 468.72 2.29
bcsstk21 3600 11500 119.39 2.16
bcsstk23 3134 21022 353.47 1.50
bcsstk24 3562 78174 613.47 4.98
bcsstk28 4410 107307 190.39 1.42
bcsstk29 13992 302748 551.89 2.85
bcsstk30 28924 1007284 641.77 2.12
bcsstk31 35588 572914 672.80 1.26
bcsstk32 44609 985046 2905.61 6.16
bcsstm12 1473 9093 103.80 3.81
bcsstm13 2003 9970 52.36 0.87
blckhole 2132 6370 93.98 1.68
can 1054 1054 5571 274.78 8.83
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Table A.2
The suite of test problems (cont.).

Identifier |V | |E| rmsf ρ
can 1072 1072 5686 279.31 8.41
commanche dual 7920 11880 2397.83 55.98
copter1 17222 96921 1127.23 2.81
copter2 55476 352238 21892.02 36.62
Crplat2 18010 471468 1286.38 5.26
dwg961b 961 4815 179.24 7.10
dwt 607 2262 55.43 2.11
dwt1005 1005 3808 137.66 4.03
dwt1007 1007 3784 26.93 1.31
dwt1242 1242 4592 105.20 3.18
dwt162 162 5100 18.95 2.02
dwt193 193 1650 43.84 1.80
dwt198 198 5970 30.90 4.46
dwt209 209 7670 50.32 3.44
dwt221 221 7040 50.39 5.54
dwt234 234 3000 9.36 1.92
dwt245 245 6080 18.48 1.82
dwt2680 2680 11173 234.42 6.90
dwt307 307 1108 27.36 1.06
dwt310 310 1069 9.85 1.02
dwt346 346 1440 27.15 1.37
dwt361 361 1296 15.38 1.09
dwt419 419 1572 107.07 5.50
dwt492 492 1332 79.51 10.56
dwt503 503 2762 78.60 2.77
dwt512 512 1495 14.55 1.35
dwt59 59 1040 8.22 1.72
dwt592 592 2256 55.18 2.96
dwt607 607 2262 55.43 2.11
dwt66 66 1270 11.01 3.74
dwt72 72 7500 3.46 1.03
dwt758 758 2618 37.95 3.65
dwt869 869 3208 25.02 1.49
dwt87 87 2270 29.38 4.68
dwt878 878 3285 31.92 1.38
dwt918 918 3233 131.14 6.58
dwt992 992 7876 301.99 8.85
e40r0000 17281 270737 438.20 2.69
eris1176 1176 8688 81.59 3.54
Fcondp2 201822 5546247 10322.91 6.02
finance256 37376 130560 7441.93 41.53
finance512 74752 261120 14831.49 108.13
ford1 18728 41424 1954.25 19.66
ford2 100196 222246 4282.70 14.04
Fullb 199187 5754445 45506.16 24.37
Halfb 224617 6081602 35656.53 26.45
jagmesh4 1440 4032 32.62 1.66
jagmesh5 1180 3285 32.57 1.69
jagmesh7 1138 3156 39.52 2.13
jagmesh8 1141 3162 32.17 1.38
jagmesh9 1349 3876 54.67 2.31
lshp3466 3466 10215 109.46 2.38
mhd4800b 4800 11360 17.11 4.85
MT1 97578 4827996 2815.98 2.72
nasasrb 54870 1311227 401.75 1.19
nos7 729 1944 76.26 1.16
onera dual 85567 166817 9336.32 16.58
pds10 16558 66550 1129.78 1.99
plat1919 1919 15240 739.36 16.38
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Table A.3
The suite of test problems (cont.).

Identifier |V | |E| rmsf ρ
qc2534 2534 230413 177.61 1.00
s3rmt3m3 5357 101169 478.58 3.81
Shipsec1 140874 3836265 3290.65 2.14
shuttle eddy 10429 46585 1161.54 18.57
skirt 45361 1268228 1092.01 1.76
Srb1 54924 1453614 1527.03 4.66
sstmodel 3345 9702 34.27 1.29
tandem dual 94069 183212 5831.87 12.91
tandem vtx 18454 117448 4705.44 16.30
Thread 29736 2220156 6676.39 3.59
Troll 213453 5885829 4703.06 1.29
zenios 2873 12159 431.21 54.57
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ON THE SOLUTION OF EQUALITY CONSTRAINED QUADRATIC
PROGRAMMING PROBLEMS ARISING IN OPTIMIZATION∗

NICHOLAS I. M. GOULD† , MARY E. HRIBAR‡ , AND JORGE NOCEDAL§

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 4, pp. 1376–1395

Abstract. We consider the application of the conjugate gradient method to the solution of large
equality constrained quadratic programs arising in nonlinear optimization. Our approach is based
implicitly on a reduced linear system and generates iterates in the null space of the constraints.
Instead of computing a basis for this null space, we choose to work directly with the matrix of
constraint gradients, computing projections into the null space by either a normal equations or an
augmented system approach. Unfortunately, in practice such projections can result in significant
rounding errors. We propose iterative refinement techniques, as well as an adaptive reformulation
of the quadratic problem, that can greatly reduce these errors without incurring high computational
overheads. Numerical results illustrating the efficacy of the proposed approaches are presented.

Key words. nonlinear optimization, conjugate gradient method, quadratic programming, pre-
conditioning, iterative refinement
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1. Introduction. A variety of algorithms for linearly and nonlinearly constrain-
ed optimization (e.g., [9, 14, 15, 36, 37]) use the conjugate gradient (CG) method [28]
to solve subproblems of the form

minimize
x

q(x) = 1
2x
THx+ cTx(1.1)

subject to Ax = b.(1.2)

In nonlinear optimization, the n-vector c usually represents the gradient ∇f of the
objective function or the gradient of the Lagrangian, the n× n symmetric matrix H
stands for either the Hessian of the Lagrangian or an approximation to it, and the
solution x represents a search direction. The equality constraints Ax = b are obtained
by linearizing the constraints of the optimization problem at the current iterate. We
will assume here that A is an m×n matrix, with m < n, and that A has full row rank
so that the constraints Ax = b constitute m linearly independent equations. We also
assume for convenience that H is positive definite in the null space of the constraints,
as this guarantees that (1.1)–(1.2) has a unique solution.

As we shall see in section 2.1, the solution of (1.1)–(1.2) can be characterized in
terms of a nonunique matrix Z whose columns form a basis for the null space of A.
Numerous options are available for computing and representing Z, both explicitly and
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implicitly [11, 12, 19, 26, 41, 44]. In the context of large-scale optimization, opera-
tions with Z and ZT can be performed using the LU factorization of a nonsingular
submatrix of A; see, for example, [20].

In this paper, we consider techniques for solving (1.1)–(1.2) that use a precondi-
tioned CG method and retain feasibility of the iterates by performing projections into
the null space of A without a representation of Z. Unfortunately, a straightforward
implementation of these techniques may produce computational errors that cause de-
teriorating feasibility of the CG iterates. We describe iterative refinement techniques
that can improve accuracy, when needed. We also propose a mechanism for redefining
the vector c adaptively that does not change the solution of the quadratic problem
but that has more favorable numerical properties.

Notation. Throughout the paper ‖·‖ stands for the 
2 matrix or vector norm. We
will denote the floating-point unit roundoff (or machine precision) by εm. For double
precision IEEE arithmetic, εm ≈ 10−16. We let κ(A) denote the condition number of
A, i.e., κ(A) = σ1/σm, where σ1 ≥ · · · ≥ σm > 0 are the nonzero singular values of A.

2. The CG method with linear constraints. We now look at applying CG
to approximate the solution of the quadratic problem (1.1)–(1.2). First, we present
CG method for a reduced problem; then we show how to apply CG to the full system
with a scaled projection operator. Finally, we consider the problem (1.1)–(1.2) with
a trust region constraint and show how the given CG methods apply.

2.1. The CG method for the reduced system. A common approach for
solving linearly constrained problems is to eliminate the constraints and solve a re-
duced problem (cf. [21, 39]). More specifically, suppose that Z is an n × (n − m)
matrix spanning the null space of A. Then AZ = 0, the columns of AT together with
the columns of Z span Rn, and any solution x∗ of the linear equations Ax = b can
be written as

x∗ = ATxA
∗ + ZxZ

∗(2.1)

for some vectors xA
∗ ∈ Rm and xZ

∗ ∈ Rn−m. The constraints Ax = b yield

AATxA
∗ = b,(2.2)

which determines the vector xA
∗. Substituting (2.1) into (1.1), and omitting constant

terms (xA
∗ is a constant now), we see that xZ

∗ solves the reduced problem

minimize
xZ

1
2xZ

THZZxZ + cZ
TxZ,(2.3)

where

HZZ = ZTHZ, cZ = ZT (HATxA
∗ + c).

As we have assumed that the reduced Hessian HZZ is positive definite, the solution of
(2.3) is equivalent to that of the linear system

HZZxZ = −cZ.(2.4)

We can now apply the conjugate gradient method to compute an approximate solution
of the problem (2.3), or, equivalently, the system (2.4), and substitute this into (2.1)
to obtain an approximate solution of the quadratic program (1.1)–(1.2).
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This strategy of computing the normal component ATxA exactly and the tangen-
tial component ZxZ inexactly is followed in many nonlinear optimization algorithms
which ensure that, once linear constraints are satisfied, they remain so throughout
the remainder of the optimization calculation (cf. [21]).

Let us now consider the practical application of the CG method to the reduced
system (2.4). It is well known that preconditioning can improve the rate of convergence
of the CG iteration (cf. [3]). We therefore assume that a preconditioner WZZ is given,
where WZZ is a symmetric, positive definite matrix of dimension n−m, which might
be chosen to reduce the span of, and to cluster, the eigenvalues of W−1

ZZ HZZ. Ideally,
one would like to choose WZZ so that W−1

ZZ HZZ = I, and thus WZZ = ZTHZ is an
ideal preconditioner. Based on this ideal, we consider in this paper preconditioners of
the form WZZ = ZTGZ, where G is a symmetric matrix such that ZTGZ is positive
definite. Some choices of G will be discussed in the next section.

For preconditioners of the form WZZ = ZTGZ, the preconditioned CG method
applied to the (n −m)-dimensional reduced system HZZxZ = −cZ is as follows (see,
e.g., [22, p. 532]).

Algorithm 2.1 (preconditioned CG for reduced systems). Choose an initial
point xZ, compute rZ = ZTHZxZ + cZ, gZ = (ZTGZ)−1rZ, and pZ = −gZ. Repeat the
following steps, until a termination test is satisfied:

α = rZ
T gZ/pZ

TZTHZpZ,(2.5)

xZ ← xZ + αpZ,(2.6)

rZ
+ = rZ + αZTHZpZ,(2.7)

gZ
+ = (ZTGZ)−1rZ

+,(2.8)

β = (rZ
+)T gZ

+/rZ
T gZ,(2.9)

pZ ← −gZ
+ + βpZ,(2.10)

gZ ← gZ
+ and rZ ← rZ

+.(2.11)

This iteration may be terminated, for example, when rZ
T (ZTGZ)−1rZ is suffi-

ciently small.
Several algorithms for large-scale optimization are based on combining a suitable

representation of Z with CG methods for solving the reduced system [18, 33, 46].
Coleman and Verma [13] and Nash and Sofer [38] have proposed strategies for defining
reduced-system preconditioners which approximate ZTHZ in different ways.

We present Algorithm 2.1 for illustrative purposes only. In the next section, we
describe modifications to this algorithm which make it possible to avoid operating
with the null space basis Z.

2.2. The CG method for the full system. If we were to compute an approxi-
mate solution using Algorithm 2.1, it must be multiplied by Z and substituted in (2.1)
to give the approximate solution of the quadratic program (1.1)–(1.2). Alternatively,
we may rewrite Algorithm 2.1 so that the multiplication by Z and the addition of
the term ATxA

∗ is computed within the CG iteration. To do so, we introduce, in the
following algorithm, the n-vectors x, r, g, p which satisfy x = ZxZ +ATxA

∗, ZT r = rZ,
g = ZgZ, and p = ZpZ. We also define the scaled projection matrix

P = Z(ZTGZ)−1ZT .(2.12)

We note, for future reference, that P is independent of the choice of null space basis Z.
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Algorithm 2.2 (preconditioned CG in expanded form). Choose an initial point
x satisfying Ax = b, compute r = Hx+ c, g = Pr, and p = −g. Repeat the following
steps, until a convergence test is satisfied:

α = rT g/pTHp,(2.13)

x← x+ αp,(2.14)

r+ = r + αHp,(2.15)

g+ = Pr+,(2.16)

β = (r+)T g+/rT g,(2.17)

p← −g+ + βp,(2.18)

g ← g+ and r ← r+.(2.19)

This will be the main algorithm studied and further refined in this paper. It is
important to notice that this algorithm, unlike its predecessor, is independent of the
choice of Z. In the next section, different choices for P will be presented.

Note that the vector g+, which we call the preconditioned residual , has been
defined to be in the null space of A. As a result, in exact arithmetic, all the search
directions p generated by Algorithm 2.2 will also lie in the null space of A, and thus the
iterates x will all satisfy Ax = b. However, computed representations of the scaled
projection P can produce rounding errors that may cause p to have a significant
component outside the null space of A, leading to convergence difficulties. This will
be the subject of later sections of the paper.

Several types of stopping tests can be used, but since their choice depends on
the requirements of the optimization method, we shall not discuss them here. In the
numerical tests reported in this paper, we terminate the CG iteration based on the
quantity rT g ≡ rTPr ≡ gTGg. An initial point satisfying Ax = b can be computed,
for example, by solving the normal equations (2.2).

Two simple choices of G are G = diag(H), and G = I. The first choice may
be appropriate when the diagonal elements of H are of widely different magnitudes.
This is the case, for example, in barrier methods for constrained optimization that
handle bound constraints l ≤ x ≤ u by adding terms of the form −µ∑n

i=1(log(xi −
li)+log(ui−xi)) to the objective function for some positive barrier parameter µ. The
second choice, G = I, arises in trust region methods, as we discuss next.

2.3. The CG method and the trust region problem. In trust region meth-
ods, the problem (1.1)–(1.2) also contains a trust region constraint of the form ‖x‖ ≤
∆. Steihaug [43] noted, however, that the trust region constraint can be easily im-
posed if the initial estimate of the solution of (1.1)–(1.2) is chosen to be the vector
zero. In this case the CG iterates are monotonically increasing in norm, and the CG
iteration can be terminated as soon as the norm of one of the iterates exceeds the
trust region radius. No other changes to the CG iteration are needed.

For the reduced problem (2.3), the added trust region constraint has the form
‖ZxZ‖ ≤ ∆z. In order to transform it into a spherical constraint, we introduce the
change of variables xZ ← (ZTZ)−1/2xZ whose effect in the CG iteration is identical to
that of replacing (ZTGZ)−1 by (ZTZ)−1 in (2.8). Thus, the choice G = I arises in
several trust region methods for constrained optimization [9, 15, 16, 27, 36, 40, 47].
Since the role of this matrix is not to produce a clustering of the eigenvalues, we will
regard Algorithm 2.2 with the choice G = I as an unpreconditioned CG iteration.
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3. The CG algorithm without a null space basis. We are interested here
in using Algorithm 2.2 in such a way that a representation of Z is not necessary. This
will be possible because, as is well known, there are alternative ways of expressing the
scaled projection operator (2.12).

3.1. Computing projections. We now discuss how to apply the projection
operator Z(ZTGZ)−1ZT to a vector without a representation of the null space basis Z.

Let us begin by considering the simple case when G = I, so that P is the orthog-
onal projection operator onto the null space of A. We denote it by PZ, i.e.,

PZ = Z(ZTZ)−1ZT .(3.1)

Thus the preconditioned residual g+ (2.16) is the result of projecting r+ into the null
space of A and can be written as

g+ = PZr
+.(3.2)

This projection can be performed in two alternative ways.
The first is to replace PZ by the equivalent formula

PA = I −AT (AAT )−1A(3.3)

and thus to replace (3.2) with

g+ = PAr
+.(3.4)

We can express this as

g+ = r+ −AT v+,(3.5)

where v+ is the solution of

AAT v+ = Ar+.(3.6)

Noting that (3.6) are the normal equations, it follows that v+ is the solution of the
least squares problem

minimize
v

‖r+ −AT v+‖(3.7)

and that the desired projection g+ is the corresponding residual. The approach (3.5)–
(3.6) for computing the projection g+ = PZr

+ will be called the normal equations
approach. In this paper, we assume that (3.6) will be solved using a Cholesky factor-
ization of AAT .

The second possibility is to express the projection (3.2) as the solution of the
augmented system

(
I AT

A 0

)(
g+

v+

)
=

(
r+

0

)
.(3.8)

In this paper, we assume that this system will be solved by means of a symmetric
indefinite factorization that uses 1 × 1 and 2 × 2 pivots [22]. We refer to this as the
augmented system approach.
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Now let us suppose that preconditioning has the more general form

g+ = PZ:Gr
+, where PZ:G = Z(ZTGZ)−1ZT .(3.9)

This may be expressed as

g+ = PA:Gr
+, where PA:G = G−1

(
I −AT (AG−1AT )−1AG−1

)
(3.10)

if G is nonsingular, and can be found as the solution of

(
G AT

A 0

)(
g+

v+

)
=

(
r+

0

)
(3.11)

whenever zTGz �= 0 for all nonzero z for which Az = 0 (see, e.g., [21, section 5.4.1]).
While (3.10) is far from appealing when G−1 does not have a simple form, (3.11) is a
useful generalization of (3.8). Clearly, the system (3.8) may be obtained from (3.11)
by setting G = I, and the perfect preconditioner results if G = H, but other choices
for G are also possible; all that is required is that zTGz > 0 for all nonzero z for
which Az = 0. The idea of using the projection (3.3) in the CG method dates back
to at least [42]; the alternative (3.11), and its special case (3.8), are proposed in [10],
although [10] unnecessarily requires that G be positive definite. A more recent study
on preconditioning the projected CG method is [13], while the eigenstructure of the
preconditioned system is examined by [35, 37].

Interestingly, preconditioning in Coleman and Verma’s null space approach [13]
requires the solution of systems like (3.11), but it allows A to be replaced by a sparser
matrix. (The price to pay for this relaxation is that products involving a suitable null
space matrix are required.) Such an approach has considerable merit, especially in
the case where using the exact A leads to significant fill-in during the factorization
of the coefficient matrix of (3.11). It remains to be seen how such an approach com-
pares with those we propose here when used in algorithms for large-scale constrained
optimization.

Note that (3.4), (3.8), and (3.11) do not make use of a null space basis Z and
require only factorization of matrices involving A. Significantly, all three forms allow
us to compute an initial point satisfying Ax = b, the first because it relies on a factor-
ization of AAT , from which we can compute x = AT (AAT )−1b, while factorizations
of the system matrices in (3.8) and (3.11) allow us to find a suitable x by solving

(
I AT

A 0

)(
x
y

)
=

(
0
b

)
or

(
G AT

A 0

)(
x
y

)
=

(
0
b

)
.

Unfortunately all three of our proposed alternatives, (3.4), (3.8), and (3.11) for
computing g+ can give rise to significant roundoff errors that prevent the iterates
from remaining in the null space of A, particularly as the CG iterates approach the
solution. The difficulties are caused by the fact that, as the iterations proceed, the
projected vector g+ = Pr+ becomes increasingly small while r+ does not. Indeed,
the optimality conditions of the quadratic program (1.1)–(1.2) state that the solution
x∗ satisfies

Hx∗ + c = ATλ(3.12)

for some Lagrange multiplier vector λ. The vector Hx + c, which is denoted by r
in Algorithm 2.2, will generally stay bounded away from zero, but as indicated by
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(3.12), it will become increasingly closer to the range of AT . In other words, r will
tend to become orthogonal to Z, and hence, from (3.9), the preconditioned residual
g will converge to zero so long as the smallest eigenvalue of ZTGZ is bounded away
from zero.

That this discrepancy in the magnitudes of g+ = Pr+ and r+ will cause numerical
difficulties is apparent from (3.5), which shows that significant cancellation of digits
will usually take place. The generation of harmful roundoff errors is also apparent
from (3.8) and (3.11) because g+ will be small while the remaining components v+

remain large. Since the magnitude of the errors generated in the solution of (3.8) and
(3.11) is governed by the size of the large component v+, the vector g+ is likely to
contain large relative errors. These arguments will be made more precise in the next
section.

Now consider an example problem. Since the goal of this paper is not to evaluate
the efficiency of particular choices of preconditioners, in all the examples given in this
paper we will choose G = I, which, as we have mentioned, arises in trust region opti-
mization methods without preconditioning. To assess the techniques to be proposed,
we need to measure the closeness of g to the null space of A. For this purpose, we
have chosen

cos θ = max
i

{
ATi g

||Ai|| ||g||
}
,(3.13)

where Ai is the ith row of A. The value of cos θ provides a relative measure of
orthogonality with the property that, for nonzero g, it vanishes if and only if g lies in
the null space of A.

Example 3.1. We applied Algorithm 2.2 to solve problem CVXQP3 from the
CUTE collection [6], with n = 1000 and m = 750, where the simple bounds were
removed to create a problem of the form (1.1)–(1.2). We used both the normal equa-
tions (3.5)–(3.6) and augmented system (3.8) approaches to compute the projection

and define G = I. The results are given in Figure 3.1, which plots
√

rT g = ||rZ||
(resid), the norm of the null space component of the residual, as a function of the
iteration number. In both cases the CG iteration was terminated when rT g became
negative, which indicates that severe errors have occurred since rT g must be positive.
(Continuing the iteration past this point resulted in oscillations in the norm of the
gradient without any significant improvement.) At iteration 50 of both runs, r is of
order 105 whereas its projection g is of order 10−1. Figure 3.1 also plots (3.13), the
cosine of the angle between the preconditioned residual g and the rows of A. Note
that this cosine, which should be zero in exact arithmetic, increases and indicates that
the CG iterates leave the constraint manifold Ax = b.

We believe it is reasonable to attribute the failure of the CG algorithm to the
deviation of the iterates from the constraint manifold Ax = b, since the derivation of
Algorithm 2.2 from its predecessor is predicated on the assumption that the search
is restricted to this manifold. An analysis by Arioli, Duff, and de Rijk [2] (which
improves on [1]) indicates that, with care, it is possible to ensure that the backward
error1

ATi g
+/(|A||g+|)i

of the computed g+ is of the order of the machine precision, εm for the case G = I.
(Here | · | denotes the componentwise absolute value.)

1This definition needs to be modified if |A||g+| is (close to) zero. See [1] for details.
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Fig. 3.1. The CG method with two options for the projection.

Errors such as those illustrated in Example 3.1 are not uncommon in optimization
calculations based on Algorithm 2.2. This is of concern, as it may cause the outer
optimization algorithms to fail to achieve feasibility or to require many iterations
to do so. A particular example is given by problem ORTHREGA from the CUTE
collection, which cannot be solved to a prescribed accuracy using the trust region CG
approach of [31]; see [31, pp. 33–34] and section 7.

In sections 5 and 6 we propose several remedies. One of them is based on an
adaptive redefinition of r that attempts to minimize the differences in magnitudes
between g+ = Pr+ and r+. We also describe several forms of iterative refinement for
the projection operation. All these techniques are motivated by the roundoff error
analysis given next.

4. Sources of errors. We now present error bounds that support the argu-
ments made in the previous section, particularly the claim that the most problematic
situation occurs in the latter stages of the CG iteration when g+ is converging to
zero, but r+ is not. That is, we shall presume that ‖r+‖ is much larger than its
projection ‖g+‖. For simplicity, we shall assume henceforth that A has been scaled
so that ‖A‖ = ‖AT ‖ = 1 and shall only consider the simplest possible choice, G = I.
Any computed, as opposed to exact, quantity will be denoted by a subscript c.

First consider the normal equations approach. Here the projection g+ = PAr
+

is given by (3.5), where (3.6) is solved by means of the Cholesky factorization of
AAT . In finite precision, it is straightforward to deduce that the relative error in the
projection satisfies2

‖g+ − g+
c ‖

‖g+‖ ≤ γεmκ2(A)
‖v+‖
‖g+‖ ,(4.1)

2If ‖g+‖ is small, it is preferable to replace the denominators in (4.1) by max(‖g+‖, ε), where ε
is a suitable multiple (e.g., 10) of εm.
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where γ = 2.5n3/2, using the analysis of [5, p. 49].3 We can thus conclude that the
error in the projection (4.1) can be significant when κ(A) or

‖v+‖
‖g+‖ =

‖v+‖
‖PAr+‖ ≈

‖r+‖
‖PAr+‖(4.2)

is large, the latter approximation resulting from (3.5) and the assumption that ‖A‖ =
1, since then ‖r+‖ ≈ ‖AT v+‖ ≤ ‖v+‖.

When the condition number κ(A) is moderate, the contribution of the ratio (4.2)
to the relative error (4.1) is normally not large enough to cause failure of the outer
optimization calculation. For example, a stopping test in a nonlinear optimization
algorithm, which causes termination when projected residual g+ is (say) 10−6 times
smaller in norm than the initial residual, has a ratio (4.2) of roughly 106. In this
case, using double precision arithmetic, one would have sufficient accuracy to make
progress toward the solution. However, as the condition number κ(A) grows, the loss
of significant digits becomes severe, especially since κ(A) appears squared in (4.1).

Now consider the augmented system approach (3.11). Again we will focus on
the choice G = I for which the preconditioned residual g+ = Pr+ is computed by
solving the system (3.8) using a direct method. There are a number of such methods,
the strategies of Bunch and Kaufman [7] and Duff and Reid [17] being the best
known examples for dense and sparse matrices, respectively. Both form the LDLT

factorization of the augmented matrix (i.e., the matrix appearing on the left-hand
side of (3.8)), where L is unit lower triangular and D is block diagonal with 1× 1 or
2× 2 blocks. This approach is usually (but not always) more stable than the normal
equations approach.

In the case which concerns us most, when ‖g+‖ converges to zero while ‖v+‖ is
bounded, an error analysis [4] shows that

‖g+ − g+
c ‖

‖g+‖ ≤ ηεm(σ1 + κ(A))
‖v+‖
‖g+‖ ,

where η is the product of a low degree polynomial in n + m with the growth factor
from the elimination, while σ1 is the largest singular value of A. It is interesting
to compare this bound with (4.1). We see that the ratio (4.2) again plays a crucial
role in the analysis and that the augmented system approach is likely to give a more
accurate solution g+ than the method of normal equations in this case. This cannot
be stated categorically, however, since the size of the factor η is difficult to predict.

The residual update strategy described in section 6 aims at minimizing the size
of the ratio (4.2), and, as we will see, has a highly beneficial effect in Algorithm 2.2.
Before presenting it, we discuss various iterative refinement techniques designed to
improve the accuracy of the projection operation.

5. Iterative refinement. Iterative refinement is known as an effective proce-
dure for improving the accuracy of a solution obtained by a method that is not
backwards stable. We will now consider how to use it in the context of our normal
equations and augmented system approaches.

3The bound assumes that there are no errors in the formation of AAT and Ar+ or in the
backsolves using the Cholesky factors; this is a reasonable assumption in our context [29, section 19.4]
provided that εmκ2(A) is somewhat smaller than 1. It also ignores less significant errors that arise
in the computation of the matrix-vector product AT v+ and in the subtraction r+ − AT v+ given
in (3.5).
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5.1. Normal equations approach. Let us suppose that we choose G = I and
that we compute the projection PAr

+ via the normal equations approach (3.5)–(3.6).
An appealing idea for trying to improve the accuracy of this computation is to apply
the projection repeatedly. Therefore, rather than computing g+ = PAr

+ in (2.16), we
let g+ = PA · · ·PAr

+, where the projection is applied as many times as necessary to
keep the errors small. The motivation for this multiple projections technique stems
from the fact that the computed projection g+

c = (PAr
+)c is likely to have only a

small component, consisting almost entirely of rounding errors, outside of the null
space of A. Therefore, applying the projection PA to the first projection g+

c will give
an improved estimate because the ratio (4.2) will now be much smaller. By repeating
this process we may hope to obtain further improvement of accuracy.

The multiple projection technique may simply be described as setting g+
0 = r+

and applying the following algorithm.

Algorithm 5.1 (multiple projections—normal equations). Set i = 0 and repeat
the following steps until a convergence test is satisfied:

solve L(LT v+
i ) = Ag+

i ,(5.1)

set g+
i+1 = g+

i −AT v+
i ,(5.2)

i← i+ 1,

where L is the Cholesky factor of AAT .

We note that this method is only appropriate when G = I, although a simple
variant is possible when G is diagonal. Also note that the multiple projection tech-
nique is equivalent to performing fixed-precision iterative refinement on the normal
equations. In the multiple projections approach, the projection g+ is updated at each
iteration. In fixed-precision iterative refinement of the normal equations, the solution
of the normal equations v+ is updated and the projection g+ is recomputed from this
solution.

We resolved the problem given in Example 3.1 using multiple projections and
setting G = I. At every CG iteration, we measured the cosine (3.13) of the angle
between g and the columns of A. If this cosine was greater than 10−12, multiple
projections were applied until the cosine was smaller than this value. Using this
strategy, we were able to reduce the norm of the null space component of the residual
to around 10−16 of its initial value.

In the optimization setting we would apply multiple corrections only when needed,
e.g., when the angle between the projected residual and the columns of A is not very
small; see Algorithm 6.2 in section 6.1.

It is straightforward to analyze the multiple projections strategy (5.1)–(5.2) pro-
vided that, as before, we make the simplifying assumptions that A has norm one and
that the only rounding errors we make are in forming L and solving (5.1). In this
case, we have that

‖(g+
i+1)c − g+‖ ≤ ‖∆v+

i ‖ ≤
(
γεmκ2(A)

)i ‖v+‖,(5.3)

and thus that the error converges R-linearly to zero with constant γεmκ2(A), so
long as this factor is less than 1. Of course, the reduction in error at this rate
cannot be sustained indefinitely, as the other errors we have ignored in (5.1)–(5.2)
become important. Nonetheless, one would expect (5.3) to reflect the true behavior
until ‖(g+

i+1)c − g+‖ approaches a small multiple of the unit roundoff εm. It should
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be stressed, however, that this approach is still limited by the fact that the condi-
tion number of A appears squared in (5.3); improvement can be guaranteed only if
γεmκ2(A) < 1.

We should also note that multiple projections are almost identical in their form
and numerical properties to fixed precision iterative refinement to the least squares
problem [5, p. 125]. Since a perturbation analysis of the least squares problem
[5, Theorem 1.4.6] gives

‖g+ − g+
c ‖ = O

(
εm(‖v‖+ κ(A)‖g+‖)) ,(5.4)

and as the dependence here on the condition number is linear—not quadratic as
we have seen for (4.1)—we may deduce that the normal equations approach is not
backward stable [5, section 2.2]. Indeed, since κ(A) is multiplied by ‖g+‖, when g+ is
small the effect of the condition number of A is much smaller in (5.4) than in (4.1). It
is precisely under such circumstances that fixed-precision iterative refinement is most
appropriate [5, section 2.9.3].

We should mention two other iterative refinement techniques that one might con-
sider which are either not effective or not practical in our context.

The first is to use fixed-precision iterative refinement [5, section 2.9] to attempt to
improve the solution v+ of the normal equations (3.6). This, however, will generally
be unsuccessful because fixed-precision iterative refinement improves only a measure
of backward stability [22, p. 126], and the Cholesky factorization is already a backward
stable method. We have performed numerical tests and found no improvement from
this strategy.

However, as is well known, iterative refinement will often succeed if extended
precision is used to evaluate the residuals. We could therefore consider using extended
precision iterative refinement to improve the solution v+ of the normal equations (3.6).
So long as εmκ(A)2 < 1, and the residuals of (3.6) are smaller than one in norm, we
can expect that the error in the solution of (3.6) will decrease by a factor εmκ(A)2

until it reaches O(εm). However, since optimization algorithms normally use double
precision arithmetic for all their computations, extending the precision may not be
simple or efficient, and this strategy is not suitable for general purpose software.

For the same reason we will not consider the use of extended precision in
(5.1)–(5.2) or in the iterative refinement of the least squares problem.

5.2. Augmented system approach. We can apply fixed precision iterative
refinement to the solution obtained from the augmented system (3.11). This gives the
following iteration.

Algorithm 5.2 (iterative refinement—augmented system). Repeat the following
steps until a convergence test is satisfied.

Compute ρg = r+ −Gg+ −AT v+ and ρv = −Ag+,

solve

(
G AT

A 0

)(
∆g+

∆v+

)
=

(
ρg
ρv

)
,

and update g+ ← g+ +∆g+ and v+ ← v+ +∆v+.

Note that this method is applicable for general preconditioners G. The general
analysis of Higham [30, Theorem 3.2] indicates that, if the condition number of A is
not too large, we can expect high relative accuracy in v+ and good absolute accuracy
in g+ in most cases.
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We solved the problem given in Example 3.1 using this iterative refinement tech-
nique. As before, we measured the angle between g and the columns of A at every
CG iteration. Iterative refinement was applied so long as the cosine of this angle was
greater than 10−12. We observed that

√
rT g decreased almost as much as with the

multiple projections approach.
In our experience, one iterative refinement step is normally enough to provide

good accuracy, but we have encountered cases in which two or three steps are benefi-
cial. As in the case of the multiple projections using the normal equations, we would
apply this refinement technique selectively in optimization algorithms.

6. Residual update strategy. We have seen that significant roundoff errors
may occur in the computation of the projected residual g+ if this vector is much
smaller than the residual r+. As discussed in the paragraph preceding Example 3.1,
the reason for this error is cancellation. We now describe a procedure for redefining
r+ so that its norm is closer to that of g+. This will dramatically reduce the roundoff
errors in the projection operation and thus nearly eliminate the need to use iterative
refinement.

We begin by noting that the iterates x of Algorithm 2.2 are theoretically unaf-
fected if, immediately after computing r+ in (2.15), we redefine it as

r+ ← r+ −AT y(6.1)

for some y ∈ Rm. This equivalence is due to the fact that r+ appears only in (2.16)
and (2.17) and that we have both PAT y = 0, and (g+)TAT y = 0. It follows that we
can redefine r+ by means of (6.1) in either the normal equations approach (3.4) and
(3.9) or in the augmented system approach (3.8) and (3.11), and the results would,
in theory, be unaffected.

Having this freedom to redefine r+, we seek the value of y that minimizes

‖r+ −AT y‖G−1 ,(6.2)

where ‖ · ‖G−1 is the dual (semi-) norm to the norm sTGs defined on the manifold
As = 0, and where we require that G is positive definite over this manifold (see [14]).
This dual norm is convenient, since the vector y that solves (6.2) is precisely y = v+

from (3.11). This gives rise to the following modification of the CG iteration.
Algorithm 6.1 (preconditioned CG with residual update). Choose an initial

point x satisfying Ax = b and compute r = Hx+ c. Find the vector y that minimizes
‖r−AT y‖G−1 ; this can be done by solving (6.2) and setting y ← v+. Set r ← r−AT y,
compute g = Pr, and set p = −g. Repeat the following steps until a convergence test
is satisfied:

α = rT g/pTHp,(6.3)

x← x+ αp,(6.4)

r+ = r + αHp,(6.5)

compute y that minimizes (6.2),(6.6)

r+ ← r+ −AT y,(6.7)

g+ = Pr+,(6.8)

β = (r+)T g+/rT g,(6.9)

p← −g+ + βp,(6.10)

g ← g+ and r ← r+.(6.11)
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This procedure can be improved by adding iterative refinement of the projection
operation in (6.8). In this case, at most one or two iterative refinement steps should
be used. The added cost of this algorithm is the storage and computation of y each
iteration.

Notice that there is a simple interpretation of steps (6.6)–(6.8). We first obtain
y by solving (6.2), and as we have indicated the required value is y = v+ from (3.11).
However, (3.11) may be rewritten as

(
G AT

A 0

)(
g+

0

)
=

(
r+ −AT v+

0

)
,(6.12)

and thus when we obtain g+ in step (6.8), it is as if we had instead found it by solving

(
G AT

A 0

)(
g+

u+

)
=

(
r+ −AT v+

0

)
.(6.13)

Comparing (6.12) and (6.13), it follows that u+ = 0 in exact arithmetic, although all
we can expect in floating point arithmetic is that the computed u+ will be very small,
provided of course that (6.13) is solved in a stable fashion. The advantage of using
(6.13) compared to (3.11) is that the solution in the latter may be dominated by the
large components v+, while in the former g+ are the (relatively) large components,
and thus we can expect to find them with high relative accuracy if (6.13) is solved
in a stable fashion. Viewed in this way, we see that steps (6.6)–(6.8) are actually a
limited form of iterative refinement in which the computed v+, but not the computed
g+ which is discarded, is used to refine the solution. This “iterative semirefinement”
has been used in other contexts [8, 23].

There is another interesting interpretation of the reset r ← r−AT y performed at
the start of Algorithm 6.1. In the parlance of optimization, r = Hx+c is the gradient
of the objective function (1.1) and r − AT y is the gradient of the Lagrangian for
the problem (1.1)–(1.2). The vector y computed from (6.2) is called the least squares
Lagrange multiplier estimate. (It is common, but not always the case, for optimization
algorithms to set G = I in (6.2) to compute these multipliers.) Thus in Algorithm 6.1
we propose that the initial residual be set to the current value of the gradient of the
Lagrangian, as opposed to the gradient of the objective function.

One could ask whether it is sufficient to do this resetting of r at the beginning of
Algorithm 6.1 and omit steps (6.6)–(6.7) in subsequent iterations. Our computational
experience shows that, even though this initial resetting of r causes the first few CG
iterations to take place without significant errors, deviations from the null space due to
rounding errors arise in subsequent iterations. The strategy proposed in Algorithm 6.1
is safe in that it ensures that r is small at every iteration.

As it stands, Algorithm 6.1 would appear to require two products with P , or, at
the very least, one with P to perform (6.8) and some other means, such as (3.6), to
determine y. As we shall now see, this need not be the case.

6.1. The case G = I. There is a particularly efficient implementation of the
residual update strategy when G = I. We can redefine r without the extra cost of
storing and computing y as required by Algorithm 6.1. In Algorithm 6.2 below, we
present the residual update for G = I, combined with iterative refinement. It is this
algorithm that is used in the numerical tests in section 7.

Algorithm 6.2 (residual update and iterative refinement for G = I). Choose
an initial point x satisfying Ax = b, compute r = Hx + c, r ← Pr, g ← Pr, where
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the projection is computed by the normal equations (3.4) or augmented system (3.8)
approaches, and set p = −g. Choose a tolerance θmax. Repeat the following steps until
a convergence test is satisfied:

α = rT g/pTHp,(6.14)

x← x+ αp,(6.15)

r+ = r + αHp,(6.16)

g+ = Pr+,(6.17)

apply iterative refinement to Pr+, if necessary,

until (3.13) is less than θmax,

β = (r+)T g+/rT g,(6.18)

p← −g+ + βp,(6.19)

g ← g+ and r ← g+.(6.20)

This algorithm was derived from noting that (6.2) is precisely the objective of the
least squares problem (3.7) that occurs when computing Pr+ via the normal equations
approach, and therefore the desired value of y is nothing other than the vector v+

in (3.6) or (3.8). Furthermore, the first block of equations in (3.8) shows that r+ −
AT v+ = g+. Therefore, when G = I the computation (6.7) can be replaced by r+ ←
Pr+ and (6.8) is g+ = Pr+. In other words, we have applied the projection operation
twice, and this is a special case of the multiple projections approach described in the
previous section.

Further, (6.7) can be written as r+ ← Pr+, or r+ = Pr + PHαp, and therefore
(6.8) is

g+ = P (Pr + PHαp).(6.21)

As the CG iteration progresses we can expect αp, but not r, to become small. There-
fore, we will apply the projection twice to r but only once to Hαp. Thus (6.21) is
replaced by

g+ = P (Pr +Hαp),(6.22)

which is mathematically equivalent to (6.21), since PP = P . This expression is
convenient because the term Pr was computed at the previous CG iteration, and
therefore we can obtain (6.22) by simply setting r ← g+ in (6.11) instead of r ← r+.

Also note that the numerator in the definition (6.3) of α now becomes gT g,
which equals rTPg = rT g. Thus the formula for α is theoretically the same as in
Algorithm 6.1, but the symmetric form α = gT g/pTHp has the advantage that its
numerator can never be negative, as is the case with (6.3) when rounding errors
dominate the projection operation.

We solved the problem given in Example 3.1 using this residual update strategy
with G = I. Both the normal equations and augmented system approaches were
equally effective in this case. The cosine (3.13) of the angle between the preconditioned
residual and the columns of A remained very small as the computation proceeded.
For the normal equations approach this cosine was of order 10−14 throughout the
CG iteration; for the augmented system approach it was of order 10−15. We also
noted that we were able to obtain higher accuracy than with the iterative refinement
strategies described in the previous section.
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6.2. General G. We can also improve upon the efficiency of Algorithm 6.1 for
general G using slightly outdated information. The idea is simply to use the v+

obtained when computing g+ in (6.8) as a suitable y rather than waiting until after
the following step (6.5) to obtain a slightly more up-to-date version. The resulting
iteration is as follows.

Algorithm 6.3 (residual update strategy for general G). Apply Algorithm 6.1
with the following two changes:

omit (6.6)–(6.7),
replace (6.11) by g ← g+ and r ← r+ − AT v+, where v+ is obtained as a
by-product when using (3.11) to compute (6.8).

Thus a single projection in step (6.8) is needed for each iteration. Notice, however,
that for general G, the extra matrix-vector product AT v+ will be required, since we no
longer have the relationship g+ = r+−AT v+ that we exploited when G = I. Although
we have not experimented on this idea for this paper, it has proved to be beneficial
in other similar circumstances [23] and provides the backbone for the developing HSL
[32] nonconvex quadratic programming packages HSL VE12 [14] (interior-point) and
HSL VE19 [25] (active set). See also [34] for a thorough discussion of existing and
new preconditioners along these lines and the results of some comparative testing.

7. Numerical results. We now test the efficacy of the techniques proposed in
this paper on a collection of quadratic programs of the form (1.1)–(1.2). The problems
were generated during the last iteration of the interior point method for nonlinear
programming described in [9] when this method was applied to a set of test problems
from the CUTE [6] collection. We apply the CG method without preconditioning,
i.e., with G = I, to solve these quadratic programs.

We use the augmented system and normal equations approaches to compute pro-
jections, and for each we compare the standard CG iteration (stand), given by Al-
gorithm 2.2, with the iterative refinement (ir) techniques described in section 5 and
the residual update strategy combined with iterative refinement (update) as given in
Algorithm 6.2. The results are given in Table 7.1. The first column gives the problem
name and the second gives the dimension of the quadratic program. To test the reli-
ability of the techniques proposed in this paper we used a very demanding stopping
test: the CG iteration was terminated when

√
rT g ≤ 10−12. This stopping test would

not be used in practice; rather, we wanted to observe the level of accuracy that could
be achieved with each approach.

In these experiments we included several other stopping tests in the CG iteration
that are typically used by trust region methods for optimization. We terminate if the
number of iterations exceeds 2(n − m), where n − m denotes the dimension of the
reduced system (2.4); a superscript 1 in Table 7.1 indicates that this limit was reached.
The CG iteration was also stopped if the length of the solution vector is greater than
a “trust region radius” that is set by the optimization method (see [9]). We use
a superscript 2 to indicate that this safeguard was activated, and note that in these
problems only excessive rounding errors can trigger it. Finally we terminate if pTHp <
0, indicated by 3, or if significant rounding error resulted in rT g < 0, indicated by
4. The presence of any superscript indicates that the residual test

√
rT g ≤ 10−12

was not met. Note that the standard CG iteration was not able to meet the residual
stopping test for any of the problems in Table 7.1 but that iterative refinement and
update residual were successful in most cases.

Table 7.2 reports the CPU time for the problems in Table 7.1. Note that the
times for the standard CG approach (stand) should be interpreted with caution, since
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Table 7.1
Number of CG iterations for the different approaches. 1 indicates that the iteration limit was

reached, 2 indicates termination from trust region bound, 3 indicates negative curvature was detected,
and 4 indicates that rT g < 0.

Augmented system Normal equations
Problem dim stand ir update stand ir update
CORKSCRW 147 162 9 10 44 9 11
COSHFUN 61 1241 1241 58 1241 1241 55
DIXCHLNV 50 91 12 12 54 12 12
DTOC3 999 184 6 6 20001 6 6
DTOC6 1000 64 16 16 24 16 16
HAGER4 1000 1934 350 348 10574 351 349
HIMMELBK 10 221 3 3 74 3 3
NGONE 97 04 67 56 04 65 60
OPTCNTRL 9 204 12 4 201 2 5
OPTCTRL6 39 901 801 16 801 801 16
OPTMASS 402 04 5 6 93 5 5
ORTHREGA 261 134 163 163 143 163 163

ORTHREGF 805 84 18 18 74 18 18
READING1 101 34 5 5 34 5 5

Table 7.2
CPU time in seconds. 1 indicates that the iteration limit was reached, 2 indicates termination

from trust region bound, 3 indicates negative curvature was detected, and 4 indicated that rT g < 0.

Augmented system Normal equations
Problem dim stand ir update stand ir update
CORKSCRW 147 0.852 1.18 0.88 0.154 0.74 0.70
COSHFUN 61 0.371 0.661 0.18 0.291 0.541 0.13
DIXCHLNV 50 1.90 0.49 0.30 0.24 0.50 0.30
DTOC3 999 0.484 0.9 0.60 148.481 0.91 0.47
DTOC6 1000 0.324 1.51 0.9 0.084 1.16 0.66
HAGER4 1000 14.234 54.43 34.30 70.574 40.48 24.71
HIMMELBK 10 0.131 0.07 0.04 0.034 0.05 0.04
NGONE 97 0.164 21.19 10.69 0.984 125.24 77.35
OPTCNTRL 9 0.064 0.20 0.06 0.051 0.28 0.07
OPTCTRL6 39 0.361 0.651 0.08 0.291 0.451 0.06
OPTMASS 402 0.064 0.57 0.43 0.343 0.38 0.25
ORTHREGA 261 0.984 2.023 1.143 0.913 2.523 1.883

ORTHREGF 805 0.464 1.84 1.06 1.144 5.65 2.95
READING1 101 0.244 0.92 0.40 0.294 1.31 0.85

in some of these problems it terminated prematurely. We include the times for this
standard CG iteration only to show that the iterative refinement and residual update
strategies do not greatly increase the cost of the CG iteration.

Next we report on three problems for which the stopping test
√

rT g ≤ 10−12

could not be met by any of the variants. For these three problems, Table 7.3 provides
the least residual norm attained for each strategy.

As a final but indirect test of the techniques proposed in this paper, we report
the results obtained with KNITRO (an interior point nonlinear optimization code
described in [9]) on 29 nonlinear programming problems from the CUTE collection.
This code applies the projected CG method to solve a quadratic program at each iter-
ation. The CG iteration was terminated when

√
rT g ≤ 0.1

√
rT0 g0, which is much less

stringent than the termination tests used above. We used the augmented system and
normal equations approaches to compute projections, and for each of these strategies
we tried the standard CG iteration (stand) and the residual update strategy (update)
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Table 7.3
The least residual norm

√
rT g attained by each option.

Augmented system Normal equations
Problem dim stand ir update stand ir update
OBSTCLAE 900 2.3D-07 1.5D-07 5.5D-08 2.3D-07 9.9D-08 4.2D-08
SVANBERG 500 1.8D-07 9.9D-10 5.7D-12 7.7D-08 8.8D-10 2.9D-10
TORSION1 400 3.5D-09 3.5D-09 2.8D-09 5.5D-08 4.6D-08 3.2D-09

Table 7.4
Number of function evaluations and projections required by the optimization method for different

variants of the CG iteration. n denotes the number of variables, m the number of general constraints
(equalities or inequalities), excluding simple bounds, “st” is the standard CG method, and “up”
includes residual updates.

Augmented system Normal equations
f evals projections f evals projections

Problem n m st up st up st up st up
CORKSCRW 456 350 64 61 458 422 65 61 460 411
COSHFUN 61 20 44 40 2213 1025 49 40 2998 1025
DIXCHLNV 100 50 19 19 83 83 19 19 83 83
GAUSSELM 14 11 25 26 92 93 28 41 85 97
HAGER4 2001 1000 18 18 281 281 50 18 2458 281
HIMMELBK 24 14 33 33 88 89 39 33 135 89
NGONE 100 1273 216 133 1763 864 217 187 1821 1146
OBSTCLAE 1024 0 26 26 6233 6068 26 26 6236 6080
OPTCNTRL 32 20 41 51 152 183 *** 50 *** 179
OPTMASS 1210 1005 36 39 129 145 218 39 427 145
ORTHREGF 1205 400 30 30 73 73 30 30 73 73
READING1 202 100 40 40 130 130 43 40 151 130
SVANBERG 500 500 35 35 7809 4265 40 35 10394 4764
TORSION1 484 0 19 19 2174 2140 19 19 2449 2120
DTOC2 2998 1996 6 6 215 215 6 6 215 215
DTOC3 2999 1998 7 7 16 16 26 7 73 16
DTOC4 2999 1998 5 5 8 8 5 5 8 8
DTOC5 1999 999 6 6 12 12 6 6 12 12
DTOC6 2001 1000 12 12 48 46 64 12 166 46
EIGENA2 110 55 4 4 4 4 4 4 4 4
EIGENC2 464 231 25 25 264 268 25 25 270 269
GENHS28 300 298 4 4 7 7 4 4 7 7
HAGER2 2001 1000 5 5 12 12 5 5 12 12
HAGER3 1001 500 4 4 9 9 4 4 9 9
OPTCTRL6 122 80 14 10 97 75 75 10 880 75
ORTHREGA 517 256 8 8 38 38 *** 48 *** 99
ORTHREGC 505 250 10 10 60 60 10 10 60 60
ORTHREGD 203 100 11 11 23 23 11 11 23 23

with iterative refinement described in Algorithm 6.2. Now we were concerned with
reducing feasibility errors in the CG iterates, not to be able to satisfy a stringent CG
termination test, but to ensure that the outer optimization algorithm would converge.
The results are given in Table 7.4, where “fevals” denotes the total number of evalua-
tions of the objective function of the nonlinear problem, and “projections” represents
the total number of times that a projection operation was performed during the op-
timization. A *** indicates that the optimization algorithm was unable to locate the
solution.

Note that the total number of function evaluations is roughly the same for all
strategies, but there are a few cases where the differences in the CG iteration cause
the algorithm to follow a different path to the solution. This is to be expected when
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solving nonlinear problems. Note that for the augmented system approach, the resid-
ual update strategy changes the number of projections significantly only in a few
problems, but when it does the improvements are very substantial. On the other
hand, we observe that for the normal equations approach (which is more sensitive to
the condition number κ(A)) the residual update strategy gives a substantial reduction
in the number of projections in about half of the problems. It is interesting that with
the residual update, the performance of the augmented system and normal equations
approaches is very similar.

8. Conclusions. We have studied the properties of the projected CG method
for solving quadratic programming problems of the form (1.1)–(1.2). Due to the form
of the preconditioners used by some nonlinear programming algorithms we opted for
not computing a basis Z for the null space of the constraints but instead projecting
the CG iterates using a normal equations or augmented system approach. We have
given examples showing that in either case significant roundoff errors can occur and
have presented an explanation for this.

We proposed several remedies. One is to use iterative refinement of the augmented
system or normal equations approaches. An alternative is to update the residual at
every iteration of the CG iteration, as described in section 6. The latter can be
implemented particularly efficiently in the unpreconditioned (G = I) case.

Our numerical experience indicates that updating the residual almost always suf-
fices to keep the errors to a tolerable level. Iterative refinement techniques are not as
effective by themselves as the update of the residual but can be used in conjunction
with it, and the numerical results reported in this paper indicate that this com-
bined strategy is both economical and accurate. The techniques described here are
important ingredients within the evolving large scale nonlinear programming pack-
ages KNITRO and GALAHAD, as well as the HSL [32] QP modules HSL VE12 and
HSL VE19.
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Abstract. Sparse approximate inverses are considered as smoothers for multigrid. They are
based on the SPAI-Algorithm [M. J. Grote and T. Huckle, SIAM J. Sci. Comput., 18 (1997), pp. 838–
853], which constructs a sparse approximate inverse M of a matrix A by minimizing I −MA in the
Frobenius norm. This yields a new hierarchy of smoothers: SPAI-0, SPAI-1, SPAI(ε). Advantages
of SPAI smoothers over classical smoothers are inherent parallelism, possible local adaptivity, and
improved robustness. The simplest smoother, SPAI-0, is based on a diagonal matrix M . It is shown
to satisfy the smoothing property for symmetric positive definite problems. Numerical experiments
show that SPAI-0 smoothing is usually preferable to damped Jacobi smoothing. For the SPAI-1
smoother the sparsity pattern of M is that of A; its performance is typically comparable to that of
Gauss–Seidel smoothing; however, both the computation and the application of the smoother remain
inherently parallel. In more difficult situations, where the simpler SPAI-0 and SPAI-1 smoothers are
not adequate, the SPAI(ε) smoother provides a natural procedure for improvement where needed.
Numerical examples illustrate the usefulness of SPAI smoothing.
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1. Introduction. Multigrid methods are efficient iterative solvers for large lin-
ear systems of equations, which result from the discretization of partial differential
equations; see Brandt [8], Hackbusch [15, 16], Wesseling [27], and the references
therein. They also yield efficient preconditioners when combined with Krylov sub-
space methods [7]. Any multigrid algorithm relies on the complementary interplay of
smoothing and coarse grid correction. While the smoothing process aims at reducing
the high-frequency error component, namely that which cannot be represented on
coarser grids, the coarse grid correction solves for the low-frequency error component,
precisely that which is well represented on the coarser grid. The careful combination
of both smoothing and coarse grid correction yields a multigrid iteration, which has
a high convergence rate independent of the mesh size.

Standard smoothing techniques typically result from the application of a few steps
of a basic iterative method. Here we shall consider smoothers that are based on sparse
approximate inverses. Starting from the linear system

Ax = b,(1.1)

we denote by M a sparse approximation of A−1. Then the corresponding basic iter-
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ative method is

x(k+1) = x(k) −M(Ax(k) − b).(1.2)

As the approximate inverse M is known explicitly, each iteration step requires only
one additional M × v matrix-vector multiply; thus it is easy to parallelize and cheap
to evaluate because M is sparse.

Recently, various algorithms have been proposed, all of which attempt to compute
directly a sparse approximate inverse of A. Examples are the FSAI approach by
Kolotilina and Yeremin [18], the MR algorithm by Chow and Saad [10], and the AINV
approach by Benzi, Meyer, and T

◦
uma [5]. Once computed, the approximate inverse

M is applied as a preconditioner to the linear system (1.1) for use with a Krylov
subspace iterative method. For a comparative study of various sparse approximate
inverse preconditioners we refer to Benzi and Tuma [6]. By choosing an a priori
sparsity pattern for M , the cost of computing M can be greatly reduced. Possible
choices include powers of A or A�A, as suggested by Huckle [17] and Chow [11].

Approximate inverse techniques are also gaining in importance as smoothers for
multigrid methods. First introduced by Benson and Frederickson [3] and Benson [4],
they were shown to be effective on various difficult elliptic problems on unstructured
grids by Tang and Wan [25]. Advantages of sparse approximate inverse smoothers
over classical smoothers, such as damped Jacobi, Gauss–Seidel, or ILU, are inherent
parallelism, possible local adaptivity, and improved robustness.

Here we shall consider sparse approximate inverse (SPAI) smoothers based on
the SPAI-Algorithm by Grote and Huckle [14]. The SPAI-Algorithm computes an ap-
proximate inverse M explicitly by minimizing I −MA in the Frobenius norm. Both
the computation of M and its application as a smoother are inherently parallel. Since
an effective sparsity pattern of M is in general unknown a priori, the SPAI-Algorithm
attempts to determine the most promising entries dynamically. This strategy has
proved effective in generating preconditioners for many difficult and ill-conditioned
problems (see Barnard, Bernardo, and Simon [1], Tang [24], and Grote and Huckle
[14]). Moreover, it provides the means for adjusting the smoother locally and auto-
matically, if necessary.

We shall consider the following hierarchy of SPAI smoothers: SPAI-0, SPAI-1, and
SPAI(ε). For SPAI-0 and SPAI-1 the sparsity pattern of M is fixed: M is diagonal
for SPAI-0, whereas for SPAI-1 the sparsity pattern of M is that of A. For SPAI(ε)
the sparsity pattern of M is determined automatically by the SPAI-Algorithm [14];
the parameter ε controls the accuracy and the amount of fill-in of M .

Besides the SPAI smoothing operators, all other multigrid components, such as
the prolongation, the restriction, and the coarse grid operators, result from standard
choices. It is well known that for certain classes of problems, such as convection-
diffusion equations, a significant improvement in the efficiency of the multigrid solver
can be obtained by using matrix-dependent prolongation and restriction operators
(see [13, 20, 27, 30]). An interesting topic for future research is the combination of
this new hierarchy of local and inherently parallel smoothers with algebraic multigrid
techniques (see, for instance, [19, 21, 22, 26]).

In section 2 we briefly review the SPAI-Algorithm and show how sparse approx-
imate inverses are used as smoothers in multigrid. In section 3 we prove that for
SPAI-0 the smoothing property [16] holds under reasonable assumptions on the ma-
trix A. More precisely, for A symmetric and positive definite, we prove that SPAI-0
satisfies the smoothing property, either if A is weakly diagonally dominant or if A has
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at most seven nonzero off-diagonal entries per row. To our knowledge this is the first
fairly general theoretical result on the smoothing property of iterative methods that
are based on sparse approximate inverses. Previously, Tang and Wan [25] analyzed the
smoothing property of sparse approximate inverse smoothers for boundary value prob-
lems with constant coefficients on a two-dimensional regular grid. From a comparison
of the SPAI-0 and damped Jacobi smoothers via numerical experiments, we conclude
that the parameter-free SPAI-0 smoother is usually preferable to the damped Jacobi
method. Finally, in section 4, we present an extensive set of numerical experiments,
which demonstrate the usefulness of SPAI smoothing.

2. SPAI smoothing. Starting from a standard multigrid setting, such as found
in [15], [16, Chap. 10], or [27], we recall some basic notions and briefly introduce
relevant notation. We assume the hierarchy of spaces,

X� = R
n� , � = 0, 1, 2, . . . , n0 < n1 < n2 < · · · ,

together with the prolongation and restriction operators

p : X�−1 → X�, r : X� → X�−1, � = 1, 2, . . . .

To each space X� we associate a nonsingular operator,

A� : X� → X�.

We now wish to solve iteratively the linear system

A�maxx�max = b�max

by using a multigrid method. A multigrid iteration results from the recursive applica-
tion of a two-grid method. A two-grid method on level � consists of ν1 presmoothing
steps on level �, a coarse grid correction on level � − 1, and ν2 postsmoothing steps
again on level �. The corresponding error propagation is

e
(m+1)
� = [Sν2� (I − pA−1

�−1rA�)S
ν1
� ] e

(m)
� ,

where S� denotes the iteration matrix of the smoother.

2.1. Classical smoothers. We shall limit the present discussion to the choice
of the smoother. All other multigrid components, such as p, r, and A�−1, follow from
standard choices. If the smoother results from a consistent linear iterative method,
the iteration matrix of the smoother, S�, can be written as

S� = I −N�A�.(2.1)

For instance, let A = D+L+U , with D the diagonal, L the lower triangular part,
and U the upper triangular part of A. Then damped Jacobi smoothing corresponds
to

Sω = I − ωD−1A,(2.2)

whereas Gauss–Seidel smoothing corresponds to

SGS = I − (D + L)−1A.(2.3)
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In (2.2) the choice of ω must ensure good smoothing properties of the resulting damped
Jacobi method. Yet the “optimal” value of ω is known only for certain model problems
(see section 3.2). In contrast, the Gauss–Seidel method is parameter-free and typically
leads to improved smoothing over the damped Jacobi method. Unfortunately, the
Gauss–Seidel method (2.3) is inherently sequential and therefore difficult to implement
on a parallel architecture. Yet with an appropriate coloring of the unknowns (e.g.,
red-black ordering on a regular grid) it is sometimes possible to attain reasonable
parallel efficiency with the Gauss–Seidel approach.

If neither damped Jacobi nor Gauss–Seidel leads to satisfactory smoothing, one
can resort to more robust smoothers, such as the popular ILU smoothers based on
the incomplete LU (ILU) decomposition of A�; see, for instance, [28]. Because each
ILU smoothing step requires the solution of upper and lower triangular systems, it
remains inherently sequential and difficult to implement in parallel. It is also difficult
to improve the ILU smoother locally, say near the boundary or a singularity, without
seriously affecting the sparsity of the LU factors.

2.2. SPAI smoothers. Most smoothers commonly used in multigrid methods,
such as damped Jacobi, Gauss–Seidel, or ILU, have the form

x
(k+1)
� = x

(k)
� −W−1

� (A�x
(k)
� − b�),(2.4)

with W� a (sparse) approximation of A�; moreover, the computational cost of solving
a linear system with matrix W� must be reasonable. In contrast, the SPAI smoothers
lead to the iteration

x
(k+1)
� = x

(k)
� −M� (A�x

(k)
� − b�),(2.5)

where M� is sparse and explicitly known. Hence the iteration in (2.5) requires only
matrix-vector multiplications and vector-vector additions, and no solution of a linear
system; it is therefore easy to implement in a parallel environment.

To construct the sparse approximate inverse M of A, we shall minimize I−MA in
the Frobenius norm for a prescribed sparsity pattern of M . Here we have dropped the
index � to simplify the notation. The Frobenius norm, denoted by ‖·‖F , naturally leads
to inherent parallelism because the rows mk of M can be computed independently of
one another. Indeed, since

‖I −MA‖2F =

n∑
k=1

‖e�k −mkA‖22,(2.6)

the solution of (2.6) separates into the n independent least-squares problems for the
sparse (row) vectors mk,

min
mk
‖e�k −mkA‖2, k = 1, . . . , n.(2.7)

Here ek denotes the kth unit vector. Because A and M are sparse these least-squares
problems have small dimensions.

Since an effective sparsity pattern of M is usually unknown a priori, the original
SPAI-Algorithm [14] begins with a diagonal pattern. Then the algorithm proceeds by
augmenting the sparsity pattern of M to further reduce each residual rk = e�k −mkA.
The progressive reduction of the 2-norm of rk involves two steps. First, the algorithm
identifies a set of potential new candidates, based on the sparsity pattern of A and
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the current (sparse) residual rk. Second, the algorithm selects the most profitable
entries, usually less than five entries, by computing for each candidate a cheap upper
bound for the reduction in ‖rk‖2. Once the new entries have been selected and added
to mk, the (small) least-squares problem (2.7) is solved again with the augmented set
of indices. The algorithm proceeds until each row mk of M satisfies

‖e�k −mkA‖2 < ε.(2.8)

Here ε is a tolerance set by the user, which controls the fill-in and the quality of the
preconditioner M . A lower value of ε usually yields a more effective preconditioner,
but the cost of computing M = SPAI (ε) may become prohibitive; moreover, a denser
M results in a higher cost per iteration in (2.5). The optimal value of ε minimizes the
total time; it depends on the problem, the discretization, the desired accuracy, and
the computer architecture. Further details about the original SPAI-Algorithm can be
found in [14].

What is the cost associated with computing M? Let q denote the typical number
of nonzero entries per row mk, and let p denote the typical number of nonzero entries
per row in A. Then the cost of solving each least-squares problem in (2.7) (by the
method of normal equations) is about (q+ p/3) p2 flops [12, p. 224]. Since q � p, the
total amount of work involved in computingM is about n q p2 flops. To ensure that the
total amount of work for computing the approximate inverses M� on all levels remains
O(n), it is crucial that both p and q remain bounded from above independently of n.
Clearly, in contrast to the Jacobi or Gauss–Seidel methods, the additional effort of
computing M seems at first cumbersome and expensive. The approximate inverses,
however, need only be computed once prior to the multigrid iteration. Moreover,
both the computation of M and its repeated application as a smoother are inherently
parallel, so that the usefulness of SPAI smoothers in a parallel environment is all too
obvious in comparison to the sequential Gauss–Seidel iteration.

In addition to SPAI(ε), we shall also consider the following two greatly simplified
SPAI smoothers with fixed sparsity patterns: SPAI-0, where M is diagonal, and
SPAI-1, where the sparsity pattern of M is that of A. Both solve the least-squares
problem (2.7) and thus minimize ‖I −MA‖F for the sparsity pattern chosen a priori.
This eliminates the search for the sparsity pattern of M and thus greatly reduces the
cost of computing the approximate inverse. The SPAI-1 smoother coincides with the
SAI(0,1) smoother of Tang and Wan [25].

For SPAI-0, M = diag(mkk) is diagonal and can be calculated directly:

mkk =
akk
‖ak‖22

, 1 ≤ k ≤ n,(2.9)

with ak the kth row of A. We note that M is always well defined if A is nonsingular.
Unlike damped Jacobi, the SPAI-0 smoother is parameter-free.

To summarize, we shall consider the following hierarchy of SPAI smoothers, which
all minimize ‖I −MA‖F for a certain sparsity pattern of M .

SPAI-0: M = diag(mkk) is diagonal, with mkk given by (2.9).
SPAI-1: The sparsity pattern of M is that of A.
SPAI(ε): The sparsity pattern of M is determined automatically by the SPAI-

Algorithm [14]. Then each row mk satisfies (2.8) for a given ε.
We have found that, in many situations, SPAI-0 and SPAI-1 yield ample smooth-

ing. However, the added flexibility in providing an automatic criterion for improving
the smoother via the SPAI-Algorithm remains very useful. Indeed, either SPAI-0 or
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SPAI-1 can be used as initial guess for SPAI(ε) and thus be locally improved upon
where needed by reducing ε (see section 4.2). For matrices with inherent (small) block
structure, typical from the discretization of systems of partial differential equations,
the Block-SPAI-Algorithm [2] greatly reduces the cost of computing M .

3. SPAI-0 smoothing. In this section we concentrate on the simplest SPAI
smoother, SPAI-0. First, we shall show that SPAI-0 satisfies the smoothing property
in two quite general situations. Second, we shall compare the two diagonal smoothers,
SPAI-0 and damped Jacobi, both in a theoretical idealized setting (constant coeffi-
cients, equispaced grid, periodic boundary conditions, etc.) and via numerical exper-
iments.

3.1. The smoothing property. From [15] and [16] we recall the following two
conditions, which play a fundamental role in multigrid convergence theory:

1. The smoothing property [16, Def. 10.6.3]:

‖A�Sν� ‖2 ≤ η(ν)‖A�‖2 ∀ν, 0 ≤ ν <∞, ∀� ≥ 1,(3.1)

η(ν) any function with lim
ν→∞ η(ν) = 0.

2. The approximation property [16, sect. 10.6.3]:

‖A� − pA�−1r‖2 ≤ CA
‖A�‖2 ∀� ≥ 1.(3.2)

Although we have stated these properties with respect to the Euclidean norm, other
choices are possible. In general, the smoothing and approximation properties to-
gether imply convergence of the two-grid method and of the multigrid W-cycle, with
a contraction number independent of the level number �. Moreover, for symmetric
positive definite problems, both conditions also imply multigrid V-cycle convergence
independent of �; see Hackbusch [16, sect. 10.6] for details.

The approximation property is independent of the smoother S�; it depends only
on the discretization (A�, A�−1), the prolongation operator p, and the restriction
operator r. In [16] the approximation property is shown to hold for a large class of
discrete elliptic boundary value problems. For symmetric positive definite problems
the smoothing property usually holds for classical smoothers like damped Jacobi,
(symmetric) Gauss–Seidel, and incomplete Cholesky. We shall now prove that the
smoothing property (3.1) holds for SPAI-0 under reasonable assumptions on A�. To
do so, we first recall (in a slightly simpler form) the following result for later reference.
Lemma 3.1 (see [16, Lem. 10.7.4]). Let A� and W� be symmetric and positive

definite, and S� = I −W−1
� A�. Assume that

0 < A� ≤ ΓW� ∀� ≥ 0 with 0 < Γ < 2(3.3)

and that

‖W�‖2 ≤ CW ‖A�‖2 ∀� ≥ 0.(3.4)

Then S� satisfies the smoothing property (3.1), with

η(ν) = CW max{η0(ν),Γ|1− Γ|ν}, η0(ν) =
1

eν
+O(ν−2) (ν →∞).(3.5)
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In (3.3) and (3.4) both Γ and CW must be independent of �.
We shall now apply Lemma 3.1 to prove that SPAI-0 satisfies the smoothing

property (3.1). To do so, we must show that W� satisfies (3.3) and (3.4), with Γ < 2.
Here W� is the inverse of the diagonal approximate inverse defined in (2.9). Hence

W = diag

(‖ai‖22
aii

)
,(3.6)

where ai denotes the ith row of A. We have dropped the level index � to simplify the
notation. Since A is symmetric and positive definite, aii > 0, 1 ≤ i ≤ n, and thus W
is positive definite.
Lemma 3.2. Let A be a symmetric matrix with positive diagonal entries and let

W be given by (3.6). Furthermore, let pi denote the number of nonzero off-diagonal
entries in the ith row of A and assume that

p ≡ max
i
pi ≤ 7.(3.7)

Then A satisfies A ≤ ΓW , with Γ = (1 +
√

1 + p)/2 < 2.
Proof. We seek Γ < 2 such that A ≤ ΓW . First, we let A = D − R, with

D = diag(A). Then

ΓW −A ≥ 0

⇐⇒ Γ


D + diag


∑
j �=i

a2
ij

aii




−D +R ≥ 0

⇐⇒ (Γ− 1)D + Γ diag


∑
j �=i

a2
ij

aii


+R ≥ 0.(3.8)

We note that the first two terms in (3.8) are diagonal matrices, while all off-diagonal
entries are located in R. We now assume that Γ ≥ 1, so that all entries on the main
diagonal in (3.8) are nonnegative. According to Gershgorin’s theorem, for (3.8) to
hold it is sufficient to have

∑
j �=i
|aij | ≤ (Γ− 1)aii + Γ

∑
j �=i

a2
ij

aii
, 1 ≤ i ≤ n.(3.9)

Next, we divide (3.9) by aii, which yields the equivalent condition

∑
j �=i

βij ≤ Γ− 1 + Γ
∑
j �=i

β2
ij , 1 ≤ i ≤ n.(3.10)

Here we have defined

βij =
|aij |
aii

.

Since pi is the number of nonzero off-diagonal elements in row i of A, we conclude by
Cauchy–Schwarz that

∑
j �=i

βij ≤ √pi
√∑

j �=i
β2
ij ≤

√
p

√∑
j �=i

β2
ij , 1 ≤ i ≤ n.
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Thus, for (3.10) to hold it is sufficient to have

√
p

√∑
j �=i

β2
ij ≤ Γ− 1 + Γ

∑
j �=i

β2
ij , 1 ≤ i ≤ n.

Therefore, since x =
∑
j �=i β

2
ij is real, nonnegative, but otherwise arbitrary, it is

sufficient to require that

√
p
√
x ≤ Γ− 1 + Γx ∀x ∈ [0,∞),

⇐⇒ Γ2x2 + (2Γ(Γ− 1)− p)x+ (Γ− 1)2 ≥ 0 ∀x ∈ [0,∞),

⇐⇒ (2Γ(Γ− 1)− p)2 − 4Γ2(Γ− 1)2 ≤ 0.(3.11)

The last inequality (3.11) is equivalent to

−4Γ(Γ− 1)p+ p2 ≤ 0,

which holds for Γ = (1 +
√

1 + p)/2. The assumption p ≤ 7 yields Γ < 2.
Remark 1. The result in Lemma 3.2 is sharp in the following sense. For every

Γ ∈ (0, 2) there exists a symmetric matrix A with positive diagonal entries and with
p ≥ 8 such that the matrix ΓW −A is not positive semidefinite. Indeed, we take the
matrix A = (1− α)I + α11T , with α = (2Γ)−1 and 1 = (1, 1, . . . , 1)T ∈ R

n. Then

ΓW −A = Γ diag(1 + (n− 1)α2)− ((1− α)I + α11T
)
,

with smallest eigenvalue

λmin =
1

4Γ

(
4Γ(Γ− 1)− (n− 1)

)
.

Hence λmin < 0 if p = n− 1 ≥ 8.
Lemma 3.3. Let W be given by (3.6), and let Ĉ be such that

max
i

n∑
j=1

a2
ij

a2
ii

≤ Ĉ.(3.12)

Then W satisfies ‖W‖2 ≤ Ĉ ‖A‖2.
Proof. The proof is immediate, since

‖W‖2 =

∥∥∥∥diag(aii) diag

(‖ai‖22
a2
ii

)∥∥∥∥
2

≤ ‖diag(aii)‖2
∥∥∥∥diag

(‖ai‖22
a2
ii

)∥∥∥∥
2

≤ ‖A‖2 Ĉ.

From Lemmas 3.1, 3.2, and 3.3 we now immediately conclude the following result.
Theorem 3.4. Let A be symmetric positive definite, Ĉ as in (3.12), and let

S = I −MA, with M the SPAI-0 preconditioner given by (2.9). Assume that p, the
maximal number of nonzero off-diagonal entries per row, satisfies p ≤ 7; see (3.7).
Then S satisfies the smoothing property (3.1), with η(ν) as in (3.5), CW = Ĉ, and
Γ = (1 +

√
1 + p)/2 < 2.
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Remark 2. The following example shows that the condition on p in Theorem
3.4 is sharp. Take A as in remark 1, with α = (

√
n + 1)−1. Then A is symmetric

positive definite, ‖A‖2 =
√
n, and the inequality in (3.12) holds with Ĉ = 2. Since

1 = (1, . . . , 1)T is an eigenvector of both A and S, we immediately conclude that

‖ASν‖2
‖A‖2 ≥ ‖AS

ν1‖2
n

=

(
1

2
(
√
n− 1)

)ν
.

For n ≥ 9, ‖ASν‖2‖A‖−1
2 � 0 as ν →∞, and hence S does not satisfy the smoothing

property (3.1).
We remark that neither M-matrix properties nor diagonal dominance of A� are

needed to show that the smoothing property holds for SPAI-0. In the context of a
multigrid convergence analysis the constant Ĉ in (3.12) must be independent of the
level number �. For the problems considered here this is always satisfied. Condition
(3.7) is satisfied by standard second-order finite difference approximations of scalar
elliptic boundary value problems in two or three space dimensions. It is also satis-
fied by linear finite element discretizations on a triangular mesh if each node on the
coarsest mesh has at most seven neighbors. This property is then transferred to all
finer levels if regular mesh refinement is used.

Next, we show that if A is weakly diagonally dominant, that is,

∑
j �=i
|aij | ≤ |aii| ∀ i, 1 ≤ i ≤ n,

we may drop condition (3.7) and thus obtain another criterion for the smoothing
property.
Theorem 3.5. Let A be symmetric positive definite and weakly diagonally dom-

inant. Furthermore, let S = I −MA, with M the SPAI-0 preconditioner given by
(2.9), and C > 0 be such that for every i, 1 ≤ i ≤ n,

either
∑
j �=i

a2
ij = 0 or

∑
j �=i

a2
ij

a2
ii

≥ C.(3.13)

Then S satisfies the smoothing property (3.1), with η(ν) as in (3.5), CW = 2, and
Γ = 2/(1 + C) < 2.

Proof. We first consider the case where

∑
j �=i

a2
ij

a2
ii

≥ C > 0 ∀ i, 1 ≤ i ≤ n.(3.14)

Again we seek Γ < 2 such that A ≤ ΓW . To do so, we first follow the proof of Lemma
3.2 until (3.10). Now, since A is weakly diagonally dominant, we have

∑
j �=i

βij =
∑
j �=i

|aij |
aii
≤ 1.(3.15)

Hence for (3.10) to hold, it is sufficient to require

1 ≤ Γ− 1 + Γ
∑
j �=i

β2
ij , 1 ≤ i ≤ n,
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which is equivalent to

Γ ≥ 2

1 +
∑
j �=i β

2
ij

, 1 ≤ i ≤ n.

Because of (3.14) we can choose Γ = 2/(1 + C) < 2.
To show that inequality (3.4) is indeed satisfied with CW = 2, we first note that

‖W‖2 = ‖M−1‖2 = max
i

(‖ai‖22
aii

)

= max
i


aii +

1

aii

∑
j �=i

a2
ij




≤ max
i


aii +

1

aii


∑
j �=i
|aij |




2

.

The weak diagonal dominance of A then implies

‖W‖2 ≤ 2 max
i
aii ≤ 2‖A‖2.

Next, we consider the general case, where C satisfies (3.13). Let k > 0 be the
number of rows for which the only nonzero entry lies on the main diagonal. We apply
a permutation P to A, so that these k rows appear first in

PAPT =

(
A11 0
0 A22

)
.

Hence A11 denotes the k × k diagonal block. The matrix S = I − MA is also
partitioned accordingly:

PSPT =

(
S11 0
0 S22

)
.

Because A11 is diagonal, the upper left block S11 = I − A−1
11 A11 is identically zero.

We now apply the first part of the proof to A22, which yields

‖A22S
ν
22‖2 ≤ 2 max{η0(ν),Γ|1− Γ|ν}‖A22‖2,

with Γ = 2/(1 + C). Therefore S satisfies the smoothing property, since

‖ASν‖2 = ‖(PAPT )(PSPT )ν‖2 =

∥∥∥∥∥
(
A11 0
0 A22

)(
0 0
0 S22

)ν ∥∥∥∥∥
2

= ‖A22S
ν
22‖2 ≤ 2 max{ η0(ν),Γ|1− Γ|ν }‖A22‖2

≤ 2 max{ η0(ν),Γ|1− Γ|ν }‖A‖2.
In the context of a multigrid convergence analysis the constant C in (3.13) must

be independent of the level number �. For the problems considered here this is always
satisfied. In summary, we have shown for A symmetric positive definite that SPAI-0
satisfies the smoothing property if either A is weakly diagonally dominant or if the
maximal number of nonzero off-diagonal entries per row is less than or equal to seven.
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3.2. SPAI-0 versus Jacobi. Before we proceed with a comparison of the per-
formance of these two diagonal smoothers via numerical experiments, we first point
out a very special situation where SPAI-0 and damped Jacobi, with optimal relaxation
parameter ω∗, lead to identical smoothers.

For the discrete Laplacian on a regular grid with periodic boundary conditions,
the damping parameter ω∗, which is “optimal” with respect to smoothing, is known.
Following the standard Fourier analysis in [27, sect. 7.3], we consider a regular d-
dimensional equispaced mesh with n grid points in each dimension. (For simplicity
we assume n to be even.) Then the eigenvalues of the discrete Laplacian with periodic
boundary conditions are

σ(θ) =
4

h2

d∑
j=1

sin2

(
θj
2

)
, θ = (θ1, θ2, . . . , θd),

with h = 1/n and θj ∈ {−π + 2πh,−π + 4πh, . . . , π}. Note that θ ∈ ∏d
j=1[−π, π].

The iteration matrix of the damped Jacobi method has eigenvalues

λ(θ) = 1− 2ω

d

d∑
j=1

sin2

(
θj
2

)
.

We now concentrate on the high frequencies, which correspond to the subset

Θ̄r =

d∏
j=1

[−π, π] \
d∏
j=1

(
−π

2
,
π

2

)
.

The amount of damping on the high-frequency components is measured by the smooth-
ing factor,

µ(ω) = max
θ∈Θ̄r

|λ(θ)|.

It is independent of the mesh size but depends on ω. The optimal damping parameter,
ω∗, is that for which the smoothing factor is minimal,

µ∗ = µ(ω∗) = min
ω
µ(ω).

To determine ω∗ we first calculate µ(ω). For θ ∈ Θ̄r, the extreme values of
∑d
j=1 sin2(θj/2)

are 1/2 and d. Thus, we find that

µ(ω) = max
{∣∣∣1− ω

d

∣∣∣ , |1− 2ω|
}
.

The minimization of µ(ω) then yields the optimal damping parameter,

ω∗ =
2d

2d+ 1
.(3.16)

Proposition 3.6. Consider the discrete Laplacian with periodic boundary condi-
tions in d space dimensions, which results from a standard second-order finite differ-
ence discretization on an equispaced grid. Then SPAI-0 and Jacobi smoothing, with
optimal damping parameter ω∗ given by (3.16), are identical.
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Fig. 3.1. Comparison of the convergence rates q obtained with SPAI-0 and damped Jacobi for
varying relaxation parameter ω; see (4.2) for the definition of q.

Proof. Since for the discrete d-dimensional Laplacian we have aii = (2d)h−2 and
‖ai‖22 = 2d (2d+ 1)h−4, for all 1 ≤ i ≤ n, the approximate inverse M defined in (2.9)
for SPAI-0 has the constant diagonal entry mii = h2/(2d+1). Therefore M = ω∗D−1

and the SPAI-0 and the damped Jacobi smoothers, with optimal damping parameter
ω∗ given in (3.16), coincide.

In this special situation, the parameter-free SPAI-0 smoother automatically yields
a scaling of diag(A) which minimizes the smoothing factor; in that sense it is optimal.

Although both SPAI-0 and damped Jacobi yield diagonal smoothers, they typi-
cally differ, even with constant coefficients on an equispaced mesh. Indeed, the pres-
ence of boundary conditions modifies the rows of A�, which correspond to nodes on
the boundary, and thus modifies SPAI-0 locally. We now compare quantitatively the
performance of these two diagonal smoothers on the following class of model problems:

−div(a(x, y)∇u(x, y)) = 1 in Ω,

u(x, y) = 0 on ∂Ω.
(3.17)

First, we choose Ω = (0, 1)×(0, 1), set a(x, y) ≡ 1, and discretize the problem with
continuous piecewise linear finite elements on a triangular mesh. The various meshes
are obtained successively by uniform refinement, starting from the coarsest mesh with
a single unknown in the center of Ω. Here we use a multigrid V-cycle iteration with one
pre- and one postsmoothing step (ν1 = ν2 = 1). We recall that SPAI-0 is parameter-
free, whereas damped Jacobi contains the single relaxation parameter ω. In general
the optimal damping parameter ω∗ is unknown in advance and must be determined
numerically in any given situation.

Is it possible for damped Jacobi to beat SPAI-0 by varying ω and thus determining
the optimal value ω∗? In Figure 3.1 we compare the convergence rate of SPAI-0
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with that of Jacobi smoothing. The fastest convergence rate with damped Jacobi
is attained with ω∗ � 0.81, but the convergence rate obtained with SPAI-0 still lies
slightly below it.

We have performed similar numerical experiments for more difficult problems,
including L-shaped domains and problems with discontinuous coefficients. In all cases
the overall picture remains the same: the convergence rate obtained with SPAI-0
smoothing consistently lies below that obtained with damped Jacobi smoothing for
all values of ω. Although the improvement is usually small, and thus not really
significant, it is remarkable because SPAI-0 is parameter-free.

Finally we compare SPAI-0 with Jacobi smoothing for an elliptic differential op-
erator of the form

−c11∂xx + 2c12∂xy − c22∂yy,

where c11, c12, and c22 are constant and c11 ≥ c22. Because of consistency and
ellipticity a second-order finite difference discretization on a doubly periodic uniform
square grid usually results in the stencil


 −

B
2 −C B

2−A 2(A+ C) −A
B
2 −C −B2


 ,

with

A,C > 0, A+ C = 1, A ≥ C, B2 < AC.

In [29] Yavneh and Olvovsky derive the smoothing factor µ(ω) of damped Jacobi when
applied to such a stencil,

µ(ω) = max
{
|1− 2ω| ,

∣∣∣1− ω (1−
√
A2 +B2

)∣∣∣ } .
They also determine the corresponding optimal relaxation parameter, ω∗, which min-
imizes µ(ω) over the high frequencies:

ω∗ =
2

3−√A2 +B2
.

Since the stencil is constant throughout the entire grid, the approximate inverse M
for SPAI-0 reduces to a constant diagonal matrix. Thus, in this very special situa-
tion, the SPAI-0 smoother corresponds to the damped Jacobi method with relaxation
parameter

ωSPAI =
4

4 +B2 + 2C2 + 2A2
.

Next, we introduce the variables

x =
C

A
∈ (0, 1) and y =

B2

AC
∈ [0, 1).

Hence the smaller the x, the stronger the anisotropy. We can now rewrite µ(ω), ω∗,
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and ωSPAI only in terms of x and y as

µ(ω) = max

{
|1− 2ω| , 1− ω + ω

√
1 + xy

1 + x

}
,

ω∗ =
2(1 + x)

3(1 + x)−√1 + xy
,

ωSPAI =
4(x+ 1)2

4(x+ 1)2 + 2(x2 + 1) + xy
.

In the left frame of Figure 3.2 the smoothing factor µ∗ for the optimal relaxation
parameter ω∗ is shown. The highest reduction is reached for x = 1 and y = 0, which
corresponds to the Laplacian operator (A = C = 1/2, B = 0). As x diminishes
and eventually drops below 0.2, we observe that damped Jacobi becomes a very poor
smoother.
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Fig. 3.2. Comparison of SPAI-0 vs. damped Jacobi: the smoothing factor µ∗ for optimally
damped Jacobi (left) and the relative smoothing efficiency ESPAI for SPAI-0 (right).

To compare the effectiveness of SPAI-0 smoothing with that of optimally damped
Jacobi, we introduce the relative smoothing efficiency,

ESPAI =
log µ(ωSPAI)

log µ(ω∗)
∈ (0, 1].

It is shown in the right frame of Figure 3.2. If ESPAI = 100% the SPAI-0 method
automatically produces the optimal damping parameter, whereas if ESPAI = 50%,
for instance, SPAI-0 would require twice as many iterations as optimally damped
Jacobi to obtain the same smoothing effect. In particular, for the standard five-
point Laplacian (x = 1, y = 0) SPAI-0 yields ESPAI = 100%, as it coincides with
optimally damped Jacobi; see Proposition 3.6. The relative efficiency for SPAI-0
is somewhat reduced in more general situations with mixed derivatives or strong
anisotropy. Nevertheless, ESPAI lies above 75% for x ≥ 0.2; it drops down to 67%
only in extreme cases (x→ 0), for which damped Jacobi would be ineffective anyway.
Whenever damped Jacobi is a good smoother, SPAI-0 typically provides at least
80–90% efficiency with respect to optimally damped Jacobi smoothing for second-
order finite difference discretizations of elliptic differential operators.
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4. Numerical results. To illustrate the usefulness and versatility of SPAI
smoothing, we shall now consider various standard test problems. In all cases we
use a regularly refined sequence of equispaced grids. The differential equation consid-
ered is discretized on the finest level with standard finite differences. The coarse grid
operators are obtained via the Galerkin product formula, A�−1 = r A� p, with r = p�

and p standard linear interpolation. We use a multigrid V-cycle iteration, with two

pre- and two postsmoothing steps (ν1 = ν2 = 2) and x
(0)
� = 0 as initial guess. On

the coarsest level (� = 0), we solve exactly for the single unknown remaining at the
center of the domain. The iteration proceeds until the relative residual drops below
the prescribed tolerance,

‖b−A� x(m)
� ‖

‖b‖ < 10−8.(4.1)

Then we calculate the average rate of convergence,

q =

(
‖b−A� x(m)

� ‖
‖b‖

)1/m

.(4.2)

We recall that the ordering of the unknowns does not affect the SPAI-smoothing
iteration (2.5), but it does affect the Gauss–Seidel iteration. In all numerical examples
we shall use lexicographic ordering of the unknowns.

Clearly, when comparing the performance of various smoothers, we cannot limit
ourselves to comparing the number of multigrid iterations, but we must also take into
account the amount of arithmetic work due to the smoother. To do so, we calculate
the total density ratio, ρ, of nonzero entries in M to those in A on all grid levels,
1 ≤ i ≤ �, where smoothing is applied:

ρ =

∑�
i=1 nnz(Mi)∑�
i=1 nnz(Ai)

.(4.3)

Hence the additional amount of work due to the smoother is proportional to ρ. For
a standard five-point stencil on a regular two-dimensional grid, ρSPAI-0 � 1/5, like
damped Jacobi. Since ρSPAI-1 = 1, the SPAI-1 smoother is about 67% times more
expensive here than the SPAI-0 smoother. For SPAI(ε), the total density ratio,
ρSPAI(ε), depends on ε: it increases monotonically with decreasing ε. We remark
that ρSPAI(ε) < 1 whenever SPAI(ε) leads to an approximate inverse sparser than
SPAI-1.

4.1. Poisson problem. We first consider the Poisson problem on the unit
square with Dirichlet boundary conditions (3.17). In Table 4.1 we compare the
convergence rates obtained with various smoothers. All SPAI smoothers lead to h-
independent convergence rates. We observe a steady decrease of the convergence rate,
q, for smaller values of ε, paralleled, of course, by an increase in ρ given in parentheses.
Note that SPAI-1 leads to a more effective but denser smoother than SPAI(ε) with
ε = 0.35, yet the situation is reversed as ε decreases below 0.25.

4.2. Locally anisotropic diffusion. We now consider the locally anisotropic
diffusion problem

−
(
ν(x, y)

∂2u

∂x2
+
∂2u

∂y2

)
= 1 in (0, 1)× (0, 1),(4.4)
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Table 4.1
Poisson problem: convergence rates q obtained with SPAI-0, SPAI-1, SPAI(ε), and Gauss–

Seidel smoothing. The relative total density, ρ, defined in (4.3), is given in parentheses. For SPAI-0,
ρ = 0.17 and for SPAI-1, ρ = 1.

Grid size G-S SPAI-0 SPAI-1 SPAI(0.35) SPAI(0.25)

32× 32 0.04 0.09 0.04 0.06 (0.7) 0.03 (1.5)
64× 64 0.05 0.09 0.04 0.07 (0.7) 0.03 (1.5)

128× 128 0.05 0.09 0.04 0.08 (0.7) 0.04 (1.5)

Table 4.2
Locally anisotropic diffusion: convergence rates q for varying ν on a 128×128 grid. The relative

density, ρ, is given in parentheses.

Smoother ν

1 10−1 10−2 10−3 10−6

Gauss–Seidel 0.05 0.42 0.89 0.97 0.98

SPAI-0 0.09 0.72 0.95 0.98 0.98

SPAI-1 0.04 0.37 0.89 0.97 0.98

SPAI(0.4) 0.12 (0.7) 0.16 (0.7) 0.81 (0.7) 0.95 (0.8) 0.97 (0.8)

SPAI(0.25) 0.04 (1.5) 0.07 (1.6) 0.37 (1.7) 0.75 (1.9) 0.87 (1.9)
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Fig. 4.1. The error after five smoothing steps for the locally anisotropic diffusion problem with
ν = 0.01. Left: Gauss–Seidel; right: SPAI(0.25).

with u(x, y) = 0 on the boundary. We set ν(x, y) = 1 everywhere except inside the
square [1/4, 3/4]× [1/4, 3/4], where ν(x, y) ≡ ν is constant.

In Table 4.2 we compare the performance of Gauss–Seidel with SPAI smoothing
for varying ν. For ν ≤ 0.1, the convergence rates for SPAI(0.4) lie consistently below
those for Gauss–Seidel, while SPAI(0.25) leads to an even greater improvement. In
particular, for ν = 0.01 Gauss–Seidel smoothing barely converges, whereas SPAI(ε)
with ε ≤ 0.4 still yields acceptable convergence. Figure 4.1 shows that Gauss–Seidel
is unable to smooth the error throughout Ω, mainly in the x-direction. In contrast,
SPAI(ε) smoothing with ε = 0.25 results in a smooth error across the entire com-
putational domain for ν = 0.01. In Figure 4.2 we compare rows e�j A

−1 and e�j M ,
where M is computed with SPAI(0.25), for two unit basis vectors ej . We consider ej
corresponding to the grid points (1/2, 1/2) in the center of Ω, where ν = 0.01, and
(1/8, 1/8) inside the surrounding region where ν = 1. We observe how the approxi-
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mate inverse, computed by the SPAI-Algorithm, captures the distinct local features
of the true inverse. We recall that the sparsity pattern of M is not fixed a priori but
adapted automatically by the SPAI-Algorithm. For ν ≤ 0.1, the SPAI(0.4) smoother
is not only more effective but also sparser than the SPAI-1 smoother. Hence the so-
phisticated search of the SPAI-Algorithm for an effective sparsity pattern of M clearly
benefits the smoother.
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Fig. 4.2. Comparison of a row of the true inverse, e�j A
−1 (left), and of the approximate

inverse, e�j M (right), for ν = 0.01, where M is computed with SPAI(0.25). Top: ej corresponds to

the grid point (1/8, 1/8); bottom: ej corresponds to the grid point (1/2, 1/2).

These results demonstrate the usefulness of SPAI smoothing; they corroborate
previous results obtained in [25], with ν = 0.01 everywhere in Ω. Nevertheless, as
the contrast in the anisotropy increases further, the convergence rates obtained with
SPAI smoothing deteriorate as well. If the anisotropy occupies a small area of the
domain of interest, say only within a boundary layer, further reducing ε enables the
algorithm to locally adjust the smoother and still reach acceptable convergence rates.
However, if the anisotropy is strong and present throughout the domain, the SPAI
smoothers will become too dense and thus too expensive.

Of course, various standard approaches combined with Gauss–Seidel smoothing,
such as line relaxation or semicoarsening, provide the means to circumvent some
of these problems [23]. However, these techniques are effective mainly on regular
Cartesian grids, when the anisotropy is aligned with the mesh throughout Ω. They are
difficult to use on unstructured grids and become expensive, for instance, when parts



SPARSE APPROXIMATE INVERSE SMOOTHERS 1413

of the domain have strong anisotropy in x, while other parts have strong anisotropy
in y. In contrast, the SPAI smoothers are not tied to a regular mesh or any specific
discretization; moreover, they automatically adapt to local features of the problem.

4.3. Convection-diffusion problems. We now consider

−ν∆u(x, y) + 5v(x, y) · ∇u(x, y) = 1, ν > 0,(4.5)

in the unit square, where u vanishes on the boundary. Here u represents any scalar
quantity advected by the flow field 5v. Because the linear systems cease to be symmetric
and positive definite, these problems lie outside of classical multigrid theory. We use
centered second-order finite differences for the diffusion, but discretize the convection
with first-order upwinding to ensure numerical stability.

Table 4.3
Constant flow direction with angle α from the x-axis: the convergence rates, q, obtained with

different smoothers on a 128×128 grid for the diffusion and the convection dominated cases ν = 0.1
and ν = 0.001, respectively. The relative density, ρ, is given in parentheses.

Problem G-SG SPAI-0 SPAI-1 SPAI(0.35) SPAI(0.25)

ν = 0.1, α = 45◦ 0.05 0.11 0.05 0.08 (0.8) 0.04 (1.6)
ν = 0.1, α = 225◦ 0.05 0.11 0.05 0.08 (0.8) 0.04 (1.6)

ν = 0.001, α = 45◦ † 0.98 0.98 0.06 (1.7) 0.02 (2.2)
ν = 0.001, α = 225◦ † 0.98 0.98 0.06 (1.7) 0.02 (2.2)

First, we consider a situation of unidirectional flow, with angle α from the x-axis,
that is with constant flow direction 5v(x, y) = [cos(α), sin(α)]. In Table 4.3 we compare
the performance of Gauss–Seidel with SPAI smoothing on a regular 128×128 grid. For
diffusion dominated flow, ν = 0.1, the convergence rates obtained either with Gauss–
Seidel or with SPAI smoothing are essentially independent of the flow direction.

For convection dominated flow, ν � h, the multigrid iteration with Gauss–
Seidel smoothing does not converge when the coarse grid operators are computed
via Galerkin projection. To obtain a convergent scheme, one needs to compute the
coarse grid operators via discrete coarse grid approximation, that is, by discretizing
(4.5) explicitly on all grid levels [27, p. 79]. In that situation it is well known that
the convergence with Gauss–Seidel smoothing strongly depends on the ordering of
the unknowns: the mere reversal of the flow direction (or, equivalently, the ordering
of the unknowns) results in a large increase in the convergence rate, from q = 0.17
to q = 0.55; the contrast becomes even more striking for smaller values of ν. Indeed,
when the flow direction is aligned with the ordering of the unknowns, the problem
degenerates into a quasi-lower triangular system as ν → 0. In that situation, the
Gauss–Seidel inverse, (L + D)−1, essentially yields A−1 and thus results in rapid
convergence. In contrast, the SPAI smoothers are not affected by the ordering of the
unknowns and thus yield identical results in Table 4.3 for both α = 45◦ and α = 225◦.
For ν = 0.001 the performance of SPAI-1 is poor, while SPAI(ε) with ε ≤ 0.35 yields
excellent convergence rates at little extra cost.

Next, we consider a situation of rotating flow, where u solves (4.5) with 5v(x, y) =
[y− 1/2, 1/2−x]. In this special situation, shown in Figure 4.3, it is generally impos-
sible to reorder the unknowns so that the entire system becomes lower triangular for
vanishing ν. As a consequence, the multigrid iteration with Gauss–Seidel smoothing
usually diverges for small ν. Convergence can be attained with symmetric Gauss–
Seidel smoothing, that is, by repeated application of the Gauss–Seidel iterations in
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Fig. 4.3. Rotating flow, ν = 10−3, 32 × 32 grid: flow field �v(x, y) (upper left); the effect of
three smoothing steps applied to an initially random error: Gauss–Seidel smoothing (upper right);
ILU(0) smoothing (lower left); SPAI-1 smoothing (lower right). Note that Gauss–Seidel is unable
to smooth the error throughout the domain.

Table 4.4
Diffusion dominated case, ν = 0.1: the convergence rates q obtained with various smoothers.

For SPAI(0.35) the relative density is ρ = 0.7.

Gauss–Seidel SPAI-0 SPAI-1 SPAI(0.35)

64× 64 0.04 0.10 0.04 0.07
128× 128 0.05 0.10 0.04 0.08
256× 256 0.05 0.10 0.04 0.08

natural and reverse ordering of the unknowns [27]; this approach does not generalize
easily to unstructured grids. In contrast, SPAI-1 and SPAI(ε) lead to convergent
multigrid iterations regardless of the flow pattern or the ordering of the unknowns,
and without modifying additional components of the multigrid iteration.

In Table 4.4 we observe that all SPAI smoothers yield h-independent convergence
rates in the diffusion dominated case, with ν = 0.1. Although the convergence rate
essentially doubles from SPAI-1 to SPAI-0 smoothing, the density ratio ρ drops from 1
to 0.17, which reduces the amount of work in applying the smoother. For SPAI(0.35)
the convergence rate lies between those obtained with SPAI-0 and SPAI-1, and so
does the relative density ρ = 0.7.

Finally, we set ν = 10−3 and thus consider a convection dominated rotating flow,
that is, ν � h. Both the convergence rates and the relative densities ρ are shown in
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Table 4.5 for different smoothers. Neither Gauss–Seidel nor SPAI-0 smoothing lead
to a convergent multigrid iteration. Indeed, Gauss–Seidel is unable to smooth the
error throughout the domain due to the absence of a dominant “unidirectional” flow
direction, as shown in Figure 4.3. Again we note that convergence may be achieved
by using symmetric Gauss–Seidel smoothing [27]. Our attempt to use ILU(0) on the
128 × 128 grid eventually failed because of numerical instability encountered in the
computation of the ILU decomposition. Alternative variants of ILU would probably
work [28].

Table 4.5
Convection dominated case, ν = 10−3: the convergence rates q obtained with various smoothers.

The relative density, ρ, is given in parentheses.

SPAI-1 SPAI (0.5) SPAI (0.4) SPAI (0.3) SPAI (0.2)

128× 128 0.61 0.67 (0.4) 0.42 (0.6) 0.22 (1.4) 0.09 (3.6)
256× 256 0.68 0.75 (0.2) 0.45 (0.6) 0.31 (1.3) 0.12 (3.2)

Table 4.5 illustrates the typical behavior of SPAI smoothing versus ε. It shows
that reducing ε in the SPAI-Algorithm produces a steady reduction in the conver-
gence rate. Hence a greater reduction of ‖I −MA‖F typically yields an improved
smoother. Of course, as ε decreases, both the work in computing and in applying the
smoother M rapidly increase, so that the optimal value of ε with the smallest total
time probably lies between 0.2 and 0.5 for this problem. For SPAI(0.4) both q and ρ
remain essentially constant as the mesh is refined. As we compare the performance of
SPAI-1 with that of SPAI(0.4), we remark that both the convergence rate q and the
total density ratio ρ are reduced. Therefore the sophisticated search of the original
SPAI-Algorithm [14] benefits the smoother by selecting an effective sparsity pattern
for M ; clearly, the increase in the cost of computing M is worthwhile when memory
resources are critical. It may even pay off in reducing total time, since fewer nonzero
entries in M results in a cheaper smoother. Again these considerations are problem
and architecture dependent; hence it is important to provide the user with a simple
but effective way to tune the algorithm, here by adjusting the value of ε.

Table 4.6
Robust convergence with SPAI (0.3) smoothing with respect to ν on a 128 × 128 grid: both the

convergence rate q and the relative density ρ are shown.

ν = 1 ν = 0.1 ν = 0.01 ν = 10−3 ν = 10−4 ν = 10−5 ν = 10−6

q 0.07 0.07 0.05 0.22 0.73 0.74 0.75

ρ 0.86 0.85 0.92 1.41 2.11 2.29 2.31

What if we decrease ν while keeping the grid spacing fixed? Do we obtain a robust
multigrid algorithm (in the sense of [28])? In Table 4.6 we show the convergence rate
and density obtained with SPAI (0.3) on the 128× 128 grid for varying ν. Although
both q and ρ vary throughout the range of values for ν, they remain bounded as
ν → 0.

5. Conclusion. Our numerical results show that sparse approximate inverses
based on minimizing the Frobenius norm are an attractive alternative to classical
Jacobi or Gauss–Seidel smoothing. For symmetric positive definite problems, SPAI-1
typically behaves like Gauss–Seidel, whereas SPAI-0, which is parameter-free, usually
has a slight edge over damped Jacobi with optimal relaxation parameter. Moreover,
our proof of the smoothing property for SPAI-0 applies also in situations where that of
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Jacobi smoothing cannot be shown. For convection dominated flow problems, such as
rotating flow, the ordering independence of SPAI-1 leads to a more robust smoother
than Gauss–Seidel. In situations where neither SPAI-0 nor SPAI-1 suffice, SPAI(ε)
automatically improves the smoother locally where needed. Both the computation
and the application of the SPAI smoothers are inherently parallel.

Nevertheless, our results also show the limitations of SPAI smoothing in difficult
situations, such as strong anisotropy, where the lack of isotropic smoothing needs
to be compensated by appropriate prolongation and restriction operators. It is very
interesting to combine this new hierarchy of local and inherently parallel smoothers
with matrix-dependent coarsening strategies, such as found in algebraic multigrid
[22]. The first two authors are currently pursuing these issues and will report on
them elsewhere [9] in the near future.

The C/MPI version of the SPAI-Algorithm [1, 2] with Matlab and PETSc in-
terfaces can be downloaded from the following address: http://www.sam.math.ethz.
ch/̃ grote/spai/.

Acknowledgment. We thank the anonymous referees for insightful comments
and suggestions.
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Abstract. We combine an Eulerian–Lagrangian approach and multiresolution analysis to de-
velop unconditionally stable, explicit, multilevel methods for multidimensional linear hyperbolic
equations. The derived schemes generate accurate numerical solutions even if large time steps are
used. Furthermore, these schemes have the capability of carrying out adaptive compression without
introducing mass balance error. Computational results are presented to show the strong potential of
the numerical methods developed.
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1. Introduction. Advection-reaction partial differential equations (PDEs) model
the reactive transport of solutes in subsurface flows, fluid dynamics, and many other
important applications [11, 15]. These equations admit solutions with moving steep
fronts, which need to be resolved accurately in applications and often cause severe
numerical difficulties. Standard finite difference or finite element methods tend to
generate numerical solutions with severe nonphysical oscillations. While upstream
weighting methods can eliminate or alleviate these oscillations, they introduce exces-
sive numerical dispersion and grid orientation effects [11, 15]. Most improved methods
are explicit, and thus are local, relatively easy to implement, and fully parallelizable.
It is well known that there are no explicit, unconditionally stable, consistent finite
difference schemes (or virtually any schemes with fixed stencils) for linear hyperbolic
PDEs [5]. Consequently, explicit methods are subject to the Courant–Friedrichs–
Lewy (CFL) condition and have to use small time steps in numerical simulations to
maintain the stability of the methods [11]. On the other hand, implicit methods are
unconditionally stable, and so allow large time steps to be used in numerical simu-
lations while still maintaining their stability. But they require inverting a coefficient
matrix at each time step in order to generate numerical solutions. The time steps in
implicit methods cannot be taken too large due not to the stability constraint but for
reasons of accuracy. Local truncation error analysis shows that in implicit methods
the temporal errors and spatial errors add up. Thus, the resulting solutions are very
sensitive to the time step size.

In recent years, there has been an increasing interest in the application of wavelet
techniques in developing efficient numerical schemes for various types of PDEs [3, 7,
14]. For hyperbolic PDEs, the existence of moving steep gradients separating smooth
structures is a clear indication that these techniques can be helpful in the design of
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efficient numerical techniques for the solution of hyperbolic PDEs. Motivated by these
observations, we combine an Eulerian–Lagrangian approach and wavelet techniques
to develop unconditionally stable, explicit schemes for multidimensional advection-
reaction PDEs, including single-level schemes, multilevel schemes, and adaptive mul-
tilevel schemes. These schemes generate accurate numerical solutions even if large
time steps are used. Computational results are presented to show the strong poten-
tial of the schemes developed.

The rest of this paper is organized as follows. In section 2, we derive a refer-
ence equation for the initial-value problems of advection-reaction PDEs in multiple
space dimensions. In section 3, we briefly review multiresolution analysis and wavelet
decompositions. In section 4, we develop CFL-free, explicit numerical schemes. In
section 5, we prove the unconditional stability of these schemes. In section 6, we per-
form numerical experiments to observe the performance of the schemes and to verify
their unconditional stability. In section 7, we outline the extensions of the schemes
to the initial-boundary-value problems of advection-reaction PDEs. In section 8, we
summarize the results in this paper and draw some conclusions.

2. A reference equation. We consider the initial-value problem for linear
advection-reaction PDEs,

ut +∇ · (vu) + Ru = q(x, t), (x, t) ∈ R
d × (0, T ],

u(x, 0) = u0(x), x ∈ R
d,

(2.1)

where v(x, t) is a fluid velocity field, R(x, t) is a first-order reaction coefficient, u(x, t)
is the unknown function, and q(x, t) and u0(x) are the prescribed source term and ini-
tial condition, respectively. We assume that u0(x) and q(x, t) have compact support,
so the exact solution u(x, t) has compact support for any finite time t > 0.

We define a uniform partition of the time interval [0, T ] by tn := n∆t for n =
0, 1, . . . , N , with ∆t := T/N . If we choose the test functions w(x, t) to be of compact
support in space, to vanish outside the interval (tn−1, tn], and to be discontinuous in
time at time tn−1, the weak formulation for (2.1) is written as∫

Rd

u(x, tn)w(x, tn)dx−
∫ tn

tn−1

∫
Rd

u(wt + v · ∇w −Rw)(x, t)dxdt

=

∫
Rd

u(x, tn−1)w(x, t+n−1)dx+

∫ tn

tn−1

∫
Rd

q(x, t)w(x, t)dxdt,

(2.2)

where w(x, t+n−1) := limt→t+
n−1

w(x, t) takes into account the fact that w(x, t) is dis-

continuous in time at time tn−1.
To reflect the hyperbolic nature of (2.1), we follow the ELLAM framework of

Celia et al. [1] to choose the test functions w in (2.2) from the solution space of the
adjoint equation of (2.1),

wt + v · ∇w −Rw = 0.(2.3)

Along the characteristic r(θ; x̌, ť) defined by

dr

dθ
= v(r, θ) with r(θ; x̌, ť)|θ=ť = x̌,(2.4)

equation (2.3) is rewritten as the following differential equation:

d

dθ
w(r(θ; x̌, ť), θ)−R(r(θ; x̌, ť), θ)w(r(θ; x̌, ť), θ) = 0,

w(r(θ; x̌, ť), θ)|θ=ť = w(x̌, ť).
(2.5)
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Solving this equation yields the following expression for the test functions w:

w(r(θ; x̌, ť), θ) = w(x̌, ť)e
−
∫ ť
θ
R(r(γ;x̌,ť),γ)dγ

, θ ∈ [tn−1, ť], x̌ ∈ R
d.(2.6)

Choosing (x̌, ť) = (x, tn), we see that once the test functions w(x, tn) are specified at
time tn, they are determined completely on the space-time strip R

d × (tn−1, tn] with
an exponential variation along the characteristic r(θ;x, tn) for θ ∈ [tn−1, tn].

In the numerical schemes we use an Euler or Runge–Kutta formula to approximate
the characteristic r(θ; x̌, ť) and use the following approximate test functions w instead:

w(r(θ;x, tn), θ) = w(x, tn)e−R(x,tn)(tn−θ), θ ∈ [tn−1, tn], x ∈ R
d.(2.7)

To avoid confusion in the derivation, we replace the dummy variables x and t
in the second term on the right-hand side of (2.2) by y and θ and reserve x for
the variable in R

d at time tn. For any y ∈ R
d, there exists an x ∈ R

d such that
y = r(θ;x, tn). We obtain∫ tn

tn−1

∫
Rd

q(y, θ)w(y, θ)dydθ

=

∫
Rd

∫ tn

tn−1

q(r(θ;x, tn), θ)w(r(θ;x, tn), θ)

∣∣∣∣∂r(θ;x, tn)

∂x

∣∣∣∣ dθdx

=

∫
Rd

q(x, tn)w(x, tn)

[∫ tn

tn−1

e−R(x,tn)(tn−θ)dθ

]
dx+ E1(q, w)

=

∫
Rd

Λ(x, tn)q(x, tn)w(x, tn)dx+ E1(q, w).

(2.8)

Here |∂r(θ;x,tn)
∂x | is the Jacobian determinant of the transformation from x at time tn

to r(θ;x, tn) at time θ.

Λ(x, tn) :=




1− e−R(x,tn)∆t

R(x, tn)
if R(x, tn) �= 0,

∆t otherwise
(2.9)

and

E1(w) :=

∫
Rd

∫ tn

tn−1

[
q(r(θ;x, tn), θ)

∣∣∣∂r(θ;x, tn)

∂x

∣∣∣
− q(x, tn)

]
w(x, tn)e−R(x,tn)(tn−θ)dθdx.

(2.10)

Incorporating (2.8) into (2.2), we obtain a reference equation∫
Rd

u(x, tn)w(x, tn)dx =

∫
Rd

u(x, tn−1)w(x, t+n−1)dx

+

∫
Rd

Λ(x, tn)q(x, tn)w(x, tn)dx+ E(w),

(2.11)

where

E(w) :=

∫ tn

tn−1

∫
Rd

u(wt + v · ∇w −Rw)(x, t)dxdt + E1(q, w).

Previously, the so-called ELLAM schemes were developed by using finite element
basis functions in (2.11). These schemes symmetrize the governing transport PDEs
and generate accurate numerical solutions even if very coarse spatial grids and time
steps are used.
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3. Multiresolution analysis and wavelet decompositions. To develop nu-
merical schemes based on (2.11), we need to define the trial and test functions at time
tn. To do so, we briefly recall multiresolution analysis and wavelet decompositions.

3.1. Multiresolution analysis. In the standard Fourier analysis, L2-functions
are represented by linear combinations of sines and cosines. In 1910, Haar studied the
representation of L2-functions by step functions taking values ±1 [12]. In the 1980s,
these ideas were explored and developed further into the theory of wavelets. The
first wavelets were introduced in early 1980s by Stromberg [21] and Morlet et al. [18].
Multiresolution analysis, which is one of the best ways of constructing wavelets, be-
gan in image processing [20, 22] and was introduced into mathematics by Mallat
[16]. Daubechies used multiresolution analysis to construct compactly supported or-
thogonal wavelets with arbitrary smoothness, which include the Haar wavelets as the
simplest case [8]. We refer readers to the survey article [10] for detailed reviews.

A sequence of closed subspaces {Vj}j∈Z (Z is the set of all integers) of L2(R) is a
multiresolution analysis if

(a) these spaces are nested: Vj ⊂ Vj+1 ∀j ∈ Z;
(b) these spaces are dense in L2(R): ∪j∈ZVj = L2(R) and ∩j∈ZVj = ∅;
(c) V0 is invariant under integer shifts: f ∈ V0 =⇒ f(· − k) ∈ V0 ∀k ∈ Z;
(d) Vj is obtained from V0 by dilation: f(·) ∈ Vj ⇐⇒ f(2−j ·) ∈ V0 ∀j ∈ Z;
(e) V0 is generated by a single (scaling) function φ and its translates {φ0,k : k ∈

Z}, where

φj,k(x) := 2j/2φ(2jx− k), j, k ∈ Z.(3.1)

Because V0 ⊂ V1, the scaling function φ ∈ V0 is also a member of V1. Hence, the
following refinement relation holds:

φ =
∑
k∈Z

hkφ1,k.(3.2)

In general, the sum has infinitely many terms, and convergence in (3.2) is understood
in the L2(R)-norm. Daubechies first discovered a family of compactly supported
orthogonal wavelets [8], so their filters hk have only finite length. The coiflets devel-
oped subsequently have improved symmetry and regularity [9]. In this paper we use
compactly supported orthogonal wavelets.

Let Pj : L2(R) −→ Vj be the orthogonal projection operator; we then have

Pjf =
∑
k∈Z

cj,k(f) φj,k with cj,k(f) :=

∫
R

f(x)φj,k(x)dx.(3.3)

LetWj−1 be the orthogonal complement of Vj−1 in Vj . Then we have the following
decomposition:

Vj = Vj−1 ⊕Wj−1 = · · ·
= Vjc ⊕Wjc ⊕Wjc+1 ⊕ · · · ⊕Wj−1 for j > jc.

(3.4)

It is proved that the spaces Wj can be generated by a single (wavelet) function ψ
[8, 9]. In other words, ψ and its integer translates ψ0,k, with ψj,k being defined by

ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z,(3.5)
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constitute an orthonormal basis for W0. Hence, for each fixed j, the ψj,k (k ∈ Z)
form an orthogonal basis for Wj . Since ψ ∈ W0 ⊂ V1, it can be expressed as

ψ =
∑
k∈Z

gkφ1,k.(3.6)

A permissible choice for the filter gk is given by gk = (−1)k−1h−k−1 [9].
Let Qj : L2(R) −→Wj be the orthogonal projection operator

Qjf =
∑
k∈Z

dj,k(f) ψj,k with dj,k(f) :=

∫
R

f(x)ψj,k(x)dx.(3.7)

For f ∈ L2(R), the telescoping sum

Pjf f = Pjcf +

jf−1∑
j=jc

(Pj+1f − Pjf) = Pjcf +

jf−1∑
j=jc

Qjf(3.8)

represents the projection Pjf f ∈ Vjf of f at a fine level jf as a direct sum of Pjcf ∈ Vjc
of f at a coarse level jc and the elements in a sequence of refined spacesWjc⊕Wjc+1⊕
· · · ⊕Wjf−1 that provide progressively improved resolution at different scales.

3.2. Cascade algorithm. The cascade algorithm provides an efficient approach
for decomposition and reconstruction [9]. Using the refinement equation (3.2) and the
definition (3.1) of φj,k(x), we see

φj−1,k(x) = 2(j−1)/2φ(2j−1x− k)

= 2(j−1)/2
∑
l∈Z

hl2
1/2φ(2(2j−1x− k)− l)

= 2j/2
∑
l∈Z

hlφ(2jx− 2k − l)

=
∑
l∈Z

hlφj,l+2k(x)

=
∑
l∈Z

hl−2kφj,l(x).

(3.9)

Similarly, we have

ψj−1,k(x) =
∑
l∈Z

gl−2kφj,l(x).(3.10)

In the decomposition process, the cascade algorithm shows how to calculate the
scaling coefficients cj−1,k(f) and the wavelet coefficients dj−1,k(f) at a coarser level
j − 1 from the coefficients cj,k(f) at a finer level j:

cj−1,k(f) =

∫
R

f(x)φj−1,k(x)dx =

∫
R

f(x)
∑
l∈Z

hl−2kφj,l(x)dx

=
∑
l∈Z

hl−2k

∫
R

f(x)φj,l(x)dx =
∑
l∈Z

cj,l(f)hl−2k,

dj−1,k(f) =

∫
R

f(x)ψj−1,k(x)dx =

∫
R

f(x)
∑
l∈Z

gl−2kφj,l(x)dx

=
∑
l∈Z

gl−2k

∫
R

f(x)φj,l(x)dx =
∑
l∈Z

cj,l(f)gl−2k.

(3.11)
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In the reconstruction process, the cascade algorithm shows how to calculate the
scaling coefficients cj,k(f) at a finer level j from the scaling coefficients cj−1,k(f) and
the wavelet coefficients dj−1,k(f) at a coarser level j − 1. Using (3.3), (3.7)–(3.10),
we have

cj,k(f) =

∫
R

f(x)φj,k(x)dx =

∫
R

Pjf(x)φj,k(x)dx

=

∫
R

[
Pj−1f(x) +Qj−1f(x)

]
φj,k(x)dx

=

∫
R

[∑
l∈Z

cj−1,l(f)φj−1,l(x) +
∑
l∈Z

dj−1,l(f)ψj−1,l(x)

]
φj,k(x)dx

=
∑
l∈Z

cj−1,l(f)

∫
R

φj−1,l(x)φj,k(x)dx

+
∑
l∈Z

dj−1,l(f)

∫
R

ψj−1,l(x)φj,k(x)dx

=
∑
l∈Z

cj−1,l(f)

∫
R

[∑
i∈Z

hi−2lφj,i(x)

]
φj,k(x)dx

+
∑
l∈Z

dj−1,l(f)

∫
R

[∑
i∈Z

gi−2lφj,i(x)

]
φj,k(x)dx

=
∑
l∈Z

∑
i∈Z

cj−1,l(f)hi−2lδi,k +
∑
l∈Z

∑
i∈Z

dj−1,l(f)gi−2lδi,k

=
∑
l∈Z

cj−1,l(f)hk−2l +
∑
l∈Z

dj−1,l(f)gk−2l.

(3.12)

Here δi,k is the Dirac delta function, δi,k = 1 if i = k, or 0 otherwise.

4. Unconditionally stable, explicit schemes. For simplicity, we assume that
the support of the solution u(x, t) is contained inside the spatial domain Ω := (a1, b1)×
· · · × (ad, bd) during the time period [0, T ]. We will outline the extensions of the
schemes developed in this section to initial-boundary-value problems of advection-
reaction PDEs in section 7.

Let N0,m ∈ N (m = 1, 2, . . . , d) be the numbers of intervals in the mth coordinate
directions. We define spatial grids at the coarsest occurring level 0 by

x
(m)
0,k := am + kh0,m with h0,m :=

bm − am
N0,m

, 0 ≤ k ≤ N0,m, 1 ≤ m ≤ d.(4.1)

Using the scaling function φ(x) in (3.1), we define

φ
(m)
0,k (x) := h

−1/2
0,m φ

(
x− x

(m)
0,k

h0,m

)
(4.2)

to be the scaling functions at the level 0 that are associated with the grids x
(m)
0,k in

the mth coordinate direction. We then define the corresponding functions and grids
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at level j = 1, 2, . . . , J :

Nj,m := 2Nj−1,m = · · · = 2jN0,m,

hj,m := 1
2hj−1,m = · · · = 2−jh0,m,

x
(m)
j,k := am + khj,m,

φ
(m)
j,k (x) := 2j/2φ

(m)
0,0 (2jx− k),

0 ≤ k ≤ Nj,m, 1 ≤ m ≤ d, 1 ≤ j ≤ J,

(4.3)

where levels 0 and J denote the coarsest and finest occurring discretization levels.

4.1. A single-level scheme. We define finite-dimensional spaces Sj(Ω) at level
j by

Sj(Ω) := span {Φj,k(x)}k∈ωj
,(4.4)

where the scaling functions Φj,k(x), with x = (x1, . . . , xd), and the index sets ωj at
level j are defined by

Φj,k(x) :=

d∏
m=1

φ
(m)
j,km

(xm),

ωj :=
{
k = (k1, . . . , kd) ∈ N

d
∣∣∣0 ≤ km ≤ Nj,m, 1 ≤ m ≤ d

}
.

(4.5)

Replacing the exact solution u in (2.11) by the trial functions U(x, tn) ∈ SJ(Ω)
and dropping the error term E(w) in (2.11), we obtain the following.

Scheme I. Seek U(x, tn) ∈ SJ(Ω), the space of the scaling functions defined on
the finest occurring discretization level J , with

U(x, tn) =
∑

k∈ωJ

cnJ,kΦJ,k(x),(4.6)

such that the following equation holds for any w(x, tn) = ΦJ,k(x) with k ∈ ωJ :

∫
Ω

U(x, tn)w(x, tn)dx

=

∫
Ω

U(x, tn−1)w(x, t+n−1)dx+

∫
Ω

Λ(x, tn)q(x, tn)w(x, tn)dx.
(4.7)

This scheme is explicit, since choosing w(x, tn) = Φj,k(x) in (4.7) reduces its
left-hand side to ∫

Ω

U(x, tn)w(x, tn)dx = cnJ,k.(4.8)

The evaluation of the second term on the right-hand side of (4.7) is standard in
wavelet methods for elliptic and parabolic PDEs [3, 6, 7, 14]. However, the evaluation
of the first term on the right-hand side of (4.7) in nonconventional, due to the definition
of w(x, t+n−1) that in turn results from the characteristic tracking. In the current
context, we adopt a modified forward tracking algorithm [19] to evaluate this term.
We would enforce a Simpson or fifth-order Newton–Cotes integration quadrature on



DEVELOPMENT OF CFL-FREE, EXPLICIT SCHEMES 1425

each cell (or dyadic subcells) at time step tn−1, which needs only the dyadic values
of the wavelets that can be obtained a priori. To evaluate w(x, t+n−1), we track these
discrete quadrature points xq forward along the characteristics defined by (2.4) to
time step tn and obtain x̃q = r(tn;xq, tn−1). We then use (2.7) to evaluate

w(xq, t
+
n−1) = w(x̃q, tn)e−R(x̃q,tn)∆t.(4.9)

Note that x̃q is not necessarily a dyadic point in general. We compute w(x̃q, tn) by
an interpolation based on its values at neighboring dyadic points.

4.2. A multilevel scheme. Notice that, as in the case of Fourier series, when
the exact solution u(x, tn) is smooth, its wavelet coefficients

dn,ej,k (u) =

∫
Ω

u(x, tn)Ψe
j,k(x)dx

decay rapidly as the level j increases [9, 10]. Here the wavelets Ψe
j,k(x) are defined

by

Ψe
j,k(x) =

d∏
m=1

(
φ

(m)
j,km

(xm)
)1−em(

ψ
(m)
j,km

(xm)
)em ∀e ∈ E,(4.10)

where E
′

:= {0, 1}d = {e = (e1, . . . , ed) | ei = 0, 1} is the set of vertices of the

d-dimensional unit cube, E = E
′\{0}, and

ψ
(m)
0,k (x) := h

−1/2
0,m ψ

(
x− x

(m)
0,k

h0,m

)
,

ψ
(m)
j,k (x) := 2j/2ψ

(m)
0,0 (2jx− k).

(4.11)

For example, when u(x, tn) is differentiable we have

∣∣∣dn,ej,k (u)
∣∣∣ =

∣∣∣∣
∫

Ω

u(x, tn)Ψej,k(x)dx

∣∣∣∣
= inf
c∈R

∣∣∣∣
∫

Ω

[
u(x, tn)− c

]
Ψe
j,k(x)dx

∣∣∣∣
≤ inf
c∈R

‖u(x, tn)− c‖L2(Ωe
j,k

)

≤ C2−j/2‖∇u(x, tn)‖L2(Ωe
j,k

),

(4.12)

with Ωe
j,k = supp(Ψe

j,k). By using a multidimensional analogue of expansion (3.8), we
have the following multiresolution expansion for U(x, tn) ∈ SJn(Ω):

U(x, tn) =
∑

k∈ω0

cn0,kΦ0,k(x) +

Jn−1∑
j=0

∑
k∈ωj

∑
e∈E

dn,ej,k Ψe
j,k(x).(4.13)

We define a CFL-free, explicit, multilevel scheme for problem (2.1) as follows.
Scheme II. Find U(x, tn) ∈ SJn(Ω), which is in the form of (4.13) with 0 ≤ Jn ≤ J ,

such that (4.7) holds for any w(x, tn) ∈ SJn(Ω).
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Scheme II possesses all the numerical advantages of Scheme I. For example, it is
explicit and is a multilevel scheme. In fact, if we choose w(x, tn) = Φ0,k(x) or Ψe

j,k(x)
for k ∈ ωj , e ∈ E, and j = 0, 1, . . . , Jn − 1, the left-hand side of (4.7) is reduced to∫

Ω

U(x, tn)Φ0,k(x)dx = cn0,k, k ∈ ω0,

∫
Ω

U(x, tn)Ψe
j,k(x)dx = dn,ej,k , e ∈ E, k ∈ ωj , 0 ≤ j ≤ Jn − 1.

(4.14)

Equations (4.13) and (4.14) generate a multilevel expression of the solution U(x, tn).
Algorithmically, we first compute the coefficients cn0,k in (4.13) at the coarsest level

0. We then compute the coefficients dn,ej,k for e ∈ E and k ∈ ωj in the second term
on the right-hand side of (4.13) starting from the coarsest occurring level 0 to the
finest level J . Finally, because all the wavelets have at least zeroth-order vanishing
moments, adding the wavelet expressions level by level does not affect mass balance.

4.3. A CFL-free, explicit multilevel scheme with adaptive and conser-
vative compression. In applications hyperbolic PDEs often admit solutions with
very localized phenomena, which are typically smooth outside some very small (but
dynamic) regions and could develop steep fronts within these regions. In contrast to
Fourier series expansions where local singularities of the solutions could contaminate
the decaying properties of Fourier coefficients globally, (4.12) shows that the wavelet
coefficients actually become small when the underlying solution is smooth locally.
Therefore, we can drop the terms with small wavelet coefficients to reduce the num-
ber of unknowns to be solved without introducing large errors. On the other hand, the
wavelet coefficients also indicate where relevant detailed information is encountered.
This observation motivates the development of a CFL-free, explicit multilevel scheme
with the capability for adaptive and conservative compression to fully utilize these
properties.

Scheme III. This scheme is divided into four steps.
Step 1. Initialization. Project the initial condition u0(x) into the space SJ(Ω) to

obtain its approximation,

U(x, t0) =
∑

k∈ω0

c00,kΦ0,k(x) +

J−1∑
j=0

∑
k∈ωj

∑
e∈E

d0,e
j,kΨe

j,k(x),(4.15)

with c00,k and d0,e
j,k being computed by

cn0,k =

∫
Ω

u0(x)Φ0,k(x)dx, k ∈ ω0,

dn,ej,k =

∫
Ω

u0(x)Ψe
j,k(x)dx, k ∈ ωj , e ∈ E, 0 ≤ j ≤ J − 1.

(4.16)

We use a time marching algorithm to perform the following steps for n = 1, 2, . . . , N .
Step 2. Compression step. Because the wavelet coefficients in the expression

U(x, tn−1) =
∑

k∈ω0

cn−1
0,k Φ0,k(x) +

J−1∑
j=0

∑
k∈ω̃

n−1

j

∑
e∈E

dn−1,e
j,k Ψe

j,k(x)(4.17)

would be nearly zero in the smooth regions of U(x, tn−1), and would be noticeable in
the rough regions of U(x, tn−1), we can drop many small wavelet coefficients in (4.17)
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without affecting the accuracy of the solution U(x, tn). Here ω̃n−1
j are the predicted

significant coefficient index sets with ω̃0
j = ωj and ω̃n−1

j being defined below for
subsequent time steps.

We define level-dependent thresholding parameters εj by

εj := 2−jd/2 ∆t
[
‖u0‖L2(Ω) + ‖q(·, tn)‖L2(Ω)

]
(4.18)

and perform the following thresholding procedure:

d̂n−1,e
j,k :=

{
dn−1,e
j,k if

∣∣∣dn−1,e
j,k

∣∣∣ ≥ εj ,

0 otherwise.
(4.19)

Equivalently, we introduce the significant coefficient index sets

ω̂n−1
j :=

{
k ∈ ω̃n−1

j

∣∣∣ ∃e ∈ E such that
∣∣∣dn−1,e
j,k

∣∣∣ ≥ εj

}
.(4.20)

We define a compression Û(x, tn−1) of U(x, tn−1) by

Û(x, tn−1) =
∑

k∈ω0

cn−1
0,k Φ0,k(x) +

J−1∑
j=0

∑
k∈ω̃

n−1

j

∑
e∈E

d̂n−1,e
j,k Ψe

j,k(x)

=
∑

k∈ω0

cn−1
0,k Φ0,k(x) +

J−1∑
j=0

∑
k∈ω̂

n−1

j

∑
e∈E

dn−1,e
j,k Ψe

j,k(x).

(4.21)

Step 3. Prediction step. The wavelet expansion (4.21) provides a convenient way
to measure the smoothness of functions in terms of various function space norms
as well as locally [9, 10]. Hence, we use it to locate the smooth regions and rough

regions of Û(x, tn−1) by determining the significant coefficient index sets ω̂n−1
j . In

other words, the wavelet expansion itself is a convenient and accurate error indicator
for U(x, tn−1). We predict where the rough regions of U(x, tn) will be at time step
tn by determining the predicted significant coefficient index sets ω̃nj at level j at time

step tn. In order to locate the latter, we track the index sets ω̂n−1
j forward along the

characteristics from time tn−1 to time tn. We also take into account the effect of the
source term q(x, t) and the reaction term R(x, t) along the characteristics.

Step 4. Solution step. Once we determine the predicted significant coefficient
index sets ω̃nj , we define an adaptive refinement subspace S̃nJ (Ω) ⊂ SJ(Ω) by

S̃nJ (Ω) := span
{{

Φ0,k

}
k∈ω0

,
{

Ψe
j,k

}e∈E

k∈ω̃
n

j , 0≤j≤J−1

}
.(4.22)

Then we look for U(x, tn) ∈ S̃nJ (Ω), which is in the form

U(x, tn) =
∑

k∈ω0

cn0,kΦ0,k(x) +

J−1∑
j=0

∑
k∈ω̃

n

j

∑
e∈E

dn,ej,k Ψe
j,k(x),(4.23)

such that the following equation holds for any w(x, tn) ∈ S̃nJ (Ω):∫
Ω

U(x, tn)w(x, tn)dx

=

∫
Ω

Û(x, tn−1)w(x, t+n−1)dx+

∫
Ω

Λ(x, tn)q(x, tn)w(x, tn)dx.
(4.24)
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Here w(x, t+n−1) and Λ(x, tn) are defined in (2.7) and (2.9) and below (2.2).
We now briefly discuss the schemes we have developed:
1. Scheme I is a linear and single-level scheme, in which the number of levels

and the set of wavelet basis functions used at each time step are independent
of the solution being approximated. In Scheme II the number of levels could
vary at each time step, depending on the solution being approximated. The
first term on the right-hand side of (4.13) provides a basic approximation at
the coarsest occurring level 0. The second term provides a finer and finer
resolution at time tn as the level j increases from 0 to Jn − 1. Both Schemes
I and II are fairly easy to implement.

2. Scheme III is a nonlinear scheme, in which the number of levels and the
set of wavelet basis functions Ψe

j,k(x) chosen in the approximation depend
on the solution being approximated [10]. Notice that the significant wavelet

coefficients d̂n−1,e
j,k , which exceed the thresholding parameters in (4.19), are

nonzero only near the moving steep front regions. Hence, with the first term
on the right-hand side of (4.23) as a base approximation, the second term on
the right-hand side of (4.23) consists of terms with significant coefficients and
provides a progressively improved resolution. In this way, Scheme III resolves
the moving steep fronts present in the solutions accurately, adaptively, and
effectively.

3. The distribution of the significant coefficients d̂n−1,e
j,k or equivalently the sig-

nificant coefficient index sets ω̂n−1
j in (4.20) could be somewhat irregular or

unstructured after the thresholding process (4.19), even though they should
have some correlations. A naive organization and management of these coef-
ficients could compromise the greatly improved efficiency of the scheme. The
tree approximation techniques proposed in [2], in which a node is in the tree
whenever one of its child nodes is in the tree, allow a more effective organi-
zation/encoding of the positions of the significant coefficients in an optimal
order (i.e., the number of nodes in the tree is a constant multiple of the num-

ber of significant coefficients d̂n−1,e
j,k ). By tracking the significant coefficient

index sets ω̂n−1
j from time step tn−1 to tn along the characteristics, we can

obtain predicted significant coefficient index sets ω̃nj at time step tn fairly
accurately and efficiently.

4. Because all the wavelet basis functions Ψe
j,k(x) have at least zeroth-order

vanishing moments, the compression used in Scheme III does not introduce
any mass balance error.

5. Stability analysis. In this section we prove the unconditional stability of
the numerical schemes.

Theorem 5.1. Scheme I is unconditionally stable.
Using (4.6), we choose w(x, tn) = ΦJ,k(x) in (4.7). Then we multiply the resulting

equation by cnJ,k in (4.6) and add all the resulting equations ∀k ∈ ωJ to obtain

∫
Ω

U2(x, tn)dx =

∫
Ω

U(x, tn−1)U(x, t+n−1)dx

+

∫
Ω

Λ(x, tn)q(x, tn)U(x, tn)dx.

(5.1)



DEVELOPMENT OF CFL-FREE, EXPLICIT SCHEMES 1429

We use the facts

∂r(θ;x, tn)

∂x
= I +O(tn − θ),

U(x∗, t+n−1) = U(x, tn)e−R(x,tn)∆t,

(5.2)

with I being the d × d identity matrix and x∗ := r(tn−1;x, tn), to bound the first
term on the right-hand side of (5.1). For convenience, we replace the dummy x in
this term by x∗ and reserve x for the corresponding variable at time tn:

∣∣∣∣
∫

Ω

U(x∗, tn−1)U(x∗, t+n−1)dx∗
∣∣∣∣

=

∣∣∣∣
∫

Ω

U(x∗, tn−1)U(x, tn)e−R(x,tn)∆t

∣∣∣∣∂r(tn−1;x, tn)

∂x

∣∣∣∣ dx

∣∣∣∣

≤ (1 + L∆t) ‖U(x, tn)‖L2(Ω)

[∫
Ω

U2(x∗, tn−1)

∣∣∣∣∂r(tn−1;x, tn)

∂x

∣∣∣∣
2

dx

]1/2

≤
(

1

2
+ L∆t

)[
‖U(x, tn)‖2L2(Ω) + ‖U(x, tn−1)‖2L2(Ω)

]
.

(5.3)

Here L represents a generic positive constant, which might assume different values at
different places.

Recall that |Λ(x, tn)| ≤ L∆t; we bound the second term on the right-hand side
of (5.1) by

∣∣∣∣
∫

Ω

Λ(x, tn)q(x, tn)U(x, tn)dx

∣∣∣∣
≤ L∆t

[
‖U(x, tn)‖2L2(Ω) + ‖q(x, tn)‖2L2(Ω)

]
.

(5.4)

Substituting (5.3) and (5.4) into (5.1) we obtain

‖U(x, tn)‖2L2(Ω) ≤
(

1

2
+ L0∆t

)[
‖U(x, tn)‖2L2(Ω) + ‖U(x, tn−1)‖2L2(Ω)

]

+ L0∆t‖q(x, tn)‖2L2(Ω),

(5.5)

where L0 is a fixed positive constant.
Adding (5.5) for n = 1, 2, . . . , N1 ≤ N results in the following telescoping series:

N1∑
n=1

‖U(x, tn)‖2L2(Ω)

≤
(

1

2
+ L0∆t

) N1∑
n=1

[
‖U(x, tn)‖2L2(Ω) + ‖U(x, tn−1)‖2L2(Ω)

]

+ L0‖q‖2
L̂(0,T ;L2(Ω))

≤
(

1

2
+ L0∆t

)[
‖U(x, tN1)‖2L2(Ω) + ‖U(x, 0)‖2L2(Ω)

]

+ (1 + 2L0∆t)

N1−1∑
n=1

‖U(x, tn)‖2L2(Ω) + L0‖q‖2
L̂(0,T ;L2(Ω))

.

(5.6)
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Canceling the corresponding terms on both sides of (5.6) yields the following
inequality:

‖U(x, tN1
)‖2L2(Ω) ≤ (1 + 2L0∆t)‖U(x, 0)‖2L2(Ω)

+ 4L0∆t

N1∑
n=1

‖U(x, tn)‖2L2(Ω) + 2L0‖q‖2
L̂(0,T ;L2(Ω))

.
(5.7)

Taking ∆t small enough such that 4L0∆t ≤ 1/2, we rewrite (5.7) as follows:

‖U(x, tN1)‖2L2(Ω) ≤ 8L0∆t

N1−1∑
n=1

‖U(x, tn)‖2L2(Ω)

+
5

2
‖U(x, 0)‖2L2(Ω) + 4L0‖q‖2

L̂(0,T ;L2(Ω))
.

(5.8)

Applying Gronwall’s inequality to (5.8) yields the following stability estimate:

‖U‖
L̂∞(0,T ;L2(Ω))

≤ L
[
‖u0‖L2(Ω) + ‖q‖

L̂2(0,T ;L2(Ω))

]
,(5.9)

where ‖U(x, 0)‖L2(Ω) is bounded by ‖u0‖L2(Ω), and

‖U‖
L̂∞(0,T ;L2(Ω))

= max
0≤n≤N

‖U(x, tn)‖L2(Ω),

‖U‖
L̂2(0,T ;L2(Ω))

=

[
∆t

N∑
n=0

‖U(x, tn)‖2L2(Ω)

]1/2

.

(5.10)

Thus, we have proved the unconditional stability of Scheme I.
Theorem 5.2. Schemes II and III are explicit and unconditionally stable.
The explicitness of Scheme III can be shown similarly to that of Scheme II in

(4.14), with ωj and Jn replaced by ω̃nj and J , respectively.
We now prove the unconditional stability of Schemes II and III. Recalling the

expression (4.13) for U(x, tn), we multiply (4.7) with w(x, tn) = Φ0,k by c0,k(Un)
∀k ∈ ω0, and (4.7) with w(x, tn) = Ψe

j,k by dn,ej,k (Un) ∀k ∈ ωj , e ∈ E, and 0 ≤ j ≤
Jn − 1, and add all the resulting equations, yielding (5.1) again. Even though the
number of levels Jn−1 at time step tn−1 and at time step tn could be different, the
techniques used in Theorem 5.1 still work and lead to the stability estimate (5.9).

To prove the unconditional stability for Scheme III, we recall the expression (4.23)
for U(x, tn). Multiplying (4.24) with w(x, tn) = Φ0,k by cn0,k(Un) ∀k ∈ ω0, and (4.24)

with w(x, tn) = Ψe
j,k by dn,ej,k (Un) ∀k ∈ ω̃nj , e ∈ E, and 0 ≤ j ≤ J − 1, and adding all

the resulting equations, we obtain

∫
Ω

U2(x, tn)dx =

∫
Ω

Û(x, tn−1)U(x, t+n−1)dx

+

∫
Ω

Λ(x, tn)q(x, tn)U(x, tn)dx.

(5.11)
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Using the inequality

‖U(x, tn−1)‖2L2(Ω)

=
∑

k∈ω0

∣∣∣cn−1
0,k (Un−1)

∣∣∣2 +

J−1∑
j=0

∑
k∈ω̃

n−1

j

∑
e∈E

∣∣∣dn−1,e
j,k (Un−1)

∣∣∣2

= ‖Û(x, tn−1)‖2L2(Ω) +

J−1∑
j=0

∑
k∈ω̃

n−1

j \ω̂n−1

j

∑
e∈E

∣∣∣dn−1,e
j,k (Un−1)

∣∣∣2

≥ ‖Û(x, tn−1)‖2L2(Ω),

(5.12)

we bound the first term on the right-hand side of (5.11) as in (5.3):

∣∣∣∣
∫

Ω

Û(x, tn−1)U(x, t+n−1)dx

∣∣∣∣
≤
(

1

2
+ L∆t

)[
‖U(x, tn)‖2L2(Ω) + ‖Û(x, tn−1)‖2L2(Ω)

]

≤
(

1

2
+ L∆t

)[
‖U(x, tn)‖2L2(Ω) + ‖U(x, tn−1)‖2L2(Ω)

]
.

(5.13)

We then obtain the estimate (5.5) again. The same technique as that used in proving
Theorem 5.1 concludes the proof of this theorem.

6. Numerical experiments. We consider the transport of a two-dimensional
Gaussian pulse, with or without a reactive process involved. To gain some basic
understanding of the numerical methods, we compare these schemes with the stan-
dard upwind scheme that has been well understood and widely used in industrial
applications.

In the example runs, the spatial domain is Ω := (−1, 1) × (−1, 1), a rotating
velocity field is imposed as V1(x1, x2) = −4x2, and V2(x1, x2) = 4x1. The time interval
is [0, T ] = [0, π/2], which is the time period required for one complete rotation. The
initial condition u0(x1, x2) is given by

u0(x1, x2) := exp

(
− (x1 − x1c)

2 + (x2 − x2c)
2

2σ2

)
,(6.1)

where x1c, x2c, and σ are the centered and standard deviations, respectively. The
corresponding analytical solution for (2.1) with q = 0 is given by

u(x1, x2, t)

= exp

(
− (x̄1 − x1c)

2 + (x̄2 − x2c)
2

2σ2
−
∫ t

0

R(r(θ; x̄1, x̄2, 0), θ)dθ

)
,

(6.2)

where x̄1 := x1 cos(4t)+x2 sin(4t), x̄2 := −x1 sin(4t)+x2 cos(4t), and r(θ; x̄1, x̄2, 0) :=
(x̄1 cos(4θ)− x̄2 sin(4θ), x̄1 sin(4θ) + x̄2 cos(4θ)).

This example has been used widely to test different schemes for numerical artifacts
such as numerical stability, numerical dispersion, spurious oscillations, deformation,
and phase errors as well as other numerical effects arising in porous medium fluid flows.
In the numerical experiments, the data are chosen as follows: q = 0, x1c = −0.5, x2c =
0, and σ = 0.0447. To observe the capability of these schemes in handling reactive
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Fig. 1. Surface and contour plots of the analytical solution at T = π
2
.

transport processes, we consider both R = 0 and R = cos(2t). When no reaction is
present, the analytical solution u(x1, x2, t) after one complete rotation is identical to
the initial condition u0(x1, x2), which is centered at (x1c, x2c) with a minimum value
0 and a maximum value 1. The surface and contour plots of the analytical solution
(which is identical to the initial condition) are presented in Figure 1(a) and (b). For
R = cos(2t), the analytical solution given by (6.2) now becomes

u(x1, x2, t) = exp

(
−1

2
sin(2t)− (x̄1 − x1c)

2 + (x̄2 − x2c)
2

2σ2

)
,(6.3)

which is identical to the analytical solution with no reaction at the final time t = π
2 .

Hence, we can have a fair comparison of errors for both R = 0 and R = cos(2t).
We use the fourth-order Daubechies wavelets with a coarsest occurring level of

grid size h0 = 1
8 , a finest occurring level of J = 3, and a very coarse time step

of ∆t = π/8. This leads to a maximal Courant number of 115. We apply Scheme I
(which is identical to Scheme II) at the finest level J = 3 to compute the uncompressed
solution. We then apply Scheme III with the coarsest level of mesh size h0 = 1

8 and
the finest level J = 3 to compute the compressed solutions. In all the schemes, a
fourth-order Runge–Kutta method with a micro time step of ∆tm = ∆t/4 is used to
track the characteristics. The tolerance (4.18) now becomes

εj := 2−j ∆t ε.(6.4)

In Table 1, we present the L1-, L2-, and L∞-errors, the maximum and minimum
values, and compression ratios (the number of unknowns in the uncompressed solu-
tion versus that of the unknowns in the compressed solution) of the uncompressed
(ε = 0) and compressed solutions at the final step T = π/2 for different choices of
tolerance ε and for both R = 0 and R = cos(2t). The contour and surface plots for
the uncompressed solution and the compressed solution with ε = 0.0001 at the final
step T = π/2 and for R = cos(2t) are plotted in Figure 2(a)–(d). These results show
that the schemes developed in this paper generate very accurate solutions, even if
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Table 1
Statistics of uncompressed (ε = 0) and compressed solutions for different choices of tolerance

ε. The time step is ∆t = π
8

with a micro time step of ∆tm = ∆t
4

used in tracking. The coarsest

mesh size is h0 = 1
8

and the finest mesh size is hJ = 1
64

.

ε Compression rate L1-error L2-error L∞-error Max Min CPU

R(x , t) = 0

0 N/A 2.92×10−4 1.19×10−3 1.38×10−2 0.992 0 1 m 6 s

10−5 26 2.92×10−4 1.19×10−3 1.38×10−2 0.992 0 47 s

10−4 42 3.04×10−4 1.19×10−3 1.39×10−2 0.992 0 33 s

10−3 75 5.91×10−4 1.85×10−3 2.41×10−2 0.985 0 22 s

R(x , t) = cos(2t)

0 N/A 3.10×10−4 1.35×10−3 1.74×10−2 0.991 0 1 m 23 s

10−5 27 3.11×10−4 1.35×10−3 1.74×10−2 0.991 0 1 m

10−4 43 3.21×10−4 1.35×10−3 1.74×10−2 0.991 0 42 s

10−3 75 4.74×10−4 1.66×10−3 2.13×10−2 0.987 0 31 s
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Fig. 2. The uncompressed and compressed solutions at T = π
2
.
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very large time steps and fairly coarse grids are used. The schemes are explicit and
highly parallelizable. We observe that with fairly large compression ratios, Scheme
III generates a solution comparable to the uncompressed solution. This implies a fur-
ther improvement in terms of computational efficiency and storage. In the numerical
implementation of these schemes, we focus on the study of the trade-off between the
compressibility and accuracy. We understand that a fine-tuning and optimization of
the implementations will fully explore the adaptivity of Scheme III and will further
improve its CPU performance. Finally, these schemes handle the reactive effect accu-
rately and generate numerical solutions with about the same errors as the solutions
with no reaction involved.

It is well known that the standard upwind scheme is explicit and fairly easy to
implement, and can generate very stable solutions with correct qualitative physical
trend even for very complex problems. However, the upwind scheme introduces exces-
sive numerical diffusion and tends to severely smear the steep fronts of the numerical
solutions. We present in Table 2 the numerical solutions of the upwind scheme with
various time steps and spatial grids. With the base spatial grid size of h = hJ = 1

64
that was used in Table 1, the time step ∆t = π

1200 is the largest admissible step size
that meets the CFL condition (the Courant number is 0.95). The upwind scheme
generates an extremely diffusive solution with a maximal value of only 0.080 that is
only 8% of the height of the true solution, even though it is extremely efficient per
time step (it took only 4 seconds for 1200 time steps). The surface and contour plots
of the solution are presented in Figure 3(a) and (b). We further notice that with
the same spatial grid size, the errors increase slightly as the size of the time step
is further reduced. This observation can be explained by using the local truncation
error analysis, which shows that the local spatial and temporal errors actually have
opposite signs and cancel with each other. Hence, reducing further the time step size
only leads to increased local truncation error, and so to increased truncation errors
of the numerical solutions of the upwind scheme. To improve the accuracy of the
numerical solutions, we have to refine both the spatial grids and the time steps with
the Courant number being close to unity. With a CPU time comparable to that which
Schemes I–III consumed, the upwind scheme generates a solution using a spatial grid
size of h = 1

128 and a time step of ∆t = π
4800 . However, the resulting solution has a

maximal value of only 0.131. The finest grids used are ∆t = π
20000 and h = 1

1024 . It
took a CPU time of almost 6 hours for the upwind scheme to generate a solution with
a maximal value of 0.579. The surface and contour plots of the numerical solution are
presented in Figure 3(c) and (d). We also observe slight deformation due to the grid
orientation effect. These comparisons show that these schemes are very competitive
and hold strong potential.

7. Extension. We outline the extension of the schemes developed in this paper
to the initial-boundary-value problem of advection-reaction PDEs:

ut +∇ · (vu) + Ru = q(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = uΓ(x, t), x ∈ Γ(I), t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(7.1)

where Ω := (a1, b1)× · · · × (ad, bd) is the spatial domain with the boundary Γ = ∂Ω.
Γ(I) and Γ(O) are the inflow and outflow boundaries identified by

Γ(I) := {x | x ∈ ∂Ω, v · n < 0},
Γ(O) := {x | x ∈ ∂Ω, v · n > 0}.(7.2)
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Table 2
Statistics of upwind schemes at time T = π

2
with R = 0 and different spatial grids and time steps.

h ∆t Courant # L1-error L2-error L∞-error Max Min CPU
1
64

π
1200

0.95 1.85×10−2 7.02×10−2 9.21×10−1 0.080 0 4 s
1
64

π
2400

0.47 1.91×10−2 7.13×10−2 9.30×10−1 0.070 0 8 s
1
64

π
4800

0.24 1.93×10−2 7.17×10−2 9.34×10−1 0.067 0 17 s
1

128
π

2400
0.95 1.54×10−2 6.30×10−2 8.52×10−1 0.148 0 38 s

1
128

π
4800

0.47 1.61×10−2 6.48×10−2 8.69×10−1 0.131 0 1 m 16 s
1

256
π

4800
0.95 1.17×10−2 5.25×10−2 7.42×10−1 0.258 0 4 m 22 s

1
512

π
9600

0.95 7.99×10−3 3.94×10−2 5.90×10−1 0.411 0 36 m 22 s
1

1024
π

20000
0.91 5.01×10−3 2.67×10−2 4.22×10−1 0.579 0 5 h 42 m
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.
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The weak formulation corresponding to (2.2) now reads as

∫
Ω

u(x, tn)w(x, tn)dx+

∫ tn

tn−1

∫
Γ

v(x, t) · n(x) u(x, t)w(x, t)dsdt

−
∫ tn

tn−1

∫
Ω

u(wt + v · ∇w −Rw)(x, t)dxdt

=

∫
Ω

u(x, tn−1)w(x, t+n−1)dx+

∫ tn

tn−1

∫
Ω

q(x, t)w(x, t)dxdt.

(7.3)

Now the characteristic r(θ; x̌, ť) is still determined by (2.4)–(2.6), but with the ex-
ception that either (x̌, ť) = (x, tn) for x ∈ Ω or (x̌, ť) = (x, t) for x ∈ Γ(O) and
t ∈ [tn−1, tn]. Then derivation similar to that for (2.11) leads to the reference equa-
tion

∫
Ω

u(x, tn)w(x, tn)dx+

∫ tn

tn−1

∫
Γ(O)

v(x, t) · n(x) u(x, t)w(x, t)dsdt

=

∫
Ω

u(x, tn−1)w(x, t+n−1)dx+

∫
Ω

Λ(x, tn)q(x, tn)w(x, tn)dx

+

∫ tn

tn−1

∫
Γ(O)

Λ(1)(x, t)v(x, t) · n(x)q(x, t)w(x, t)dx

−
∫ tn

tn−1

∫
Γ(O)

v(x, t) · n(x)uΓ(x, t)w(x, t)dx+ E(w),

(7.4)

with

Λ(1)(x, t) :=




1− e−R(x,t)(t−t∗(x,t)

R(x, t)
if R(x, t) �= 0,

t− t∗(x, t) otherwise,

(7.5)

where t∗(x, t) = tn−1 if r(θ;x, t) does not backtrack to the boundary Γ, or t∗(x, t)
represents the time instant when r(θ;x, t) backtracks to the boundary Γ otherwise.

Based on the reference equation (7.5), we can define Schemes I–III as before. But
now the unknown trial functions U(x, t) are defined in Ω at time tn and on the space-
time outflow boundary Γ(O)× [tn−1, tn]. The scaling and wavelet basis functions used
in section 4 might not be orthogonal anymore near the boundary of the domain Ω.
Consequently, the schemes might not be explicit anymore. Notice that the region
where the basis functions are not orthogonal is of order ∆t. Hence, the derived
schemes are explicit in most of the domain and are implicit near boundary. In other
words, we reduce the space dimension of the implicit scheme by one. Alternatively, we
could utilize the results in [4, 17] to modify the wavelet basis functions near boundary
to make them orthonormal and again lead to fully explicit schemes.

8. Conclusions. The well-known CFL condition states that there are no ex-
plicit, unconditionally stable, consistent finite difference schemes (in fact, any schemes
with fixed stencils) for linear hyperbolic PDEs [5]. Therefore, although explicit meth-
ods are relatively easy to implement, are local, and are fully parallelizable, the time
step sizes in these methods are subject to the CFL condition. In fact, explicit meth-
ods often have to use very small time steps in numerical simulations to maintain the
stability of the methods [11]. In contrast, implicit methods are unconditionally stable.
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However, they require inverting a coefficient matrix at each time step and could be
expensive. Moreover, the time step sizes of implicit methods are still restricted for
the reason of accuracy, especially when steep fronts pass by.

In this paper we combine an Eulerian–Lagrangian approach and multiresolution
analysis to develop three unconditionally stable, explicit schemes for multidimensional
linear hyperbolic PDEs. Scheme I is a single-level scheme that uses all the scaling
functions at a fine level J as basis functions. It is in the flavor of standard finite
element methods and is fairly straightforward to implement. Scheme II is a multi-
level scheme that uses all the scaling functions at a coarsest occurring discretization
level 0 and all the wavelets on all the levels 0, 1, . . . , Jn − 1 as basis functions. It is
similar to multigrid methods with a slash cycle, and does not need to go back and
forth between the coarse grids and the fine grids (see [13] and the references therein).
Scheme III uses a thresholding and compression technique to adaptively select the
wavelet basis functions at each successive level 0, 1, . . . , J − 1. It significantly reduces
the number of equations and coefficients that need to be solved, while still showing
accuracy comparable to the uncompressed schemes (Schemes I and II). Hence, it has
a greatly improved efficiency and storage. The scheme is nonlinear and is related to
adaptive finite element methods. Furthermore, the compression used in the scheme
does not introduce any mass balance error. As we have seen, by using a multiresolu-
tion analysis and orthogonal wavelets with an Eulerian–Lagrangian approach, we are
able to obtain single-level and multilevel, explicit schemes. The use of Lagrangian
coordinates enables us to obtain accurate solutions even if very large time steps are
used. Moreover, the use of Lagrangian coordinates defines the stencils adaptively fol-
lowing the flow of streamlines, and the stencils are not necessarily fixed. This is the
fundamental reason why we could develop CFL-free, unconditionally stable, conver-
gent numerical methods for hyperbolic PDEs without contradicting the well-known
CFL condition. Our previous computational results have shown the strong potential
of the methods developed. The convergence analysis and error estimate for Scheme I
can be derived in a more or less standard way, but the error estimates for Schemes II
and III require more work. We will present the theoretical error estimates for these
schemes elsewhere.

Acknowledgment. The authors would like to thank the referees for their very
helpful comments and suggestions, which greatly improved the quality of this paper.
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IMAGE PROCESSING FOR NUMERICAL APPROXIMATIONS
OF CONSERVATION LAWS: NONLINEAR ANISOTROPIC
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Abstract. We employ a nonlinear anisotropic diffusion operator like the ones used as a means of
filtering and edge enhancement in image processing and in numerical methods for conservation laws.
It turns out that algorithms currently used in image processing are very well suited for the design
of nonlinear higher order dissipative terms. In particular, we stabilize the well-known Lax–Wendroff
formula by means of a nonlinear diffusion term.

Key words. artificial diffusion, higher order methods, nonlinear filter, finite differences
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1. Introduction. The construction of suitable artificial viscosity terms for sta-
bilizing finite difference schemes of higher order is a difficult task. In the last decade
we therefore observed a strong tendency to construct numerical approximations of
conservation laws without explicit knowledge of their numerical diffusion. The mod-
ern total variation diminishing (TVD) or essentially nonoscillatory (ENO) schemes
belong to this class, in which a basic first-order scheme is enhanced by the use of so-
phisticated recovery functions; see [10], [4]. There are, however, certain circumstances
in which an approach using explicit construction of artificial dissipation would be ad-
vantageous. If we consider pseudospectral methods, the concept of ENO recovery
is very hard to apply if the degree of the basis polynomials used is high. Here one
would like to compute shocked solutions with central differences and to postprocess
the oscillatory numerical solution such that

(i) high frequency oscillations are filtered, and
(ii) shocks are steepened and represented with high resolution.

Another area of application is grid-free methods (see [1]), where modern concepts of
recovery fail due to the irregularity of the interpolation points. In that case one would
like to compute all derivatives from a central interpolant (or, better, a least squares
approximation) and postprocess the derivatives as was described above.

Over the years there were no general attempts to derive a constructive theory
which would enable the design of suitable artificial viscosities within the CFD com-
munity. However, filtering and edge enhancement is a fundamental task in image
processing, and in recent years a theory of nonlinear anisotropic diffusion was created
and can now be found in textbooks like [14] and [5]. In a noisy picture one also would
like to filter the high frequency components before detecting the edges (i.e., jumps
in grey level). Then one would like to enhance the edges in order to represent the
edges in high resolution. Now there is nothing which keeps us from interpreting our
numerical solution corresponding to a conservation law as a photograph or picture,
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at least not in the case of steady solutions. In the same way the photographer would
very much prefer to see the contours on his picture as sharp thin lines, the numerical
analyst would prefer to see shocks as crispy lines instead of smeared thick regions.
To accomplish this photo as well as numerical solution have to be denoised. After
removing the high frequencies we would like to spend a dose of diffusion tangential
on shocks, but we would like to avoid diffusion across shocks (that is what anisotropy
is all about). In contrast, in the vicinity of shocks we would like to solve a kind of
nonlinear anisotropic backward heat equation to enhance the structure of a shock.
Devices and algorithms satisfying exactly these requirements are ready to use if one
is willing to enter the area of image processing.

The aim of this paper is mainly to show the potential of the methods developed
for image processing if they are applied consistently to problems in the numerical
treatment of hyperbolic conservation laws. We hope that we open up a new chap-
ter in the design of modern nonlinear discretizations of conservation laws by using
concepts which are well known in the image processing society. In the present paper
we demonstrate our algorithms with the Lax–Wendroff formula for two-dimensional
scalar equations. A future paper will be devoted to more serious applications in the
field of gas dynamics.

The outline of the paper is as follows. After a brief review of the concepts used
in the numerical treatment of conservation laws we apply the classical Lax–Wendroff
formula to a steady nonlinear problem in which a shock is present. As is well known
the second-order Lax–Wendroff formula answers these type of problems with violent
oscillations. In image processing Gaussian smoothing would be applied to the numer-
ical solution in order to filter high frequency components. We exemplify this strategy
but never use it in our final algorithms. On one hand, the control of the linear diffusion
is very difficult. (A little overdose deteriorates the numerical solution strongly.) On
the other hand, there are no visible differences in the final solution when computed
with or without presmoothing. We then utilize the structure tensor which serves as
a detector of the local coherence of our solution. In looking at eigenvalues and eigen-
vectors, regions of anisotropy can be detected, as well as regions of constant states.
We then proceed to the construction of a nonlinear anisotropic artificial viscosity
term. It is here where one has the freedom to choose between many different possible
models. In our paper we decided to use an anisotropic regularization of the classical
Perona–Malik model due to Weickert. There are certainly more clever choices, but all
the important ideas are contained in this specific example. This anisotropic artificial
dissipation is discretized so that the discrete equation is stable. The underlying al-
gorithm controlling the discretization is also taken from image processing. The final
result reveals the postprocessed Lax–Wendroff solution showing high resolution of the
shock and smooth behavior in the continuous regions. Finally, we construct a new
splitting scheme containing the algorithmic ingredients described above.

The final algorithm may be displayed in form of the following flowchart.

• In every time step:
1. Compute a numerical solution U(t+Δt) with a finite difference method.
2. If necessary, filter high frequency components by means of Uδ := Kδ ∗U ,

where Kδ is the Gaussian kernel corresponding to a standard deviation
of δ.

3. Compute the structure tensor J0(∇Uδ) which contains information about
the local coherence of the numerical solution.

4. Average the structure information in the vicinity of each grid point in
order to define a region size in which the orientation of the solution is
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examined. This corresponds to computing Jρ(∇Uδ) := Kρ ∗ J0(∇Uδ).
5. Construct an artificial dissipation D from knowledge contained in Jρ.
6. Solve the discrete version of the nonlinear anisotropic equation

∂tw = div (D(w) gradw),

w(x, y, 0) = U(x, y).

• End of time step: set U(t+ Δt) := w(Δt).

2. Conservation laws and finite difference schemes. Consider the scalar
conservation law

∂tu+ ∂xf(u) + ∂yg(u) = 0(2.1)

on Ω := [0, 1]2, where we assume Cauchy data u0(x, y) = u(x, y, 0) as well as boundary
data which may respect the characteristic directions. As is well known, discontinuities
develop in general within finite time regardless how smooth the initial data is chosen.

We consider conservative three-point finite difference approximations

Un+1
i,j = Uni,j −Δt

1

Δx

[
Θ(Uni+1,j , U

n
i,j)−Θ(Uni,j , U

n
i−1,j)

]

−Δt
1

Δy

[
Ξ(Uni,j+1, U

n
i,j)− Ξ(Uni,j , U

n
i,j−1)

]

of (2.1), where Θ and Ξ denote numerical flux functions consistent in the sense of
Θ(s, s) = f(s) and Ξ(s, s) = g(s) for all s ∈ R. It is well known that every numerical
flux of a three-point scheme can be written in the viscosity form

Θ(v, w) :=
1

2
(f(v) + f(w))−Q(v, w)(v − w),

where Q is the numerical viscosity coefficient; see [11].
It was shown by Tadmor in [11] and [12] that in the class of monotone, and

hence first-order schemes, there exists a minimax pair in the sense that a scheme with
numerical viscosity coefficient Q which satisfies the inequality

∀v, w ∈ S ⊂ R : QG(v, w) ≤ Q(v, w) ≤ QmLF (v, w)

is entropy stable, i.e., converges to the entropy weak solution. Here S denotes the
state space of possible values of the solution. It turns out that the minimax pair
is given by two well-known finite difference schemes, namely the Godunov scheme,
corresponding to QG, and the (modified) Lax–Friedrichs scheme, corresponding to
QLF . Both schemes are only first order accurate so that there is need for a constructive
recipe giving higher order schemes from lower order ones.

In principle there are two different ways for the construction of higher order
numerical methods. One could start directly with the construction of a numerical
viscosity coefficient which gives higher order as well as stability. This is the way cho-
sen by Jameson, Schmidt, and Turkel in the early 1980s; see [3]. The construction is
difficult due to the inherent nonlinearity of the problem, and a well-behaving dissipa-
tion is hard to obtain. However, Jameson’s codes still belong to the most successful
pieces of software ever written and are known for their flexibility as well as for their
stability. The other route leading to stable higher order schemes developed into a
mainstream in the mid 1980s. Here one starts with a lower order monotone scheme,
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recovers the solution (with a MUSCL or ENO technique), and inserts the recovered
solution into the low order flux functions. The recipe is quite general, and the most
spectacular finite difference schemes of our time, like the TVD or ENO schemes, rely
on that construction. Although the process of recovery in itself is not an easy task, we
know now quite well how this can be done even on unstructured grids. In this class
of methods we do not even see the numerical dissipation of our methods explicitly,
which may seem to be a big advantage over the Jameson-type schemes.

However, in recent years a theory of nonlinear anisotropic diffusion was devel-
oped within the community of image processing. The algorithms developed there
are very well suited for use in the numerical solution of conservation laws. In do-
ing so, we proceed again along the lines of Jameson, Schmidt, and Turkel and try
to construct a reasonable dissipation coefficient directly, but we shall see that the
algorithmic background is so well developed that we arrive safely at new nonlinear
anisotropic dissipation terms, which turn the oscillating Lax–Wendroff scheme into a
high resolution method.

3. The numerical solution viewed as a picture. It is well known that the
Lax–Wendroff formula is a second-order finite difference scheme for (2.1). In two
dimensions there are a variety of different implementations, but we have chosen the
one described by Shokin [7], i.e.,

Un+1
i,j − Uni,j

Δt
+
Fni+1,j − Fni−1,j

2Δx
+
Gni,j+1 −Gni,j−1

2Δy

=
κx
2

[
Ani+1/2,j

(
Fni+1,j − Fni,j

Δx
+
Gni+1/2,j+1/2 −Gni+1/2,j−1/2

Δy

)

−Ani−1/2,j

(
Fni,j − Fni−1,j

Δx
+
Gni−1/2,j+1/2 −Gni−1/2,j−1/2

Δy

)]
(3.1)

+
κy
2

[
Bni,j+1/2

(
Fni+1/2,j+1/2 − Fni−1/2,j+1/2

Δx
+
Gni,j+1 −Gni,j

Δy

)

−Bni,j−1/2

(
Fni+1/2,j−1/2 − Fni−1/2,j−1/2

Δx
+
Gni,j −Gni,j−1

Δy

)]
.

Here, Fni,j := f(Uni,j) and

Ani±1/2,j := (f ′(Uni±1,j) + f ′(Uni,j))/2,

Bni,j±1/2 := (g′(Uni,j±1) + g′(Uni,j))/2,
Gni±1/2,j±1/2 := (Gni±1,j±1 +Gi,j)/2,

etc. The grid coefficients are κx := Δt/Δx, κy := Δt/Δy.

If σ denotes the maximum value of A and B, and if we assume Δx = Δy =: h,
then the Lax–Wendroff scheme can be shown to be linearly stable under the somehow
pessimistic CFL condition

Δt

h
σ ≤ 1

2
√

2
.

This was the condition which was implemented in all our test cases.
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Fig. 1. Lax–Wendroff solution of a test problem.

If we now apply the Lax–Wendroff scheme to the boundary value problem (2.1),
with f(u) = 0.5u2, g(u) = u, and

u(x, y, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1.5, x = 0,
−2.5x+ 1.5, y = 0,

−1.0, x = 1,
0.0 else

with 50 × 50 points and determine the boundary condition on the upper side of the
unit square through simple extrapolation, then we get a steady solution as shown in
Figure 1. The true solution consists of a fan-like continuous wave which develops into
a shock. A schematic view of it can be seen in Figure 2.

Since the true solution satisfies the steady equation

∂yu+ ∂x
u2

2
= 0

the characteristic equations are given by dy/ds = 1, dx/ds = u, i.e.,

dy

dx
=

1

u
.

If we denote by uL and uR the given left and right state at y = 0, respectively, and
we assume a linear distribution

u(x, 0) = (uR − uL)x+ uL

of the boundary data at y = 0, then the equation of the leftmost characteristic g1
is given by y = x/uL. The rightmost characteristic g2 is given by y = (x − 1)/uR.
They meet at the point P where the shock g3 starts. The coordinates of P are easily
computed to be xP = uL/(uL − uR) and yP = 1/(uL − uR). From the Rankine–
Hugoniot condition we get for the shock g3 the slope

dy

dx
=

2

uL + uR
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Fig. 2. True solution of the model problem in the (x, y) plane.

and finally the equation y = (2x − 1)/(uL + uR). From these equations it is easy to
compute the true solution pointwise. If the solution is to be known at a point Q lying
within the fan region, then the characteristic connecting P and Q meets the x-axis
at the point xPQ = xP + yp(xQ − xP )/(yP − yQ) which, according to our assumed
linear boundary data distribution at y = 0, leads to uQ = (uR − uL)xPQ + uL, which
completes the description of the true solution.

In Figure 3 we plotted the pointwise difference between the numerical and the true
solution. As can be observed from the numerical solution, there are strong oscillations
present in the numerical solution, a behavior which the Lax–Wendroff formula shares
with other second-order schemes which do not respect monotonicity conditions. We
are now going to correct these behaviors by means borrowed from image analysis.

If we look at the isolines we can think of them as being a photograph. The
numerical solution as plotted above the isolines is then interpreted as the grey level
function. Obviously, there is noise in the picture (the oscillating part), but there is
also an edge (the shock) which is the main feature of the picture. We would now like
to do two things, namely

(i) enhance the edge and
(ii) filter the oscillations.

In classical construction of artificial dissipation terms the fullfilment of both require-
ments leads into trouble. While a diffusion certainly filters the high frequency oscilla-
tions it would also deteriorate the quality of the shock. In Jameson’s dissipation model
there is therefore a shock sensor, modeled by the second derivative of the pressure,
which cuts the dissipation off across shocks.
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Fig. 3. Difference between the Lax–Wendroff solution and the true solution.

However, one would like to introduce dissipation parallel to the edges but avoid
dissipation across edges. Dissipation models which satisfy exactly these requirements
can be found in nonlinear anisotropic diffusion models from image processing.

4. Structure tensors and dissipation models. Edge enhancement is one of
the classical problems in image processing. It was clear quite early in the history of
this topic that edge detection without smoothing would lead to unacceptable results
due to the noise; see [13]. Therefore, edge detection is only useful if appropriate
smoothing is applied beforehand. To accomplish this task Gaussian smoothing may
be applied; i.e., the numerical solution U is convolved with the Gaussian kernel

Uδ := Kδ ∗ U, Kδ(x, y) :=
1

2πδ2
exp

(
−x

2 + y2

2δ2

)
.

The parameter δ is the width of the Gaussian. We do not intend, of course, to dive
into a continuous scale-space theory like Weickert [14] or Morel and Solimini [5] in
their respective books. In our framework we are given nothing but approximations
of Dirac functionals 〈δ(xi,yj), u〉 =: ui,j at time t = nΔt, which we denote by Uni,j .
Rearranging all those values (in lexicographical order, say) results in a vector U :=
(Uni,j)1≤i≤I,1≤j≤J . Of course it would be possible to construct a smooth interpolant
of U , but this is already away from the heart of finite difference methods. Hence,
the convolution with the Gaussian kernel indicated above is a discrete evolution in
our case.

If we consider the continuous model, this type of smoothing is equivalent to solving
the heat equation

∂tw = Δw,

w(x, y, 0) = U(x, y),

where pseudotime and width are connected via

T =
1

2
δ2;

i.e., the initial value problem for the heat equation is to be solved until pseudotime
t = T is reached. Care has to be taken in order to choose δ. Too large a δ would be
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Fig. 4. Result after presmoothing.

overdiffusive, while a very small δ would not reduce the high-frequency noise. Since
we work on the discrete level the initial value problem for the heat equation is best
cast in the discrete form

U0
i,j;δ := Ui,j ,

U
m+1/2
i,j;δ = Umi,j;δ + Δt

Umi+1,j;δ − 2Umi,j;δ + Umi−1,j;δ

Δx2
,(4.1)

Um+1
i,j;δ = U

m+1/2
i,j;δ + Δt

U
m+1/2
i,j+1;δ − 2U

m+1/2
i,j;δ + U

m+1/2
i,j−1;δ

Δy2
,

where iteration along pseudotime is performed until the iteration index m is some
mstop corresponding to T = δ2/2. At the stopping time we set Ui,j;δ := U

mstop
i,j;δ .

Note that we utilize an explicit splitting scheme which is stable under the CFL
condition Δt/min(Δx2,Δy2) ≤ 1/2; see [8]. An implicit discretization would be bet-
ter behaved, but δ is so small that an explicit splitting is advantageous with respect
to computational effort. As an example, we show in Figure 4 the result of a pres-
moothing with δ = 0.02. In comparison with Figure 1, the filtering influence with
respect to high frequency modes can be observed. For the sake of comparison, we
again plot the difference between our numerical solution (now after filtering) and the
true solution in Figure 5. Note that the error is now already concentrated in the
vicinity of the shock. However, the application of the linear heat equation seems to
be a dangerous step within the overall algorithm. While high-frequency modes are in
fact damped the shock structure deteriorates very fast. Thus, it seems wise to start
with a nonlinear diffusion equation directly on the unfiltered data and leave the task
of filtering completely to this nonlinear device. From the presmoothed solution Uδ,
we compute the structure tensor

J0(∇Ui,j;δ) := ∇Ui,j;δ · ∇UTi,j;δ.(4.2)

Since we are still as discrete as possible the meaning of our operator is defined as
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Fig. 5. Difference between the presmoothed solution and the true solution.

∇Ui,j;δ :=

⎛
⎜⎜⎜⎝

Ui+1,j;δ − Ui−1,j;δ

2Δx

Ui,j+1;δ − Ui,j−1;δ

2Δy

⎞
⎟⎟⎟⎠.(4.3)

Note that the structure tensor is symmetric positive semidefinite.
An easy calculation reveals the eigenvalues

λ1 = |∇Ui,j;δ|2 , λ2 = 0,

corresponding to the eigenvectors

v1 = ∇Ui,j;δ, v2 = ∇⊥Ui,j;δ,

where

∇⊥Ui,j;δ :=

⎛
⎜⎜⎜⎝
−
(
Ui,j+1;δ − Ui,j−1;δ

2Δy

)

Ui+1,j;δ − Ui−1,j;δ

2Δx

⎞
⎟⎟⎟⎠,

so that ∇UTi,j;δ · ∇⊥Ui,j;δ = 0. In fact, the eigenvectors of the structure tensor de-
fine the direction parallel to and across an edge, respectively. In the framework of
image processing the eigenvalues give the contrast (i.e., the squared gradient) in the
eigendirections.

Since the structure tensor is symmetric positive semidefinite, we have the splitting

J0(∇Ui,j;δ) = V ΛV −1,(4.4)

where V is the matrix (v1, v2) containing the eigenvectors and Λ is nothing but
diag (λ1, λ2).

In order to average the structure tensor data in the vicinity of each grid point
component-wise convolution with the Gaussian kernel of width ρ is applied, i.e.,

Jρ(∇Ui,j;δ) := Kρ ∗ (∇Ui,j;δ · ∇UTi,j;δ)(4.5)
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is computed. The width ρ again is a measure of the averaging region. In practice, we
again solve the discrete heat equation component-wise for the structure tensor.

A simple computation concerning the matrix Jρ(∇Ui,j;δ) =: ( j11 j12
j12 j22

) reveals the
eigenvalues

λ1,2;ρ =
1

2

(
j11 + j22 ±

√
(j11 − j22)2 + 4j212

)
,(4.6)

the positive square root belonging to λ1;ρ, which correspond to the eigenvectors

v1;ρ =

(
2j12

j22 − j11 +
√

(j11 − j22)2 + 4j212

)
,

(4.7)

v2;ρ =

(
j11 − j22 −

√
(j11 − j22)2 + 4j212
2j12

)
,

which are again orthogonal. A nice interpretation of these quantities in the framework
of image processing can be found in [14]. The parameter δ in the presmoothing
processing is called the local scale or noise scale because the process of presmoothing
neglects all scales smaller than O(δ). In contrast, the parameter ρ is the integration
scale indicating the size of the subregions in which the orientation of the numerical
solution is analyzed. The eigenvalues λ1,2;ρ, moreover, serve as descriptors of local
structure. Constant solutions are characterized by λ1;ρ = λ2;ρ = 0, while the quantity

(λ1;ρ − λ2;ρ)
2

= (j11 − j22)2 + 4j212

becomes large for anisotropic structures. In the language of image processing one
speaks of (λ1;ρ − λ2;ρ)

2 as a measure of local coherence.
Now that we have analyzed our numerical solution as if it was a photograph, we

are finally looking for a nonlinear anisotropic diffusion equation of the form

∂tw = div (D(w) gradw),

w(x, y, 0) = U(x, y),

where the dissipation coefficient D(w) makes use of the information contained in the
structure tensor. It is here where we again use the machinery of image processing
since we follow the ansatz

D(w) := VρLV
−1
ρ ,(4.8)

where Vρ contains the eigenvectors of Jρ and L = diag (l1, l2) is a diagonal matrix the
entries of which we have to choose properly. In order to recover shocks (or, equiva-
lently, in order to enhance edges), the diffusivity l1 perpendicular to edges should be
reduced if the contrast λ1;ρ is high. This can be achieved by an anisotropic regular-
ization of the Perona–Malik model [6], which can be found in Weickert’s book [14]:

l1 = ϑ(λ1;ρ),

l2 = 1,(4.9)

ϑ(s) =

{
1, s ≤ 0,

1− exp
(

−Cm
(s/λ)m

)
, s > 0.
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The values of m and Cm are chosen in such a way, that the so-called flux Φ(s) := sϑ(s)
is increasing in an interval s ∈ [0, λ] and decreasing in s ∈]λ,∞[. These choices depend
on a one-dimensional analysis of the classical Perona–Malik model, and we refer the
reader to Weickert’s book for details. In agreement with Weickert we chose m = 4
and thus C4 = 3.31488. The parameter λ can then be chosen freely.

5. Discretizing the diffusion equation. After deriving the nonlinear aniso-
tropic diffusion equation which will sharpen the shocks, this equation now needs to
be discretized. Since we do not have a theory of a truly discrete diffusion equation to
start with, but we have a partial differential equation, the discretization process may
result in instabilities if done in a naive way.

As was shown by Weickert [14], there is always a finite difference stencil such that
the resulting discretization leads to a stable scheme. Moreover, Weickert was able to
prove that three directions suffice to discretize the anisotropic diffusion and the proof
is constructive. We do not want to go into the details of Weickert’s work but give a
suitable discretization of div (D(w) gradw), where we utilize the notation

D =

(
a b
b c

)
.

Then, following Weickert’s recipe, we get

∇ · (D(Ui,j;δ)∇Ui,j;δ) =

1∑
k=−1

1∑
�=−1

Ci+k,j+�Ui+k,i+�;δ

with

Ci−1,j+1 =
|bi−1,j+1| − bi−1,j+1

4ΔxΔy
+
|bi,j | − bi,j
4ΔxΔy

,

Ci−1,j−1 =
|bi−1,j−1|+ bi−1,j−1

4ΔxΔy
+
|bi,j |+ bi,j
4ΔxΔy

,

Ci,j+1 =
ci,j+1 + ci,j

2Δy2
− |bi,j+1|+ |bi,j |

2ΔxΔy
,

Ci,j−1 =
ci,j−1 + ci,j

2Δy2
− |bi,j−1|+ |bi,j |

2ΔxΔy
,

Ci+1,j+1 =
|bi+1,j+1|+ bi+1,j+1

4ΔxΔy
+
|bi,j |+ bi,j
4ΔxΔy

,

Ci+1,j−1 =
|bi+1,j−1| − bi+1,j−1

4ΔxΔy
+
|bi,j | − bi,j
4ΔxΔy

,

Ci−1,j =
ai−1,j + ai,j

2Δx2
− |bi−1,j |+ |bi,j |

2ΔxΔy
,

Ci+1,j =
ai+1,j + ai,j

2Δx2
− |bi+1,j |+ |bi,j |

2ΔxΔy
,

Ci,j = −ai−1,j + 2ai,j + ai+1,j

2Δx2

− |bi−1,j+1| − bi−1,j+1 + |bi+1,j+1|+ bi+1,j+1

4ΔxΔy

− |bi−1,j−1|+ bi−1,j−1 + |bi+1,j−1| − bi+1,j−1

4ΔxΔy
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+
|bi−1,j |+ |bi+1,j |+ |bi,j−1|+ |bi,j+1|+ 2|bi,j |

2ΔxΔy

− ci,j−1 + 2ci,j + ci,j+1

2Δy2

and employ a simple forward difference in time. For this discretization, Weickert has
shown that stability in terms of a discrete maximum-minimum principle can only
be proven if the spectral condition number of D is below 5.82. For larger condition
numbers, he mentioned indications based on experiments that some weaker stability
properties might exist.

We remark in passing that the approach presented above is fully conservative.
This is expressed as the property of conservation of mean grey level in image analysis;
see [14].

6. A new splitting scheme. In previous sections we have described in detail
how algorithms and methodology established in image processing can be used in the
framework of numerical methods for conservation laws. In order to get a true scheme
for conservation laws and not just a postprocessing tool, we now consider the coupling

Un+1
i,j = D(Δτ)C(Δt)Uni,j ,

where C is the operator associated with the convective part (the Lax–Wendroff method
in our setting) while D represents the operator of nonlinear anisotropic diffusion. Note
that Δt is the time scale of our convection problem and for the nonlinear diffusion part.
The above splitting is known to be of first order in time only, but our considerations
also work out for more sophisticated splittings like that of Strang. Note that time
accuracy in our steady test case is by no means mandatory. The splitting means that
in each time step we apply the discrete convection (i.e., the Lax–Wendroff scheme)
first and the nonlinear diffusion part afterwards.

Since the presmoothing step using the linear heat equation cannot be controlled
efficiently (the numerical solution deteriorates massively if the smoothing variance is
only marginally too high), this algorithmic step was simply left out. The anisotropic
nonlinear diffusion equation was weighted with a factor ΔxΔy in order to guarantee
consistency; i.e., we compute

w0
i,j := C(Δt)Uni,j ,

w1
i,j = w0

i,j + ΔtΔxΔyx∇ · (D(w0
i,j)∇w0

i,j),

Un+1
i,j = w1

i,j .

Now the dose of dissipation depends on the spatial mesh as it should while the accuracy
of the space discretization is retained. Note that in principle we can allow for more
than one time step in the nonlinear diffusion equation. However, since we like to
interpret this equation as an artificial dissipation, one step is natural. Our numerical
experiments, furthermore, indicate that one diffusion step in fact is enough to achieve
results with high resolution.

The parameter chosen for the nonlinear diffusion is λ = 10, ρ = 2
√

Δx
√

Δy.

In Figure 6 we show the numerical solution of our splitting scheme after 50, 100,
and 150 time steps on the left side. On the right, the corresponding coherence measure
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Fig. 6. Numerical solution and coherence measure after 50, 100, and 150 time steps.

(λ1;ρ−λ2;ρ)
2 is plotted in logarithmic scale, where all data were shifted by 1 in order

to avoid the computation of the logarithm of zero. One can see that this measure in
fact indicates regions of anisotropic phenomena. Figure 7 shows the results at later
times after 200, 250, and 300 time steps. The shock is now formed and is constantly
sharpened by the diffusion step. Figure 8 shows the steady state (1000 time steps)
and the corresponding coherence measure. Note that the shock is sharply resolved
while there are marginal overshoots at the onset of the shock. In contrast to the
result of the pure Lax–Wendroff scheme (cf. Figure 1) we observe that the splitting
scheme with the new anisotropic nonlinear artificial dissipation behaves very nicely.
In order to further reduce the small wiggles in the onset of the shock, the nonlinear
diffusion tensor is weighted with the derivatives of the fluxes. This procedure is quite
natural if dissipation models of classical finite difference schemes are analyzed; see
[9], for example. Instead of considering the structure tensor Jρ(∇U) = ( j11 j12

j12 j22
), we
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Fig. 7. Numerical solution and coherence measure after 200, 250, and 300 time steps.

therefore employ

(
j11(f

′(U))2 j12f
′(U)g′(U)

j12f
′(U)g′(U) j22(g

′(U))2

)
.

In Figure 9 we again show the numerical solution of our splitting scheme at times
t = 50, 100, 150. Figure 10 shows the steady state. Note that this solution exhibits
not only a sharp shock transition but that it is also nearly free of any over- or un-
dershoots. The solution is very close to solutions obtained with modern second-order
TVD methods.

7. Conclusions. We have presented an approach to construct new artificial dis-
sipation terms to be used in the computation of solutions to nonlinear conservation
laws. These new dissipation models rely on well-known techniques in image processing
and provide nonlinear and anisotropic artificial dissipation terms. While the construc-
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Fig. 8. Numerical solution and coherence measure after 1000 time steps (steady state).

tion of classical artificial dissipation is somehow ad hoc, the theory of anisotropic diffu-
sion allows dissipation terms built on a sound mathematical footage. The approach is
fully conservative because it is entirely based on conservation laws. Moreover, there is
now hope to find useful dissipation terms which can be employed in meshless methods
(see [1]), where up until now higher order discretizations are not achievable.

An extension for this approach to systems was presented in [2]. Nevertheless,
since the control of four nonlinear diffusion equations in the case of the Euler equa-
tions in two dimensions is much more difficult than one nonlinear equation, a deeper
understanding of the behavior and the analysis for the scalar case is needed.

Hence the class of new schemes constructed as described above have to be fur-
ther examined concerning their accuracy and stability properties. This mathematical
analysis will be the topic of future research.
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Fig. 9. Numerical solution after 50 and 100; 150 and 200; and 250 and 300 time steps.
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Fig. 10. Numerical solution after 1000 time steps (steady state).
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Abstract. The large-particle fluid in cell (FLIC) method, presented in 1960s, is a numerical
method that can be applied to solve unsteady flow. The computational scheme consists of two steps
for each time march step: First, intermediate values are calculated for the velocities and energy,
taking into account only the effects of acceleration caused by pressure gradients; second, transport
effects are calculated. In this paper, we present a third order large-particle finite volume method
for unstructured triangular meshes. The key idea of this method is the reconstruction of weighted
quadratic interpolation for flow variables, and the two-point Gauss quadrature formula is used on
mesh edges. The computational results for two typical flows verify the accuracy of the method.

Key words. large-particle method, unstructured mesh, finite volume method, interpolation
polynomial

AMS subject classifications. 65M05, 65M10

S1064827599353105

1. Introduction. There is a class of important Euler-type numerical methods
for dealing with unsteady flow. Their common idea is to split the basic equations
of fluid dynamics into two parts. One takes into account the effect of the pressure
gradient. The other calculates the distribution of transport. Then the two parts
are discretized respectively. So a time marching step consists of two steps. This
kind of method includes particle in cell (PIC) [1], fluid in cell (FLIC) [2, 3, 11] (large
particle), OIL [4], HELP [5], and so on. They play an important role in computational
fluid dynamics (CFD). The idea of these methods has a great influence upon the
development of CFD’s numerical methods.

These methods, except PIC, are all upwind methods with first order accuracy
with low resolution; in order to simulate shock wave or other discontinuity, artificial
viscosity has to be added. Giving a general “Riemann” solver to first step (the
contribution of pressure gradient), Li and Cao [6] and Li and Qian [7] obtained a
large-particle method with second order accuracy by using the idea of Van Leer [8]
and solving the “Riemann” problem. As no artificial viscosity is needed, their method
has high resolution to discontinuous solution.

In order to simulate a general problem with very complicated computational do-
main, some methods are presented [9, 10, 11] on arbitrary triangular meshes, arbitrary
quadrilateral meshes, or polygonal meshes, i.e., unstructured mesh FLIC methods.
These methods have only first order accuracy and low resolution. [12] presents a
large-particle finite volume method with second order accuracy on unstructured tri-
angular meshes.

In this paper we will construct a third order accurate large-particle finite volume
method on unstructured triangular meshes. The main idea of this method is the re-
construction of weighted quadratic interpolation for flow variables and the application
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of the two-point Gauss quadrature formula on each mesh edge. The “Riemann” prob-
lem is solved in the first step, and upwind method is applied in the second step. To
make a comparison, the present method and another method [12] are used to simulate
plate shock wave reflection and blunt cylinder flow. The computational results show
that the transitional width of the shock wave by the present method is narrower than
that of the other, and the numerical solution of the new method is nonoscillatory.

2. Decomposition of control equations. Euler equation for two-dimensional
cases can be expressed as follows:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0,

∂ρu

∂t
+
∂(ρu2 + p)

∂x
+
∂ρuv

∂y
= 0,

∂ρv

∂t
+
∂ρuv

∂x
+
∂(ρv2 + p)

∂y
= 0,

∂ρE

∂t
+
∂(ρuE + pu)

∂x
+
∂(ρvE + pv)

∂y
= 0,

E = e+
1

2
(u2 + v2),

where E is the specific total energy, e is the specific internal energy, and the equation
of state is p = (r − 1)ρe.

The large-particle method consists of two steps for solving system (2.1).
Step 1. In this step, the density ρ is unchanged with time, and the intermediate

values of velocities and specific total energy can be obtained by taking into account
the contribution of pressure gradients. The differential equations of this step are as
follows:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ρu

∂t
+
∂p

∂x
= 0,

∂ρv

∂t
+
∂p

∂y
= 0,

∂ρE

∂t
+
∂pu

∂x
+
∂pv

∂y
= 0.

Step 2. In this step, the contribution of the transport of fluid is calculated, and
the values of state variables are obtained at time (n+1)Δt. The differential equations
are as follows:

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0,

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y
= 0,

∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2

∂y
= 0,

∂ρE

∂t
+
∂ρuE

∂x
+
∂ρvE

∂y
= 0.

The computational region is divided into many triangular cells. Every state vari-
able is defined as an averaged value at the center of each triangular mesh. So the
numerical result will give the averaged value at mesh for every variable.
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3. Reconstruction of quadratic polynomial. Let the averaged value of each
variable be given on every mesh; we will make use of these given conditions to con-
struct a weighted quadratic polynomial on every triangular cell. At first we construct
a “smoothest” linear polynomial on each cell. Based on each linear polynomial, we
determine the cells required by constructing quadratic polynomials. The weighted
quadratic reconstruction is carried out by making all quadratic polynomials on every
cell weighted. The weighted factor is obtained by considering smoothness of the solu-
tion. Since only some parts of cells are used in this process, the process of interpolation
is simplified.

1
23

4

56

7

8 9

10

Let c1 be the center cell of the above figure; to construct a linear polynomial, we
can choose any two cells from c2, c3, c4. Let the constructed linear polynomial be

(3.1) p1
k(x, y) = a0 + a1 x+ a2 y (k = 1, 2, 3)

under the constraining condition

(3.2)
1

|ci|
∫
ci

p1
k(x, y) dx dy = ūi,

where i is the number of cells which determine p1
k(x, y).

We select a “smoothest” linear polynomial from (3.1), i.e., the value |a1|+ |a2| of
the selected linear polynomial is the least among the three linear polynomials [15]. For
convenience, we assume the selected linear polynomial is obtained on cells c1, c2, c4.
To construct a quadratic polynomial, we need another three constraining conditions
(i.e., 3 cells). Since c5 and c10 have common edges with c2, c8 and c9 have common
edges with c4, and c3 has a common edge with c1, we select c3 and any two cells
from c5, c10, c8, and c9 as another three cells; then six quadratic polynomials can
be obtained. We note quadratic polynomials by p2

k(x, y), k = 1, 2, . . . , 6, with the
constraining condition

(3.3)
1

|ci|
∫
ci

p2
k(x, y) dx dy = ūi,

k = 1, 2, . . . , 6; ci is the six corresponding cells in determining p2
k(x, y).

Let us define an indicator of smoothness ISk for p2
k(x, y). Let Ωk denote the

connected region consisting of the six cells which are used to construct p2
k(x, y); we

define ISk as the summation of all square values of average difference of every two
cells with common edge in Ωk.

Let h be the maximum radius of the circumcircle of the triangles; we observe that
if u is continuous on Ωk, then ISk = O(h2); and if u is discontinuous on Ωk, then
ISk = O(1).
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Let

(3.4) αk =
1

(ε+ ISk)2
, ε = 10−5;

define the weighted quadratic polynomial (WQP)

(3.5) p2(x, y) =
∑ αk∑

αj
p2
k(x, y);

then αk/
∑
αj is the weighted factor of p2

k(x, y). In smooth regions, we observe

(3.6)
αk∑
αj

= O(1),

while in discontinuous regions

(3.7)
αk∑
αj

=

1
(ε+O(1))2∑

αj
=
O(1)∑
αj
≤ max(O(ε2), O(h4)).

So the weighted quadratic polynomial requires that the interpolating polynomials
on the smooth regions have contribution to WQP, while on the discontinuous regions
they have essentially no contribution to WQP.

If u(x, y) is an exact solution on a cell, p2(x, y) is a quadratic polynomial on the
cell and it satisfies (3.3), then

(3.8) p2(x, y)− u(x, y) = O(h3).

4. Discretization of equations. The large-particle method will be discussed
in the following two steps.

Step 1. The integral form of (2.2) can be expressed as follows:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

∫
Ω

ρudΩ +

∫
∂Ω

p · nxds = 0,

∂

∂t

∫
Ω

ρvdΩ +

∫
∂Ω

p · nyds = 0,

∂

∂t

∫
Ω

ρEdΩ +

∫
∂Ω

p · (unx + vny)ds = 0.

The value of state variables on the edge of the triangular cell can be obtained by
solving the “Riemann” problem [6]. We discretize (4.1) on triangle A:

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũA = ūA − Δt
|A|ρ̄A

3∑
k=1

(
2∑
q=1

ωq · p∗Ak,q
)
· nkxsk,

ṽA = v̄A − Δt
|A|ρ̄A

3∑
k=1

(
2∑
q=1

ωq · p∗Ak,q
)
· nkysk,

ẼA = ĒA − Δt
|A|ρ̄A

3∑
k=1

(
2∑
q=1

ωq · p∗Ak,q
)
· Un∗Ak,qsk,

where ūA is the approximation of 1
|A|
∫
A
udΩ, p∗Ak,q and U∗

Ak,q
are the pressure and

component of the velocity vector along the direction normal to the triangular edge k,
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respectively, q is the qth Gauss quadrature point at the kth edge of triangle A, and
sk is the length of the kth edge of triangle A. p∗Ak,q and U∗

Ak,q
can be obtained by

solving the “Riemann” problem. Now we describe the process briefly.
Along the normal direction at the Gauss quadrature point to a common edge, one

considers the one-dimensional “Riemann” problem. The states on the left and right
sides of the edge are as follows:

(4.3) (ρ, Un, p)L,q, (ρ, Un, p)R,q,

where Un is the component of the velocity vector in the direction normal to the edge
at the qth Gauss quadrature point, i.e., Un = nx ·u+ny ·v. The value of flow variables
at (4.3) can be calculated by WQP; then p∗ and U∗ can be obtained by solving the
one-dimensional “Riemann” problem similar to [6].

Step 2. The integral form of (2.3) is as follows:

(4.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

∫
Ω

ρdΩ +

∫
∂Ω

ρ(unx + vny)ds = 0,

∂

∂t

∫
Ω

ρudΩ +

∫
∂Ω

ρu(unx + vny)ds = 0,

∂

∂t

∫
Ω

ρvdΩ +

∫
∂Ω

ρv(unx + vny)ds = 0,

∂

∂t

∫
Ω

ρEdΩ +

∫
∂Ω

ρE(unx + vny)ds = 0.

We will get the approximate solution of the equations by means of the upwind
method; for example, the approximation of the first equation in (4.4) is expressed as
follows

(4.5) ρn+1
A = ρ̃A − Δt

|A|
3∑
k=1

(
2∑
q=1

ωqρ̃A′
k,q
ŨA′

k,q

)
sk,

where ŨA′
k,q

= ũA′
k,q
· nkx + ṽA′

k,q
· nky , ρ̃A′

k,q
, ũA′

k,q
, and ṽA′

k,q
are the approximate

values at the qth Gauss quadrature point of the kth edge in triangle A′; their values
can be obtained by WQP. The fact that the cell A′ represents cell A or its adjacent
should be determined by the direction of normal velocity vector.

5. Numerical tests. Two typical flows were computed by use of the present
method and another method [12].

Test 1. Plate shock wave reflection. The typical parameters of this example are
as follows: Mach number is 2.9, the projection angle of shock wave is 29◦, the length
of x direction and y direction are 4 and 1, respectively. Figure 1 shows the Mach
contours and Figure 2 shows the pressure distribution along the x direction at y = 0.5.
Obviously, the transitional width of shock wave of this method is narrower than that
of the other method [12]. By the use of the present method, the number of points in
the transitional region of shock wave decreases from 10 to 6 and from 12 to 6 in the
projection and reflection shock waves, respectively.

Test 2. Blunt cylinder flow. Mach number is 6.0, the radius of cylinder is 0.3.
Figure 3 shows the Mach contours. Figure 4 shows the pressure distribution along
flow direction at front of cylinder. Figure 5 shows the pressure distribution across
the upper shock wave at x = 1. From Figures 4 and 5, we see that the calculated
transitional width of shock wave by the new method is narrower than that of [12],
and this new method is nonoscillatory.
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Fig. 1. Mach contours for plate shock wave reflection in (a) [12], (b) this paper.
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Fig. 2. Pressure distribution along x direction at y = 0.5 in (a) [12], (b) this paper.
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Fig. 3. Mach contours for blunt cylinder flow in (a) [12], (b) this paper.
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Fig. 4. Pressure distribution at front of cylinder at y = 0 in (a) [12], (b) this paper.
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Fig. 5. Pressure distribution across the upper shock wave at x = 1 in (a) [12], (b) this paper.

6. Conclusion. According to the two tests, we can conclude that the accuracy
of the present method is higher than that of the other method [12]. The calculated
shock wave transitional region of the present method is narrower than that of [12],
and it is nonoscillatory. The CPU time and memory of the new method are 280%
and 85% more than that of [12], respectively.
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Abstract. Effective discretization of parametric curves has many applications in computational
fields, ranging from evaluation and representation of complex geometries to geometric processing, grid
generation, and numerical simulation. This paper presents a study of methods for point distribution
on curves. Two direct approaches, adaptive resolution refinement and hybrid grid point distribution,
are presented that generate high fidelity discrete approximations of parametric curves. Additionally,
two smoothing techniques, parametric and nonparametric curve grid smoothing, are presented for
the optimization of discrete curve data. This paper discusses these techniques in detail, presenting
effective algorithms as well as a theoretical development of the methods.

Key words. point distribution density, adaptive resolution refinement, hybrid point distribu-
tion, curve grid smoothing

AMS subject classifications. 53A04, 65D10, 65M50, 68U05
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1. Introduction. Many potential applications of effective curve point distribu-
tion algorithms exist, including support for geometric evaluation and representation
such as curve-curve intersection operations, surface trimming, curve mapping and
comparison, and as boundary discretization methods to support grid generation and
field simulation. Computational applications based on discrete curves often require
that the curve approximation is faithful to the actual curve within a tolerance bound
with a computational representation that can be stored and evaluated effectively. In-
tuitively, it is not necessary to use many discrete points to represent a line or a curve
with minimum curvature. However, to accurately capture a complex curve with a
large variation in curvature requires many more points. Ideally, one desires an adap-
tive approach where few points are used in linear regions allowing the concentration
of points in the areas of high curvature without using an excessive number of points
across the global representation.

In the literature, the problem of sampling a given set of points to capture the
physical features of the curve has been approached from several different angles. In
particular, the curvature-based sampling of Kosters [1] minimizes the angular devi-
ation of the surface normal along parametric curves. Li [2] develops an adaptive
sampling technique based on solving a system of nonlinear equations derived from
a minimization principle. Anderson, Khamayseh, and Jean [3] and Cuilliere [4] de-
velop recursive refinement algorithms based on feature recognition and a local node
placement strategy for adaptive sampling of high fidelity continuum parameteriza-
tions. Also in [4], Cuilliere presents a direct (i.e., noniterative) algorithm for node
placement; however, this algorithm requires the curve to be twice differentiable. If
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the second derivative does not exist or is erratic, the curve discretization will not
be guaranteed to be within the desired tolerance. This is a severe requirement since
in many cases of geometric modeling, parametric curves are represented as B-splines
with first derivatives discontinuous.

The accuracy of a numerical simulation on a field problem depends not only
on the formal order of the approximation but also on the distribution of the grid
points. An error analysis reveals that the accuracy of the approximation is related
to the quality of the grid. Hoffman [5] and Vinokur [6] have analyzed the effect of
the grid on truncation error for one-dimensional problems. In addition, curve point
distribution (or stretching) functions are often used for distributing grid points along
boundary curves of planar regions and surfaces, and along edges of three-dimensional
regions. Boundary point distribution is often regarded as the initial step for algebraic
or elliptic grid generation methods (see Mastin [7], Khamayseh and Kuprat [8], and
Soni and Yang [9]).

In certain applications, curves obtained from physics-based simulations are fre-
quently “jagged” or “nonsmooth,” and are often unsuitable as direct input for sub-
sequent simulations. For example, Potts model simulations of metallic grain growth
describe interfaces between differing grains as a series of “stair-steps.” The jagged
stair-step interfaces are an artifact of the simulation and will produce incorrect results
in subsequent simulations unless the interfaces are smoothed. Another example would
be the Lagrangian surface motion of a fluid flow which could leave surfaces convoluted
after a transient evolution; these surfaces exhibit high frequency artifacts that render
the surfaces unsuitable for direct use in further calculations.

A popular approach to curve grid smoothing was developed by Taubin [10]. This
method uses a low-pass filtering technique which removes large curvature variations
and prevents shrinkage. Another approach to smoothing relies on the evolution of
the curve grid by mean curvature, such as in Miller [11]. These methods can easily
mitigate high frequency effects and stair-step phenomena in the grid but conserve
neither the shape of the curve nor the area bounded by the curve.

This paper presents two efficient algorithms for the discretization of parametric
curves. The first approach, adaptive resolution refinement, seeks to accurately decom-
pose the curve for the purposes of geometric evaluation, processing, and visualization,
while minimizing the total number of nodes needed for its representation. For grid
generation and field simulation, the approach of hybrid grid point distribution is pro-
posed. This algorithm supports the generation of grids on parametric curves allowing
point distribution to be focused on parameters measuring the arclength, curvature,
or specified attractors, alone or in unison, to achieve a suitable curve discretization.

In addition, two techniques for curve grid smoothing are examined, parametric
and nonparametric. Parametric grid smoothing is used to obtain a smooth variation in
discrete curve edge length along the curve without sacrificing the fidelity between the
discrete approximation and the parametric basis of the curve. This method provides
a smooth boundary edge discretization for surface grid generation applications.

The second technique, nonparametric area conserving smoothing, is targeted at
applications where the input discrete approximation is suspect, but the integrated
area enclosed is known with confidence. This approach, for example, will rapidly
deform a “stair-stepped” closed curve into a smoothed curve enclosing the specified
area (conserving that area to round-off). This technique of grid smoothing is used
to obtain a smooth curve approximation by reducing high frequency variation of the
input discrete data and the represented geometry. This development explores these
techniques in some detail, presenting algorithms as well as the theoretical basis.
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2. Curve adaptive resolution refinement. This section presents an auto-
matic adaptive method for sampling the parametric domain to construct a grid with
m segments on the represented curve in physical space. This discretization method
seeks to produce a high fidelity approximation of the parametric curve. The final goal
is to compute a minimal m such that the deviation of the discretized curve should
be within a specified tolerance of the actual curve. The deviation is defined to be
the distance of the piecewise linear polygonized curve from the true curve. It is de-
sirable that the polygonized curve be close to the true curve, since it is usually the
polygonized curve that is used in graphics applications such as rendering and region
selection.

The development of this algorithm requires the specification of the mathematical
form of the curve geometry. The following discussion assumes that the curve geometry
is available as a parametrically defined curve such as a conic curve, bezier curve, or
B-spline curve. This equates to the existence of a curve geometry definition in the
form of a mapping x(u) = (x(u), y(u), z(u)) from a parametric u-domain to a physical
(x, y, z)-domain.

In curve point distribution, the discretization process may be described as the
generation of a mapping from the discrete computational ξ-domain to the parametric
u-domain, resulting in the composite map x(ξ) = (x(ξ), y(ξ), z(ξ)). Physical space
is a subset of R

3, with parametric space a subset of R, which may be defined to be
the [0, 1] unit interval. Traditionally, computational space is denoted as a discrete
linear set of points ξ ∈ {0, 1, . . . ,m}, extended to the continuum [0,m] for mathemat-
ical convenience. The task of curve point distribution is the task of specifying the
distribution of the curve in the parametric domain

{
u(ξ)

∣∣ 0 ≤ ξ ≤ m}.
This curve in parametric space corresponds to the curve {x(u) | 0 ≤ u ≤ 1} in

physical space. If we select a continuum parameterization {u(ξ) | 0 ≤ ξ ≤ m}, then
the image of the curve x(u(ξ)) : [0,m]→ R

3 is, of course, equivalent to the image of
the curve x(u) : [0, 1] → R

3. However a “nearby” curve xPL(u(ξ)) : [0,m] → R
3 can

be constructed by defining

xPL(ξ) = x(ξ) if ξ ∈ {0, 1, . . . ,m},
and defining xPL(ξ) to be the piecewise linear interpolant of these points if ξ is not
an integer. xPL(ξ) is the “polygonized” version of x(u). It is our desire to find an
integer m and a mapping u(ξ) : [0,m]→ [0, 1] such that the greatest distance between
xPL(ξ) and x(ξ) is bounded by a user-supplied tolerance ε.

We define deviation on an interval [ξ, ξ + 1] by

dev([ξ, ξ + 1]) = max
u(ξ)≤u≤u(ξ+1)

min
0≤t≤1

‖x(u)− [tx(u(ξ)) + (1− t)x(u(ξ + 1))]‖.

In order to find the desired function u(ξ)—or, equivalently, ξ(u)—we define the point
density function ρ ≡ dξ

du so that

ξ(u) =

∫ u

0

ρ(w) dw.(2.1)

Now relative to a line tangent to x(u) at u, we typically have that to leading order
the distance from x(u) to the line is quadratic in u. This means the deviation on a
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typical interval obeys

dev([ξ, ξ + 1]) = max
u(ξ)≤u≤u(ξ+1)

min
0≤t≤1

‖x(u)− [tx(u(ξ)) + (1− t)x(u(ξ + 1))]‖

≈
∥∥∥∥x
(
u

(
ξ +

1

2

))
−
[
1

2
x(u(ξ)) +

1

2
x(u(ξ + 1))

]∥∥∥∥
≈ C

(
u

(
ξ +

1

2

))
‖xξ‖2.

That is, the deviation in an interval is proportional to the square of the grid spacing
with C(u), the constant of proportionality, depending on the curve parameter u.

We wish to construct u(ξ) so that dev([ξ, ξ + 1]) is the same on each interval
[ξ, ξ + 1]. Thus

√
dev([ξ, ξ + 1]) = K(2.2)

=
√
C(u)‖xξ‖.(2.3)

Consider a uniform fine grid parameterization u = ũ(ξ̃) = ξ̃
M with M large. Suppose

u(ξ) = ũ(ξ̃). Then if d̃ev([ξ̃, ξ̃+1]) represents the maximum deviation suffered by the
finely discretized curve in the interval [ξ̃, ξ̃ + 1], we have

√
d̃ev([ξ̃, ξ̃ + 1]) =

√
C

(
u

(
ξ̃ +

1

2

))
‖xξ̃‖

=
√
C(u)‖xu‖ũξ̃

=
√
C(u)‖xu‖ 1

M
.

(2.4)

Solving for
√
C(u) in (2.4) and (2.3) and equating the expressions, we obtain

√
d̃ev([ξ̃, ξ̃ + 1])

‖xu‖ 1
M

=
K

‖xξ‖
=

K

‖xu‖uξ .

Therefore,

1

uξ
=
M

K

√
d̃ev([ξ̃, ξ̃ + 1]).

Since ρ = 1
uξ

, this says that we should set

ρ ∝
√

d̃ev([ξ̃, ξ̃ + 1]).(2.5)

Our algorithm is thus to compute deviations on a fine uniform parameterization with
M intervals, to set

ρ =

√
d̃ev([ξ̃, ξ̃ + 1])
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on each interval [ξ̃, ξ̃ + 1], 0 ≤ ξ̃ ≤M − 1, and then to normalize ρ so that

∫ 1

0

ρ(w) dw = m,(2.6)

where m 	 M will be the actual number of points on the polygonized curve. With
the determination of ρ, we obtain ξ(u), which upon inversion gives us u(ξ), 0 ≤ ξ ≤ m,
the locations of the nodes in parametric space for the polygonized curve.

Finally, we must determine an m such that the deviation on each interval is
bounded by ε. Consider the cumulative distribution functions

dev(ξ) =

ξ−1∑
i=0

dev([i, i+ 1]), 0 ≤ ξ ≤ m,

and

d̃ev(ξ̃) =

ξ̃−1∑
i=0

d̃ev([i, i+ 1]), 0 ≤ ξ̃ ≤M.

Assume for the moment that u(ξ) is a uniform parameterization (i.e., u(ξ) = ξ
m ). In

this case,

dev(m) =

m−1∑
ξ=0

C

(
ξ + 1

2

m

)(
‖xu‖ 1

m

)2

and

d̃ev(M) =

M−1∑
ξ̃=0

C

(
ξ̃ + 1

2

M

)(
‖xu‖ 1

M

)2

≈ M

m

m−1∑
ξ=0

C

(
ξ + 1

2

m

)(
‖xu‖ 1

M

)2

=
m

M

m−1∑
ξ=0

C

(
ξ + 1

2

m

)(
‖xu‖ 1

m

)2

=
m

M
dev(m).

Hence,

M d̃ev(M) ≈ m dev(m).(2.7)

If we require that the average deviation in the polygonized curve satisfies

dev(m)

m
= ε,

then in light of (2.7), we set

M d̃ev(M) = εm2,
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so that

m =

√
M d̃ev(M)

ε
.(2.8)

If we use this value for m and compute u(ξ) with (2.1), (2.5), (2.6) rather than
u(ξ) = ξ

m as supposed in the above estimate, we do not expect the average deviation
dev(m)
m to increase because the distribution u(ξ) is generated with the intent to attract

grid nodes to regions of curvature and thus will probably decrease average deviation,
given a fixed number of nodes. Given this, by (2.2) we have that u(ξ) equidistributes
deviation, and so we expect that

max
0≤ξ≤m−1

dev([ξ, ξ + 1]) ≈ 1

m
dev(m) ≤ ε.

Thus, with the choice of m given by (2.8), we expect maximum deviation to be
bounded by the user-supplied tolerance ε.

In the interest of formulating a general implementation, this development will
further assume that the curve to be discretized is provided in the form of a nonuni-
form rational b-spline (nurbs) curve representation. A detailed discussion of nurbs
is available in Piegl and Tiller [12]. A nurbs curve x(u) = (x(u), y(u), z(u)) is a
piecewise rational curve given as

x(u) =

∑m
i=0 ωi di N

k
i (u)∑m

i=0 ωi Nk
i (u)

, u ∈ [uk−1, um+1],

and defined by
• an order k,
• control points di = (xi, yi, zi), i = 0, . . . ,m,
• real weights ωi, i = 0, . . . ,m,
• a set of real knots {u0, . . . , um+k | ui ≤ ui+1, i = 0, . . . , (m+ k − 1)},
• B-spline basis functions Nk

i (u), u ∈ [ui, ui+k], i = 0, . . . ,m, where

Nk
i (u) =

u− ui
ui+k−1 − ui N

k−1
i (u) +

ui+k − u
ui+k − ui+1

Nk−1
i+1 (u),

N1
i (u) =

{
1 if ui ≤ u < ui+1,
0 otherwise,

i = 0, . . . ,m, and

• curve segments xi(u), u ∈ [ui, ui+1], i = (k − 1), . . . ,m.
Given this supplementary information, it is now possible to express the adaptive point
distribution algorithm.

Algorithm 2.1. Adaptive resolution refinement.
Assume a nurbs curve x(u) with unique knots {ul | 0 ≤ l ≤ n}. For each

knot interval I = [ul−1, ul] create an initial distribution of (M + 1) points uI0 =
ul−1, u

I
1, . . . , u

I
M = ul that are used to compute the total deviation from the actual

parametric curve. The user must specify a large enough M and maximum deviation
tolerance ε. Typical values are ε = 10−2 for visualization purposes and ε = 10−5 for
geometric computations.

1. Initialize the first adaptive grid point u∗0 ← u0 and a point counter k ← 1.

2. For each unique knot interval I = [ul−1, ul] do
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a) Initialize grid function ξ to zero.

Do i = 0, . . . ,M
ξi ← 0

b) Subdivide the curve over the interval I.

Do i = 0, . . . ,M
uIi ←

(
i
M

)
ul +

(
1− i

M

)
ul−1

c) Compute the grid function ξ by summing square roots of deviations.

totaldev ← 0
Do i = 1, . . . ,M

x̃← x( 1
2 (uIi−1 + uIi ))

a← x(uIi )− x(uIi−1)
b← x̃− x(uIi−1)

t← a·b
a·a (Usually t ≈ 1

2)
dev ← ‖t x(uIi ) + (1− t) x(uIi−1)− x̃‖
ξi ← ξi−1 +

√
dev

totaldev ← totaldev + dev

d) Compute the number of adaptive refinement points over this interval
using the total deviation and the user-specified epsilon.

mI ←
√

M totaldev
ε + 1

e) Increase the size of the array u∗ by mI to hold the additional
adaptive refinement points.

f) Normalize the grid function ξ to have ξM = mI .

Do i = 1, . . . ,M − 1
ξi ← mI

ξi
ξM

ξM ← mI

g) Obtain the point distribution by inverting the grid function.

j ← 1
Do i = 1, . . . ,M

Do while (j ≤ ξi)
u∗k ← uIi−1

ξi−j
ξi−ξi−1

+ uIi
j−ξi−1

ξi−ξi−1
(Obtain uIi−1 < u∗k ≤ uIi using linear

interpolation)
k ← k + 1
j ← j + 1.

Figure 2.1 is an example which exhibits the effectiveness of this algorithm when
applied to a nurbs curve with varying curvature. This curve was formed by joining
linear, quadratic, and cubic segments into a single nurbs curve. In this example, a
total number of m = 220 intervals are used in order to limit the maximum deviation
to less than the ε = 10−3 tolerance. The discretization method clearly concentrates
points in areas of high curvature while economizing the number of points used in
linear and low curvature regions of the curve. Our method is suitable for curves with
first derivatives discontinuous as shown in the figure. It computes a sufficient number
of nodes needed in order for the polygonized discretization of the curve to be accurate
within a tolerance, and the method requires only the evaluation of the curve function
and not its derivatives.
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Fig. 2.1. Adaptive point distribution on a nurbs curve.

3. Hybrid grid point distribution. The adaptive discretization method was
targeted at obtaining a high degree of geometric fidelity of the approximation when
compared with the original parametric curve. The hybrid approach is targeted at
achieving a compromise between geometric fidelity and external application con-
straints. Depending on the eventual use of the discretization, numerical considerations
may favor relaxing conformality of the discretization to achieve enhanced accuracy
within the target application.

This section again assumes that the curve is defined as a differentiable para-
metric curve x(u). In addition to requiring that u(ξ) is an isomorphism, it is often
constructive to constrain the u(ξ) mapping such that the composite map x(ξ) has the
following additional properties to reduce the potential for numerical error: (1) grid
points should be closely spaced in the physical domain where large numerical errors
are expected, and (2) the angular deviation of grid edges should vary smoothly along
the curve.

The methodology of constructing a grid of m intervals on a physical curve begins
with the specification of the point distribution along the curve. This is equivalent to
specifying the distribution of the curve in the parametric domain

{
u(ξ)

∣∣ 0 ≤ ξ ≤ m}
which corresponds to the curve {x(u) | 0 ≤ u ≤ 1} in physical space. The final
task is to derive {u(ξ) | 0 ≤ ξ ≤ m} such that {x(u(ξ)) | 0 ≤ ξ ≤ m} is a “good”
parameterization of the boundary curve x(u).

Again, obtaining u(ξ) is equivalent to finding ξ(u). With the definition ρ(u) ≡ dξ
du ,

ξ(u) =

∫ u

0

ρ(w) dw.

For the hybrid case, a more complex set of physical considerations are typically in-
volved in the construction of the grid point density function, ρ. Possible approaches
include the following:

1. Equal arclength spacing where points are separated by equal distances in
physical space. For this case, grid point density should be proportional to
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the rate of change of arclength, or ρ ∝ ‖x′‖.
2. Curvature weighted arclength spacing, where points are concentrated in areas

of large curvature. For this case,

ρ ∝ κ(u)‖x′‖,
where κ(u) is the curvature of the curve x(u) at u.

3. Grid attraction to an attractor point u� in parametric space (corresponding
to a point x� = x(u�) in physical space). A typical case is u� = 0 or u� = 1,
when one desires to capture a small length scale (such as a Navier–Stokes
boundary layer) at one end of the boundary curve. Alternatively, 0 < u� < 1
would focus refinement near a point in the interior of the curve. For these
cases, a good choice for ρ is

ρu�(u) ∝ 1√(
k(u− u�))2 + 1

,

where k is a strength factor which determines the degree of attraction to u�.

3.1. Hybrid grid density functions. In practice, the user will likely desire
a hybrid grid density function which is a linear combination of several of the above
considerations. In this case, multiple density functions ρi may be combined, each

normalized such that
∫ 1

0
ρi du = ξ(1) − ξ(0) = m. Given positive constants λi

such that
∑
λi = 1, ρ =

∑
λiρi expresses a grid density function with suitable

normalization. This hybrid density function will migrate grid points into regions
where any one of the functions ρi mandate refinement. Using this concept, it is
possible to distribute grid points based on the hybrid criteria of arclength, curvature,
and attraction to a set {u�i } of distinct points.

This section presents an algorithm for grid point distribution along boundary
curves based on a hybrid grid density function. The principle of the algorithm is to
construct ρ(u) on a relatively fine grid of points ũi = i

M , 0 ≤ i ≤ M , where M is

5–10 times larger than m. The grid function ξ(u) =
∫ u
0
ρ(w) dw is then evaluated by

integrating ρ on the fine grid with the curve points u(ξ) generated in the parametric
space of the curve by inverting the grid function ξ(u).

This algorithm is based on the following quantitative considerations that provide
control over point migration:

1. The grid density function for arclength is given by

ρs(u) =
m‖x′(u)‖∫ 1

0
‖x′(w)‖ dw

.

In this case, m∫ 1

0
‖x′(w)‖ dw

is the normalization required such that
∫ 1

0
ρs(u) du =

m. If u = ũi and du = ũi − ũi−1, the approximation

‖x′(ũi)‖ du ≈ ‖x(ũi)− x(ũi−1)‖
may be employed.

2. The grid density function for curvature weighted arclength is

ρκ(u) =
mκ(u)‖x′(u)‖∫ 1

0
κ(w)‖x′(w)‖ dw

.
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By definition, κ(u) = dθ
ds , where dθ is the angular change in the direction of

the tangent of the curve during a small traversal of arclength ds along the
curve. Thus,

κ(u)‖x′(u)‖ =
dθ

ds

ds

du
=
dθ

du
.

If u = ũi, a simplifying approximation may be used,

κ(ũi)‖x′(ũi)‖ du ≈ θi − θi−1

= ‖ti − ti−1‖,

where ti ≡ x′(ũi)
‖x′(ũi)‖ is the unit tangent vector to the physical curve at ũi.

If the total integrated curvature
∫ 1

0
κ(u)‖x′(u)‖ du ≈ ∑M

i=1 ‖ti − ti−1‖ is
less than some minimal angular tolerance (say εκ = .01 radian), then the
curvature weighted arclength is replaced with a simple arclength expression
as a criterion for grid point distribution. This substitution avoids distributing
points based on a quantity which is numerically small, which could lead to a
nonsmooth distribution.

3. The grid density function for attraction (with strength k) to a point u� is
given by

ρu�(u) = m
1√(

k(u− u�))2 + 1

/∫ 1

0

1(
k(w − u�))2 + 1

dw,

∫ u

o

ρu�(w) dw = m
arcsinh

(
k(u− u�))+ arcsinh(ku�)

arcsinh
(
k(1− u�))+ arcsinh(ku�)

.

(3.1)

If u� = 0,

∫ u

0

ρ0(w) dw = m
arcsinh(ku)

arcsinh(k)
.

This leads to a grid distribution of the form

u(ξ) =
sinh(αξm )

sinhα
.

It has been noted that the smoothness of this distribution in the vicinity of
u� = 0 results in a smaller truncation error (in finite difference expressions)
than “exponential” functions that often approach the attractor point in a
more severe fashion (Thompson, Warsi, and Mastin [13]).

Algorithm 3.1. Hybrid grid point distribution.

Assume a physical curve x(u), 0 ≤ u ≤ 1. Given weights λs, λκ, points {u�i | 0 ≤
u�i ≤ 1, 1 ≤ i ≤ p}, weights {λi | 1 ≤ i ≤ p}, and strengths {ki|ki ≥ 0, 1 ≤ i ≤ p}
where λs+λκ+

∑p
i=1 λi = 1, create a distribution of m+1 points u0, u1, . . . , um that

are simultaneously attracted to each of the points in {u�i }, placed in regions of high
curvature, and placed to avoid large gaps in arclength. The user must also specify a
parametric grid resolution M ≥ m and a minimum integrated curvature tolerance εκ.
(The authors suggest M = 5m and εκ = 10−3.)
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1. Initialize the grid function ξ to zero.

Do i = 1, . . . ,M

ξi ← 0

2. Compute arclengths. Rescale such that the maximum scaled arclength is m.

Add to ξ, weighted by λs.

s0 ← 0

Do i = 1, . . . ,M

si ← si−1 + ‖x( i
M )− x( i−1

M )‖
Do i = 1, . . . ,M

si ← m si
sM

ξi ← ξi + λssi

3. Compute curvature weighted arclengths on fine grid. Check if curve has a

nontrivial amount of curvature. If so, normalize to m and add into ξ, weighted

by λκ. Otherwise, use arclength instead.

Do i = 0, . . . ,M

t(i)← x′( i
M )
/‖x′( i

M )‖
θ0 ← 0

Do i = 1, . . . ,M

θi ← θi−1 + ‖t(i)− t(i− 1)‖
If (θM ≥ εκ), then

Do i = 1, . . . ,M

θi ← m θi
θM

ξi ← ξi + λκθi
Else

Do i = 1, . . . ,M

ξi ← ξi + λκsi

4. Add in contributions to grid function due to attractor points.

Do j = 1, . . . , p

Do i = 1, . . . ,M

ξi ← ξi + λjm
arcsinh

(
kj(

i
M−u�j )

)
+arcsinh(kju

�
j )

arcsinh
(
kj(1−u�j )

)
+arcsinh(kju�j )

5. Obtain point distribution by inverting grid function.

ξM ← m (Force final grid function value to be exactly m)

u0 ← 0

j ← 1

Do i = 1, . . . ,M

Do while (j ≤ ξi)
uj ← i

M− 1
M

ξi−j
ξi−ξi−1

(Obtain i−1
M < uj ≤ i

M using linear interpolation)

j ← j + 1.

3.2. Determination of weights λs, λκ, λi and strengths ki. When using
the boundary point distribution algorithm, one must choose weights λs, λκ, λi and
strengths ki. As a rough estimate, it is sufficient to select these weights to be equal
with a unity summation constraint. For example, if one desires a distribution on
arclength and two attractor points, set λs = λ1 = λ2 = 1

3 . (In this case, λκ = 0.)
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When expressing the strengths ki on the attractor points u�i , one must further
consider the degree of concentration required by the particular application. Given the
case of a single attractor point u� = u�1, (3.1) suggests that

ρ(u) = m

k

/√(
k(u− u�))2 + 1

arcsinh
(
k(1− u�))+ arcsinh(ku�)

or

ρ(u�) = m
k

arcsinh
(
k(1− u�))+ arcsinh(ku�)

≥ m k

2 arcsinh(k2 )
.

(3.2)

For example, choosing k = 100 would provide ρ(u�) ≥ 10m, which results in grid
points packed in the neighborhood of u� with a density in excess of 10 times of the
average grid density ρave = m. As a second example, suppose one desires to construct

a grid with a specified value of ρ(u
�)

m , or, alternatively, specifies an excess grid density
at the attractor u�. For this case, a heuristic expression

k = 15
ρ(u�)

m
(3.3)

may be used, adjusted as necessary to provide the desired result. One could alterna-
tively solve the nonlinear equation (3.2) for k exactly. The presence of other criteria
(such as arclength, curvature, or other attractor points) in this expression may sup-
port the desire to predict a solution using (3.3) and correcting this result, iteratively,
by the adjustment of k as necessary.

If one desires a certain grid spacing Δx in the region near x� = x(u�), consider
that

Δx = ‖xξ‖
∣∣∣∣
u=u�

= ‖x′ · uξ‖
∣∣∣∣
u=u�

=
‖x′(u�)‖
ρ(u�)

.

Equation (3.3) yields

k = 15
‖x′(u�)‖
mΔx

,

an estimate for the strength k required to obtain a grid with the desired spacing Δx
near the attractor x� = x(u�) on the physical curve x(u(ξ)).

Figure 3.1 illustrates an example of the hybrid method applied to a parametric
curve. This illustration was produced with Algorithm 3.1, where λs = λκ = 1

2 . In
this case, the points are distributed equally according to both arclength and curvature
weighting. The effect of curvature distribution is clearly seen; the grid points are
clustered in areas of high curvature. The fact that arclength is additionally considered
is evidenced by the nonzero density of grid points in areas where curvature is small
or absent.

Figure 3.2 illustrates an example where the influence of two attractor points on
the curve is considered in addition to arclength and curvature weighting. These
attractor points are located at both endpoints of the curve. The parameters used for
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Fig. 3.1. Point distribution based on arclength and curvature.

Fig. 3.2. Curve grid with point distribution based on arclength, curvature, and two attractor
points.

the curve point distribution in this result are λs = λκ = λ1 = λ2 = 1
4 , k1 = k2 = 120,

and u�1 = 0 and u�2 = 1. Examining (3.3), ki = 120 implies that the grid should
be packed in the neighborhood of the attractors u�i at a density approximately eight
times higher than the average grid point density. Close examination of the figure near
the endpoints reveals that this clustering was achieved.

4. Parametric curve grid smoothing. This section assumes that the topology
of the curve grid (i.e., the number of points on the curve) is fixed and presents a
technique useful for smoothing these curve grids.

A popular approach to curve grid smoothing is based on the use of the mapping
from parametric space to the physical domain; the physical grid is smoothed via
operations applied to the parametric representation. This approach assumes that a
mapping from parametric space exists to allow smoothing of the curve grid in the
parametric domain and to preserve the physical shape of the curve.

This approach often involves solving an elliptic partial differential equation to slide
the grid points along the curve, leading to the satisfaction of some equidistribution
principle. An initial point distribution must be present to provide a discretization for
the elliptic system and an “initial guess” for its iterative solution. This distribution is
assumed to be a mapping x(ξ) from computational space [0,m] to the physical curve.
As in previous sections, here grid points are the points at ξ = i with 0 ≤ i ≤ m. The
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initial mapping x(ξ) is often obtained using an auxiliary uniform point distribution
in the parametric domain, xi = x(ui), where ui = i

m . If the curve geometry is poorly
parameterized, this uniform distribution in parametric space will correspond to an
unacceptable point distribution in physical space, and the curve point distribution
will have to be smoothed.

Our elliptic smoothing method uses the one-dimensional equidistribution princi-
ple,

wsξ = c (constant),

where w ≡ w(s) is the spacing weight function and is taken as a function of the arc
length s of the curve. The grid point distribution resulting from this equidistribution
represents the solution of the following elliptic system and, provided that w is smooth,
results in a smooth arclength distribution regardless of the parameterization of the
curve. The above differential equation is equivalent to

sξξ + φ(s)sξ = 0

with boundary conditions

sξ = ‖Δx‖ for ξ = 0,m.

The one-dimensional spacing function φ(s) =
wξ
w is taken to be a function of the

arclength s of the curve. (However, it must be noted that φ = φ(s) depends on the
choice of u(ξ) and that φ(s) will have to be recomputed whenever u(ξ) is changed in
the iterative smoothing process.) In the absence of the spacing function, i.e., φ = 0,
the elliptic equation tends to produce the smoothest possible uniform curve grid. The
boundary conditions allow for the specified grid spacings at either end of the curve.

The change in the arclength of the curve is given by ds = du‖xu‖. Therefore,

sξξ =
xu · xuuu2

ξ + xu · xuuξξ
‖xu‖ ,

where sξ = suuξ = ‖xu‖uξ. Thus, u is a solution of the following quasi-linear elliptic
equation:

uξξ + φuξ = −u2
ξ

xu · xuu
xu · xu .

The boundary conditions are represented by

uξ =
‖Δx‖
‖xu‖ for ξ = 0,m.

To implement the elliptic equation on a given parametric boundary curve, u0

and um are obtained from the initial curve grid. The first two points interior of
the curve endpoints, u1 and um−1, are computed from the boundary conditions with
user-specified spacings ‖Δxl‖ and ‖Δxr‖ at both ends of the curve,

u1 = u0 +
‖Δxl‖
‖xu0‖

,

um−1 = um − ‖Δxr‖
‖xum‖

.
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The user-specified point density on the remainder of the curve is provided by the
parametric values ui for i = 2, . . . ,m− 2. Linear interpolation,

ui = tium−1 + (1− ti)u1, ti =
i− 1

m− 2
for i = 2, . . . ,m− 2,

is used to provide the initial locations of these points. Redistribution of these in-
terpolated points is imposed by adjusting the spacing function φ near the boundary,
while holding the coordinates of the boundary points constant. To accomplish this,
the spacing function is evaluated at i = 1 and i = m− 1 using

φi = −uξξ
uξ

∣∣∣∣
i

− uξ xu · xuu
xu · xu

∣∣∣∣
i

for i = 1,m− 1.

The function φ is distributed to the remaining points on the curve, again using linear
interpolation,

φi = tiφm−1 + (1− ti)φ1, ti =
i− 1

m− 2
for i = 2, . . . ,m− 2.

A standard discretization technique that may be used is central differencing in
the ξ domain. In this approach, the difference operator is applied to the interior nodes
on the curve to solve for xi = (xi, yi, zi) in an iterative manner. Let (uξ)i denote the
central difference 1

2 (ui+1− ui−1), and (uξξ)i ≈ ui+1− 2ui + ui−1. To solve for ui, the
old parameter value is used to solve for the new ui to provide xi = x(ui) along the
curve,

ui =
1

2
(ui+1 + ui−1)

+
1

4
(ui+1 − ui−1)φi

+
1

8
(ui+1 − ui−1)

2

(
xu · xuu
xu · xu

)
i

for i = 2, . . . ,m− 2.

This difference equation is evaluated for ui each iterative cycle.
As previously mentioned, the spacing function φi must be refreshed every iteration

prior to the computation of ui. However, the curve boundary points u0, u1, um−1, and
um need only to be initialized at the beginning of the relaxation cycle for each curve.
This relaxation procedure is applied until convergence is achieved.

The quantities in the difference equation involve two types of approximations. The
derivative of the parametric variables with respect to the computational variables uξ
and uξξ are approximated using a finite difference expression, whereas the derivative
terms of the physical variables with respect to the parametric variables xu and xuu
are computed analytically from the curve definition x(u). This development leads
directly to the equidistribution algorithm for curve grid smoothing.

Algorithm 4.1. Parametric curve grid smoothing.
Assume a physical curve x(u), 0 ≤ u ≤ 1, with a set of m+ 1 discrete points on

x(u) defined by monotonically increasing parametric values {ui| 0 ≤ i ≤ m}. Assume
user specified spacing ‖Δxl‖, ‖Δxr‖, stopping criteria (number of “sweeps”), and a
relaxation parameter ω ∈ (0, 1].

1. Initialize curve grid distribution.
u0 ← 0
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Fig. 4.1. Initial curve grid with poor point distribution (top); elliptic curve grid with smoothly
varying point distribution (bottom).

um ← 1

u1 ← u0 + ‖Δxl‖
‖xu0

‖
um−1 ← um − ‖Δxr‖

‖xum‖
Do i = 2, . . . ,m− 2
ti ← i−1

m−2
ui ← tium−1 + (1− ti)u1

2. Repeat (sweep) until “done”
φ1 ← −2u2−2u1+u0

u2−u0
− u2−u0

2
xu·xuu
xu·xu

∣∣
u1

φm−1 ← −2um−2um−1+um−2

um−um−2
− um−um−2

2
xu·xuu
xu·xu

∣∣
um−1

Do i = 2, . . . ,m− 2
ti ← i−1

m−2
φi ← tiφm−1 + (1− ti)φ1

Do i = 2, . . . ,m− 2
us ← 1

2 (ui+1 + ui−1) + 1
4 (ui+1 − ui−1)φi + 1

8 (ui+1 − ui−1)
2 xu·xuu

xu·xu
∣∣
ui

ui ← (1− ω)ui + ωus.
Figure 4.1 illustrates the effect of the elliptic grid smoothing algorithm applied

to a curve geometry. The initial grid distribution clearly exhibits a nonuniform dis-
tribution of grid points in several regions. This grid defect could conceivably lead to
unacceptable artifacts in a computation involving the grid. The elliptically smoothed
grid exhibits a smooth point distribution after a few iterations. In this example,
the smoothing was performed with specified physical spacings ‖Δxl‖ = 0.08 and
‖Δxr‖ = 0.04. We observe that the grid point spacings are enforced near the ends
of the curve, while the spacings in the middle of the curve are smoothly varying.
Naturally, the spacings in the interior of the curve are determined more by the fixed
number of points on the curve than by the endpoint spacing boundary conditions.

5. Nonparametric curve grid smoothing. The last smoothing algorithm
considered in this paper is a method that seeks to simultaneously equidistribute points
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along a geometric curve while reformulating this curve based on a set of physical con-
straints. In fact, the development here generalizes [14] by introducing for nonplanar
curves the notion of smoothing while locally conserving area in the osculating plane
and simultaneously conserving torsion.

Curves in the space obtained from field simulations frequently display “non-
smooth” artifacts and may be generally unsuitable as input for subsequent simu-
lations. However, one desires that any smoothing operation be physically relevant;
i.e., one may desire that the smoothing process be area- or mass-conservative with
respect to an enclosed region.

In contrast with the previous smoothing approach, this method does not require a
mapping from parametric space to the physical curve and vice versa. This method was
developed in an attempt to preserve the area (or mass) that the curve grid encloses
while sacrificing that the exact shape of the curve be preserved. In certain situations,
exact preservation of the curve shape may be undesirable (e.g., in the case of “stair-
step” curves).

This section develops a nonparametric area-conserving smoothing approach of
planar curve grids (with generalization to space curve grids). This approach is de-
signed to rapidly deform a “stair-stepped” closed curve into a smoothed curve which
encloses the same area as the original to machine round-off error. To accomplish this,
the area-conserving approach allows small deformations in the shape of the curve ge-
ometry. However, the degree of curve deformation can be limited by controlling the
number of smoothing iterations performed. Additionally, the notion of area conser-
vation is generalized to allow for the extension of the scheme to nonclosed curve grids
in the plane and to space curves.

Consider a non-self-intersecting piecewise linear curve Γ = (x0,x1, . . . ,xn−1,xn)
consisting of n line segments in R

2 or R
3. The goal of this section is to develop a

smoothing operation on this curve that can be performed locally at each xi and that
involves slightly altering the position of xi based on nearby or adjacent data points
({xi−m,xi−m+1, . . . ,xi+m} with m small). More generally, the smoothing operation
may depend on points in {xi−m,xi−m+1, . . . ,xi+m} and involve moving one or more
points in this neighborhood. The smoothing operation should be constrained such
that the area of each triangle (xi−1,xi,xi+1) is not modified. The area constraint
allows the curve to be smoothed without shrinkage. Given the definition of a sweep as
one iteration of the local smoothing operation applied on a subset of the points that
describe the curve in some sequential order, one desires that only a small number of
sweeps through the curve data be required to smooth the overall appearance of the
curve.

For a curve in R
2, area conservation is defined as conserving the signed area

of Γ (given a counter clockwise orientation). A simplistic approach at a smoothing
operation providing conservation is depicted in Figure 5.1. For this example, consider
the three points x0,x1, and x2 along Γ. By moving the central point x1 parallel to the
line segment x0x2, one is assured conservation of area. Further, by moving x1 such
that the projection of x1 onto x0x2 occurs midway between x0 and x2, one achieves
equal spacing of the segments x0x1 and x1x2 when projected onto the segment x0x2.

Formally, an algorithm based on this one-point smoothing operation is as follows.
Let a = (x2−x0)×(x1−x0) be the area vector of triangle (x0,x2,x1). (If Γ is planar,
we consider it embedded in the x-y plane of R

3.) The targeted area of the triangle is
1
2‖x2 − x0‖h, where h is the height of x1 above the baseline segment x0x2. Then,

h =
‖a‖

‖x2 − x0‖ .
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Fig. 5.1. One-point smoothing operation: Movement of x1 parallel to x0x2 assures conservation
of area under curve (x0,x1,x2).

Let n̂ = a×(x2−x0)
‖a×(x2−x0)‖ be the unit normal to the baseline x0x2. The smoothing opera-

tion then involves repositioning x1 from its original position to

xnew
1 =

1

2
(x0 + x2) + hn̂.

If Γ is planar, this action will exactly conserve the area under the curve; if Γ is not
planar, this action will at least preserve the local area under the curve in the plane
containing the triangle {x0,x1,x2}, which corresponds to the osculating plane of a
parametric curve. Sweeping through the nodes in sequential order, one obtains the
following algorithm.

Algorithm 5.1. Nonparametric curve grid smoothing using node relaxation.
Repeat (sweep) until “done”

Do i = 1, . . . , n− 1
[Perform smoothing operation on neighborhood {xi,xi+1,xi+2}

(i.e., relax node xi+1)]
xold ← xi+1

[Smooth in tangential direction.]
xi+1 ← 1

2 (xi + xi+2)
[In nondegenerate case, conserve area.]
a← (xi+2 − xi)× (xold − xi)
If (‖a× (xi+2 − xi)‖ > “a tiny number”), then

n̂← a×(xi+2−xi)
‖a×(xi+2−xi)‖

h← ‖a‖
‖(xi+2−xi)‖

xi+1 ← xi+1 + hn̂.
The simplistic basis of Algorithm 5.1 leads to a serious deficiency. Given the

definition of the direction −−→x0x2 shown in Figure 5.1 as “tangential” to Γ and the
direction orthogonal to −−→x0x2 as the “normal” direction, the one-point smoothing
operation smooths only in the tangential direction. Any smoothing in the normal
direction is forbidden by the conservation of area requirement. Because of the absence
of normal smoothing, some star-shaped regions will not be addressed by the smoothing
operation. It is therefore necessary to design a local smoothing operation that includes
normal smoothing.

Consider four sequential points x0, x1, x2, and x3 along Γ. Again, −−→x0x3 is the
direction tangential to the curve, and the direction orthogonal to −−→x0x3 is defined as
the normal to the curve. If one simultaneously solves for the positions x1 and x2

subject to the constraint of area conservation, normal smoothing is possible. This is
feasible, as conservation of area represents a single constraint in the normal direction,
but there are two degrees of freedom available (the normal components of x1 and x2).
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Fig. 5.2. Edge smoothing operation. x1x2 moved to be parallel to x0x3 with projected endpoints
at 1

3
l and 2

3
l. Choosing h = 3

4
a
l

conserves area of the quad (x0,x3,x2,x1).

Indeed, development of this idea leads to a new smoothing algorithm. Consider
the placement of x1 and x2 such that the projection of x1 onto x0x3 is one-third of
the way between x0 and x3, and the projection of x2 is two-thirds of the way between
x0 and x3. Furthermore, the distances of x1 and x2 away from x0x3 are chosen to be
equal with the magnitude of this distance (h in Figure 5.2) constrained to conserve
area. In this approach, smoothing occurs in the normal direction as well as in the
tangential direction.

The calculation of h is straightforward. To conserve the local area, the vector
area of the quadrilateral (x0,x3,x2,x1) is computed as a = (x3 − x0)× (x2 − x0) +
(x2 − x0) × (x1 − x0). Repositioning the points x1,x2 in the plane orthogonal to a
such that their projections onto x0x3 are equally spaced implies that the area of the
quadrilateral (x0,x3,x2,x1) will be 2

3hl, where l is the length of x0x3. This requires
that

h =
3

4

a

l
,

where a = ‖a‖ and l = ‖x3 − x0‖.
If Γ is planar, this action will exactly conserve the area under the curve. How-

ever, if Γ is not planar, there is a problem in that repositioning of x1,x2 in the plane
orthogonal to a does not conserve the torsion of the curve. (Thus without modifica-
tion, this smoothing operation would not leave invariant an optimal grid on a helix
formed by spacing points equally in arclength.) To conserve torsion, we compute
the component of the original edge vector −−→x1x2 that is parallel to a, the normal of
the “average” osculating plane. Then we further reposition x1,x2 so that x1,x2 lie
at equal distances under and over the averaged osculating plane and maintain their
previous separations normal to the osculating plane.

The above node repositioning can be interpreted as being a smoothing operation
acting on the edge x1x2. Thus, to perform a smoothing sweep through Γ, one applies
the operation on all the edges of Γ in some order. For example, sequential order would
perform the smoothing operation on the edge x1x2, followed by the edge x2x3, and
continuing until the last edge is encountered.
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Γ
new

Γ

Fig. 5.3. Before and after smoothing of an open curve using Algorithm 5.2 with 10 sweeps.

Algorithm 5.2. Nonparametric curve grid smoothing using edge relaxation.
Repeat (sweep) until “done”

Do i = 1, . . . , n− 1
[Perform smoothing operation on neighborhood {xi,xi+1,xi+2,xi+3}

(i.e., relax edge xi+1,xi+2)]
xold

1 ← xi+1

xold
2 ← xi+2

[Smooth edge in tangential direction.]
xi+1 ← 2

3xi + 1
3xi+3

xi+2 ← 1
3xi + 2

3xi+3

[In nondegenerate case, conserve area in osculating plane.]
a← (xi+3 − xi)× (xold

2 − xi) + (xold
2 − xi)× (xold

1 − xi)
If (‖a× (xi+3 − xi)‖ > “a tiny number”), then

n̂← a×(xi+3−xi)
‖a×(xi+3−xi)‖

h← 3
4

‖a‖
‖xi+3−xi‖

xi+1 ← xi+1 + hn̂
xi+2 ← xi+2 + hn̂

[In nondegenerate case, conserve torsion.]
If (‖a‖ > “a tiny number”), then

n̂⊥ ← a
‖a‖

d⊥ ← (xold
2 − xold

1 ) · n̂⊥
xi+1 ← xi+1 − d⊥

2 n̂⊥
xi+2 ← xi+2 + d⊥

2 n̂⊥.
Figure 5.3 shows the results of Algorithm 5.2, applying 10 sweeps on a plane open

curve Γ, holding the first and last points fixed. If Γ were closed by the addition of a
segment between the first and last points, the area enclosed by Γ would be conserved
to round-off error. Further iterations will continue to deform the curve to increase
the convexity of the enclosed region.

6. Summary. This paper provides efficient methods for distributing points on
parametric curves. The first two methods, adaptive resolution refinement and
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hybrid grid point distribution, are approaches aimed at discretizing a curve to satisfy
geometric and computational accuracy constraints. Adaptive resolution refinement
is primarily targeted at obtaining a discretization with high geometric fidelity. This
method was developed to provide a discretization where the maximum deviation of
linear edge segments is never more than some ε distance from the true curve. The
second method, hybrid grid point distribution, seeks to provide enhanced computa-
tional accuracy by concentrating points in regions of the curve to satisfy numerical
accuracy requirements (i.e., concentrating points in areas of high curvature or where
large gradients are expected in the solution).

The last two approaches presented, parametric curve grid smoothing and non-
parametric curve grid smoothing, focused on redistributing points along the curve to
achieve a degree of smoothness in the discrete approximation. Parametric curve grid
smoothing is a technique used to achieve a smooth edge length variation along the
curve while remaining faithful to the original parametric description. Nonparametric
curve grid smoothing is an approach to achieve a smooth discretization on a refor-
mulated curve, as it is often known a priori that the original curve is a suboptimal
representation of a desired description. In this case, additional information from the
physics simulation (such as area or mass conservation) is used to reform the discrete
representation to increase its suitability for subsequent simulations.

REFERENCES

[1] M. Kosters, Curvature dependent parameterization of curves and surfaces, Comput. Aid.
Des., 23 (1991), pp. 569–579.

[2] S. Z. Li, Adaptive sampling and mesh generation, Comput. Aid. Des., 27 (1995), pp. 235–240.
[3] J. Anderson, A. Khamayseh, and B. Jean, Adaptive Resolution Refinement, LANL Technical

Report LA-UR-96-3105, Los Alamos National Laboratory, Los Alamos, NM, 1996.
[4] J. C. Cuilliere, A direct method for the automatic discretization of 3D parametric curves,

Comput. Aid. Des., 29 (1997), pp. 639–647.
[5] J. D. Hoffman, Relationship between the truncation errors of centered finite difference approx-

imation on uniform and nonuniform meshes, J. Comput. Phys., 46 (1982), pp. 469–474.
[6] M. Vinokur, On one-dimensional stretching functions for finite difference calculation, J. Com-

put. Phys., 50 (1983), pp. 215–234.
[7] C. W. Mastin, Arc length based grid distribution for surface and volume grids, in Proceedings

of the Fifth International Numerical Grid Generation Conference, 1996, pp. 87–96.
[8] A. Khamayseh and A. Kuprat, Surface grid generation systems, in Handbook of Grid Gen-

eration, J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds., CRC Press, New York,
1999, pp. 9.1–9.29.

[9] B. Soni and S. Yang, Nurbs-based surface grid redistribution and remapping algorithms, Com-
put. Aided Geom. Design, 12 (1995), pp. 675–692.

[10] G. Taubin, Curve and surface smoothing without shrinkage, in Proceedings of the Fifth Inter-
national Conference on Computer Vision, 1995, pp. 852–857.

[11] K. Miller, A geometrical-mechanical interpretation of gradient-weighted moving finite ele-
ments, SIAM J. Numer. Anal., 34 (1997), pp. 67–90.

[12] L. Piegl and W. Tiller, The NURBS Book, Springer-Verlag, Berlin, 1995.
[13] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation: Founda-

tions and Applications, North-Holland, New York, 1985.
[14] A. Kuprat, A. Khamayseh, D. George, and L. Larkey, Volume conserving smoothing for

piecewise linear curves, surfaces, and triple lines, J. Comput. Phys., 172 (2001), pp. 99–
118.



MULTIDIMENSIONAL LEAST SQUARES FLUCTUATION
DISTRIBUTION SCHEMES WITH ADAPTIVE MESH MOVEMENT

FOR STEADY HYPERBOLIC EQUATIONS∗

M. J. BAINES† , S. J. LEARY‡ , AND M. E. HUBBARD§

SIAM J. SCI. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 23, No. 5, pp. 1485–1502

Abstract. Optimal meshes and solutions for steady conservation laws and systems within a finite
volume fluctuation distribution framework are obtained by least squares methods incorporating mesh
movement. The problem of spurious modes is alleviated through adaptive mesh movement, the least
squares minimization giving an obvious way of determining the movement of the nodes and also
providing a link with equidistribution. The iterations are carried out locally node by node, which
yields good control of the moving mesh. For scalar equations an iteration which respects the flow of
information in the problem significantly accelerates the convergence.

The method is demonstrated on a scalar advection problem and a shallow water channel flow
problem. For discontinuous solutions we introduce a least squares shock fitting approach which
greatly improves the treatment of discontinuities at little extra expense by using degenerate triangles
and moving the nodes. Examples are shown for a discontinuous shallow water channel flow and a
shocked flow in gasdynamics governed by the compressible Euler equations.
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1. Introduction. Finite volume schemes of fluctuation distribution type for the
approximation of steady first order hyperbolic equations and systems are now well
established. In particular, the class of multidimensional upwind schemes on unstruc-
tured triangular meshes has been very successful [13]. The least squares methods of
finite volume type discussed in this paper also belong to this family, although their
properties differ.

Roe was the first to suggest the fluctuation-distribution framework for steady
first order hyperbolic PDEs and systems in multidimensions [10]. In this approach
a fluctuation (proportional to the PDE residual) is defined on each cell of the mesh
and distributed by signals to the nodes of the cell; i.e., weighted fractions of the
fluctuation are added to the solution values at the nodes of the cell. This distribution
is carried out for each cell, and the cumulative update at a node is the sum of the
weighted contributions from cells with that node as a target. To reach steady state
the procedure is repeated, updating the solution values until the total increments at
every node have become zero, at which point the process is said to have converged.

As pointed out in [11], a descent method applied to the least squares method
within a finite volume framework is also a fluctuation-distribution scheme. In the
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present paper this idea is developed further, using among other things the connec-
tion between least squares minimization and equidistribution [1], and in particular is
extended to nonlinear systems of PDEs.

For fluctuation distribution schemes in general, even though the total increments
at a node may have converged to zero, the individual cell residuals (or fluctuations)
need not have vanished but only their weighted sums, leading sometimes to an un-
satisfactory solution. One way to alleviate the difficulty is to increase the number of
degrees of freedom available by including the mesh locations as additional variables in
the least squares minimization and hence moving the mesh. As a consequence, when
the total increments at a node converge, the individual fluctuations in a cell are closer
to zero and yield a better approximation to the PDE and the solution. In the case
of scalar problems, spurious solutions may be eliminated altogether and the outcome
identified with an approximate method of characteristics.

Repositioning the nodes in this way leads to conservation and a measure of equidis-
tribution, the latter ensuring that convergence takes place uniformly with respect to
the mesh.

In this paper the method is applied to a scalar PDE problem and a shallow water
channel flow problem, both of whose solutions are smooth.

For problems with nonsmooth solutions, least squares methods are known to give
poor solutions close to discontinuities. Here we take a shock fitting approach and use
a least squares moving mesh method to improve the position of the shock. In recent
years a great deal of effort has been put into mesh refinement near shocks using mesh
subdivision, but substantial improvements in shock resolution can also be obtained
by making minor adjustments to the mesh. We introduce degenerate cells in the
vicinity of the shock and a least squares shock fitting procedure to adjust its position.
A multidimensional upwinding shock capturing scheme [13] is used to generate an
initial solution and a first approximation to the position of the shock. A least squares
shock fitting approach is then used to improve the position of the shock [4], [7]. This
is achieved by a least squares minimization of a measure of the jump condition over
nodal positions in degenerate cells. In the smooth regions on either side of the shock
the least squares method may then be expected to work well.

Results are shown for a scalar problem with a contact discontinuity, a shallow wa-
ter problem in a constricted channel with a hydraulic jump, and an Euler gasdynamics
problem with an exact solution, including a shock reflection.

The layout of the paper is as follows. In section 2 we give the definition of the
fluctuation and its functional form in certain cases. Section 3 describes fluctuation
distribution schemes and least squares methods (with descent) in a finite volume
framework. In section 4 we discuss the role of node movement in improving the accu-
racy of solutions and exploiting the link between least squares and equidistribution.
Details of the descent methods used for achieving least squares minima are described
in section 5, and an upwinding strategy is described in section 6. Results are shown in
section 7 for a scalar advection example and a problem involving a nonlinear system
of equations, the Shallow Water Equations.

The role of degenerate cells in generating discontinuous solutions is discussed in
section 8. Results for some discontinuous scalar problems and nonlinear systems are
shown in section 9 with conclusions in section 10.

2. Fluctuations. We consider the two-dimensional conservation law

div(f(u)) = 0(2.1)
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Fig. 1. A general triangular cell e.

with integral form ∮
Γ

f(u).n̂dΓ = 0,(2.2)

where n̂ is the inward normal to an arbitrary closed surface Γ in a domain Ω. The
boundary condition is an inflow condition over Γ1, the part of the surface for which
∂f
∂u .n̂ ≥ 0.

Let the domain be divided into triangles Ωe, and let f be approximated by a
piecewise linear function F . Then we define the fluctuation in triangle Ωe to be

φe =

∮
Γe

F .n̂dΓ,(2.3)

where Γe is the perimeter of Ωe.
We also define the average residual

Re =
1

Se

∫
Ωe

divFdΩ =
1

Se

∮
Γe

F .n̂dΓ =
φe
Se
,(2.4)

where Se is the area of triangle e.
Since F is linear in the triangle we can use a trapezium rule quadrature to write

(2.3) as

φe =
1

2
{(F e1 + F e2).ne3 + (F e2 + F e3).ne1 + (F e3 + F e1).ne2)} ,(2.5)

where nei (i = 1, 2, 3) is the inward unit normal to the ith edge of triangle e (opposite
the vertex ei), as shown in Figure 1, multiplied by the length of that edge. It is easy
to verify that, for any triangle,

ne1 + ne2 + ne3 = 0,(2.6)

so the fluctuation (2.5) may be written as

φe = −1

2
{F e1.ne1 + F e2.ne2 + F e3.ne3} ,(2.7)

or, since nei = (ΔYei,−ΔXei),

φe = −1

2

3∑
ei=1

(FeiΔYei −GeiΔXei) ,(2.8)
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where F = (F,G) and Δe1X = Xe2 − Xe3 denotes the difference in X taken across
the side opposite node e1 in a counterclockwise sense (and similarly for Δe2X and
Δe3X). A dual form of the fluctuation is obtained by rewriting (2.7) as

φe =
1

2

3∑
ei=1

(YeiΔFei −XeiΔGei) .(2.9)

We aim to set the fluctuations φe to zero in order to satisfy (2.1).

In the case where f is of the form

f = a(x)u,(2.10)

where a(x) is a divergence-free velocity field, the PDE (2.1) reduces to the advection
equation

a(x).∇u = 0.(2.11)

Then the fluctuation may be written

φe = −1

2

3∑
ei=1

(aeiUeiΔYei − beiUeiΔXei) ,(2.12)

where a = (a, b) = (a(Xei, Yei), b(Xei, Yei)).

Now consider systems of nonlinear hyperbolic equations

divf(u) = 0 = A(u).∇u,(2.13)

where A is a vector of the Jacobian matrices (A,B)T . The integral form is

∮
Γ

f(u).n̂dΓ = 0,(2.14)

and the fluctuation (with f approximated by F) is

φe = −1

2
(Fe1.ne1 + Fe2.ne2 + Fe3.ne3)(2.15)

= −1

2

3∑
ei=1

(FeiΔYei −GeiΔXei)(2.16)

with dual form

φe =
1

2

3∑
ei=1

(YeiΔFei −XeiΔGei) .(2.17)

Two systems of interest are the Euler equations of gasdynamics and the Shallow Water
Equations.



MOVING LEAST SQUARES FOR STEADY PDEs 1489

3. Fluctuation distribution schemes and least squares. In fluctuation dis-
tribution schemes we seek to set the fluctuations φe to zero via an iterative procedure
with an index n, say. In this procedure the φne , obtained by substituting an estimate
Un into the (F,G) in (2.8), are distributed to nodes of the mesh in order to give a
Un+1 for which the φn+1

e are smaller. At each stage of the iteration, for each triangle
Ωe, a weighted amount of φe is added to the values of the solution at the vertices of
the triangle. In the multidimensional upwind schemes [13], [8] the weights are chosen
so that the schemes are conservative, positive, and linearity preserving. Conservation
is ensured if the weights in each triangle sum to unity.

In the least squares descent method we seek to minimize either the L2 norm of
the average residual (see (2.4)) or the l2 norm of the vector of fluctuations, using
a gradient descent method. This l2 norm is useful since it is bounded even for the
degenerate triangles considered in section 7.

The square of the L2 norm of the average residual, from (2.4), is

F1 =
∑
e

∫
Ωe

R
2

edΩ =
∑
e

SeR
2

e =
∑
e

φ2
e

Se
,(3.1)

or, in the systems case,

F1 =
∑
e

φteφe
Se

(3.2)

(cf. [11]). For the l2 norm of the vector of fluctuations we have

F2 =
∑
e

φ2
e or F2 =

∑
e

φteφe(3.3)

in the systems case.
Using a gradient descent method to carry out the minimization, we find that each

step adds weighted amounts of the φe in each triangle to the values of the solution
at the vertices of the triangle and hence has the form of a fluctuation distribution
scheme. For example, in the F2 case, since the gradient of φ2

e with respect to the
nodal value Uj is

{
2
∂φe
∂Uj

}
φe(3.4)

a descent method will add a multiple of φe to Uj . The weight (in the curly bracket),
from (2.8), is

wje = 2
∂φe
∂Uj

= − ∂

∂Uj

3∑
ei=1

{FeiΔYei −GeiΔXei}(3.5)

= −dFje
dUje

ΔYje +
dGje
dUje

ΔXje(3.6)

= −a(Uje)ΔYje + b(Uje)ΔXje,(3.7)

where je is the node of triangle e corresponding to j and we have used

(a(U), b(U)) =

(
dF

dU
,
dG

dU

)
.(3.8)
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In the case of differentiation with respect to Xj , the gradient of φ2
e is

{
2
∂φe
∂Xj

}
φe(3.9)

and a descent method will add a multiple of φe to Xj . This time the vector weights,
using (2.17), are

wje = (0, 1)TΔFje + (−1, 0)TΔGje.(3.10)

For systems of equations the corresponding matrix weights corresponding to (3.7)
and (3.10) are

Wje = −A(Uje)ΔYje +B(Uje)ΔXje(3.11)

and

W je = (0, 1)TΔFje + (−1, 0)TΔGje.(3.12)

For the advection equation (2.10) we have from (2.12) the weights

wje = −a(Xje, Yje)ΔYje + b(Xje, Yje)ΔXje(3.13)

for U variations and, using a dual form of (2.12),

wje =
∂

∂Xj

3∑
ei=1

−{Δ (a(Xei, Yei)Uei)Yei + Δ (b(Xei, Yei)Uei)Xei}(3.14)

for the X variations.
Similar sets of weights may be found in the minimization of F1. In particular,

(3.9) generalizes to

∂

∂Xj

(
φ2
e

Se

)
=

{
2

Se

∂φe
∂Xj

− φe
S2
e

∂Se
∂Xj

}
φe.(3.15)

4. Moving the nodes. There are two motivations for moving the nodes. The
first is the problem of spurious solutions. The number of equations given by (2.3) is
equal to the number of triangles in the mesh, but the number of unknowns is a multiple
of the number of nodes. In general these are different. If the number of equations
exceeds the number of unknowns it is impossible to satisfy all the equations. For
any iteration of fluctuation distribution type in which fluctuations are added to the
vertices of the mesh with weights, convergence of the nodal updates does not imply
that the fluctuations vanish. In particular, in the least squares descent approach the
norms (3.1), (3.3) are not necessarily driven down to zero. However, if we allow the
coordinates of the vertices to become additional unknowns of the problem, the number
of degrees of freedom is increased and the solution is improved.

For scalar problems the number of unknowns then exceeds the number of equa-
tions and there are infinitely many solutions which make the norms zero. A unique
solution is obtained if the number of unknowns is equal to the number of equations,
and this may be achieved in a scalar problem by including just one coordinate per
node in the list of unknowns. The fluctuations may then be driven to zero by a
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fluctuation-distribution scheme. The result is an approximate method of characteris-
tics, as in Example 1 below. The accuracy of the approximate solution depends only
on the coarseness and/or connectivity of the mesh. For a system of two equations in
two dimensions, the number of unknowns is equal to the number of equations when
the nodes are allowed to move in both directions, and this has been studied in [11].
For systems such as the Shallow Water or the Euler Equations of gasdynamics the
number of equations is always less than or equal to the number of unknowns, but the
inclusion of nodal variables significantly increases the number of degrees of freedom.

The second motivation comes from a link with equidistribution. As in [1], the
identity

(∑
e

Se

)(∑
e

SeR̄
2
e

)
=

(∑
e

φe

)2

+
∑
e1>e2

Se1Se2
(
R̄e1 − R̄e2

)2
(4.1)

shows that, if the total area of the domain
∑
e Se is fixed, then driving the norm F1

(which from (3.1) equals
∑
e SeR̄

2
e) down to zero forces both terms on the right-hand

side of (4.1) to zero, resulting in both global conservation and residual “equidistribu-
tion.” The first follows because of the cancellation property

φ =
∑
e

φe =
1

2

∑
e

3∑
ei=1

(−FeiΔYei +GeiΔXei)(4.2)

=
1

2

∑
b

(−FbΔYb +GbΔXb) ,(4.3)

so that the total φ over the domain is equal to a sum over boundary values b only.
Hence the first term on the right-hand side of (4.1) is a measure of global conservation,
while the second term is a measure of equidistribution of the average residual Re.

In a similar way the identity

(∑
e

1

)(∑
e

φ2
e

)
=

(∑
e

φe

)2

+
∑
e1>e2

(φe1 − φe2)2(4.4)

(see [1]) ensures that, provided that the number of triangles
∑
e 1 remains fixed, the

act of driving the norm
∑
e φ

2
e down to zero also forces global conservation and a

measure of equidistribution of the fluctuations φe to go to zero. These statements
generalize immediately to systems of equations.

The global conservation term (4.3) is evidently unaffected by any adjustment to
the values at the interior nodes. Therefore a reduction in the sum of squares term on
the left-hand side of (4.1) or (4.4) due to such adjustments simply serves to improve
the quality of the equidistribution.

We shall discuss the use of least squares descent methods as fluctuation distribu-
tion schemes in this context. Unlike multidimensional upwinding [2], such an approach
has the advantage of a norm to minimize which can readily be used to generate the
movement of the mesh as well as inducing global conservation and equidistribution in
the sense described above.

5. The descent methods. We give now the details of the minimization of
F2 with respect to the nodal values Uj and coordinates Xj , using a gradient descent
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method. The steepest descent method generates contributions from the set of triangles
je surrounding node j, to be added to the values of Uj and Xj , of the form

δUj = −τ2
∑
je

{
2
∂φje
∂Uj

}
φje, δXj = −σ2

∑
je

{
2
∂φje
∂Xj

}
φje(5.1)

(see (3.4) and (3.9)), where τ2 and σ2 are suitably chosen relaxation factors, and
the negative sign ensures that we go down the gradient. The relaxation parameters
control the step taken in the descent direction and are generally chosen via a line
search or a local quadratic model. Sometimes, however, it is necessary to take an
empirical approach to the choices of these factors.

In this paper we use a splitting technique, first minimizing F2 with respect to Uj
with Xj held constant and then minimizing F2 with respect to Xj with Uj held con-
stant. (It is possible, though unlikely, that the constrained nature of the minimization
may lead to a saddle point.)

Consequently, for the minimization over U we may construct a quadratic model
in which the relaxation parameter is

(
∂2F2

∂U2
j

)−1

=

(
∂2

∂U2
j

∑
je

φ2
je

)−1

(5.2)

=

(
∂2

∂U2
j

∑
je

∑
ei

1

4
nTei F eiF

T
ei nei

)−1

(5.3)

by (2.7). Let us now linearize F ei as aeiUei so that the relaxation factor becomes

(
∂2

∂U2
j

∑
je

∑
ei

1

4
nTei aeiU

2
eia

T
ei nei

)−1

(5.4)

=

(∑
je

1

4
nTje aje a

T
je nje

)−1

.(5.5)

For the X minimization of F2 the functional is already quadratic, giving the
relaxation factor

(
∂2F2

∂X2
j

)−1

=

(
∂2

∂X2
j

∑
je

∑
ei

1

4
FTei nei n

T
ei F ei

)−1

(5.6)

which is

=

(
−
∑
je

(
FTje1F je1 + FTje2F je2

))−1

(5.7)

for each coordinate, where je1, je2 are the vertices of the triangle je other than j.
Alternatively, a line search may be carried out on each Xj .
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For the advection equation (2.10) a quadratic model may be obtained by freezing
the advection speed in calculating the second derivative in the quadratic model (see
(2.12)).

For the minimization of F1, rather than F2, we obtain an approximate quadratic
model simply by inserting the factor S−1

je between the aje’s or Aje’s.
These choices generalize to systems of equations where (5.5) becomes

(∑
je

1

4
nTje Aje A

T
jenje

)−1

,(5.8)

where A = (A,B), and where F has been linearized as AU.
The iterations are carried out by continually sweeping through the nodes of the

mesh in a local manner. The identities (4.1) or (4.4) also hold on each patch of
triangles surrounding a node, showing that least squares minimization leads to local
conservation over the boundary of the patch and equidistribution over the triangles
of the patch.

The sweeps through the nodes of the mesh may be carried out either in a Jacobi or
a Gauss–Seidel manner. The local approach is helpful in controlling the mesh quality.

6. Upwinding. Generally, the rate of convergence is slow or very slow. However,
we can show that in the scalar case convergence can be accelerated significantly by
an awareness of the origin of the problem. One consequence of minimizing the least
squares norm of the residual or the fluctuation of the equation a.∇u = 0 is that
the original equation is embedded in the second order degenerate elliptic equation
−a.∇(a.∇u) = 0 (see e.g. [9]). The correct solution is picked out from the larger
set of solutions by the outflow condition, which is the original differential equation
a.∇u = 0 applied at the outflow boundary. Indeed we may write the second order
equation as the system

a.∇u = v(6.1)

with U given on Γ2 and

−a.∇v = 0(6.2)

with V given on Γ1. The first of these is the solution of the original PDE with a
source term v, which is the solution of the second equation. For the second equation
the analytic solution is v = 0, but numerically a nonzero v will be generated building
up from the outflow (the characteristics run backwards in (6.2)), forcing a nonzero
source term in (6.1).

As befits an elliptic solver, the least squares descent method updates are dis-
tributed to all the nodes in a triangle, but it may be argued that, because of the
hyperbolic nature of the original equation, the updates should exhibit an upwind
bias, as in the case of multidimensional upwinding, and the nonzero v solution should
be suppressed.

One way of achieving the upwind bias (see [3], [7]) is to carry out the minimization
of the functional within each cell over only downwind nodal values. Furthermore, we
allow temporary discontinuities in U at each node by letting the solution have one
value associated with cells upwind of the node but another with downwind cells.
The updates resulting from this minimization still reduce the functional but at the
expense of making U discontinuous. However, we may follow this minimization step
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by a second projection step which resets the upwind values of U so as to restore
the continuity of U . This is not a descent step and may increase the fluctuation.
Nevertheless, we may iterate on the two steps, seeking convergence. If convergence is
attained the discontinuities have tended to zero, and we have a continuous U which
also minimizes the functional since its gradient is zero. Since the minimization is
constrained, a higher value of the functional may result (the two projections cancelling
each other out), but further improvement may be found at this point by switching to
the full least squares iteration.

By a similar argument on the dual form (2.9) of the fluctuation, the X contribu-
tions should also be upwinded (although the boundary conditions differ from those
on v).

Not surprisingly we find that convergence is much faster, not only for the U
variations but also for the X variations. The algorithm has a strong upwind bias
which reflects the nature of the original problem and its dependence on characteristics.
In fact the two steps taken together are equivalent to simply suppressing the upwind
updates in the least squares descent method. With an appropriate scaling the U step
is simply the Low Diffusion Scheme A (LDA) scheme of multidimensional upwinding
[13].

We now give results for two problems in which these techniques are used.

7. Numerical results for continuous solutions.
Example 1. We first consider the scalar two-dimensional advection equation,

considered in [11],

a(x).∇u = 0,(7.1)

where a(x) = (y,−x) in a rectangle −1 ≤ x ≤ 1, 0 ≤ y ≤ 1, which generates a
semicircular hump swept out by the initial data, here chosen to be

U =

{
1,
0

−0.6 ≤ x ≤ −0.5,
otherwise.

(7.2)

Results are shown in Figures 2 and 3 on a fixed and moving mesh, respectively. Fastest
convergence occurs when the sweeping is upwinded, taking into account the hyperbolic
nature of the equation.

As expected, the solution on a fixed mesh is poor. On the other hand, when
the mesh takes part in the minimization the norm F1 is driven down to machine
accuracy. The redistribution effected by the least squares minimization forces global
conservation and equidistributes φ amongst the triangles [1], leading to more uniform
convergence. The cell edges have approximately aligned with characteristics in regions
of nonzero φ, allowing a highly accurate solution to be obtained.

The left-hand graph in Figure 4 shows the convergence of the solution updating
procedure using

(a) steepest descent globally with τ1 = 0.5;
(b) optimal local updates (quadratic model);
(c) optimal local updates over downwind cells only.

Convergence is improved in (b) and (c). Even though (c) is not monotonic it converges
very quickly, albeit to a higher value, due to the minimization being constrained.

The convergence rates obtained when the nodes are allowed to move are shown
in Figure 4 (right). Once again we start from the converged solution on the fixed grid
and use
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Fig. 2. Initial grid and solution for Example 1.
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Fig. 4. Comparisons of convergence histories.

(a) steepest descent globally with τ1 = 0.5 and σ1 = 0.01;
(b) Hessian local updates;
(c) Hessian local updates over downwind cells only.
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Fig. 5. Initial grid and solution for Example 2.
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Fig. 6. Convergence histories with and without mesh movement.

A small amount of mesh smoothing was included in (b) and (c). In particular,
(b) became stuck in a local minimum if more iterations were used. Node locking was
a problem with the full least squares approach: node removal or steepest descent up-
dates could be used to alleviate this problem but when tried these still took over 1000
iterations, so they were not competitive when compared to the upwinding approach,
which yielded the best result.

Example 2. We now consider the system of equations (2.13) corresponding to a
form of the homogeneous Shallow Water Equations written in conserved variables (see
[5], [6]).

We shall consider a smooth subcritical constricted channel flow governed by these
equations. The computational domain represents a channel of length 3 meters and
width 1 meter with a 5% bump in the middle third. The freestream Froude number is
defined to be F∞ = 0.25, and the freestream depth is h∞ = 1m. The resulting flow is
entirely subcritical and symmetric about the center of the constriction (the narrowest
point in the channel).

The fixed mesh is shown at the top of Figure 5 and the least squares descent
solution (depth contours) on the mesh beneath it. This is also the initial mesh for the
iteration when the mesh is moved. The other pictures in the figure show the adapted
mesh and solution on this mesh.
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Figure 6 shows convergence histories for this problem with and without mesh
movement. An improved minimum is achieved by incorporating mesh movement in the
minimization process. However, F1 is not dramatically decreased in this subcritical
problem because there are no particularly sharp features in the flow which can be
improved upon by the use of mesh movement.

8. Use of degenerate triangles. In the presence of shocks or contact disconti-
nuities least squares methods give inaccurate solutions which are unacceptable. One
way to combat this problem is to divide the region into a number of domains and
introduce degenerate triangles at the interface, as suggested in [12]. We may then use
a least squares method with moving nodes to adjust the position of the discontinuity,
as in shock fitting methods.

Consider again consider the scalar problem (2.1) as a PDE generating a shock or
contact discontinuity. We first obtain an initial approximate solution U to this equa-
tion by the use of a multidimensional upwinding shock capturing scheme. An initial
discontinuous solution may then be constructed by introducing degenerate (vertical)
triangles in the regions identified as shocks, using a shock identification technique.
In the results shown below this step was carried out manually, but the degenerate
triangles can be added automatically using techniques that exist in the shock fitting
literature (see for example [16], [15]). The corners of the degenerate triangles are
designated as shocked nodes, and these form an internal boundary, on either side
of which the least squares method may be applied in two smooth regions where it
is known to perform well. The position of the discontinuity can then be improved
by minimizing a least squares shock monitor based either on the fluctuation in the
degenerate cells or on the jump condition.

Then consider the jump condition at a shock associated with the conservation
law (2.1),

f(uL).nL + f(uR).nR = 0,(8.1)

where f(uL) and f(uR) are the fluxes to the left and right of a discontinuous edge.
We obtain an improved location of the discontinuity in the discretized problem by

minimizing an L2 measure of the residual of the jump condition with respect to node
positions, using a piecewise linear approximation F to f . Thus consider minimization
of the norm

F3 =
∑
Q∈Ω

∫
ΓQ

(F (UL).nL + F (UR).nR)2dΓ(8.2)

Fig. 7. Cells on either side of a discontinuous edge.
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Fig. 8. Degenerate quadrilaterals Q and triangles d1, d2.

to update the position of the discontinuity where ΓQ is the edge connecting nodes i
and j in Figure 7, and F (UL), F (UR) are the values of F at the left and right states.

We could have used an approximation based on degenerate triangles rather than
quadrilaterals (see [4]). When updating the nodal positions XiL

and XiR
we require

that they have the same update (so that the cell remains degenerate). The update
comes from minimization with respect to their common position vector.

Consider the fluctuations φd1 and φd2 in the degenerate triangles d1 and d2 on
the edge containing nodes i and j in Figure 8.

From (2.7) these are

φd1 = −1

2
[F i] .niL , φd2 = −1

2

[
F j
]
.njR ,(8.3)

where the square bracket denotes the jump across the discontinuity. The contributions
from two edges vanish in each case due to the degeneracy of the triangles.

Then

φ2
d1 + φ2

d2 =
1

4

{(
[F i].niL

)2
+
(
[F j ].njL

)2}
,(8.4)

and so we can also use

F4 =
∑
e∈ΩD

φ2
e(8.5)

to improve the position of the shock, where ΩD is the set of degenerate triangles.
(Note that F4 is bounded because φe in (2.3) is always bounded, even at shocks
where U is discontinuous. On the other hand, the average residual, given by (2.4), is
not bounded since Se = 0 at shocks.)

A descent least squares method can then be used on F3 or F4 to move the shocked
nodes into a more accurate position, keeping the uL and uR values fixed. The pro-
cedure may be interleaved with a descent least squares method on F1 or F2 for the
smooth solution on either side.

We now give some numerical results using this technique.

9. Numerical results for discontinuous solutions. We now show results
from three problems which exhibit discontinuities, one scalar and the others for dif-
ferent nonlinear systems.

Example 3. The first of these problems is the advection of a contact discontinuity.
We consider circular advection as in Example 1 but with initial data

U =

{
1,
−1,

x ≤ −0.5,
x ≥ −0.5

(9.1)
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Fig. 10. Moved mesh and solution for Example 3.

on the inflow side. This represents the circular advection of a contact discontinuity.
Degenerate triangles are inserted vertically to connect the triangles on either side

of the discontinuity. The solution updates come from a least squares descent method
taken over nondegenerate elements. (The least squares updates to the solution come
from nondegenerate elements.) The shock node adaptation is by the mimimization of
F4 (see (8.5)). Results are shown in Figures 9 and 10 for a fixed mesh and a moving
mesh using degenerate triangles. Convergence histories are shown in Figure 11. The
contact discontinuity has been accurately located through the use of the degenerate
elements.

Example 4. Consider again the Shallow Water Equations system of Example 2.
The problem which interests us here is that of a transcritical constricted channel
flow which exhibits a hydraulic jump in the constriction. The computational domain
represents a channel of length 3 meters and width 1 meter with a 10% bump in
the middle third. The freestream Froude number is defined to be F∞ = 0.55, the
freestream depth is h∞ = 1m, and the freestream velocity is given by (u∞, v∞) =
(1.72, 0).

An initial solution for the least squares shock fitting approach is found by the
elliptic-hyperbolic Lax–Wendroff multidimensional upwinding scheme of Mesaros and
Roe; see [8]. This time we seek to locate the hydraulic jump by adding degenerate
quadrilaterals at the approximate position of the shock and seeking the best position of
the shocked nodes. This is again achieved by using a least squares descent method on
F4 with degenerate triangles to improve the position of the shock. Virtually identical
results are obtained using F3 with quadrilaterals.
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Fig. 12. Results for Example 4.

Results are shown in Figure 12, which shows the meshes and solution depth
contours obtained. A bow-shaped hydraulic jump which is strongest at the boundaries
is predicted, which agrees with solutions obtained using a shock capturing solution
on a very fine mesh. Here it is achieved at little cost. Note not only the better shock
resolution but also the much cleaner post-shock solution.

Example 5. Finally we consider the system (2.13) again but this time correspond-
ing to the Euler equations of gasdynamics written in conserved variables [5].

This example is chosen to exhibit the shock fitting capabilities of the method for
a purely supersonic flow which has an exact solution [17]. The computational domain
is of length 3 meters and width 1 meter. Supersonic inflow boundary conditions, given
by

U(0, y) = (1.0, 2.9, 0, 5.99073)t,

U(x, 1) = (1.69997, 4.45280,−0.86073, 9.87007)t,(9.2)

are imposed on the left and upper boundaries, respectively. At the right-hand bound-
ary supersonic outflow conditions are applied, while the lower boundary is treated as
a solid wall.

The boundary conditions are chosen so that the shock enters the top left-hand
corner at an angle of 29o to the horizontal and is reflected by a flat plate on the lower
boundary. The flow in regions away from shocks is constant. The same strategy is



MOVING LEAST SQUARES FOR STEADY PDEs 1501

Fig. 13. Results for Example 5.

Fig. 14. Solution (density) in 3D.

employed as in the previous example, including the same shock capturing scheme, with
the results shown in Figure 13, where the density contours are plotted. The predicted
shock comes in from the top left hand at an angle of 29.2o to the horizontal, and the
solution is virtually constant apart from the discontinuities, in close agreement with
the analytic solution (see Figure 14).

The angle made by the reflected shock with the horizontal is also in line with the
theory. (See [14], which gives the angle as 23.3◦.)

10. Conclusion. In this paper we have considered the approximate solution
of steady first order PDEs by a least squares finite volume fluctuation distribution
scheme with mesh movement. On fixed meshes, by the nature of the fluctuation
distribution technique, the fluctuations on triangular meshes are not driven to zero.
The solution may be improved by introducing extra degrees of freedom by adding node
locations to the list of unknowns and moving the mesh. As a result, for scalar problems
the fluctuations are driven down to zero (to machine accuracy), while for systems of
equations the errors are much reduced. The descent least squares procedure with
mesh movement also induces global conservation and equidistributes the fluctuation
amongst the triangles, thus proceeding down to the steady limit in a uniform way.

For scalar problems convergence can be greatly accelerated by carrying out the
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iterations in an upwind manner.
For problems with discontinuities the descent least squares method does not give

good solutions, but the mesh movement technique enables improvement of the location
of the discontinuity in a manner akin to shock fitting. By minimizing a measure of
the jump condition an approximate position of the shock can be maneuvered into an
accurate position. This allows the descent least squares method to be used on either
side of the shock to gain a good approximation of the smooth regions of the flow.
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Abstract. We study Krylov subspace methods for solving unsymmetric linear algebraic systems
that minimize the norm of the residual at each step (minimal residual (MR) methods). MR methods
are often formulated in terms of a sequence of least squares (LS) problems of increasing dimension.
We present several basic identities and bounds for the LS residual. These results are interesting
in the general context of solving LS problems. When applied to MR methods, they show that the
size of the MR residual is strongly related to the conditioning of different bases of the same Krylov
subspace. Using different bases is useful in theory because relating convergence to the characteristics
of different bases offers new insight into the behavior of MR methods.

Different bases also lead to different implementations which are mathematically equivalent but
can differ numerically. Our theoretical results are used for a finite precision analysis of implementa-
tions of the GMRES method [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986),
pp. 856–869]. We explain that the choice of the basis is fundamental for the numerical stability of
the implementation. As demonstrated in the case of Simpler GMRES [H. F. Walker and L. Zhou,
Numer. Linear Algebra Appl., 1 (1994), pp. 571–581], the best orthogonalization technique used for
computing the basis does not compensate for the loss of accuracy due to an inappropriate choice of
the basis. In particular, we prove that Simpler GMRES is inherently less numerically stable than
the Classical GMRES implementation due to Saad and Schultz [SIAM J. Sci. Statist. Comput., 7
(1986), pp. 856–869].

Key words. linear systems, least squares problems, Krylov subspace methods, minimal residual
methods, GMRES, convergence, rounding errors
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1. Introduction. Consider a linear algebraic system Ax = b, where A ∈ RN,N
is a nonsingular matrix (generally unsymmetric) and b ∈ RN . Krylov subspace meth-
ods for solving such systems start with an initial approximation x0, compute the
initial residual r0 = b−Ax0, and then determine a sequence of approximate solutions
x1, . . . , xn, . . . such that xn belongs to the linear manifold determined by x0 and the
nth Krylov subspace

xn ∈ x0 +Kn(A, r0), Kn(A, r0) ≡ span{r0, Ar0, . . . , An−1r0} .(1.1)

The nth residual then belongs to the manifold given by r0 and the shifted Krylov
subspace (also called the Krylov residual subspace)

rn ≡ b−Axn ∈ r0 +AKn(A, r0) .(1.2)
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The choice of xn is based on some particular additional condition. In this paper we
focus on the minimal residual (MR) principle

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b−Au‖ ,(1.3)

which can be equivalently formulated as the orthogonal projection principle

rn ⊥ AKn(A, r0) .(1.4)

Since A is assumed to be nonsingular, both (1.3) and (1.4) determine the unique
sequence of approximate solutions x1, . . . , xn; see [26]. Mathematically (in exact
arithmetic), there are several different methods and many of their algorithmic vari-
ants for generating this sequence. Computationally (in finite precision arithmetic),
however, different algorithms for computing the same mathematical sequence may
produce different results.

We will call the Krylov subspace methods (1.1) generating mathematically the
approximate solutions x1, . . . , xn uniquely determined by the MR principle (1.3) (or
by the equivalent orthogonal projection principle (1.4)) MR Krylov subspace methods
(MR methods).

The MR principle (1.3) represents a least squares (LS) problem, and thus MR
methods are often described as a sequence of LS least problems of increasing di-
mension [26]. In this paper we use general results about LS residuals to analyze
the properties of different implementations of MR methods in exact as well as finite
precision arithmetic. Our approach is as follows.

In section 2 we present several basic identities and bounds for the norm of the
residual r = c − By of the overdetermined LS problem Bu ≈ c. Specifically, our
results relate ‖r‖ to the singular values of the matrix [cγ,B], where γ > 0 is a scaling
parameter, and occasionally some other data. Results of this type have been presented
in the literature before (see, e.g., [29]), and they are of importance in studying LS
problems in general. While our main focus is on MR methods, only a part of our
general LS results are used later in the paper. We believe, however, that the presented
LS results which are not directly applied here might be found useful in the context of
MR methods in the future.

In section 3 we apply results from section 2 to MR methods for the problem
Ax = b. In particular, we relate the norm of the MR residual to the conditioning of
different bases of Kn(A, r0). We derive several necessary and sufficient conditions for
fast convergence as well as for stagnation of MR methods. Our results are significantly
stronger and more complete than the corresponding results published previously [16,
17]. We point out that our results should not be interpreted as bounds for measuring
convergence. As demonstrated in the further sections, results relating residual norm
to the conditioning of different bases lead to a new understanding of MR methods.

Section 4 describes the main examples of the MR methods, in particular various
forms of the GMRES method [26]. We then apply our theoretical results about the
MR residual to finite precision analysis of the important implementations in section 5.
Our results explain why the choice of the basis is fundamental for the numerical stabil-
ity of the implementation. As demonstrated on the example of Simpler GMRES [34],
which constructs in exact arithmetic an orthonormal basis of AKn(A, r0), the best
orthogonalization technique (Householder reflections) in computing the basis does
not compensate for the loss of accuracy due to the inappropriate choice of the basis.
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Simpler GMRES is proved inherently less stable than the Classical GMRES implemen-
tation [26], which constructs in exact arithmetic an orthonormal basis of Kn(A, r0).
Our findings are illustrated by numerical experiments.

We denote by σi(·) the ith largest singular value and by σmin(·) the smallest
singular value of a given matrix. By κ(·) we denote the ratio of the largest to the
smallest singular value (condition number). We use ‖ · ‖ to denote the 2-norm, ei to
denote the ith vector of the standard Euclidean basis, and I to denote the identity
matrix.

2. Basic relations for the LS residual. As the MR methods can be expressed
as sequences of LS problems, it will prove useful to collect some basic relations for the
LS residual. We will recall some known results, prove several new results, and put
the ones known previously in a new context. Most of the results of this section will
be used in our analysis of MR methods later in the paper. We believe that they are
also of interest in the LS context in general.

Consider an overdetermined linear approximation problem

Bu ≈ c, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n.(2.1)

We denote by y the LS solution of (2.1) and by r = c − By the corresponding LS
residual,

‖r‖ = ‖c−By‖ = min
u
‖c−Bu‖ .(2.2)

We introduce a real scaling parameter γ > 0 and consider a scaled version of (2.1),

Bz ≈ cγ, B ∈ RN,n, c ∈ RN , n < N, rank(B) = n.(2.3)

Note that if the right-hand side c is replaced in (2.1) and (2.2) by the scaled vector
cγ, the LS solution and the LS residual scale trivially to z = yγ and rγ. We start
with general identities relating r to the matrix [cγ,B].

Theorem 2.1. Suppose that [c,B] ∈ RN,n+1 has full column rank, and r �= 0 is
the residual of the LS problem (2.1)–(2.2). Let γ > 0 be a real parameter. Then

eT1 [cγ,B]† =
rT

γ‖r‖2 and γ‖r‖ =
1

{eT1 ([cγ,B]T [cγ,B])−1e1} 1
2

,(2.4)

where X† denotes the Moore–Penrose generalized inverse of a matrix X.
Proof. For any matrix X the Moore–Penrose pseudoinverse X† satisfies XX†X =

X (see, e.g., [5]), which using the symmetry of XX† gives XT = XTXX†. Substi-
tuting X = [cγ,B], we receive the following simple identities:

γrT = [1,−γyT ] [cγ,B]T = [1,−γyT ] [cγ,B]T [cγ,B][cγ,B]†

= γrT [cγ,B][cγ,B]† .

Since r is orthogonal to the columns of B, γrT [cγ,B] = γ2(rT c) eT1 = γ2‖r‖2 eT1 ,
which proves the first part of the theorem. The second part follows from the identity
‖eT1 [cγ,B]†‖2 = eT1 ([cγ,B]T [cγ,B])−1e1 , which can be verified by a straightforward
calculation.

The first equality in (2.4) was essentially proven (though neither the statement
nor the proof were formulated explicitly in the form presented here) in [28, relations
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(2.5), (2.6), (3.7), and (3.8)]. Later it was presented (with γ = 1) in [16, Lemma 7.1]
(see also other references therein).

It is important to notice that for an arbitrary nonsingular matrix M ∈ Rn,n,
‖r‖ = ‖c−By‖ = ‖c− (BM)(M−1y)‖ = min

u
‖c− (BM)u‖ .

As a consequence of this simple observation, (2.4) will hold when B is replaced by
BM . A particularly useful choice is M = R−1, where R is the upper triangular factor
of a QR-factorization of B.

Corollary 2.2. Using the assumptions and the notation of Theorem 2.1, and a
QR-factorization B = QR of the matrix B,

eT1 [cγ,Q]† =
rT

γ‖r‖2 and γ‖r‖ =
1

{eT1 ([cγ,Q]T [cγ,Q])−1e1} 1
2

.(2.5)

It may look a bit surprising that the first rows of the matrices [cγ,B]† and [cγ,Q]†

are identical. A second look reveals that this fact is simple and natural.
Consider a full column rank matrix X = [cγ,B] ∈ RN,n+1. Then the rows of

X† are linear combinations of the rows of XT (the transposed columns of X), and
X†X = I. The last relation can be interpreted geometrically as an orthogonal relation
between the rows of X† and the columns of X. Denote by s = eT1 X

† the first row
of X†. Then s is orthogonal to all but the first column of X; i.e., it is orthogonal to
the columns of the matrix B. Because s represents a linear combination of cT and
the transposed columns of B, it must be equal to a scalar multiple of the transposed
residual rT = (c− By)T for the LS problem (2.1)–(2.2). The identity (ζrT ) (cγ) = 1
then immediately gives ζ = γ−1‖r‖−2.

The orthogonality idea clearly applies with no change when B is replaced by any
matrix BM , where M ∈ Rn,n is nonsingular. The geometrical interpretation of the
generalized inverse is simple but revealing.

The following theorem relates the norm of the LS residual (2.2) to the singular
values of the matrices B, [cγ,B], and [cγ,Q]. This theorem plays a substantial role
in our further analysis.

Theorem 2.3. Suppose that [c,B] ∈ RN,n+1 has full column rank, and r �= 0 is
the residual of the LS problem (2.1)–(2.2). Let B = QR be a QR-factorization of the
matrix B and γ > 0 be a real parameter. Then

‖r‖ =
σmin([cγ,B])

γ

n∏
j=1

σj([cγ,B])

σj(B)
(2.6)

=
1

γ
σmin([cγ,Q])σ1([cγ,Q]).(2.7)

Furthermore,

κ([cγ,Q]) =
α+

(
α2 − 4γ2‖r‖2)1/2

2γ ‖r‖ , ‖r‖ =
α

γ

κ([cγ, Q])

κ([cγ, Q])2 + 1
,(2.8)

where α ≡ 1 + γ2‖c‖2.
Proof. Using the orthogonality of the columns of the matrix Q, the right-hand

side c and the residual r are related by the identity

c = Qh+ r, h ≡ QT c, ‖c‖2 = ‖h‖2 + ‖r‖2 .
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Now consider an orthogonal matrix U ∈ Rn,n, UTU = I, such that Uh = ‖h‖e1.
Then

[cγ,Q]T [cγ,Q] =

[
1 0
0 UT

] [
γ2‖c‖2 γ‖h‖eT1
γ‖h‖e1 I

] [
1 0
0 U

]
,(2.9)

[cγ,B]T [cγ,B] =

[
1 0
0 RT

]
[cγ,Q]T [cγ,Q]

[
1 0
0 R

]
.(2.10)

Identity (2.9) shows that all but two of the eigenvalues of [cγ,Q]T [cγ,Q] are equal to
one. The two remaining eigenvalues are easily determined as the eigenvalues of the
left principal two-by-two block,

σ2
1([cγ,Q]) =

α+ (α2 − 4γ2‖r‖2)1/2
2

,(2.11)

σ2
min([cγ,Q]) =

α− (α2 − 4γ2‖r‖2)1/2
2

,(2.12)

where α ≡ 1 + γ2‖c‖2. (Notice that α2 − 4γ2‖r‖2 ≥ (1− γ2‖c‖)2 ≥ 0.) Using

κ([cγ,Q]) = σ1([cγ,Q])/σmin([cγ,Q]),

(2.8) is obtained by a simple algebraic manipulation.
Evaluating the determinants on both sides of (2.9) yields

det([cγ,Q]T [cγ,Q]) = σ2
1([cγ,Q])σ2

min([cγ,Q]) = γ2‖r‖2,

which shows (2.7). Similarly, transformation (2.10) yields

det([cγ,B]T [cγ,B]) =

n+1∏
j=1

σ2
j ([cγ,B])

= det([cγ,Q]T [cγ,Q]) det(RTR) = γ2‖r‖2
n∏
j=1

σ2
j (B),

which proves (2.6).
The relations (2.8) generalize results presented in [19, section 5.5.2]. The identity

(2.6) (with γ = 1) was first shown by Van Huffel and Vandewalle [29, Theorem 6.9],
and it also appeared (with a different proof) in [20].

Van Huffel and Vandewalle [29, Theorem 6.10] gave the following lower and upper
bounds for ‖r‖ (with γ = 1) in terms of σmin([cγ,B]) (see also [20]). Let

δ(γ) ≡ σmin([cγ,B])/σmin(B).(2.13)

Then

σmin([cγ,B])

γ
≤ ‖r‖ ≤ σmin([cγ,B])

γ

{
1− δ(γ)2 +

γ2‖c‖2
σ2
min(B)

} 1
2

.(2.14)
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Bounds for ‖r‖ in terms of the minimal singular values of B and [cγ,B], and as
little additional information as possible, were studied in detail in [20]. In particular,
when B has full column rank and

c �⊥ {left singular vector subspace of B corresponding to σmin(B)},(2.15)

then the following bounds were given in [20]:

σmin([cγ,B]) {γ−2+ ‖y‖2} 1
2 ≤ ‖r‖

≤ σmin([cγ,B])

{
γ−2+

‖y‖2
1− δ(γ)2

} 1
2

.(2.16)

Though (2.14) can be derived from (2.16) (and not vice versa; see [20]), the upper
bound in (2.16) is not always tighter than the upper bound in (2.14). When δ(γ) ≈ 1
and ‖r‖ ≈ ‖c‖, it is possible for the upper bound in (2.14) to be smaller than that in
(2.16). However, in this case the upper bound in (2.14) becomes trivial. For details,
see [20].

For δ(γ) = 1 the upper bound in (2.16) does not exist. It was shown in [22] that
if (2.15) holds, then δ(γ) < 1 for all γ > 0. As explained in [22], the role of the
assumption (2.15) is truly fundamental. If it does not hold, both theory and compu-
tation in errors-in-variables modeling are enormously complicated by the possible case
δ(γ) = 1. Fortunately, nearly all practical problems will satisfy (2.15). Nevertheless,
it is instructive to consider possible cases where (2.15) does not hold, so that δ(γ) = 1
is possible.

The lower bound in (2.14) shows that we can make σmin([cγ,B]) arbitrarily small
by taking γ small and thus ensure δ(γ) < 1 in (2.13). How small must γ be to ensure
this? The next theorem answers a variant of this question. Given σmin(B) and ‖c‖,
it shows that there is a γ0 such that γ < γ0 ensures δ(γ) < 1, but γ = γ0 does not.

Theorem 2.4. Suppose that [c,B] ∈ RN,n+1 has full column rank, y is the
solution, and r �= 0 is the residual of the LS problem (2.1)–(2.2). Let γ > 0 be a real
parameter, and δ(γ) ≡ σmin([cγ,B])/σmin(B). Define γ0 ≡ σmin(B)/‖c‖. Then

δ(γ) < 1 for all γ < γ0.(2.17)

Moreover,

y = 0 (r = c) if and only if δ(γ0) = 1.(2.18)

Proof. Note that when γ < γ0, then ‖cγ‖ < σmin(B). Therefore σmin([cγ,B]) <
σmin(B), i.e., δ(γ) < 1.

Now assume that the LS problem (2.1)–(2.2) has the trivial solution y = 0 (r = c).
Then BT c = 0, which yields

[cγ,B]T [cγ,B] =

[ ‖c‖2γ2 0
0 BTB

]
.

Thus, σmin([cγ,B]) = min {‖c‖γ, σmin(B)}, δ(γ) = min {‖c‖γ/σmin(B), 1}, and
δ(γ0) = 1. Conversely, (2.14) gives with γ = γ0,

δ(γ0) ‖c‖ ≤ ‖r‖ ≤ δ(γ0) ‖c‖ {2− δ(γ0)
2}1/2,(2.19)

which for δ(γ0) = 1 reduces to ‖c‖ ≤ ‖r‖ ≤ ‖c‖, i.e., ‖r‖ = ‖c‖, which completes the
proof.
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We see that γ0 ≡ σmin(B)/‖c‖ represents an important number. For γ < γ0 the
value of δ(γ) is always strictly less than one, and δ(γ0) = 1 if and only if the LS
problem (2.1)–(2.2) has the trivial solution y = 0. Moreover, (2.19) shows that ‖r‖ is
significantly smaller than ‖c‖ if and only if δ(γ0) is significantly smaller than one. As
an application, we will show in section 3 how these results characterize stagnation or
near stagnation of MR methods.

One consequence of Theorem 2.4 can be stated as follows: Consider a rectangular
matrix (here B) having full column rank and an additional column (here cγ). If the
norm of the additional column is smaller than the smallest singular value of the matrix
(here if γ < γ0), then appending the column necessarily decreases the smallest singular
value. If the norm of the appended column is equal to the smallest singular value of
the matrix (here if γ = γ0), then appending the column to the matrix does not change
the smallest singular value if and only if the appended column is orthogonal to all
the columns (all the left singular vectors) of the original matrix. This is a somewhat
specialized result because of the norm of the added column fixed to σmin(B). Note
that the condition is linear. The general necessary and sufficient condition under
which adding a column (with a norm larger or equal to σmin(B)) to a matrix B
does not alter the smallest singular value was given in [22]. The added column must
be orthogonal to the left singular vector subspace of B corresponding to σmin(B),
and the left-hand side of the (deflated) secular equation [22, relation (3.4)] must be
nonnegative at σmin(B). Theorem 2.4 can also be derived from this. The second part
of the condition from [22] is nonlinear.

Theorem 2.4 and the consequence stated above must be understood in their proper
context. It was pointed out in [22] that nearly all practical problems will satisfy (2.15),
that any problem Bu ≈ c can be reduced to a core problem satisfying (2.15), and
that for many formulations it makes sense only to consider problems satisfying (2.15).
Also, if the problem satisfies (2.15), then δ(γ) < 1 for all γ > 0, and in this case
(2.17) and (2.18) are irrelevant. On the other hand, (2.19) seems to be a generally
useful result. Thus γ0 ≡ σmin(B)/‖c‖ is a significant quantity, as can be seen from
the interesting but rarely practical properties (2.17) and (2.18), and the interesting
and compact bounds (2.19). Note also that in many practical problems of interest,
γ0 ≡ σmin(B)/‖c‖ will be a very small number. In particular, this suggests that for
a general LS problem the above “column addition” result will be of minor practical
use. It is, however, important theoretically because it offers a new insight into the
stagnation or near stagnation of the MR methods.

Finally, for completeness, consider a QR-factorization B = QR. Replacing B by
BR−1 = Q and y by Ry (notice that ‖Ry‖ = ‖By‖) gives the analogies of (2.14) and
(2.16),

σmin([cγ,Q])

γ
≤ ‖r‖ ≤ σmin([cγ,Q])

γ
{1− σ2

min([cγ,Q]) + γ2‖c‖2} 1
2 ,(2.20)

σmin([cγ,Q]) {γ−2+ ‖By‖2} 1
2 ≤ ‖r‖

≤ σmin([cγ,Q])

{
γ−2+

‖By‖2
1− σmin([cγ,Q])2

} 1
2

.(2.21)

Theorem 2.4 can be reformulated in a similar way. It is interesting to note that the
bounds (2.20) do not give additional information. Indeed, since σ1([cγ,Q]) ≥ 1, the
lower bound in (2.20) follows immediately from (2.7). And since {1− σ2

min([cγ,Q]) +
γ2‖c‖2}1/2 = σ1([cγ,Q]), the upper bound is a weak reformulation of (2.7) only.
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In the following section we apply results of this section to the MR Krylov subspace
methods.

3. Characteristics of the basis and the size of the MR residual. Let
ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0, w1 ≡ Av1/‖Av1‖. Consider two sequences of orthonormal
vectors, v1, v2, . . . and w1, w2, . . ., such that for each iterative step n,

Kn(A, r0) = span{v1, . . . , vn}, Vn ≡ [v1, . . . , vn], V Tn Vn = I,(3.1)

AKn(A, r0) = span{w1, . . . , wn}, Wn ≡ [w1, . . . , wn], WT
nWn = I.(3.2)

Then the MR principle (1.3) can be formulated as

‖rn‖ = min
u∈Rn

‖r0 −AVnu‖(3.3)

= min
u∈Rn

‖r0 −Wnu‖ .(3.4)

The MR residual at step n is therefore the LS residual for the LS problems AVnu ≈
v1ρ0 and Wnu ≈ v1ρ0.

The application of the results presented in section 2 to (3.3) and (3.4) is straight-
forward: For the nth step of an MR method we consider c ≡ r0 = v1ρ0, B ≡ AVn ,
Q ≡ Wn, and r ≡ rn . The scaling parameter γ > 0 offers some flexibility. While it
seems natural to use γ ≡ ‖r0‖−1 = ρ−1

0 , other values of γ also prove useful; cf. [21]
and our discussion below.

With γ ≡ ‖r0‖−1 = ρ−1
0 , Theorem 2.3 and relations (2.7) and (2.8) give the

following identities for the relative residual norm ‖rn‖/ρ0:

‖rn‖/ρ0 = σmin([v1, Wn]) σ1([v1, Wn])(3.5)

=
2κ([v1, Wn])

κ([v1, Wn])2 + 1
.(3.6)

Identities (3.5) and (3.6) show that the conditioning of the basis [v1, Wn] of the Krylov
subspace Kn+1(A, r0) is fully determined (except for an unimportant multiplicative
factor) by the convergence of the MR methods, and vice versa. In other words,

‖rn‖ = ρ0 if and only if κ([v1, Wn]) = 1,(3.7)

and the relative residual norm ‖rn‖/ρ0 is small if and only if [v1, Wn] is ill-conditioned.
The previous statement can also be mathematically expressed by inequalities.

Dividing both the numerator and the denominator in (3.6) by κ([v1,Wn]) gives in a
simple way the bounds

κ([v1,Wn])
−1 ≤ ‖rn‖/ρ0 ≤ 2κ([v1,Wn])

−1.(3.8)

The upper bound in (3.8) was published by Walker and Zhou [34, Lemma 3.1].
It is interesting to note that, because of (2.11),

1 ≤ σ1([v1,Wn]) ≤
√

2,(3.9)

which shows that the size of κ([v1,Wn]) is in fact determined by the smallest singular
value σmin([v1,Wn]).
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Relations between the size of the residuals of the MR methods and the condition
number of matrices [v1,Wn] and [r0,Wn] were studied in [19, section 5.5.2]. We will
generalize the result [19, relation (5.48)] and develop an elegant tool for quantification
of the influence of the scaling parameter γ.

Theorem 3.1. Let r0, rn, and Wn be as in (3.4), ρ0 ≡ ‖r0‖, v1 ≡ r0/ρ0, and
γ > 0. Then

κ([r0γ,Wn]) ≥ κ([v1,Wn]) +
γ (ρ0 − γ−1)2

2‖rn‖ .(3.10)

Proof. Using (2.8) with the particular choices c ≡ r0, Q ≡ Wn, γ > 0, and
c ≡ r0, Q ≡Wn, γ ≡ ρ−1

0 = ‖r0‖−1 gives

κ([r0γ,Wn]) − κ([v1,Wn])

=
1 + γ2ρ2

0 + [(1 + γ2ρ2
0)

2 − 4γ2‖rn‖2]1/2
2γ‖rn‖ − 2 + [4− 4ρ−2

0 ‖rn‖2]1/2
2ρ−1

0 ‖rn‖

=
γ−1 + γρ2

0 + [(γ−1 + γρ2
0)

2 − 4‖rn‖2]1/2 − 2ρ0 − [4ρ2
0 − 4‖rn‖2]1/2

2‖rn‖

=
γ (ρ0 − γ−1)2

2‖rn‖ +
[(γ−1 + γρ2

0)
2 − 4‖rn‖2]1/2 − [4ρ2

0 − 4‖rn‖2]1/2
2‖rn‖

≥ γ (ρ0 − γ−1)2

2‖rn‖ .

Clearly, κ([r0γ,Wn]) is minimal for γ = ρ−1
0 , and the minimum is equal to

κ([v1,Wn]) (see also [8]). If γ �= ρ−1
0 , then with the residual norm ‖rn‖ decreasing

towards zero the condition number κ([r0γ,Wn]) grows much faster than κ([v1,Wn]).
The results considering the matrix [r0γ,Wn] will be particularly useful for our dis-
cussion of MR implementations based on the orthogonal projection principle (1.4) in
section 5.

With c ≡ r0, r ≡ rn, y ≡ yn, and B ≡ AVn, (2.16) gives the following bounds for
the residual norm in terms of σmin([r0γ,AVn]):

σmin([r0γ,AVn]) {γ−2+ ‖yn‖2} 1
2 ≤ ‖rn‖

≤ σmin([r0γ,AVn])

{
γ−2+

‖yn‖2
1− δn(γ)2

} 1
2

,(3.11)

where δn(γ) ≡ σmin([r0γ,AVn])/σmin(AVn). As mentioned in section 2, the upper
bound in (3.11) becomes intriguing for δn(γ) ≈ 1, and for δn(γ) = 1 it is not defined.

The convergence of the MR methods and the situation δn(γ) = 1 or δn(γ) ≈ 1 are

related by Theorem 2.4. Define γ
(n)
0 ≡ σmin(AVn)/ρ0. Then δn(γ) < 1 for all γ < γ

(n)
0

and

‖rn‖ = ρ0 ⇔(3.12)

δn(γ
(n)
0 ) ≡ σmin([v1σmin(AVn), AVn])

σmin(AVn)
= σmin([v1, AVn/σmin(AVn)]) = 1.

Moreover, (2.19) gives

δn(γ
(n)
0 ) ≤ ‖rn‖/ρ0 ≤

√
2 δn(γ

(n)
0 ),(3.13)



1512 J. LIESEN, M. ROZLOŽNÍK, AND Z. STRAKOŠ

which shows that the rate of convergence of the MR methods is determined by the

size of δn(γ
(n)
0 ). Summarizing, the MR methods stagnate in steps 1 through n if and

only if δn(γ
(n)
0 ) = 1, and they nearly stagnate in steps 1 through n if and only if

δn(γ
(n)
0 ) ≈ 1. However, this specific link between convergence of the MR methods

and the value of δn(γ) can be made for γ = γ
(n)
0 only. In particular, when δn(γ1) = 1

for some γ1 > γ
(n)
0 , the MR methods do not necessarily stagnate or nearly stagnate.

They may exhibit very fast convergence while δn(γ1) ≈ 1 and very slow convergence
while δn(γ1)� 1. (For more details, see [21].)

For γ = γ
(n)
0 there is an interesting relationship between the smallest singular

values of the matrices [v1, AVn/σmin(AVn)] and [v1,Wn]: (3.5), (3.9), and (3.13) yield

σmin([v1, AVn/σmin(AVn)]) ≤
√

2σmin([v1,Wn]) ≤ 2σmin([v1, AVn/σmin(AVn)]),

which shows that these smallest singular values are very close to each other.

Using the matrix [r0γ,AVn] instead of [v1,Wn] may seem unwise because it nec-
essarily brings into play the potentially ill-conditioned matrix AVn (in comparison
to Wn having orthonormal columns). However, as shown in [22, 21], bounds using
the matrix [r0γ,AVn] are very useful for the analysis of the modified Gram–Schmidt
implementation of Classical GMRES. Notice that the bounds (3.11) are not based on
singular values only. Using ‖yn‖, the norm of the MR approximate solution, makes
(3.11) amazingly tight [22]. The parameter γ offers flexibility required for the analysis
of the GMRES method [21].

It is also possible to consider other bases of the Krylov subspaces or Krylov
residual subspaces which lead to other matrices, identities, and bounds. For example,
Ipsen [16, 17] used the matrix Kn+1 = [r0, Ar0, . . . , A

nr0], got the identity

‖rn‖ = 1/‖eT1 K†
n+1‖(3.14)

(cf. Theorem 2.1), and developed the bound ‖rn‖/ρ0 ≥ 1/(‖Kn+1‖ ‖K†
n+1‖). How-

ever, any bound based directly on the matrix Kn+1 necessarily suffers from the po-
tential ill-conditioning of the matrix [Ar0, . . . , A

nr0]. Consider the QR-decomposition
[Ar0, . . . , A

nr0] = WnRn. In light of the results presented above (see, in particular,
(2.5), (3.5), and (3.6)), the upper triangular factor Rn containing all the potential
ill-conditioning of the matrix [Ar0, . . . , A

nr0] is mathematically in no relation what-
soever to the residual rn and to the convergence of any MR method measured by
the residual norm. Except for some (rather special) examples, bounds based on the
matrix Kn+1 are therefore necessarily much weaker than the bounds based on the
matrices [r0γ,Wn] and [r0γ,AVn].

In the following we use our theoretical results to obtain new insight into the
numerical behavior of MR methods.

4. Implementations of the MR methods. Numerous residual norm mini-
mizing Krylov subspace methods have been proposed in the last decades [18, 30, 35,
1, 11, 26]. Resulting from different approaches, they generate (under different assump-
tions) approximate solutions satisfying (1.3) and (1.4). Though they are, under some
particular assumptions, mathematically equivalent, they differ in various algorithmic
aspects, and, consequently, in their numerical behavior.

We will concentrate on two main approaches which explicitly compute the basis
vectors v1, v2, . . . , vn (respectively, v1, w1, . . . , wn−1) defined in (3.1) and (3.2). In the
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first approach, the approximate solution xn is expressed as

xn = x0 + Vn yn

for some yn, and the residual norm is bounded in terms of σmin([v1ρ0γ,AVn]) via
(3.11). In the second approach the approximate solution is expressed as

xn = x0 + [v1,Wn−1] tn

for some tn, and for the residual norm we have the identities (3.5)–(3.6). At first
sight the second approach seems more attractive because it gives a cleaner relation
between the residual norm (which is minimized at every step) and the conditioning
of the computed basis. Its implementation is also simpler. On the other hand, the
fact that the approximate solution is in this approach determined via the basis vec-
tors v1, w1, . . . , wn−1 which are not mutually orthogonal raises some suspicions about
potential numerical problems. In this section we recall implementations of both ap-
proaches resulting in different variants of the GMRES algorithm. In section 5 we will
discuss their numerical properties.

A variety of MR methods that do not explicitly compute the vectors v1, v2, . . . , vn
or v1, w1, . . . , wn−1 have been proposed. For example, the method by Khabaza [18]
uses the vectors r0, Ar0, . . . , A

n−1r0; Orthomin [30], Orthodir [35], Generalized Con-
jugate Gradient (GCG) [1, 2] and Generalized Conjugate Residual (GCR) [10, 11]
compute an ATA-orthogonal basis of Kn(A, r0). These methods played an important
role in the development of the field. In comparison to the approaches discussed in
this paper they are, however, less numerically stable. Therefore we will not consider
them below.

4.1. Minimal residual principle: Classical GMRES. Consider an initial
approximation x0 and the initial residual r0 = b− Ax0, ρ0 ≡ ‖r0‖. In their classical
paper [26], Saad and Schultz used the orthonormal basis (3.1) (Arnoldi basis). As
noted in [33], this basis can be mathematically expressed as the Q-factor of a recursive
columnwise QR-factorization

[r0, AVn] = Vn+1 [e1ρ0, Hn+1,n], Vn+1 ≡ [v1, . . . , vn+1], V Tn+1Vn+1 = I.(4.1)

Here Hn+1,n is an (n+1)-by-n upper Hessenberg matrix with elements hi,j , hj+1,j �=
0, j = 1, 2, . . . , n − 1. If at any stage hn+1,n = 0, the algorithm would stop with
[r0, AVn] = Vn [e1ρ0, Hn,n]. Using the substitution

xn = x0 + Vn yn(4.2)

and (4.1), the MR principle (1.3) gives the LS problem for the vector of coefficients
yn:

‖rn‖ ≡ ‖b−Axn‖ = min
y∈Rn

‖r0 −AVn y‖ = min
y∈Rn

‖Vn+1 (e1ρ0 −Hn+1,n y)‖(4.3)

= min
y∈Rn

‖e1ρ0 −Hn+1,n y‖.(4.4)

To solve (4.3) we apply orthogonal rotations J1, J2, . . . , Jn sequentially to Hn+1,n to
bring it to the upper triangular form Tn:

Jn · · ·J2J1Hn+1,n =

[
Tn
0

]
.
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The vectors yn and ‖rn‖ then satisfy

[
Tn yn
‖rn‖

]
= JT1 J

T
2 · · ·JTn e1ρ0.(4.5)

The value of the (nonincreasing) residual norm is available without determining yn,
and it can be easily updated at each iteration, while yn+1 and xn+1 will usually differ
in every element from yn and xn, respectively. We refer to this algorithm as Classical
GMRES.

Several variants for computing the basis vectors v1, . . . , vn were proposed. Saad
and Schultz [26] considered the modified Gram–Schmidt process. Walker [32, 33]
presented Classical GMRES based on Householder transformations. Iterated classical
and iterated modified Gram–Schmidt versions were studied in [9].

A variety of parallel implementations [6, 3, 12, 23, 7, 27] use various techniques
to increase the parallel efficiency of the basically sequential basis-generating process.
Parallel aspects are out of the scope of this paper.

4.2. Orthogonal projection principle: Simpler GMRES. We now consider
an implementation of an MR method derived from the orthogonal projection principle
(1.4). The approach proposed by Walker and Zhou [34], called Simpler GMRES, uses
the orthonormal basis (3.2).

This basis is computed by a recursive columnwise QR-factorization of the matrix
[Ar0γ,AWn−1]. Based on Theorem 3.1 we set γ = ρ−1

0 , and we will use this value of
the scaling parameter γ throughout the rest of this paper. Then

A[v1,Wn−1] = [Av1, AWn−1] = WnSn, Wn ≡ [w1, . . . , wn], WT
nWn = I,(4.6)

where Sn is an n-by-n upper triangular matrix with elements si,j , sj,j �= 0. If at
any stage sn,n = 0, the algorithm would stop with [Av1, AWn−1] = Wn−1[Sn−1, ŝn].
Using the substitution

xn = x0 + [v1,Wn−1] tn ,(4.7)

the vector tn ∈ Rn solves the LS problem

‖rn‖ ≡ ‖b−Axn‖ = min
t∈Rn

‖r0 −A[v1,Wn−1] t‖(4.8)

= min
t∈Rn

‖r0 −WnSn t‖ .(4.9)

Solving the LS problem (4.8)–(4.9) in a numerically stable way represents a more
subtle task then solving (4.3)–(4.4). The main difference is in handling the right-
hand side vector r0. In (4.3)–(4.4), r0 is expressed in terms of the vectors v1, v2, . . . , vn
simply as r0 = v1ρ0. In finite precision arithmetic, until the linear independence of
the vectors v1, v2, . . . , vn is lost, this expression is maximally accurate. On the other
hand, application of the orthogonal projection principle (1.4) directly to (4.8)–(4.9)
gives the upper triangular system

Sn tn = WT
n r0.(4.10)

As demonstrated in [25], computing the vector of coefficients tn from (4.10) leads to
numerical difficulties. Numerically more stable implementations are described next.

First consider the implementation of Simpler GMRES using the modified Gram–
Schmidt process for generating the basis vectors w1, . . . , wn. A properly implemented
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algorithm for solving the LS problem (4.8)–(4.9) applies the orthogonalization pro-
cess also to the right-hand side r0 (see [4, pp. 64–65]). Then, using the recur-
sive columnwise modified Gram–Schmidt QR-factorization of the extended matrix
[Av1, AWn−1, r0],

[Av1, AWn−1, r0] = Wn [Sn, zn] +

[
0,

rn
‖rn‖

] [
0
‖rn‖

]
,(4.11)

the vector tn solves the upper triangular system

Sn tn = zn.(4.12)

The jth component of zn ≡ (ζ1, . . . , ζn)
T is determined by

ζj = wTj (I − wj−1w
T
j−1) · · · (I − w1w

T
1 ) r0 = wTj rj−1 ,(4.13)

where we use

rj = (I − wjwTj ) · · · (I − w1w
T
1 ) r0 = rj−1 − (wTj rj−1) wj−1 .(4.14)

A complete algorithm of the modified Gram–Schmidt implementation of Simpler
GMRES is given in the appendix.

Now we consider the implementation of Simpler GMRES based on Householder
reflections. It transforms the matrix [Av1, AWn−1] into upper triangular form,

Pn · · ·P2P1 [Av1, AWn−1] =

[
Sn
0

]
,(4.15)

where Pj , j = 1, . . . , n, are elementary Householder matrices. (For details, see
[9, p. 312].) Then the transformed right-hand side is determined as

zn = [Pn · · ·P1 r0]{1:n},

where [·]{1:n} denotes the first n elements of a vector. The vector of coefficients tn is
determined from (4.12). A complete algorithm of the Householder implementation of
Simpler GMRES is given in the appendix.

Related to Simpler GMRES are stabilized Orthodir [31] and the recent ATA-
variant of GMRES [25]. Both compute an ATA-orthogonal basis of Kn(A, r0), and
thus each step of these methods requires about twice as much storage and also slightly
more arithmetic operations than Simpler GMRES. They are also numerically less sta-
ble than Simpler GMRES. On the other hand, they allow easier parallel implemen-
tations because they feature step by step updates of both the approximate solution
and the residual vectors.

5. Numerical stability. In this section we analyze and compare the numerical
stability of Classical and Simpler GMRES. As mentioned in section 4, different or-
thogonalization techniques for computing the columns of Vn or Wn can be applied.
Here we focus on implementations based on Householder transformations [32, 33] and
on the modified Gram–Schmidt process [26].

For distinction, we denote quantities computed in finite precision arithmetic (with
the machine precision ε) by bars. We assume the standard model of floating point
arithmetic (see, e.g., [15, equation (2.4)]). In our bounds we present only those terms
which are linear in ε and do not account for the terms proportional to higher powers
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of ε. By pk(n,m,N), k = 1, 2, . . ., we denote low degree polynomials in the number of
iteration steps n, the maximum number of nonzeros per row in the system matrix m,
and the dimension of the system N . They are introduced in a number of places in the
text; some of them depend only on one or two variables. In all cases, pk(n,m,N) ≤
ckN

5/2, where ck > 0 is a constant independent of n,m, and N . This bound is,
in general, very pessimistic; it accounts for the worst possible case. For details,
see [9, 14, 24].

5.1. Classical GMRES. In the Classical GMRES implementation the com-
puted approximate solution x̄n satisfies

x̄n = x0 + V̄nȳn + gn,(5.1)

‖gn‖ ≤ ε‖x0‖+ p1(n) ε‖V̄n‖‖ȳn‖.

It was shown in [9, 14] that the computed matrix V̄n = [v̄1, v̄2, . . . , v̄n] satisfies the
recurrence

[r̄0, AV̄n] = V̂n+1 [ρ̄0e1, H̄n+1,n] + [fn, Fn] ,(5.2)

‖fn‖ ≤ p2(m,N) ε‖A‖‖x0‖+ p3(N) ε‖b‖,
‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖V̄n‖,

where the matrix V̂n+1 has exactly orthogonal columns (V̂ Tn+1V̂n+1 = In+1). The
vector ȳn is a computed solution of the finite precision analogue of the transformed
LS problem (4.4), and r̄0 satisfies

‖r̄0 − (b−Ax0)‖ ≤ p5(m,N) ε‖A‖‖x0‖+ p6(N) ε‖b‖ .(5.3)

For details, we refer to [9] and also to [24, pp. 25–26].
Our goal is not to give a complete rounding error analysis of GMRES. (For

the Householder implementation of Classical GMRES this was published in [9], and
the modified Gram–Schmidt implementation of Classical GMRES has been analyzed
in [14, 24, 21].) We wish to explain that there is a potential weakness of Simpler
GMRES which may negatively affect its computational behavior in comparison with
Classical GMRES. For this purpose we can simplify our description of the GMRES
convergence. This allows us to avoid tedious details which would make reading of this
section difficult. We will describe the convergence of Classical GMRES by the norm
of the LS residual associated with the matrix AV̄n and the computed initial residual
r̄0:

‖r̂n‖ ≡ ‖r̄0 −AV̄nŷn‖ = min
y
‖r̄0 −AV̄ny‖.(5.4)

The analysis in [14, section 3] as well as numerical experiments confirm that for
Classical GMRES ‖r̂n‖ is close to the norm of the actually computed GMRES residual
‖b−Ax̄n‖.

It follows immediately from (2.14) that the residual norm (5.4) can be bounded
in terms of the minimal singular values of matrices [r̄0, AV̄n] and AV̄n as

σmin([r̄0, AV̄n]) ≤ ‖r̂n‖ ≤ σmin([r̄0, AV̄n])
{

1− σ2
min([r̄0, AV̄n])

σ2
min(AV̄n)

+
‖r̄0‖2

σ2
min(AV̄n)

}1/2

.

(5.5)
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We see that convergence of the residual r̂n is closely related to ill-conditioning of the
matrix [r̄0, AV̄n]; i.e., decreasing ‖r̂n‖ leads to ill-conditioning of [r̄0, AV̄n]. Moreover,
it follows from (5.2) and from classical perturbation theory (see, e.g., [13, p. 449]),
that the minimum singular values of the matrices [r̄0, AV̄n] and [ρ̄0e1, H̄n+1,n] are
close to each other:

∣∣σmin([ρ̄0e1, H̄n+1,n])− σmin([r̄0, AV̄n])
∣∣ ≤ ‖[fn, Fn]‖ .(5.6)

Consequently, decreasing ‖r̂n‖ leads to ill-conditioning of the matrix [ρ̄0e1, H̄n+1,n].
The vector ȳn from (5.1) is a computed solution of the LS problem

min
y
‖e1ρ̄0 − H̄n+1,ny‖.(5.7)

Using (5.2), the extremal singular values of H̄n+1,n can be bounded by

‖H̄n+1,n‖ ≤ ‖AV̄n‖+ ‖Fn‖ ≤ ‖A‖‖V̄n‖+ ‖Fn‖,(5.8)

σmin(H̄n+1,n) ≥ σmin(AV̄n)− ‖Fn‖ ≥ σmin(A)σmin(V̄n)− ‖Fn‖.(5.9)

When ‖r̂n‖ (and ‖b−Ax̄n‖) decreases, σmin([r̄0, AV̄n]) and σmin([ρ̄0e1, H̄n+1,n]) also
decrease. However, while the columns of V̄n (the Arnoldi vectors) keep their lin-
ear independence (while σmin(V̄n) ≈ 1), the condition number of the computed upper
Hessenberg matrix H̄n+1,n is essentially bounded by the condition number of A. Conse-
quently, until the linear independence of the Arnoldi vectors begins to deteriorate, the
solution ȳn of the transformed LS problem and the GMRES solution x̄n are affected
by rounding errors in a minimal possible way. This distinguishes Classical GMRES
from the other MR methods, in particular from Simpler GMRES. Finite precision
analysis of the QR-factorization of the matrix H̄n+1,n via Givens rotations and of
forming the GMRES solution can be found in [9] or [24, equations (4.6)–(4.12)].

It is important to note that not the orthogonality but the linear independence of
the columns of V̄n (measured by its extremal singular values) plays a decisive role in
the relations (5.8) and (5.9). If we use Householder reflections in the Arnoldi process,
the loss of orthogonality among the computed columns of V̄n and the extremal singular
values of V̄n are bounded independent of the system parameters

1− p7(n,N) ε ≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 + p7(n,N) ε.(5.10)

Moreover, it was shown in [9] that the Householder implementation of Classical
GMRES is backward stable. Assuming that a conjecture similar to (5.10) holds, the
same result can also be shown for the iterated classical or modified Gram–Schmidt
implementations; see [9].

In practical computations, cheaper orthogonalization techniques like the modified
Gram–Schmidt algorithm are used. It is well known that the orthogonality among
the columns of V̄n computed via the modified Gram–Schmidt process will gradually
deteriorate. However, from [14, equation (1.7) and Corollary 2.4] it follows that

‖V̂n − V̄n‖ ≤ p8(n,m,N) εκ([v̄1, AV̄n−1]),(5.11)

and the minimal singular value and the norm of V̄n are bounded by

1− p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
≤ σn(V̄n) ≤ ‖V̄n‖ ≤ 1 +

p9(n,m,N) εκ(A)

‖r̂n−1‖/ρ̄0
.(5.12)
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The columns of V̄n will thus begin to lose their linear independence only after the
relative residual norm is reduced close to the level εκ(A). Up to that point the
modified Gram–Schmidt implementation of Classical GMRES behaves about as well
as the Householder implementation.

It was shown in [20, 21] that there is a tight relation between the normwise
backward error ‖b−Axn‖/(‖A‖‖xn‖+ ‖b‖) associated with the approximate solution
xn and the condition number of the matrix [r0, AVn]. A finite precision analogy of
this statement will prove normwise backward stability of the modified Gram–Schmidt
implementation of Classical GMRES. A formal proof will be given elsewhere.

The results in [20, 21] are based on (2.16). We could have also used (2.16) instead
of (2.14) in our derivation here, which would lead to tighter estimates. However, using
(2.14) makes our derivation much simpler, and the results are fully sufficient for our
purpose.

5.2. Simpler GMRES. In Simpler GMRES the approximate solution x̄n com-
puted in finite precision arithmetic satisfies

x̄n = x0 + [v̄1, W̄n−1] t̄n + gn,(5.13)

‖gn‖ ≤ ε‖x0‖+ p1(n) ε‖[v̄1, W̄n−1]‖ ‖t̄n‖.
Analogously to (5.2), for every iteration step n there exists a matrix Ŵn with exactly
orthonormal columns (ŴT

n Ŵn = I) such that

A[v̄1, W̄n−1] = ŴnS̄n + Fn,(5.14)

‖Fn‖ ≤ p4(n,m,N) ε‖A‖‖[v̄1, W̄n−1]‖.
The vector of coefficients t̄n is computed by solving the upper triangular system with
the matrix S̄n. From (5.14) the extremal singular values of the matrix S̄n are bounded
by

‖S̄n‖ ≤ ‖A[v̄1, W̄n−1]‖+ ‖Fn‖ ≤ ‖A‖‖[v̄1, W̄n−1]‖+ ‖Fn‖,(5.15)

σmin(S̄n) ≥ σmin(A[v̄1, W̄n−1])− ‖Fn‖
≥ σmin(A)σmin([v̄1, W̄n−1])− ‖Fn‖.(5.16)

The minimal singular value of the matrix [v̄1, W̄n−1] can further be related to the
minimal singular value of the matrix [r̄0/‖r̄0‖, Ŵn−1], where Ŵn−1 comes from the
recurrence (5.14),

σn([v̄1, W̄n−1]) ≥ σn([r̄0/‖r̄0‖, Ŵn−1])− ‖[v̄1 − r̄0/‖r̄0‖, W̄n−1 − Ŵn−1]‖.(5.17)

For the condition number κ([r̄0/‖r̄0‖, Ŵn−1]) it follows from (3.6) that

κ([r̄0/‖r̄0‖, Ŵn−1]) =
‖r̄0‖+

(‖r̄0‖2 − ‖r̂n−1‖2
)1/2

‖r̂n−1‖ ,(5.18)

where r̂n−1 ≡ (I − Ŵn−1Ŵ
T
n−1) r̄0 is the LS residual associated with the matrix

Ŵn−1, ‖r̂n−1‖ = miny ‖r̄0 − Ŵn−1y‖. The identity (5.18) proves that convergence

of the residual norm ‖r̂n−1‖ and ill-conditioning of the matrix [r̄0/‖r̄0‖, Ŵn−1] are
closely related.

Summarizing, small ‖W̄n−1 − Ŵn−1‖ means κ([v̄1, W̄n−1]) ≈ κ([r̄0/‖r̄0‖, Ŵn−1]).
(It can be shown that ‖v̄1− r̄0/‖r̄0‖‖ ≤ (N +4)ε; see [9].) Using (5.15) and (5.16), we



LEAST SQUARES AND MINIMAL RESIDUAL METHODS 1519

conclude that decreasing ‖r̂n−1‖ may lead to ill-conditioning of the upper triangular
matrix S̄n, and thus to a potentially large error in computing the vector t̄n, indepen-
dent of the (well-) conditioning of the matrix A. This important fact may negatively
affect the numerical accuracy of the approximate solution x̄n in Simpler GMRES in
comparison to Classical GMRES.

Until S̄n becomes pathologically ill-conditioned, ‖r̂n‖ is (similarly to subsection
5.1) close to ‖b − Ax̄n‖. After that the behavior of ‖r̂n‖ and ‖b − Ax̄n‖ may be
significantly different.

We have seen that the relation between the condition number of the matrix S̄n and
the condition number of the matrix [r̄0/‖r̄0‖, Ŵn−1] (the decrease of ‖r̂n‖) is strongly
affected by the size of the term ‖W̄n−1− Ŵn−1‖. In the Householder implementation
the computed matrix W̄n−1 is, up to a small multiple of the machine precision, close
to the matrix Ŵn−1 with exactly orthogonal columns,

‖W̄n−1 − Ŵn−1‖ ≤ p7(n,N) ε.(5.19)

It follows from (5.19) that the condition number κ([v̄1, W̄n−1]) is, up to terms pro-
portional to the machine precision, equal to κ([r̄0/‖r̄0‖, Ŵn−1]). In practice one fre-
quently observes that after ‖b−Ax̄n‖/‖r̄0‖ reaches some particular point the norm of
the computed vector t̄n starts to increase dramatically (the computed results become
irrelevant due to rounding errors), and the residual norm ‖b−Ax̄n‖ diverges.

For the modified Gram–Schmidt implementation we have

‖W̄n−1 − Ŵn−1‖ ≤ p8(n,m,N) εκ(A[v̄1, W̄n−1]).(5.20)

Because κ(A[v̄1, Ŵn−1]) is potentially much worse than κ([v̄1, AV̂n−1]), the linear in-
dependence of the columns of W̄n often begins to deteriorate much sooner than the
linear independence of the columns of V̄n in Classical GMRES. Until that point the
modified Gram–Schmidt and Householder implementations of Simpler GMRES be-
have similarly. In subsequent iterations, surprisingly, the behavior of the modified
Gram–Schmidt implementation of Simpler GMRES may be better than the behavior
of the Householder implementation. For the Householder implementation of Simpler
GMRES the true residual b − Ax̄n often diverges. This has been linked to the tight
relation between κ([r̄0/‖r̄0‖, Ŵn−1]) and κ([v̄1, W̄n−1]), and, consequently, to the re-
lation between the decrease of ‖r̂n‖ and the simultaneous increase of κ(S̄n). For the
modified Gram–Schmidt implementation, after reaching a certain point no such rela-
tions hold. The norm of t̄n does not diverge, and the norm of the true residual remains
(and often slightly oscillates) on or below the level corresponding to the turning point
for the Householder implementation.

5.3. Numerical experiments. The different behavior of Classical and Simpler
GMRES implementations is demonstrated by numerical examples with the matrix
FS1836 from the Harwell–Boeing collection, N = 183, κ(A) = 1.5 × 1011, ‖A‖ =
1.2× 109. Experiments were performed using MATLAB 5.2, ε = 1.1× 10−16. House-
holder and modified Gram–Schmidt orthogonalizations have been considered for both
Classical and Simpler GMRES. In all experiments we used x = (1, . . . , 1)T , b = Ax,
and x0 = 0 (‖r̄0‖ = ‖b‖).

Figures 1 and 2 illustrate characteristics of the transformed LS problem (5.7)
for the Householder and the modified Gram–Schmidt implementations of Classical
GMRES. In both figures horizontal dotted lines represent ‖A‖ and the minimal sin-
gular value σmin(A). The dashed lines show ‖H̄n+1,n‖, the norm of the computed
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Fig. 1. Householder implementation of Classical GMRES: ‖A‖ and σmin(A) (dotted lines),
‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n) (solid line), and ‖ȳn‖ (dots).
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Fig. 2. Modified Gram–Schmidt implementation of Classical GMRES: ‖A‖ and σmin(A) (dot-
ted lines), ‖H̄n+1,n‖ and σmin(H̄n+1,n) (dashed lines), σmin(V̄n) (solid line), and ‖ȳn‖ (dots).

upper Hessenberg matrix (it almost coincides with ‖A‖), and the minimal singular
value σmin(H̄n+1,n). The solid line stands for σmin(V̄n), the minimal singular value
of the matrix of computed Arnoldi vectors, and the dots depict ‖ȳn‖, the norm of the
computed solution vector of (5.7). We see that until the linear independence of the
columns of V̄n in the modified Gram–Schmidt implementation begins to deteriorate,
Figures 1 and 2 are almost identical. There is no substantial growth in ‖ȳn‖ even
after the linear independence of the computed Arnoldi vectors is completely lost (cf.
Figure 2).
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Fig. 3. Householder implementation of Simpler GMRES: ‖A‖ and σmin(A) (dotted lines),
‖S̄n‖ and σmin(S̄n) (dashed lines), σmin(W̄n) (solid line), and ‖t̄n‖ (dots).
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Fig. 4. Modified Gram–Schmidt implementation of Simpler GMRES: ‖A‖ and σmin(A) (dotted
lines), ‖S̄n‖ and σmin(S̄n) (dashed lines), σmin(W̄n) (solid line), and ‖t̄n‖ (dots).

Similar quantities are illustrated in Figures 3 and 4 for the Householder and the
modified Gram–Schmidt implementations of Simpler GMRES. The dashed lines here
represent ‖S̄n‖, the norm of the computed upper triangular matrix, and its minimal
singular value σmin(S̄n). The dots denote ‖t̄n‖, the norm of the computed solution
of the upper triangular system with the matrix S̄n.

We see that the condition number of the matrix H̄n+1,n is in Figure 1 (the House-
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Fig. 5. Householder implementation of Classical and Simpler GMRES: Normalized true
residual norm ‖b − Ax̄n‖/‖b‖ (solid line—Classical GMRES, dashed line—Simpler GMRES), and
‖r̂n‖/‖b‖ (dots—Classical GMRES, dotted line—Simpler GMRES).

holder implementation of Classical GMRES) approximately bounded by the condition
number of A, and for Figure 2 (the modified Gram–Schmidt implementation of Clas-
sical GMRES) the same is true until σmin(V̄n) begins to deteriorate. In contrast, in
both implementations of Simpler GMRES, the minimal singular value of S̄n decreases
very soon far below σmin(A). Consequently, the accuracy of the computed vector t̄n
deteriorates, and for the Householder implementation ‖t̄n‖ diverges. Also note the
difference between σmin(V̄n) and σmin(W̄n) in Figures 2 and 4.

In Figure 5 we compare the convergence characteristics for the Householder im-
plementations of both Classical GMRES (‖b − Ax̄n‖/‖b‖ is represented by the solid
line, ‖r̂n‖/‖b‖ by dots) and Simpler GMRES (‖b − Ax̄n‖/‖b‖ is represented by the
dashed line, ‖r̂n‖/‖b‖ by the dotted line). Figure 5 illustrates our theoretical consid-
erations and shows that the true residual norm of the Householder implementation
of Simpler GMRES may after some initial reduction diverge. Figure 6 uses similar
notation for the illustration of the modified Gram–Schmidt implementations. The
residual norm of Simpler GMRES again exhibits worse behavior than the residual
norm corresponding to Classical GMRES.

6. Conclusions. MR methods can be formulated and implemented using differ-
ent bases and different orthogonalization processes. Using general theoretical results
about the LS residual, this paper shows that the choice of the basis is fundamental
for getting revealing theoretical results about convergence of MR methods. It is also
important for getting a numerically stable implementation. The choice of the com-
puted basis may strongly affect the numerical behavior of the implementation. It is
explained that using the best orthogonalization technique in building the basis does
not compensate for the possible loss of accuracy in a given method which is related to
the choice of the basis. In particular, it is shown that the classical implementation of
GMRES, which is based on the Arnoldi process starting from the normalized initial
residual (as proposed by Saad and Schultz), has numerical advantages over Simpler
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Fig. 6. Modified Gram–Schmidt implementation of Classical and Simpler GMRES: Normalized
true residual norm ‖b − Ax̄n‖/‖b‖ (solid line—Classical GMRES, dashed line—Simpler GMRES),
and ‖r̂n‖/‖b‖ (dots—Classical GMRES, dotted line—Simpler GMRES).

GMRES, which is based on the shifted Arnoldi process.

7. Appendix. Here we present the implementations of Simpler GMRES used
throughout the paper.

Modified Gram–Schmidt implementation of Simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, w0 = v1

n = 1, 2, . . .

wn = Awn−1

j = 1, 2, . . . , n− 1

wn ← wn − ρj,nwj , ρj,n = (wn, wj)

wn ← wn/ρn,n, ρn,n = ‖wn‖

Sn =

⎛
⎜⎝

Sn−1 ρ1,n

...
0 ρn,n

⎞
⎟⎠, S1 = (ρ1,1)

rn = rn−1 − ζnwn, ζn = (rn−1, wn)

Solve Sn tn = (ζ1, . . . , ζn)
T

xn = x0 + [v1, w1, . . . , wn−1] tn
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Householder implementation of Simpler GMRES:

x0, r0 = b−Ax0, v1 = r0/‖r0‖, (ζ1, . . . , ζN )T = r0, w0 = v1

n = 1, 2, . . .

Compute Pn such that PnAwn−1 = (ρ1,n, . . . , ρn,n, 0, . . . , 0)T

Sn =

⎛
⎜⎝

Sn−1 ρ1,n

...
0 ρn,n

⎞
⎟⎠, S1 = (ρ1,1)

(ζ1, . . . , ζN )T ← Pn (ζ1, . . . , ζN )

Solve Sn tn = (ζ1, . . . , ζn)
T

rn = rn−1 − ζnwn

wn = P1 . . . Pn en

xn = x0 + [v1, w1, . . . , wn−1] tn
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Abstract. Mathematical models of the urine concentrating mechanism consist of large systems
of coupled differential equations. The numerical methods that have usually been used to solve the
steady-state formulation of these equations involve implicit Newton-type solvers that are limited by
numerical instability attributed to transient flow reversal. Dynamic numerical methods, which solve
the dynamic formulation of the equations by means of a direction-sensitive time integration until a
steady state is reached, are stable in the presence of transient flow reversal. However, when an ex-
plicit, Eulerian-based dynamic method is used, prohibitively small time steps may be required owing
to the CFL condition and the stiffness of the problem. In this report, we describe a semi-Lagrangian
semi-implicit (SLSI) method for solving the system of hyperbolic partial differential equations that
arises in the dynamic formulation. The semi-Lagrangian scheme advances the solution in time by
integrating backward along flow trajectories, thus allowing large time steps while maintaining stabil-
ity. The semi-implicit approach controls stiffness by averaging transtubular transport terms in time
along flow trajectories. For sufficiently refined spatial grids, the SLSI method computes stable and
accurate solutions with substantially reduced computation costs.

Key words. mathematical models, differential equations, mathematical biology, kidney, renal
medulla

AMS subject classifications. 65-04, 65M12, 65M25; 92-04, 92C35; 35-04, 35L45

PII. S1064827500381781

1. Introduction. Mammals can produce urine that has a much higher osmolal-
ity than that of blood plasma.1 This capability, which allows mammals to maintain a
steady plasma osmolality during periods of water deprivation, is provided by the urine
concentrating mechanism. Many model studies have sought to elucidate this mecha-
nism, which is localized in the renal medulla and which depends on a countercurrent
configuration of fluid flows in thousands of nearly parallel tubules [5, 6, 9, 12, 20, 23].

Models of the urine concentrating mechanism have usually been formulated as
steady-state boundary-value problems involving differential equations expressing so-
lute and water conservation. The solutions describe solute concentrations and fluid
flow rates in interacting tubules having diameters of ∼20 μm and lengths of several
millimeters. Models are typically formulated in one space dimension corresponding
to the axis parallel to intratubular flow.

The steady-state model problem consists of a nonlinear system of coupled, stiff
ordinary differential equations (ODEs), which are usually solved by adaptations of
Newton’s method [16, 18, 20, 23]. However, this formulation has to contend with the
difficulty that intratubular flow may be transiently reversed relative to the assumed
steady-state direction. This transient reversal of flow direction, which arises when

∗Received by the editors November 30, 2000; accepted for publication (in revised form) July 23,
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1Osmolality is approximated by a weighted sum of the solute concentrations [20].
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transmural water fluxes are sufficiently large, may introduce numerical instability. In
steady state, intratubular fluid flow in a tubule typically assumes a uniform direction,
so flow reversal is a dynamic effect. However, iterates of a Newton-type method
may pass through states that exhibit flow reversal, unless initial conditions that are
sufficiently close to the steady-state solution are specified [5].

An alternative method for obtaining a solution to the steady-state equations is to
formulate the problem in terms of its dynamic equations and then compute a steady-
state solution to the dynamic equations. The dynamic equations form a nonlinear
system of hyperbolic partial differential equations (PDEs), which represent solute
conservation, and ODEs, which represent water conservation [5, 6]. A direction-
sensitive time integration scheme, such as upwind differencing or the ENO (essentially
nonoscillatory) scheme [2], has been used to advance the solution in time until a
steady state is reached [5, 6]. These methods eliminate numerical instability arising
from transient reversal of intratubular flow direction. However, owing to stiffness of
the problem, which arises from transtubular transport terms, these explicit methods
may require prohibitively small time steps, thus resulting in high computation cost.

The purpose of this paper is to describe a stable and efficient numerical method,
based on the semi-Lagrangian semi-implicit (SLSI) scheme [13], for approximating
solutions to the dynamic equations. The Lagrangian nature of this method avoids nu-
merical instability arising from flow reversal, and its implicit nature controls stiffness
and maintains stability even with large time steps.

In section 4, we present numerical results from the SLSI scheme that demonstrate
second-order spatial convergence of the solution in a simple, one-solute model of the
urine concentrating mechanism and in a two-solute model of the outer renal medulla,
with parameters primarily from the rat. The one-solute model is an approximation
to a model for which an explicit solution can be derived. In section 5, we compare
the stability and efficiency of the SLSI method with the ENO method in models of
the outer and inner renal medullas, and we show that the SLSI method is stable with
a Courant–Friedrichs–Lewy (CFL) number much larger than 1, whereas the ENO
method is limited by the CFL condition (i.e., the CFL number must be less than
1 to maintain numerical stability). Furthermore, compared with the ENO method,
the SLSI method generates a solution with comparable accuracy in substantially less
time, provided that the spatial grid is sufficiently refined.

2. Model equations. In this section we introduce the equations for a simple
dynamic model of the renal medulla. The model includes a single loop of Henle
and a collecting duct. The loop of Henle has a descending limb and an ascending
limb. The limbs of the loop of Henle and the collecting duct interact in a common
tubular compartment, the central core. The central core represents all structures
within the medulla but external to the loop of Henle and collecting duct, e.g., the
interstitial spaces, interstitial cells, and vasculature. The central core formulation was
introduced by Stephenson [15]. This model configuration is shown in Figure 2.1.

The model equations are based on conservation of solute and water in the renal
medulla. A derivation of the equations can be found in [5]. The descending limb,
ascending limb, collecting duct, and central core are represented by rigid tubules
(indexed by i = 1, 2, 3, and 4, respectively) that extend in space from x = 0 to x = L.
NaCl and urea are the two principal solutes of the renal medulla. For simplicity, we
represent only the Cl− and urea concentrations, denoted by k = 1 and 2, respectively.

The water flow rate at time t in a given tubule i is denoted by FiV (x, t), and
the transmural (i.e., transtubular) water line flux (i.e., the water transport rate per
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Fig. 2.1. Model configuration. Panel A: Tubules along spatial axis. DL, descending limb
(i = 1); AL, ascending limb (i = 2); CD, collecting duct (i = 3); CC, central core (i = 4); arrows,
steady-state flow directions; thick lines, water-impermeable boundaries; prebend segment begins at
xp (see section 4). Panel B: Cross-section showing connectivity between CC and other tubules.

unit tubular length) is given by JiV (x, t), taken positive for transport into the tubule.
With this notation, water conservation, for i = 1, 2, 3, or 4, is represented by

∂

∂x
FiV (x, t) = JiV (x, t).(2.1)

Solute conservation is represented by

∂

∂t
Cik(x, t) =

1√
Ai(x)

(
−FiV (x, t)

∂

∂x
Cik(x, t) + Jik(x, t)− Cik(x, t)JiV (x, t)

)
,

(2.2)

where i = 1, 2, 3, or 4 and k = 1 or 2. For a given tubule of type i, Cik(x, t) is
the concentration of solute k, Ai(x) is the cross-sectional area of the tubule, and
Jik(x, t) is the transmural line flux of solute k, taken positive into the tubule. The
three terms inside the outer parentheses on the right arise from axial intratubular
solute convection, transmural solute transport, and transmural water transport, re-
spectively. The first and third terms equal the spatial derivative of the solute flow,
FiV (x, t)Cik(x, t).

The transmural water flux across a descending limb, ascending limb, or collecting
duct (i = 1, 2, or 3) is given by

JiV (x, t) = 2πri(x)di(x)

2∑
k=1

φkσik(x) (Cik(x, t)− C4k(x, t)) ,(2.3)

where ri(x) is the radius of the tubule, di(x, y) is the product of the partial molar
volume of water (0.018136 cm3/mmole at 37◦C) and the transmural osmotic water
permeability Pf,i(x), φk is the osmotic coefficient of solute k, and σik(x) is the reflec-
tion coefficient of solute k. For the central core, the equation for transmural water
flux arises from the fluxes in (2.3) and is given by

J4V (x, t) = − (J1V (x, t) + J2V (x, t) + J3V (x, t)) .(2.4)

The transmural solute flux in a descending limb, ascending limb, or collecting
duct (i = 1, 2, or 3) is given by
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Jik(x, t) = (1− σik(x))JiV (x, t) (C4k(x, t) + Cik(x, t)) /2

+ 2πri(x)

(
Pik(x) (C4k(x, t)− Cik(x, t))− Vmax,ik(x)Cik(x, t)

KM,ik(x) + Cik(x, t)

)
.(2.5)

The first term on the right is the linearized solvent drag. The first term inside the pair
of large parentheses is the transmural diffusion characterized by permeability Pik(x);
the second term inside these parentheses represents active transport, characterized
by maximum transport rate per unit tubular area Vmax,ik(x) and Michaelis–Menten
kinetics with Michaelis constant KM,ik(x). For the central core, the equation for
solute flux arises from (2.5) and is given by

J4k(x, t) = − (J1k(x, t) + J2k(x, t) + J3k(x, t)) .(2.6)

To complete the system, boundary and initial conditions must be specified. At
the entrances of the descending limb and collecting duct, F1V (0, t) and F3V (0, t), as
well as C1k(0, t) and C3k(0, t) for each solute k, must be specified for t ≥ 0. At
the loop bend, the descending limb is continuous with the ascending limb; thus,
F2V (L, t) = −F1V (L, t), where the flow is taken positive in the increasing x direction;
and for each solute k, C2k(L, t) = C1k(L, t). The central core is assumed to be
closed at x = L, which implies that there is no convective solute or fluid flow at
x = L; thus, F4V (L, t) = 0. Natural initial conditions are C1k(x, 0) = C2k(x, 0) =
C4k(x, 0) = C1k(0, 0), C3k(x, 0) = C3k(0, 0), F1V (x, 0) = −F2V (x, 0) = F1V (0, 0),
F3V (x, 0) = F3V (0, 0), and F4V (x, 0) = 0.

3. Discretization. In this section, we describe an algorithm to solve the model
equations of section 2, (2.1)–(2.6), by a combination of the SLSI time discretization
method and the trapezoidal rule. As previously noted, the goal is to develop an
efficient numerical method that, like the Newton-type methods, controls the stiffness
of the problem, and, like the explicit direction-sensitive integration schemes, maintains
numerical stability in the presence of flow reversal.

The semi-Lagrangian treatment of advection, which is distinguished from the
Lagrangian advection treatment by its backward, rather than forward, integration
of flow trajectories, has generated considerable interest as a means for the efficient
integration of equations arising in atmospheric models. Discretization schemes on the
semi-Lagrangian treatment of advection offer the promise of larger time steps, with
no loss in accuracy, in comparison with Eulerian-based advection schemes, in which
the time-step size is limited by a more severe stability condition [11, 13].

In an Eulerian-based advection scheme, the observer is considered to be fixed at
a position x as the world evolves. This scheme retains the regularity of the mesh
(because the observer stays fixed), but small time steps may be required to satisfy the
CFL condition and thus maintain numerical stability. In a Lagrangian-based scheme,
the observer watches the world evolve while traveling along the trajectory of a fluid
particle. This scheme is less restricted by stability requirements and therefore allows
larger time steps than the Eulerian scheme. However, because the fluid particles
move with time, an initially regularly spaced set of fluid particles generally becomes
irregularly spaced as the system evolves.

A semi-Lagrangian advection scheme attempts to combine the advantages of both
schemes—the grid regularity of the Eulerian scheme and the enhanced stability of the
Lagrangian scheme—by approximating the Lagrangian derivative along trajectories
defined by dx/dt = u(x, t), where u(x, t) denotes the flow velocity. In the model de-
scribed in section 2, the flow velocity in a tubule of type i is given by FiV (x, t)/

√
Ai(x);
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Fig. 3.1. The semi-Lagrangian scheme approximates the Lagrangian derivative along the tra-
jectory of a fluid particle. The curve AB denotes the actual trajectory, whereas the dashed line A′B
represents an approximate trajectory.

therefore, the flow trajectory is defined by

d

dt
xi(t) =

FiV (x, t)√
Ai(x)

.(3.1)

Let Δt and Δx denote the time step and spatial grid interval, respectively, such
that Δt > 0 and Δx ≡ L/N , where N is the number of spatial grid subintervals.
Let tn ≡ nΔt be the nth time-level for n = 0, 1, . . . , and let xj ≡ jΔx be the jth
spatial grid point for j = 0, 1, . . . , N . We adopt the two-time-level scheme2 [13] that
approximates a function associated with tubule i on a flow trajectory originating at the
upstream departure point (xj − (δxi)

n+1
j ) at tn and terminating at the jth grid point

xj at tn+1, where δ(xi)
n+1
j denotes the displacement of the fluid particle in the time

interval [tn, tn+1]. The trajectory is represented by the curve AB in Figure 3.1. For
an arbitrary function ψ(x, t), denote ψ(xj , tn) by (ψ)nj . For a function ψi associated

with tubule i, let ψ̃i(xj , tn) (alternatively, (ψ̃i)
n
j ) denote the function value at the

departure point, i.e., ψi(xj − (δxi)
n+1
j , tn). Then the Lagrangian derivative of the

solute concentration Cik in (2.2) is approximated by

(
d̃

dt
Cik

)n+ 1
2

j

=

(
∂̃

∂t
Cik

)n+ 1
2

j

+

⎛
⎝ F̃iV√

Ãi

∂̃

∂x
Cik

⎞
⎠
n+ 1

2

j

≈ (Cik)
n+1
j − (C̃ik)

n
j

Δt
.(3.2)

The semi-Lagrangian approach provides accurate approximations for advection
with virtually no time-step restriction. However, the transmural water and solute
transport terms in (2.2) may render the equations stiff if the transmural permeabilities
are sufficiently large. If these terms were treated explicitly, they would severely restrict
the time step even with semi-Lagrangian advection approximations. Therefore, to
obtain maximum benefit from the semi-Lagrangian approach, one needs to combine
the semi-Lagrangian approximations with semi-implicit approximations. To this end,

2The alternative three-time-level semi-Lagrangian scheme approximates a trajectory originating
at a spatial upstream departure point at time tn−1 and terminating at a spatial grid point at tn+1.
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the terms arising from water and solute transport in (2.2) are averaged in time along
particle trajectories by

(C̃ikJ̃iV )
n+ 1

2
j ≈ (Cik)

n+1
j (JiV )n+1

j + (C̃ik)
n
j (J̃iV )nj

2
, (J̃ik)

n+ 1
2

j ≈ (Jik)
n+1
j + (J̃ik)

n
j

2
.

(3.3)

3.1. Trajectory calculation. Before presenting the discretized form of (2.2),
we describe how the upstream departure points and function values are computed.
An approximate trajectory, represented by the dashed line A′B in Figure 3.1, is
estimated by a backward integration of (3.1). To obtain the trajectory velocities,
we first compute intratubular water flows by numerically integrating (2.1) using the
trapezoidal rule. For the descending limb and collecting duct (i = 1 or 3),

(FiV )nj = (FiV )n0 +
Δx

2

j−1∑
l=0

(
(JiV )nl + (JiV )nl+1

)
.(3.4)

For the ascending limb and central core (i = 2 or 4),

(FiV )nj = (FiV )nN −
Δx

2

N−1∑
l=j

(
(JiV )nl + (JiV )nl+1

)
,(3.5)

where (F2V )nN = −(F1V )nN (since F2V (L, t) = −F1V (L, t)) and (F4V )nN = 0 (since
F4V (L, t) = 0).

Using Cik as an example, we now describe the computation of departure points
and upstream function values. Flow trajectories are estimated by integrating (3.1)
backward from the arrival point xj at time tn+1 to the departure point xj − (δxi)

n+1
j

at time tn by means of a second-order Runge–Kutta method:

(δxi)
n+1
j ≈ Δt

2

⎛
⎝ (FiV )n+1

j√
(Ai)j

+
FiV (xj −Δt(FiV )n+1

j /
√

(Ai)j , tn)√
Ai(xj −Δt(FiV )n+1

j /
√

(Ai)j)

⎞
⎠ .(3.6)

The evaluation of the right side of (3.6) requires temporal extrapolation and spatial
interpolation of FiV , as will be explained shortly. The grid point values (FiV )nj are

given by (3.4) and (3.5). However, since the values of (FiV )n+1
j , needed in the com-

putation of (δxi)
n+1
j by (3.6), are unknown except possibly at the boundaries, they

are extrapolated in time from known values at previous time steps:

(FiV )n+1
j ≈ 2(FiV )nj − (FiV )n−1

j .(3.7)

Another difficulty in estimating the trajectory arises from the second water flow
term. Since the point (xj − Δt(FiV )n+1

j /
√

(Ai)j ) will generally not coincide with

a grid point, the value of FiV (xj − Δt(FiV )n+1
j /

√
(Ai)j , tn) may not be known. In

that case, linear spatial interpolation based on the grid point values (FiV )nj is used to

approximate FiV (xj −Δt(FiV )n+1
j /

√
(Ai)j , tn) between grid points.

Once (δxi)
n+1
j is estimated, then if xj − (δxi)

n+1
j ∈ [0, L], an approximation to

Cik at the departure points (xj−(δxi)
n+1
j , tn) can be computed from grid point values

by cubic Lagrange spatial interpolation. In general, linear interpolation is sufficient
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for the computation of the flow trajectories [14, 17], and for the approximation of
upstream function values it is economical to use cubic interpolation, which has fourth-
order truncation error and little damping [25].

However, if an upstream departure point falls outside of the spatial domain (i.e.,
if xj − (δxi)

n+1
j �∈ [0, L]), then the upstream function value must be estimated dif-

ferently. The procedure depends on the type of the tubule and the position of the
departure point. In the ascending limb, consider the case where xj − (δx2)

n+1
j > L,

a likely case with a sufficiently large Δt since F2V is negative with normal physio-
logical parameters. Since the descending limb is continuous with the ascending limb
at x = L, the upstream concentration in the ascending limb is given by C2k(xj −
(δx2)

n+1
j , tn) = C1k(2L − xj + (δx2)

n+1
j , tn). Similarly, for the descending limb,

Cn1k(xj − (δx1)
n+1
j , tn) = C2k(2L− xj + (δx1)

n+1
j , tn) if xj − (δx1)

n+1
j > L.

For the collecting duct and the central core, function values at departure points
with values greater than xN are estimated with cubic Lagrange extrapolation using
function values at xN−3, xN−2, xN−1, and xN at time-level tn. (Since normally F1V

and F3V are positive at steady state, the associated departure points fall at values
greater than xN only in transient states.) Cubic Lagrange extrapolation is also used to
approximate upstream function values associated with the ascending limb and central
core if xj − (δxi)

n+1
j < 0; function values at x0, x1, x2, and x3 at t = tn are used.

If a departure point falls at a value less than x0 in a descending limb or collect-
ing duct, then the Lagrangian derivative approximation (3.2) and the semi-implicit
approximation (3.3) are cast in terms of their respective boundary values at x0. The

upstream function value (C̃ik)
n
j is linearly extrapolated along the flow trajectory, using

downstream and boundary function values, to give

C̃ik(xj , tn) = (1− (α∗
i )
n+1
j )Cik(0, (τi)

n+1
j ) + (α∗

i )
n+1
j Cik(xj , tn+1),(3.8)

where

(α∗
i )
n+1
j ≡ xj − (δxi)

n+1
j

xj
and (τi)

n+1
j ≡ tn −

(α∗
i )
n+1
j Δt

1− (α∗
i )
n+1
j

.(3.9)

Figure 3.2 illustrates the relationship among (αi)
∗n+1
j , (τi)

n+1
j , and Cik(0, (τi)

n+1
j ).

For an arbitrary function ψi associated with a tubule i, redefine (ψ̃i)
n
j to be

(1 − (α∗
i )
n+1
j )ψi(0, (τi)

n+1
j ) if xj − (δxi)

n+1
j < 0 and i = 1 or 3. Also, define the

boundary correction factor (αi)
n+1
j by

(αi)
n+1
j =

{
(α∗
i )
n+1
j , xj − (δxi)

n+1
j < 0 and i = 1 or 3,

0 otherwise.
(3.10)

With this notation, the Lagrangian derivative approximation (3.2) and the semi-
implicit approximation (3.3) for Cik can be rewritten to take into account upstream
points that fall outside the spatial domain:

(
d̃

dt
Cik

)n+ 1
2

j

≈ (1− (αi)
n+1
j )(Cik)

n+1
j − (C̃ik)

n
j

Δt
,(3.11)

(C̃ik)
n+ 1

2
j ≈ 1

2

(
(1 + (αi)

n+1
j )(Cik)

n+1
j + (C̃ik)

n
j

)
.(3.12)

Equations (3.11) and (3.12) reduce to (3.2) and (3.3) for Cik, respectively, when

0 ≤ xj−(δxi)
n+1
j ≤ L. Approximations for (J̃iV )nj and (J̃ik)

n
j can be treated similarly.
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n+1
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i )
n+1
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Fig. 3.2. A schematic diagram that illustrates relation (3.8).

3.2. Numerical procedures. When discretized in time using the two-level
SLSI scheme and evaluated at the grid points {xj}, (2.2) takes the following form:

(1− (αi)
n+1
j )(Cik)

n+1
j − (C̃ik)

n
j

Δt
=

1

2

⎛
⎝ (1 + (αi)

n+1
j )(Jik)

n+1
j√

(Ai)j
+

(J̃ik)
n
j√

(Ãi)j

(3.13)

− (1 + (αi)
n+1
j )(Cik)

n+1
j (JiV )n+1

j√
(Ai)j

− (C̃ik)
n
j (J̃iV )nj√
(Ãi)j

⎞
⎠ .

To obtain (3.13), the Lagrangian derivative dCik/dt was approximated by (3.11), and
the transmural flux term Jik and the water transport term CikJiV were averaged in
time using approximations analogous to (3.12). Equations (2.3)–(2.6) and (3.13) form
a nonlinear, coupled system, which we refer to as the nonlinear kernel and which we
solve by means of Gauss–Seidel iteration. Specifically, at the mth iteration, we solve
the following equations, obtained by rearranging (3.13), so that the unknown terms
with (Cik)

n+1
j are on the left and the other terms are on the right:

(
(1− (αi)

n+1
j ) +

Δt

2
√

(Ai)j
(JiV )

n+1,[m−1]
j

)
(Cik)

n+1,[m]
j

= (C̃ik)
n
j +

Δt

2

⎛
⎝(1 + (αi)

n+1
j )

(Jik)
n+1,[m−1]
j√
(Ai)j

+
(J̃ik)

n
j√

(Ãi)j

− (C̃ik)
n
j (J̃iV )nj√
(Ãi)j

⎞
⎠ .(3.14)

A summary of the integration algorithm and the iterative process is given at the
end of this subsection. The Gauss–Seidel iteration is repeated until the iterates
have sufficiently converged, that is, until the max-norm of successive iterations is
less than a given tolerance TOL. Since our goal is to compute a steady-state solu-
tion, computation costs are reduced by adopting a larger TOL at the onset of the
simulation when the system is far from its steady state and then refining the accu-
racy by reducing TOL when the solution is approaching a steady state. How far
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a given solution at time-level tn differs from the steady-state solution is measured
by computing the difference maxi,k |Cnik − Cn−1

ik |, denoted by ΔCn, from the previ-
ous solution at tn−1. Thus, we choose the Gauss–Seidel tolerance dynamically as
TOL = min(TOL1,max(0.1×ΔCn,TOL2)), where TOL1 > TOL2.

In our implementation, a linear extrapolation, using values from the previous two

time-levels, C
n+1,[0]
ik = 2Cnik − Cn−1

ik , is used as an initial guess for the Gauss–Seidel
iterates. With this choice of initial guess, and with TOL1 = 10−3 and TOL2 = 10−9,
one or two Gauss–Seidel iterations suffice to attain a level of accuracy in the steady-
state solution that is not improved by increasing the number of iterations. Because
the convergence is rapid, we have not used a more rapidly converging but more costly
nonlinear solver, e.g., Newton’s method, for the nonlinear kernel.

Now we summarize the steps that advance the model by one time step. Suppose
that the boundary conditions and the initial conditions Cik(xj , 0) and FiV (xj , 0),
specified in section 2, are given. Then, until a steady state is reached, repeat steps 1
to 4:

1. Estimate the departure points for each tube using (3.6).
2. Approximate upstream function values using cubic Lagrange approximations.
3. Solve the nonlinear kernel using Gauss–Seidel iterations. Compute an initial

guess C
n+1,[0]
ik , using linear extrapolation, and the dynamic Gauss–Seidel tol-

erance TOL; then compute the iterates (indexed by m) until the convergence
criterion is met:
(a) For each solute k,

i. compute (Cik)
n+1,[m]
j , (C2k)

n+1,[m]
j , and (C3k)

n+1,[m]
j using (3.14);

ii. update water fluxes (JiV )
n+1,[m]
j for i = 1, 2, 3, and 4 using (2.3)

and (2.4).

(b) Update solute fluxes (Jik)
n+1,[m]
j for i = 1, 2, 3, and 4 using (2.5) and

(2.6).

(c) Compute (C4k)
n+1,[m]
j using (3.14).

4. Update (FiV )n+1
j using (3.4) and (3.5).

4. Convergence properties. In this section, we present numerical results that
demonstrate the second-order spatial convergence properties of the SLSI method.
First, we describe a simple steady-state model that has an explicit solution in terms of
solute transport. Then we formulate the parameters of the model equations developed
in section 2 to approximate those of the simple model, and we compare results from
the two models. In the second study, we use more realistic model parameters that
are based mostly on the outer medulla of the rat. Calculations in sections 4 and
5 were performed using Fortran programs in double precision on a Dell Dimension
XPS T550 system with an Intel Pentium III 550 MHz processor and with 256 MB of
RAM.

4.1. A simple steady-state model with explicit solution. We now restrict
our attention to a simple, steady-state, one-solute model. This model, which is based
on the structure and geometry described in section 2 (see Figure 2.1), represents a
descending limb, ascending limb, collecting duct, and central core. The model de-
scending limb is structurally and functionally divided into two segments. The second
segment, which we call the prebend segment, is a terminal portion of the descending
limb that may have the diameter and transport properties of the ascending limb. The
model prebend segment begins at xp ∈ [0, L].
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We let Ci(x) be the steady-state solute concentration in a tubule i. We assume
that the descending limb, except for its prebend segment, and the collecting duct
are infinitely permeable to water. The prebend segment and the ascending limb are
assumed to be impermeable to water. With these assumptions, which are suggested
by permeabilities that have been measured in the outer medulla of the rat kidney,
we have C3(x) = C4(x) ≡ C(x) and C1(x) = C(x) for x ∈ [0, xp]; J2V (x) = 0 and
J1V (x) = 0 for x ∈ (xp, L]. We define Fik(x) ≡ FiV (x)Ci(x) to be the rate of solute
advection (“solute flow”) in a tubule of type i, with k = 1 in this one-solute model.

With these stipulations, C(x), the steady-state concentration at level x in the
initial descending limb (x ≤ xp), the collecting duct, and the central core is given by

C(x)

C(0)
= exp

⎛
⎝∫ x

0

−H+
xp(y)J1k(y)− J2k(y)

H−
xp(y)F1k(y) + F3k(L) +

∫ L
y

(J1k(s) + J2k(s)) ds
dy

⎞
⎠ ,(4.1)

where H+
xp(x) and H−

xp(x) denote Heaviside functions such that H+
xp(x) = 1 if x > xp,

H+
xp(x) = 0 if x ≤ xp, and H−

xp(x) = 1−H+
xp(x). H

−
xp(x)F1k(x) represents the solute

flow in the proximal, water-permeable portion of the descending limb; H+
xp(x)J1k(x)

represents the transmural solute flux across the prebend segment. Equation (4.1) gives
the steady-state concentration profile as a function only of the boundary concentration
C(0), the solute flow along the descending limb, the solute flow out of the collecting
duct, and the transmural fluxes of solute across the descending and ascending limbs.
A derivation for (4.1) can be found in the appendix. If one further assumes that
J1k(x) = 0 for x ≤ xp, then F1k(x) = F1k(0) for x ≤ xp, and the integral can be
evaluated analytically. If one specifies that F3k(L) = εF1k(0), one obtains

C(x)

C(0)
=

{
f(1, x, 0), 0 ≤ x ≤ xp,
f(1, xp, 0)f(0, x, xp), xp < x ≤ L,(4.2)

where

f(α, x, y) ≡ (α+ ε)F1k(0) +
∫ L
x

(J1k(s) + J2k(s)) ds

(α+ ε)F1k(0) +
∫ L
y

(J1k(s) + J2k(s)) ds
.(4.3)

For this model, we assume that L = 2 mm, xp = 0.9 L, and that each tubule has
a fixed diameter of 20 μm. We assume that all tubules are impermeable to solute;
thus Pik(x) = 0 for each i. For the collecting duct, we further assume that J3k(x) = 0.
The boundary concentrations and water flows are specified for both the descending
limb and collecting duct: C1(0) = C3(0) = 200 mM, F1V (0) = 10 nl/min, and
F3V (0) = 5 nl/min (thus, ε = 0.5). For the ascending limb and the prebend segment,
we assume a constant rate of solute transport such that half of the solute entering the
descending limb is transported out of the ascending limb and the prebend segment:
J2k(x) = −83.3̄ nmole/(cm2·s) and, for x ∈ (xp, L], J1k(x) = −83.3̄ nmole/(cm2·s).

We approximated this simple steady-state model with the dynamic equations
(2.1)–(2.6), which were integrated in time using the SLSI method described in sec-
tion 3 until a steady state was attained. The derivation of (4.2) assumes infinite
water permeability for the descending limb and collecting duct. However, in our ap-
proximation to this model, water permeabilities must be finite and were taken to be
5,000 μm/s for both the descending limb and collecting duct. As water permeabil-
ity increases, the numerical results should approach (4.2). Nonetheless, a value of
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5,000 μm/s should be sufficiently large so that (4.2) can be used as the reference solu-
tion in this convergence study. The osmotic coefficient φ was set to 1.84 for NaCl [22],
and all reflection coefficients σi were set to 1.

The two portions of the descending limb have markedly different transport prop-
erties. To maintain good spatial convergence near the point where tubular properties
change, we represent the transition by means of a twice-differentiable polynomial.
Thus, suppose that at x = α0 the value of a transport property q(x) (e.g., a so-
lute permeability Pik(x) or radius ri(x)) changes abruptly from q1 to q2. Then q is
represented by a piecewise cubic polynomial

q(x) =

⎧⎨
⎩

q1, x < α1,
−2(x− α1)

3Δq/b3 + 3(x− α1)
2Δq/b2 + q1, α1 ≤ x ≤ α2,

q2, x > α2,
(4.4)

where b > 0 specifies the sharpness of the transition, α1 ≡ α0−b/2, α2 ≡ α0+b/2, and
Δq ≡ q2−q1. Because the trapezoidal rule (the spatial integration scheme used in this
method) assumes a continuous second derivative within each integration subinterval,
q(x) is designed to satisfy this assumption. In this model, α1 and α2 are grid points,
and α0 is identified with the beginning of the prebend segment; thus the changes in
water permeability and active transport rate of the descending limb are near α0 = xp.
In the spatial convergence experiments presented in this section, we set b = 0.05L.
(Experiments have shown that tubular diameters may also change, but for simplicity,
tubular diameters are assumed to be uniform for these calculations.)

Results of the numerical experiments were normalized and are presented in di-
mensionless form. Dimensionless variables were obtained by dividing dimensional
variables by dimensional reference values. Specifically, the spatial variable x was nor-
malized by dividing by the dimensional length of the renal medulla, L; Cik by the
solute concentration in fluid entering the descending limb, Co (if there is more than
one solute in the system, Co is chosen to be the chloride concentration); FiV by the
axial water flow rate entering the descending limb, FV o; Ai by the cross-sectional
area of a descending limb at x = 0, Ao; t by AoL/FVo ; di by FV o/(CoL); Pik by
FV o/(2L

√
πAo); Vmax,ik by CoFV o/(2L

√
πAo); and KM,ik by Co.

4.2. Convergence studies and comparison with the explicit model. In
these convergence studies, we will first examine quantities that have been commonly
reported in numerical studies of the urine concentrating mechanism. These quanti-
ties are the collecting duct outflow variables, the central core concentration at the
medullary tip (x = L), and the water and solute balance properties of the medulla
[4, 5, 6, 19, 21, 24]. The collecting duct outflow variables are of particular interest
because the urine osmolality, urine solute concentration, and urine flow are key sci-
entific results, and because the collecting duct fluid and solute outflow, being a small
fraction of typical tubular flow, can be sensitive to changes in parameters or to the
degree of spatial grid refinement. We will also present global measures of convergence
in standard norms for key variables. Unless otherwise specified, a dimensionless time
step Δt of 0.0002 was used in the numerical calculations.

The convergence of numerical results was assessed by comparing numerical solu-
tions computed on successively refined spatial grids. Empirical orders of convergence
were obtained by means of a diagnostic calculation based on Aitken extrapolation [1],
which we now describe. Let ψ be a scalar dependent variable of the model at steady
state, and let ψm be a numerical approximation to ψ computed on a spatial grid of
size N = N02

m, where N0 is a positive integer and m = 0, 1, or 2. An empirical order
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Table 4.1
Spatial convergence results for the steady-state central core concentration (C4)ssN and collecting

duct water flow rate (F3V )ssN at x = L. p, C4∞ , and F3V∞ are computed by means of (4.5) using
the three steady-state values on and above the line containing p.

N (C4)ssN p C4∞ (F3V )ssN p F3V∞
40 1.82051 – – 2.74363E-1 – –
80 1.79050 – – 2.79281E-1 – –

160 1.78395 2.20 1.78214 2.80495E-1 2.03 2.80892E-1
320 1.78332 3.40 1.78257 2.80677E-1 2.74 2.80709E-1
640 1.78322 2.65 1.78320 2.80719E-1 2.12 2.80731E-1

Table 4.2
Convergence study for increasing water permeabilities (Pf ). Steady-state solute concentrations

(C4)ssN of the central core at x = L are shown for spatial grid refinements N = 80, 160, and 320.

N
Pf (104 μm/s)

1.25 2.5 5.0 10.0 20.0

80 1.86317 1.86189 1.86126 1.86094 1.86077
160 1.86029 1.85594 1.85051 1.84823 1.84567
320 1.86065 1.85658 1.85286 1.84965 1.84705

of convergence p of three strictly monotonic values ψ0, ψ1, and ψ2 may be obtained
by solving simultaneously the equations

ψ∞ − ψm = K(Δx/2m)p, m = 0, 1, 2.(4.5)

The empirical order of convergence is p = log2(Δ1/Δ2), where Δm = ψm − ψm−1.
The asymptotic error constant is estimated by K = Δ1(Δx)

−p(1−2−p)−1. The value
to which the ψm’s are apparently converging is ψ∞ = ψ0 +K(Δx)p.

In Table 4.1, the spatial convergence of the steady-state solute concentration in
the central core and the water flow rate in the collecting duct at x = L were estimated
using (4.5). The empirical orders of convergence are consistent with the expected
second-order convergence. Similar results were obtained for collecting duct solute
outflow (F31)

ss
N . Generally speaking, the orders of convergence for water and solute

flow rates are more regularly second order than are orders of convergence for other
variables. This is because the principal equations (2.1) and (2.2) are derived on the
basis of water and solute (FiV and Fik) conservation; consequently, the convergence for
these variables should be robustly second order. The convergence for other variables,
such as solute concentration, Ci = Fik/FiV , may deviate somewhat from second order.

Using grid sizes N = 160, 320, and 640, the approximations (C4)
ss
N for C4(L)

converge to a concentration of ∼1.78320, which is within 3.20% of the corresponding
value in the explicit solution, 1.84211; the approximations (F3V )ssN for F3V (L) converge
to a flow of ∼0.280731, which is within 3.43% of the explicit solution of 0.27143. The
discrepancy between the explicit and the numerical solutions, after sufficient grid
refinement, arises from the use of finite water permeabilities and from the nonzero
transition length at the beginning of the prebend segment.

To provide evidence that the model indeed converges to the explicit solution when
model water permeability values approach infinity and the prebend transition length
approaches zero, we show in Table 4.2 steady-state values of (C4)

ss
N computed for

water permeability values starting at Pf = 1.25× 104 μm/s and increasing by factors
of 2, 4, 8, and 16 for grid sizes of N = 80, 160, and 320. A smaller prebend transition



1538 ANITA T. LAYTON AND HAROLD E. LAYTON

Normalized depth x

0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 s
ol

ut
e 

fl
ow

0.4980

0.4985

0.4990

0.4995

0.5000

N=80

N=160
N=320

N=40

N=640

Fig. 4.1. Net steady-state chloride flow rate F ss1 through the medulla, computed with successive
spatial grid refinements. Second-order convergence to the correct normalized solute flow, 0.5, is
apparent for N > 80.

length of b = 0.02L was used, compared to the base-case value of b = 0.05L used in the
spatial convergence studies. Note that for a given N , the solution decreases toward
the explicit model value of 1.84211 as water permeability increases. However, stronger
evidence for convergence can be obtained by increasing the water permeability and
the spatial grid resolution simultaneously. This is because as the water permeability is
increased, the errors in computing water efflux from the water-permeable tubules near
x = 0 (a boundary effect) and xp (beginning of prebend segment) also increase unless
the grid is refined. A convergence study based on the diagonal concentrations given in
bold typeface in Table 4.2 indicates that the concentrations are converging to a value
of 1.84693, which differs from the explicit model value by a relative difference of 0.26%.
For the studies in the remainder of this section, the base-case values Pf = 5,000 μm/s
and b = 0.05L were used.

Numerical solutions to mathematical models of the urine concentrating mecha-
nism have frequently been assessed on the basis of their mass conservation properties
[6, 8, 21]. To assess solute and water conservation of the model, define F ssk (x) and
F ssV (x) to be the total steady-state flow rates of solute and water through the renal
medulla. Then,

F ssk (x) =

4∑
i=1

F ssiV (x)Cssi (x) and F ssV (x) =

4∑
i=1

F ssiV (x),(4.6)

where F ssiV (x) and Cssi (x) are the steady-state flow and solute concentration in an
individual tubule i. At steady state, both F ssk and F ssV are constant functions. Since
the collecting duct is the only tubule that is open at x = L, F ssk and F ssV will equal
the solute and water flow rates there, respectively; that is, F ssk ≡ F ss3k (L) and F ssV ≡
F ss3V (L). Numerical results should approximate these properties.

Since the collecting duct is assumed to be solute-impermeable in this model,
F ss1 = F ss31 (L) = F31(0) = 0.5. Indeed, this is the value that the curves in Figure 4.1
are approaching, with a convergence rate that is approximately second order. At
low resolution, there is a substantial defect around x = xp, where the transmural
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Table 4.3
Global spatial convergence results computed for the water flow �FV , chloride flow �F1, and chloride

concentration �C, using the L1-norm, L2-norm, and L∞-norm. The orders of convergence are shown
in columns p1, p2, and p∞.

�FV ≡ (F ss1V , F
ss
2V , F

ss
3V , F

ss
4V )

N r1 p1 r2 p2 r∞ p∞
80 3.54526E-3 – 4.85106E-3 – 3.22711E-3 –

160 9.67002E-4 1.88 1.20676E-3 2.01 7.98999E-4 2.01
320 2.07363E-4 2.22 2.29190E-4 2.40 1.77574E-4 2.17
640 5.23266E-5 1.97 5.46919E-5 2.07 4.66975E-5 1.93

�F1 ≡ (F ss11 , F
ss
21 , F

ss
31 , F

ss
41 )

N r1 p1 r2 p2 r∞ p∞
80 1.53426E-3 – 1.65883E-3 – 2.80338E-3 –

160 5.30343E-4 1.53 5.65183E-4 1.55 9.51475E-4 1.54
320 1.86390E-4 1.51 1.95506E-4 1.53 2.48346E-4 1.94
640 5.51589E-5 1.76 5.77176E-5 1.76 6.75311E-5 1.88

�C ≡ (Css1 , Css2 , Css3 , Css4 )

N r1 p1 r2 p2 r∞ p∞
80 2.78896E-3 – 5.96690E-3 – 1.68521E-2 –

160 5.55048E-4 2.32 1.22541E-3 2.28 3.67474E-3 2.20
320 4.02216E-5 3.78 1.04542E-4 3.55 5.01056E-4 2.87
640 8.97683E-6 2.16 1.68173E-5 2.64 9.16320E-5 2.45

properties of the descending limb change. Nevertheless, the curves flatten as the
resolution is increased. The steady-state value of F ssV depends on the steady-state
tubular concentration and thus is not known a priori. The curves for F ssV (not shown)
show no derivation from horizontal lines even at a low resolution of N = 40, and they
show an approximately second-order convergence to a steady-state value of ∼0.28073.
The solution to the explicit model yields a value of F ssV = F ss31 (L)/Css(L) = 0.27143.

Table 4.3 shows global convergence in norm for steady-state water flow �FV , chlo-
ride flow �F1, and chloride concentration �C. The ordering of the entries of the vector
�FV ∈ R4(N+1) is indicated in the table, where each F ssiV represents the N + 1 compo-

nents (F ssiV )j , j = 0, . . . , N . The vectors �F1 and �C are defined similarly. For a vector
�FV computed on N subintervals and denoted by �FNV , we define PN/2: R

4(N+1) →
R4(N/2+1) to be the operator that reduces �FNV to the vector PN/2 �F

N
V by retaining the

N/2+1 entries (F ssiV )0, (F ssiV )2, (F ssiV )4, . . . , (F
ss
iV )N in F ssiV for i = 1, 2, 3, and 4. We in-

dex the components (�FV )j of �FNV ∈ R4(N+1) by j = 1, 2, . . . ,M , where M = 4(N+1),

and we define the q-norm of �FV by

‖�FNV ‖q ≡
⎛
⎝ M∑
j=1

|(�FV )j |q 1

M

⎞
⎠

1/q

, q = 1, 2, or ∞.(4.7)

If we define rNq = ‖PN/2 �FNV − �F
N/2
V ‖q/‖�F 640

V ‖q, then an order of convergence, anal-

ogous to that previously obtained by the Aitken method, can be estimated by pNq =

log2(r
N/2
q /rNq ). As in the case for the results in Table 4.1, convergence in Table 4.3

was found to be approximately second order for q = 1, 2, and ∞.
The ratio rNq has a natural interpretation as an estimate for the relative error

eNq ≡ ‖�FAV − �FNV ‖q/‖�FAV ‖q, where �FAV is the vector, analogous to �F ssV , of values at

the spatial grid points {xj}Nj=0 of the true (analytic) steady-state solution to the
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Table 4.4
Tubular diameters and transport parameters used in the outer medulla model. DL, descending

limb; AL, ascending limb; CD, collecting duct; Pf , PCl− , Purea, permeabilities of water, Cl−, and
urea, respectively; Vmax,Cl− , maximum Cl− active transport rate.

Property DL AL CD

Diameter (μm) 15 20 26
Pf (μm/s) 2,295 0 445
PCl− (10−5 cm/s) 4.8 1 0.39
Purea (10−5 cm/s) 13 1 3.5
Vmax,Cl− (nmole/(cm2·s)) 0 8 0

finite-permeability model equations. This is because ‖�FAV ‖q ≈ ‖�F 640
V ‖q; ‖�F 640

V ‖q 

‖PN/2 �FNV − �F

N/2
V ‖q; and ‖PN/2 �FNV − �F

N/2
V ‖q ≈ ‖PN/2 �KN (N−p − (2N)−p)‖q ≈ (1−

2−p)‖ �KNN−p‖q ≈ (1 − 2−p)‖�FAV − �FNV ‖q, by analogy with (4.5), for an asymptotic

error vector �KN ∈ R4(N+1). Thus, if p ≈ 2, then eNq ≈ 4
3r
N
q .

4.3. An outer medulla model. The physiological setting in which we wish to
apply the SLSI method is substantially more complex than the simple explicit model,
and the approximation to that model, described in the previous section. Therefore,
in a second set of experiments, we tested the SLSI method using parameter values
based on experiments in the outer medullas of small mammals (primarily rat, but
also hamster and rabbit [3, 7]). These parameter values are listed in Table 4.4. The
medullary length L was set to be 3.2 mm. The transition in the late descending
limb, which includes changes in tubular diameter and transport properties, is treated
using the piecewise cubic function defined in (4.4). The boundary concentrations were
chosen for C11(0, t), C12(0, t), C31(0, t), and C32(0, t) to be 160.0, 15.0, 63.8, and 197.5
mM, respectively; the boundary flows were chosen for F1V (0, t) and F3V (0, t) to be
10 and 1.5 nl/min, respectively. The osmotic coefficient φk for NaCl (k = 1) was set
to be 1.84, and for urea (k = 2), 0.97 [20, 22]. The active transport rates for urea,
Vmax,i2, were all set to zero, and the Michaelis constant KM,ik(x) for chloride (k = 1)
was set to 70 mM. The reflection coefficients σik were set to 1.

Figure 4.2 shows the normalized steady-state osmolality profiles for the four
tubules, computed using the parameters shown in Table 4.4. The normalized os-
molality of a given tubule i at level x (i = 1, 2, 3, or 4) was defined by

CiO(x, t) =
φ1Ci1(x, t) + φ2Ci2(x, t)

φ1C11(0, t) + φ2C12(0, t)
.(4.8)

Convergence results for the rate of steady-state chloride and water flow out of the
collecting duct are shown in Table 4.5. Results for both variables indicate second-
order convergence, as do results for other variables, although values for F3V obtained
using N = 40, 80, and 160 are not monotonic and thus cannot be used to estimate an
order of convergence.

Convergence results that are approximately second order were obtained for the
conservation of chloride, urea, and water. The net steady-state chloride flow is shown
in Figure 4.3. The fluctuations for x > ∼0.7 arise from the changes in diameter and
transport properties in the descending limb. These deviations from a horizontal line
diminish rapidly as the grid is refined.
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Fig. 4.2. Steady-state osmolality profiles for the descending limb (DL), ascending limb (AL),
collecting duct (CD), and central core (CC ), computed on an N = 160 grid.

Table 4.5
Spatial convergence results for the steady-state chloride and water flow in the collecting duct at

x = L.

N (F31)ssN p F31∞ (F3V )ssN p F3V∞
20 7.76885E-2 – – 3.67955E-2 – –
40 7.54804E-2 – – 3.91212E-2 – –
80 7.51773E-2 2.87 7.51291E-2 3.91878E-2 5.13 3.91897E-2

160 7.51194E-2 2.39 7.51057E-2 3.91740E-2 – –
320 7.51064E-2 2.16 7.51027E-2 3.91679E-2 1.20 3.91633E-2
640 7.51034E-2 2.08 7.51024E-2 3.91663E-2 1.86 3.91657E-2
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Fig. 4.3. Net steady-state chloride flow rate through the medulla, computed with successive
spatial grid refinements. For most values of x, second-order convergence can be observed.
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Table 4.6
Global spatial convergence results computed for the water flow �FV , chloride flow �F1, and chloride

concentration �C1, using the L1-norm, L2-norm, and L∞-norm. The orders of convergence are
shown in columns p1, p2, and p∞.

�FV ≡ (F ss1V , F
ss
2V , F

ss
3V , F

ss
4V )

N r1 p1 r2 p2 r∞ p∞
40 1.15087E-2 – 2.67290E-2 – 2.91863E-2 –
80 3.42156E-3 1.75 6.59025E-3 2.02 7.87467E-3 1.89

160 8.43613E-4 2.02 1.49520E-3 2.14 1.83683E-3 2.10
320 2.15335E-4 1.97 3.76399E-4 1.99 4.02782E-4 2.01
640 5.34618E-5 2.01 9.15265E-5 2.04 1.90161E-4 2.06

�F1 ≡ (F ss11 , F
ss
21 , F

ss
31 , F

ss
41 )

N r1 p1 r2 p2 r∞ p∞
40 1.26031E-2 – 1.82649E-2 – 2.01742E-2 –
80 4.07191E-3 1.63 6.10928E-3 1.58 7.28253E-3 1.47

160 1.21901E-3 1.74 2.28311E-3 1.42 2.25705E-3 1.69
320 3.45248E-4 1.82 6.55652E-4 1.80 6.17469E-4 1.87
640 9.51078E-5 1.86 1.81873E-4 1.85 1.74880E-4 1.82

�C1 ≡ (Css11 , C
ss
21 , C

ss
31 , C

ss
41)

N r1 p1 r2 p2 r∞ p∞
40 1.63866E-2 – 3.06983E-2 – 5.52759E-2 –
80 3.23587E-3 2.34 5.20568E-3 2.56 1.02573E-2 2.43

160 4.85678E-4 2.28 1.17291E-3 2.15 2.08288E-3 2.30
320 2.35243E-4 1.82 3.20876E-4 1.87 5.46608E-4 1.93
640 5.72026E-5 2.04 7.58917E-5 2.08 1.33840E-4 2.03

Table 4.6 shows global convergence in norm for water flow �FV , chloride flow �F1,
and chloride concentration �C1, which are defined as in Table 4.3, as are rq and pq. As
in the results in Table 4.3, convergence in Table 4.6 was found to be approximately
second order. Similar results (not shown) were also obtained for urea flow and urea
solute concentration.

5. Stability and efficiency studies. In this section, we compare the stability
conditions and efficiency of the SLSI method with an Eulerian scheme, specifically,
the ENO method that is first order in time and second order in space.

The procedures by which the ENO method may be used to solve the system
(2.1)–(2.6) can be found in [5, 6]. Because of its Eulerian and explicit nature, the
time step Δt must be chosen to satisfy the CFL condition; that is, one must ensure
that Δt/Δxmaxi |FiV /

√
Ai| < 1 for i = 1, 2, 3, and 4 for the ENO method to be

stable. Therefore, as the spatial grid is refined, a smaller Δt may be required to
satisfy the CFL condition. Moreover, the transmural solute and water flux terms may
place additional restrictions, arising from stiffness, on the size of Δt [5].

In contrast, Δt in the SLSI method is not limited by the CFL condition. Indeed,
if the departure points were known exactly, then the advective terms would impose
no restriction on Δt. In this problem, however, the flow rates are unknowns and
the departure points are estimated numerically. It has been shown that numerical
stability is ensured if the product of Δt and the flow shear, maxi |∂(FiV /

√
Ai)/∂x|,

is bounded by a constant [10]. The stiffness of the problem is controlled by the semi-
implicit approach, which averages the stiff transtubular transport terms in time along
flow trajectories.

In the studies below, we compared the ENO and SLSI methods by determining
the largest Δt for which each method is stable. The efficiency for the ENO and SLSI
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methods was assessed by two measures. Efficiency-1 was assessed by the standard
measure: the computation costs (i.e., computation time) required to attain a speci-
fied degree of accuracy. Efficiency-2 was assessed by the computation costs required
to attain a steady-state solution while using the largest Δt for which a method is
stable. Efficiency-2 is of interest because an approximate, but sufficiently accurate,
numerical solution can be used as an initial guess for which a Newton-type solver
(for the steady-state equations) will be stable. Because a Newton-type solver is much
less computationally expensive than the dynamic methods (e.g., ENO and SLSI), a
combination method, using first a dynamic method and then a Newton-type method,
may permit an accurate steady-state solution to be found more rapidly than by means
of a dynamic method alone.

We expect that the SLSI method will allow a larger Δt than the ENO method,
for reasons explained above. However, the computation cost for each SLSI time step
is also higher, owing to additional costs incurred in the approximation of flow trajec-
tories, the estimation of upstream function values using spatial interpolation, and the
solution of the nonlinear kernel.

5.1. An outer medulla model. In the first set of tests, we formulated the
renal model based on parameter values used in section 4.3 (see Table 4.4). With these
parameter values the problem is not particularly stiff, and thus Δt in an explicit
Eulerian advection method is restricted mostly by the CFL condition. Using numer-
ical experiments, we computed the maximum time steps allowed while maintaining
stability for the SLSI and ENO methods for successively refined spatial grids. Then
using these time steps, we determined the computation time for the model solution to
approximate a steady state; we assumed that a steady state had been attained when
the normalized concentrations were within 10−6 of their asymptotic values. Both
models were run for the same simulated time of 65.97 minutes and by that time both
solutions had met the steady-state criterion.

The maximum stable time steps for the ENO and the SLSI methods, the as-
sociated normalized steady-state osmolalities of the fluid leaving the collecting duct
((C3O)ssN ), and the total computation times in seconds are shown in Table 5.1. For
the ENO method, Δt must be chosen to be slightly smaller than the maximum value
allowed by the CFL condition (i.e., Δxmini |

√
Ai/FiV |), which is shown in the column

labeled “CFL Δt” in Table 5.1. This is because (FiV )max was determined at steady
state; flow rates may exceed (FiV )max in transient states. In contrast, a considerably
larger Δt can be used in the SLSI method. For N = 320, a stable solution is obtained
with a CFL number as large as 20.8. Moreover, the choice of Δt in the SLSI method is
relatively independent of the grid resolution, whereas for the ENO method a smaller
Δt must be used when the spatial grid is refined. Therefore, we expect the advantages
of the SLSI method to be amplified with higher spatial resolution.

The results in Table 5.1 indicate that, in the sense of efficiency-2, the SLSI method
is more efficient than the ENO method, in that an approximate steady state can be
attained much more rapidly by the SLSI method than by the ENO method, and the
relative efficiency of the SLSI method increases as the spatial grid is refined—from a
factor of ∼2.80 at N = 80, to a factor of ∼9.94 at N = 320.

The difference between the values of (C3O)ssN computed by the two methods is
about 6% or less, a difference that can be reduced by using a smaller Δt in the SLSI
method. Using Δt = 0.015, the SLSI method generates (C3O)ssN = 1.93168, 1.92840,
and 1.92897 for N = 80, 160, and 320, respectively, with computation costs of 14.6,
29.2, and 62.0 s, respectively. The relative discrepancies between these results and
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Table 5.1
Results for stability and efficiency study using model for outer medulla.

N CFL Δt
ENO SLSI

Δt (C3O)ssN cost (s) Δt (C3O)ssN cost (s)

80 1.25E-2 1.0E-2 1.93125 8.16 7.5E-2 2.04574 2.91
160 6.25E-3 5.0E-3 1.92894 34.43 6.5E-2 2.05288 6.74
320 3.13E-3 2.5E-3 1.92874 142.18 6.5E-2 2.04039 14.30

Table 5.2
Tubular diameters and transport properties used in the inner medulla model. DL, descending

limb; AL, ascending limb; CD, collecting duct; Pf , PCl− , Purea, permeabilities of water, Cl−, and
urea, respectively; Vmax,Cl− , maximum Cl− active transport rate.

Property DL AL CD

Diameter (μm) 15 20 29
Pf (μm/s) 50 0 1,300
PCl− (10−5 cm/s) 98.8 294 1
Purea (10−5 cm/s) 47.6 170 100
Vmax,Cl− (nmole/(cm2· s)) 0 0 0

the ENO approximations shown in Table 5.1 are about 0.022%, 0.028%, and 0.012%,
respectively. Thus, for sufficiently large N (N ≥ 160 for this problem), the SLSI
method generates solutions with accuracy comparable to that of the ENO method
while also allowing larger time steps and lower computation costs. Thus for N ≥ 160,
the SLSI method is more efficient than the ENO method, in the sense of efficiency-1.

Assessed by both the efficiency-1 and efficiency-2 measures, the SLSI method is
significantly more efficient than the ENO method, for N sufficiently large, because the
costs for the ENO method grow as O(N2), whereas the costs of the SLSI method grow
as O(N). The ENO method is O(N2) because as N is doubled, Δt must be halved
to meet the CFL condition; the SLSI method is not restricted by the CFL condition.

5.2. An inner medulla model for the chinchilla. For this test, we based
the model parameters on measurements in the deep inner medulla (i.e., the papil-
lary portion) of the rat and chinchilla. Diameter and transport properties, based on
anatomical and physiological investigations [7], are given in Table 5.2. The medullary
length L was set to be 4.8 mm and the prebend segment in the late descending limb
was assumed to begin at xp = 0.9L. The descending and ascending limb transport
properties were measured in chinchilla, and diameters and collecting duct transport
properties were measured in rat. Transport parameters for chinchilla were chosen
because they are large compared to measurements in other small mammals, thus ren-
dering the problem stiff. Boundary conditions for this problem were specified for
C11(0, t), C12(0, t), C31(0, t), and C32(0, t) to be 600.0, 150.0, 230.98, and 850.0 mM,
respectively, and for F1V (0, t) and F3V (0, t) to be 1.0 and 0.15 nl/min, respectively.
Model calculations were run for 65.97 minutes in simulated time, and by then the
solutions had met the steady-state criterion described in section 5.1.

The maximum stable time steps for the ENO and SLSI methods, the associated
normalized steady-state osmolalities of the fluid leaving the collecting duct, and the
total computation times in seconds are shown in Table 5.3. The parameters for this
problem were chosen so that the transmural water and solute fluxes were large near
x = 0, rendering the problem stiff. As a result, the maximum time steps allowed
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Table 5.3
Results for stability and efficiency study for a model of the inner medulla.

N CFL Δt
ENO SLSI

Δt (C3O)ssN cost (s) Δt (C3O)ssN cost (s)

80 1.25E-2 1.0E-3 0.89539 89.90 3.0E-3 0.89376 63.19
160 6.25E-3 5.0E-4 0.95640 355.19 3.0E-3 0.96482 128.66
320 3.13E-3 2.5E-4 0.97068 1448.65 3.0E-3 0.96897 269.13

for both the ENO and SLSI methods were substantially smaller than the CFL Δt.
The maximum time steps permissible for the ENO method become smaller as N is
increased, even though stiffness is normally independent of the grid resolution, because
the transmural water and solute fluxes increase as x approaches 0 (a boundary layer
effect): a smaller Δx results in a larger computed flux at the first few grid points,
and thus a smaller Δt is required. Even with the semi-implicit approach used in the
SLSI method, the large water fluxes near x = 0 affect the fluid flow rate and thereby
increase the flow shear and place a restriction on Δt. Unlike the ENO method,
however, Δt for the SLSI method need not be further reduced as the spatial grid is
refined. The computation costs of the ENO and SLSI methods grow as O(N2) and
O(N), respectively. For this problem, the SLSI method reduces computation times
by a factor of 1.38 for N = 80 and by a factor of 5.38 for N = 320. As in the previous
test, for sufficiently large N (here, N ≥ 80), the SLSI method is more efficient than
the ENO method in both the efficiency-1 sense and the efficiency-2 sense.

6. Discussion. We have presented a stable and efficient numerical method,
based on an SLSI scheme, for solving the system of differential equations arising
in dynamic models of the urine concentrating mechanism. The SLSI method, like the
ENO method used previously [5, 6], avoids numerical instability arising from transient
flow reversal, and it does so by integrating along flow trajectories. Unlike the ENO
scheme, however, the SLSI method is not limited by the CFL condition. With an
Eulerian scheme, a smaller time step may be required, to satisfy the CFL condition,
when the spatial grid is refined. Thus, even for a one-dimensional problem, the com-
putation cost may grow as O(N2), where N is the number of spatial grid subintervals.
Since the SLSI method integrates along flow trajectories and thus allows CFL num-
bers greater than 1, the computation cost grows only as O(N). Moreover, this method
treats the stiff terms (the transmural water and solute fluxes) implicitly so that they
do not impose a restriction on the time step. In sections 4 and 5, we demonstrated
that results from the SLSI method show second-order convergence in space, and that,
compared with the ENO method, the SLSI method computes solutions of comparable
accuracy in substantially shorter times.

The model presented in this paper is relatively simple in that it consists of one
loop of Henle, one collecting duct, and a central core. A rat kidney, however, contains
∼37,500 loops of Henle, turning at various levels of the medulla [3]. To accurately
represent the interactions among these loops of differing lengths, a distributed-loop
model may be adopted [6]. The distributed-loop model uses two space variables: one
denotes the level of the medulla, while the other represents the level of the medulla
at which the associated loop of Henle turns, resulting in a system of N PDEs for
each solute. When this system is solved by the ENO method, O(N3) computation
steps are required. Thus, even though high spatial resolution is frequently required to
accurately represent the details and complexities of the mammalian kidney (e.g., rapid
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transitions in diameter and transtubular transport properties), one may be compelled
to compromise spatial resolution to offset the long computation times.

It should be practical to develop an efficient and stable numerical method, based
on the SLSI scheme, for the distributed-loop model. The solution time of an SLSI-
based method for this two-dimensional model should be O(N2), since the choice of
time step is independent of the spatial resolution. Even if the largest stable time step
is used, the approximate steady-state solution so obtained may be useful as an initial
condition for a more accurate and less stable method, such as a Newton-type method
or a simple explicit Eulerian advection scheme with a small time step. The resulting
savings in computation costs can be invested in higher spatial resolution, so that a
more complete understanding of the mammalian urine concentrating mechanism may
be attained.

Appendix. Explicit solution for the simple steady-state model. This
appendix provides a derivation for (4.1), following that of a related problem in [4].
From conservation of solute, one has

F ′
ik(x) = Jik(x)(A.1)

for i = 1, 2, 3, or 4. The prime symbol denotes differentiation with respect to x. A
substitution of the definition of solute flow Fik(x) = FiV (x)C1k(x) into (A.1) yields

FiV (x)C ′
ik(x) = −JiV (x)Cik(x) + Jik(x).(A.2)

Since for x ∈ [0, xp] the solute concentration of the descending limb equals C(x),
one obtains the following relation for the proximal, water-permeable portion of the
descending limb:

H−
xp(x)F1V (x)C ′(x) = H−

xp(x)(−J1V (x)C(x) + J1k(x)),(A.3)

where H+
xp(x) and H−

xp(x) are the Heaviside functions defined immediately after (4.1).
By adding together (A.3) and equations of the form (A.2) for i = 3 and 4, one obtains

(H−
xp(x)F1V (x) + F3V (x) + F4V (x))C ′(x)

(A.4)

= −(H−
xp(x)J1V (x) + J3V (x) + J4V (x))C(x) + (H−

xp(x)J1k(x) + J3k(x) + J4k(x)).

Since the ascending limb and the prebend segment are assumed to be water imper-
meable, J2V ≡ 0 and H+

xpJ1V ≡ 0; thus, by water conservation, H−
xp(x)J1V (x) +

J3V (x) + J4V (x) = 0. By solute conservation, H−
xp(x)J1k(x) + J3k(x) + J4k(x) =

−H+
xp(x)J1k(x)−J2k(x), where H+

xp(x)J1k(x) represents solute flux from the prebend
segment. Recall also that FiV (x) = Fik(x)/C(x) for i = 3 and 4 and for the water-
permeable portion of the descending limb (x ∈ [0, xp]). By substituting these relations
into (A.4) and rearranging, one obtains

C ′(x)
C(x)

=
−H+

xp(x)J1k(x)− J2k(x)

H−
xp(x)F1k(x) + F3k(x) + F4k(x)

.(A.5)

The rate of solute advection along the collecting duct at level x is

F3k(x) = F3k(0) +

∫ x

0

J3k(s) ds = F3k(L)−
∫ L

x

J3k(s) ds.(A.6)
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Since F4k(L) = 0, the solute advection in the central core is given by

F4k(x) =

∫ L

x

(J1k(s) + J2k(s) + J3k(s)) ds.(A.7)

By adding (A.6) and (A.7), one obtains

F3k(x) + F4k(x) = F3k(L) +

∫ L

x

(J1k(s) + J2k(s)) ds.(A.8)

By substituting (A.8) into (A.5), one obtains an equation that may be integrated to
give (4.1).
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FAST EVALUATION OF RADIAL BASIS FUNCTIONS:
METHODS FOR GENERALIZED MULTIQUADRICS IN R

n∗
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Abstract. A generalized multiquadric radial basis function is a function of the form s(x) =∑N

i=1
diφ(|x − ti|), where φ(r) = (r2 + τ2)k/2, x ∈ R

n, and k ∈ Z is odd. The direct evaluation

of an N center generalized multiquadric radial basis function at m points requires O(mN) flops,
which is prohibitive when m and N are large. Similar considerations apparently rule out fitting an
interpolating N center generalized multiquadric to N data points by either direct or iterative solution
of the associated system of linear equations in realistic problems.

In this paper we will develop far field expansions, recurrence relations for efficient formation of
the expansions, error estimates, and translation formulas for generalized multiquadric radial basis
functions in n-variables. These pieces are combined in a hierarchical fast evaluator requiring only
O((m+N) logN | log ε|n+1) flops for evaluation of an N center generalized multiquadric at m points.
This flop count is significantly less than that of the direct method. Moreover, used to compute
matrix-vector products, the fast evaluator provides a basis for fast iterative fitting strategies.

Key words. radial basis functions, generalized multiquadric, fast evaluation

AMS subject classifications. 65D07, 41A15, 41A58

PII. S1064827500367609

1. Introduction. Multiquadrics are a popular choice of radial basis function
for interpolating scattered data in one or more dimensions. Many applications are
described in the literature, including geodesy, image processing, and natural resource
modeling (see, for example, Hardy [10]). The beautiful properties of multiquadric and
other radial basis functions, such as the poisedness of suitable interpolation problems,
are detailed in Cheney and Light [7, Chap. 12–16, Chap. 36]. Unfortunately, the
adoption of multiquadrics for real problems with large data sets has been hindered
by a perceived large computational cost. Indeed, the direct evaluation of an N center
multiquadric radial basis function at m points requires O(mN) flops, which is pro-
hibitive when m and N are large. Similar considerations apparently rule out fitting
an interpolating N center multiquadric to N data points by either direct or iterative
solution of the associated system of linear equations in realistic problems.

However, the use of hierarchical methods, fast multipole methods, and other
multiresolution schemes allows fast evaluation and fitting of radial basis functions.
This paper develops far field expansions for generalized multiquadric radial basis
functions in n-variables of the form required by these new methods. Schemes of a
hierarchical type can then be built upon these expansions that require only O((m +
N) logN | log ε|n+1) flops for evaluation of an N center generalized multiquadric to
accuracy ε at m points. This compares very favorably with the cost of the direct
method. Moreover, used to compute matrix-vector products, the fast evaluator can
be combined with suitable iterative methods and preconditioning strategies to yield
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fast iterative algorithms for interpolatory or smoothing fits (see, e.g., [2]).
The first fast multipole method was that of Greengard and Rokhlin [9]. Since then

the method has been modified and extended to apply in many different contexts [3].
For reasons of space we are forced to omit discussion of many important aspects
of hierarchical and fast multipole methods from this paper. In particular, we have
omitted almost all discussion of the crucial algorithmic details which enable a fast
evaluation scheme for use in R

n to be built upon suitable far field expansions, such
as the expansion for generalized multiquadrics developed in this paper.

A much fuller account of hierarchical and fast multipole methods is given in the
survey paper [3]. Readers new to these methods are referred to that paper, and in
particular to the tutorial section concerning hierarchical and fast multipole schemes
in one dimension. Indeed, the model problem of that section is fast evaluation of an
ordinary multiquadric in R

1. However, the treatment there concentrates exclusively
on algorithmic aspects and suppresses the mathematical analysis of expansions and
error bounds. Previous papers concerning fast multipole and related methods for fast
evaluation of radial basis functions include [5, 4, 6].

The generic fast multipole method requires results of the following nature for the
basic function Φ being used:

• the existence of a rapidly converging far field expansion, centered at 0, for the
shifted basic function Φ(x − t). The existence of such an expansion implies

that, for all x sufficiently far from 0, the spline s(x) =
∑N
i=1 diΦ(x− ti) may

be approximated to the desired accuracy by a short series. When N is large
it will be much faster to use the series rather than to evaluate s(x) directly.

• error bounds that determine how many terms are required in each expansion
to achieve a specified accuracy.

• efficient recurrence relations for computing the coefficients of the expansions.
• uniqueness results that justify indirect translation of expansions.
• formulae for efficiently converting a far field expansion to a rapidly convergent

local expansion.
This paper provides appropriate results of these types for generalized multiquadric
radial basis functions in R

n. That is, for functions of the form

s(x) =

N∑
i=1

diΦ(x− ti; k, τ),(1.1)

where

Φ(x) = Φ(x; k, τ) =
(
x2 + τ2

)k/2
,(1.2)

k is an odd integer, τ ≥ 0, and x ∈ R
n. Note that we will usually use the notation

Φ(x), which hides the dependence of Φ on k and τ . The derived series and the
analysis also apply when τ varies, that is, the multiquadric parameter τ changes with
the center ti.

The paper is laid out as follows. Sections 2 and 3 derive far field expansions of
the form

Φ(x− t; k, τ) =

∞∑
�=0

P
(k)
� (|t|2 + τ2,−2〈t, x〉, |x|2)/|x|2�−k,(1.3)
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where the P
(k)
� are the polynomials

P�(a, b, c) = P
(k)
� (a, b, c) =

�∑
j=� �+1

2 �

(
k/2

j

)(
j

�− j

)
b2j−�(ac)�−j , � ≥ 0,(1.4)

and P
(k)
� is the zero function for � negative. Section 3 also gives error bounds on

approximations formed by truncating the series. Section 4 proves the uniqueness of the
expansions. Section 5 discusses recurrence relations for the efficient direct calculation
of the far field coefficients. It shows that the terms of the first p+ k+1 homogeneous
orders in the series for an m center cluster can be calculated in O(mn(p+ k)n) flops.
Section 6 sets up some machinery which is used in section 7 to establish methods for
indirectly translating far field expansions. Section 8 shows how to efficiently convert a
far field expansion into a local polynomial approximation. The paper concludes with
some numerical results showing that multiquadric radial basis functions can indeed
be evaluated using this approach at a cost that grows as O(N logN) in the number
N of centers.

We will use lowercase φ for the basic function as a function of one variable,
and uppercase Φ for the function of n variables, i.e., Φ = φ(| · |). It is common for
the constant in the multiquadric basic function to be represented by c. However,
we will use τ for this purpose, i.e., the ordinary multiquadric basic function will be
φ(r) =

√
r2 + τ2.

2. A generating function. In this section we develop some important proper-
ties of the functions

fk(z) = (
√
az2 + bz + c)k, k ∈ Z is odd.(2.1)

These functions will turn out to be the generating functions for the polynomials P
(k)
�

that occur in the far and near field expansions of the generalized multiquadric function.
To fully explore the expansions of fk we will need to use Gauss’s hypergeometric

function.
Lemma 2.1. The hypergeometric function defined by

F (a, b; c; z) = F (b, a; c; z) :=
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
,

for c not a negative integer and |z| < 1, satisfies

F (a, b; c; z) = (1 − z)c−a−bF (c− a, c− b; c; z),(2.2a)

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z).(2.2b)

Furthermore, if a or b is equal to −m, m a nonnegative integer, then F (a, b; c; z)
reduces to a polynomial of degree m in z.

Proof. See [1, Chap. 15] for the proof.
Lemma 2.2. Let m, p ∈ N0, and |h| < 1. Then

∞∑
n=p

(
n+m

m

)
hn =

hp

(1 − h)m+1

(p+m)!

p! m!
F (−m, p; p+ 1;h).
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Proof.

∞∑
n=p

(
n+m

m

)
hn =

(p+m)!

p! m!

p!

(p+m)!
hp

∞∑
n=0

(n+ p+m)!n!

(n+ p)!

hn

n!

=
(p+m)!

p! m!
hpF (m+ p+ 1, 1; p+ 1;h)

=
(p+m)!

p! m!
hp(1 − h)−(m+1)F (−m, p; p+ 1;h),

where the last equality follows from (2.2a).
We now present the major result of this section, which gives a series expansion

for fk and a bound for the error in approximating fk by a truncation of this series.
Lemma 2.3. Let k ∈ Z be odd and let a, b, c ∈ R with a, c > 0 and b2 ≤ 4ac.

Then for all z ∈ C such that |z| <
√
c/a,

fk(z) = (
√
az2 + bz + c)k = ck/2

∞∑
�=0

(z
c

)�
P

(k)
� (a, b, c),(2.3)

where the P
(k)
� are the polynomials defined in (1.4). Moreover, for all z such that

|z| <
√
c/a and ν ∈ N,

∣∣∣∣∣(az2 + bz + c)k/2 − ck/2
ν∑
�=0

(z
c

)�
P

(k)
� (a, b, c)

∣∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2kck/2

(
|z|√
c/a

)ν+1 √
c/a√

c/a− |z|
if k > 0,

(
ν − k

ν + 1

)
ck/2

(
|z|√
c/a

)ν+1( √
c/a√

c/a− |z|

)−k

× F

(
k + 1, ν + 1; ν + 2;

|z|√
c/a

) if k < 0.

Proof. Let
√
· denote the principal branch of the complex square root. Then fk is

analytic whenever q(z) = az2 + bz + c is away from the branch cut, that is, whenever
q(z) is not a nonpositive real. Completing the square,

q(z) = a

{(
z +

b

2a

)2

+
4ac− b2

4a2

}
,

and since b2 ≤ 4ac, it is easily seen that fk is analytic away from

{
z = − b

2a
+ iy : y ∈ R and |y| ≥

√
4ac− b2

4a2

}
.

Hence fk is analytic on the disc

D = Dε =
{
z ∈ C : |z| ≤ ρ = (1 − ε)

√
c/a
}
, 0 < ε < 1.
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For all sufficiently small |z|, two applications of the binomial theorem and some re-
ordering give

fk(z) = ck/2
(

1 +
bz + az2

c

)k/2

= ck/2
∞∑
j=0

(
k/2

j

)(
bz + az2

c

)j

= ck/2
∞∑
j=0

(
k/2

j

) j∑
q=0

(
j

q

)
(bz)j−q(az2)q

cj

= ck/2
∞∑
�=0

�∑
j=� �+1

2 �

(
k/2

j

)(
j

�− j

)
(bz)2j−�(az2)�−j

cj

= ck/2
∞∑
�=0

(z
c

)� �∑
j=� �+1

2 �

(
k/2

j

)(
j

�− j

)
b2j−�(ac)�−j

= ck/2
∞∑
�=0

(z
c

)�
P

(k)
� (a, b, c).

Since the reordering of the double sum is valid for |z| sufficiently small, for such z this
is the Maclaurin series for fk. This relation extends to all of D by the uniqueness of
the Maclaurin series of fk, proving the first part of the lemma.

We will prove the second part separately for k > 0 and k < 0. For k > 0 we will
apply the well-known bound for the error in Taylor polynomial approximation given
in Lemma 2.4 below. Fix z with |z| <

√
c/a and choose ε with 0 < ε < 1 so small

that z ∈ Dε. We apply the bound with C = ∂Dε. First, note that

q(z) = a(z − ξ+)(z − ξ−), ξ± =
−b± i

√
4ac− b2

2a
,

and that both roots of q are outside Dε. Since fk(z) = q(z)k/2,

max
w∈C

|fk(w)| =

(
max
w∈C

|q(w)|
)k/2

.

For w ∈ ∂Dε,

|w − ξ±| ≤ |w| + |ξ±| = ρ+
√
c/a < 2

√
c/a,

and thus

max
w∈∂Dε

|q(w)| = |a| max
w∈∂Dε

{|w − ξ+||w − ξ−|} ≤ |a|
(
2
√
c/a
)2

= 4c.

Now, applying Lemma 2.4,∣∣∣∣∣(az2 + bz + c)k/2 − ck/2
ν∑
�=0

(z
c

)�
P

(k)
� (a, b, c)

∣∣∣∣∣
≤ max
w∈∂Dε

|fk(w)|
(
|z|
ρ

)ν+1
1

1 − |z|/ρ

≤ (4c)k/2

(
|z|

(1 − ε)
√
c/a

)ν+1
(1 − ε)

√
c/a

(1 − ε)
√
c/a− |z|

.
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Taking the limit as ε goes to zero from above gives the result for k > 0.
For the case k < 0, write the polynomial q in the form

q(z) = az2 + bz + c = c

⎧⎨
⎩1 +

b√
ac

(
z√
c/a

)
+

(
z√
c/a

)2
⎫⎬
⎭

= c
(
1 − 2xξ + ξ2

)
,

where

x = −1

2

b√
ac

and ξ =
z√
c/a

.

Now recall (see [11, eqn. (4.7.23)]) that
(
1 − 2xξ + ξ2

)−λ
is the generating function

for the Gegenbauer (or ultraspherical) polynomials C
(λ)
� (x), i.e.,

∞∑
�=0

C
(λ)
� (x)ξ� = (1 − 2xξ + ξ2)−λ.

Letting λ = −k/2, we see that

fk(z) = ck/2
∞∑
�=0

C
(λ)
� (x)ξ�,

and thus, equating coefficients,

(z
c

)�
P

(k)
� (a, b, c) = C

(λ)
� (x)ξ�, � ∈ N0.(2.4)

For −1 ≤ x ≤ 1,

∣∣C(λ)
n (x)

∣∣ ≤
(
n+ 2λ− 1

n

)
, λ > 0

(see [1, eqn. (22.14.2)]). By the statement of the lemma, b2 ≤ 4ac and |z| <
√
c/a.

This means that −1 ≤ x ≤ 1 and |ξ| < 1 and thus

∣∣∣∣∣fk(z) − ck/2
ν∑
�=0

(z
c

)�
P

(k)
� (a, b, c)

∣∣∣∣∣ =
∣∣∣∣∣fk(z) − ck/2

ν∑
�=0

C
(−k/2)
� (x)ξ�

∣∣∣∣∣
≤ ck/2

∞∑
�=ν+1

(
�− k − 1

�

)
|ξ|�.(2.5)

By Lemma 2.2,

∞∑
�=ν+1

(
�− k − 1

�

)
|ξ|� =

(
ν − k

ν + 1

)
|ξ|ν+1

(1 − |ξ|)−kF (k + 1, ν + 1; ν + 2; |ξ|) .
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Using this in (2.5) we have

∣∣∣∣∣fk(z) − ck/2
ν∑
�=0

(z
c

)�
P

(k)
� (a, b, c)

∣∣∣∣∣

≤ ck/2
(
ν − k

ν + 1

)(
|z|√
c/a

)ν+1( √
c/a√

c/a− |z|

)−k

× F

(
k + 1, ν + 1; ν + 2;

|z|√
c/a

)
.

In the proof of Lemma 2.3 above we have made use of the following well-known
bound for the error in a truncated Taylor series expansion [8, pp. 127–128].

Lemma 2.4. Let C = {w ∈ C : |w| = ρ}. If f is analytic inside and on C, then
for |z| < ρ,

∣∣f(z) −
(
Tνf
)
(z)
∣∣ ≤ max

w∈C
|f(w)|

(
|z|
ρ

)ν+1
1

1 − |z|/ρ ,

where Tνf is the Maclaurin polynomial of f of degree ν.
In the case k = −1, the polynomial F (k + 1, ν + 1; ν + 2; z/

√
c/a) that appears

in the error bound of Lemma 2.3 is constant and has value 1. For all other negative
values of k consider the function F (k + 1, p + 1; p + 2; ·), where p ∈ N0. Rephrasing
Lemma 2.2 as

F (k + 1, p; p+ 1; z) =
p! (−k − 1)!

(p− k − 1)!

(1 − z)−k

zp

∞∑
n=p

(
n− k − 1

−k − 1

)
zn,

we can easily see that F (k+ 1, p+ 1; p+ 2; ·) is nonnegative on [0, 1). Using (2.2b) to
differentiate F , we see that for z ∈ [0, 1)

d

dz
F (k + 1, p; p+ 1; z) =

(k + 1)p

p+ 1
F (k + 2, p+ 1; p+ 2; z) ≤ 0,

since k < −1. Since F (·, ·; ·; 0) = 1, it follows that

F (k + 1, ν + 1; ν + 2; |z|/
√
c/a) ≤ 1, k ∈ Z−, |z| <

√
c/a.(2.6)

As was observed in the proof of Lemma 2.3 and particularly in (2.4), for k < 0 the

polynomials P
(k)
� are closely related to the Gegenbauer polynomials C

(λ)
� with λ =

−k/2. However, many properties of the Gegenbauer polynomials are derived using
their orthogonality with respect to the weight function w(x) = (1 − x2)λ−1/2. This
function is not integrable over the interval [−1, 1] when λ ≤ −1/2, and thus we are
unable to exploit properties of the Gegenbauer polynomials derived from orthogonality
when k ≥ 1. The following lemma can be identified as a well-known recurrence for
the Gegenbauer polynomials with parameter λ = −k/2 > −1/2. Our proof here is
based on the characterization (2.3) and hence holds for all odd integers k.

Lemma 2.5. Let k ∈ Z be odd. Then the polynomials P
(k)
� defined in (1.4) satisfy

the following recurrence relation for all a, b, c ∈ R and � ∈ N:

(�+ 1)P
(k)
�+1(a, b, c) =

(
k

2
− �

)
bP

(k)
� (a, b, c) +

(
k − (�− 1)

)
acP

(k)
�−1(a, b, c).(2.7)
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Proof. We will first prove the identity under the additional assumptions a, c > 0
and b2 ≤ 4ac. Making these assumptions and differentiating the right-hand side of
(2.3) term by term gives

f ′k(z) = c(k−2)/2
∞∑
�=0

(z
c

)�
(�+ 1)P

(k)
�+1(a, b, c),(2.8)

the term-by-term differentiation being valid for |z| <
√
c/a.

On the other hand, differentiating the expression fk(z) = (
√
az2 + bz + c)k and

then expanding gives

f ′k(z) =
k

2
(az2 + bz + c)(k−2)/2(2az + b)

=
k

2
fk−2(z)(2az + b)

=
k

2
c(k−2)/2

∞∑
�=0

(z
c

)�
(2az + b)P

(k−2)
� (a, b, c)

= c(k−2)/2

{ ∞∑
�=0

(z
c

)� k
2
bP

(k−2)
� (a, b, c) +

∞∑
�=1

(z
c

)�
kacP

(k−2)
�−1 (a, b, c)

}
.(2.9)

Equating (2.8) and (2.9) and then comparing coefficients gives

(�+ 1)P
(k)
�+1(a, b, c) =

k

2
bP

(k−2)
� (a, b, c) + kacP

(k−2)
�−1 (a, b, c), � ∈ N.(2.10)

Using the obvious recurrence on fk and then expanding gives

fk(z) = (az2 + bz + c)fk−2(z)

= ck/2

{ ∞∑
�=2

(z
c

)�
acP

(k−2)
�−2 (a, b, c) +

∞∑
�=1

(z
c

)�
bP

(k−2)
�−1 (a, b, c)

+

∞∑
�=0

(z
c

)�
P

(k−2)
� (a, b, c)

}
.(2.11)

Equating (2.3) and (2.11) and then comparing coefficients gives

P
(k)
�+1(a, b, c) = P

(k−2)
�+1 (a, b, c) + bP

(k−2)
� (a, b, c) + acP

(k−2)
�−1 (a, b, c), � ∈ N.(2.12)

To obtain (2.7), multiply (2.12) by (� + 1) and equate to (2.10). Solving for

P
(k−2)
�+1 (a, b, c) and making the index change (k − 2) �→ k gives (2.7).

This completes the proof when a, c > 0 and b2 ≤ 4ac. This set in R
3 contains

a nontrivial open ball, and polynomials in n variables are determined everywhere by
their behavior on any nontrivial open ball in R

n. Hence (2.7) holds for all a, b, c ∈ R

since the right- and left-hand sides of (2.7) are polynomial.

3. Multivariate expansions. Let Φ(x) =
(
x2 + τ2

)k/2
, where τ ≥ 0 and k ∈ Z

is odd and where we have used the notational convenience x2 = 〈x, x〉 = |x|2 for
x ∈ R

n. The following result gives a far field expansion for Φ(x − t) considered as
a function of x, together with an error estimate for approximation with truncations
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of this expansion. The numerator polynomials P
(k)
� (t2 + τ2,−2〈t, x〉, x2) that feature

in the expansion are homogeneous of degree � in x. Correspondingly, the �th term in
the expansion is homogeneous of degree k − � in x.

Lemma 3.1. Let k ∈ Z be odd, t ∈ R
n, and τ ≥ 0. For all x ∈ R

n with
|x| >

√
t2 + τ2,

Φ(x− t) =
(
(x− t)2 + τ2

)k/2
=

∞∑
�=0

P
(k)
� (t2 + τ2,−2〈t, x〉, x2)/|x|2�−k,

where the polynomials P
(k)
� are defined in (1.4). Moreover, for all x such that |x| >√

t2 + τ2, and for all p ∈ N such that p+ k > 0,

∣∣∣∣∣Φ(x− t) −
p+k∑
�=0

P
(k)
� (t2 + τ2,−2〈t, x〉, x2)/|x|2�−k

∣∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2
√
t2 + τ2

)k(√
t2 + τ2

|x|

)p+1
|x|

|x| −
√
t2 + τ2

if k > 0,

(
p

p+ k + 1

)(√
t2 + τ2

)k(√
t2 + τ2

|x|

)p+1

×
(

|x|
|x| −

√
t2 + τ2

)−k if k < 0.

Proof. Consider firstly the case when τ > 0. Let a = t2 + τ2, b = −2〈t, x〉, and
c = x2. Then

Φ(x− t) =
(
x2 − 2〈t, x〉 + t2 + τ2

)k/2
= fk(1),

where fk is the function defined in (2.1). Since a, c > 0, b2 ≤ 4ac, and 1 = |z| <√
c/a = |x|/

√
t2 + τ2, Lemma 2.3 may be applied with ν = p+ k to yield the desired

results when we recall the bound on F given by (2.6).
This completes the proof when τ > 0. For the remaining case fix x with |x| > |t|.

Note that 0 < τ̃ <
√
|x|2 − |t|2 implies |x| >

√
t2 + τ̃2. Hence the previous case can

be applied to the expansion of

Φ(x− t; k, τ̃) =
(
(x− t)2 + τ̃2

)k/2

for all sufficiently small positive τ̃ . Taking the limit as τ̃ goes to zero from above, and
using the continuity of all the relevant quantities as functions of τ̃ , gives the result
for τ = 0.

Example 3.2. In the one-dimensional case it is convenient to rewrite the series in
the simpler form

Φ(x− t) = sign(x)
∞∑
�=0

P
(k)
� (t2 + τ2,−2t, 1)/x�−k,
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Evaluation region

Source region

r

√
r2 + τ2

Fig. 3.1. Region of validity of the far field expansion of a cluster.

which becomes, in the important special case (k = 1) of the ordinary multiquadric,

√
(x− t)2 + τ2 = sign(x)

{
x− t+

1

2
τ2x−1 +

1

2
tτ2x−2

+
1

8
(4t2τ2 − τ4)x−3 +

1

8
(4t3τ2 − 3tτ4)x−4

+
1

16
τ2(8t4 − 12t2τ2 + τ4)x−5 + · · · + q�(t, τ)x

1−� + · · ·
}
.

Example 3.3. To display the componentwise form of the expansion in two dimen-
sions we will temporarily adopt the notation x = (x1, x2) and t = (t1, t2). The far
field expansion about zero of a single ordinary multiquadric basic function centered
at t is then√

|x− t|2 + τ2

= |x| − t1x1 + t2x2

|x| +
1

2

(t22 + τ2)x2
1 + (t21 + τ2)x2

2 − 2t1t2x1x2

|x|3

+
1

2

(t1x1 + t2x2)
{
(t22 + τ2)x2

1 + (t21 + τ2)x2
2 − 2t1t2x1x2

}
|x|5 + · · · .

Since the bound of Lemma 3.1 is increasing in |t| we can apply it to each center in
a cluster and sum, obtaining the following expansion of the generalized multiquadric
radial basis function associated with a cluster of centers. The geometry of the source
cluster and the evaluation region is shown in Figure 3.1.

Theorem 3.4. Suppose ti ∈ R
n, |ti| ≤ r, and di ∈ R for each 1 ≤ i ≤ N . Let k

be odd, τ ≥ 0, and s be the generalized multiquadric spline

s(x) =

N∑
i=1

diΦ(x− ti) =

N∑
i=1

di

(√
(x− ti)2 + τ2

)k
.

If P
(k)
� , � ∈ N0, are the polynomials defined by (1.4), then the polynomials

Q�(x) =

N∑
i=1

diP
(k)
� (t2i + τ2,−2〈ti, x〉, x2), � ∈ N0,

have the following property: Let p ∈ N0 and set

sp(x) =

p+k∑
�=0

Q�(x)/|x|2�−k,(3.1)
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x ∈ R
n\{0}. Then for all x with |x| > R =

√
r2 + τ2,

∣∣s(x) − sp(x)
∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

2kMRk
(

1

c

)p+1
1

1 − 1/c
if k > 0,

(
p

p+ k + 1

)
MRk

(
1

c

)p+1(
1

1 − 1/c

)−k
if k < 0,

where M =
∑N
i=1 |di| and c = |x|/R.

4. The uniqueness of expansions. The uniqueness of far field expansions is
important for two reasons. First, redundant coefficients could mean that a small value
is represented as the difference of two large values leading to numerical instability.
Second, if the far field expansion of a fixed function, s(x) =

∑N
i=1 Φ(x− ti), is unique,

then it is often possible to shift the center of a truncated expansion indirectly without
using any knowledge of the underlying centers and weights. The advantage of such
indirect shifting over direct series formation is a flop count which depends only on
the number of terms in the expansion, and not on the number of centers in the
cluster. This can result in significantly faster code. Furthermore, since the uniqueness
implies that the indirectly obtained series is identical with that which would have been
obtained directly, the indirectly obtained series enjoys the same error bound as the
directly obtained one.

We will now prove a general uniqueness lemma from which uniqueness of series
expansions of the form (3.1) follows as a special case. Recall that a function g defined
for all x in some subset D ⊂ R

n is said to be homogeneous of degree γ on D if

g(λx) = λγg(x)

for all λ > 0 and x ∈ R
n such that both x and λx ∈ D. (Some authors use the term

positively homogeneous of degree γ for this property.)
Lemma 4.1. Suppose γ,R ∈ R and that a function f : D ⊂ R

n → R can be
expanded in two ways,

∞∑
�=0

U�(x) = f(x) =

∞∑
�=0

V�(x),

both series converging absolutely and uniformly to f(x) for all |x| ≥ R, where for each
� , U� and V� are continuous homogeneous functions of degree γ − �. Then for each
�, U�(x) = V�(x) for all |x| ≥ R.

Proof. Since the absolute series converge uniformly on |x| = R, there exists an
M <∞ such that

max
|x|=R

{max{|U�(x)|, |V�(x)|}} ≤M

for all � ∈ N0. Hence, using the homogeneity,

max {|U�(x)|, |V�(x)|} ≤M |x|γ−�/Rγ−�(4.1)

for all x such that |x| ≥ R and for all � ∈ N0.
Now suppose U� and V� differ for some �’s. Let j be the first index for which they
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differ. Then for all |x| ≥ R,

0 =

(
|x|
R

)j−γ
{f(x) − f(x)}

=

(
|x|
R

)j−γ
{Uj(x) − Vj(x)} +

∑
�>j

(
|x|
R

)j−γ
{U�(x) − V�(x)}.(4.2)

But from (4.1)

∣∣∣∣
∑
�>j

(
|x|
R

)j−γ
{U�(x) − V�(x)}

∣∣∣∣ ≤ 2M
∑
�>j

(
|x|
R

)j−�

= o(1) as |x| → ∞.

Hence from (4.2)

|Uj(x) − Vj(x)| = o(|x|γ−j) as |x| → ∞.

Since Uj − Vj is homogeneous of degree γ − j on D, this implies that it is identically
zero on D.

5. Efficient formation of the far field series. In the previous sections we have
developed far field expansions with the intention of using them for fast evaluation of
generalized multiquadric radial basis functions. In order that these expansions be
suitable for this task they must be inexpensive both to form and to evaluate. The
purpose of this section is to show that the expansions can be formed in an efficient
recursive manner.

Given a single center t ∈ R
n with unit weight, the corresponding truncated ex-

pansion of section 3 is

Φ(x− t) =
(
(x− t)2 + τ2

)k/2
=

∞∑
�=0

P
(k)
� (t2 + τ2,−2〈t, x〉, x2)/|x|2�−k.(5.1)

Writing G�(x) = P
(k)
� (t2 +τ2,−2〈t, x〉, x2), G� is a homogeneous polynomial of degree

� in x, with coefficients depending on k, τ , and t. The expansion for a single center,
with corresponding weight d, then becomes

p+k∑
�=0

dG�(x)/|x|2�−k.(5.2)

The expansion of a cluster is formed by summing the expansions (5.2) corresponding
to each center and has the form

p+k∑
�=0

Q�(x)/|x|2�−k,(5.3)

where each Q� is a homogeneous polynomial of degree �. Lemma 2.5 implies that the
polynomials G� satisfy the three-term recurrence

G�(x) =

⎧⎪⎨
⎪⎩

1, � = 0,

−k〈x, t〉, � = 1,

A�〈x, t〉G�−1(x) +B� x
2(t2 + τ2) G�−2(x), � ≥ 2,

(5.4)



FAST EVALUATION OF RADIAL BASIS FUNCTIONS 1561

where

A� = −2
k/2 − �+ 1

�
, B� = −�− k − 2

�
.

The recurrence is very simple to implement, as is demonstrated by the following
code fragment for the special case of two dimensions. The code fragment employs the
notation of Example 3.3.

Code fragment to generate the numerator polynomial co-
efficients in the expansion of a generalized multiquadric in
two dimensions.

Input: A center t ∈ R
2, the corresponding weight d, the generalized

multiquadric parameters k and τ , and the desired order of expansion
p.
Output: The coefficients G(�, j) of the homogeneous numerator
polynomials in the expansion of this single center. On output G(�, j)
is the coefficient of x�−j1 xj2 in the homogeneous polynomial dG� of
(5.2).
PolynomialGenerator(t, d, k, τ , p)

G(0, 0) = d, G(1, 0) = −d ∗ k ∗ t1, G(1, 1) = −d ∗ k ∗ t2
for � = 2 to p+ k

a = A�, b = B� ∗ (|t|2 + τ2)
tmp = a ∗G(�− 1, 0)
G(�, 0) = tmp ∗ t1
G(�, 1) = tmp ∗ t2
for j = 0 to �− 2

tmp = b ∗G(�− 2, j)
G(�, j) = G(�, j) + tmp
G(�, j + 2) = tmp
tmp = a ∗G(�− 1, j + 1)
G(�, j + 1) = G(�, j + 1) + tmp ∗ t1
G(�, j + 2) = G(�, j + 2) + tmp ∗ t2

end
end

Recall that the
(
�+n−1

�

)
monomials of exact degree �, {xα : |α| = �}, form a basis

for the homogeneous polynomials of degree � on R
n. Represent the polynomials G�

in terms of these monomials, i.e., let

G�(x) =
∑
|α|=�

a�αx
α,

for some coefficients a�α. Then, from the recurrence (5.4), each coefficient of G� can
be calculated using at most n coefficients of G�−1 and at most n coefficients of G�−2.
Specifically, if ei is the multi-index with 1 in the ith position and 0 elsewhere, then
the recurrence (5.4) implies that for � ≥ 2,

a�α = A�

n∑
i=1

tia
�−1
α−ei +B�(t

2 + τ2)

n∑
i=1

a�−2
α−2ei

,

where ajβ is taken to be zero if any component of β is negative. It follows that all

the numerator polynomials {Q�}p+k�=0 in the truncated expansion (5.3) of an m center
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cluster can be formed (that is, their
(
n+p+k
p+k

)
coefficients calculated) in O

(
mn
(
n+p+k
p+k

))
floating point operations. This quantity is O(mn(p + k)n) when the dimension n is
less than the degree p+ k.

6. A subspace of polynomials. In this section we will investigate a subspace
of polynomials in n variables. This space will arise in section 7, and the aim of that
section will be to translate a member of this subspace. It will be shown that, modulo
a low-degree polynomial, this subspace is closed under translation of the underlying
Cartesian coordinate system.

Throughout this section and the next, n will be fixed and any complexity estimates
will be expressed as a function of polynomial degree only. Thus a typical estimate
might take the form O((p + k)n). In such expressions multiplicative order constants
depending on n have been suppressed, and we will be interested in the estimate only
when the argument p+ k is bigger than n.

The following standard spaces will be used:
• πnj , polynomials of total degree not exceeding j in n variables.
• Hn

j , homogeneous polynomials of degree j in n variables.
Also, for given function spaces S and T , define new spaces as follows:

S T = {s(·) t(·) : s ∈ S, t ∈ T} ,
S ⊕ T = {s(·) + t(·) : s ∈ S, t ∈ T} , S ∩ T = {0},
s T = {s(·) t(·) : t ∈ T} , s ∈ S.

The subspaces of polynomials that are the subject of this section are defined by

Snj =

{
q ∈ πn2j : q(·) =

j∑
�=0

q�(·)| · |2(j−�), q� ∈ Hn
�

}
.(6.1)

Apart from 0, the polynomials of Snj have total degree no greater than 2j and no

less than j. It follows from Lemma 4.1 that q ∈ Sjn is uniquely determined by the
homogeneous polynomials {q�}j�=0 and thus by the coefficients of those polynomials
with respect to some appropriate basis. Hence

dimSnj =

j∑
�=0

dimHn
� .(6.2)

Theorem 6.1. Snj is invariant under orthogonal transformation of the underlying
coordinate system, i.e., if q ∈ Snj , then q(Q ·) ∈ Snj for orthogonal Q.

Proof. The component function fi(·) = (Q·)i is nontrivial for each i since Q is in-
vertible. Hence, since the component functions are also linear, each fi is homogeneous
of exact degree 1. Thus

(Q·)α = (Q·)α1
1 (Q·)αs2 . . . (Q·)αnn

is homogeneous of exact degree |α|. It follows that q�(Q ·) is homogeneous of degree
� if q� is. Finally, since Q is orthogonal,

|Q · | = | · |,

and the result follows.
Before we prove translation invariance of Snj we will make a few simple observa-

tions regarding these spaces.
Lemma 6.2. The spaces Snj satisfy the following relations:
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(i) Snj+1 =
(
| · |2 Snj

)
⊕Hn

j+1,
(ii) Hn

1 S
n
j ⊂ Snj+1,

(iii) Snj ⊂ Snj+1 ⊕Hn
j .

Proof. Let q ∈ Snj+1 and let {q�}j+1
�=0 be the polynomials such that

q =

j+1∑
�=0

| · |2(j+1−�)q�, q� ∈ Hn
� .

The observation that

q = | · |2h+ qj+1,

where

h =

(
j∑
�=0

| · |2(j−�)q�

)
∈ Snj ,

proves part (i).
Now let p ∈ Hn

1 . Then for each �, 0 ≤ � ≤ j, the product q̃�+1 = pq� ∈ Hn
�+1.

Thus

pq =

j∑
�=0

| · |2(j−�)q̃�+1 =

j+1∑
k=1

| · |2(j+1−k)q̃k ∈ Snj+1,

which shows part (ii).
For part (iii),

q(x) =

j∑
�=0

q�(x)|x|2(j−�) = qj(x) +

j−1∑
�=0

q�(x)|x|2 |x|2(j−1−�)

= qj(x) +

j−1∑
�=0

q̃�+2(x) |x|2(j−1−�)

= qj(x) +

j+1∑
�=2

q̃�(x) |x|2(j+1−�) ∈ Hn
j ⊕ Snj+1,

since the polynomials q̃�+2(·) = q�(·)| · |2 are homogeneous of degree �+ 2.
Theorem 6.3. Snj are translation invariant modulo polynomials of degree j − 1,

i.e., for any q ∈ Snj and u ∈ R
n, q(· − u) ∈ Snj ⊕ πnj−1.

Proof. The proof is by induction on j. The result is trivially true in the case
j = 0 since Sn0 is the space of constants and πn−1 is the singleton {0}.

Now assume the result for k = 0, 1, 2, . . . , j, let q ∈ Snj+1, and let u ∈ R
n. Then

by Lemma 6.2(i),

q(x− u) = |x− u|2 h(x− u) + qj+1(x− u),(6.3)

where h ∈ Snj and qj+1 ∈ Hn
j+1. By the induction hypothesis, h(· − u) ∈ Snj ⊕ πnj−1.

Thus

h(x− u) = h̃j(x) + h̃j−1(x) + h̃<(x),(6.4)
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where h̃j ∈ Snj , h̃j−1 ∈ Hn
j−1, and h̃< ∈ πnj−2. Since qj+1 ∈ Hn

j+1,

qj+1(x− u) = qj+1(x) − q̃<(x),(6.5)

where q̃< ∈ πnj . Expand (6.3) to get

q(x− u) =
(
|x|2 − 2 〈x, u〉 + |u|2

) (
h̃j(x) + h̃j−1(x) + h̃<(x)

)
+ qj+1(x) + q̃<(x).

(6.6)

Consider each term in the expansion of this product:

| · |2h̃j ∈ Snj+1 by Lemma 6.2(i),

−2 〈·, u〉 h̃j ∈ Snj+1 by Lemma 6.2(ii),

|u|2h̃j ∈ Snj ⊂ Snj+1 ⊕Hn
j by Lemma 6.2(iii),

| · |2h̃j−1 ∈ Snj+1 since | · |2Hn
j−1 ⊂ Hn

j+1 ⊂ Snj+1,

−2 〈·, u〉 h̃j−1 ∈ Hn
j ,

|u|2h̃j−1 + | · −u|2h̃< ∈ πnj .

Thus it follows that q(· − u) ∈ Snj+1 ⊕ πnj . The result follows by induction.
In computations, a polynomial p ∈ Snj may be known in terms of the monomial

basis, but what is actually required are the polynomials {q�}j�=0 such that

p(x) =

j∑
�=0

q�(x)|x|2(j−�).(6.7)

Since the polynomials {q�} are homogeneous, for a given �, q� must be determined
entirely by those terms of p that are homogeneous of degree 2j− �. Thus the problem
of determining {q�} may be broken down into homogeneous parts. Hence, without
loss of generality, assume that p is a given homogeneous polynomial of degree �+ 2k
such that

p(x) = |x|2kq(x)(6.8)

with q unknown and to be determined from p. Since

p(x) = |x|2kq(x) = |x|2
(
|x|2(k−1)q(x)

)
,

if q can be determined in the case where k = 1, the more general problem may be
solved in an inductive manner.

Let {pj}�+2
j=0 and {qi}�i=0 be homogeneous polynomials in x2, . . . , xn such that

p(x) =

�+2∑
j=0

x�+2−j
1 pj(x̄), q(x) =

�∑
i=0

x�−i1 qi(x̄), and p(x) = |x|2q(x),

where, if x = (x1, . . . , xn), then x̄ = (x2, . . . , xn). Using this same notation,

|x|2 = x2
1 + |x̄|2
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and hence

�+2∑
j=0

x�+2−j
1 pj(x̄) =

(
x2

1 + |x̄|2
) �∑
i=0

x�−i1 qi(x̄)

= x�+2
1 q0(x̄) + x�+1

1 q1(x̄) +

{
�∑
i=2

x�+2−i
1

(
qi(x̄) + |x̄|2qi−2(x̄)

)}

+ x1|x̄|2q�−1(x̄) + |x̄|2q�(x̄).

Equating coefficients, we may now write the polynomials qi in terms of the polyno-
mials pj :

q0(x̄) = p0(x̄),

q1(x̄) = p1(x̄),

q2(x̄) = p2(x̄) − |x̄|2q0(x̄),
q3(x̄) = p3(x̄) − |x̄|2q1(x̄),

...

q�−1(x̄) = p�−1(x̄) − |x̄|2q�−3(x̄),

q�(x̄) = p�(x̄) − |x̄|2q�−2(x̄).

Multiplication of a polynomial by a monomial corresponds to a relabeling of
coefficients and computationally corresponds to assignment or addition. Since

|x̄|2 = x2
2 + · · · + x2

n

is just the sum of n− 1 monomials, for fixed i the product | · |2qi(·) may be calculated
with O(nCi) additions, where Ci = dimHn−1

i . It is well known that

dimHn−1
i =

(
i+ n− 2

n− 2

)
=

(i+ n− 2)!

i!(n− 2)!
=

1

(n− 2)!

(
(i+n−2) · · · (i+1)

)
= O(in−2),

and hence | · |2qi(·) may be calculated in O(in−2) operations. It now follows that all
of the polynomials {qi}�i=0 may be calculated in O(�n−1) operations.

Since the more general problem of (6.8) may be solved by k applications of this
simpler case, q(x) = p(x)/|x|2k may be calculated in

k−1∑
i=0

O
(
(�+ 2i)n−1

)
= O

(
(�+ 2k)n

)

operations. Applying this to each homogeneous part of (6.7) gives the following
lemma.

Lemma 6.4. Let n ∈ N. There exists a constant C depending only on n with the
following property. Given any polynomial p ∈ Snj , the polynomials {q�}j�=0 such that
q� ∈ Hn

� and

p =

j∑
�=0

| · |2(j−�)q�

may be determined in no more than Cjn+1 operations.
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7. Translation of a far field expansion. The uniqueness of the far field ex-
pansions makes it possible to shift the center of a truncated expansion knowing only its
coefficients and without any direct knowledge of the underlying centers and weights.
As the operation count for indirect translation depends on the length of the series,
not the number of centers, indirect translation can be significantly faster than direct
formation of series for clusters with many centers.

The precise problem we address is the following. Let

sp(x) =

p+k∑
�=0

Q�(y)/|y|2�−k, y = x− u �= 0,(7.1)

where Q� are homogeneous polynomials of degree �, be an expansion similar to (3.1)
or (5.3), but centered at u �= 0 rather than 0. We wish to shift the center of expansion

to the origin. That is, we seek homogeneous polynomials {Q̂�}, Q̂� being of degree �,
so that

sp(x) =

p+k∑
�=0

Q̂�(x)/|x|2�−k + O(1/|x|p+1)(7.2)

as |x| → ∞. We will show that translations of truncated expansions of the form (7.1)
into expansions of the form (7.2) may be performed in O

(
(p+ k)n+1

)
operations

using simple polynomial manipulations.

7.1. The cost of multiplication. In this subsection it will be shown that the
product of two homogeneous polynomials of degree � in n variables may be computed
in O(�n−1 log �) operations.

Let p be a homogeneous polynomial of degree �. Since p is homogeneous,

p(x) = p(x1, x2, . . . , xn) = x�np

(
x1

xn
,
x2

xn
, . . . ,

xn−1

xn
, 1

)
, xn �= 0.

Furthermore given x�np(...) for all x with xn �= 0, p(x) can be recovered on the hyper-
plane xn = 0 by continuity. Thus for the purposes of the multiplication and division
that are the subject of this section, we may consider multiplication and division of
general, that is, probably inhomogeneous, polynomials of degree � in n− 1 variables,
rather than of homogeneous polynomials of degree � in n variables.

Let p and q be two polynomials of degree � in n−1 variables. Then their product is

p(x)q(x) =

⎛
⎝∑

|α|≤�
aαx

α

⎞
⎠
⎛
⎝∑

|β|≤�
bβx

β

⎞
⎠ =

∑
|α|≤2�

⎛
⎝ ∑

0≤β≤α
aβbα−β

⎞
⎠xα,

the Cauchy product. The convolution producing the coefficients of the product can be
computed in O(�n−1 log �) operations by FFTs. It now follows that the homogeneous
polynomial multiplication above can also be carried out in O(�n−1 log �) operations.

7.2. Translation by convolution. In this subsection it will be shown that
translation of the far field series may be performed by convolution.

Throughout this subsection when we speak of forming a polynomial, we mean
finding its coefficients with respect to a basis, usually the monomial basis. When
we speak of forming a truncated expansion of the type (5.3), we mean finding the
coefficients of all the relevant numerator polynomials.
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First we set

Q(y) =

p+k∑
�=0

Q�(y)|y|2(p+k−�).(7.3)

Then

sp(x) = Q(y)/|y|2p+k, y = x− u �= 0.(7.4)

Since we already have all of the Q�, all we need to do to form Q is form the polynomials
| · |2(p+k−�) and then form the products Q�(·)| · |2(p+k−�). Form | · |2j , j = 0, . . . , p+ k,
once and store. Each | · |2j−2 is homogeneous of degree 2j − 2 and therefore involves
O(jn−1) coefficients. The polynomial | · |2j may be obtained from | · |2j−2 with n
additions for each coefficient in | · |2j−2. Hence the cost of forming the | · |2j ’s is
O((p+ k)n) operations. Each of the products Q�(·)| · |2(p+k−�) is the product of two
homogeneous polynomials and is of degree no greater than 2(p + k). Hence we can
calculate each product in O

(
(p+ k)n−1 log(p+ k)

)
operations. As there are p+ k+ 1

of these products in Q, forming Q takes O
(
(p+ k)n log(p+ k)

)
operations.

We proceed to shift the center of expansion of Q by setting

Q̃(x) = Q(x− u), x ∈ Rn.(7.5)

A translation of this sort can be done simply and quickly by convolution. For example,
using the scaled monomial basis Vα(x) = xα/α! (α a multi-index), we have

p(x− u) =
∑
|α|<k

aα Vα(x− u)

=
∑
|α|<k

aα
(x− u)α

α!

=
∑
|α|<k

aα
α!

∑
β<α

(
α

β

)
xβ(−u)(α−β)

=
∑
|α|<k

aα
∑
β<α

xβ

β!

(−u)(α−β)

(α− β)!

=
∑
|β|<k

xβ

β!

∑
α<β

aα
(−u)(α−β)

(α− β)!
.

Thus an n-dimensional convolution of {aα} and {(−u)α/α!} gives the coefficients of
the translated polynomial. Again this can be computed in O

(
(p + k)n log(p + k)

)
operations by an FFT method. This gives us Q̃ in terms of the monomial or scaled
monomial basis.

The next task is to recast Q̃ into a sum of products of powers of |x| and homoge-
neous polynomials. By Theorem 6.3 we know that

Q̃(x) =

p+k∑
�=0

q�(x)|x|2(p+k−�) + qlow(x),(7.6)

where the q� are homogeneous of degree � and qlow is some polynomial of degree
p+k−1 or less. By Lemma 6.4, these homogeneous polynomials q� can be calculated
from Q̃ in O

(
(p+ k)n+1

)
operations.
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Combining (7.4) and (7.5) and appealing to Lemma 3.1 gives

sp(x) = Q(x− u)/|x− u|2p+k

= Q̃(x)/|x− u|2p+k(7.7)

= Q̃(x)

∞∑
m=0

P (−2p−k)
m (u2,−2〈x, u〉, x2)/|x|2p+k+2m

=

(
p+k∑
�=0

q�(x)|x|2(p+k−�) + qlow(x)

)

×
( ∞∑
m=0

P (−2p−k)
m (u2,−2〈x, u〉, x2)/|x|2p+k+2m

)

=

p+k∑
�=0

∞∑
m=0

q�(x)P
(−2p−k)
m (u2,−2〈x, u〉, x2)/|x|2(m+�)−k + O(1/|x|p+1)

=

p+k∑
�=0

⎛
⎝ �∑
j=0

qj(x)P
(−2p−k)
�−j (u2,−2〈x, u〉, x2)

⎞
⎠ /|x|2�−k + O(1/|x|p+1)

=

p+k∑
�=0

Q̂�(x)/|x|2�−k + O(1/|x|p+1).

The sums of products

Q̂�(x) =

�∑
j=0

qj(x)P
(−2p−k)
�−j (u2,−2〈x, u〉, x2), 0 ≤ � ≤ p+ k,(7.8)

can be computed simultaneously as homogeneous parts of the product

⎡
⎣p+k∑
j=0

qj(·)

⎤
⎦
[
p+k∑
m=0

P−2p+k
m

(
u2,−2〈·, u〉, (·)2

)]
.

Hence they can be computed by a single FFT convolution in O ((p+ k)n log(p+ k))
operations.

8. Conversion to a near field series. The final step in the process of forming
expansions for the FMM is to convert the far field series into a near field, or Taylor,
series. At the implementation level, this step is almost identical to the first part of
the translation of the far field series.

Define two nonintersecting discs:

Deval =
{
x : |x| ≤ r

}
,

Dsrc =
{
x : |x− u| ≤

√
(θr)2 − τ2

}
, θ > 0.

Let

sp(x) =

p+k∑
�=0

Q�(y)/|y|2�−k, y = x− u �= 0,
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be a far field series, such as (3.1) or (7.1), of s(x) =
∑N
i=1 diΦ(x− ti) due to a cluster

of centers {ti} located inside Dsrc. Then by Theorem 3.4, sp approximates s well on
Deval. We wish to find a near field series that approximates sp, and thus s, on Deval.

Proceeding in an identical fashion to section 7.2, we see that we may calculate
the polynomial Q̃ such that

sp(x) = Q̃(x)/|x− u|2p+k

in O ((p+ k)n log(p+ k)) operations. When translating the far field expansion to

another far field expansion, we essentially convolved Q̃ with the far field series for
| · −u|−(2p+k). To get the near field, all we need do is convolve Q̃ with the near field
series for | · −u|−(2p+k).

The next result gives an explicit expression for the Maclaurin series of Φ(· −u) =
((·−u)2+τ2)k/2 together with an estimate of the error in approximation by truncating
this series. Specializing to the case τ = 0 in this lemma gives the Maclaurin series for
| · −u|k.

Lemma 8.1. Let k ∈ Z be odd, and let u ∈ R
n \ {0} and τ ≥ 0. For all x ∈ R

n

with |x| <
√
u2 + τ2,

Φ(x− u) =
(
(x− u)2 + τ2

)k/2
=

∞∑
�=0

P
(k)
� (x2,−2〈u, x〉, u2 + τ2)/

(√
u2 + τ2

)2�−k
,

(8.1)

where the polynomials P
(k)
� are defined in (1.4). Moreover,

Tq
(
Φ(· − u)

)
(x) :=

q∑
�=0

P
(k)
� (x2,−2〈u, x〉, u2 + τ2)/

(√
u2 + τ2

)2�−k
(8.2)

is the Maclaurin polynomial of degree q of Φ(·−u). When |x| <
√
u2 + τ2 and q ∈ N,

(8.3)

∣∣∣∣∣Φ(x− u) −
q∑
�=0

P
(k)
� (x2,−2〈u, x〉, u2 + τ2)/

(√
u2 + τ2

)2�−k∣∣∣∣∣

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(√
u2 + τ2

)k ( |x|√
u2 + τ2

)q+1 √
u2 + τ2

√
u2 + τ2 − |x|

if k > 0,

(
q − k

q + 1

)(√
u2 + τ2

)k ( |x|√
u2 + τ2

)q+1
( √

u2 + τ2

√
u2 + τ2 − |x|

)−k
if k < 0.

Proof. Assume first that x �= 0. Let a = x2, b = −2〈u, x〉, and c = u2 + τ2. Then

Φ(x− u) =
(
x2 − 2〈u, x〉 + u2 + τ2

)k/2
= fk(1),

where fk is the function that is defined in (2.1). Since a, c > 0, b2 ≤ 4ac, and
1 = |z| <

√
c/a =

√
u2 + τ2/|x|, Lemma 2.3 may be applied with ν = q to yield (8.1)

and (8.3) when x �= 0. The results for x = 0 follow by continuity.
It remains to show that Tq

(
Φ(· − u)

)
is the Maclaurin polynomial of Φ(· − u).

Observe from (1.4) that

P
(k)
� (a, b, c) = P

(k)
� (x2,−2〈u, x〉, u2 + τ2)
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either is a homogeneous polynomial of exact degree � in x or is trivial. Hence, by
(8.3), Tq

(
Φ(· − u)

)
is a polynomial of total degree q in x such that

∣∣∣Φ(x− u) − Tq
(
Φ(· − u)

)
(x)
∣∣∣ = O

(
|x|q+1

)
as |x| → 0.

The result follows since the only such polynomial is the Maclaurin polynomial.

9. Numerical results. In this section we present numerical results generated
by a fast evaluator for generalized multiquadrics based upon the mathematics of this
paper.

The implementation is built around a hierarchical subdivision of an initial box
containing all the centers using a binary tree of panels. Associated with a panel are
the centers lying within it, a far field expansion, and a distance from the panel’s
midpoint at which the far field expansion approximates the influence of the panel to
sufficient accuracy. Panels are divided, generating children if they contain more than
a critical number of centers.

Pseudocode for recursive and nonrecursive evaluators appropriate for use with
such a binary tree evaluation structure is sketched in [3, pp. 8–11]. Nominally the
discussion there is limited to an R

1, rather than an R
n, setting but the generalization

is immediate.
Tables 9.1 and 9.2 give times in seconds on an Intel Pentium III 700-based machine

for matrix-vector products of various sizes and (generalized) multiquadrics in R
2.

In these tables an entry of the form d0.d1d2d3(e) with d0, d1, d2, d3 decimal digits
represents the number d0.d1d2d3 × 10e. In the numerical experiments the centers
are uniformly distributed on [0, 1]2, and the multiquadric parameter τ was taken as
1/
√
N , where N is the number of centers. All the coefficients di were taken as 1 and

the task was to evaluate the spline at the centers to an infinity norm relative accuracy
of 10−6. In the first table φ is the ordinary multiquadric φ(r) =

√
r2 + τ2, while

in the second it is the smoother function φ(r) = (r2 + τ2)3/2. The code used was
structured as a general evaluator, and the symmetry inherent in this matrix-vector
product test problem was not exploited. Tables 9.3 and 9.4 give the analogous results

Table 9.1
Timings of matrix-vector products for φ(r) =

√
r2 + τ2 and R

2.

N Direct time Algorithm time Ratio

1,000 6.3(-2) 3.9(-2) 1.6
2,000 2.97(-1) 7.8(-2) 3.8
4,000 1.19(0) 2.03(-1) 5.86
8,000 4.75(0) 4.84(-1) 9.81

16,000 2.50(1) 9.84(-1) 25.4
32,000 1.10(2) 2.23(0) 49.3

Table 9.2
Timings of matrix-vector products for φ(r) = (r2 + τ2)3/2 and R

2.

N Direct time Algorithm time Ratio

1,000 6.3(-2) 3.9(-2) 1.6
2,000 2.97(-1) 7.8(-2) 3.8
4,000 1.19(0) 1.72(-1) 6.92
8,000 4.75(0) 3.75(-1) 12.7

16,000 2.97(1) 8.12(-1) 36.6
32,000 1.22(2) 1.76(0) 69.3
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Table 9.3
Timings of matrix-vector products for φ(r) =

√
r2 + τ2 and R

3.

N Direct time Algorithm time Ratio

2,000 2.97(-1) 3.12(-1) 0.95
4,000 1.19(0) 7.81(-1) 1.52
8,000 7.62(0) 1.88(0) 4.05

16,000 3.40(1) 4.40(0) 7.73
32,000 1.36(2) 1.05(1) 13.0
64,000 5.44(2) 2.34(1) 23.2

Table 9.4
Timings of matrix-vector products for φ(r) = (r2 + τ2)3/2 and R

3.

N Direct time Algorithm time Ratio

2,000 3.12(-1) 3.29(-1) 0.94
4,000 1.25(0) 8.43(-1) 1.48
8,000 8.64(0) 1.94(0) 4.45

16,000 3.80(1) 4.50(0) 8.44
32,000 1.48(2) 1.02(1) 14.5
64,000 6.16(2) 2.23(1) 27.6

for a three-dimensional code. Here the points are uniformly distributed in the unit
cube [0, 1]3, and the multiquadric parameter τ is taken as (1/N)1/3.

It can be seen from the tables that this algorithm can be substantially faster
than direct evaluation. Thus the methods of this paper will allow application of
multiquadric radial basis functions to much bigger problems than previously possible.
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Abstract. We describe an algebraic multilevel multigraph algorithm. Many of the multilevel
components are generalizations of algorithms originally applied to general sparse Gaussian elimina-
tion. Indeed, general sparse Gaussian elimination with minimum degree ordering is a limiting case of
our algorithm. Our goal is to develop a procedure which has the robustness and simplicity of use of
sparse direct methods, yet offers the opportunity to obtain the optimal or near-optimal complexity
typical of classical multigrid methods.
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1. Introduction. In this work, we develop a multilevel multigraph algorithm.
Algebraic multigrid methods are currently a topic of intense research interest [17, 18,
20, 46, 12, 48, 38, 11, 44, 3, 4, 1, 2, 5, 16, 7, 29, 28, 27, 42, 41, 21]. An excellent recent
survey is given in Wagner [49]. In many “real world” calculations, direct methods are
still widely used [6]. The robustness of direct elimination methods and their simplicity
of use often outweigh the apparent benefits of fast iterative solvers. Our goal here is to
try to develop an iterative solver that can compete with sparse Gaussian elimination
in terms of simplicity of use and robustness and to provide the potential of solving
a wide range of linear systems more efficiently. While we are not yet satisfied that
our method has achieved this goal, we believe that it is a reasonable first step. In
particular, the method of general sparse Gaussian elimination with minimum degree
ordering is a point in the parameter space of our method. This implies that in the
worst case, our method defaults to this well-known and widely used method, among
the most computationally efficient of general sparse direct methods [26]. In the best
case, however, our method can exhibit the near optimal order complexity of the
classical multigrid method.

Our plan is to take well studied, robust, and widely used procedures and data
structures developed for sparse Gaussian elimination, generalize them as necessary,
and use them as the basic components of our multilevel solver. The overall iteration
follows the classical multigrid V-cycle in form, in contrast to the algebraic hierarchical
basis multigraph algorithm developed in [11].

In this work we focus on the class of matrices which are structurally symmetric;
that is, the pattern of nonzeros in the matrix is symmetric, although the numerical
values of the matrix elements may render it nonsymmetric. Such structurally sym-
metric matrices arise in the discretizations of partial differential equations, say, by
the finite element method. For certain problems, the matrices are symmetric and
positive definite, but for others the linear systems are highly nonsymmetric and/or
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indefinite. Thus in practice this represents a very broad class of behavior. While our
main interest is in scalar elliptic equations, as in the finite element code PLTMG [8],
our algorithms can formally be applied to any structurally symmetric, nonsingular,
sparse matrix.

Sparse direct methods typically have two phases. In the first (initialization) phase,
equations are ordered, and symbolic and numerical factorizations are computed. In
the second (solution) phase, the solution of the linear system is computed using the
factorization. Our procedure, as well as other algebraic multilevel methods, also
breaks naturally into two phases. The initialization consists of ordering, incomplete
symbolic and numeric factorizations, and the computation of the transfer matrices
between levels. In the solution phase, the preconditioner computed in the initialization
phase is used to compute solution using the preconditioned composite step conjugate
gradient (CSCG) or the composite step biconjugate gradient (CSBCG) method [9].

Iterative solvers often have tuning parameters and switches which require a certain
level of a priori knowledge or some empirical experimentation to set in any particular
instance. Our solver is not immune to this, although we have tried to keep the number
of such parameters to a minimum. In particular, in the initialization phase, there are
only three such parameters:

• ε, the drop tolerance used in the incomplete factorization (called dtol in our
code).
• maxfil, an integer which controls to overall fill-in (storage) allowed in a given

incomplete factorization.
• maxlvl, an integer specifying the maximum number of levels.

(The case ε = 0, maxfil = N , maxlvl = 1 corresponds to sparse Gaussian elimina-
tion.) In the solution phase, there are only two additional parameters:

• tol, the tolerance used in the convergence test.
• maxcg, an integer specifying the maximum number of iterations.

Within our code, all matrices are generally treated within a single, unified frame-
work; e.g., symmetric positive definite, nonsymmetric, and indefinite problems gener-
ally do not have specialized options. Besides the control parameters mentioned above,
all information about the matrix is generated from the sparsity pattern and the values
of the nonzeros, as provided in our sparse matrix data structure, a variant of the data
structure introduced in the Yale sparse matrix package [23, 10]. For certain block
matrices, the user may optionally provide a small array containing information about
the block structure.

This input limits the complexity of the code, as well as eliminates parameters
which might be needed to further classify a given matrix. On the other hand, it seems
clear that a specialized solver directed at a specific problem or class of problems, and
making use of this additional knowledge, is likely to outperform our algorithm on
that particular class of problems. Although we do not think our method is provably
“best” for any particular problem, we believe its generality and robustness, coupled
with reasonable computational efficiency, make it a valuable addition to our collection
of sparse solvers.

The rest of this paper is organized as follows. In section 2, we provide a general
description of our multilevel approach. In section 3, we define the sparse matrix data
structures used in our code. Our incomplete factorization algorithm is a standard
drop tolerance approach with a few modifications for the present application. These
are described in section 4. Our ordering procedure is the minimum degree algorithm.
Once again, our implementation is basically standard with several modifications to the
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input graph relevant to our application. These are described in section 5. In section
6, we describe the construction of the transfer matrices used in the construction of
the coarse grid correction. Information about the block structure of the matrix, if any
is provided, is used only in the coarsening procedure. This is described in section 7.
Finally, in section 8, we give some numerical illustrations of our method on a variety
of (partial differential equation) matrices.

2. Matrix formulation. Let A be a large sparse, nonsingular N × N matrix.
We assume that the sparsity pattern of A is symmetric, although the numerical values
need not be. We will begin by describing the basic two-level method for solving

Ax = b.(2.1)

Let B be an N ×N nonsingular matrix, called the smoother, which gives rise to the
basic iterative method used in the multilevel preconditioner. In our case, B is an
approximate factorization of A, i.e.,

B = (L+D)D−1(D + U) ≈ P tAP,(2.2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix.

Given an initial guess x0, m steps of the smoothing procedure produce iterates
xk, 1 ≤ k ≤ m, given by

rk−1 = P t(b−Axk−1),

Bδk−1 = rk−1,(2.3)

xk = xk−1 + P tδk−1.

The second component of the two-level preconditioner is the coarse grid correction.
Here we assume that the matrix A can be partitioned as

P̂AP̂ t =

(
Aff Afc
Acf Acc

)
,(2.4)

where the subscripts f and c denote fine and coarse, respectively. Similar to the
smoother, the partition of A in fine and coarse blocks involves a permutation matrix
P̂ . The N̂ × N̂ coarse grid matrix Â is given by

Â =
(
Vcf Icc

)(Aff Afc
Acf Acc

)(
Wfc

Icc

)

= VcfAffWfc + VcfAfc +AcfWfc +Acc.(2.5)

The matrices Vcf and W t
fc are N̂ × (N − N̂) matrices with identical sparsity patterns;

thus Â has a symmetric sparsity pattern. If At = A, we require Vcf = W t
fc, so Ât = Â.

Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
.(2.6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction and
prolongation, respectively. Given an approximate solution xm to (2.1), the coarse grid
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correction produces an iterate xm+1 as follows.

r̂ = V̂ (b−Axm),

Âδ̂ = r̂,(2.7)

xm+1 = xm + Ŵ δ̂.

As is typical of multilevel methods, we define the two-level preconditioner M
implicitly in terms of the smoother and coarse grid correction. A single cycle takes
an initial guess x0 to a final guess x2m+1 as follows:

Two-Level Preconditioner
(i) xk for 1 ≤ k ≤ m are defined using (2.3).
(ii) xm+1 is defined using (2.7).
(iii) xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (2.3).
The generalization from two-level to multilevel consists of applying recursion to

the solution of the equation Âδ̂ = r̂ in (2.7). Let � denote the number of levels in the
recursion. Let M̂ ≡ M̂(�) denote the preconditioner for Â; if � = 2, then M̂ = Â.
Then (2.7) is generalized to

r̂ = V̂ (b−Axm),

M̂ δ̂ = r̂,(2.8)

xm+1 = xm + Ŵ δ̂.

The general � level preconditioner M is then defined as follows:
�-Level Preconditioner

(i) if � = 1, M = A; i.e., solve (2.1) directly.
(ii) if � > 1, then, starting from initial guess x0, compute x2m+1 using (iii)–(v):
(iii) xk for 1 ≤ k ≤ m are defined using (2.3).
(iv) xm+1 is defined by (2.8), using p = 1 or p = 2 iterations of the � − 1 level

scheme for Âδ̂ = r̂ to define M̂ , and with initial guess δ̂0 = 0.
(v) xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (2.3).
The case p = 1 corresponds to the symmetric V-cycle, while the case p = 2

corresponds to the symmetric W-cycle. We note that there are other variants of both
the V-cycle and the W-cycle, as well as other types of multilevel cycling strategies [30].
However, in this work (and in our code) we restrict attention to just the symmetric
V-cycle with m = 1 presmoothing and postsmoothing iterations.

For the coarse mesh solution (� = 1), our procedure is somewhat nontraditional.
Instead of a direct solution of (2.1), we compute an approximate solution using one
smoothing iteration. We illustrate the practical consequences of this decision in section
8.

If A is symmetric, then so is M , and the �-level preconditioner could be used as a
preconditioner for a symmetric Krylov space method. If A is also positive definite, so
isM , and the standard conjugate gradient method could be used; otherwise the CSCG
method [9], SYMLQ [43], or a similar method could be used. In the nonsymmetric
case, the �-level preconditioner could be used in conjunction with the CSBCG method
[9], GMRES [22], or a similar method.

To complete the definition of the method, we must provide algorithms to
• compute the permutation matrix P in (2.2);
• compute the incomplete factorization matrix B in (2.2);
• compute the fine-coarse partitioning (P̂ ) in (2.4);
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• compute the sparsity patterns and numerical values in the prolongation and
restriction matrices in (2.6).

3. Data structures. Let A be an N ×N matrix with elements Aij and a sym-
metric sparsity structure; that is, both Aij and Aji are treated as nonzero elements
(i.e. stored and processed) if |Aij |+ |Aji| > 0. All diagonal entries Aii are treated as
nonzero regardless of their numerical values.

Our data structure is a modified and generalized version of the data structure
introduced in the (symmetric) Yale sparse matrix package [23]. It is a rowwise version
of the data structure described in [10]. In our scheme, the nonzero entries of A are
stored in a linear array a and accessed through an integer array ja. Let ηi be the
number of nonzeros in the strict upper triangular part of row i and set η =

∑N
i=1 ηi.

The array ja is of length N+1+η, and the array a is of length N+1+η if At = A. If
At �= A, then the array a is of length N + 1 + 2η. The entries of ja(i), 1 ≤ i ≤ N + 1,
are pointers defined as follows:

ja(1) = N + 2,

ja(i+ 1) = ja(i) + ηi, 1 ≤ i ≤ N.

The locations ja(i) to ja(i + 1) − 1 contain the ηi column indices corresponding to
the row i in the strictly upper triangular matrix.

In a similar manner, the array a is defined as follows:

a(i) = Aii, 1 ≤ i ≤ N,
a(N + 1) is arbitrary,

a(k) = Aij , 1 ≤ i ≤ N, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1.

If At �= A, then

a(k + η) = Aji, 1 ≤ i ≤ N, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1.

In words, the diagonal is stored first, followed by the strict upper triangle stored row-
wise. If At �= A, then this is followed by the strict lower triangle stored columnwise.
Since A is structurally symmetric, the column indexes for the upper triangle are iden-
tical to the row indexes for the lower triangle, and hence they need not be duplicated
in storage.

As an example, let

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35

0 A42 A43 A44 0
0 0 A53 0 A55

⎞
⎟⎟⎟⎟⎠ .

Then

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ja 7 9 10 12 12 12 2 3 4 4 5
a A11 A22 A33 A44 A55 A12 A13 A24 A34 A35 A21 A31 A42 A43 A53

Diagonal Upper triangle Lower triangle
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Although the YSMP data structure was originally devised for sparse direct meth-
ods based on Gaussian elimination, it is also quite natural for iterative methods based
on incomplete triangular decomposition. Because we assume that A has a symmetric
sparsity structure, for many matrix calculations a single indirect address computation
in ja can be used to process both a lower and a upper triangular element in A. For
example, the following procedure computes y = Ax:

procedure mult(N, ja, a, x, y)

lmtx← ja(N + 1)− ja(1)
umtx← 0
for i← 1 to N

y(i)← a(i)x(i)
end for
for i← 1 to N

for k ← ja(i) to ja(i+ 1)− 1
j ← ja(k)
y(i)← y(i) + a(k + umtx)x(j)
y(j)← y(j) + a(k + lmtx)x(i)

end for
end for

end mult

For symmetric matrices, set lmtx← 0, umtx← 0. Also, y = At x may be readily
computed by setting lmtx← 0, umtx← ja(N + 1)− ja(1).

The data structure for storing B = (L+D)D−1(D+U) is quite analogous to that
for A. It consists of two arrays, ju and u, corresponding to ja and a, respectively.
The first N + 1 entries of ju are pointers as in ja, while entries ju(i) to ju(i+ 1)− 1
contain column indices of the nonzeros of row i in of U . In the u array, the diagonal
entries of D are stored in the first N entries. Entry N + 1 is arbitrary. Next, the
nonzero entries of U are stored in correspondence to the column indices in ju. If
Lt �= U , the nonzero entries of L follow, stored columnwise.

The data structure we use for the N × N̂ matrix Ŵ and the N̂ × N matrix V̂ are
similar. It consists of an integer array jv and a real array v. The nonzero entries of
Ŵ are stored rowwise, including the rows of the block Icc. As usual, the first N + 1
entries of jv are pointers; entries jv(i) to jv(i+1)− 1 contain column indices for row
i of Ŵ . In the v array, the nonzero entries of Ŵ are stored rowwise in correspondence
with jv but shifted by N + 1 since there is no diagonal part. If V̂ t �= Ŵ , this is
followed by the nonzeros of V̂ , stored columnwise.

4. ILU factorization. Our incomplete (L+D)D−1(D+U) factorization is sim-
ilar to the row elimination scheme developed for the symmetric YSMP codes [23, 26].
For simplicity, we begin by discussing a complete factorization and then describe the
modifications necessary for the incomplete factorization. Without loss of generality,
assume that the permutation matrix P = I, so that A = (L+D)D−1(D + U).

After k steps of elimination, we have the block factorization

(
A11 A12

A21 A22

)
=

(
D11 + L11 0

L21 I

)(
D−1

11 0
0 S

)(
D11 + U11 U12

0 I

)
,(4.1)

where A11 is k × k and A22 is N − k × N − k. We assume that at this stage, all
the blocks on the right-hand side of (4.1) have been computed except for the Schur
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complement S, given by

S = A22 − L21D
−1
11 U12.(4.2)

Our goal for step k + 1 is to compute the first row and column of S, given by

Se1 = A22e1 − L21(D
−1
11 U12e1),

Ste1 = At22e1 − U t12(D−1
11 L

t
21e1).(4.3)

Because A and (L+D)D−1(D + U) have symmetric sparsity patterns, and our data
structures take advantage of this symmetry, it is clear that the algorithms for com-
puting Se1 and Ste1 are the same and in practice differ only in the assignments of
shifts for the u and a arrays, analogous to lmtx and umtx in procedure mult. Thus
we will focus on the computation of just Se1. At this point, we also assume that the
array ju has been computed in a so-called symbolic factorization step.

The major substeps are as follows:
1. Copy the first column of A22 (stored in the data structures ja and a) into an

expanded work vector z of size N .
2. Find the multipliers given by nonzeros of D−1

11 U12e1.
3. For each multiplier γ = etkD

−1
11 U12e1, update z using column k of L21 (i.e.,

γL21ek).
4. Copy the nonzeros in z into the data structures ju and u.

In step 1, we need to know the nonzeros of the first column of A22, which is
precisely the information easily accessible in the ja and a data structures. In step
3, we need to know the nonzeros in columns of L21, which again is precisely the
information easily available in our data structure. In step 4, we copy a column of
information into the lower triangular portion of the ju and u data structures. Indeed,
the only difficult aspect of the algorithm is step 2, in which we need to know the
sparsity structure of the first column of U12, information that is not readily available
in the data structure. This is handled in a standard fashion using a dynamic linked
list structure and will not be discussed in detail here.

To generalize this to the incomplete factorization case, we first observe that the ju
array can be computed concurrently with the numeric factorization simply by creating
a list of the entries of the expanded array z that are updated in step 3. Next, we note
that one may choose which nonzero entries from z to include in the factorization by
choosing which entries to copy to the ju and u data structures in step 4. We do this
through a standard approach using a drop tolerance ε. In particular, we neglect a
pair of off-diagonal elements if

max |Lij |, |Uji| ≤ ε
√
|DjjAii|,(4.4)

j = k + 1 and i > j. Note Dii has not yet been computed. It is well known that
the fill-in generated through the application of a criterion such as (4.4) is a highly
nonlinear and matrix dependent function of ε. This is especially problematic in the
present context, since control of the fill-in is necessary in order to control the work
per iteration in the multilevel iteration.

Several authors have explored possibilities of controlling the maximum number
of fill-in elements allowed in each row of the incomplete decomposition [35, 47, 31].
However, for many cases of interest, and in particular for matrices arising from dis-
cretizations of partial differential equations ordered by the minimum degree algorithm,



AN ALGEBRAIC MULTILEVEL MULTIGRAPH ALGORITHM 1579

most of the fill-in in a complete factorization occurs in the later stages, even if all the
rows initially have about the same number of nonzeros. Thus while it seems advisable
to try to control the total fill-in, one should adaptively decide how to allocate the
fill-in among the rows of the matrix. In our algorithm, in addition to the drop toler-
ance ε, the user provides a parameter maxfil, which specifies that the total number
of nonzeros in U is not larger than maxfil ·N .

Our overall strategy is to compute the incomplete decomposition using the given
drop tolerance. If it fails to meet the given storage bound, we increase the drop
tolerance and begin a new incomplete factorization. We continue in this fashion until
we complete a factorization within the given storage bound. Of course, such repeated
factorizations are computationally expensive, so we developed some heuristics which
allow us to predict a drop tolerance which will satisfy the storage bound.

As the factorization is computed, we make a histogram of the approximate sizes
of all elements that exceed the drop tolerance and are accepted for the factorization.
Let m denote the number of bins in the histogram; m = 400 in our code. Then for
each pair of accepted off-diagonal elements, we find the largest k ∈ [1,m] such that

ρk−1 ≤ max |Lij |, |Uji|
ε
√|DjjAii|

.(4.5)

Here ρ > 1 (ρ = 104/m in our code). The histogram is realized as an integer array h of
size m, where h� is the number of accepted elements that exceeded the drop tolerance
by factors between ρ�−1 and ρ� for 1 ≤ � ≤ m − 1; hm contains the number of
accepted elements exceeding the drop tolerance by ρm−1. If the factorization reaches
the storage bound, we continue the factorization but allow no further fill-in. However,
we continue to compute the histogram based on (4.5), profiling the elements we would
have accepted had space been available. Then using the histogram, we predict a
new value of ε such that the total number of elements accepted for U is no larger
than maxfil · N/θ. Such a prediction of course cannot be guaranteed, since the
sizes and numbers of fill-in elements depend in a complicated fashion on the specific
history of the incomplete factorization process; indeed, the histogram cannot even
completely profile the remainder of the factorization with the existing drop tolerance,
since elements that would have been accepted could introduce additional fill-in at
later stages of the calculation as well as influence the sizes of elements computed at
later stages of the factorization. In our implementation, the factor θ varies between
θ = 1.01 and θ = 1.4, depending on how severely the storage bound was exceeded. Its
purpose is to introduce some conservative bias into the prediction with the goal that
the actual fill-in accepted should not exceed maxfil ·N .

Finally, we note that there is no comprehensive theory regarding the stability
of incomplete triangular decompositions. For certain classes of matrices (e.g., M-
matrices and H-matrices), the existence of certain incomplete factorizations has been
proved [39, 25, 24, 40, 51]. However, in the general case, with potentially indefinite
and/or highly nonsymmetric matrices, one must contend in a practical way with
the possibility of failure or near failure of the factorization. A common approach
is to add a diagonal matrix, often a multiple of the identity, to A and compute an
incomplete factorization of the shifted matrix. One might also try to incorporate
some form of diagonal pivoting; partial or complete pivoting could potentially destroy
the symmetric sparsity pattern of the matrix. However, any sort of pivoting greatly
increases the complexity of the implementation, since the simple but essentially static
data structures ja, a, ju, and u are not appropriate for such an environment.
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Our philosophy here is to simply accept occasional failures and continue with
the factorization. Our ordering procedure contains some heuristics directed towards
avoiding or at least minimizing the possibility of failures. And when they do occur,
failures often corrupt only a low dimensional subspace, so a Krylov space method
such as conjugate gradients can compensate for such corruption with only a few extra
iterations. In our implementation, a failure is revealed by some diagonal entries in D
becoming close to zero. Off-diagonal elements Lji and Uij are multiplied by D−1

ii , and
the solution of (L + D)D−1(D + U)x = b also involves multiplication by D−1

ii . For
purposes of calculating the factorization and solution, the value of D−1

ii is modified
near zero as follows:

D−1
ii =

{
1/Dii for |Dii| > α,
Dii/α

2 for |Dii| ≤ α.
(4.6)

Here α is a small constant; in our implementation, α = μ||A||, where μ is the machine
epsilon. Although many failures could render the preconditioner well-defined but
essentially useless, in practice we have noted that D−1

ii is rarely modified for the large
class of finite element matrices which are the main target of our procedure.

5. Ordering. To compute the permutation matrix P in (2.2), we use the well-
known minimum degree algorithm [45, 26]. Intuitively, if one is computing an in-
complete factorization, an ordering which tends to minimize the fill-in in a complete
factorization should tend to minimize the error

E = P tAP − (L+D)D−1(D + U).

For particular classes of matrices, specialized ordering schemes have been developed
[34, 15, 37, 36]. For example, for matrices arising from convection dominated prob-
lems, ordering along the flow direction has been used with great success. However, in
this general setting, we prefer to use just one strategy for all matrices. This reduces
the complexity of the implementation and avoids the problem of developing heuris-
tics to decide among various ordering possibilities. We remark that for convection
dominated problems, minimum degree orderings perform comparably well to the spe-
cialized ones, provided some (modest) fill-in is allowed in the incomplete factorization.
For us, this seems to be a reasonable compromise.

Our minimum degree ordering is a standard implementation, using the quotient
graph model [26] and other standard enhancements. A description of the graph of
the matrix is the main required input. Without going into detail, this is essentially
a small variant of the basic ja data structure used to store the matrix A. We will
denote this modified data structure as jc. Instead of storing only column indices for
the strict upper triangle as in ja, entries jc(i) to jc(i+1)− 1 of the jc data structure
contain column indices for all off-diagonal entries for row i of the matrix A.

We have implemented two small enhancements to the minimum degree ordering;
as a practical matter, both involve changes to the input graph data structure jc
that is provided to the minimum degree code. First, we have implemented a drop
tolerance similar to that used in the the factorization. In particular the edge in the
graph corresponding to off-diagonal entries Aij and Aji is not included in the jc data
structure if

max |Aij |, |Aji| ≤ ε
√
|AjjAii|.(5.1)
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This excludes many entries which are likely to be dropped in the subsequent incom-
plete factorization and hopefully will result in an ordering that tends to minimize the
fill-in created by the edges that are kept.

The second modification involves some modest a priori diagonal pivoting designed
to minimize the number failures (near zero diagonal elements) in the subsequent
factorization. We first remark that pivoting or other procedures based on the values
of the matrix elements (which can be viewed as weights on graph edges and nodes)
would destroy many of the enhancements which allow the minimum degree algorithm
to run in almost linear time. Our modification is best explained in the context of a
simple 2× 2 example. Let

A =

(
0 c
b a

)

with a, b, c �= 0. Clearly, A is nonsingular, but the complete triangular factorization
of A does not exist. However,

P tAP =

(
a b
c 0

)
=

(
a 0
c −bc/a

)(
1/a 0
0 −a/bc

)(
a b
0 −bc/a

)
.(5.2)

Now suppose that Aii ≈ 0, Ajj , Aij , Aji �= 0. Then these four elements form a
submatrix of the form described above, and it seems an incomplete factorization of
A is less likely to fail if the P is chosen such that vertex j is ordered before vertex i.
This is done as follows: for each i such that Aii ≈ 0, we determine a corresponding
j such that Ajj , Aij , Aji �= 0; if there is more than one choice, we choose the one for
which |AijAji/Ajj | is maximized. To ensure that vertex i is ordered after vertex j,
we replace the sparsity pattern for the off-diagonal entries for row (column) i with
the union of those for rows (columns) i and j. If we denote the set of column indices
for row i in the jc array as adj(i), then

adj(j) ∪ {j} ⊆ adj(i) ∪ {i}.(5.3)

Although the sets adj(i) and adj(j) are modified at various stages, it is well known
that (5.3) is maintained throughout the minimum degree ordering process [26], so
that at every step of the ordering process deg(j) ≤ deg(i), where deg(i) is the degree
of vertex i. As long as deg(j) < deg(i), vertex j will be ordered before vertex i by
the minimum degree algorithm. On the other hand, if deg(i) = deg(j) at some stage
of the ordering process, it remains so thereafter, and (5.3) becomes

adj(j) ∪ {j} = adj(i) ∪ {i}.(5.4)

In words, i and j become so-called equivalent vertices and will be eliminated at the
same time by the minimum degree algorithm (see [26] for details). Since the minimum
degree algorithm sees these vertices as equivalent, they will be ordered in an arbitrary
fashion when eliminated from the graph. Thus, as a simple postprocessing step, we
must scan the ordering provided by the minimum degree algorithm and exchange the
order of rows i and j if i was ordered first. Any such exchanges result in a new
minimum degree ordering which is completely equivalent, in terms of fill-in, to the
the original.

For many types of finite element matrices (e.g., the indefinite matrices arising
from Helmholtz equations), this a priori scheme is useless because none of the diagonal
entries of A is close to zero. However, this type of problem is likely to produce only
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isolated small diagonal entries in the factorization process, if it produces any at all.
On the other hand, other classes of finite element matrices, notably those arising
in from mixed methods, Stokes equations, and other saddle-point-like formulations,
have many diagonal entries that are small or zero. In such cases, the a priori diagonal
pivoting strategy can make a substantial difference and greatly reduce the numbers
of failures in the incomplete triangular decomposition.

6. Computing the transfer matrices. There are three major tasks in com-
puting the prolongation and restriction matrices V̂ and Ŵ of (2.6). First, one must
determine the sparsity structure of these matrices; this involves choosing which un-
knowns are coarse and which are fine. This reduces to determining the permutation
matrix P̂ of (2.4). Second, one must determine how coarse and fine unknowns are
related, the so-called parent-child relations [49]. This involves computing the sparsity
patterns for the matrices Vcf and Wfc. Third, one must compute the numerical values
for these matrices, the so-called interpolation coefficients [50].

There are many existing algorithms for coarsening graphs. For matrices arising
from discretizations of partial differential equations, often the sparsity of the matrix A
is related in some way to the underlying grid, and the problem of coarsening the graph
of the matrix A can be formulated in terms of coarsening the grid. Some examples are
given in [14, 13, 17, 18, 46, 12, 49]. In this case, one has the geometry of the grid to
serve as an aid in developing and analyzing the coarsening procedure. There are also
more general graph coarsening algorithms [32, 33, 19], often used to partition problems
for parallel computation. Here our coarsening scheme is based upon another well-
known sparse matrix ordering technique, the reverse Cuthill–McKee algorithm. This
ordering tends to yield reordered matrices with minimal bandwidth and is widely used
with generalized band elimination algorithms [26]. We now assume that the graph
has been ordered in this fashion and that a jc data structure representing the graph
in this ordering is available. Our coarsening procedure is just a simple postprocessing
step of the basic ordering routine, in which the N vertices of graph are marked as
COARSE or FINE.

procedure coarsen(N, jc, type)

for i← 1 to N
type(i)← UNDEFINED

end for
for i← 1 to N

if type(i) = UNDEFINED, then
type(i)← COARSE
for j ← jc(i) to jc(i+ 1)− 1

type(jc(j))← FINE
end for

end if
end for

end coarsen

This postprocessing step, coupled with the the reverse Cuthill–McKee algorithm,
is quite similar to a greedy algorithm for computing maximal independent sets using
breadth-first search. Under this procedure, all coarse vertices are surrounded only by
fine vertices. This implies that the matrix Acc in (2.4) is a diagonal matrix. For the
sparsity patterns of matrices arising from discretizations of scalar partial differential
equations in two space dimensions, the number of coarse unknowns N̂ is typically on
the order of N/4 to N/5. Matrices with more nonzeros per row tend to have smaller
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values of N̂ . To define the parents of a coarse vertex, we take all the connections of
the vertex to other fine vertices; that is, the sparsity structure of Vcf in (2.5) is the
same as that of the block Acf .

In our present code, we pick Vcf and Wfc according to the formulae

Wfc = −RffD−1
ff Afc,

Vcf = −AcfD−1
ff R̃ff .(6.1)

Here Dff is a diagonal matrix with diagonal entries equal to those of Aff . In this
sense, the nonzero entries in Vcf and Wfc are chosen as multipliers in Gaussian elimi-

nation. The nonnegative diagonal matrices Rff and R̃ff are chosen such that nonzero
rows of Wfc and columns of Vcf , respectively, have unit norms in �1.

Finally, the coarsened matrix Â of (2.5) is “sparsified” using the drop tolerance
and a criterion like (5.1) to remove small off-diagonal elements. Empirically, applying
a drop tolerance to Â at the end of the coarsening procedure has proved more efficient,
and more effective, than trying to independently sparsify its constituent matrices. If
the number of off-diagonal elements in the upper triangle exceeds maxfil · N̂ , the
drop tolerance is modified in a fashion similar to the incomplete factorization. The
off-diagonal elements are profiled by a procedure similar to that for the incomplete fac-
torization, but in this case the resulting histogram is exact. Based on this histogram,
a new drop tolerance is computed, and (5.1) is applied to produce a coarsened matrix
satisfying the storage bound.

7. Block matrices. Our algorithm provides a simple but limited functionality
for handling block matrices. Suppose that the N ×N matrix A has the K ×K block
structure

A =

⎛
⎜⎝
A11 . . . A1K

...
. . .

...
AK1 . . . AKK

⎞
⎟⎠ ,(7.1)

where subscripts for Aij are block indices and the diagonal blocks Ajj are square

matrices. Suppose Ajj is of order Nj ; then
∑K
j=1Nj = N .

The matrix A is stored in the usual ja and a data structures as described in
section 3 with no reference to the block structure. A small additional integer array ib
of size K + 1 is used to define the block boundaries as follows:

ib(1) = 1,

ib(j + 1) = ib(j) +Nj , 1 ≤ j ≤ K.

In words, integers in the range ib(j) to ib(j+ 1)− 1, inclusive, comprise the index set
associated with block Ajj . Note that ib(K + 1) = N + 1.

This block information plays a role only in the coarsening algorithm. First, the
reverse Cuthill–McKee algorithm described in section 6 is applied to the block diagonal
matrix

Ā =

⎛
⎜⎝
A11

. . .

AKK

⎞
⎟⎠(7.2)
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rather than A. As a practical matter, this involves discarding graph edges connecting
vertices of different blocks in the construction of the graph array jc used as input.
Such edges are straightforward to determine from the information provided in the ib
array. The coarsening algorithm applied to the graph of Ā produces output equivalent
to the application of the procedure independently to each diagonal block of Ā. As
a consequence, the restriction and prolongation matrices automatically inherit the
block structure A. In particular,

V̂ =

⎛
⎜⎝
V̂11

. . .

V̂KK

⎞
⎟⎠ and Ŵ =

⎛
⎜⎝
Ŵ11

. . .

ŴKK

⎞
⎟⎠ ,(7.3)

where V̂jj and Ŵjj are are rectangular matrices (N̂j ×Nj and Nj × N̂j , respectively),
having the structure of (2.6) that would have resulted from the application of the
algorithm independently to Ajj . However, like the matrix A, V̂ and Ŵ are stored
in the standard jv and v data structures described in section 3 without reference to
their block structures.

The complete matrix A is used in the construction of the coarsened matrix Â of
(2.5). However, because of (7.1) and (7.3)

Â = V̂ AŴ =

⎛
⎜⎝
Â11 . . . Â1K

...
. . .

...

ÂK1 . . . ÂKK

⎞
⎟⎠ ,

so Â also automatically inherits the K ×K block structure of A. It is not necessary
for the procedure forming Â to have any knowledge of its block structure, as this
block structure can be computed a priori by the graph coarsening procedure. Like
A, Â is stored in standard ja and a data structures without reference to its block
structure. Since the blocks of A have arbitrary order, and are essentially coarsened
independently, it is likely that eventually some of the N̂j = 0. That is, certain blocks
may cease to exist on coarse levels. Since the block information is used only to discard
certain edges in the construction of the graph array jc, “0×0” diagonal blocks present
no difficulty.

8. Numerical experiments. In this section, we present a few numerical illus-
trations. In our first sequence of experiments, we consider several matrices loosely
based on the classical case of 5-point centered finite difference approximations to −Δu
on a uniform square mesh. Dirichlet boundary conditions are imposed. This leads to
the n× n block tridiagonal system

A =

⎛
⎜⎜⎜⎜⎜⎝

T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T

⎞
⎟⎟⎟⎟⎟⎠
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with T the n× n tridiagonal matrix

T =

⎛
⎜⎜⎜⎜⎜⎝

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

⎞
⎟⎟⎟⎟⎟⎠
.

This is a simple test problem easily solved by standard multigrid methods. In contrast
to this example we also consider the block tridiagonal system

Ā = 8I −A.

Both A and Ā have the same eigenvectors and the same eigenvalues, although the
association of eigenvectors and eigenvalues are reversed in the case of Ā. That is,
the so-called smooth eigenvectors are associated with large eigenvalues, while rough
eigenvectors are associated with smaller eigenvalues. Although Ā does not arise nat-
urally in the context of numerical discretizations of partial differential equations, it is
of interest because it defies much of the conventional wisdom for multigrid methods.

Third, we consider block 3× 3 systems of the form

S =

⎛
⎝ A 0 Cx

0 A Cy
Ctx Cty −D

⎞
⎠ ,

where A is the discrete Laplacian andD is a symmetric positive definite “stabilization”
matrix with a sparsity pattern similar to A. However, the nonzeros in D are of size
O(h2), compared to size O(1) nonzero elements in A. Cx and Cy also have sparsity
patterns similar to that of A, but these matrices are nonsymmetric and their nonzero
entries are of size O(h). Such matrices arise in stabilized discretizations of the Stokes
equations. One third of the eigenvalues of S are negative, so S is quite indefinite.
In addition to the ja and a arrays, for the matrix S we also provided an ib array as
described in section 7 to define its 3×3 block structure. We emphasize again that this
block information is used only in the computation of the graph input to the coarsening
procedure and is not involved in any aspect of the incomplete factorization smoothing
procedure. With many small diagonal elements, this class of matrices provides a good
test of the a priori pivoting strategy used in conjunction with the minimum degree
ordering.

In Table 8.1, Levels refers to the number of levels used in the calculation. In our
implementation the parameter maxlvl, which limits the number of levels allowed, was
set sufficiently large that it had no effect on the computation. The drop tolerance
was set to ε = 10−2 for all matrices. The fill-in control parameter maxfil was set
sufficiently large that it had no effect on the computation. The initial guess for all
problems was x0 = 0.

In Table 8.1, the parameter Digits refers to

Digits = − log
||rk||
||r0|| .(8.1)

In these experiments, we asked for six digits of accuracy. The column labeled Cy-
cles indicates the number of multigrid cycles (accelerated by CSCG) that were used to
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Table 8.1
Performance comparison.

n N Levels Digits Cycles Init. Solve

Discrete Laplacian A, ε = 10−2

10 100 6 6.3 2 4.4e-3 1.2e-3

20 400 7 8.2 3 2.1e-2 6.9e-3

40 1600 8 8.6 4 9.4e-2 3.7e-2

80 6400 8 6.6 4 4.1e-1 2.0e-1

160 25600 9 6.9 5 1.9e 0 1.2e 0

320 102400 11 7.1 6 9.6e 0 7.4e 0

Ā = 8I −A, ε = 10−2

10 100 6 8.8 2 4.2e-3 1.2e-3

20 400 7 6.3 2 1.9e-2 5.0e-3

40 1600 8 8.1 3 9.2e-2 3.0e-2

80 6400 8 7.2 3 4.0e-1 1.6e-1

160 25600 9 6.8 3 1.9e 0 7.9e-1

320 102400 11 6.6 3 9.5e 0 4.2e 0

Stokes matrix S, ε = 10−2

10 300 6 7.4 2 3.0e-2 5.3e-3

20 1200 7 8.2 3 2.3e-1 4.5e-2

40 4800 8 7.9 5 1.5e 0 5.1e-1

80 19200 9 6.5 5 8.1e 0 2.6e 0

160 76800 9 6.0 8 41.4e 0 20.6e 0

achieve the indicated number of digits. Finally, the last two columns, labeled Init. and
Solve, record the CPU time, measured in seconds, for the initialization and solution
phases of the algorithm, respectively. Initialization includes all the orderings, in-
complete factorizations, and computation of transfer matrices used in the multigraph
preconditioner. Solution includes the time to solve (2.1) to at least six digits given
the preconditioner. These experiments were run on an SGI Octane R10000 250mhz,
using double precision arithmetic and the f90 compiler.

In analyzing these results, it is clear that our procedure does reasonably well
on all three classes of matrices. Although it appears that the rate of convergence
is not independent of N , it seems apparent that the work is growing no faster than
logarithmically. CPU times for larger vales of N are affected by cache performance
as well as the slightly larger number of cycles.

For the highly indefinite Stokes matrices S, it is important to also note the ro-
bustness, that the procedure solved all of the problems. With more nonzeros per row
on average, the incomplete factorization was more expensive to compute than for the
other cases. This is reflected in relatively larger initialization and solve times.

In our next experiment, we illustrate the effect of the parameters maxlvl and ε.
For the matrix A with N = 160000, we solved the problem for ε = 10−k, 1 ≤ k ≤ 3,
and 1 ≤ maxlvl ≤ 7. We terminated the iteration when the solution had six digits,
as measured by (8.1). We also provide the total storage for the ja and ju arrays
for all matrices, measured in thousands of entries. Since the matrices are symmetric,
this is also the total (floating point) storage for all matrices A and approximate LDU
factorizations.

Here we see that our method behaves in a very predictable way. In particular,
decreasing the drop tolerance or increasing the number of levels improves the conver-
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Table 8.2
Dependence of convergence of ε and maxlvl, discrete Laplacian A, N = 160000.

ε maxlvl Digits Cycles Init. Solve
∑ |ja| ∑ |ju|

1 6.0 401 4.3 182.7 479 643

2 6.0 166 9.3 156.1 878 962

3 6.1 96 13.2 116.9 1077 1119

10−1 4 6.1 79 15.0 107.3 1176 1178

5 6.0 75 15.8 106.6 1225 1188

6 – – – – – –

7 – – – – – –

1 6.0 119 5.8 62.4 479 1236

2 6.1 56 12.1 64.9 878 2106

3 6.0 32 14.6 49.3 977 2323

10−2 4 6.4 18 15.1 29.2 1002 2376

5 6.5 9 15.3 15.5 1008 2388

6 7.2 7 15.2 12.6 1010 2390

7 6.1 6 15.3 10.9 1011 2391

1 6.0 41 8.0 24.9 479 1999

2 6.1 22 16.6 31.7 878 3649

3 6.6 13 19.4 25.4 977 4053

10−3 4 6.5 7 20.2 15.2 1002 4147

5 6.0 4 20.3 9.7 1008 4167

6 6.5 4 20.3 9.5 1010 4170

7 6.5 4 20.4 9.4 1011 4171

≈ 0 1 11.1 1 52.4 1.8 479 5626

gence behavior of the method. On the other hand, the timings do not always follow
the same trend. For example, for the case ε = 10−3 increasing the number of levels
from maxlvl = 1 to maxlvl = 2 decreases the number of cycles but increases the time.
This is because for maxlvl = 1, our method defaults to the standard conjugate gra-
dient iteration with the incomplete factorization preconditioner. When maxlvl > 1,
one presmoothing and one postsmoothing step are used for the largest matrix. With
the additional cost of the recursion, the overall cost of the preconditioner is more than
double the cost for the case maxlvl = 1.

We also note that, unlike the classical multigrid method, where the coarsest matrix
is solved exactly, in our code we have chosen to approximately solve the coarsest
system using just one smoothing iteration using the incomplete factorization. When
the maximum number of levels are used, as in Table 8.1, the smallest system is
typically 1 × 1 or 2 × 2, and this is an irrelevant remark. However, in the case
of Table 8.2, the fact that the smallest system is not solved exactly significantly
influences the overall rate of convergence. This is why, unlike methods where the
coarsest system is solved exactly, increasing the number of levels tends to improve
the rate of convergence. In the case ε = 10−1, the coarsest matrix had an exact LDU
factorization for the case maxlvl = 5 (because the matrix itself was nearly diagonal),
and setting maxlvl > 5 did not increase the number of levels. The cases ε = 10−2

and ε = 10−3 used a maximum of 10 and 9 levels, respectively, but the results did not
change significantly from the case maxlvl = 7.

We also include in Table 8.2 the case ε = 0, maxlvl = 1, sparse Gaussian elim-
ination. (In fact, our code uses μ||A|| as the drop tolerance when the user specifies
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ε = 0 to avoid dividing by zero.) Here we see that Gaussian elimination is reasonably
competitive on this problem. However, we generally expect the initialization cost for
ε = 0 to grow like O(N3/2). For maxlvl = 1 and ε > 0, we expect the solution times to
grow like O(Np), p > 1. For the best multilevel choices, we expect both initialization
and solution times to behave like O(N)−O(N logN).

In our final series of tests, we study the convergence of the method for a suite of
test problems generated from the finite element code PLTMG [8]. These example
problems were presented in our earlier work [11], where a more complete description
of the problems, as well as numerical results for our hierarchical basis multigraph
method and the classical AMG algorithm of Ruge and Stüben [46], can be found.
As a group, the problems feature highly nonuniform, adaptively generated meshes,
relatively complicated geometry, and a variety of differential operators. For each test
case, both the sparse matrix and the right-hand side were saved in a file to serve as
input for the iterative solvers. A short description of each test problem is given below.

Problem Superior. This problem is a simple Poisson equation

−Δu = 1

with homogeneous Dirichlet boundary conditions on a domain in the shape of Lake
Superior. This is the classical problem on a fairly complicated domain. The solution
is generally very smooth but has some boundary singularities.

Problem Hole. This problem features discontinuous, anisotropic coefficients. The
overall domain is the region between two concentric circles, but this domain is divided
into three subregions. On the inner region, the problem is

−δΔu = 0

with δ = 10−2. In the middle region, the equation is

−Δu = 1,

and in the outer region the equation is

−uxx − δuyy = 1.

Homogeneous Dirichlet boundary conditions are imposed on the inner (hole) bound-
ary, homogeneous Neumann conditions on the outer boundary, and the natural con-
tinuity conditions on the internal interfaces. While the solution is also relatively
smooth, singularities exist at the internal interfaces.

Problem Texas. This is an indefinite Helmholtz equation

−Δu− 2u = 1

posed in a region shaped like the state of Texas. Homogeneous Dirichlet boundary
conditions are imposed. The length scales of this domain are roughly 16× 16, so this
problem is fairly indefinite.

Problem UCSD. This is a simple constant coefficient convection-diffusion equation

−∇ · (∇u+ βu) = 1,

β = (0, 105)T posed on a domain in the shape of the UCSD logo. Homogeneous
Dirichlet boundary conditions are imposed. Boundary layers are formed at the bottom
of the region and the top of various obstacles.
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Problems Jcn 0 and Jcn 180. The next two problems are solutions of the current
continuity equation taken from semiconductor device modeling. This equation is a
convection-diffusion equation of the form

−∇ · (∇u+ βu) = 0,

β = 0 in most of the rectangular domain. However, in a curved band in the interior of
the domain, |β| ≈ 104 and is directed radially. Dirichlet boundary conditions u = 10−5

and u = 1010 are imposed along the bottom boundary and along a short segment on
the upper left boundary, respectively. Homogeneous Neumann boundary conditions
are specified elsewhere. The solutions vary exponentially across the domain which is
typical of semiconductor problems.

In the first problem, Jcn 0, the convective term is chosen so the device is forward
biased. In this case, a sharp internal layer develops along the top interface boundary.
In the second problem, Jcn 180, the sign of the convective term is reversed, resulting
in two sharp internal layers along both interface boundaries.

Table 8.3
Performance comparison.

N Levels Digits Cycles Init. Solve

Superior, ε = 10−3

5k 7 7.2 3 2.4e-1 1.0e-1

20k 9 7.3 5 1.4e 0 9.4e-1

80k 9 6.1 7 10.5e 0 6.8e 0

Hole, ε = 10−4

5k 7 6.3 3 4.3e-1 1.5e-1

20k 7 8.2 4 2.4e 0 1.3e 0

80k 8 6.1 5 16.1e 0 7.6e 0

Texas, ε = 10−5

5k 7 12.3 2 4.2e-1 1.1e-1

20k 8 8.2 2 3.0e 0 6.9e-1

80k 9 9.8 5 27.4e 0 10.0e 0

UCSD, ε = 10−3

5k 6 11.1 2 2.0e-1 1.4e-1

20k 6 9.7 2 1.2e 0 7.8e-1

80k 7 8.8 2 10.5e 0 4.0e 0

Jcn 0, ε = 10−4

5k 7 6.4 1 4.5e-1 1.7e-1

20k 7 6.5 1 2.3e 0 8.5e-1

80k 8 10.5 2 15.1e 0 6.2e 0

Jcn 180, ε = 10−5

5k 7 12.3 2 4.9e-1 2.8e-1

20k 7 7.6 2 2.6e 0 1.4e 0

80k 8 7.1 3 18.0e 0 9.3e 0

We summarize the results in Table 8.3. As before, perhaps the most important
point is that the method solved all of the problems. While convergence rates are not
independent of h, once again the growth appears to be at worst logarithmic.

Below we make some additional remarks.



1590 RANDOLPH E. BANK AND R. KENT SMITH

• For all problems, decreasing the drop tolerance will tend to increase the ef-
fectiveness of the preconditioner, although it generally will also make the
preconditioner more costly to apply. Thus one might optimize the selection
of the drop tolerance to minimize the decreasing number of cycles against the
increasing cost per cycle. In these experiments, we did not try such system-
atic optimization, but we did adjust the drop tolerance in a crude way such
that more difficult problems performed in a fashion similar to the easy ones.
• Problem Texas is by far the most difficult in this test suite. While we set
maxfil = 35, the problem with order 80k was the only one which came close
to achieving this storage limit. Most were well below this limit, and many
averaged less than 10 nonzeros per row in L and U factors.
• For the nonsymmetric problems the CSBCG method is used for acceleration.

Since the CSBCG requires the solution of a conjugate system with At, two
matrix multiplies and two preconditioning steps are required for each itera-
tion. As noted in section 3, with our data structures, applying a transposed
matrix and preconditioner costs the same as applying the original matrix or
preconditioner. Since these are the dominant costs in the CSBCG methods,
the cost per cycle is approximately double that for an equivalent symmetric
system.
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[35] C.-J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM J.
Sci. Comput., 21 (1999), pp. 24–45.

[36] M.-M. Magolu, Ordering strategies for modified block incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 378–399.

[37] M.-M. Magolu, Taking advantage of the potentialities of dynamically modified block incom-
plete factorizations, SIAM J. Sci. Comput., 19 (1998), pp. 1083–1108.

[38] J. Mandel, M. Brezina, and P. Vanek, Energy optimization of algebraic multigrid bases,
Computing, 62 (1999), pp. 205–228.

[39] T. Mannseth, An analysis of the robustness of some incomplete factorizations, SIAM J. Sci.
Comput., 16 (1995), pp. 1428–1450.

[40] A. Messaoudi, On the stability of the incomplete LU-factorizations and characterizations of
H-matrices, Numer. Math., 69 (1995), pp. 321–331.

[41] Y. Notay, Using approximate inverses in algebraic multilevel methods, Numer. Math., 80
(1998), pp. 397–417.

[42] Y. Notay, A multilevel block incomplete factorization preconditioning, Appl. Numer. Math.,
31 (1999), pp. 209–225.

[43] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[44] A. Reusken, A multigrid method based on incomplete Gaussian elimination, J. Numer. Linear



1592 RANDOLPH E. BANK AND R. KENT SMITH

Algebra Appl., 3 (1996), pp. 369–390.
[45] D. J. Rose, A graph theoretic study of the numeric solution of sparse positive definite systems,

in Graph Theory and Computing, Academic Press, New York, 1972, pp. 183–217.
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SIAM J. SCI. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 23, No. 5, pp. 1593–1614

Abstract. We study a nonlinear degenerate convection-diffusion model problem having an
application in groundwater aquifer and petroleum reservoir simulation. The true solution typically
possesses low regularity, and therefore special numerical techniques for its approximation are needed.
We design a robust, efficient, and reliable linear relaxation approximation scheme. We prove the
convergence of iterations at each time step in the H1(Ω)-norm. Finally, the convergence of the
approximate solution in corresponding functional spaces to its exact counterpart for the parabolic
problem is shown.

Key words. flow in porous media, nonlinear degenerate parabolic equation, time discretization,
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1. Introduction. Consider an open bounded set Ω ⊂ R
N , N ≥ 1, with a Lips-

chitz continuous boundary Γ.
In this paper we study the following nonlinear initial boundary value problem

(IBVP):

∂tθ(u)−∇ · (K(θ(u))[∇u− g]) = f in QT = I × Ω,
u = uD in I × Γ,

u(0) = u0 in Ω,
(1.1)

where the time interval I is given as I = (0, T ) and T is a positive constant.
The nonlinear function θ is supposed to be continuous and monotonically nonde-

creasing; i.e., the following relation is valid:

0 ≤ θ′ ≤ L a.e. in R.(1.2)

We do not adopt any growth conditions on θ, which is a standard matter in many
other papers. The typical shape of θ function will be shown later.

The function K and the vector g obey

|K(x)−K(y)| ≤ C|x− y| ∀x, y ∈ R,
0 < Kmin ≤ K ≤ Kmax,

|g| ≤ C,
(1.3)

where C denotes a generic positive constant. In many practical situations the function
K can approach 0, which is not allowed in our paper. This is the only restrictive
assumption we need. Let us note that the generalization from a scalar K to a matrix
form K is possible without any additional difficulties.
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The initial datum satisfies

u0 ∈ L2(Ω).(1.4)

The source term f and the function uD are tacitly assumed to be smooth enough for
our purposes.

We denote the usual functional spaces L2(Ω), H1(Ω), H1
0 (Ω), H−1(Ω) (the dual

space to H1
0 (Ω)), L2(I, L2(Ω)), L2(I,H

1
0 (Ω)), L∞(I, L2(Ω)), and L2(I,H

−1(Ω)); see
Kufner, John, and Fuč́ık [20].

The notation (w, z) stands for the standard L2-inner product (or sometimes the
duality pairing) of any real or vector-valued functions w, z.

Equation (1.1(a)) changes its type from parabolic to elliptic, depending on the
values of θ(u). Thus we do not expect the solution u to be smooth, and therefore we
define a weak solution as follows.

Definition 1.1. A function u is a weak solution to the IBVP (1.1) if
1. u− uD ∈ L2(I,H

1
0 (Ω)),

2. θ(u) ∈ C(I,H−1(Ω)) ∩ L∞(I, L2(Ω)),
3. ∂tθ(u) ∈ L2(I,H

−1(Ω)),
and the following integral identity is satisfied:

(∂tθ(u), ϕ) + (K(θ(u))[∇u− g],∇ϕ) = (f, ϕ)(1.5)

for all ϕ ∈ H1
0 (Ω) and a.e. in (0, T ).

1.1. The physical context. The starting point in mathematical modeling of
processes in porous media is Darcy’s law , which was originally introduced for satu-
rated soils and has been extended to unsaturated soils by Buckingham:

q = −k
μ

(∇p− ρg),(1.6)

where ρ is the density of the fluid, g is the gravity acceleration vector directed down-
ward, p is the pressure, k is the permeability of the medium, and μ is the dynamic
viscosity. The factor

K =
k

μ

is called hydraulic conductivity.
The relation between the specific discharge vector q and the hydraulic gradient∇p

expressed by Darcy’s law is linear, indicating laminar flow conditions. This remains
valid for small Reynold’s numbers, namely between 1 and 10.

If the fluid fills the relative volume θ, one gets the continuity equation

∂t(ρθ) +∇ · (ρq) = ρf,(1.7)

where f stands for possible sources/sinks. The continuity equation (1.7) together
with Darcy’s law (1.6) implies for incompressible fluids (ρ = const)

∂tθ −∇ · (K[∇p− ρg]) = f,(1.8)

which is known as Richards’ equation.
Several studies have shown the nonlinear dependence of θ on the pressure p and

also the nonlinear dependence of K on θ. A number of empirical and semiempirical
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functions have been proposed in the past to represent the water retention curves (cf.,
e.g., Brooks and Corey [8], Brutsaert [9], Mualem [24], Vauclin, Khanji, and Vachaud,
[39], van Genuchten [38], and Bumb, Murphy, and Everett [10]).

Van Genuchten [38] has introduced an attractive class of S functions of the form
S(p) = (1 + |αp|n)−m and he has presented the model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(p) =

⎧⎨
⎩
θr +

θs − θr
(1 + |αp|n)m for p ≤ 0,

θs for p ≥ 0,

K(S) = KsS
1
2 [1− (1− S 1

m )m]2,

S =
θ − θr
θs − θr ,

(1.9)

with coefficients α, n, and m = 1− 1
n . The meaning of other symbols is explained in

Table 1.1. The typical behavior of θ(p),K(θ) is shown in Figure 1.1.

Table 1.1
Notations for van Genuchten’s model.

p [m] pressure head
θ [-] water content
θs [-] saturated value of the soil-water content
θr [-] residual value of the soil-water content
K [m

s
] hydraulic conductivity

Ks [m
s

] hydraulic conductivity of the saturated zone

.

pressure

w
at
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nt
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Fig. 1.1. Soil-water retention curve and hydraulic conductivity versus water content using van
Genuchten’s model.

Remark 1.2. Van Genuchten’s model describes any geological layer by a set of
parameters θr, θs, Ks, α, and n. The functional dependences are given by (1.9).
Analyzing properties of the function θ(p), one can validate (1.2), where the Lipschitz
constant depends on van Genuchten’s parameters.

The function K can, in fact, approach 0. This happens in dry soils when θ = θr
only. In many practical applications the condition K ≥ Kmin is acceptable.

1.2. The state of the art. The van Genuchten model is widely used in the
groundwater modeling. Combining the equations of van Genuchten and Richards,
we arrive at a doubly nonlinear degenerate parabolic equation. Many mathematical
papers have been devoted to the qualitative and quantitative analysis of such problems
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(cf., e.g., van Duijn and Peletier [37], Alt and Luckhaus [1], and Otto [28]). The
authors have proved existence and uniqueness theorems for elliptic-parabolic equations
in a more general form, which is suitable for saturated and unsaturated single-phase
flow through porous medium.

The idea of studying abstract partial differential equations by means of the theory
of nonlinear semigroups of contractions in Banach spaces was proposed by Brezis [6].
This approach not only has theoretical but also numerical aspects. It suggests some
algorithms for time discretization to approximate the exact solution. Some of them
are based on the so-called Crandall–Liggett formula (cf. Crandall and Liggett [12])
and others on the nonlinear Chernoff formula (cf. Magenes, Nochetto, and Verdi [22],
Nochetto [27], [26], and Verdi [40]).

Optimal rates of convergence for degenerate parabolic problems for nonlinear
schemes were established by Rulla [32] for semidiscretization in space and by Rulla
and Walkington [33] for the full discretization in two dimensions. Some convergence
results can also be found in Eymard, Gutnic, and Hilhorst [13] for the finite volume
method and in Arbogast, Wheeler, and Zhang [3] or Woodward and Dawson [42] for
the mixed finite element method.

Some strongly convergent schemes for the Richards’ equation were formulated
in [23] upon modification of the Newton–Raphson method, including the method of
lines formulations based upon ordinary differential equations. Discretizing the partial
differential equation in space by, e.g., finite differences or finite elements, one arrives
at a system of differential algebraic equations. For solving this problem we refer the
reader to [36].

Many authors apply the backward Euler method for the time discretization. Then
a nonlinear elliptic problem has to be solved at each successive time point of a suitable
time partitioning of the time interval. Here two ways are possible: to solve a nonlinear
elliptic problem1 or to apply a linearization first. To enhance the robustness of the
standard Newton method for solving a system of nonlinear algebraic equations, special
techniques (line-search backtracking procedure, preconditioning, etc.) can be used;
see [17].

Jäger and Kačur [15], [16], and Kačur [19] have developed effective relaxation
schemes for linearization of nonlinear elliptic problems at each time step. The iteration
scheme (according to the relaxation parameter κ) has to stop when a prescribed
residual condition (iteration error) is satisfied. The convergence for κ → ∞ in one
dimension of such a relaxation scheme has been shown in Kačur [19]. The proof in
more dimensions has not been presented because of lack of regularity of the solution.
Moreover, the regularization of the nonlinear function is made using the time step
τ . Therefore, one can expect that the convergence of iterations at each time point
should depend on τ . In fact, Kačur [19] has shown the estimate

|u− uκ| ≤ Cτ r |u− uκ−1|, r > 0,

which represents a contraction only in the case when the time step τ is sufficiently small.

1This means that after the full discretization a nonlinear system of algebraic equations has to be
solved. This can be done using standard iterative methods, but the discussion of possible iteration
error is neglected. The convergence of these methods strongly depends on the choice of the starting
iteration, which should be relatively close to the solution. Usually, the foregoing time step solution is
chosen. This means that the time step must be chosen sufficiently small in order to find a solution of
the nonlinear algebraic system. Recall that the standard method of applying a fixed point iteration
to the time step solution will have a wider radius of convergence than applying Newton’s method;
however, Newton’s method has a faster rate of convergence once within its convergence radius.
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Another way of linearization relies on Newton’s method. It is based either on a
regularization of a nonlinear function (cf. Amiez and Gremaud [2], Slodička [34], [35])
or on a shifting of the data (cf. Pop [30], Pop and Yong [31]) instead of a modification
of the nonlinear function. Whereas the additional iterations on each time step are
omitted, the regularization or the shifting of the data must depend on the time step;
otherwise, the convergence cannot be reached.

An attractive group of linearization schemes represents the method of upper and
lower solutions (cf. Pao [29] and Wang and Pao [41]). The linearization of a nonlinear
problem relies on the ordering properties of solutions. One defines recursive sequences
starting from a sub- or a supersolution, respectively. The disadvantage is that one
cannot use the solution from the previous time step as a starting iteration.

The case of a non-Lipschitz continuous function θ has been analyzed, e.g., in
Barrett and Knabner [5] or Kačur [19].

1.3. Results. The aim of this paper is to present an efficient and robust linear
approximation scheme for (1.1), to prove its convergence, and to address the error
estimates. The time discretization is based on the backward Euler method. The
concept behind our linear approximation is a clever relaxation scheme for solving a
nonlinear elliptic BVP at each time point of the time partitioning.

Let us denote the time step τ = T
n for any n ∈ N. The approximate solution

ui ≈ u(ti) at a given time point ti = iτ is obtained in an iteration process with respect
to the relaxation parameter κ. The linearized scheme for a fixed i ∈ {1, . . . , n} and
running κ = 1, 2, . . . reads as

ui,0 = ui−1,
L

τ
(ui,κ, ϕ) + (K(θ(ui−1))∇ui,κ,∇ϕ) = (fi, ϕ) + (K(θ(ui−1))g,∇ϕ) +

L

τ
(ui,κ−1, ϕ)

− 1

τ
(θ(ui,κ−1), ϕ) +

1

τ
(θ(ui−1), ϕ)

(1.10)
for all ϕ ∈ H1

0 (Ω), where fi = f(ti). We recall that L is the Lipschitz constant of
the function θ; see (1.2). The iteration process stops when the following condition is
satisfied:

‖ui,κ − ui,κ−1‖ ≤ Cdτd,(1.11)

where Cd > 0, d > 1 are fixed constants and ‖ · ‖ stands for the usual L2(Ω)-norm.
After stopping the iterations at κ = κi,last, we denote ui := ui,κi,last and switch to the
next time step.

We prove the convergence of relaxation iterations for Ω ⊂ R
N , N ≥ 1. (Compare

with Kačur [19], where the convergence in one dimension and for small τ has been
shown.) Our iteration scheme with respect to the parameter κ can start from arbitrary
data ui,0 = ui−1 = ui−1,κi−1,last

, which makes the proposed numerical method reliable
and robust. For i = 1, the iteration scheme arises from the initial data u0. This is
one of the highlights of the paper because up until now there does not exist any other
linearization scheme with this property. Numerical examples confirming the efficiency
of our approximation method are presented in section 5.

Throughout the paper we assume that a generic positive constant C is indepen-
dent of the iteration parameter κ and the time step τ .

2. A priori estimates. Let us note that the problem (1.10), for given i and κ,
admits a unique solution ui,κ ∈ H1

0 (Ω). This immediately follows from the theory
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of linear elliptic equations (cf. Gilbarg and Trudinger [14]) taking into account the
assumptions (1.2)–(1.4).

The main task of this section is to derive a priori estimates for ui and θ(ui) which
are uniform with respect to i = 1, . . . , n and κ. In Lemma 3.1 we will prove the
relation (1.11). Thus we can assume throughout the whole section that the iteration
process at each time step ti stops after κ = κi,last iterations.

We introduce the notation

δzi =
zi − zi−1

τ
.

We rewrite the iteration scheme (1.10) as follows (κ = κi,last, ui = ui,κi,last):

(δθ(ui), ϕ) + (K(θ(ui−1))∇ui,∇ϕ) = (fi, ϕ) + (K(θ(ui−1))g,∇ϕ)

+
L

τ
(ui,κ−1 − ui,κ, ϕ)

+
1

τ
(θ(ui,κ)− θ(ui,κ−1), ϕ)

(2.1)

for all ϕ ∈ H1
0 (Ω). This form is more convenient for our purposes.

Lemma 2.1. Let (1.2), (1.3), and (1.4) be satisfied. Moreover, we assume (1.11).
Then there exists a positive constant C such that

‖θ(uj)‖2 +

j∑
i=1

‖θ(ui)− θ(ui−1)‖2 +

j∑
i=1

‖∇θ(ui)‖2τ ≤ C

holds for all j = 1, . . . , n.
Proof. We put ϕ = θ(ui)τ in (2.1), sum it up for i = 1, . . . , j, and get

j∑
i=1

(θ(ui)− θ(ui−1), θ(ui)) +

j∑
i=1

(K(θ(ui−1))∇ui,∇θ(ui))τ

=

j∑
i=1

(fi, θ(ui))τ +

j∑
i=1

(K(θ(ui−1))g,∇θ(ui))τ

+
L

τ

j∑
i=1

(ui,κ−1 − ui,κ, θ(ui))τ

+
1

τ

j∑
i=1

(θ(ui,κ)− θ(ui,κ−1), θ(ui))τ.

(2.2)

Using (1.3) we deduce

(K(θ(ui−1))∇ui,∇θ(ui)) =

(
K(θ(ui−1))

θ′(ui)
∇θ(ui),∇θ(ui)

)
≥ Kmin

L
‖∇θ(ui)‖2.

The following identity holds:

2

j∑
i=1

(ai − ai−1)ai = a2
j − a2

0 +

j∑
i=1

(ai − ai−1)
2.

The relations (1.2) and (1.4) and the triangle inequality imply

‖θ(u0)‖ ≤ ‖θ(u0)− θ(0)‖+ ‖θ(0)‖ ≤ L‖u0‖+ C ≤ C.
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Thus we can estimate the left-hand side of (2.2) from below by

C0[‖θ(uj)‖2 +

j∑
i=1

‖θ(ui)− θ(ui−1)‖2 +

j∑
i=1

‖∇θ(ui)‖2τ ]− C.

Using the Cauchy–Schwarz and Young’s (|ab| ≤ εa2 + Cεb
2, where ε > 0 and Cε =

C( 1
ε )) inequalities, we deduce

|(fi, θ(ui)) + (K(θ(ui−1))g,∇θ(ui))| ≤ C‖θ(ui)‖+ C‖∇θ(ui)‖
≤ Cε + C‖θ(ui)‖2 + ε‖∇θ(ui)‖2.

Now, applying (1.11) and the Lipschitz continuity of θ, we estimate in a similar way

∣∣∣∣Lτ (ui,κ−1 − ui,κ, θ(ui)) +
1

τ
(θ(ui,κ)− θ(ui,κ−1), θ(ui))

∣∣∣∣ ≤ C

τ
‖ui,κ−1 − ui,κ‖‖θ(ui)‖

≤ Cτd−1‖θ(ui)‖
≤ CT d−1‖θ(ui)‖
≤ C + C‖θ(ui)‖2.

Therefore, the upper bound of the right-hand side in (2.2) reads as

ε

j∑
i=1

‖∇θ(ui)‖2τ + Cε + C

j∑
i=1

‖θ(ui)‖2τ.

Fixing sufficiently small positive ε, we arrive at

‖θ(uj)‖2 +

j∑
i=1

‖θ(ui)− θ(ui−1)‖2 +

j∑
i=1

‖∇θ(ui)‖2τ ≤ C + C

j∑
i=1

‖θ(ui)‖2τ.

The rest of the proof follows from Gronwall’s lemma.
Let us introduce the following notation Φθ(z) :=

∫ z
0
θ(s)ds for the Kirchhoff

transformation. The function θ is monotonically increasing; therefore,

θ(z1)(z2 − z1) ≤ Φθ(z2)− Φθ(z1) ≤ θ(z2)(z2 − z1)(2.3)

holds for all z1, z2 ∈ R. Further, we can write for any z ∈ R

Φ̃θ(z) := zθ(z)− Φθ(z) ≥ 0.(2.4)

According to the Lipschitz continuity of the function θ we estimate

Φ̃θ(z) ≤ C(1 + z2) ∀z ∈ R.(2.5)

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then there exists a
positive constant C such that

j∑
i=1

‖∇ui‖2τ ≤ C

holds for all j = 1, . . . , n.
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Proof. We choose ϕ = uiτ in (2.1), sum it up for i = 1, . . . , j and get

j∑
i=1

(θ(ui)− θ(ui−1), ui) +

j∑
i=1

(K(θ(ui−1))∇ui,∇ui)τ

=

j∑
i=1

(fi, ui)τ +

j∑
i=1

(K(θ(ui−1))g,∇ui)τ

+
L

τ

j∑
i=1

(ui,κ−1 − ui,κ, ui)τ

+
1

τ

j∑
i=1

(θ(ui,κ)− θ(ui,κ−1), ui)τ.

Using (2.3)–(2.5) we deduce for the first term

j∑
i=1

(θ(ui)− θ(ui−1), ui) = (θ(uj), uj) − (θ(u0), u0) −
j∑
i=1

(ui − ui−1, θ(ui−1))

≥ (θ(uj), uj) − (θ(u0), u0) −
j∑
i=1

∫
Ω

[Φθ(ui)− Φθ(ui−1)]

= (θ(uj), uj) − (θ(u0), u0) −
∫

Ω

Φθ(uj) +

∫
Ω

Φθ(u0)

=

∫
Ω

[Φ̃θ(uj)− Φ̃θ(u0)]

≥ −C(1 + ‖u0‖2)
≥ −C.

The second term satisfies

j∑
i=1

(K(θ(ui−1))∇ui,∇ui)τ ≥ Kmin

j∑
i=1

‖∇ui‖2τ.

The right-hand side can be estimated from the top using the Cauchy–Schwarz in-
equality and (1.11), followed by an application of Young’s and Friedrichs’ inequalities
as well as Lemma 2.1 by

ε

j∑
i=1

‖∇ui‖2τ + Cε,

where ε ∈ R+. Summarizing all estimates and choosing sufficiently small ε, we con-
clude the proof.

Let us denote the norm in H1(Ω) by ‖ · ‖1. We recall that the norm in the space
H−1(Ω) is defined by

‖ · ‖−1 := ‖ · ‖H−1(Ω) = sup
ϕ∈H1

0(Ω)

‖ϕ‖1≤1

|(·, ϕ)|.

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. There is a positive
constant C such that for any j = 1, . . . , n,

j∑
i=1

‖δθ(ui)‖2−1τ ≤ C.
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Proof. We start from the relation (2.1). We leave the first term on the left and
the rest we shift to the right; thus we have

(δθ(ui), ϕ) = (fi, ϕ) + (K(θ(ui−1))g,∇ϕ) − (K(θ(ui−1))∇ui,∇ϕ)

+
L

τ
(ui,κ−1 − ui,κ, ϕ) +

1

τ
(θ(ui,κ)− θ(ui,κ−1), ϕ).

For the first three terms on the right, we deduce using the Cauchy–Schwarz inequality
and (1.3)

|(fi, ϕ) + (K(θ(ui−1))g,∇ϕ) − (K(θ(ui−1))∇ui,∇ϕ)| ≤ C(1 + ‖∇ui‖)‖∇ϕ‖+C‖ϕ‖.
The last two terms on the right can be estimated using the Lipschitz continuity of the
function θ, the Cauchy–Schwarz inequality, and (1.11) as follows:

∣∣∣∣Lτ (ui,κ−1 − ui,κ, ϕ) +
1

τ
(θ(ui,κ)− θ(ui,κ−1), ϕ)

∣∣∣∣ ≤ C

τ
‖ui,κ−1 − ui,κ‖‖ϕ‖

≤ Cτd−1‖ϕ‖
≤ CT d−1‖ϕ‖
≤ C‖ϕ‖.

Hence we can write

|(δθ(ui), ϕ)| ≤ C(1 + ‖∇ui‖)‖∇ϕ‖+ C‖ϕ‖,
from which we deduce

‖δθ(ui)‖−1 ≤ C(1 + ‖∇ui‖).
Taking the second power, multiplying the inequality by τ , summing it up for i =
1, . . . , j, and applying Lemma 2.2, we get the desired result.

3. Convergence of the relaxation scheme. In this section we prove the con-
vergence of ui,κ for κ→∞. Recall that ui,κ is the unique solution to the linear elliptic
problem (1.10).

To enhance the readability of the proof, we introduce the notation

vκ = ui,κ, F = fi +
θ(ui−1)

τ
, K = K(θ(ui−1)).

Thus we consider the following problem:

L(vκ, ϕ) + τ(K∇vκ,∇ϕ) = τ(F,ϕ) + τ(Kg,∇ϕ) + L(vκ−1, ϕ)
− (θ(vκ−1), ϕ)

(3.1)

for all ϕ ∈ H1
0 (Ω). We show that vκ converges for κ→∞ to a solution v ∈ H1

0 (Ω) of
the following nonlinear elliptic problem:

(θ(v), ϕ) + τ(K∇v,∇ϕ) = τ(F,ϕ) + τ(Kg,∇ϕ) ∀ϕ ∈ H1
0 (Ω).(3.2)

The left-hand side of (3.2) is a maximal monotone and coercive operator from
H1

0 (Ω) to H−1(Ω). The right-hand side of (3.2) is a bounded linear functional on
H1

0 (Ω). Hence, accounting for Brézis [7, Corollaire 2.4, p. 31], the problem (3.2)
admits exactly one solution v ∈ H1

0 (Ω).
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Now we define the following function:

h(s) := θ(s)− Ls, s ∈ R.(3.3)

Subtracting (3.2) from (3.1), we get the variational formulation for the error vκ − v

L(vκ − v, ϕ) + τ(K∇[vκ − v],∇ϕ) = (h(v)− h(vκ−1), ϕ) ∀ϕ ∈ H1
0 (Ω).(3.4)

Lemma 3.1. Let (1.2), (1.3), and (1.4) be fulfilled. Then there exists a positive
constant λ = λ(Ω,Kmin) such that

‖vκ − v‖2 ≤
(

1− τλ

L+ τλ

)κ
‖v0 − v‖2

‖∇[vκ − v]‖2 ≤ L+ τλ

τKmin

(
1− τλ

L+ τλ

)κ
‖v0 − v‖2

holds for all κ = 1, 2, . . . .
Proof. Choose ϕ = vκ − v ∈ H1

0 (Ω) in (3.4) and get

L(vκ − v, vκ − v) + τ(K∇[vκ − v],∇[vκ − v]) = (h(v)− h(vκ−1), vκ − v).(3.5)

The crucial point is to estimate the right-hand side. To do this, we use (1.2) and
deduce

−L ≤ h′ = θ′ − L ≤ 0 a.e. in R.

Hence the derivative of the function h is bounded by the constant L, i.e., |h′| ≤ L
a.e. in R.

Applying the Cauchy–Schwarz and Young’s inequalities, we deduce

|(h(v)− h(vκ−1), vκ − v)| ≤ ‖h(v)− h(vκ−1)‖‖vκ − v‖
≤ L‖v − vκ−1‖‖vκ − v‖
≤ L

2
‖v − vκ−1‖2 +

L

2
‖vκ − v‖2.

The left-hand side of (3.5) can be estimated from below by

L‖vκ − v‖2 + τKmin‖∇[vκ − v]‖2.

Friedrichs’ inequality (cf., e.g., Kř́ıžek and Neittaanmäki [21, p. 26]) implies the exis-
tence of a positive real number λ = λ(Ω,Kmin) such that

λ‖w‖2 ≤ Kmin‖∇w‖2 ∀w ∈ H1
0 (Ω).(3.6)

According to this fact,

(
L+

τλ

2

)
‖vκ − v‖2 +

τKmin

2
‖∇[vκ − v]‖2

is also a lower bound to the left-hand side of (3.5).
Summarizing the foregoing results, we arrive at

(L+ τλ)‖vκ − v‖2 + τKmin‖∇[vκ − v]‖2 ≤ L‖vκ−1 − v‖2,
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which after a simple calculation gives

‖vκ − v‖2 +
τKmin

L+ τλ
‖∇[vκ − v]‖2 ≤

(
1− τλ

L+ τλ

)
‖vκ−1 − v‖2.(3.7)

We omit the second term on the left for a moment and obtain the recursion formula

‖vκ − v‖2 ≤
(

1− τλ

L+ τλ

)
‖vκ−1 − v‖2.

After κ iterations, this implies

‖vκ − v‖2 ≤
(

1− τλ

L+ τλ

)κ
‖v0 − v‖2.

The rest of the proof comes from the last inequality and (3.7).
Let us discuss the results of Lemma 3.1 with respect to the scheme (1.10). We

point out first that the choice of the time step τ is free. Further, the relaxation
iterations can start from arbitrary starting iterations lying in the space L2(Ω), and
nevertheless they converge in the H1(Ω)-norm to a function v ∈ H1

0 (Ω), which is given
by (3.2). Please note that v ≈ u(ti) at the time step i. These properties make the
relaxation process reliable and robust.

Lemma 3.1 says that vκ → v as κ→∞ in the space L2(Ω). Thus, for any τ > 0
and any d > 1, there exists κ0 ∈ N such that ‖vκ − v‖ ≤ τd holds for any κ ≥ κ0.
Setting κlast = κ0 + 1 and using the triangle inequality, we deduce

‖vκlast
− vκlast−1‖ ≤ ‖vκlast

− v‖+ ‖v − vκlast−1‖ ≤ 2τd.

Therefore, Lemma 3.1 validates the stopping criterion (1.11). Let us note that the
value of κlast can change with the time point ti. Nevertheless, the constant Cd = 2
remains fixed.

4. Convergence of the scheme (1.10). Up until now, we have successively
determined ui for i = 1, . . . , n as the solution of the linear relaxation scheme (1.10).
Each ui = ui,κi,last has been obtained after a finite number of relaxation iterations so
that the stopping criterion (1.11) has been achieved. Now we define a function wn(t)
as a piecewise linear function in time which is defined in terms of ui (i = 1, . . . , n) as
follows:

wn(0) = θ(u0),
wn(t) = θ(ui−1) + (t− ti−1)δθ(ui) for t ∈ (ti−1, ti]

and the step functions wn, un

wn(0) = θ(u0), wn(t) = θ(ui),
un(0) = u0, un(t) = ui for t ∈ (ti−1, ti].

In a similar way as un we also define the function fn.
Now we will rewrite the relation (2.1) in terms of the functions we just introduced.

First, in light of (1.11) and the Lipschitz continuity of the function θ, the last two
terms on the right-hand side of (2.1) can be estimated as follows:

∣∣∣∣Lτ (ui,κ−1 − ui,κ, ϕ) +
1

τ
(θ(ui,κ)− θ(ui,κ−1), ϕ)

∣∣∣∣ ≤ 2LCdτ
d−1‖ϕ‖
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uniformly with respect to i (κ = κi,last).
Thus we can rewrite the relation (2.1) in an equivalent form

(∂twn(t), ϕ) + (K(wn(t− τ))∇un(t),∇ϕ)

= (fn(t), ϕ) + (K(wn(t− τ))g,∇ϕ) +O(τd−1)‖ϕ‖(4.1)

for all ϕ ∈ H1
0 (Ω).

We would like to examine the limit as n→∞ in (4.1), i.e., we want to prove the
convergence (in a suitable function space) of the approximation un to a weak solution
u to the IBVP (1.1), as well as to show the convergence of wn, wn to θ(u) and the
convergence of ∂twn towards ∂tθ(u). We will do it in a few steps. First, we rewrite
the a priori estimates from Lemmas 2.1–2.3 in terms of the just defined functions as
follows:

∫ T

0

‖∂twn(t)‖2−1dt ≤ C,
max
t∈[0,T ]

‖wn(t)‖ ≤ C,∫ T

0

‖wn(t)− wn(t)‖2dt ≤ C

n
,∫ T

0

‖∇wn(t)‖2dt ≤ C,∫ T

0

‖∇un(t)‖2dt ≤ C.

(4.2)

The third inequality follows from

‖wn(t)− wn(t)‖ ≤ 2‖θ(ui)− θ(ui−1)‖
for t ∈ (ti−1, ti] and i = 1, . . . , n.

Next, using (4.2) and standard results from the functional analysis, we prove the
existence of a subsequence of un, which converges to some function u ∈ L2(I,H

1
0 (Ω)),

and the existence of subsequences of wn and wn, which converge in suitable function
spaces towards some function w (see Theorem 4.1). Further, in Theorem 4.2, we
improve the result concerning the convergence of a subsequence of wn and show the
relation between w and u, namely, w = θ(u). Theorem 4.3 proves that u is a weak
solution to the IBVP (1.1).

The relative compactness of {wn}, {un} are guaranteed by the following theorem.
Theorem 4.1. Let the assumptions of Lemma 3.1 be satisfied. Then
(i) there exists a function w ∈ C(I,H−1(Ω)) ∩ L∞(I, L2(Ω)) with ∂tw ∈ L2(I,

H−1(Ω)) and a subsequence of {wn} (denoted again by the same symbol)
for which

wn → w in C(I,H−1(Ω)),
wn(t) ⇀ w(t) in L2(Ω), ∀t ∈ [0, T ],
wn(t) ⇀ w(t) in L2(Ω), ∀t ∈ [0, T ],
∂twn ⇀ ∂tw in L2(I,H

−1(Ω));

(ii) there exists a function u ∈ L2(I,H
1
0 (Ω)) and a subsequence of {un} (denoted

by the same symbol again) for which

un ⇀ u in L2(I,H
1
0 (Ω)).



A ROBUST AND EFFICIENT LINEARIZATION SCHEME 1605

Proof. (i) The assertion follows from (4.2) and Kačur [18, Lemma 1.3.13, p. 25].
(ii) The reflexivity of the space L2(I,H

1
0 (Ω)) and the a priori estimate

∫ T

0

‖∇un(t)‖2dt ≤ C

imply the desired result.
The next step is to prove relative compactness of {wn} in L2(QT ).
Theorem 4.2. Let the assumptions of Lemma 3.1 be satisfied. Then
(i) there exists a subsequence of {wn} (denoted by the same symbol again) for

which

wn → w in L2(QT );

(ii) w = θ(u), where the function u is given by Theorem 4.1.
Proof. (i) Let wn(t,x) = 0 if t 
∈ [0, T ] or x 
∈ Ω. According to the Kolmogorov

argument (cf. Kufner, John, and Fuč́ık [20, p. 88]), it is sufficient to prove that

1.
∫ T
0

∫
Ω
|wn(t,x)|2dxdt ≤ C for all n;

2.
∫ T
0

∫
Ω
|wn(t + s,x + h) − wn(t,x)|2dxdt → 0 for s, |h| → 0 uniformly with

respect to n.
The first assertion is a consequence of a priori estimates (4.2). Further, one can deduce
by a simple calculation that

∫ T

0

∫
Ω

|wn(t+ s,x+ h)− wn(t,x+ h)|2dxdt

=

∫ T

0

∫ t+s

t

(∂twn(y,x+ h), wn(t+ s,x+ h)− wn(t,x+ h))dydxdt

=

∫ T

0

∫ s

0

(∂twn(t+ y,x+ h), wn(t+ s,x+ h)− wn(t,x+ h))dydxdt

≤
∫ s

0

∫ T

0

‖∂twn(t+ y)‖−1(‖wn(t+ s‖1 + ‖wn(t)‖1)dydt

≤ C
∫ s

0

√∫ T

0

‖∂twn(t)‖2−1dt

√∫ T

0

‖wn(t)‖21dt
≤ Cs.

Using
∫ T
0
‖wn(t)‖21dt ≤ C we estimate

∫ T

0

∫
Ω

|wn(t,x+ h)− wn(t,x)|2dxdt ≤ C
∫ T

0

∫
Ω

|wn(t,x+ h)− wn(t,x)|2dxdt

≤ ω(|h|),

where ω is a continuous real function with lims→0+ ω(s) = 0 (see, e.g., Nečas [25]).
The second assertion follows from these estimates and the triangle inequality.

Hence the sequence {wn} is relatively compact in L2(QT ). According to Theorem 4.1
we conclude the proof of (i).

(ii) Using (i) and the a priori estimate
∫ T
0
‖wn(t)− wn(t)‖2dt ≤ C

n , we get

wn → w in L2(QT ).(4.3)
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The compact embedding L2(I,H
1
0 (Ω)) ↪→↪→ L2(I, L2(Ω)) and the weak convergence

un ⇀ u in L2(I,H
1
0 (Ω)) (see Theorem 4.1) imply∫ T

0

‖wn(t)− θ(u(t))‖2dt =

∫ T

0

‖θ(un(t))− θ(u(t))‖2dt

≤ C
∫ T

0

‖un(t)− u(t)‖2dt → 0 as n→∞.

Hence w = θ(u).
Now we use the convergence results from Theorems 4.1 and 4.2 and the a priori

estimates (4.2) to examine the limit as n→∞ in (4.1).
Theorem 4.3. Let the assumptions of Lemma 3.1 be satisfied. Then the func-

tion u given by Theorem 4.1 is a weak solution to the IBVP (1.1) in the sense of
Definition 1.1.

Proof. In view of Theorems 4.1 and 4.2, it is sufficient to examine the limit for
n→∞ in the relation (4.1).

The idea of the proof is the following. First, we integrate (4.1) over (0, t) for any
t ∈ (0, T ). Then we apply the a priori estimates (4.2) and Theorems 4.1 and 4.2 in
order to examine the limit as n → ∞. Finally, after the differentiating with respect
to the time variable t, we conclude the proof. We demonstrate this for the second
term of (4.1), only. This part is the most complicated. The rest can be shown in a
standard way.

Smooth functions are dense in H1
0 (Ω). Thus, for any ε ∈ R+ and any ϕ ∈ H1

0 (Ω),
there exists a ϕε ∈ C∞

0 (Ω) such that ‖ϕ− ϕε‖1 < ε.
Therefore, we can write∣∣∣∣ lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s),∇ϕ)ds−
∫ t

0

(K(θ(u(s))∇u(s),∇ϕ)ds

∣∣∣∣
=

∣∣∣∣ lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s)−K(θ(u(s))∇u(s),∇[ϕ− ϕε])ds

+ lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s)−K(θ(u(s))∇u(s),∇ϕε)ds
∣∣∣∣

≤ Cε+

∣∣∣∣ lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s)−K(θ(u(s))∇u(s),∇ϕε)ds
∣∣∣∣ .

The Cauchy–Schwarz and the triangle inequalities imply for the second term∣∣∣∣
∫ t

0

([K(wn(s− τ))−K(θ(u(s)))]∇un(s),∇ϕε)ds
∣∣∣∣

≤ ‖∇ϕε‖L∞(Ω)

√∫ T

0

‖∇un(s)‖2ds
√∫ T

0

‖K(wn(s− τ))−K(θ(u(s)))‖2ds

≤ C‖∇ϕε‖L∞(Ω)

√∫ T

0

‖wn(s− τ)− θ(u(s))‖2ds

≤ C‖∇ϕε‖L∞(Ω)

√∫ T

0

[‖wn(s− τ)− wn(s)‖2 + ‖wn(s)− θ(u(s))‖2] ds.

Hence, in light of (4.2) and (4.3), we get

lim
n→∞

∣∣∣∣
∫ t

0

([K(wn(s− τ))−K(θ(u(s)))]∇un(s),∇ϕε)ds
∣∣∣∣ = 0.
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Therefore, we arrive at

∣∣∣∣ lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s),∇ϕ)ds−
∫ t

0

(K(θ(u(s))∇u(s),∇ϕ)ds

∣∣∣∣ ≤ Cε,
which is valid for all ε ∈ R+. Passing to the limit for ε→ 0+, we conclude

lim
n→∞

∫ t

0

(K(wn(s− τ))∇un(s),∇ϕ)ds =

∫ t

0

(K(θ(u(s))∇u(s),∇ϕ)ds.

Up until now, we have proved the convergence for a subsequence only. The con-
vergence of the whole sequence follows from the uniqueness of the solution.

Consider for a moment the following nonlinear scheme for i = 1, . . . , n:

v0 = u0,
(δθ(vi), ϕ) + (K(θ(vi−1))∇vi,∇ϕ) = (fi, ϕ) + (K(θ(vi−1))g,∇ϕ)

(4.4)

for all ϕ ∈ H1
0 (Ω), which has been studied in this or a simplified form by many authors.

Also some error estimates in various functional spaces have been derived, depending
on the regularity of u0 and the data functions. When comparing linearization scheme
(4.1) with (4.4) we see that our approximate solution ui,κ can be arbitrary close to
vi. This follows from the convergence of the relaxation iterations at any time point
of the time partitioning. Hence, if the rate of convergence for (4.4) is O(τα), then
(4.1) has the same precision considering sufficiently large d. Thus we have not lost
anything in the linearization process.

Up until now, we have presented a new linear relaxation scheme for a uniform
time partitioning. The reason was to keep the proofs easier for the reader. Clearly,
the relaxation scheme can also be applied for nonequidistant time steps, and the
relaxation iterations will converge at any ti.

5. Numerical experiments. In this section we present some numerical exam-
ples in order to demonstrate the efficiency and robustness of the proposed linearization
scheme (1.10). The first one is devoted to a nonlinear IBVP of the type (1.1) without
the convection term. Here an exact solution is known. The second example shows the
robustness and the efficiency of the relaxation iterations, which is demonstrated on a
nonlinear elliptic BVP. The third example is devoted to the real applications. Here
we present two different models for description of the soil properties.

For two-dimensional examples, we have chosen the mixed nonconforming finite
elements on a uniform triangular mesh for the space discretization. Recall that these
are equivalent to the mixed-hybrid method (see, e.g., Arnold and Brezzi [4]). One-
dimensional examples have been solved by the piecewise linear Galerkin finite element
method.

5.1. Hornung–Messing problem. We consider a horizontal flow (independent
of the z-coordinate) in the domain Ω = (0, 1) × (0, 1), which is given by the follow-
ing IBVP:

∂tb(p)−∇ · (Kb(p)∇p) = 0 in (0, 1)× Ω,
p = u in (0, 1)× Γ,

p(0) = u(0) in Ω,
(5.1)
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where the nonlinear functions b and Kb are defined as

b(p) :=

⎧⎪⎪⎨
⎪⎪⎩

π2

2
− 2 arctan2(p) for p < 0,

π2

2
for p ≥ 0

(5.2)

and

Kb(p) :=

⎧⎨
⎩

2

1 + p2
for p < 0,

2 for p ≥ 0.

(5.3)

The functions b(p) and K(b) := Kb have typical shapes; cf. Figure 1.1. Their
derivatives are depicted in Figure 5.1. We have chosen the Lipschitz constant L for
the function b as L = 2 in our computations.

-10 -8 -6 -4 -2 0
p

0

0.25

0.5

0.75

1

1.25

1.5

b'
(p

)

0 1 2 3 4 5
b

0

0.2

0.4

0.6

0.8

1
K

' (b
)

Fig. 5.1. Behavior of the functions b′(p) and K′(b).

The function u is given as

u(x, y, t) :=

⎧⎪⎨
⎪⎩
−s

2
for s < 0,

− tan

(
es − 1

es + 1

)
for s ≥ 0,

(5.4)

where s = x− y − t.
It can be checked that the exact solution of the IBVP (5.1)–(5.4) is p = u.
The behavior of the function b(p(0, x, y)) is shown in Figure 5.2.
The doubly nonlinear degenerate IBVP (5.1)–(5.4) has been solved using the

numerical scheme (1.10). We have computed eight relaxation iterations at each time
step, i.e., κ = 1, 2, . . . , 8. We have used a uniform triangular mesh with h = Δx =
Δy = 0.04 or h = Δx = Δy = 0.02. The time step τ takes one of the values τ = 0.2,
0.1, or 0.05. Figure 5.3 represents the error in L2(Ω)-norm between the discrete and
exact solutions. The pictures for h = 0.04 and h = 0.02 hardly vary with changing h.

Here, at first glance, an interesting effect appears where larger time steps (for
later time values) can give smaller error. This can be explained using Lemma 3.1. We
have proved there that for any positive τ the relaxation iterations converge. However,
if we compare the error bounds for a fixed number of relaxation iterations and for
different values of the time steps τ1 < τ2, then, in fact, it can happen that the error
corresponding to τ2 can be less than the error for τ1. This effect can be removed when
we increase the number of relaxation iterations for τ1; see the next example.



A ROBUST AND EFFICIENT LINEARIZATION SCHEME 1609

0
0.2

0.4
0.6

0.8
1

x
0

0.2

0.4

0.6
0.8

1

y
4.5

4.7

4.9
b(p(0, x, y))

Fig. 5.2. Behavior of b(p(0, x, y)).
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Fig. 5.3. L2(Ω)-error for the space step h = 0.04 (respectively, h = 0.02) and the time steps
τ = 0.2, 0.1, 0.05.
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time

0

0.0001
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0.0004

L2-error
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1/75
1/50
1/25
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Fig. 5.4. L2(Ω)-error for the space steps h = 1
25
, 1

50
, 1

75
, the time step τ = 0.1, and eight

relaxation iterations.

Now we fix the time step τ = 0.1 and the number of relaxation iterations κi,last =
8. Figure 5.4 shows the behavior of the error in the L2(Ω)-norm versus the time
for various space steps. The graph indicates that the error remains the same with
the decreasing h. Thus the error coming from the time discretization and/or the
linearization is still dominant with respect to the error of the space discretization.

5.2. Nonlinear elliptic BVP. Let Ω = (0, 1)× (0, 1) be the unit square in R
2.

The nonlinear function θ is defined as
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θ(s) =

{
arctan(s) for s < 1,
π

4
elsewhere.

This is clearly continuous. For the derivative, we have

θ′(s) =

{ 1

1 + s2
for s < 1,

0 elsewhere;

thus 0 ≤ θ′ ≤ 1 a.e. in R.
We consider the following nonlinear elliptic BVP: Find u ∈ H1(Ω) such that

θ(v)−Δv = f in Ω,
v = w on Γ,

where the right-hand side f is defined in such a way that the exact solution of
this BVP is

v(x, y) = w(x, y) := x3 − y2 + x+ sin(πx) sin(πy).

We have used the linearization scheme (3.1) with L = K = τ = 1, F = f , and g = 0
for computations. We have started the relaxation iterations from v0, which was far
away from the exact solution v. More exactly, we have chosen

v0(x) = 100ran(x),

where ran is a real random function, the range of which is uniformly distributed over
the interval (−1, 1).

We have used a uniform triangular mesh consisting of 5000 elements corresponding
to Δx = Δy = 0.02, and we have computed 25 relaxation iterations. The results are
depicted in Figures 5.5 and 5.6.

5 10 15 20 25
iteration

–3.5
–3

–2.5
–2

–1.5
–1

–0.5
0

5 10 15 20 25
iteration

–1.5
–1

–0.5
0

0.5
1

1.5
2

absolute error relative error

Fig. 5.5. Logarithm of the norm ‖vκ − w‖ versus iterations.

Conclusion. The graphs in Figures 5.5 and 5.6 are similar. The rapidly decreasing
part is followed by a constant section. At the beginning of the iteration process the
linearization error was dominant. Later the discretization error becomes superior.
The more or less constant part of a graph means that the discretization error has
been achieved.

The proposed linearization scheme is robust, and the approximations converge
towards the exact solution independently of the fact of where the iteration process
started. This is a big difference from other frequently used algorithms. The iterations
are efficient (fast) if τλ

L+τλ is not close to the 1 (for an elliptic problem we put τ = 1).
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Fig. 5.6. Logarithm of the norm ‖∇(vκ − w)‖ versus iterations.

5.3. Richards’ equation. The standard form of the unsaturated flow equation
in one dimension is written as

∂tθ(h)− ∂z(K(h)∂zh)− ∂zK(h) = 0.(5.5)

We consider a sand column of a given length with Dirichlet boundary conditions
and an initial datum. We consider two models for the representation of the soil
properties, i.e., the functions θ and K. We recall that there is no analytical solution
known for such a problem. We compute the approximate solution and compare the
result with Celia, Bouloutas, and Zarba [11].

We use the linearization scheme (1.10) for computations. The relaxation iterations
stops when the discrete L2(Ω)-norm of ui,κ − ui,κ−1 becomes less than 10−3. The
space discretization is based on the standard piecewise linear Galerkin finite element
method.

5.3.1. Haverkamp–Celia model. We consider a soil column of length 40cm.
Boundary conditions are h(t, 40) = hbottom = −61.5cm and h(t, 0) = htop = −20.7cm.
Initial condition is given as h(0, z) = hbottom. The soil properties expressed by the
functions θ and K are

θ(h) =
α(θs − θr)
α+ |h|β + θr,

K(h) = Ks
A

A+ |h|γ ,
(5.6)

where α = 1.611 × 106, θs = 0.287, θr = 0.075, β = 3.96, Ks = 0.00944 cm
s , A =

1.175×106, and γ = 4.74. These data are taken from Celia, Bouloutas, and Zarba [11].
After the analysis of the behavior of θ′ on [hbottom, htop], we have chosen the Lipschitz
constant L for the function θ as L = 0.0034 in (1.10).

Two pressure head profiles at an elapsed time of 360s corresponding to τ = 1s,
Δz = 1mm, and τ = 10s, Δz = 1cm are shown in Figure 5.7. Our results conform
the ones from Celia, Bouloutas, and Zarba [11].

5.3.2. Van Genuchten model. Let the relevant material properties θ and K
be given by van Genuchten model (1.9), where α = 0.0335 1

cm , θs = 0.368, θr = 0.102,
n = 2, m = 0.5, and Ks = 0.00922 cm

s . These data are taken from Celia, Bouloutas,
and Zarba [11]. We consider a soil column of the depth 100cm. Boundary conditions
are h(t, 100) = hbottom = −1000cm and h(t, 0) = htop = −75cm. The initial condition
is given as h(0, z) = hbottom. We have taken the time step τ = 10s and the space step
Δz = 1cm for computations. After the analysis of the behavior of θ′ on [hbottom, htop],
we have chosen the Lipschitz constant L = 0.001133 in our computations.
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Fig. 5.7. Solid line: Pressure head for τ = 1s, Δz = 1mm. Dashed line: Pressure head for
τ = 10s, Δz = 1cm.

Figure 5.8 shows the solution profiles at the times t = 3h, t = 6h, t = 12h, and
t = 24h. The solution profile at t = 24h corresponds very well to those of Celia,
Bouloutas, and Zarba [11] which have been computed by various numerical schemes.
Figure 5.8 shows also the oscillations ahead of the moisture front. This is an typical
effect of the piecewise linear finite element method which has also been observed by
other numerical schemes; see Celia, Bouloutas, and Zarba [11]. This effect appears
where the change of the gradient of the solution is large.
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Fig. 5.8. Solution profiles.
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COMPUTATION OF THE SHALLOW WATER EQUATIONS USING
THE UNIFIED COORDINATES∗
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Abstract. Two general coordinate systems have been used extensively in computational fluid
dynamics: the Eulerian and the Lagrangian. The Eulerian coordinates cause excessive numerical
diffusion across flow discontinuities, slip lines in particular. The Lagrangian coordinates, on the
other hand, can resolve slip lines sharply but cause severe grid deformation, resulting in large errors
and even breakdown of the computation. Recently, in the spirit of the arbitrary Lagrangian–Eulerian
(ALE) approach, W.H. Hui, P.Y. Li, and Z.W. Li, [J. Comput. Phys., 153 (1999), pp. 596–637] have
introduced a unified coordinate system which moves with velocity hq, q being the velocity of the
fluid particle. It includes the Eulerian system as a special case when h = 0, and the Lagrangian when
h = 1, and was shown for the two-dimensional Euler equations of gas dynamics to be superior to both
Eulerian and Lagrangian systems. The main purpose of this paper is to adopt this unified coordinate
system to solve the shallow water equations. It will be shown that computational results using the
unified system are superior to existing results based on either the Eulerian system or Lagrangian
system in that it (a) resolves slip lines sharply, especially for steady flow, (b) avoids grid deformation
and computation breakdown in Lagrangian coordinates, and (c) avoids spurious flow produced by
Lagrangian coordinates.

Key words. unified description, Eulerian description, Lagrangian description, two-dimensional
shallow water equations, slip lines, spurious vorticity due to Lagrangian description

AMS subject classifications. 76A99, 76B15, 35L60

PII. S1064827500367415

1. Introduction. Two general coordinate systems have been used extensively
for describing fluid motion: the Eulerian and the Lagrangian. Computationally, each
system has its advantages as well as disadvantages.

In using the Eulerian coordinates the computational cells are fixed in space, while
fluid particles move across cell interfaces in any direction. It is this convective flux that
causes excessive numerical diffusion in the numerical solution. Indeed, slip lines are
smeared badly and shocks are also smeared, albeit somewhat better than slip lines.
Moreover, the smearing of slip lines ever increases with time and distance unless
special treatments, such as artificial compression or subcell resolution, are employed
[2], [3], [4] which are, however, not always reliable. In this regard it is interesting
to note that some works using the ghost fluid method [5], [6] based on the empirical
isobaric fix have just appeared which give good slip line and shock resolution.

Computational cells in the Lagrangian coordinates, on the other hand, are lit-
erally fluid particles. Consequently, there is no convective flux across cell interfaces,
and numerical diffusion is thus minimized. However, the very fact that the com-
putational cells exactly follow fluid particles can result in severe grid deformation,
causing inaccuracy and even breakdown of the computation. To prevent this from
happening, the most famous Lagrangian method in use at the present time—the ar-
bitrary Lagrangian–Eulerian (ALE) technique [8], [9], [10]—uses continuous rezoning
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and remapping to the Eulerian grid. Unfortunately, this process requires interpo-
lations of geometry and flow variables which result in loss of accuracy, manifested
as numerical diffusion which the ALE approach wants to avoid in the first place.
Indeed, it was demonstrated in [11] that rezoning results in diffusive errors of the
type encountered in Eulerian solutions and that continuously rezoned Lagrangian
computation is equivalent to an Eulerian computation. Another disadvantage of the
Lagrangian coordinates is that, except in the simple case of one-dimensional unsteady
flow, the governing equations for inviscid flow are not easily written in conservation
form, making it difficult to capture shocks correctly.

Recently, Hui, Li, and Li [1] have introduced a unified coordinate system which
moves with velocity hq, where q is velocity of the fluid particle. It includes the
Eulerian coordinates as a special case when h = 0 and the Lagrangian when h = 1,
and, more importantly, it has a new degree of freedom in choosing the arbitrary
function h to improve the quality of computational results. In particular, it was
shown in [1] that for the two-dimensional Euler equations of gas dynamics, choosing
the function h to preserve grid angles results in a coordinate system which is superior
to both Eulerian and Lagrangian systems.

The unified coordinates approach shares the same spirit of the ALE approach
in that it combines the best features of the Lagrangian and Eulerian approach, [10,
p. 198], or in that the coordinates move at an arbitrary velocity [7, p. 239]. However,
the strategies are quite different. In the ALE approach, “the general strategy is to
perform a Lagrangian time step and to follow it with a remap step that maps the
solution from the distorted Lagrangian mesh on to the spatially fixed Eulerian mesh
or the ALE mesh” [7, p. 236], [10, p. 198]. This is usually done by employing a
staggered grid. Furthermore, the rezoning strategies are not generally prescribed;
instead, “rezoning requires the intervention of the user, ..., and the success of the
method depends heavily on the skill and patience of the user” [7, p. 322]. In our
unified coordinates approach we propose a specific rule for grid (mesh) movement:
the grid should move with velocity hq, q being fluid velocity, and h is determined to
preserve grid angles, resulting in sharp resolution of slip lines, especially for steady
flow. In our method all computations are done entirely in the transformed space
without a staggered grid and with no explicit rezoning/remapping to the Eulerian or
ALE space; explicit remapping causes numerical diffusion.

The purpose of this paper is to adopt this unified coordinate approach to solve the
shallow water equations; it will be shown that computational results using the unified
system are superior to existing results based on either the Eulerian or Lagrangian
system.

The paper is arranged as follows. In section 2 the shallow water equations in
conservation form are derived using the unified coordinates. Sections 3 and 4 study
the cases of one-dimensional and two-dimensional flow, respectively. Section 5 gives
results for several test examples computed using the unified coordinates and compares
them with Eulerian or Lagrangian computation. Finally, conclusions are given in
section 6.

2. Shallow water equations in the unified coordinates. The shallow water
equations in conservation form using Cartesian coordinates are

∂

∂t

⎛
⎝ ζ

ζu
ζv

⎞
⎠+

∂

∂x

⎛
⎝ ζu

ζu2 + 1
2gζ

2

ζuv

⎞
⎠+

∂

∂y

⎛
⎝ ζv

ζuv
ζv2 + 1

2gζ
2

⎞
⎠ =

⎛
⎜⎝

0
ζ
[
g ∂D∂x −m

]
ζ
[
g ∂D∂y − n

]
⎞
⎟⎠ ,(1)
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where g is the acceleration due to gravity, ζ(x, y, t) is the total water height measured
from the bottom, u(x, y, t) and v(x, y, t) are the components of the fluid velocity in
the horizontal x and y direction, respectively, D(x, y) is the water depth from a fixed
reference level, and m and n are the components of the bottom friction force due to
its roughness.

Introduce a transformation of coordinates from (t, x, y) to (λ, ξ, η),
⎧⎨
⎩

dt = dλ,
dx = hudλ+Adξ + Ldη,
dy = hvdλ+Bdξ +Mdη,

(2)

where h is arbitrary. Let

Dh

Dt
≡ ∂

∂t
+ hu

∂

∂x
+ hv

∂

∂y
(3)

denote the time derivative following the pseudoparticle, whose velocity is hq, q =
(u, v). Then, under the assumption AM −BL �= 0 (nonsingularity of the transforma-
tion (2)), it is easy to show

Dhξ

Dt
= 0,

Dhη

Dt
= 0,(4)

that is to say, the coordinates (ξ, η) are material functions of the pseudoparticles,
hence they are their permanent identifications. Accordingly, computational cells move
and deform with pseudoparticles, rather than with fluid particles as in Lagrangian
coordinates.

Remarks.
(a) Unlike most transformations used in grid generation, which are flow-independent,

the unique feature of transformation (2) is its dependence on the fluid velocity.
(b) In (2), h is an arbitrary function of coordinates (λ, ξ, η). On the other hand,

(A,B,L,M) are determined by the compatibility conditions. For example,
for dx to be a total differential,

∂A

∂λ
=
∂(hu)

∂ξ
,(5)

∂L

∂λ
=
∂(hu)

∂η
.(6)

When (5)–(6) are satisfied, the other compatibility condition, namely,

∂A

∂η
=
∂L

∂ξ
,(7)

is also satisfied, provided it is at λ = 0, which can always be ensured in
numerical computation. Similar compatibility conditions hold for (B,M).

(c) In the special case when h = 0, (A,B,L,M) are independent of λ. Then
the coordinates (ξ, η) are independent of time λ and are hence fixed in space.
This coordinate system is thus Eulerian. Transformation (2) is then flow-
independent and is just like any other transformation from Cartesian coor-
dinates (x, y) to curvilinear coordinates (ξ, η) used in grid generation. In
particular, if A = M = 1 and L = B = 0, (ξ, η) are identical with Cartesian
coordinates (x, y).
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(d) In the special case when h = 1, on the other hand, the pseudoparticles coin-
cide with fluid particles and (ξ, η) are the material functions of fluid particles,
hence they are Lagrangian coordinates. The conventional choice of the La-
grangian coordinates, i.e., (ξ, η) = (x, y)|t=0, is just a special choice of mate-
rial functions, corresponding to choosing A = M = 1 and L = B = 0. It does
not offer any particular advantage in numerical computation; rather (ξ, η)
should better be left to be suitably chosen to initialize numerical computa-
tion. In particular, the computational domain in the (ξ, η) space can always
be easily made regular, e.g., rectangular, even if it is irregular in the physical
space. This cannot be done with the conventional choice of the Lagrangian
coordinates.

(e) In the general case, h is arbitrary. It has been shown [1] that the unified
coordinates for h �= 0 always yield sharp slip line resolution in steady flow.
Furthermore, h may be chosen to advantage: to avoid excessive numerical
diffusion in the Eulerian coordinates, and/or to avoid severe grid deformation
in the Lagrangian coordinates.

Under the transformation (2) the shallow water equations (1) become

∂E

∂λ
+
∂F

∂ξ
+
∂G

∂η
= S,(8)

where

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ�
ζ�u
ζ�v
A
B
L
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ(1− h)I
ζ(1− h)Iu+ 1

2gζ
2M

ζ(1− h)Iv − 1
2gζ

2L
−hu
−hv

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ(1− h)J
ζ(1− h)Ju− 1

2gζ
2B

ζ(1− h)Jv + 1
2gζ

2A
0
0
−hu
−hv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ζ [gMDξ − gBDη −m�]
ζ [−gLDξ + gADη − n�]

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(9)

with

� = AM −BL, I = uM − vL, J = vA− uB.(10)

We note that the shallow water equations (8) written in the unified coordinates are
in conservation form. We also point out that although system (8) is larger than (1),
computationally the extra computing time required for solving the last four equations
of (8) is very small, typically 3–5%, because the bulk of computing time is spent on
solving the Riemann problems for the first three equations of (8), which require the
same amount of computing time as system (1).

In the remainder of this paper we shall consider only horizontal bottom and
neglect the friction term there, and hence S = 0.
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3. One-dimensional shallow water flow. For the special case of one-dimensional
flow, transformation (2) simplifies to{

dt = dλ,
dx = hudλ+Adξ,

(11)

and the shallow water equations (8) become

∂E

∂λ
+
∂F

∂ξ
= 0,(12)

where

E =

⎛
⎝ ζA

ζAu
A

⎞
⎠ , F =

⎛
⎝ ζ(1− h)u

ζ(1− h)u2 + 1
2gζ

2

−hu

⎞
⎠ .(13)

3.1. Hyperbolicity. As we shall use the Godunov-MUSCL scheme to compute
system (12), we need to consider the hyperbolicity property of that system in order to
ensure the existence and uniqueness of the solution to the Riemann problem, which
is the main ingredient of the Godunov scheme.

It is well known that the one-dimensional shallow water equations in Eulerian
coordinates are hyperbolic. However, since transformation (11) involves the dependent
variable u, there is no guarantee that the resulting system (12) will necessarily be
hyperbolic also; now we check this.

The eigenvalues of (12) can be found by direct computation, and the results are:

σ1 = 0,(14)

σ± =
(1− h)u±√gζ

A
.(15)

The corresponding right eigenvectors, when the primitive variables U = (ζ, u,A)T are
used, are

r1 = (0, 0, 1)T ,(16)

r± =

(
1,±

√
g/ζ,∓ h

σ±

√
g/ζ

)T
.(17)

It can easily be shown that the σ1-field is linearly degenerate, while the σ±-
fields are genuinely nonlinear. The eigenvectors are linearly independent, forming a
complete basis in the state space; system (12) is therefore hyperbolic for all values of
h, despite the fact that transformation (11) involves the dependent variable u. This
includes the Eulerian coordinates as a special case when h = 0 and the Lagrangian
one when h = 1. This result is the same as one-dimensional Euler equations of gas
dynamics [12].

3.2. Riemann problem. The one-dimensional shallow water equations (12)
will be solved using the Godunov method with the MUSCL update to high resolution,
of which the main ingredient is the solution of the Riemann problem.

The Riemann problem is
⎧⎪⎨
⎪⎩

∂E

∂λ
+
∂F

∂ξ
= 0, λ > 0,

E(0, ξ) =

{
El, ξ < 0,
Er, ξ > 0,

(18)
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where El and Er are the constant vectors representing the flow states on the left and
the right side, respectively. Here we shall consider the case when h is a constant in the
range 0 ≤ h ≤ 1. With h = const, (18) is a system of conservation law equations with
constant coefficients and its solution depends on μ = ξ

λ alone; i.e., it is a self-similar
solution of the form E = E(μ). It consists of at most four uniform flow regions,
including El and Er, separated by three elementary waves: a shock (or expansion), a
contact line, and an expansion (or shock). These elementary wave solutions are now
given.

3.2.1. Expansion wave. The centered expansion wave solution from the σ±
characteristic fields can be derived from the following system of ODEs:

du

dζ
= ±

√
g/ζ,(19)

dA

dζ
= ∓h

√
g/ζ

σ±
.(20)

The solution for (u,A) relates the flow state U = (ζ, u,A)T in the expansion wave
to the initial state U0 = (ζ0, u0, A0)

T upstream of the wave through the following
expressions:

u ∓ 2
√
gζ = u0 ∓ 2

√
gζ0,(21)

A = A0

(√
ζ0 − C±√
ζ − C±

) 2h
3−2h

, C± =
1− h
3− 2h

(
2
√
ζ0 ∓ u0√

g

)
.(22)

To find the solution inside the expansion wave, we consider the characteristic ray
through the origin (0, 0) and a general point (λ, ξ) inside the wave. The slope of the
characteristic is

dξ

dλ
=
ξ

λ
= μ = σ± =

(1− h)u±√gζ
A

.(23)

This, together with (21) and (22), gives ζ(μ), u(μ), and A(μ) implicitly; in the special
case of h = 0 or h = 1, these functions can be written explicitly.

3.2.2. Shocks. We start from the following Rankine–Hugoniot jump conditions
of system (18):

s[ζA] = [(1− h)ζu],(24)

s[ζuA] = [(1− h)ζu2 +
g

2
ζ2],(25)

s[A] = −[hu],(26)

where [.] denotes the jump across the discontinuity whose speed is denoted by s = dξ
dλ .

We denote the preshock flow state by U0 = (ζ0, u0, A0)
T and the postshock flow

state by U = (ζ, u,A)T , respectively. Then the shock jump relations after some
algebraic manipulations can be expressed as follows:

u = u0 ±
√
g(ζ + ζ0)(ζ − ζ0)2/(2ζζ0),(27)

A = A0 − h(u− u0)

ssh±
,(28)
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where

ssh± =
(1− h)u0

A0
±
√
gζ(ζ + ζ0)/(2ζ0)

A0
.(29)

Formulas (27)–(28) hold for h : 0 ≤ h ≤ 1.

3.2.3. Contact (or slip) lines. The degenerate wave corresponds to speed
s = σ1 = 0. From the Rankine–Hugoniot jump conditions (24)–(26) we have

ζ = ζ0,(30)

u = u0.(31)

The only variable which can change its value across this wave is A. Since the flow
variables ζ and u are continuous, there is no flow discontinuity in the form of a contact
(slip) line.

We compare here the computation of the one-dimensional shallow water flow
with the one-dimensional flow of gas dynamics. As seen from the analysis, the one-
dimensional shallow water equations have just one type of flow discontinuity (shocks),
but there is no flow contact (slip) lines which exist in the one-dimensional Euler
equations of gas dynamics. In the latter case it was shown [12] that the Lagrangian
system of coordinates is the best for resolution of the contact lines. However, with no
contact line to resolve, Eulerian and Lagrangian coordinates are on equal footing for
accuracy, as is verified in our computation. The adaptive Godunov scheme [13], [14],
which resolves shocks crisply, can now be applied to either the Lagrangian coordinates
or the Eulerian ones, or indeed for any h.

4. Two-dimensional shallow water flow.

4.1. Hyperbolicity. It is well known that the system of unsteady shallow water
equations (1) in Cartesian coordinates is hyperbolic, meaning that all its eigenvalues
are real, and there exist a complete set of linearly independent eigenvectors. Be-
cause the transformation from (t, x, y) to the unified coordinates (λ, ξ, η) involves the
dependent variables (u, v), there is no guarantee that the resulting system (8) will
necessarily be hyperbolic. We now study the hyperbolicity of the system (8). To do
that we rewrite the system (8) as

A
∂U

∂λ
+ B

∂U

∂ξ
+ C

∂U

∂η
= S1,(32)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ
u
v
A
B
L
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
uhξ
vhξ
uhη
vhη

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(33)

and

A =
∂E

∂U
, B =

∂F

∂U
, C =

∂G

∂U
.(34)

System (32) is said to be hyperbolic (also called strongly hyperbolic, or fully hyper-
bolic) in λ if [15]
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(i) all the eigenvalues σ of

det(σA− αB− βC) = 0

are real for every pair (α, β) ∈ R2 : α2 + β2 = 1; and
(ii) associated with the eigenvalues there exist a complete set of seven linearly

independent right eigenvectors in the state space.
System (32) is said to be weakly hyperbolic in λ if (i) is satisfied and (ii) is not.

The eigenvalues of (32) can be found by direct computation, and the results are
as follows.

Case (a). h �= 1. In this case we get

σ1 = 0 (multiplicity 4),(35)

σ2 = (1− h)(α′u+ β′v),(36)

σ± = σ2 ±
√
gζ(α′2 + β′2),(37)

where

α′ = (αM − βB)/�, β′ = −(αL− βA)/�.
The corresponding right eigenvectors are

r1 = (0, 0, 0, 1, 0, 0, 0)T ,(38)

r2 = (0, 0, 0, 0, 1, 0, 0)T ,(39)

r3 = (0, 0, 0, 0, 0, 1, 0)T ,(40)

r4 = (0, 0, 0, 0, 0, 0, 1)T(41)

for σ1,

r5 =

(
0, β′,−α′,−h

μ
αβ′,

h

μ
αα′,−h

μ
ββ′,

h

μ
βα′

)T
(42)

for σ2, and

r6,7 =

(
1,
α′g
m±

,
β′g
m±

,
−αα′gh
σ±m±

,
−αβ′gh
σ±m±

,
−βα′gh
σ±m±

,
−ββ′gh
σ±m±

)T
(43)

for σ±, where

m± = ±
√
gζ(α′2 + β′2).

The eigenvectors r1, r2, . . . , r7 are linearly independent, forming a complete basis
in the state space; system (32) is therefore hyperbolic for h �= 1. This includes the
Eulerian coordinates as a special case when h = 0.

Case (b). h = 1 (Lagrangian case). In this case the eigenvalues are

σ1 = 0 (multiplicity 5),(44)

σ± = ±
√
gζ(α′2 + β′2).(45)

The eigenvectors associated with σ± are

r± =

(
1,
α′g
σ±

,
β′g
σ±

,
−αα′g
σ2±

,
−αβ′g
σ2±

,
−βα′g
σ2±

,
−ββ′g
σ2±

)T
.(46)
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Associated with σ1 = 0 (multiplicity 5),

rank(σA− αB− βC)
∣∣∣
σ=σ1

= 3;

hence there exist the four, and only four, following linearly independent right eigen-
vectors:

r1 = (0, 0, 0, 1, 0, 0, 0)T ,(47)

r2 = (0, 0, 0, 0, 1, 0, 0)T ,(48)

r3 = (0, 0, 0, 0, 0, 1, 0)T ,(49)

r4 = (0, 0, 0, 0, 0, 0, 1)T .(50)

We therefore arrive at the conclusion that the system of unsteady two-dimensional
shallow water equations in Lagrangian coordinates is weakly hyperbolic, lacking one
eigenvector, although all eigenvalues are real. It is interesting to note that similar re-
sults were obtained in the gas dynamics case; namely, the two-dimensional and three-
dimensional Euler equations written in the unified coordinates are hyperbolic for any
h, 0 ≤ h < 1, but they are only weakly hyperbolic for h = 1 (Lagrangian case). More-
over, it is shown in [1] that for the smooth solutions the system of two-dimensional
Euler equations of gas dynamics written in the classical Lagrangian coordinates is
equivalent to the same system written in the unified coordinates with h = 1. The
steps of the proof can easily be repeated for the system of two-dimensional shallow
water equations to show that the system of two-dimensional shallow water equations
written in the classical Lagrangian coordinates is also weakly hyperbolic.

To avoid possible difficulties, such as the existence and uniqueness of weak solu-
tion, arising from the lack of a complete set of eigenvectors, we shall use h = 0.999
(or any h very close to 1.0) for which the two-dimensional shallow water equations
are hyperbolic.

In summary, use of Lagrangian coordinates in CFD for two-dimensional shallow
water equations can not only cause severe grid deformation, but it also renders the
two-dimensional shallow water equations weakly hyperbolic with all its possible con-
sequences on numerical computation. More will be said about the Lagrangian case at
the end of section 4.4.

4.2. Determination of h. As mentioned earlier, the chief advantage of the
unified coordinates is the new degree of freedom in choosing h. Many choices are
possible, and the simplest one would be to choose a constant value for it, as was
done in section 3. Numerical experiments for constant h will be presented in section
6 to show its effects on grid deformation and on resolution of flow discontinuities.
In general, it is necessary to restrict h to within the range 0 ≤ h ≤ 1. For h > 1,
the eigenvalue σ2 in (36) has an opposite sign to that for h < 1, indicating that
signals propagate in the wrong direction. Our computations for h > 1 break down
immediately. On the other hand, for h < 0, which means the pseudoparticles are
moving in the opposite direction to the fluid particles, computation can be carried
out initially, but after some finite time it also breaks down. No difficulty has been
encountered in all our computations if h is restricted to 0 ≤ h < 1.

As shown in [1], a good choice for h is to preserve the grid angles in the solution
process which marches in λ, i.e.,

∂

∂λ

[ ∇ξ
|∇ξ| ·

∇η
|∇η|

]
= 0.(51)
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Since

∇ξ = (M,−L)/�,
∇η = (−B,A)/�,(52)

condition (51) becomes

∂

∂λ

[
AL+BM√

A2 +B2
√
L2 +M2

]
= 0.(53)

By making use of the last four equations of (8), it is easy to show that (53) is equivalent
to

S2J
∂h

∂ξ
+ T 2I

∂h

∂η
=

[
S2

(
B
∂u

∂ξ
−A∂v

∂ξ

)
− T 2

(
M
∂u

∂η
− L∂v

∂η

)]
h,(54)

where

S2 = L2 +M2, T 2 = A2 +B2.(55)

A consequence of determining h from (54) is that if the grid is orthogonal at
λ = 0 it will remain so for subsequent λ. Orthogonal grids are known to possess many
desirable properties over nonorthogonal grids, e.g., attaining higher accuracy than
nonorthogonal grids. Computationally, (54) is to be solved at every time step after
the flow variables Q = (ζ, u, v)T , and the geometric variables K = (A,B,L,M)T are
found. It is thus a first order linear partial differential equation for h(ξ, η;λ) with λ
appearing as a parameter. To find solution h in the range

0 ≤ h ≤ 1(56)

we note that (54) is linear and homogeneous, and therefore it possesses two properties:
(a) positive solution h > 0 always exists, and (b) if h is a solution to (54) so is h/C,
C being any constant. Making use of property (a), we let g = ln(hq) to get

S2(A sin θ −B cos θ)
∂g

∂ξ
+ T 2(M cos θ − L sin θ)

∂g

∂η

= S2

(
B
∂ cos θ

∂ξ
−A∂ sin θ

∂ξ

)
− T 2

(
M
∂ cos θ

∂η
− L∂ sin θ

∂η

)
,(57)

where q =
√
u2 + v2 and θ is the flow angle: u = q cos θ, v = q sin θ. Now, if g1 is

any solution to (57), then h = eg1/qC is a solution to (54) satisfying condition (56),
provided we choose C equal to the maximum of eg1/q over the whole flow field being
computed. The reason to work with ln(hq) instead of lnh is that from our experience
with steady flow [16], hq is continuous across slip lines, hence working with hq can
minimize the numerical errors.

Numerically, (57) is solved easily by the method of characteristics if their slopes
do not change sign; otherwise, it is solved by iteration.

4.3. Solution strategies. As the system of shallow water equations (8) written
in unified coordinates is in conservation form, any well-established shock-capturing
method can be used to solve it. We shall use the Godunov method with the MUSCL
update to higher resolution to solve system (8). The computation will be done en-
tirely in the λ − ξ − η space. A physical cell in the x − y plane marching along the
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pseudoparticle’s pathline corresponds to a rectangular cell in the ξ−η plane marching
in the λ direction in the computational space λ − ξ − η. The superscript k refers to
the marching time step number, and the subscripts i and j refer to the cell index
number on a time plane λ = const. The time step Δλk = λk+1 − λk is uniform for
all i and j, but it is always chosen to satisfy the CFL stability condition. The grid
divides the computational domain into cubic control volumes, or cells, which in ξ and
η direction are centered at (λk, ξi, ηj) and have widths Δξi = ξi+1/2 − ξi−1/2 and
Δηj = ηj+1/2 − ηj−1/2 (for all k). Unless otherwise stated we shall use uniform cell
width Δξi for all i and Δηj for all j.

In the physical space (t, x, y) a cuboid cell marching in (λ, ξ, η) space corresponds
to a pseudoparticle marching along its path tube with step Δt (Δt = Δλ). The
pseudoparticle is bounded by four path surfaces ξ = ξi±1/2 and η = ηj±1/2 around
it. Initially, any curvilinear coordinate grid on the x − y plane may be used as the
ξ − η coordinate grid, and the initial geometric variables K = (A,B,L,M)T can
be determined from (2) as part of the initial conditions. A stationary solid wall is
always a path surface of the fluids and hence also of the pseudofluids; it is therefore
a coordinate surface of the unified coordinates.

Applying the divergence theorem to (8) over the cuboid cell (i, j, k) results in

Ek+1
i,j = Eki,j −

Δλk

Δξi

(
F
k+1/2
i+1/2,j − F

k+1/2
i−1/2,j

)
− Δλk

Δηj

(
G
k+1/2
i,j+1/2 −G

k+1/2
i,j−1/2

)
,(58)

i = 1, 2, . . . ,m, j = 1, 2, . . . , n,(59)

where the notation for the cell average of any quantity f is

fki,j =
1

ΔξiΔηj

∫ ξi+1/2

ξi−1/2

∫ ηj+1/2

ηj−1/2

f(λk, ξ, η)dξ dη,(60)

and the notation for the λ average of f is

f
k+1/2
i+1/2,j =

1

Δλk

∫ λk+1

λk
f(λ, ξi+1/2, ηj)dλ,(61)

f
k+1/2
i,j+1/2 =

1

Δλk

∫ λk+1

λk
f(λ, ξi, ηj+1/2)dλ.(62)

According to Godunov’s idea, the cell-interface fluxes F
k+1/2
i+1/2,j and G

k+1/2
i,j+1/2 for

the cell (i, j) are to be obtained from the self-similar solution of a local two-dimensional
Riemann problem formed by the averaged constant state Ei,j of the cell (i, j) and those
of its adjacent cells. Unfortunately, such a solution to (8) is unavailable at the present
time. Indeed, even a two-dimensional Riemann solution to the simpler system (1),
which is a special case of (8) when h = 0, is not yet available. On the other hand, it
is known that a monotone difference scheme to a general conservation form converges
to the physically relevant entropy-satisfying solution. In particular, Crandall and
Majda [17] proved convergence for dimensional splitting algorithms when each step is
approximated by a monotone difference scheme (such as the Godunov scheme) for a
scalar conservation law in multidimension.

In view of the above, we shall numerically solve (8) using a Godunov-type scheme
based on the dimensional splitting approximation to reduce the two-dimensional flow
problem to two one-dimensional flow problems.
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The dimensional splitting technique for finding an approximate solution to the
Riemann problem in multidimensional flow is now well established and widely used.
This technique renders the solution of a multiple spatial-dimensional problem to a
sequential solution of several one-dimensional problems. The Godunov splitting and
the Strang splitting [18] are frequently used in practical applications. We shall use the

Strang splitting in this paper. Let LξΔλ represent the exact solution operator for the
one-dimensional equation in the λ−ξ plane and LηΔλ similarly defined, then according
to Strang splitting

Ek+1 = LξΔλ
2

LηΔλLξΔλ
2

Ek,(63)

where Δλ = λk+1 − λk.
The solution operator LξΔλ for the Riemann problem with variable coefficients in

the governing equations in λ− ξ plane will now be given in details.

4.4. The ξ-Split Riemann problem. With the use of dimensional splitting,
the solution of the original two-dimensional equation system is replaced by the se-
quential computation involving two one-dimensional equation systems. We consider
in detail the resulting Riemann problem in the λ − ξ plane; the resulting Riemann
problem in the λ− η plane can be discussed similarly.

In the Lξ operator, it is assumed that ∂
∂η = 0. Hence (8) becomes

∂E

∂λ
+
∂F

∂ξ
= 0,(64)

where

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ�
ζ�u
ζ�v
A
B
L
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ(1− h)I
ζ(1− h)Iu+ 1

2gζ
2M

ζ(1− h)Iv − 1
2gζ

2L
−hu
−hv

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

with

� = AM −BL, I = uM − vL.(66)

We rewrite (64) by using the component of velocity q in the direction n normal to,
and t tangential to, the plane ξ = const., i.e.,

n =
∇ξ
|∇ξ| = (M,−L)/S, t = (L,M)/S,(67)

ω = q · n = (uM − vL)/S,(68)

τ = q · t = (uL+ vM)/S,(69)

where

S = (L2 +M2)1/2.(70)
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Hereafter we shall abandon the last two equations of system (64), keeping in mind
that L = L(ξ) and M = M(ξ) are given.

Equations (64) now become

∂E

∂λ
+
∂F

∂ξ
= S2,(71)

where

E =

⎡
⎢⎢⎢⎢⎣

ζ�
ζ�ω
ζ�τ
A
B

⎤
⎥⎥⎥⎥⎦ , F = S

⎡
⎢⎢⎢⎢⎣

ζ(1− h)ω
ζ(1− h)ω2 + 1

2gζ
2

ζ(1− h)ωτ
−h(Mω + Lτ)/S2

h(Lω −Mτ)/S2

⎤
⎥⎥⎥⎥⎦ , S2 =

∂ψ

∂ξ
S

⎡
⎢⎢⎢⎢⎣

0
ζ(1− h)ωτ

ζ(1− h)ω2 + 1
2gζ

2

0
0

⎤
⎥⎥⎥⎥⎦ ,

(72)
where

tan ψ = M/L.(73)

Equations (71) in the λ − ξ plane resulting from dimensional splitting of the two-
dimensional equations (8) are more complicated than the genuinely one-dimensional
equations (12), and the solution to their Riemann problem is explained below.

The ξ-split Riemann problem is thus

⎧⎪⎨
⎪⎩

∂E

∂λ
+
∂F

∂ξ
= S2, λ > 0,

E(0, ξ) =

{
El, ξ < 0,
Er, ξ > 0,

(74)

where El and Er are constant, and our purpose is to find the flux F on ξ = 0 to be
used in the Godunov scheme to update the conserved quantities E. At time level λk

(taken to be equal to 0) hr and hl are the values of h at the cell (i+ 1, j) and (i, j).
They are assumed constant for 0 ≤ λ < �λ, i.e.,

∂h

∂λ
= 0 (0 ≤ λ < �λ),(75)

and this is consistent with the h-equation (54). However, h changes its value at
λ = �λ as given by (54), whose coefficients are evaluated at �λ.

Now we first find all possible solutions to (71) for ξ > 0 and ξ < 0 separately and
then use them to construct the solution to the Riemann problem (74).

Case (1). ξ > 0.
Since L = Lr = const. and M = Mr = const., hence S = Sr = const., ψ = ψr =

const., therefore

S2 = 0(76)

and ⎧⎨
⎩

∂E

∂λ
+
∂F

∂ξ
= 0, λ > 0, ξ > 0,

E(0, ξ) = Er, ξ > 0,
(77)
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where

E =

⎡
⎢⎢⎢⎢⎣

ζ�
ζ�ω
ζ�τ
A
B

⎤
⎥⎥⎥⎥⎦ , F = S

⎡
⎢⎢⎢⎢⎣

ζ(1− h)ω
ζ(1− h)ω2 + 1

2gζ
2

ζ(1− h)ωτ
−h(Mω + Lτ)/S2

h(Lω −Mτ)/S2

⎤
⎥⎥⎥⎥⎦(78)

with h = hr = const. Similarity solution to (77) exists in the form

E = E(μ), μ =
ξ

λ
.(79)

Possible solutions to (77) are
(i) a constant state E = const.;
(ii) a centered expansion wave;
(iii) a shock;
(iv) a contact (slip) line.
Let us first find the eigenvalues and the corresponding right eigenvectors of the

system (77).
For a smooth solution, (77) can be written as

A
∂U

∂λ
+ B

∂U

∂ξ
= 0,(80)

where U = (ζ, ω, τ, A,B)T , A = ∂E
∂U , and B = ∂F

∂U .
In order to obtain the eigenvalues σ we need to find the determinant of the matrix

(σA−B). Direct computation gives

det(σA−B) = σ2mζ2(m2 − S2ζg), m = σ�− S(1− h)ω.(81)

Case (1a). h �= 1. From the vanishing of this determinant we get our eigenval-
ues.

σ1 = 0 (multiplicity 2),(82)

σ2 =
S

� (1− h)ω,(83)

σ± =
S

�
{

(1− h)ω ±
√
gζ
}
.(84)

We emphasize again that S = Sr = const. and h = hr = const., h �= 1. The
corresponding set of right eigenvectors is

r1 = (0, 0, 0, 0, 1)T ,(85)

r2 = (0, 0, 0, 1, 0)T ,(86)

r3 =

(
0, 0, 1,− hL

Sσ2
,−hM

Sσ2

)T
,(87)

r± =

(
1,±

√
g

ζ
, 0,∓ hM

Sσ±

√
g

ζ
,± hL

Sσ±

√
g

ζ

)T
.(88)

Since the eigenvectors (85)–(88) are linearly independent, system (77) is hyperbolic.
To classify the characteristic fields, we see that

∇σ1 · r1,2 = 0(89)
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and

∇σ2 · r3 = 0,(90)

implying that characteristic fields corresponding to the σ1,2 and σ3 are linearly de-
generate. On the other hand,

∇σ± =

(
± S

2�
√
g

ζ
,
S(1− h)
� , 0,−σ±M� ,

σ±L
�

)
(91)

and

∇σ± · r± = ± 3S

2�
√
g

ζ
�= 0.(92)

Therefore the σ± characteristic families are genuinely nonlinear.
Case (1b). h = 1 (Lagrangian case). In this case the eigenvalues are

σ1 = 0 (multiplicity 3),(93)

σ± = ± S�
√
gζ.(94)

The eigenvectors associated with σ± are

r± =

(
1,±

√
g

ζ
, 0,−M�

S2ζ
,
L�
S2ζ

)T
.(95)

Associated with σ1 = 0 (multiplicity 3),

rank(σA−B)
∣∣∣
σ=σ1

= 3;

hence there exist the two, and only two, following linearly independent right eigen-
vectors:

r1 = (0, 0, 0, 1, 0)T ,(96)

r2 = (0, 0, 0, 0, 1)T .(97)

We therefore arrive at the conclusion that system (77) resulting from dimensional
splitting of the two-dimensional equations in Lagrangian coordinates is weakly hyper-
bolic, lacking one eigenvector, although all eigenvalues are real. This is in direct
contrast to the genuinely one-dimensional flow case, (12), which is hyperbolic for all
values of h, including the Lagrangian case (h = 1).

We shall now give solutions to the elementary waves in details: the expansion
wave, the shock wave, and the slip line. These solutions will be used in constructing
the Riemann solution to (74).

4.4.1. Expansion wave. The expansion wave is a smooth solution from the σ±
characteristic fields which can be derived from the following system of ODEs:

dω

dζ
= ±

√
g

ζ
,(98)

dτ

dζ
= 0,(99)

dA

dζ
= ∓ hM

Sσ±

√
g

ζ
,(100)

dB

dζ
= ± hL

Sσ±

√
g

ζ
.(101)
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The solution for (ω, τ) relates the flow state Q = (ζ, ω, τ)T in the expansion
fan to the initial state Q0 = (ζ0, ω0, τ0)

T upstream of the fan through the following
expressions:

ω = ω0 ∓ 2
(√

gζ0 −
√
gζ
)
,(102)

τ = τ0.(103)

Note that on crossing the expansion fan, these relations are independent of Kr and
hr.

To find the solution inside the expansion fan, we consider the characteristic ray
through the origin (0, 0) and a general point (λ, ξ) inside the fan. The slope of the
characteristic is

dξ

dλ
=
ξ

λ
= σ± =

S

�
{

(1− h)ω ±
√
gζ
}
.(104)

Using the above expression and the equation for ω in (102), we get

ζ =
1

g(3− 2h)2

[
(1− h)

(
ω0 ∓ 2

√
gζ0

)
− �
S

ξ

λ

]2

,(105)

where � = AM −BL is found from (100) and (101) to be a function of ζ

� = �0

(√
ζ0 − C±√
ζ − C±

) 2h
3−2h

, C± =
1− h
3− 2h

(
2
√
ζ0 ∓ ω0√

g

)
.(106)

Equation (105) together with (106) thus defines an implicit function ζ(μ), μ = ξ
λ .

Equation (106) reduces to the one-dimensional case, (22), when L = 0 and M = 1.
The expressions for ω and τ in terms of μ can be obtained simply via (102)–(103).
Like ζ, they depend on (Kr, hr), but at μ = ξ

λ = 0 they depend only on hr. The
variations of A and B across an expansion fan can also be obtained from (100) and
(101), but they are not needed in calculating the flux. (The flux function F does not
involve A or B; it involves only L and M .)

4.4.2. Shock waves. From the Rankine–Hugoniot jump conditions of the sys-
tem (77), we get

s[ζ�] = [ζ(1− h)ωS],(107)

s[ζ�ω] =

[(
ζ(1− h)ω2 +

gζ2

2

)
S

]
,(108)

s[ζ�τ ] = [ζ(1− h)ωτS],(109)

s[A] = −
[
h

S
(Mω + Lτ)

]
,(110)

s[B] =

[
h

S
(Lω −Mτ)

]
,(111)

where [.] denotes the jump across the discontinuity whose speed is denoted by s = dξ
dλ .

The shock jump relations after some algebraic manipulations can be expressed as
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follows:

s =
S

�0

[
(1− h)ω0 ±

√
g

2

ζ

ζ0
(ζ + ζ0)

]
,(112)

ω = ω0 ±
√
g(ζ + ζ0)(ζ − ζ0)2

2ζζ0
,(113)

τ = τ0.(114)

We note that the relations of the flow variables (ζ, ω, τ) across the shock are inde-
pendent of Kr and hr, but the slope of the shock wave s is dependent on Kr and
hr. However, this dependence is not needed in finding the water height ζ, and hence
(ω, τ) also, at μ = 0 provided only that s > 0. (If s < 0, the shock wave will appear
in the quadrant (ξ < 0, λ > 0)).

Note that the jumps of A and B across a shock may also be obtained from (110)
and (111), but they are not needed in calculating the flux F at μ = 0.

4.4.3. Slip lines. For the slip line corresponding to the speed s = σ3 = S
�0

(1−
h)ω0 > 0 we find, from Rankine–Hugoniot jump conditions (107)–(111),

ζ = ζ0,(115)

ω = ω0,(116)

but τ and A, B may jump arbitrarily.
We note again that, except the speed s, the relations (115)–(116) across a slip

line are independent of (Kr, hr). Although s depends on (Kr, hr), the dependence is
not needed in calculating (ζ, ω, τ) and the flux F at μ = 0, provided s > 0. (If s < 0,
the slip line appears in the quadrant (ξ < 0, λ > 0).)

The flow across the slip line corresponding to s = σ1,2 = 0 cannot be discussed
within the quadrant (ξ > 0, λ > 0) alone.

Case (2). ξ < 0.
The solution in the quadrant (ξ < 0, λ > 0) can be obtained similarly.
Case (3). Riemann solution in −∞ < ξ < +∞.
Now, after obtaining all possible solutions for ξ > 0 and ξ < 0 separately the

question is how to construct the solution to the Riemann problem for λ > 0, −∞ <
ξ < +∞. We note that at ξ = 0, (a) S2 in (71) is a delta function; (b) the coefficients
in E and F jump discontinuously. These are the difficulties one would face with within
the Eulerian system using curvilinear coordinates rather than Cartesian coordinates.

The σ1-field is linearly degenerate and it corresponds to s = 0 in (107)–(111).
These are five equations relating three jumps of ζ, ω, and τ and, therefore, in general
have no solution, except when hr = hl, Lr = Ll, and Mr = Ml. In the latter case,
there is a unique solution: the trivial solution [ζ] = [ω] = [τ ] = 0, i.e., a continuous
solution.

To avoid the difficulty of nonexistence of the solution to the Rankine–Hugoniot
relations (107)–(111), we replace both hl and hr by their average, i.e., hl = hr =
0.5(hl + hr) = h, and similarly replace Ll and Lr, Ml, and Mr by their averages
M and L, respectively. Consequently, the Rankine–Hugoniot relations are satisfied,
and the flow is continuous across μ = ξ

λ = 0. We note from previous discussions
that these replacements do not alter the relations of the flow variables (ζ, ω, τ) across
the elementary waves (the expansion fan, the shock, and the slip line), as they do
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not depend on (K, h). It should be pointed out that the replacements of Ll and Lr
by L and Ml and Mr by M are a fictitious one—they are used only to ensure the
existence of the solution to (107)–(111)—but these average values are never used in
the computation. On the other hand, the replacement of hl and hr by h is a real
one: it is used in (105) when the line μ = ξ

λ = 0 is inside the expansion fan which is,
however, a rare case.

The Riemann solution for −∞ < ξ < +∞ can now be constructed in the usual
way as if the slip line corresponding to s = σ1,2 = 0 did not exist: shock (or expansion
fan), slip line, and expansion fan (or shock), separated by uniform flow regions.

We note that in solving the split Riemann problems we do not need to use explic-
itly the complete set of right eigenvectors. The eigenvectors that are used are those
corresponding to the genuinely nonlinear characteristic families; these eigenvectors
exist even in the case h = 1 (Lagrangian coordinates). The missing eigenvectors in
Lagrangian coordinates correspond to the linearly degenerated characteristic families
and are not employed in constructing solutions to the Riemann problems. This also
explains why our computations with h = 1 encounter no difficulty and produce re-
sults identical to that for h = 0.999. We present results for h = 0.999, rather than for
h = 1.0, because the theoretical base for the existence and uniqueness of the solution
to the Riemann problem for h = 1.0 is not certain.

5. Test examples. In this section the unified coordinates approach is tested nu-
merically on several examples. The flat bottom case is considered with zero roughness
coefficients m and n. In all cases the effects of h on the computational robustness and
accuracy are discussed.

Example 1. The first problem is purely a one-dimensional two-dam break prob-
lem. In a long channel three different heights of still water are separated by two dams,
of which one is located at x = 0.8 and the other at x = 1.2 (Figure 1(a)). At t = 0 the
dam located at x = 0.8 is broken instantly and completely, resulting in an expansion
wave moving upstream and a bore (shock) rushing downstream (Figure 1(b), (c), (d)).
The bore (shock) then reaches the second dam (x = 1.2) at some time later, triggering
it to break completely and resulting in a stronger bore (shock) moving downstream
and another expansion wave moving upstream (Figure 1(e), (f), (g)). It is difficult
for conventional shock-capturing schemes to accurately compute this problem due to
the interaction of the first bore (resulting from the rapture of the first dam) with the
second dam. Most conventional shock-capturing schemes [19], [20], [21] smear the first
bore, thus giving only its approximate location (Figures 4 and 5)). Consequently, it is
impossible computationally to determine the time of breaking of the second dam. In
our computation the shock-adaptive Godunov method [13], [14], which gives infinite
bore resolution, is applied and this difficulty is avoided. The exact time when the
second dam breaks can be found by using formula (29) for the speed of the shock
(bore), and it is found to be (with eight significant figures of accuracy) 0.24292472.
In our computation the second dam breaks at t = 0.2375.

Figures 1 and 2 show the evolution of water height and velocity with time. We note
that after the breaking of the second dam, the water velocity increases significantly
(Figure 2(d), (e), (f)). This combination of the strong bore moving with high velocity
can potentially be destructive. Comparisons between exact solutions and computed
ones at the time t = 0.1 (after the first dam broke) and the time t = 0.3375 (0.1
time units after the second dam broke) are presented in Figure 3. Figure 4 presents
computed results for water height and velocity at t = 0.22 using ordinary Godunov
scheme with the MUSCL update. We note that smeared shock reaches the second dam
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prematurely. It is seen in Figure 5 that with the ordinary shock-capturing method
the shock is smeared, though its average location is correct, as expected. It is also
seen that the shock-adaptive Godunov scheme perfectly resolves the bore, giving its
exact location. In all computations we use h = 0 (Eulerian).

Example 2. This example, known as the Salzman problem in gas dynamics, is pre-
sented to show the role an irregular grid plays in producing spurious flow. The problem
consists of a rectangular channel (Figure 6) whose walls form reflective boundaries.
The initial data are{

ζ = 4.0, u = 7.4246, v = 0.0, x < 0,
ζ = 1.0, u = 0.0, v = 0.0, 0 ≤ x ≤ 1.

They are chosen in such a way that the discontinuity, initially located at x = 0.0, will
result in a plane shock propagating at the speed equal to 9.899 in the x direction. The
initial grid has 10 uniform cells in the y-direction (0.0 ≤ y ≤ 0.1) and 100 nonuniform
cells in the x-direction (0 ≤ x ≤ 1). The coordinates of the cell centers in Figure 6
are

xi,j = (i− 1) ∗ �+ (11− j) ∗ � ∗ sin
π(i− 1)

100
,

yi,j = (j − 1) ∗ �+ 0.5 ∗ �,
i = 1, . . . , 101 j = 1, . . . , 10,

where � = 1/100. We shall perform computation for h = 0.999 and grid-angle
preserving h. Figure 7 presents resulting grid (7(a)) and water height (7(b)) for the
case h = 0.999 at the time t = 0.06, which is several time steps before the computation
breaks down. As we can see, this grid is highly deformed near the position x = 0.5
behind the shock. Looking at the velocity vectors (Figure 7(c)) we see that there is a
presence of spurious flow: the y-component of velocity (especially near x = 0.5) and
hence vorticity which, in turn, affects the grid and the water height (Figure 7(a), (b)).

Similar results of spurious flow production were reported, for example, by Dukow-
icz and Meltz in [22], where it was found that Lagrangian coordinates do not preserve
the one-dimensionality of a plane shock but produce spurious vorticity. They success-
fully introduced a technique to filter out the spurious vorticity, while retaining the real
one, if present. In another approach, described by Caramana and Shashkov in [23],
the spurious vorticity is eliminated by proper use of subzonal Lagrangian masses and
associated densities and pressures; these subzonal pressures give rise to forces that
resist these spurious motions. We have found that the spurious flow can be avoided
automatically by using unified coordinates with grid-angle preserving h. The results
are presented in Figure 8. Here we note that although the vertical component of
velocity is still present (Figure 8(c), especially near the shock, it is very small and is
not magnified during the computation. These results (Figure 8) are almost identical
to those of gas dynamics case in [22], which requires a special technique to filter out
the spurious vorticity.

Example 3. The next example is a two-dimensional steady Riemann problem
generated by two uniform parallel flows as

(ζ, F, θ) =

{
(1, 4, 0), y > 0.5,
(2, 2.4, 0), y < 0.5,

where F is the Froude number and θ the flow angle, θ = tan−1(v/u). The flow contains
a shock wave, a slip line, and an expansion wave (Figure 9). The slip line is sensitive
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to the dissipative property of the numerical methods. In [24], [25] the problem was
solved numerically using a generalized Lagrangian method which perfectly resolves slip
lines. However, that method is valid only for steady flow, whereas the method in this
paper is valid for unsteady flow as well. Since the analytical solution for the problem
is available, it is an excellent benchmark problem for the verification of numerical
methods. In the computation, the steady flow is achieved by time marching until the
flow structure and the variables do not change with time. A grid of 60×100 with Δξ =
Δη = 0.01 is employed in the computation. Initially, a grid with Δx = Δy = 0.01
in the physical plane is laid over a domain of {0 ≤ x ≤ 0.6, 0 ≤ y ≤ 1}. The initial
data are given at each cell according to its position in y > 0.5 or y < 0.5, representing
cell-averaged values. The physical domain will change with time according to the
pseudoparticle’s velocity hq if h is not zero. If we follow the computational cells
(pseudoparticles), they will move out the initial physical domain, and it would be
difficult to have a steady state of flow in the original physical domain. To avoid this,
a special technique called “motionless viewing window” is applied as in the classical
Lagrangian method. Accordingly, the column of cells which have moved out of the
original physical domain to the right are deleted, while a new column of cells are
added at the input flow boundary on the left.

In Figures 10–12 we show computed Froude number distributions using our unified
code for h = 0, h = 0.5, and h = 0.999, compared with the exact solutions. The poor
resolution of the slip line seen in Figure 10 is a common feature of any method based
on Eulerian coordinates, as a result of Godunov averaging across slip lines which, in
general, do not coincide with the (Eulerian) coordinate lines. A comparison of Figures
10–12 also shows that the slip line resolution improves with increasing h from h = 0
to h = 0.999, as expected.

Figure 13 shows the computed Froude number using the grid-angle preserving
h as determined by (57), which is solved at each time step using the method of
characteristics. We see that its slip line resolution is almost as sharp as that for
h = 0.999, and it is much better resolved than those for h = 0 and h = 0.5.

All the computations started with the Eulerian grid (Figure 14). The flow-
generated grids, i.e., the lines joining the cell centers, at steady state are shown in
Figures 15–17. We note that (a) the grid using grid-angle preserving h is everywhere
orthogonal, (b) the grids for h = 0.5 and h = 0.999 are severely deformed near the slip
line, and such grid deformation, although it doesn’t bring any troubles in the present
example, can cause inaccuracy in other steady flows [1] as well as for the unsteady
flows; see Example 2 above and the following examples.

Example 4. The next example is the “implosion/explosion” problem, so called by
analogy with gas dynamics. It is an unsteady problem in a two-dimensional container.
Initially, two regions of still water are separated by a cylindrical wall (radius 0.2)
centered in the 1 × 1 square domain shown in Figure 18. The depth of the water
is 0.1 within the cylinder and 1 outside. At t = 0 the wall is removed and the
resulting flow is investigated. Initially, a uniform rectangular grid 100 × 100 with
Δξ = Δη = Δx = Δy = 0.01 is given (Figure 19). We test this example with h = 0,
h = 0.5, h = 0.999, and the grid-angle preserving h. When h = 0.999, the code can run
only until t = 0.04; soon afterwards it breaks down. This is because the computational
cells literally move with the fluid particles and for large h become severely deformed.
If we reduce h, say, h = 0.5, the code can run longer until t = 0.08 when it, too, breaks
down. This shows that smaller h can delay the severe cell deformation but cannot
remove it. With the grid-angle preserving method, which keeps the grid regular, the
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code can run for a very long time without any indication of severe grid deformation.
Figures 20–22 give the grids at t = 0.04 for different cases. We see that irregular
grids prevail when h is constant and a regular grid prevails when the grid angles are
preserved (Figure 22).

The surfaces of water height for different times are presented in Figure 23. The
physical behavior of the flow is clearly captured in these pictures. After the wall is
removed, the cylindrical shock moves inside the lower level region, and the expansion
wave propagates towards the walls (Figure 23(a), (b), (c)). At around time t = 0.0565
the shock collapses, resulting in a spectacular rise of water level near the center (Figure
23(d)). In subsequent times the water height decreases in the central region now
manifesting in cylindrical shock wave propagating towards the walls (Figure 23(e),
(f), (g), (h)). This process of the water in the central region going up and down
repeats itself but with more moderate height and depth. We see in Figure 23(b), (c),
(e) that the column of water does not have perfect circular shape, as one would expect
to have, but has wavy shape. It was shown in [26] that this behavior is a consequence
of using a rectangular grid.

Example 5. Finally, we test our code on the two-dimensional dam breaking prob-
lem. This test case was computed in, for example, [27], [28].

Two levels of still water in the 1.4 × 1 basin are separated by a dam at the
position x = 0.7 (Figure 24). The initial height ratio is 10 with values of ζl = 1 and
ζr = 0.1 on two sides of an idealized dam that has been represented as a mathematical
discontinuity in water. At time t = 0 water is released into the lower level side through
a middle third of the dam, forming a wave that propagates while spreading laterally.
At the same time, an expansion wave spreads into the reservoir.

A 140 × 100 rectangular grid was chosen in this case. We have performed the
computation for h = 0.999 and for grid-angle preserving h. Figure 25 represents the
flow-generated grid in the case h = 0.999 at time t = 0.04. The grid is severely
distorted by the same reason as in the previous example, and soon after that time the
computation breaks down. The computation using grid-angle preserving h is stable,
producing results for much larger time. In Figure 26 we present a computed grid
which is fairly uniform everywhere even at time t = 0.15. The surface elevation of the
water height is given in Figure 27, describing the flow in details which are similar to
those in [23], [24].

6. Conclusions. In this paper we have successfully adopted the uniform coor-
dinates of Hui, Li, and Li [1] for the shallow water equations. It has been tested on
a large number of problems and found that with the free function h in the unified
coordinates chosen to preserve grid angles, the unified coordinate system is supe-
rior to both Eulerian and Lagrangian systems in that (a) it resolves slip lines as
sharply as the Lagrangian system, especially for steady flows; (b) it avoids the severe
grid deformation of the Lagrangian system which causes inaccuracy and breakdown
of computation; (c) it also automatically avoids spurious flow produced by the La-
grangian system. Additionally, it was found that the two-dimensional shallow water
equations in Lagrangian coordinates are only weakly hyperbolic with possible defects
in numerical computation.
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Fig. 1. Evolution of water height in the two-dam problem. Shock-adaptive Godunov scheme.
h = 0 (Eulerian). (a) t = 0.0; (b) t = 0.1; (c) t = 0.15; (d) t = 0.2; (e) t = 0.25; (f) t = 0.3; (g)
t = 0.35.
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Fig. 2. Evolution of particle velocity in the two-dam problem. Shock-adaptive Godunov scheme.
h = 0 (Eulerian). (a) t = 0.1; (b) t = 0.15; (c) t = 0.2; (d) t = 0.25; (e) t = 0.3; (f) t = 0.35.
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Fig. 3. Comparison of exact (solid line) and computed (dots) solutions before (upper plot)
and after (lower plot) the collapse of the second dam. Shock-adaptive Godunov scheme. h = 0
(Eulerian).
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Fig. 4. Water height and particle velocity at t = 0.22. Godunov scheme. h = 0 (Eulerian).
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the second dam. Godunov scheme. h = 0 (Eulerian).
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Fig. 6. Initial grid for the Salzman test problem.
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Fig. 7. Computed solution to Salzman problem. t = 0.06, h = 0.999. (a) flow-generated grid;
(b) contours of water height; (c) velocity distribution.
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Fig. 8. Computed solution to Salzman problem. t = 0.06, grid-angle preserving h. (a) flow-
generated grid; (b) contours of water height; (c) velocity distribution.
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Fig. 9. Sketch of a steady Riemann problem.
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Fig. 10. Froude number distribution in a steady Riemann problem computed by the present
unified code; h = 0 (Eulerian).
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Fig. 11. Froude number distribution in a steady Riemann problem computed by the present
unified code; h = 0.5.
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Fig. 12. Froude number distribution in a steady Riemann problem computed by the present
unified code; h = 0.999.
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Fig. 13. Froude number distribution in a steady Riemann problem computed by the present
unified code with h chosen to preserve grid angles.
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Fig. 14. Eulerian (h = 0) grid, also used as initial grid for all cases in the steady Riemann
problem.



UNIFIED COORDINATES FOR 2-D SHALLOW WATER EQUATIONS 1645

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Grid (h=0.5)

Fig. 15. Flow-generated grid in steady Riemann problem; h = 0.5.
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Fig. 16. Flow-generated grid in steady Riemann problem; h = 0.999.
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Fig. 17. Flow-generated grid in steady Riemann problem; h chosen to preserve grid angles.
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Fig. 18. The initial state for the “implosion/explosion” problem.
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Fig. 19. The initial grid for the “implosion/explosion” problem.
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Fig. 20. Flow-generated grid at t = 0.04 in an “implosion/explosion” problem; h = 0.5.
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Fig. 21. Flow-generated grid at t = 0.04 in an “implosion/explosion” problem; h = 0.999.
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Fig. 22. Flow-generated grid at t = 0.04 in an “implosion/explosion” problem; grid-angle
preserving h.
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Fig. 23. Evolution of water height with time in an “implosion/explosion” problem; grid-angle
preserving h. (a) t = 0.0; (b) t = 0.025; (c) t = 0.05; (d) t = 0.0575; (e) t = 0.075; (f) t = 0.1; (g)
t = 0.125; (h) t = 0.2.
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Fig. 24. The initial state for the two-dimensional dam break problem.
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Fig. 25. Flow-generated grid at t = 0.04 in a two-dimensional dam break problem; h = 0.999.
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Fig. 26. Flow-generated grid at t = 0.15 in a two-dimensional dam break problem; grid-angle
preserving h.
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Fig. 27. Water height at t = 0.15 after breaking of the dam in a two-dimensional dam break
problem; grid-angle preserving h.
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Abstract. In this paper we present a meshfree discretization technique based only on a set
of irregularly spaced points xi ∈ R

d and the partition of unity approach. In this sequel to [M.
Griebel and M. A. Schweitzer, SIAM J. Sci. Comput., 22 (2000), pp. 853–890] we focus on the cover
construction and its interplay with the integration problem arising in a Galerkin discretization. We
present a hierarchical cover construction algorithm and a reliable decomposition quadrature scheme.
Here, we decompose the integration domains into disjoint cells on which we employ local sparse
grid quadrature rules to improve computational efficiency. The use of these two schemes already
reduces the operation count for the assembly of the stiffness matrix significantly. Now the overall
computational costs are dominated by the number of the integration cells. We present a regularized
version of the hierarchical cover construction algorithm which reduces the number of integration cells
even further and subsequently improves the computational efficiency. In fact, the computational costs
during the integration of the nonzeros of the stiffness matrix are comparable to that of a finite element
method, yet the presented method is completely independent of a mesh. Moreover, our method is
applicable to general domains and allows for the construction of approximations of any order and
regularity.

Key words. meshfree method, gridless discretization, partition of unity method, Galerkin
method, sparse grids, numerical integration, mesh generation
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1. Introduction. Meshfree methods (MMs) are promising approaches to over-
come the problem of mesh generation, which is still the most time-consuming part of
any finite element (FE) simulation. MMs are based only on a (finite) collection of
independent points within the domain of interest; i.e., there are no fixed connections
between any two points as in a conventional mesh. These points can now be used
as collocation nodes [1, 9, 10, 11, 19] for the construction of approximate densities
[21, 22, 23] or even for the construction of trial and test spaces for a Galerkin method
[2, 3, 4, 8, 13].

The shape functions of a meshfree Galerkin method are in general more complex
than FE shape functions. In a MM the shape functions are (in general) piecewise
rational functions, whereas in a finite element method (FEM) they are piecewise
polynomials. This is due to the fact that the construction of a meshfree shape function
is based only on independent points instead of a mesh. Therefore, the integration
of meshfree shape functions is more complicated than the integration of FE shape
functions. Hence, the assembly of the stiffness matrix and right-hand side vector in a
meshfree Galerkin method is far more expensive than in the FEM. Meshfree Galerkin
methods therefore could not be applied to real world problems up until now and are
considered to be in an experimental state only.

In this paper we present a numerical method based only on a set of irregularly
spaced points and the partition of unity (PU) approach [2]. In a partition of unity
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method (PUM), we define a global approximation uPU simply as a weighted sum of
local approximations ui,

uPU(x) :=

N∑
i=1

ϕi(x)ui(x).

These local approximations ui are completely independent of each other; i.e., the local
supports ωi := supp(ui), the local basis {ψki }, and the order of approximation pi for
every single ui :=

∑
uki ψ

k
i can be chosen independently of all other uj . Here, the

functions ϕi form a PU. They are used to splice1 the local approximations ui together
in such a way that the global approximation uPU benefits from the local approximation
orders pi, yet it still fulfills global regularity conditions; see [13]. For a general partial
differential equation (PDE) Lu = f the fully assembled approximation functions ϕiψ

k
i

have to be used within the Galerkin procedure. Hence, for the approximation of a
PDE we have to integrate the product functions ϕiψ

k
i in the assembly of the stiffness

matrix. This integration is one major issue of concern with PUMs. The dominant
factor for the approximation quality of the method is certainly the local basis function
ψki , but, other than with the p-version of the FEM, this high order function is not the
cause of concern during the integration—the PU functions ϕi are.

The algebraic structure of the functions ϕi is (in general) more complex than that
of FE shape functions, since the ϕi have to repair any spatial irregularity induced
by the overlaps of the ωi. Hence, the construction of a PU with a simple algebraic
structure is the most crucial step in a PUM. Therefore, the design and implementation
of a PUM for general covers CΩ := {ωi | i = 1, . . . , N} including a fast, yet reliable
quadrature scheme is quite involved.

One approach to utilize at least some of the PUM benefits is the so-called gener-
alized finite element method (GFEM) [7, 30]. Here, the construction of the PU {ϕi}
is left to an h-version FEM. On top of this PU, local basis functions ψik can still be
selected with all the freedom the PU approach allows for, e.g., ψik which are adapted
to known local behavior of the solution. However, the dependence on the h-mesh con-
struction for the PU is of course a major drawback of the GFEM. Furthermore, one
needs to supply appropriate quadrature schemes for the reliable integration of these
general local basis functions ψik independent of the facts that the cover is a mesh and
that the PU is piecewise linear.

Truly meshfree Galerkin methods [8, 13] have to be concerned with the construc-
tion of a cover from a given set of points P = {xi ∈ Ω} and hence have to cope with
geometric searching and sorting problems. To tackle these problems an algorithm for
finding a set covering a single point based on a tree concept was proposed in [17].
However, the cover CΩ was still assumed to be given.

In this paper we present a general cover construction algorithm based only on a set
of irregularly spaced points P = {xi ∈ Ω}. We partition the domain into overlapping
d-rectangular patches ωi which we assign to the given points xi to cover the complete
domain. We use d-binary trees (binary trees, quadtrees, octrees) for the construction
of these patches ωi. While the data structures used here are similar to those used

1Due to this splicing property of the PU one is tempted to construct the global solution uPU by
solving only local problems for the ui on the support patches ωi. Here, one would use the local basis
functions ψki as trial and test functions and disregard the partition of unity functions ϕi during the
construction of the global solution uPU. For the mass matrix problem—and related interpolation
problems—this is a proper approach which directly leads to a system of linear equations already in
block diagonal form without any lumping.
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in [17], we are interested in the construction of a cover CΩ with desirable features.
For instance, the subsets Nx ⊂ CΩ of cover patches ωk which cover a point x ∈ Ω,
i.e., Nx = {ωk ∈ CΩ |x ∈ ωk}, should be small. Although a cover CΩ generated
by this general algorithm is minimal in the sense that card(Nx) � card(CΩ) is very
small for all x ∈ Ω, the resulting PU functions ϕi are (in general) still more complex
than in the GFEM. The piecewise character of the constructed functions ϕi, however,
can be further significantly simplified by making slight changes to the general cover
construction. With this refined algorithm we construct covers for general domains
that stay close to k-irregular grids. This construction not only minimizes the number
of patches card(Nx) which cover a single point x ∈ Ω but also leads to PU functions
ϕi with simpler algebraic structure. A k-irregular grid is completely sufficient for a
PUM, since the ϕi will repair the jump within the spatial resolution and ensure the
global regularity conditions imposed on the approximation uPU. At the same time, the
cost of the assembly of the stiffness matrix and right-hand side vector is significantly
reduced, since the simpler algebraic structure of the ϕi allows for cheaper quadrature
rules.

Furthermore, we introduce a numerical quadrature scheme for the fully assembled
approximation functions ϕiψ

k
i which further reduces the integration costs. Here,

we decompose the integration domain to resolve the algebraic structure of the PU
functions ϕi; i.e., we decompose the integration domains into disjoint cells on which
the integrands are smooth functions. We then use a sparse grid quadrature rule
[12] with a dynamic stopping criterion locally on the cells. Hence, the number of
integration points on each cell is minimal with respect to accuracy. It turns out that
overall, the number of operations needed by our method during the assembly of the
stiffness matrix is comparable to that of a FEM. Yet at the same time it is truly a
MM; i.e., it is completely independent of a mesh. Hence, our PUM is a very flexible
and efficient numerical discretization technique, and it is a strong competitor for
conventional FEMs. With the proposed method the treatment of real world problems
using meshfree Galerkin methods might now be in reach.

The remainder of the paper is organized as follows. In section 2 we give a short
review of the construction of PU spaces for meshfree Galerkin methods. We then
present in section 3 a general hierarchical cover construction algorithm based only on
a set of irregularly spaced points which allows for a fast neighbor search. Here, we
make use of d-binary trees (quadtrees, octrees, etc.) to assign parts of the domain to
each of the given points to cover the complete domain. The Galerkin discretization
of a PDE using PUM shape functions is given in section 4. In section 5 we introduce
an appropriate numerical quadrature scheme for PUM shape functions. The scheme
is based on a decomposition approach to resolve the piecewise character of the PU
functions ϕi. On the cells of this decomposition we employ local sparse grid quadra-
ture rules with a dynamic stopping criterion. This reduces the computational costs
on each cell substantially, yet still ensures a reliable accuracy of the integration. In
section 6 we present a refinement of the general cover construction algorithm given
in section 3; a similar cover construction algorithm was recently proposed in [18]. It
also accounts for the geometric neighboring relations of the PU functions ϕi, i.e., the
neighboring relations of the cover patches ωi, which have a significant effect on the
number of integration cells. With this improved algorithm the number of integration
cells and the corresponding computational effort during the integration of the stiffness
matrix entries is significantly reduced. Numerical results for elliptic problems in two
and three dimensions are given in section 7.
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2. Construction of trial and test spaces. In the following, we give a short
recap of how to construct PU spaces for a meshfree Galerkin method; see [13] for
details. The starting point for any MM is a collection of N independent points
P := {xi ∈ R

d |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to construct a
PU {ϕi} on the domain of interest Ω to define an approximate solution

uPU(x) :=

N∑
i=1

ϕi(x)ui(x),(2.1)

where the union of the supports supp(ϕi) = ωi covers the domain Ω ⊂ ⋃Ni=1 ωi and
ui ∈ V pii (ωi) is some locally defined approximation of order pi to u on ωi. Given a
cover CΩ = {ωi | i = 1, . . . , N} we can then define such a PU and local approximations
ui by using Shepard functions as ϕi and local approximation spaces V pii on the patches
ωi.

A naive approach toward the construction of such a cover CΩ would be the design
of patches ω̃i in such a way that every given point xi ∈ ω̃j for some j �= i. However,
this procedure (in general) does not lead to a cover of the complete domain Ω, i.e.,⋃
j ω̃j �⊃ Ω, since the points xi ∈ P may not be uniformly distributed in the domain

Ω. In [13] the following algorithm was proposed which tackles this problem by using
a set P̃ = P ∪ Q of original points P = {xi} and additional (user supplied) points
Q = {ξk}. Note that the additional points ξk are introduced to guarantee that the
patches ωi completely cover the entire domain Ω. However, they are not used to
construct additional cover patches; i.e., the algorithm constructs a cover patch ωi
only for xi ∈ P not for ξ ∈ P̃ \ P .

Algorithm 1 (direct cover construction).
1. Given: the domain Ω ⊂ R

d, a scalar α ≥ 1, the set of points P = {xi ∈
R
d |xi ∈ Ω, i = 1, . . . , N} for the PU construction and a set of points Q =
{ξi ∈ R

d | ξi ∈ Ω} to resolve the domain Ω.
2. Set P̃ = P ∪Q.
3. For all xk ∈ P : Set ωk :=

⊗d
i=1[x

i
k − hik, x

i
k + hik] with hik = 0 for all

i = 1, . . . , d.
4. For all y ∈ P̃ :

(a) Set R = 0. Evaluate the set Sy,R of all points xk ∈ P that fall within
a searching square BR which is centered in y and whose side length is
equal to 2R. If Sy,R = ∅ (or Sy,R = {y} if y = xk), increase the size of
the searching square, i.e., R, and try again.

(b) Compute the distances dy,k := ‖y − xk‖ for all xk ∈ Sy,R with xk �= y.
(c) Determine a point xl �= y with dy,l = mink dy,k.
(d) If y �∈ ωl increase hil for all i = 1, . . . , d appropriately such that y ∈ ωj

holds.
5. For all xk ∈ P : Set ωk = αωk, i.e., hik = αhik for all i = 1, . . . , d.

Now that we have found a cover CΩ of the domain Ω, we construct a PU {ϕi} by
defining weight functions Wi on the cover patches ωi. From these weight functions
Wi we can easily generate a PU by Shepard’s method; i.e., we define

ϕi(x) =
Wi(x)∑
Wk(x)

.(2.2)

Since the cover patches ωi constructed by Algorithm 1 are d-rectangular, i.e., they are
products of intervals, the most natural choice for a weight function Wi is a product
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of one-dimensional functions; i.e., Wi (x) =
∏d
l=1W

l
i (xl) =

∏d
l=1W (

x−xli+hli
2hl
i

), with

supp(W) = [0, 1], such that supp(Wi) = ωi. It is sufficient for this construction to
choose a one-dimensional weight function W which is nonnegative. Throughout this
paper we use normed B-splines [27] as the generating weight function W.

In general, a PU {ϕi} can of course recover only the constant function on the
domain Ω. Hence, the consistency error in the L2-norm of a discretization with the
{ϕi} would be of first order only. Therefore, we need to improve the approximation
quality to use the method for the discretization of a PDE. To this end, we multiply
the PU functions ϕi locally with polynomials. Since we use d-rectangular patches
ωi only, a local tensor product space is the most natural choice. Throughout this
paper, we use complete Legendre polynomials2 as local approximation spaces V pii ;

i.e., we choose V pii = span ({ψki |ψki =
∏d
l=1 Lkli ,

∑d
l=1 kl ≤ pi}), where Lkli is the

one-dimensional Legendre polynomial of degree kl on the interval [xli − hli, xli + hli].
The selection of optimal local approximation orders pi and basis functions ψki

are by nature problem-dependent. The regularity of the analytical solution space,
e.g., Hk(Ω) or Lp(Ω), and information about the analytical solution u itself may
provide some insight. This and other adaptivity related issues are the subject of
future research and will not be treated in this paper.

Following the construction given above, we can construct approximate solutions
uPU of any order and regularity without additional constraints on the cover CΩ. The
resulting shape functions ϕiψ

k
i , however, have some surprising properties.

1. The PU functions ϕi are (in general) noninterpolatory. Furthermore, there
are more degrees of freedom in a PUM space than there are points xi ∈ P
due to the use of (multidimensional) local approximation spaces V pii .

2. The regularity of the shape functions ϕiψ
k
i is independent of the number of

degrees of freedom. The shape functions inherit the regularity of the PU
functions ϕi (if we assume that the local approximation spaces V pii are at
least of the same regularity). Therefore, we can increase the regularity of an
approximation uPU by changing the B-spline used in (2.2) independent of the
local approximation spaces V pii . Note that this is different from FEMs. In
the FEM the global regularity of an approximation is given by the element
regularity which on the other hand is implemented by constraints imposed
on the local degrees of freedom. Hence, a higher regularity may be achieved
only by increasing the number of degrees of freedom of an element.

3. The PUM shape functions are piecewise rational functions due to the use of
piecewise polynomial weights in (2.2).

The cover CΩ itself influences the computational work of the method significantly.
For one, the neighbor relations ωi∩ωj �= ∅ of the cover CΩ already define the sparsity
pattern of the stiffness matrix. Second, the evaluation of a single PU function ϕi
(see (2.2)) involves the evaluation of the weights of all neighboring patches Ni :=
{ωj ∈ CΩ |ωi ∩ ωj �= ∅}. Hence, it is necessary to control the number of neighbors
card(Ni) to limit the computational work during the assembly of the stiffness matrix.
Furthermore, the smoothness of a PU function ϕi is strongly dependent on the amount
of overlap ωi ∩ ωj of the neighboring patches ωj ∈ Ni; see [13] for details.

2Note that due to their product structure the shape functions ϕiψ
k
i of our PUM do not inherit

orthogonality properties of the local basis functions ψki . Hence, the chosen Legendre polynomials Lk
will not lead to a diagonal matrix for the mass matrix problem, as well as the integrated Legendre
polynomials LkI will not lead to a diagonal matrix for the Poisson problem.
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Fig. 3.1. Hierarchical cover construction with Algorithm 2 in two dimensions. The initial cell
decomposition induced by P (upper left) and its corresponding tree representation (upper right) after
step 2 of Algorithm 2. The final cell decomposition (lower left) and its tree representation after the
completion of Algorithm 2.

3. Hierarchical cover construction. Therefore, we need to construct a cover
CΩ which minimizes the number of neighbors card(Ni) for each patch ωi but ensures
significantly large overlaps ωi∩ωj to allow for the use of a cheaper quadrature scheme
for each nonzero entry of the stiffness matrix.

With Algorithm 1 for the cover construction the control over the neighborhoods
Ni is somewhat limited. Hence, it is very difficult to limit the density of the stiff-
ness matrix. Even more problematic though is the fact that Algorithm 1 needs an
additional input3 Q besides the set of points P and the domain Ω ⊂ R

d to ensure
that the complete domain is indeed covered by CΩ. This of course makes Algorithm
1 significantly less useful, especially in time-dependent settings.

In the following we propose a new algorithm which employs a decomposition
approach for the domain Ω to assign sets ωi ⊂ R

d to the points xi ∈ P in such a way
that they cover the domain Ω ⊂ ⋃ωi. This hierarchical algorithm does not need an
additional input Q.

Algorithm 2 (hierarchical cover construction).

1. Given: the domain Ω ⊂ R
d, a bounding box RΩ =

⊗d
i=1[l

i
Ω, u

i
Ω] ⊃ Ω, the

initial point set P = {xj ∈ R
d |xj ∈ Ω}, and a parameter k ∈ N.

2. Build a d-binary tree (quadtree, octree) over RΩ such that per leaf L at

most one xi ∈ P lies within the associated cell CL :=
⊗d

i=1[l
i
L, u

i
L], and the

difference of the levels of two adjacent cells is at most k; see Figure 3.1.

3The selection of the set Q within Algorithm 1 is quite involved to ensure the sparsity of the stiff-
ness matrix and to cover the complete domain at the same time if the points xi ∈ P are nonuniformly
distributed.
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Fig. 3.2. P = Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]2 (left), P with card(P ) = 106 (center)

after Algorithm 2 with k =∞ and xiL = liL+ 1
2
(uiL− liL) for generated points xL, and the generated

cover CΩ (right) with hiL = 5
4

max{uiL − xiL, xiL − liL}.

3. For all cells CL =
⊗d

i=1[l
i
L, u

i
L] with CL ∩ Ω �= ∅:

(a) If there is an xj ∈ P with xj ∈ CL, set xL = xj . Else, set xL = any
element of CL, e.g., the center xiL = liL + 1

2 (uiL − liL) of the cell CL.
(b) Set P = P ∪ {xL}.
(c) Set ωL = RL =

⊗d
i=1[x

i
L−hiL, xiL+hiL] ⊃ CL, where hiL = α

2 max{uiL−
xiL, x

i
L − liL} with α > 1.

With Algorithm 2 we not only ensure the covering property Ω ⊂ ⋃ωi without addi-
tional input data, but we also control the neighborhoods Ni, i.e., the nonzeros of the
stiffness matrix, and ensure the smoothness of the functions ϕi. The neighborhoods
Ni of the cover patches ωi constructed by Algorithm 2 are small, yet the amount of
overlap of any two neighboring patches is of significant size. Certainly, these features
do come at a price we have to pay: the algorithm automatically introduces additional
points xN+k into the set P ; see Figures 3.1 and 3.2.4 This increases the number of
unknowns, i.e., the number of rows of the stiffness matrix, and seemingly the overall
computational cost. However, as it turns out, the number of nonzeros of a stiffness
matrix based on our algorithm is comparable to the number of nonzeros of a stiff-
ness matrix based on Algorithm 1 for uniformly distributed points P (see Table 6.1,
where the initial point set P for the cover construction is a Halton5 point set). And
it is significantly less for highly irregular point sets P (see Table 6.2). Furthermore,
the proposed algorithm enables the user to control the amounts of overlap ωi ∩ ωj
completely by the choice of the parameter k in step 2 (which corresponds to the local
imbalance of the tree), the choice of xL ∈ CL in step 3(a), and the choice of α in
step 3(c). Hence, this construction leads to smoother PU functions ϕi and allows
for the use of cheaper quadrature schemes (compared with Algorithm 1) during the
assembly of the stiffness matrix, although the functions ϕi are still more complex

4The additional points are necessary to ensure the shape regularity of the tree cells and patches.
A similar tree-based algorithm for the construction of shape-regular triangulations with an almost-
minimal number of vertices was proposed in [5]. Analogously, the presented algorithm may have a
similar almost-optimal property: If m is the minimal number of shape-regular d-rectangles required
to cover the given point set in such way that all d-rectangles contain at most a single point, then the
cover CΩ constructed by the presented algorithm is of size card(CΩ) = O(m).

5Halton sequences are quasi Monte Carlo sequences, which are used in sampling and numerical
integration. Consider n ∈ N0 given as

∑
j
njp

j = n for some prime p. We can define the transfor-

mation Hp from N0 to [0, 1] with n �→ Hp(n) =
∑

j
njp

−j−1. Then, the (p, q) Halton sequence with

N points is defined as HaltonN0 (q, p) := {(Hp(n), Hq(n)) |n = 0, . . . , N}.
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Fig. 3.3. The PU function ϕi on Ω ∩ ωi generated by Algorithm 2 with the input data from
Figure 3.2 for an interior point (left), a boundary point (center), and a corner point (right) using
linear B-splines.

Fig. 3.4. P is a Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1] × [−0.5, 0.5] graded by (x, y) �→

(x2,±y2) (left), P with card(P ) = 121 (center) after Algorithm 2 with k =∞ and xiL = liL+ 1
2
(uiL−

liL) for generated points xL, and the generated cover CΩ (right) with hiL = 5
4

max{uiL−xiL, xiL− liL}.

than FE shape functions (see Figure 3.3). In summary, the proposed algorithm is
applicable to general domains Ω and any initial distribution of points P without an
additional input Q, yet it also reduces the computational costs during the assembly
of the stiffness matrix and right-hand side vector.

Note that we capture the domain Ω by the cells CL and subsequently by the
ωL = RL only. This, however, does not limit the domain or boundary resolution of our
method. At this stage in the construction process, we are interested only in generating
a cover CΩ of the domain Ω. Only during the integration of the stiffness matrix and
right-hand side vector entries do we need to restrict the evaluation of the associated
shape functions ϕLψ

k
L to the computational domain Ω, i.e., to the integration domain

ωL ∩ Ω. We postpone the issue of domain and boundary resolution to section 5.
Note further that due to steps 3(a) and 3(c) we generally produce d-rectangular cover
patches ωi independent of the shape of the bounding box RΩ; see Figures 3.2 and
3.4. Note also that the construction allows for the fast evaluation of a single PU
function ϕi (see (2.2)) due to the efficient neighbor search in the hierarchical tree
data structure. Note finally that the introduction of a hierarchical cover induces a
hierarchy for the associated function space6 which we may exploit in the design of fast
multilevel solvers for the linear equations arising from a PUM discretization. This
issue, however, is the subject of future research.

6For covers from Algorithm 1 the introduction of such a hierarchy would at least be artificial.
Since in Algorithm 1 the selection of the supports ωi is independent of a hierarchical ordering on
the points, this hierarchy on the points would not lead to a hierarchy for the supports of the shape
functions in a natural way.



EFFICIENT COVER CONSTRUCTION AND INTEGRATION 1663

4. Galerkin method with the PUM space. We want to solve elliptic bound-
ary value problems of the type

Lu = f in Ω ⊂ R
d ,

Bu = g on ∂Ω ,
(4.1)

where L is a symmetric partial differential operator of second order and B expresses
suitable boundary conditions. The implementation of Neumann boundary conditions
with our PUM is straightforward and similar to their treatment within the FEM.
The realization of essential boundary conditions with MMs is more involved than
with a FEM due to the noninterpolatory character of the meshfree shape functions.
There are several different approaches to the implementation of essential boundary
conditions with meshfree approximations; see [13, 16, 27]. Throughout this paper we
use Lagrangian multipliers to enforce essential boundary conditions; see [13, 27].

In the following let a(·, ·) be the continuous and elliptic bilinear form induced by
L on H1(Ω). We discretize the PDE using Galerkin’s method. Then, we have to
compute the stiffness matrix

A = (aij) , with aij = a(ϕjψ
l
j , ϕiψ

k
i ) ∈ R

dim(V
pi
i

)×dim(V
pj
j

)

and the right-hand side vector

f̂ = (fi) with fi = 〈f, ϕiψki 〉L2 =

∫
Ω

fϕiψ
k
i ∈ R

dim(V
pi
i

) .

If we restrict ourselves for reasons of simplicity to the case L = −Δ we have to compute
the integrals

∫
Ω
ϕiψ

k
i f for the right-hand side and the integrals

∫
Ω
∇(ϕiψ

k
i )∇(ϕjψ

l
j)

for the stiffness matrix. Recall that ϕi is defined by (2.2), i.e.,

ϕi(x) =
Wi(x)∑
Wk(x)

.

Now we carry out the differentiation in
∫
Ω
∇(ϕiψ

k
i )∇(ϕjψ

l
j). With the notation S :=∑

Wk, T :=
∑∇Wk, and Gi := ∇WiS −WiT we end up with the integrals

a(ϕjψ
l
j , ϕiψ

k
i ) =

∫
Ω

S−4Giψki Gjψlj +

∫
Ω

S−2Wi∇ψkiWj∇ψlj

+

∫
Ω

S−3GiψkiWj∇ψlj +

∫
Ω

S−3Wi∇ψki Gjψlj
(4.2)

for the stiffness matrix and the integrals

〈f, ϕiψki 〉L2 =

∫
Ω

S−1Wiψ
k
i f(4.3)

for the right-hand side. Due to the fact that we use piecewise polynomial weights
Wi for the Shepard construction (2.2) and that the support patches ωi overlap each
other, the functions T and Gi may have quite a number of jumps of significant size.
Therefore, the integrals (4.2) and (4.3) should not be computed by a simple quadrature
scheme which does not respect these discontinuities and the algebraic structure of the
shape functions. Instead, we need to decompose the integration domain in such a way
that the piecewise character of the integrands is resolved.
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integration domain decomposition induced by
weight functions

Fig. 5.1. Integration domain Ωij = ωi ∩ ωj (left). The decomposition Eωij of the integration
domain ωij via the subdivision induced by the weight functions Wi and Wj (right). Here, the weights
are tensor products of quadratic B-splines.

5. Decomposition sparse grid quadrature scheme. Let us assume that the
PU is given by an h-mesh construction as we have in the GFEM. Then, we know
how to resolve the piecewise character of the integrands: we subdivide the integration
domains with the help of the geometric elements of the h-mesh. However, with our
general PUM we do not have a mesh or geometric elements. However, we have support
patches ωi and weight functions Wi which define the PU functions ϕi by (2.2). From
this information only, we have to find an appropriate subdivision of the support
patches ωi and subsequently the integration domains. Furthermore, we have to cope
with rational integrands on the cells of such a subdivision in our general PUM. The
foundation for the proposed quadrature scheme is a decomposition approach which
was first presented in [27]. Here, we give a short review of the construction principles
for the decomposition Dωij := {Dn

ωij} of the integration domains ωij := ωi ∩ ωj ∩ Ω.
The integration domains ωij may be decomposed into disjoint cells Dn

ωij by ex-
ploiting the tensor product structure of the cover patches ωi and the weight functions
Wi used during the construction (2.2) of the PU {ϕi}. This decomposition of an in-
tegration domain ωij can efficiently be computed by splitting ωij via its caps ωij ∩ωk
with the neighboring cover patches ωk ∈ Nij := Ni ∩ Nj using a second tree data
structure.

Consider the integration domain ωij = ωi ∩ ωj ⊂ Ω. The intersection ωij of two
cover patches ωi, ωj which are tensor products of intervals is also a tensor product of
intervals; see Figure 5.1 (left). Moreover, the employed weight functionsWk are tensor
products of normed B-splines of order l; i.e., they are piecewise polynomials of degree
l. Therefore, the weight function Wk induces a subdivision of the respective cover
patch ωk into (l + 1)d subpatches {ωqk} on which Wk

∣∣
ωq
k

is polynomial. Furthermore,

these subpatches {ωqk} are also tensor products of intervals. With the help of these
subpatches {ωqi }, {ωqj} we can define a first decomposition Eωij = {Enωij} of ωij ; see

Figure 5.1 (right). On the cells Enωij of this decomposition we have that Wi

∣∣
Enωij

and

Wj

∣∣
Enωij

are polynomials of degree l, but all other Wk

∣∣
Enωij

may still be piecewise

polynomial only. Therefore, we further refine the decomposition Eωij by subdividing
the cells Enωij with the help of the {ωqk} subpatches for all ωk ∈ Nij ; see Figure 5.2.
The resulting decomposition Dωij = {Dn

ωij} consists of d-rectangular cells Dn
ωij on

which all weight functions Wk|Dnωij are polynomials of degree l. The number of cells

card(Dωij ) of the decomposition Dωij = {Dn
ωij} depends on the polynomial degree l
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refinement induced by weight
of neighboring patch

refined decomposition

Fig. 5.2. Refinement of the decomposition Eωij of the integration domain ωij via the subdivision
induced by the weight function Wk (tensor product of quadratic B-splines) of one neighboring point
xk (left). The resulting decomposition Dωij after the refinement step for the neighboring weight
function Wk (right).

of the weight functions Wk used during the Shepard construction (2.2) for the PU,
the number of neighbors card(Ni), and their geometric location.

Since all weights Wk are polynomial on the cells Dn
ωij , the functions T and Gi

are nonsingular rational functions on Dn
ωij . Hence, any standard quadrature rule

for smooth functions is applicable for the numerical integration of the weak form on
the cells Dn

ωij (if we assume that the local basis functions ψki and ψlj are smooth
on ωij). Independent of the local quadrature rule used on Dn

ωij we can utilize the

product structure of the shape functions ϕiψ
k
i to reduce the computational costs

of an evaluation of the weak form at a quadrature point. Here, we simultaneously

evaluate the complete block aij = a(ϕjψ
l
j , ϕiψ

k
i ) ∈ R

dim(V
pi
i

)×dim(V
pj
j

) of the stiffness

matrix rather than evaluating every single (aij)kl = a(ϕjψ
l
j , ϕiψ

k
i ) ∈ R for fixed k and

l. Besides the reduction in the number of evaluations of ϕi and ϕj , this also allows
for a hierarchical evaluation of the local basis functions ψki and ψlj (which is available
for the chosen Legendre polynomials) which reduces the computational costs of an
evaluation of the weak form significantly (esp. for higher order approximations).

For the selection of a quadrature rule on the cells Dn
ωij we can now assume the

smoothness of the integrands. However, the quadrature rule still has to be applica-
ble to general situations (general covers, weights and local basis functions ψki , etc.).
Hence, we have to find a fast converging, cheap quadrature rule on Dn

ωij which allows
for a reliable dynamic stopping criterion for a wide range of integrands.

So-called sparse grid quadrature [12] rules are multidimensional interpolatory
rules with a substantially smaller number of integration nodes compared with a tensor
product rule. They are defined as special products of one-dimensional interpolatory
quadrature rules. Although the number of evaluations of the integrand is significantly
less for a sparse grid quadrature rule, the order of the achieved error is comparable to
that of a full tensor product rule. Here, we state only the fundamental construction
principles and error bounds (see [12]) and the references cited therein for further
details.

Consider a sequence of nested one-dimensional quadrature rules for univariate

functions {Q1
l |Q1

l f :=
∑n1

l
i=1 wlif(xli), n

1
l = O(2l), f : R → R} with weights wli,

nodes xli, and error bound |Q1
l f −

∫
f | = O(2−lr), where f is assumed to be r-times

continuously differentiable. This bound holds, for example, for the Clenshaw–Curtis



1666 MICHAEL GRIEBEL AND MARC ALEXANDER SCHWEITZER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.3. Quadrature nodes of sparse grid Gauß–Patterson rules, level l = 6 with 769 nodes in
two dimensions (left) and level l = 5 with 1023 nodes in three dimensions (right).

and Gauß–Patterson rules. With the help of the difference quadrature rules Δ1
k,

Δ1
kf := (Q1

k −Q1
k−1)f with Q1

0f := 0,

we can define the sparse grid quadrature rule Qdl on level l in d-dimensions as

Qdl f :=
∑

∑d

i=1
ki≤l+d−1

(Δ1
k1 ⊗ · · · ⊗Δ1

kd
)f

with f : R
d → R, l ∈ N, and k ∈ N

d. Due to the restriction
∑d
i=1 ki ≤ l + d − 1 in

the summation, the number ndl of quadrature points xdi of the resulting sparse grid
quadrature rule Qdl is

ndl = O(2lld−1)

only. Hence, the number of function evaluations for a sparse grid quadrature rule is
dramatically less (see Figure 5.3) than for a full tensor product rule where the inte-
grand has to be evaluated at O(2ld) quadrature points. This reduction of the compu-
tational costs, however, does not compromise the approximation quality significantly
for smooth functions. When f is assumed to be r-times continuously differentiable
the estimate

|Qdl f −
∫
f | = O(2−lrl(d−1)(r+1))

holds.
In summary, sparse grid quadrature rules are not only cheaper to evaluate (esp.

in higher dimensions) compared with tensor product rules, but rather their overall
efficiency with respect to accuracy is significantly better. In [12] the fast convergence
of sparse grid quadrature rules based on Gauß–Patterson rules (see Figure 5.3) is
shown for a wide variety of function classes. In fact, sparse grid quadrature rules
based on Gauß–Patterson rules converge exponentially for smooth integrands. Since
the integrands we are interested in are smooth on the cells Dn

ωij of the constructed
decomposition Dωij we use Gauß–Patterson sparse grid rules for the numerical inte-
gration of the stiffness matrix entries.
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integration domain

boundary

refined decomposition
for general domains

parametric integration cell

Fig. 5.4. Integration domain Ωij = ωi∩ωj∩Ω for general domains Ω (left). The decomposition
Dωij of a general integration domain ωij via the subdivision induced by the weight functions Wi,
Wj , and a neighboring patch (right); compare Figures 5.1 and 5.2. Here, the weights are tensor
products of quadratic B-splines.

To ensure a reliable accuracy of our quadrature scheme, we use a simple three
level dynamic stopping criterion [24]. The quadrature on a cell Dn

ωij is stopped if

|Qdl−1f −Qdl−2f | ≤ c1εa + c2εr|Qdl−1f | and |Qdl f −Qdl−1f | ≤ εa + c3εr|Qdl f |

hold for the integrand (aij)kl of minimal order k = l = 0 as well as for the integrand of
maximal order k = dim(V pii )−1, l = dim(V

pj
j )−1. Here, c1, c2, and c3 are nonnegative

constants, and εa and εr are user supplied absolute and relative tolerances. These
tolerances which determine the accuracy of the integration, however, have to be chosen
with respect to the approximation space. Here, the diameters diam(ωi), diam(ωj) of
the cover patches ωi, ωj , the number of integration cells card(Dωij ), their respective
diameters diam(Dn

ωij ), and the local approximation orders pi, pj have to be considered.
An automatic selection of the tolerances εa and εr which minimizes the computational
work but at the same time does not compromise the accuracy of the discretization
[29, Chapter 4] is the subject of future research.

Note that the decomposition approach given above is not restricted to domains
Ω which are unions of d-rectangles but rather applicable to general domains. For
integration domains ωi ∩ ωj ∩Ω �= ωi ∩ ωj we apply the construction to the fictitious
integration domain ω̃ij := ωi ∩ ωj . From this decomposition Dω̃ij = {Dn

ω̃ij
} we then

select the subset D̂ωij := {D̂n
ωij ∈ Dω̃ij | D̂n

ωij ∩ Ω �= ∅} of all cells which overlap the

actual integration domain ωij = ω̃ij ∩ Ω. This intermediate cover D̂ωij consists of d-

rectangular cells D̂n
ωij ∩Ω �= ∅ which cover the integration domain ωij ; see Figure 5.4.

Now the remaining task is to resolve (with the necessary accuracy) the boundary
∂Ω of the domain which runs through some of the cells D̂n

ωij . We assume that a
representation for the boundary ∂Ω is given as part of the computational domain
Ω. That is, we assume the domain Ω and its boundary ∂Ω are given as a collection
of mappings RmΩ : [−1, 1]d → Ω ⊂ R

d from a reference cell into the physical space
Ω ⊂ R

d with
⋃Rm([−1, 1]d) = Ω. These mappings RmΩ may be coming from a CAD

system; i.e., the mappings themselves are only an approximation to the true domain
Ω, or may be coming from a given analytical representation of the domain Ω.

With the help of these mappings RmΩ we can compute the parametric integration

cell Dn
ωij := D̂n

ωij ∩Ω which lies within the integration domain ωij ; see Figure 5.4. The

final decomposition Dωij = {Dn
ωij |Dn

ωij := D̂n
ωij ∩Ω} for general domains Ω therefore
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consists of d-rectangular cells Dn
ωij = D̂n

ωij if D̂n
ωij ⊂ Ω and parametric cells Dn

ωij if

the corresponding d-rectangular cell D̂n
ωij overlaps the boundary ∂Ω.

Note that the mappings RmΩ do not influence the shape functions of our PUN
method. While in a FEM the supports of the shape function have to align with the
boundary ∂Ω of the domain, in our PUM the supports of the shape functions have to
cover only the domain Ω and its boundary ∂Ω. The mappings of the domain represen-
tation RmΩ are merely used to implement integration domains ωij with complicated
geometry.

Overall, the numerical quadrature of the stiffness matrix entries is completed in
three steps:

1. First we compute the decomposition Dω̃ij for the domain ω̃ij = ωi ∩ ωj ; see
Figures 5.1 and 5.2. With the help of the domain representation mappings
RmΩ we then select the integration cells D̂n

ωij = Dn
ω̃ij
∩Ω �= ∅ which overlap the

computational domain Ω. Furthermore, we use the mappingsRmΩ to construct

the final decomposition Dωij = {Dn
ωij |Dn

ωij := D̂n
ωij ∩ Ω}; see Figure 5.4.

2. For each of these integration cells Dn
ωij we then compute the Jacobian JTnωij

of the mapping Tnωij : [−1, 1]d → Dn
ωij from the reference integration domain

[−1, 1]d onto the integration cell Dn
ωij in the configuration space.

3. Finally, we evaluate the entries of the stiffness matrix and right-hand side
vector by computing the integrals (4.2) and (4.3) on the integration cells
Dn
ωij . That is, we compute them on the reference integration domain [−1, 1]d

using the transformations Tnωij and the respective Jacobians JTnωij
:

∫
Dnωij

F =

∫
[−1,1]d

F ◦ Tnωij |JTnωij |.

The Jacobian JTnωij
for a simple d-rectangular integration cell is of course

constant, and this transformation does not increase the costs of the numerical
integration. However, for a parametric cell the transformation Tnωij involves
the mappings RmΩ of the domain representation. Therefore, the Jacobian may
well be space-dependent and has to be evaluated at every integration node of
the quadrature rule.7

Again, the error during the numerical quadrature has to be controlled by
the selection of εa and εr to ensure that the order of approximation is not
compromised by the integration error.

The overall computational costs of the proposed quadrature scheme depends on
the number of cells card(Dωij ) of the decomposition, i.e., on the order l of the weight
functions, the geometric location of the neighbors ωj ∈ Ni, their number card(Ni),
and the local quadrature rule used on the cells Dn

ωij . Due to the use of the sparse grid
rules on the cells, the computational costs are significantly reduced compared with
tensor product rules.

6. Hierarchical regular cover construction. A further reduction of the com-
putational effort necessary during the assembly of the stiffness matrix can be achieved

7Note that in general the transformations Tnωij may lead to (locally) nonsmooth integrands where

an isotropic sparse grid quadrature scheme may not be well-suited on all integration cells Dnωij . Here,

a further decomposition of the integration cells Dnωij where the integrands are nonsmooth or even

adaptive quadrature rules (sparse grid or other) should be employed on such integration cells Dnωij .
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Table 6.1
The number

∑
card(Ni) of neighbors for covers generated by Algorithm 1 with α = 1.5 using

rectangular patches (A1,R), and using square patches (A1,S). The number of cover patches card(P )
after the cover construction and the number of neighbors for Algorithm 2 with k = ∞, xiL =

liL + 1
2
(uiL − liL) for generated points xL and hiL = 5

4
max{uiL − xiL, xiL − liL} (A2; see also Figure

3.2), and for Algorithm 3 with k =∞ and αl = 2 (A3; see also Figure 6.1). The initial point set P

for all algorithms was HaltonN−1
0 (2, 3).

N A1,R A1,S card(P ) A2 A3

1024 18840 21530 1729 20023 21751
4096 79102 91902 6364 73908 78588
16384 325730 377388 27673 326919 360053
65536 1267300 1431210 101314 1245108 1259134

Table 6.2
The number

∑
card(Ni) of neighbors for covers generated by Algorithm 1 with α = 1.5 using

rectangular patches (A1,R), and using square patches (A1,S). The number of cover patches card(P )
after the cover construction and the number of neighbors for Algorithm 2 with k = ∞, xiL =

liL + 1
2
(uiL − liL) for generated points xL and hiL = 5

4
max{uiL − xiL, xiL − liL} (A2; see also Figure

3.4), and for Algorithm 3 with k =∞ and αl = 2 (A3; see also Figure 6.3). The initial point set P

for all algorithms was a graded HaltonN−1
0 (2, 3).

N A1,R A1,S card(P ) A2 A3

1024 33878 39114 1897 23193 26203
4096 127950 149460 7501 92235 104985
16384 507010 591794 30040 369754 416292

only by reducing the number of cells of the decomposition8 Dωij . This can be attained
by the alignment of the cover patches ωk and their subdivisions {ωqk}.

Taking into account that we limit ourselves to the use of tensor product B-splines
as weight functions for Shepard’s construction (2.2) we can align the cover patches to
simplify the algebraic structure of the resulting partition of unity functions ϕi. Here,
we eliminate some of the flexibility in step 3 of Algorithm 2 for the choices of xL and
α. This, however, does not lead to a significantly larger number of neighbors. Hence,
the number of nonzeros of the stiffness matrix stays (almost) constant; see Tables 6.1
and 6.2. However, the number of integration cells card(Dωij ) is substantially reduced
by this modification; see Tables 6.4 and 6.5.

Recall that we split the integration domain ωij into several cells by its caps ωij∩ωqk
with the cells ωqk of the subdivision induced by the weight Wk on ωk ∈ Nij during the
construction of the decomposition Dωij . Hence, we align these caps ωij ∩ ωqk, which
subsequently induce at least one integration cellDn

ωij , if we align the neighboring cover

patches ωk with respect to their subdivisions {ωqk}. Therefore, many of the ωij ∩ ωqk
will lead to the same integration cell Dn

ωij , and the overall number of integration cells
card(Dωij ) will be reduced significantly; see Tables 6.4 and 6.5. This alignment of the
cover patches ωk and their subdivisions {ωqk} is achieved by the following algorithm.

8The decomposition itself, however, is minimal in the sense that it has a minimal number
card(Dωij ) of integration cells necessary to resolve the piecewise character of the PU functions.
In our construction (2.2) of the PU we have to allow for higher orders l of the B-spline weights to
be able to construct global solutions uPU with higher order regularity, i.e., uPU ∈ Cl−1. Therefore,
the remaining influences on the computational effort involved with the numerical integration of the
stiffness matrix entries are the geometric neighboring relations of our cover patches ωi.
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Algorithm 3 (hierarchical regular cover construction).

1. Given: the domain Ω ⊂ R
d, a bounding box RΩ =

⊗d
i=1[l

i
Ω, u

i
Ω] ⊃ Ω, the

initial point set P = {xj ∈ R
d |xj ∈ Ω}, and a parameter k ∈ N.

2. Build a d-binary tree (quadtree, octree) over RΩ such that per leaf L at

most one xi ∈ P lies within the associated cell CL :=
⊗d

i=1[l
i
L, u

i
L], and the

difference of the levels of two adjacent cells is at most k.
3. For all cells CL =

⊗d
i=1[l

i
L, u

i
L] with CL ∩ Ω �= ∅:

(a) Set xiL = liL + 1
2 (uiL − liL).

(b) If there is an xj ∈ P with xj ∈ CL, set P = P \ {xj}.
(c) Set P = P ∪ {xL}.
(d) Set ωL = RL =

⊗d
i=1[x

i
L−hiL, xiL +hiL] ⊃ CL, where hiL = αl

2 (uiL− liL).

Here, the parameter αl in the computation of the support size in step 3(d) is de-
pendent only on the weight function used in (2.2), i.e., the order l of the B-spline.
By construction the one-dimensional distances from a point xL ∈ P to its direct
neighboring point xj ∈ P , i.e., the point xj corresponding to the sibling tree cell

Cj =
⊗d

i=1[l
i
j , u

i
j ], are |xiL − xij | = uiL − liL = uij − lij , where CL =

⊗d
i=1[l

i
L, u

i
L] is

the cell associated with xL. Hence, if we choose αl in such a way that condition (6.1)
is fulfilled, we not only align the patch ωL with its direct neighboring patch ωj but
rather also their corresponding subdivisions {ωqL} and {ωqj} induced by the weight
functions WL and Wj ; see Figure 6.1. Moreover, this alignment of the patches does
not increase the number of neighbors card(NL). With the notation hil := αl

l+1 (uiL− liL)
for the B-spline interval size, the condition reads

xiL +
l + 1

2
hil = xij −

(
l + 1

2
−m

)
hil = xiL + (uiL − liL)−

(
l + 1

2
−m

)
hil(6.1)

for the ith coordinate with i = 1, . . . , d. Here, the parameter m ∈ N indicates the
amount of overlap ωL ∩ ωj ∼

⊗d
i=1mh

i
l for the neighbor ωj ∈ NL. Any integer m

with 1 ≤ m ≤ l+1
2 leads to minimal neighborhoods NL and minimal decompositions

DωLj ; i.e., the number
∑
L card(NL) of nonzero entries of the stiffness matrix and

the number
∑
L,j card(DωLj ) of integration cells are (almost) constant. Therefore,

it is advisable to choose the largest such integer to control the gradients of the PU
function ϕi. Solving (6.1) for αl we have

αl =
l + 1

l + 1−m.

With the choice of l = 2n− 1 and maximal m = n, this yields αl = 2; in general, we
have 1 < αl ≤ 2. Due to this construction many of the points xi ∈ P are covered only
by the corresponding ωi. Therefore, we have ϕi(xj) = δij for many PU functions ϕi
and points xj ∈ P ; see Figure 6.2. In fact, ϕi(x) = 1 holds not only for the point

x = xi if we have αl < 2 but rather on a subpatch ω̃i ⊂ ωi with xi ∈ ω̃i ∼
⊗d

i=1 h
i
l,

i.e., ϕi|ω̃i ≡ 1; see Figure 6.2.
When we compare the covers CΩ (Figures 3.2 and 6.1, Figures 3.4 and 6.3) and

functions ϕi (Figures 3.3 and 6.2) generated by Algorithms 2 and 3, we clearly see
the effect of the alignment of the cover patches.

Note that the change of the point set P in step 3(c) in Algorithm 3 is admissible
due to the noninterpolatory character of the PUM shape functions ϕiψ

k
i . We can

interpret this change in the point set P as a change of the weight functions Wk used
during the Shepard construction (2.2). So far the weight functions Wk and the cover
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Fig. 6.1. P = Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]2 (upper left), P with card(P ) = 106

(upper right) after Algorithm 3 with k = ∞, and the generated cover CΩ with αl = 2 (lower left)
and αl = 1.5 (lower right).

patches ωk were assumed to be centered in the given point xk (compare section 2),
but this is of course not a necessary condition for the PUM to work. Therefore, we
may view the construction given above as a more general approach toward assigning
weight functions Wk to a given point xk ∈ P . The weight functions Wk and cover
patches ωk are now centered in lL+ 1

2 (uL− lL) rather than in the given point xk. Note
that the constructed point set P of newly introduced and shifted points xk is only
part of the implementation of the function space. The initial point set P of step 1 is
still the set of all relevant points for the resolution of the solution and the geometry
of the domain. Therefore, a copy P̃ of the initial point set P is stored separately, and
the points xl ∈ P̃ are used in time-dependent settings to generate covers for future
time steps [13]. Hence by the introduction of general weight functions Wk as part of
the cover construction, we can also write step 3 of Algorithm 3 equivalently as

3’. For all cells CL =
⊗d

i=1[l
i
L, u

i
L] with CL ∩ Ω �= ∅:

(a) Set xiL = liL + 1
2 (uiL − liL).

(b) If there is no xj ∈ P with xj ∈ CL, set P = P ∪ {xL}.
(c) Set ωL = RL =

⊗d
i=1[x

i
L−hiL, xiL +hiL] ⊃ CL, where hiL = αl

2 (uiL− liL).

(d) Set the associated weight function WL (x) := Πd
i=1W (

x−xiL+hiL
2hi
L

).
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Fig. 6.2. The PU function ϕi on Ω ∩ ωi generated by Algorithm 3 with the input data (upper
row l = 1, αl = 2, center row l = 2, αl = 1.5, lower row l = 3, αl = 2) from 6.1 for an interior
point (left), a boundary point (center), and a corner point (right).

Fig. 6.3. P is a Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1] × [−0.5, 0.5] graded by (x, y) �→

(x2,±y2) (left), P with card(P ) = 121 (center) after Algorithm 3 with k = ∞, and the generated
cover CΩ with αl = 2 (right).

This leaves the given points at their original location. Note also that the cover patches
ωL = RL constructed with Algorithm 3 and the bounding box RΩ always have the
same aspect ratio; see Figure 6.1. If we apply the algorithm given above to Ω =
RΩ = [0, 1]d with k = ∞ and αl = 2 to a uniformly distributed set of points P , we
construct a uniform grid9 (or at least an r-irregular grid with very small r depending
only on the quality of the initial point set P ; see Figure 6.1). Here, also the cells Dn

ωij
of the decomposition Dωij are (geometrically) identical to a bilinear finite element.

9The covers from Algorithm 3 with k = 0 will correspond to a uniform grid regardless of the
initial point set P when we have the order l = 2n− 1 and maximal m = n.
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Table 6.3
The average number sCΩ

(6.3) of nonzero blocks aij per row of the stiffness matrix for the
different cover construction algorithms in two (left) and three dimensions (right). Algorithm 2 with
k = ∞, xiL = liL + 1

2
(uiL − liL) for generated points xL and hiL = 5

4
max{uiL − xiL, xiL − liL} (A2),

and Algorithm 3 with k = ∞, αl = 2 (A3,2) and αl = 1.5 (A3,1.5) . The initial point set P

was HaltonN−1
0 (2, 3) in [0, 1]2 in two dimensions (left) and HaltonN−1

0 (2, 3, 5) in [0, 1]3 in three
dimensions (right).

d = 2 d = 3

N card(P ) A2 A3,2 A3,1.5 N card(P ) A2 A3,2 A3,1.5

1024 1729 11.58 12.58 8.51 1024 3543 26.81 30.90 21.23
4096 6364 11.61 12.35 8.48 8192 26699 29.16 34.44 22.41
16384 27673 11.81 13.01 8.65 65536 199417 31.53 34.80 23.30
65536 101314 12.29 12.43 8.56 524288 1694568 32.31 34.94 24.04

Table 6.4
The average number aCΩ

(6.2) of integration cells per nonzero block aij of the stiffness matrix

for the different cover construction algorithms. Algorithm 2 with k =∞, xiL = liL + 1
2
(uiL − liL) for

generated points xL and hiL = 5
4

max{uiL−xiL, xiL− liL} (Al2), and Algorithm 3 with k =∞ (Al3,αl
)

using a linear, a quadratic and a cubic B-spline during the Shepard construction (2.2). The initial

point set P was HaltonN−1
0 (2, 3) in [0, 1]2.

N card(P ) A1
2 A1

3,2 A1
3,1.3 A2

2 A2
3,1.5 A3

2 A3
3,2

1024 1729 31.54 6.39 7.03 48.82 8.16 76.51 10.77
4096 6364 32.22 5.29 6.60 50.34 7.46 78.51 9.93
16384 27673 32.18 6.28 6.99 49.51 8.27 77.20 10.76
65536 101314 34.65 5.16 6.62 53.75 7.40 82.47 9.85

Furthermore, the PU {ϕi} generated by (2.2) will again be piecewise linear for l = 1
just like their FE counterpart in the GFEM (see Figure 6.2). Hence, in this situation
our method does reconstruct functions ϕi that are identical to bilinear finite element
functions, and also our general decomposition algorithm will recover the corresponding
geometric elements. Hence, the number of integrals to be evaluated here with our
method or a FEM are the same. We give the average number

aCΩ :=

∑card(P )
i=1,j∈Ni card(Dωij )∑card(P )
i=1 card(Ni)

(6.2)

of integration cells per nonzero block aij of the stiffness matrix in Tables 6.4 and 6.5.
Furthermore, we give the average number

sCΩ
:=

∑card(P )
i=1 card(Ni)

card(P )
(6.3)

of nonzero blocks aij per block-row of the stiffness matrix in Table 6.3 which cor-
responds to the number of entries in a FE stencil. For a one-dimensional uni-
form grid the average aCΩ is 4

3 for hat functions (at interior points, where we have
Ni = {ωi−1, ωi, ωi+1}). This situation corresponds of course to the case l = 1, m = 1,
αl = 2 in Algorithm 3. Due to the tensor product approach, we have (4

3 )d as the
optimal ratio of integration cells to nonzero blocks for l = 1 in the d-dimensional case.
We certainly cannot expect to meet this optimal ratio for an irregular cover.

From the averages displayed in Tables 6.4 and 6.5 for the two-dimensional and
three-dimensional case we see that the averages aCΩ are (almost) independent of the
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Table 6.5
The average number aCΩ

(6.2) of integration cells per nonzero block aij of the stiffness matrix

for the different cover construction algorithms. Algorithm 2 with k =∞, xiL = liL + 1
2
(uiL − liL) for

generated points xL and hiL = 5
4

max{uiL−xiL, xiL− liL} (Al2), and Algorithm 3 with k =∞ (Al3,αl
)

using a linear, a quadratic and a cubic B-spline during the Shepard construction (2.2). The initial

point set P was HaltonN−1
0 (2, 3, 5) in [0, 1]3.

N card(P ) A1
2 A1

3,2 A1
3,1.3 A2

2 A2
3,1.5 A3

2 A3
3,2

1024 3543 250.03 16.34 20.71 464.61 17.61 877.89 29.19
8192 26699 302.20 15.96 22.48 553.66 18.59 1048.01 29.41
65536 199417 363.77 12.09 20.63 668.04 16.59 563.76 24.63
524288 1694568 − 12.44 26.52 − 15.72 − 25.07

number of points N of the initial point set P for Algorithm 3 as well as for Algorithm
2. Furthermore, we clearly see the substantial reduction in the number of integration
cells for Algorithm 3 compared with Algorithm 2. The average aCΩ

for Algorithm 3
drops by more than a factor of 1

6 in two dimensions and by more than a factor of 1
18 in

three dimensions compared with the average aCΩ for covers constructed by Algorithm
2. This significant improvement in the number of integration cells is of course due
to the alignment of the patches we have with Algorithm 3 but not with Algorithm 2;
see Figures 6.1 and 3.2, and Figures 6.3 and 3.4. Another advantage of Algorithm 3
over Algorithm 2 is the fact that due to the alignment of the weight subdivisions {ωqk}
the aspect ratio and volume of every integration cell Dn

ωij is bounded. This is not
the case for covers constructed with Algorithm 2. In fact, in the three-dimensional
example of Table 6.5 our decomposition algorithm would have generated a number
of integration cells with very large aspect ratios and almost vanishing volume in the
case N = 524288 for a cover constructed with Algorithm 2.

The average aCΩ for covers from Algorithm 3 (with l = 1) is about three times the
optimal ratio of (4

3 )d. For one this factor can be explained by the sudden change in the
spatial resolution of the cover, i.e., the level difference k of two neighboring patches,
which leads to nonaligned subdivisions {ωqk} (see Figures 6.1 and 6.3), and therefore
increases the number of integration cells. Moreover, however, the optimal ratio of
( 4
3 )d holds for interior patches only. For cover patches which overlap the boundary

of the domain this ratio is 2 (or even 2.25 at corners) in two dimensions, since the
subdivisions {ωqk} are aligned only with each other but not with the boundary ∂Ω; see
Figure 6.4. Hence, we expect the average number of integration cells aCΩ to decrease
for larger N since the volume to surface ratio improves. This can be observed from
the numbers A11

3 displayed in Tables 6.4 and 6.5. A similar argument can be made in
the case of a quadratic B-spline.10

When we use a cubic B-spline (l = 3) we construct smooth approximations
uPU ∈ C2, and the optimal ratio for interior patches is (8

3 )d; i.e., it is about 7 in
two dimensions and 19 in three dimensions. The averages aCΩ given in Tables 6.4 and
6.5 in this case are about 10 in two dimensions and 26 in three dimensions; i.e., they
are closer to their optimal ratio of (8

3 )d than aCΩ
is to its optimum for the linear B-

spline. This can be explained by the fact that for l = 3 the boundary effect mentioned

10In the case l = 2, we have an optimal ratio of 5
3

in one dimension. However, due to the fact

that the overlap m = n for l = 2n is smaller in relation to the overall number of cells card({ωq
k
})

(see Figure 6.1), the generalization of this optimum to higher dimensions is not given by ( 5
3
)d; e.g.,

in two dimensions the optimum is 22
9

only; see Figure 6.4.
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Fig. 6.4. The integration cells induced by four neighboring linear B-splines (left), quadratic
B-splines (center), and cubic B-splines (right) in two dimensions. The integration cells Dnωij align

with the boundary for the cubic B-spline (right) but not for the linear (left) or quadratic (center)
B-spline due to the overlap condition for the support patches ωi.

above does not exist; see Figure 6.4. Here, the cells {ωqk} induced by the cubic spline
align with the boundary of [0, 1]d. Hence, only the irregularity of the cover causes an
increase in the number of integration cells. Overall, the number of integration cells
for an approximate solution uPU ∈ C2 is about twice the number of integration cells
we have when we construct an approximate solution uPU ∈ C0.

So far we were concerned only with the computational cost during the integration
and the influence the shape functions ϕiψ

k
i have on the computational efficiency of

our PUM. Another important issue, however, is the stability of the basis of our PUM
space. Here, we also have to address the question of whether the functions ϕiψ

k
i are

indeed a basis. In the case of l = 1 and αl = 2 the alignment of the cover patches ωi
and their respective weight subdivisions {ωqi } leads to the reconstruction of the FE
hat functions for the PU. Hence, our PUM reduces to the GFEM in this situation.
It is well known [2, 3, 27, 30] that the GFEM (in general) generates linear-dependent
shape functions ϕiψ

k
i , the so-called nullity of the method. This is essentially due

to the fact that in the GFEM the PU functions ϕi already reconstruct the linear
polynomial.

Consider the one-dimensional situation, where we have one element and two nodes
with their associated hat function as ϕi. Assume that we use linear polynomials as
local approximations spaces Vi. The shape functions ϕiψ

k
i are (global) polynomials

due to this construction. The number of shape functions is four, and the maximal
polynomial degree is two. Since the quadratic polynomials in one dimension can be
generated by three basis functions, we see that the GFEM shape functions are linear
dependent.

With our approach, the ϕi reconstruct the linear polynomial only away from the
boundary; close to the boundary we have ϕi ≡ 1. Therefore, the shape functions
are not linear dependent. However, since the small boundary layer where ϕi ≡ 1
decreases with larger N the condition number κ of the mass matrix is dependent
on N ; i.e., the basis is no longer stable. A simple cure for this stability problem is
to use m < 1 in (6.1) when we have l = 1; i.e., we limit ourselves to 1 < αl < 2
when l = 1. With αl < 2 we can find a subpatch ω̃i ⊂ ωi, where ϕi |ω̃i ≡ 1 for
many i. Therefore, the PU functions ϕi no longer reconstruct the linear polynomial
independent of N , and the resulting shape functions form a stable basis. We therefore
allow for any value 1 < αl < 2 in Algorithm 3 if l = 1. The number of integration cells
increases somewhat due to this generalization. The patches ωi are still aligned, but
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their respective weight subdivisions are not. The optimal ratio increases from (4
3 )d to

2d. From the averages displayed in Tables 6.4 and 6.5 we see that aCΩ for the choice
of αl = 1.3 is about a factor of 1.5 to 2 larger than the average is for the optimal
choice of αl = 2. However, the number of integration cells is still substantially less
compared with the covers from Algorithm 2.

A similar problem arises for higher order splines l > 1 only when αl > 2; e.g., we
need αl = 4 with l = 2. Therefore, we can stay with our choices of αl = 1.5 if l = 2
and αl = 2 if l = 3.

7. Numerical experiments. In this section we present some results of our
numerical experiments for an elliptic PDE using the h-version and the p-version of
our PUM.

We apply our PUM to elliptic problems on the unit cell Ω = (0, 1)d in two and
three dimensions. Here, we consider the Laplace equation

−Δu = f(7.1)

with Dirichlet boundary conditions u = g on ∂Ω and the equation

−Δu+ u = f(7.2)

of Helmholtz type with Neumann boundary conditions ∇u = g on ∂Ω. Furthermore,
we use the presented method to study heat conduction in lattice materials [20, 26] in
three dimensions.

The local approximation spaces V pii used in our numerical experiments are com-
plete Legendre polynomials with pi = p for all patches ωi. The weight functions Wi

used in the Shepard construction (2.2) are linear splines (l = 1, αl = 1.3). We give
the relative error

e =
‖u− uPU‖
‖u‖

in the L∞-, L2-, and the energy-norm, which is computed with the help of the inte-
gration scheme presented in section 5. Moreover, we also give the convergence rates

ρ =
log
( ‖u−uPU,L‖

‖u−uPU,L−1‖
)

log
(

dofL
dofL−1

) ,

where dof :=
∑

dim (V pii ), with respect to two successive refinement levels L and
L− 1. These convergence rates ρ correspond to an algebraic error estimate

‖u− uPU,L‖ = O (dofρL)(7.3)

which is valid for the h-version of the PUM [2, 3]. We can relate these rates ρ to the

common hα notation by α = −ρd, since N− 1
d ∼ h for uniform point sets. Hence,

the optimal convergence rates ρ for our PUM based on uniform point sets and linear
polynomials are ρ2 = −1 and ρE = − 1

2 in two dimensions (ρ2 = − 2
3 and ρE = − 1

3 in
three dimensions). For the pointwise convergence11 we have ρ2 < ρ∞ < ρE .

11In the FEM we have the estimate ‖u − uh‖∞ = O (h2| log h|μ(d)), where μ(2) = 1 and μ(d) =
d
4

+ 1 for d ≥ 3 [25, 28]. The L∞-norm is usually approximated by the maximum over the nodal

values, where we can observe a superconvergence of order h2. For our approximation to the L∞-
norm, however, we do not use the points xi ∈ P but all quadrature points since the PUM shape
functions ϕiψ

n
i are noninterpolatory and the Legendre polynomials ψni of odd degree vanish at xi.

Hence, we cannot expect to measure h2 superconvergence in the L∞-norm.
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Table 7.1
Errors (e) and convergence rates (ρA) in different norms for problem (7.1) in two dimensions

with solution (7.5).

N card(P ) p dof e∞ ρA∞ e2 ρA2 eE ρAE

16 28 1 84 5.739−2 − 6.462−2 − 2.676−1 −
64 106 1 318 1.817−2 −8.639−1 1.726−2 −9.917−1 1.403−1 −4.850−1

256 406 1 1218 5.700−3 −8.633−1 4.405−3 −1.0170 6.963−2 −5.217−1

1024 1729 1 5187 1.926−3 −7.488−1 1.072−3 −9.753−1 3.462−2 −4.823−1

4096 6364 1 19092 1.101−3 −4.291−1 2.749−4 −1.0440 1.762−2 −5.183−1

16384 27673 1 83019 4.431−4 −6.193−1 6.749−5 −9.555−1 8.677−3 −4.819−1

65536 101314 1 303942 2.099−4 −5.757−1 1.716−5 −1.0550 4.374−3 −5.278−1

Table 7.2
Errors (e) and convergence rates (ρ) in different norms for problem (7.2) in two dimensions

with solution (7.5).

N card(P ) p dof e∞ ρ∞ e2 ρ2 eE ρE

64 106 1 318 2.942−2 − 1.476−2 − 1.341−1 −
64 106 2 636 7.960−4 −5.2080 3.448−4 −5.4200 5.761−3 −4.5410

64 106 3 1060 1.465−5 −7.8210 1.046−5 −6.8430 1.986−4 −6.5920

64 106 4 1590 9.093−8 −1.2531 1.091−7 −1.1251 2.612−6 −1.0681

64 106 5 2226 8.003−9 −7.2230 2.640−9 −1.1061 7.121−8 −1.0711

64 106 6 2968 8.579−10 −7.7620 2.588−10 −8.0730 8.429−9 −7.4180

64 106 7 3816 3.710−10 −3.3360 6.482−11 −5.5090 2.481−9 −4.8660

64 106 8 4770 9.538−11 −6.0870 2.183−11 −4.8770 9.217−10 −4.4370

64 106 9 5830 4.137−11 −4.1630 8.451−12 −4.7290 4.100−10 −4.0370

64 106 10 6996 1.401−11 −5.9390 3.075−12 −5.5450 1.700−10 −4.8290

64 106 11 8268 8.220−12 −3.1920 1.535−12 −4.1590 8.807−11 −3.9370

64 106 12 9646 3.836−12 −4.9440 7.533−13 −4.6180 4.751−11 −4.0040

For the p-version, we expect an exponential convergence for smooth solutions u
since the local error estimate

‖u− uPU,L‖ = O
(
exp

(
−b
√

dofL
))

(7.4)

holds on every cover patch ωi for smooth solutions u.
Example 1 (unit square). In our first example we consider the Dirichlet problem

(7.1) in Ω = (0, 1)2. We choose f and g such that the solution u is given by

u(x) = ‖x‖52.(7.5)

We apply the h-version of our PUM with linear polynomials to approximate (7.1). The
covers CΩ are generated using N points of the Halton(2, 3) sequence with increasing
N . They exhibit a somewhat locally varying patch size; see Figure 6.1. Consequently,
there will be some fluctuation in the measured convergence rates ρ.

The results for the h-version experiment with linear polynomials are given in
Table 7.1. The measured rates ρ show the algebraic convergence (7.3) of our PUM
in the L2- and energy-norm with rates ρ near the optimal values of ρ2 = −1 and
ρE = − 1

2 for the h-version. In the L∞-norm we measure a convergence rate ρ∞ of
−0.6 which is between −1 and − 1

2 as expected.11

Let us now consider the Neumann problem (7.2). Again, the solution is given
by (7.5). Here, we apply the p-version of our PUM. Since the solution (7.5) is not
analytic in Ω we may not expect an exponential convergence of the p-version. From
the numbers given in Table 7.2 and the convergence history displayed in Figure 7.1
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Fig. 7.1. Convergence history for problem (7.2) in two dimensions (left) with solution (7.5).
Convergence history for problem (7.2) in three dimensions (right) with solution (7.6).

Table 7.3
Errors (e) and convergence rates (ρA) in different norms for problem (7.1) in three dimensions

with solution (7.6).

N card(P ) p dof e∞ ρA∞ e2 ρA2 eE ρAE

16 50 1 200 4.565−1 − 1.1820 − 1.8280 −
128 414 1 1656 2.580−1 −2.699−1 1.499−1 −9.769−1 4.273−1 −6.876−1

1024 3543 1 14172 7.914−2 −5.505−1 5.452−2 −4.711−1 2.683−1 −2.168−1

8192 26699 1 106796 3.119−2 −4.610−1 9.091−3 −8.869−1 1.197−1 −3.996−1

(left) we can observe that the convergence starts off at an exponential rate but breaks
down to a polynomial rate as anticipated for higher polynomial degrees p.

Example 2 (unit cube). In our second example we consider (7.1) with Dirichlet
boundary conditions on the unit cube in three dimensions. Here, we now choose f
and g such that the solution u is given by

u(x) = exp (4‖x‖1).(7.6)

Again, we use the h-version of our PUM with linear polynomials to approximate
(7.1). The covers are generated using N points of the Halton(2, 3, 5) sequence. The
numerical results are given in Table 7.3. Here, it seems that the convergence in the
L2- and the energy-norm is actually better than the theory (for uniform point sets)
suggests. We measure a convergence rate ρ2 close to −1 but would expect only a
convergence rate of about − 2

3 . This behavior, however, is due to the fact that the size
of patches ωi based on a Halton sequence varies much more in three dimensions than
in two dimensions (for a small number of samples). Therefore, a larger fluctuation in
the measured convergence rates ρ will occur. If we use a different number N of Halton
points for the initial cover or refine the covers using only twice as many points instead
of eight times as many, this behavior becomes much more obvious. To this end we also
give the numerical results of an h-version experiment with linear polynomials applied
to the Neumann problem (7.2) with solution (7.6) in Table 7.4. Here, we clearly see
the fluctuation in the convergence rates due to the unstructured refinement induced
by the Halton sequence. If we use the grid points of a uniform grid to generate the
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Table 7.4
Errors (e) and convergence rates (ρA) in different norms for problem (7.2) in three dimensions

with solution (7.6). The covers CΩ are based on a Halton(2, 3, 5) point set.

N card(P ) p dof e∞ ρA∞ e2 ρA2 eE ρAE

16 50 1 200 7.184−1 − 4.321−1 − 7.741−1 −
32 106 1 424 4.125−1 −7.383−1 1.384−1 −1.5150 4.846−1 −6.232−1

64 190 1 760 2.020−1 −1.2240 9.887−2 −5.766−1 3.701−1 −4.618−1

128 414 1 1656 1.966−1 −3.457−2 8.198−2 −2.405−1 3.351−1 −1.277−1

256 673 1 2692 1.838−1 −1.387−1 3.729−2 −1.6210 2.630−1 −4.985−1

512 1415 1 5660 8.673−2 −1.0110 3.464−2 −9.924−2 2.364−1 −1.434−1

1024 3543 1 14172 8.565−2 −1.366−2 2.628−2 −3.008−1 1.936−1 −2.180−1

2048 5874 1 23496 6.756−2 −4.692−1 9.380−3 −2.0380 1.340−1 −7.267−1

4096 10606 1 42424 6.734−2 −5.719−3 9.039−3 −6.263−2 1.296−1 −5.676−2

8192 26699 1 106796 3.934−2 −5.821−1 7.021−3 −2.738−1 1.016−1 −2.643−1

16384 45151 1 180604 2.197−2 −1.1090 2.334−3 −2.0960 6.745−2 −7.790−1

Table 7.5
Errors (e) and convergence rates (ρA) in different norms for problem (7.2) in three dimensions

with solution (7.6). The covers CΩ are based on a uniform point set.

N card(P ) p dof e∞ ρA∞ e2 ρA2 eE ρAE

64 64 1 256 4.124−1 − 1.382−1 − 4.846−1 −
512 512 1 2048 1.838−1 −3.887−1 3.734−2 −6.295−1 2.634−1 −2.931−1

4096 4096 1 16384 6.751−2 −4.816−1 9.409−3 −6.628−1 1.351−1 −3.211−1

32768 32768 1 131072 2.199−2 −5.395−1 2.332−3 −6.708−1 6.787−2 −3.311−1

covers CΩ we can observe a very good correspondence of the measured convergence
rates ρ with those of the theory (see Table 7.5)), where the corresponding numerical
results for the Neumann problem (7.2) with solution (7.6) are given.

We now turn to the p-version of our PUM in three dimensions. The numerical
results for problem (7.2) with Neumann boundary conditions are given in Table 7.6.
For the smooth solution (7.6) we expect an exponential convergence behavior of the
p-version of our PUM. From the measured values of ρ and the convergence history
given in Figure 7.1 (right) we clearly see this behavior.

In summary we have that on simple domains in two and three dimensions the PUM
works with the anticipated convergence properties. Now we turn to more complicated
(yet still academic) computational domains in three dimensions.

Example 3 (lattice material). In our third example we study the problem of heat
conduction in a lattice material. To this end, we use our PUM to discretize the PDE

−Δu+ u = f in Ω ⊂ (0, 1)3

on a domain Ω which describes a lattice material with a characteristic cell width of
4
14 and a cell number of 3. As boundary conditions we use the Neumann conditions

∇u = g =

{ −10( 1
4 − 2x) : ΓI := {x ∈ ∂Ω |x0 = 0 and ‖x‖2 < 1

4},
0 : ΓO := ∂Ω \ ΓI

to simulate heat-introduction into the material at the contact points ΓI to a heat
source and outflow conditions on the remaining boundary ΓO.

We use a Halton4095
0 (2, 3, 5) set distributed in the bounding box RΩ := (0, 1)3 as

the initial point set P for our cover construction. The local approximation spaces V pii
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Table 7.6
Errors (e) and convergence rates (ρ) in different norms for problem (7.2) in three dimensions

with solution (7.6).

N card(P ) p dof e∞ ρ∞ e2 ρ2 eE ρE

64 190 1 760 2.020−1 − 9.887−2 − 3.701−1 −
64 190 2 1900 3.355−2 −1.9590 1.682−2 −1.9330 8.527−2 −1.6020

64 190 3 3800 7.049−3 −2.2510 2.698−3 −2.6400 1.644−2 −2.3750

64 190 4 6650 1.150−3 −3.2400 3.631−4 −3.5840 2.606−3 −3.2910

64 190 5 10640 1.536−4 −4.2830 4.095−5 −4.6430 3.408−4 −4.3280

64 190 6 15960 1.763−5 −5.3390 4.062−6 −5.6990 3.810−5 −5.4040

64 190 7 22800 1.800−6 −6.3970 3.809−7 −6.6360 3.882−6 −6.4030

64 190 8 31350 3.818−7 −4.8690 4.652−8 −6.6030 5.759−7 −5.9920

Fig. 7.2. Isosurfaces of approximate solution and diagonal slice through lattice domain.

that are assigned to the 5187 patches which overlap the computational domain Ω are
quadratic Legendre polynomials. In Figure 7.2 some isosurfaces of the computed solu-
tion and a diagonal slice through the material are displayed. From these illustrations
we observe the heat-introduction into the material at the contact points ΓI and the
heat-propagation through the material. We clearly see the expected radial shape of the
isosurfaces due to the prescribed profile of the Neumann boundary conditions on ΓI .

8. Concluding remarks. We presented a meshfree Galerkin method for the
discretization of a PDE. The method is based on the PU approach and utilizes a novel
tree-based cover construction algorithm. The introduction of this algorithm for the
cover construction problem and the presented numerical quadrature scheme—both of
which are applicable to general domains—improve the computational efficiency during
the assembly of the stiffness matrix substantially.

The results of our numerical experiments showed the exponential convergence of
the p-version of our PUM for smooth solutions and the anticipated algebraic con-
vergence of the h-version in two and three dimensions. Furthermore, we applied our
PUM to the heat conduction problem in lattice materials. Although these examples
are still of academic nature, we believe that the substantial improvement of the com-
putation efficiency due to the ideas and algorithms presented in this paper makes the
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treatment of real world problems with meshfree Galerkin methods seizable in the near
future, at least for Neumann boundary conditions. The implementation of Dirichlet
boundary conditions in MMs is in general a challenging problem which needs further
investigation.

The presented hierarchical cover construction algorithm not only reduces the com-
putational costs significantly but also introduces a hierarchy on the PUM function
space. This may be exploited in the development of multilevel solvers [14]. The par-
allelization of our PUM [15] may be simplified by the tree-based cover construction.
Here, we can apply a space filling curves parallelization approach [6] which allows for
a cheap dynamic load balancing strategy.
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Abstract. The topic of this paper is motivated by the Navier–Stokes equations in rotation
form. Linearization and application of an implicit time stepping scheme results in a linear stationary
problem of Oseen type. In well-known solution techniques for this problem such as the Uzawa (or
Schur complement) method, a subproblem consisting of a coupled nonsymmetric system of linear
equations of diffusion-reaction type must be solved to update the velocity vector field. In this paper
we analyze a standard finite element method for the discretization of this coupled system, and
we introduce and analyze a multigrid solver for the discrete problem. Both for the discretization
method and the multigrid solver the question of robustness with respect to the amount of diffusion
and variation in the convection field is addressed. We prove stability results and discretization error
bounds for the Galerkin finite element method. We present a convergence analysis of the multigrid
method which shows the robustness of the solver. Results of numerical experiments are presented
which illustrate the stability of the discretization method and the robustness of the multigrid solver.

Key words. finite elements, multigrid, convection-diffusion, Navier–Stokes equations, rotation
form, vorticity

AMS subject classifications. 65N30, 65N55, 76D17, 35J55

PII. S1064827500374881

1. Introduction. The incompressible Navier–Stokes problem written in velocity-
pressure variables has several equivalent formulations. Very popular is the convection
form of the problem: find velocity u(t,x) and kinematic pressure p(t,x) such that

∂u

∂t
− νΔu + (u · ∇)u +∇p = f in Ω× (0, T ],

div u = 0 in Ω× (0, T ],
(1.1)

with given force field f and viscosity ν > 0. Suitable boundary and initial conditions
have to be added to (1.1). One alternative to (1.1) is the rotation form of the Navier–
Stokes problem:

∂u

∂t
− νΔu + (curlu)× u +∇P = f in Ω× (0, T ],

div u = 0 in Ω× (0, T ],
(1.2)

which results from (1.1) after replacing the kinematic pressure by the Bernoulli (or
dynamic, or total; cf., e.g., [18]) pressure P = p + 1

2u · u and using the identity
(u·∇)u = (curlu) × u + 1

2∇(u · u). In the three-dimensional case × stands for the

vector product and curlu := ∇ × u. In two dimensions, curlu := −∂u1

∂x2
+ ∂u2

∂x1
and
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a×u := (−au2, au1)
T for a scalar a. Linearization and application of an implicit time

stepping scheme to (1.2) results in an Oseen-type problem in which the equations are
of the form

−νΔu + w × u + αu +∇P = f in Ω

div u = 0 in Ω,
(1.3)

with α ≥ 0 and w = curla, where a is a known approximation of u. Note that the
above linearization of (curlu)×u ensures the ellipticity of (1.3) in a certain sense (cf.
section 2). One strategy to solve (1.3) is an Uzawa-type algorithm, in which a Schur
complement problem SrotP = g̃ for the pressure has to be solved. The Schur comple-
ment operator has the formal representation Srot = −div (−νΔ+w×+αI)−1∇. The
operator (−νΔ+w×+αI)−1 in this Schur complement is the solution operator of the
problem

−νΔu + w × u + αu = f in Ω,

u = 0 on ∂Ω,
(1.4)

where, for simplicity, we used homogeneous Dirichlet boundary conditions. The exact
solution of (1.4) can be replaced by a suitable approximation like in the inexact Uzawa
method [3] or in block preconditioners for (1.3) (see, e.g., [11], [19]).

Linearization and application of an implicit time stepping scheme to the convec-
tion form (1.1) result in equations as in (1.3) with w × u replaced by (a · ∇)u. The
Uzawa technique applied to this linear stationary problem for u and p corresponds to
a Schur complement problem with operator Sconv = −div (−νΔ + a · ∇ + αI)−1∇.
The operator (−νΔ + a · ∇ + αI)−1 in this Schur complement is the solution oper-
ator of decoupled convection-diffusion(-reaction) problems. Hence in this approach
an efficient solver for convection-diffusion equations is of major importance. In the
setting of this paper we are particularly interested in finite element discretization
methods and multigrid solvers for the discrete problem. There is extensive literature
on these solution techniques for convection-diffusion problems; see, e.g., [1], [4], [9],
[14], [15], [16], [20], [21], [23], and the references therein. Important topics are appro-
priate stabilization techniques for the finite element discretization and robustness of
the multigrid solvers for convection dominated problems.

In this paper we study the problem (1.4), which can be seen as the counterpart,
for the Navier–Stokes equations in rotation form, of the convection-diffusion problems
that correspond to the Navier–Stokes problem in convection form. Note that, opposite
to the convection-diffusion problems, the problem (1.4) is a coupled system. In this
paper we restrict ourselves to the two-dimensional case, since for this case we are
able to give complete error analyses for a finite element discretization and a multigrid
solver. However, the methodology (see [12]) and all multigrid tools can be extended
to the three-dimensional case as well. We allow α = 0, which corresponds to the
linearization of a stationary Navier–Stokes problem in rotation form. We will prove
that, under certain reasonable assumptions on the rotation function w, the standard
Galerkin finite element discretization method, without any stabilization, is a useful
method (see Theorem 3.2 and Remark 3.2). The bounds for the discretization error
that are shown to hold are similar to finite element error bounds for scalar linear
reaction-diffusion problems (as, e.g., in [17], [22]). We consider a multigrid solver
for the discrete problem that results from the Galerkin discretization of (1.4) with
standard conforming finite elements. It is proved that a multigrid W-cycle method
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with a canonical prolongation and restriction and a block Richardson smoother is
a robust solver for this problem, in the sense that its contraction number (in the
Euclidean norm) is bounded by a constant smaller than one independent of all relevant
parameters. Although to prove a robust convergence of the multigrid method we
need more restrictive assumptions on w, numerical experiments demonstrate good
performance of the method, even if such assumptions do not hold. Such a theoretical
robustness result is not known for multigrid applied to convection-diffusion problems.
Moreover, in the multigrid solver we do not need so-called robust smoothers or matrix-
dependent prolongations and restrictions, which are believed to be important for
robustness of multigrid applied to convection-diffusion problems. We will show results
of numerical experiments that illustrate the stability of the discretization method
and the robustness of the multigrid solver. Both in the analysis and the numerical
experiments it can be observed that the problem (1.4) resembles a scalar reaction-
diffusion problem. Note that from the numerical solution point of view reaction-
diffusion equations are believed to be simpler than convection-diffusion equations.

Recently, in [12], a new preconditioning technique for a discretization of the Schur
complement operator Srot has been introduced, which has good robustness properties
with respect to variation in ν and in the mesh size parameter. In this paper we consider
only the inner solution operator that appears in the Schur complement operator. Of
course, a stabilization may be needed in the outer iterations for (1.3). This subject is
addressed in [10], where it is shown that a Petrov–Galerkin-type stabilization method
for (1.3) yields optimal error bounds. The possible impact to (1.4) of additional
terms resulting from stabilized finite element method for (1.3) is not considered in
this paper. Generally, such terms enhance ellipticity of (1.4).

The results in [12], [10], and in the present paper show that for the application
of coupled (pressure-velocity) solvers and implicit schemes the rotation form of the
Navier–Stokes equations has interesting advantages compared to the convection form.
Some numerical experiments with a low order finite element method for rotation form
of the incompressible Navier–Stokes equations and comparision with the convection
form can be found in [13]. However, relatively little is known about the numerical
solution of the Navier–Stokes equations in rotation form, and we believe that this
topic deserves further research.

The remainder of the paper is organized as follows. In section 2 notation and
assumptions are introduced. Furthermore, continuity and regularity results for the
continuous problem are proved. In section 3 the finite element method is treated. We
prove discretization error bounds in a problem dependent norm and in the L2-norm.
In section 4 a multigrid solver for the discrete problem is introduced. A convergence
analysis is presented that is based on smoothing and approximation properties. In
section 5 we show results of a few numerical experiments.

2. Preliminaries and a priori estimates. Let Ω be a convex polygonal do-
main in R

2. This assumption on Ω will be needed to obtain sufficient regularity,
which strongly simplifies the multigrid convergence theory based on the smoothing
and approximation property. However, multigrid methods are known to preserve their
typical fast convergence, if this assumption is violated.

By (·, ·) and ‖ · ‖ we denote the scalar product and the corresponding norm in
L2(Ω)n, n = 1, 2. The standard norm in the Sobolev space Hk(Ω)2 is denoted by
‖ · ‖k. For u = (u1, u2), v = (v1, v2) ∈ L2(Ω)2 we have (u,v) = (u1, v1) + (u2, v2).
The norm on the space L∞(Ω) is denoted by ‖ · ‖∞.

For a scalar a and vector v we define the vector product a× v := (−av2, av1)T .
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We consider the variational formulation of (1.4) in the two-dimensional case: for
given ν > 0, α > 0, w ∈ L∞(Ω), f ∈ L2(Ω)2, determine u ∈ U := H1

0 (Ω)2 such that

a(u,v) = (f ,v) for all v ∈ U,(2.1)

where

a(u,v) = ν(∇u,∇v) + α(u,v) + (w × u,v) for u,v ∈ U.

Here we use the notation (∇u,∇v) :=
∑2
i=1(∇ui,∇vi) =

∑2
i,j=1(

∂ui
∂xj

, ∂vi∂xj
).

Throughout the paper we use C to denote some generic strictly positive constant
independent of ν, α, and w .

The definition of the vector product implies (w × u,v) = −(w × v,u) for all
u,v ∈ L2(Ω)2, and thus the bilinear form a(·, ·) is elliptic:

C ν‖u‖21 ≤ a(u,u) for all u ∈ U .

Using ‖w × u‖ ≤ ‖w‖∞‖u‖ we obtain the continuity of the bilinear form:

a(u,v) ≤ (ν + α+ ‖w‖∞)‖u‖1‖v‖1 for all u,v ∈ U.(2.2)

From the Lax–Milgram lemma it follows that the variational problem (2.1) has a
unique solution.

For the analysis below we introduce a parameter dependent norm on U:

|||u|||τ =

(
ν‖∇u‖2 + α‖u‖2 +

τ

‖w‖∞ ‖w × u‖2
) 1

2

, τ ≥ 0.

If w = 0, then the third term on the right-hand side is dropped. The constant
appearing in the Friedrichs inequality is denoted by CF :

‖ϕ‖ ≤ CF ‖∇ϕ‖ for all ϕ ∈ H1
0 (Ω).

The domain Ω is such that for any g ∈ L2(Ω) the solution of the variational problem

find ϕ ∈ H1
0 (Ω) such that (∇ϕ,∇v) = (g, v) for all v ∈ H1

0 (Ω)(2.3)

is an element of H2(Ω) and satisfies the regularity estimate ‖ϕ‖2 ≤ CP ‖g‖.
For the analysis in the remainder of this paper the following three conditions are

formulated. We denote cw := ess infΩ |w|.
(A1) Condition (A1) is satisfied if α+ cw > 0 and

η :=
‖w‖∞
α+ cw

≤ C.

(A2) Condition (A2) is satisfied if

w(x) ≥ 0 a.e. in Ω or w(x) ≤ 0 a.e. in Ω.

(A3) Condition (A3) is fulfilled if ∇w ∈ Lq(Ω)2 for some q > 2 and

‖∇w‖Lq ≤ C ‖w‖∞.
If w is a finite element function, then C is assumed to be independent of h.
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In the analysis below it will be explicitly stated which of these conditions are
assumed.

Remark 2.1. (A2) holds, for example, if w stems from the effect of Coriolis forces
(cf., e.g., [6]); (A1) holds if w is continuous and does not have any zeros in Ω or if in
a time stepping scheme we have lower bound for α: 0 < αmin ≤ α.

Note that (|w|u,u) = (|w| × u, 1× u) ≥ 0, and thus we have for u ∈ L2(Ω)2

cw‖u‖2 ≤ (|w| × u, 1× u).(2.4)

Using (|w| × u, 1× u) ≤ ‖|w| × u‖‖1× u‖ = ‖w × u‖‖u‖ we get

(α+ cw)‖u‖ ≤ ‖w × u‖+ α‖u‖.(2.5)

The inequalities (2.4) and (2.5) are used in the analysis below.

2.1. Analysis of the continuous problem. In this section we will derive a
regularity result (Theorem 2.1) and a continuity result (Lemma 2.2). In the latter,
opposite to the result in (2.2), the problem dependent norm ||| · |||τ is used. The con-
tinuity result is used in the derivation of the discretization error bounds in section 3.

Theorem 2.1. For f ∈ L2(Ω)2 let u ∈ U be the solution of problem (2.1). Then
u is an element of H2(Ω)2 and the estimates

ν‖∇u‖2 + α‖u‖2 ≤ c(ν, α)‖f‖2 ,(2.6)

ν2‖u‖22 + C2
P ‖w × u‖2 ≤ 2C2

P

(
4 + 2c(ν, α)2‖w‖2∞

)‖f‖2(2.7)

hold, with c(ν, α) =
C2
F

ν+C2
F
α
. If conditions (A1) and (A3) are satisfied, then

ν2‖u‖22 + ν(‖w‖∞ + α)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2 ≤ C‖f‖2(2.8)

with a constant C independent of f , ν, α, and w.
Proof. Define f̃ = f−w×u−αu. Note that f̃ ∈ L2(Ω)2 and (∇u,∇v) = − 1

ν (f̃ ,v)
for all v ∈ U. Hence, due to the regularity result for the Poisson equation (2.3), we
have u ∈ H2(Ω)2 and

‖u‖2 ≤ CP
ν
‖f̃‖ ≤ CP

ν
(‖f‖+ ‖w × u‖+ α‖u‖).(2.9)

Note that ‖u‖2 = c(ν, α)(νC−2
F +α)‖u‖2 ≤ c(ν, α)(ν‖∇u‖2 +α‖u‖2). Using this and

taking v = u in (2.1) we get

ν‖∇u‖2 + α‖u‖2 ≤ ‖f‖‖u‖ ≤ ‖f‖c(ν, α)
1
2 (ν‖∇u‖2 + α‖u‖2) 1

2 ,(2.10)

and thus the result in (2.6) holds. We also have, using (2.6),

‖w × u‖2 ≤ ‖w‖2∞‖u‖2 ≤ c(ν, α)‖w‖2∞(ν‖∇u‖2 + α‖u‖2) ≤ c(ν, α)2‖w‖2∞‖f‖2.
(2.11)

Combining this estimate with (2.9), and noting that α‖u‖ ≤ ‖f‖, yields

ν2‖u‖22 + C2
P ‖w × u‖2 ≤ C2

P (‖f‖+ c(ν, α)‖w‖∞‖f‖+ ‖f‖)2 + C2
P c(ν, α)2‖w‖2∞‖f‖2

= C2
P ((2 + c(ν, α)‖w‖∞)2 + c(ν, α)2‖w‖2∞)‖f‖2

≤ 2C2
P (3 + 2c(ν, α)2‖w‖2∞)‖f‖2,

and thus the estimate (2.7) is proved.
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Now assume the conditions (A1) and (A3) to be valid. Since f ∈ L2(Ω)2 and
u ∈ H2(Ω)2, (1.4) is satisfied in a strong sense, and thus ‖−νΔu+αu+w×u‖ = ‖f‖
holds. Taking the square of this identity and noting that (u, w × u) = 0 results in

ν2‖Δu‖2 + 2να‖∇u‖2 + α2‖u‖2 + 2ν(∇u,∇(w × u)) + ‖w × u‖2 = ‖f‖2.(2.12)

A simple computation yields (∇u,∇(w × u)) = −(∇u1, u2∇w) + (∇u2, u1∇w) and

|(∇u,∇(w × u))| ≤ ‖∇u‖(‖u1∇w‖2 + ‖u2∇w‖2) 1
2 .(2.13)

Take q as in (A3) and define q̃ = 1
2q. The Hölder inequality with 1

p + 1
q̃ = 1 and the

injection H1(Ω) ↪→ L2p(Ω) yields, for i = 1, 2,

‖ui∇w‖ = (u2
i ,∇w · ∇w)

1
2 ≤ ‖ui‖L2p

‖∇w · ∇w‖ 1
2

Lq̃

≤ C‖∇ui‖‖∇w‖Lq ≤ C‖∇ui‖‖w‖∞.
(2.14)

In the last inequality in (2.14) we used (A3). The combination of (2.13) and (2.14)
yields

2ν|(∇u,∇(w × u))| ≤ c̄ ν‖w‖∞ ‖∇u‖2.

From this result and (2.12) we obtain

ν2‖Δu‖2 + 2να‖∇u‖2 + α2‖u‖2 + ‖w × u‖2 ≤ ‖f‖2 + c̄ ν‖w‖∞ ‖∇u‖2.(2.15)

From (2.1) and (2.5) it follows that, for δ > 0,

ν‖∇u‖2 ≤ ‖f‖ ‖u‖ =
1√

δ(α+ cw)
‖f‖
√
δ(α+ cw)‖u‖

≤ ‖f‖2
2δ(α+ cw)2

+ δ(α2‖u‖2 + ‖w × u‖2).
(2.16)

If we set δ = (4 c̄ ‖w‖∞)−1 and multiply (2.16) with 1
2δ we obtain

2c̄ν‖w‖∞‖∇u‖2 ≤ c̄2 ‖w‖2∞
(α+ cw)2

‖f‖2 +
1

2
α2‖u‖2 +

1

2
‖w × u‖2 .

Adding this to (2.15) yields

ν2‖Δu‖2 + ν(c̄‖w‖∞ + 2α)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2

≤
(
1 + c̄2

‖w‖2∞
(α+ cw)2

)
‖f‖2 +

1

2
α2‖u‖2 +

1

2
‖w × u‖2.

Using assumption (A1), i.e.,
‖w‖2

∞
(α+cw)2 = η2 ≤ C and ‖u‖2 ≤ CP ‖Δu‖, the result in

(2.8) follows.
Note that in (2.6) and (2.7) with α = 0 we have regularity estimates of the

form ‖u‖1 = O(ν−1) and ‖u‖2 = O(ν−2), which show a similar behavior as regularity
results for convection-diffusion problems of the form −νΔu+a ·∇u = f (cf. [16]). The
result in (2.8), which holds if conditions (A1) and (A3) are satisfied, yields regularity
estimates of the form ‖u‖1 = O(ν−1/2) and ‖u‖2 = O(ν−1). These bounds show
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a behavior that is typical for the solution of reaction-diffusion problems of the form
−νΔu + bu = f if b > 0 (cf. [17]). In section 4.2 the regularity result (2.8) will be
used in the convergence analysis of the multigrid method.

Lemma 2.2. Take τ > 0. The following holds:

a(v,u) ≤ Cτ |||v|||τ
(
ν‖∇u‖2 + (α+ ‖w‖∞)‖u‖2

) 1
2

for all v,u ∈ U.(2.17)

If condition (A1) is satisfied, then

a(v,u) ≤ Cτ |||v|||τ |||u|||τ for all v,u ∈ U.(2.18)

The constants Cτ may depend on τ .
Proof. For v,u ∈ U we have

a(v,u) = ν(∇v,∇u) + α(v,u) + (w × v,u)

≤ ν‖∇v‖‖∇u‖+ α‖v‖‖u‖+ ‖w × v‖‖u‖.(2.19)

We define κ := τ‖w‖−1
∞ . If we use ‖w × v‖‖u‖ = (κ

1
2 ‖w × v‖)(κ− 1

2 ‖u‖) and apply
the Cauchy–Schwarz inequality in (2.19) we obtain

a(v,u) ≤
(
ν‖∇v‖2 + α‖v‖2 + κ‖w × v‖2

) 1
2
(
ν‖∇u‖2 + α‖u‖2 + κ−1‖u‖2

) 1
2

≤ Cτ |||v|||τ
(
ν‖∇u‖2 + (α+ ‖w‖∞)‖u‖2

) 1
2

,

(2.20)

and thus the result in (2.17) holds. If condition (A1) is satisfied we get, using (2.5),

‖w × v‖ ‖u‖ ≤ ‖w × v‖ 1

α+ cw
(α‖u‖+ ‖w × u‖)

≤ κ 1
2 ‖w × v‖κ

− 1
2 (α

1
2 + κ−

1
2 )

α+ cw
(α

1
2 ‖u‖+ κ

1
2 ‖w × u‖)

≤ Cτ (κ 1
2 ‖w × v‖)(α‖u‖2 + κ‖w × u‖2) 1

2 .

(2.21)

In the last inequality in (2.21) we used condition (A1):

κ−
1
2 (α

1
2 + κ−

1
2 )

α+ cw
≤

3
2κ

−1 + 1
2α

α+ cw
≤ 3

2τ
η +

α

2(α+ cw)
≤ Cτ .

From the results in (2.19), (2.21), and the Cauchy–Schwarz inequality, we obtain
(2.18).

3. Finite element method. In this section we apply a standard finite element
method to the problem (2.1) and derive bounds for the discretization error.

Let (Th) be a quasi-uniform family of triangulations of Ω, with mesh size pa-
rameter h, and Uh ⊂ U be a finite element subspace of U, consisting of piecewise
polynomials of degree k ∈ N. The finite element Galerkin discretization of the prob-
lem (2.1) is as follows: Find uh ∈ Uh such that

a(uh,vh) = (f ,vh) for all vh ∈ Uh.(3.1)
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To measure the effect of different terms in (1.4) we introduce mesh numbers:1

Ekh =
ν

‖w‖∞h2
, Dh =

αh2

ν
.

First we prove the stability of a(u,v) on Uh. Below we use the inverse inequality

‖∇vh‖ < μuh
−1‖vh‖ for all vh ∈ Uh.

The L2-orthogonal projection Ph : L2(Ω)2 → Uh is defined by

(Phu,vh) = (u,vh) for all vh ∈ Uh.(3.2)

We will assume the following approximation property of the spaces Uh (cf., e.g., [5]):
their exists interpolation operator Ih : U→ Uh such that

‖u− Ihu‖ ≤ Chm‖u‖m, m = 0, 1, 2 for u ∈ U ∩Hm(Ω)2,(3.3)

‖u− Ihu‖1 ≤ Chm−1‖u‖m, m = 1, 2 for u ∈ U ∩Hm(Ω)2.(3.4)

In (3.3) we use the notation H0(Ω)2 := L2(Ω)2 and ‖ · ‖0 := ‖ · ‖.
Lemma 3.1. Assume that conditions (A1) and (A2) are fulfilled. If Ekh > 1 and

Dh < 1, condition (A3) is also assumed. Then there exists some τ ∈ (0, 1] such that

inf
uh∈Uh

sup
vh∈Uh

a(uh,vh)

|||uh|||τ |||vh|||τ ≥ C > 0.(3.5)

Proof. Take a fixed uh ∈ Uh. Note that

(w × uh,Ph(w × uh)) = (Ph(w × uh),Ph(w × uh)),
(uh,Ph(w × uh)) = 0.

Using (2.4) and condition (A2) it follows that

cw‖uh‖2 ≤ (|w| × uh, 1× uh) = (Ph(|w| × uh), 1× uh)
= (|Ph(w × uh)|, 1× uh) ≤ ‖Ph(w × uh)‖‖uh‖,

and thus

(α+ cw)‖uh‖ ≤ α‖uh‖+ ‖Ph(w × uh)‖.(3.6)

We take

τ = min{1, μ−2
u , c̃−1},(3.7)

where c̃ is a constant (independent of all parameters) that will occur in the proof. Let
κ := τ‖w‖−1

∞ . Using (3.6) we obtain

α‖uh‖2 + κ‖w × uh‖2 ≤ (α+ κ‖w‖2∞)‖uh‖2

≤ 2(α+ κ‖w‖2∞)

(α+ cw)2
(α2‖uh‖2 + ‖Ph(w × uh)‖2)

≤ 2(α+ κ‖w‖2∞)(α+ κ−1)

(α+ cw)2
(α‖uh‖2 + κ‖Ph(w × uh)‖2).

1The abbreviation and definition of Ek is chosen to be consistent with the definition of the Ekman
number in the theory of rotating flows. However, the latter is only a particular case (w = const).
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Note that τ−1 + τ ≤ max{1, μ2
u, c̃}+ 1 ≤ C and thus, using condition (A1),

(α+ κ‖w‖2∞)(α+ κ−1)

(α+ cw)2
=
α2 + (τ−1 + τ)α‖w‖∞ + ‖w‖2∞

(α+ cw)2

≤ Cα
2 + ‖w‖2∞
(α+ cw)2

≤ C(1 + η2) ≤ C.

Hence,

α‖uh‖2 + κ‖w × uh‖2 ≤ C(α‖uh‖2 + κ‖Ph(w × uh)‖2).(3.8)

To prove (3.5) we choose vh = uh + κPh(w × uh). Then

a(uh,vh) = ν‖∇uh‖2 + α‖uh‖2 + νκ(∇uh,∇Ph(w × uh)) + κ‖Ph(w × uh)‖2
≥ ν‖∇uh‖2 + α‖uh‖2 − νκ‖∇uh‖ ‖∇Ph(w × uh)‖+ κ‖Ph(w × uh)‖2.

(3.9)

For the estimation of the term ‖∇Ph(w × uh)‖ we distinguish three cases: Ekh ≤ 1
(case 1), Dh ≥ 1 (case 2), and Ekh > 1 and Dh < 1 (case 3).
In case 1 we have

(νκ)
1
2 ‖∇Ph(w × uh)‖ ≤

(
ντμ2

u

‖w‖∞h2

) 1
2

‖Ph(w × uh)‖

= (Ekhτμ
2
u)

1
2 ‖Ph(w × uh)‖ ≤ ‖Ph(w × uh)‖.

(3.10)

Using this in (3.9) and applying the Cauchy–Schwarz inequality, we get

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 + α‖uh‖2 +

1

2
κ‖Ph(w × uh)‖2.(3.11)

In case 2 we have

ν
1
2κ‖∇Ph(w × uh)‖ ≤ ν 1

2κμuh
−1‖w‖∞‖u‖ = τμuD

− 1
2

h α
1
2 ‖u‖

≤ τ 1
2μuD

− 1
2

h α
1
2 ‖u‖ ≤ α 1

2 ‖u‖.
(3.12)

Using this in (3.9) and applying the Cauchy–Schwarz inequality, we get

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 +

1

2
α‖uh‖2 + κ‖Ph(w × uh)‖2.(3.13)

For case 3 first note that, using condition (A3) and the result in (2.14) it follows that

‖∇(w × uh)‖2 =

2∑
i=1

‖(uh)i∇w‖2 + ‖w∇(uh)i‖2 + 2((uh)i∇w,w∇(uh)i)

≤ 2

2∑
i=1

‖(uh)i∇w‖2 + ‖w∇(uh)i‖2 ≤ c1‖w‖2∞‖∇uh‖2.

We use that the L2-orthogonal projection is bounded in the H1-norm (cf. [2]):

‖Phu‖1 ≤ c2‖u‖1 for u ∈ U.
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For the constant c̃ in (3.7) we take c̃ = 2c2
√
c1 and then obtain

κ‖∇Ph(w × uh)‖ ≤ c2κ‖∇(w × uh)‖ ≤ c2√c1κ‖w‖∞‖∇uh‖ ≤ 1

2
‖∇uh‖.(3.14)

Using this in (3.9) results in

a(uh,vh) ≥ 1

2
ν‖∇uh‖2 + α‖uh‖2 + κ‖Ph(w × uh)‖2.(3.15)

The combination of (3.11), (3.13), (3.15) with (3.8) proves that

a(uh,vh) ≥ C|||uh|||2τ(3.16)

holds. The results in (3.10), (3.12), and (3.14) imply

νκ2‖∇Ph(w × uh)‖2 ≤ |||uh|||2τ .
Using this it follows that

|||vh|||2τ = ν‖∇(uh + κPh(w × uh))‖2 + α‖uh + κPh(w × uh)‖2
+ κ‖Ph(w × uh + κw × Ph(w × uh))‖2

≤ 2(ν‖∇uh‖2 + νκ2‖∇Ph(w × uh)‖2) + α‖uh‖2 + κ2α‖Ph(w × uh)‖2
+ 2κ(‖Ph(w × uh)‖2 + κ2‖Ph(w × Ph(w × uh))‖2)

≤ 2ν‖∇uh‖2 + 2|||uh|||2τ + α(1 + τ2)‖uh‖2 + 2κ(1 + τ2)‖Ph(w × uh)‖2
≤ 2ν‖∇uh‖2 + 2α‖uh‖2 + 4κ‖Ph(w × uh)‖2 + 2|||uh|||2τ
≤ 6|||uh|||2τ .

The combination of the latter estimate and (3.16) completes the proof.
Remark 3.1. Note that τ in Lemma 3.1 does not depend on ν, α, or w.
Remark 3.2. Using the mesh-dependent norm

|||u|||τ,h =

(
ν‖∇u‖2 + α‖u‖2 +

τ

‖w‖∞ ‖Ph(w × u)‖2
) 1

2

(3.17)

the stability of a(·, ·) on Uh can be proved without assumption (A1) and (A2) on
w, since estimate (3.8) is not needed. Moreover, continuity of a(·, ·) on Uh × U in
the mesh-dependent norm (3.17) can be proved without the assumptions (A1), (A2).
This then results in satisfactory discretization error bounds in the norm ||| · |||τ,h. (See
the treatment of the Oseen problem in [10].) However, for a certain duality argument
in the proof of the approximation property in the multigrid convergence analysis (see
Theorem 3.3 and section 4) we need the continuity of a(·, ·) on U×U, and then the
mesh-dependent norm becomes inconvenient.

We now derive discretization error bounds for the finite element method using
standard arguments based on Galerkin orthogonality, stability, continuity, and ap-
proximation properties of the finite element spaces.

Theorem 3.2. Let u and uh be the solution of (2.1) and (3.1), respectively. Let
the assumptions of Lemma 3.1 be fulfilled and take τ ∈ (0, 1] as in Lemma 3.1. Then
the following inequalities hold:

|||u− uh|||τ ≤ Cτ hj(ν 1
2 ‖u‖j+1 + (α

1
2 + ‖w‖ 1

2∞)‖u‖j), j = 0, 1,(3.18)

|||u− uh|||τ ≤ Cτ h(ν 1
2 + (α

1
2 + ‖w‖ 1

2∞)h)‖u‖2.(3.19)

The constants Cτ are independent of ν, α, w, u, and h but may depend on τ .
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Proof. Let ûh be an arbitrary function in Uh. Take τ as in Lemma 3.1. Then
there exists vh ∈ Uh such that

C|||uh − ûh|||τ |||vh|||τ ≤ a(uh − ûh,vh).

Using Galerkin orthogonality and the continuity result in (2.18) we obtain

a(uh − ûh,vh) = a(u− ûh,vh) ≤ Cτ |||u− ûh|||τ |||vh|||τ .

Hence,

|||uh − ûh|||τ ≤ Cτ |||u− ûh|||τ(3.20)

holds. From the triangle inequality and (3.20) it follows that

|||u− uh|||2τ ≤ Cτ |||u− ûh|||2τ
≤ Cτ

(
ν‖∇(u− ûh)‖2 + α‖u− ûh‖2 +

τ

‖w‖∞ ‖w × (u− ûh)‖2
)

≤ Cτ
(
ν‖u− ûh‖21 + (α+ τ‖w‖∞)‖u− ûh‖2

)
.

(3.21)

According to (3.3) and (3.4) ûh = Ihu can be taken such that

‖u− ûh‖21 ≤ Ch2j‖u‖2j+1, ‖u− ûh‖2 ≤ Ch2j‖u‖2j , j = 0, 1.

Using this in (3.21) proves the result in (3.18). If we use the inequalities

‖u− ûh‖21 ≤ Ch2‖u‖22, ‖u− ûh‖2 ≤ Ch4‖u‖22,

in (3.21) we get the result in (3.19).
Note that ‖w‖∞ occurs in the estimates (3.18)–(3.19) in a similar way as α, which

measures the reaction.
We now prove a discretization error bound in the L2-norm. This result will play

an important role in the convergence analysis of the multigrid method.
Theorem 3.3. Assume that the conditions (A1), (A2), and (A3) are fulfilled.

For f ∈ L2(Ω)2 let u and uh be the solutions of (2.1) and (3.1), respectively. Then

‖u− uh‖ ≤ Cmin

{
h2

ν
,

1

α+ ‖w‖∞

}
‖f‖(3.22)

holds with a constant C independent of ν, α,w, h, and f .
Proof. Take f ∈ L2(Ω)2 and let u, uh be the solutions of (2.1) and (3.1), respec-

tively. From (3.18) and the regularity estimate (2.8) it follows that

|||u− uh|||τ ≤ Cτh
(
ν

1
2 ‖u‖2 + (α

1
2 + ‖w‖ 1

2∞)‖u‖1
)

≤ Cτ h√
ν

(
ν2‖u‖22 + ν(α+ ‖w‖∞)‖∇u‖2) 1

2 ≤ Cτ h√
ν
‖f‖.

(3.23)

We now apply a duality argument. For this we introduce the adjoint bilinear form

a∗(u,v) = ν(∇u,∇v) + α(u,v)− (w × u,v) for u,v ∈ U,
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and the adjoint problem

find ũ ∈ U such that a∗(ũ,v) = (f̃ ,v) for all v ∈ U,

with f̃ := u− uh ∈ U ⊂ L2(Ω)2. Let ũh ∈ Uh be the discrete solution of the adjoint
problem, i.e., a∗(ũh,vh) = (f̃ ,vh) for all vh ∈ Uh. Note that a∗(·, ·) equals a(·, ·)
if, in a(·, ·), we replace w by −w. The results in Lemma 3.1 and Theorem 3.2 do
not depend on sign(w) and thus hold for the adjoint problem, too. Moreover, since
the choice of τ in Lemma 3.1 does not depend on w (cf. Remark 3.1), the estimate
(3.23) holds for the original and the adjoint problem with the same τ value. Using
this discretization error bound for the original and adjoint problem and the continuity
result of Lemma 2.2 we obtain

‖u− uh‖2 = (f̃ , f̃) = a∗(ũ, f̃) = a(f̃ , ũ) = a(u− uh, ũ) = a(u− uh, ũ− ũh)

≤ Cτ |||u− uh|||τ |||ũ− ũh|||τ ≤ Cτ h
2

ν
‖f‖ ‖f̃‖ = Cτ

h2

ν
‖f‖ ‖u− uh‖.

Hence, ‖u − uh‖ ≤ Cτ
h2

ν ‖f‖ holds, which proves the first bound in (3.22). For the
second bound we note that from (2.5) and (A1) it follows that

‖u− uh‖ ≤ 1

α+ cw
(α‖u− uh‖+ ‖w × (u− uh)‖)

≤ 1

α+ ‖w‖∞
α+ ‖w‖∞
α+ cw

(
α

1
2 +
‖w‖ 1

2∞
τ

1
2

)(
α

1
2 ‖u− uh‖+

τ
1
2

‖w‖ 1
2∞
‖w × (u− uh)‖

)

≤ 2

α+ ‖w‖∞ (1 + η)τ−
1
2 (α

1
2 τ

1
2 + ‖w‖ 1

2∞)|||u− uh|||τ

≤ Cτ 1

α+ ‖w‖∞ (α
1
2 + ‖w‖ 1

2∞)|||u− uh|||τ .

(3.24)

Finally, note that due to (3.18) with j = 0 and the results in (2.5), (2.8) we get

(α
1
2 + ‖w‖ 1

2∞)|||u− uh|||τ ≤ (α
1
2 + ‖w‖ 1

2∞)(ν
1
2 ‖u‖1 + (α

1
2 + ‖w‖ 1

2∞)‖u‖)
≤ ν 1

2 (α
1
2 + ‖w‖ 1

2∞)‖u‖1 + 2(α+ ‖w‖∞)‖u‖
≤ ν 1

2 (α
1
2 + ‖w‖ 1

2∞)‖u‖1 + 2(1 + η)(‖w × u‖+ α‖u‖)
≤ C(ν(α+ ‖w‖∞)‖∇u‖2 + α2‖u‖2 + ‖w × u‖2) 1

2

≤ C‖f‖.

This in combination with (3.24) yields the second bound in (3.22).

4. A solver for the discrete problem. For the approximate solution of the
discrete problem we apply a multigrid method. The method and its convergence
analysis will be presented in a matrix-vector form as in Hackbusch [8].

4.1. Multigrid components. For the application of the multigrid solver we
assume that the quasi-uniform family of triangulations of Ω results from a global
regular refinement technique. This yields a hierarchy of nested finite element spaces

U0 ⊂ U1 ⊂ · · · ⊂ Uk ⊂ · · · ⊂ U.



NAVIER–STOKES EQUATIONS AND A MULTIGRID SOLVER 1695

The corresponding mesh size parameter is denoted by hk and satisfies

c02
−k ≤ hk/h0 ≤ c12−k

with positive constants c0 and c1 independent of k. Note that Uk = Uk × Uk, where
Uk is a standard conforming finite element space consisting of scalar functions. For
the matrix-vector formulation of the discrete problem we use the standard nodal basis
in Uk, denoted by {φi}1≤i≤nk , and the isomorphism

Pk : R
nk → Uk, Pkx =

nk∑
i=1

xiφi.

For the product space Uk = Uk × Uk we use the isomorphism

Pk : Xk := R
2nk → Uk, Pkx = Pk

(
x1

x2

)
= Pkx

1 × Pkx2, xi ∈ R
nk , i = 1, 2.

On R
nk and Xk we use scaled Euclidean scalar products: 〈x, y〉k = h2

k

∑nk
i=1 xiyi for

x, y ∈ R
nk and 〈x,y〉k = 〈x1, y1〉k + 〈x2, y2〉k for x, y ∈ Xk. The corresponding

norms are denoted by ‖ ·‖. The adjoint P∗
k : Uk → Xk satisfies (Pkx,v) = 〈x,P∗

kv〉k
for all x ∈ Xk, v ∈ Uk. Note that the following norm equivalence holds:

C−1‖x‖ ≤ ‖Pkx‖ ≤ C‖x‖ for all x ∈ Xk,(4.1)

with a constant C independent of k. The stiffness matrix Lk : R
2nk → R

2nk on level
k is defined by

〈Lkx,y〉k = a(Pkx,Pky) for all x,y ∈ Xk.(4.2)

This matrix has the block structure

Lk =

(
νA+ αM −Mw

Mw νA+ αM

)
,

with

〈Ax, y〉k = (∇Pkx,∇Pky), 〈Mx, y〉k = (Pkx, Pky),

〈Mwx, y〉k = (wPkx, Pky)
(4.3)

for all x, y ∈ R
nk . Note that A is a stiffness matrix for a single (velocity) component,

M is a mass matrix, and Mw is of mass matrix type corresponding to the bilinear
form [x, y] → (wx, y). The latter is not necessarily a scalar product. The matrices
A,M,Mw are symmetric and A and M are positive definite.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pk : Xk−1 → Xk, pk = P−1
k Pk−1,

rk : Xk → Xk−1, rk = P∗
k−1(P

∗
k)

−1 =
(

hk
hk−1

)2

pTk .
(4.4)

Consider a smoother of the form

xnew = xold −W−1
k (Lkx

old − b) for xold,b ∈ Xk

with the corresponding iteration matrix denoted by Sk = I −W−1
k Lk.
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The damped block Jacobi method corresponds to

Wk = ω−1

(
diag(νA+ αM) −diag(Mw)

diag(Mw) diag(νA+ αM)

)
,(4.5)

with a damping parameter ω ∈ (0, 1]. This type of smoother will be used in our
numerical experiments in section 5. In the convergence analysis of the multigrid
method we consider a smoother of block Richardson type:

Wk =

(
β1I −β2I
β2I β1I

)
,(4.6)

where I is the identity matrix and β1, β2 are suitable scaling factors. With the compo-
nents defined above, a standard multigrid algorithm with μ1 pre- and μ2 postsmooth-
ing iterations can be formulated (cf. [8]) with an iteration matrix Mk on level k that
satisfies the recursion

M0(μ1, μ2) = 0,

Mk(μ1, μ2) = Sμ2

k

(
I − pk(I −Mγ

k−1)L
−1
k−1rkLk

)
Sμ1

k , k = 1, 2, . . . .

The choices γ = 1 and γ = 2 correspond to the V- and W-cycle, respectively. For
analysis of this multigrid method we use the framework of [7], [8] based on the approx-
imation and smoothing property. In sections 4.2 and 4.3 we will prove the following
approximation and smoothing properties:

‖L−1
k − pk L−1

k−1rk‖ ≤ C
( ν
h2

+ α+ ‖w‖∞
)−1

,(4.7)

‖LkSμ1

k ‖ ≤
C√
μ1

( ν
h2

+ α+ ‖w‖∞
)
.(4.8)

As a direct consequence of (4.7) and (4.8) one obtains a bound for the contraction
number of the two-grid method:

‖(I − pkL−1
k−1rkLk)S

μ1

k ‖ ≤
C√
μ1

.(4.9)

Using the analysis in [8, Theorem 10.6.25] the convergence of the multigrid W-cycle
can be obtained as a consequence of the approximation and smoothing property. In
section 4.3 we will prove ‖Sk‖ ≤ 1. Using this and (4.7), (4.8), Theorem 10.6.25 from
[8] yields the following result.

Theorem 4.1. Assume (A1)–(A3) hold; then for any ψ ∈ (0, 1) there exists
μ̄0 > 0 independent of the problem parameters ν, α and the level number k such that
for the contraction number of the multigrid W-cycle with smoothing (4.6) we have

‖Mk(μ, 0)‖ ≤ ψ for all μ ≥ μ̄0.

This proves the robustness of the multigrid W-cycle with respect to variation in
the problem parameters ν and α and the mesh size hk.

This robustness is confirmed by the numerical experiments in section 5.

4.2. Approximation property. The analysis of the approximation property is
as in [7], [8]. The key ingredient is the finite element error bound in Theorem 3.3.
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Theorem 4.2. Let the assumptions (A1)–(A3) be valid; then

‖L−1
k − pk L−1

k−1rk‖ ≤ C
(
ν

h2
k

+ α+ ‖w‖∞
)−1

≤ C‖Lk‖−1.(4.10)

Proof. Take yk ∈ Xk. The constants C that appear in the proof do not depend
on ν, α,yk, or k. Let s∗ ∈ U, sk ∈ Uk, and sk−1 ∈ Uk−1 be such that

a(s∗,v) = ((P∗
k)

−1yk,v) for all v ∈ U,

a(sk,v) = ((P∗
k)

−1yk,v) for all v ∈ Uk,

a(sk−1,v) = ((P∗
k)

−1yk,v) for all v ∈ Uk−1.

Putting f = (P∗
k)

−1yk ∈ L2(Ω)2 in Theorem 3.3, we obtain

‖s∗ − sl‖ ≤ Cmin

{
h2
l

ν
,

1

α+ ‖w‖∞

}
‖(P∗

k)
−1yk‖ for l ∈ {k − 1, k}.

Due to hk−1 ≤ chk this yields

‖sk − sk−1‖ ≤ Cmin

{
h2
k

ν
,

1

α+ ‖w‖∞

}
‖(P∗

k)
−1yk‖.

From (4.2) and (4.4) it follows that sk = PkL
−1
k yk and sk−1 = Pk−1L

−1
k−1rkyk. Thus,

using (4.1), we get

‖(L−1
k − pkL−1

k−1rk)yk‖ ≤ C‖PkL
−1
k yk −Pk−1L

−1
k−1rkyk‖ = C‖sk − sk−1‖

≤ C min

{
h2
k

ν
,

1

α+ ‖w‖∞

}
‖(P∗

k)
−1yk‖

≤ C min

{
h2
k

ν
,

1

α+ ‖w‖∞

}
‖yk‖.

Note that min{ 1
p ,

1
q} ≤ 2

p+q for all p, q > 0. Hence the first inequality in (4.10) is

proved. For the second inequality in (4.10) we note that

‖Lk‖ =

∥∥∥∥
(
νA+ αM ∅
∅ νA+ αM

)
+

( ∅ −Mw

Mw ∅
)∥∥∥∥

≤ ‖νA+ αM‖+ ‖Mw‖ ≤ ν‖A‖+ (α+ ‖w‖∞)‖M‖.

Using ‖A‖ ≤ Ch−2
k and ‖M‖ ≤ C we obtain ‖Lk‖ ≤ C(νh−2

k + α+ ‖w‖∞).

4.3. Smoothing property. Let a1,m1 be positive constants independent of
ν, α, and k such that for spectral radius of the matrices in (4.3) we have

ρ(A) ≤ a1

h2
k

, ρ(M) ≤ m1.

Furthermore, let wmin = ess infΩ w and wmax = ess supΩ w and define

Cw =

{
wmax if wmax ≥ −wmin,
wmin if wmax < −wmin.

Note that |Cw| = ‖w‖∞. In the analysis below we use the following elementary result.
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Lemma 4.3. Assume that for B ∈ R
n×n and Λ ∈ (0,∞) we have BTB ≤

Λ(B +BT ). Then ‖I − ωB‖ ≤ 1 holds for any ω ∈ [0, 1
Λ ].

This result follows from

0 ≤ (I − ωB)T (I − ωB) = I − ω(B +BT ) + ω2BTB

≤ I − ω(1− ωΛ)(B +BT ) ≤ I.
Using this lemma we prove that the contraction number of the block Richardson
method is bounded by 1.

Lemma 4.4. Assume that (A1) and (A2) are satisfied. Consider the block
Richardson method with Wk as in (4.6) and

β1 =
νa1

h2
k

+ ακ1m1, β2 = κ2Cw, with constants

κ1 ≥ 2(1 + η2), κ2 ≥ 4m1η.(4.11)

Then the following inequality holds:

‖I −W−1
k Lk‖ ≤ 1.

Proof. A straightforward computation yields

W−1
k Lk = R1 +R2, with(4.12)

R1 =
ν

β2
1 + β2

2

(
β1A β2A
−β2A β1A

)
,

R2 =
1

β2
1 + β2

2

(
β1αM + β2Mw β2αM − β1Mw

−β2αM + β1Mw β1αM + β2Mw

)
.

From

1

2
(RT1 +R1) =

νβ1

β2
1 + β2

2

(
A 0
0 A

)
, RT1 R1 =

ν2

β2
1 + β2

2

(
A2 0
0 A2

)

it follows that

RT1 R1 ≤ 1

2
(RT1 +R1) ⇔ νA ≤ β1I ⇔ νA ≤

(
νa1

h2
k

+ ακ1m1

)
I.

The last inequality holds, due to ρ(A) ≤ a1

h2
k

and ακ1m1 ≥ 0. Application of Lemma

4.3 yields

‖I − 2R1‖ ≤ 1 .(4.13)

For the matrix R2 we obtain

1

2
(RT2 +R2) =

1

β2
1 + β2

2

(
β1αM + β2Mw ∅

∅ β1αM + β2Mw

)
,

RT2 R2 =
1

β2
1 + β2

2

(
α2M2 +M2

w α(MwM −MMw)
−α(MwM −MMw) α2M2 +M2

w

)
.

We use the notation M̂ = β1αM + β2Mw. Note that RT2 R2 ≤ 1
2 (RT2 + R2) holds if

the following two conditions are satisfied:

α2M2 +M2
w ≤

1

2
M̂,(4.14)

α|〈(MwM −MMw)x, y〉k| ≤ 1

4

(
〈M̂x, x〉k + 〈M̂y, y〉k

)
,(4.15)
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for all x, y ∈ R
nk . We first consider (4.14). We have M2

w ≤ ‖w‖2∞M2 ≤ m1‖w‖2∞M .
Due to (A2) the matrix Mw is definite and CwMw is positive definite; moreover,
CwMw ≥ |Cw|cwM = ‖w‖∞cwM . Using this we obtain

α2M2 +M2
w ≤ (m1α

2 +m1‖w‖2∞)M,

1

2
M̂ ≥ 1

2
(κ1m1α

2M + κ2CwMw) ≥ 1

2
(κ1m1α

2 + κ2‖w‖∞cw)M.

Hence, (4.14) is fulfilled if the inequality

m1α
2 +m1‖w‖2∞ ≤

1

2
(κ1m1α

2 + κ2‖w‖∞cw)

holds. Substitution of ‖w‖∞ = η(α+ cw) and rearranging terms results in the equiv-
alent inequality

α2m1

(
1

2
κ1 − (1 + η2)

)
+ αcwη

(
1

2
κ2 − 2m1η

)
+ ηc2w

(
1

2
κ2 −m1η

)
≥ 0.

This inequality holds for κ1, κ2 as in (4.11). Hence, with κ1, κ2 as in (4.11) the
condition (4.14) is fulfilled. To prove (4.15) we note that

α|〈(MwM −MMw)x, y〉k| ≤ α(〈|MwMx, y〉k|+ α|〈MMwx, y〉k|,
α|〈MwMx, y〉k| = α|〈Mx,Mwy〉k| ≤ 1

2

(
α2〈M2x, x〉k + 〈M2

wy, y〉k
)
,

α|〈MMwx, y〉k| = α|〈Mwx,My〉k| ≤ 1
2

(〈M2
wx, x〉k + α2〈M2y, y〉k

)
.

Thus (4.15) follows from (4.14). We conclude that (4.15) and (4.14) are satisfied for
κ1, κ2 as in (4.11). Hence, RT2 R2 ≤ 1

2 (RT2 +R2) holds. And due to Lemma 4.3

‖I − 2R2‖ ≤ 1.(4.16)

Finally, (4.12), (4.13), and (4.16) yield

‖I −W−1
k Lk‖ = ‖I − (R1 +R2)‖ ≤ 1

2
‖I − 2R1‖+

1

2
‖I − 2R2‖ ≤ 1.

Theorem 4.5. Assume that (A1) and (A2) are satisfied. Consider the block
Richardson method with Wk as in (4.6) and

β1 = 2

(
νa1

h2
k

+ ακ1m1

)
, β2 = 2κ2Cw,

with constants κ1, κ2 from (4.11). Then the following estimate holds:

‖LkSμ1

k ‖ ≤
C√
μ1

( ν
h2

+ α+ ‖w‖∞
)
, μ1 = 1, 2, . . . .(4.17)

Proof. From Lemma 4.4 we obtain

‖I − 2W−1
k Lk‖ ≤ 1.(4.18)

Furthermore,

‖Wk‖ = ρ

((
β1I −β2I
β2I β1I

)(
β1I β2I
−β2I β1I

)) 1
2

= (β2
1 + β2

2)
1
2 ≤ β1 + β2 ≤ C

( ν
h2

+ α+ ‖w‖∞
)
.

(4.19)

From (4.18) and (4.19) and Theorem 10.6.8 in [8] the result in (4.17) follows.



1700 MAXIM A. OLSHANSKII AND ARNOLD REUSKEN

5. Numerical results. In this section results of a few numerical experiments
related to the accuracy of the discretization method and the convergence behavior of
the multigrid solver are presented. For the discretization we use linear conforming
finite elements on a uniform triangulation of the unit square. The mesh size parameter
is h = hk = 2−k, k = 4, 5, . . . , 9.

In our experiments we consider problems with an a priori known continuous so-
lution u ∈ H2(Ω)2 ∩ U to the problem (2.1). Discretization errors are measured
as follows. Let ûh ∈ Uh be the nodal interpolant of the continuous solution u and
uh ∈ Uh be the solution of the discrete problem. As a measure for the discretization
error we take

err(u, h, ν) =
‖ûh − uh‖
‖f‖ .(5.1)

For the iterative solution of the discrete problem a multigrid V-cycle is applied.
The prolongations and restrictions in this multigrid method are the canonical ones,
as in (4.4). For the smoother a damped block Jacobi method as in (4.5) is used.
Thus for each pair of nodal values of {u1, u2} a 2 × 2 linear system is solved. The
damping parameter ω in each smoothing step is determined in a dynamic way based
on a residual minimization criterion: We set ω = (q,q)/(q, r), where for grid level k

r = W̄−1
k (Lkx

old − b), q = W̄−1
k Lkr,

and W̄k equals Wk from (4.5) for ω = 1.
We always use two pre- and two postsmoothing iterations. For the starting vector

in the iterative solver we take u0 = 0. The iterations are stopped as soon as the
residual, in the Euclidean norm, is at least a factor 109 smaller than the starting
residual.

We consider test problems with different choices for w. Note that in the set-
ting of a (linearized) Navier–Stokes problem w = curlv = −∂v2∂x + ∂v1

∂y , where v =

(v1(x, y), v2(x, y)) is an approximation of the flow field. In Experiment I we consider
a problem which corresponds to a flow with rotating vortices. In Experiment II we
take a flow field v with a parabolic boundary layer behavior. Both in Experiment I
and Experiment II the right-hand side is taken such that the continuous solution u
equals the flow field v. This seems a reasonable choice if the problem (2.1) results
from a linearized Navier–Stokes problem. Finally, in Experiment III a flow v which
exhibits an internal layer behavior is considered.

In all the experiments we present results for the case α = 0. For α > 0 in our
numerical experiments we always observed better results than for α = 0, both with
respect to the discretization error and with respect to the multigrid convergence.

Experiment Ia. We take vr = (v1, v2), with

v1(x, y) = 4(2y − 1)x(1− x),
v2(x, y) = −4(2x− 1)y(1− y),(5.2)

and w = curlvr. This type of convection vr simulates a rotating vortex. For this w
the conditions (A2) and (A3) are fulfilled. Related to (A1) we note that ‖w‖∞ = O(1)
and cw = 0. However, based on the fact that w equals zero only at the corner points
of the domain, one could say that (A1) is “almost” fulfilled. For several values of h
and ν the quantity err(u, h, ν) is given in Table 5.1.

In Figure 5.1 the differences (u1−(uh)1)(0.5, y) and (∂u1

∂y − ∂(uh)1
∂y )(0.5, y) between

(the derivatives of) the first components of the continuous and finite element solution
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Table 5.1
err(u, h, ν) for Experiment Ia.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 4.5e-4 1.1e-4 2.8e-5 7.2e-6 1.8e-6 4.5e-7
1e-2 8.6e-3 2.1e-3 5.2e-4 1.3e-4 3.3e-5 8.2e-6
1e-4 1.0e-2 2.7e-3 7.0e-4 1.7e-4 4.4e-5 1.1e-5
1e-6 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.4e-5 1.3e-5
1e-8 1.0e-2 2.7e-3 7.7e-4 2.1e-4 5.9e-5 1.6e-5

h=1/512

h=1/256

h=1/128

0.10.080.06y

(a)

0.040.020

0.01

0

-0.01

-0.03

-0.05

h=1/512

h=1/256

h=1/128

0.50.40.3y

(b)

0.20.10

4e-4

3e-4

2e-4

1e-4

0

Fig. 5.1. Discretization error in Experiment Ia; ν = 10−6, x = 0.5 (a) in y-derivative, (b) in
solution.

Table 5.2
V-cycle convergence for Experiment Ia.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 11(0.14) 11(0.14) 11(0.14) 11(0.15) 11(0.15)
1e-4 6(0.03) 7(0.05) 9(0.10) 11(0.14) 11(0.15)
1e-6 5(0.01) 5(0.01) 5(0.01) 7(0.04) 7(0.05)
1e-8 5(0.01) 5(0.01) 5(0.01) 5(0.01) 5(0.01)

Number of iterations and average reduction factor

are plotted for the case ν = 10−6. Because of the symmetry the error in the solution is
shown only on half of the interval (Figure 5.1b) and the error in the solution derivative
only on the interval [0, 0.1] near the boundary (Figure 5.1a). The numerical boundary
layer, typical for reaction-diffusion problems with dominating reaction terms, is clearly
seen. Results for the convergence behavior of the multigrid method are shown in
Table 5.2.
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Fig. 5.2. (a) Function w in Experiment Ib; (b) function w in Experiment II, ν = 10−3.

Table 5.3
err(u, h, ν) for Experiment Ib.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 1.9e-3 4.9e-4 1.2e-4 3.0e-5 7.5e-6 1.9e-6
1e-2 1.5e-2 3.6e-3 9.0e-4 2.3e-4 5.7e-5 1.4e-5
1e-4 4.8e-2 7.1e-3 1.8e-3 4.5e-4 1.1e-4 2.9e-5
1e-6 1.4e-1 7.8e-2 1.0e-2 9.5e-4 2.3e-4 5.7e-5
1e-8 1.4e-1 9.7e-2 6.7e-2 2.9e-2 2.0e-3 1.4e-4

Experiment Ib. We take vR = (v1, v2), with

v1(x, y) =
1

ψ
sin(ψπx) cos(πy),

v2(x, y) = − cos(ψπx) sin(πy),
(5.3)

and w = curlvR. This models a flow with two vortices rotating in opposite directions.
Note that the conditions (A1) and (A2) are not fulfilled. For the parameter ψ we
choose ψ = 1.6. One vortex lies entirely in the computational domain, the second one
only partially. The (vorticity) function w for this problem is plotted in Figure 5.2(a).
Note the change of sign for w at x = 0.625. The error in the discrete solution
shown in Table 5.3 is larger compared to example Ia (which might correspond to
the strong violation of the conditions (A1) and (A2)). In Figure 5.3 the difference
(u1 − (uh)1)(0.5, y) is plotted for ν = 10−6. Note that some local oscillations in the
error are observed in the neighborhood of x = 0.625, i.e., where condition (A1) is
locally violated. The results for the convergence behavior of the multigrid method are
very similar to those in Table 5.2 for Experiment Ia.
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h=1/32
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-0.08
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h=1/256
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Fig. 5.3. Error in finite element solutions in Experiment Ib; ν = 10−6, y = 0.5.

Table 5.4
err(u, h, ν) for Experiment II.

h

ν 1/16 1/32 1/64 1/128 1/256 1/512

1 7.4e-6 1.8e-6 4.5e-7 1.1e-7 2.8e-8 7.0e-9
1e-2 3.7e-3 8.6e-3 2.1e-4 5.3e-5 1.3e-5 2.2e-6
1e-4 4.2e-2 2.4e-2 3.1e-3 6.8e-4 1.6e-4 4.1e-5
1e-6 1.2e-2 1.2e-2 1.2e-2 1.2e-2 1.0e-2 8.0e-4
1e-8 3.9e-3 3.7e-3 3.7e-3 3.7e-3 3.6e-3 3.6e-3

Experiment II. We take vl = (v1, v2), with

v1(x, y) = 1− exp(−y/√ν),
v2(x, y) = 0,

(5.4)

and w = curlvl. This models a parabolic boundary layer behavior in the velocity
field. The width of the layer is proportional to

√
ν. Note that ‖w‖∞ = O(ν−1/2).

The vorticity is of ν−
1
2 magnitude near the boundary and decays exponentially outside

the layer (see Figure 5.2(b)). As before, we take f such that the continuous solution
equals the flow field: u = vl. Results for the discretization error are given in Table 5.4.
The L2 norm of f is O(ν−

1
4 ) for ν → 0; therefore one has to use a proper scaling of

the values from Table 5.4 (e.g., multiplying by 10 for ν = 10−4) to obtain the absolute
value of the error ‖ûh − uh‖ (cf. (5.1)).

In Figure 5.4 we plot u1(0.5, y) and (uh)1(0.5, y) for the cases ν = 10−3 and
ν = 10−4 and for several h values. The finite element solution is a poor approximation
to the continuous one if the boundary layer is not resolved: h > ν

1
2 . However, for

h ∼ ν
1
2 the results are quite good, although both the mesh Reynolds numbers and

Ek−1
h are very large (e.g., ≈ 102 for ν = 10−4). Moreover, no global oscillations

are observed even for very coarse meshes. We expect that a significant improvement
can be obtained if this simple full Galerkin discretization is combined with local grid
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Fig. 5.4. Exact and discrete solutions in Experiment II; x = 0.5: (a) ν = 10−3; (b) ν = 10−4.

Table 5.5
V-cycle convergence for Experiment II.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 12(0.16) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-4 18(0.30) 17(0.29) 16(0.26) 14(0.22) 13(0.19)
1e-6 23(0.40) 29(0.48) 29(0.49) 28(0.41) 29(0.48)
1e-8 15(0.24) 19(0.33) 23(0.40) 28(0.47) 25(0.43)

Number of iterations and average reduction factor

refinement in the boundary layer. In Table 5.5 numerical results for the multigrid
method are presented. Note that assumptions (A1) and (A2) were also violated in
this experiment. Hence our convergence analysis of the multigrid method does not
apply here. One reason for the deterioration of multigrid convergence compared to
the case Ib could be weaker regularity of the function w.

Experiment III. In this experiment we try to model the presence of an internal
layer. To this end, for the convection field we take the model of the Euler flow
(extreme case if ν → 0), where the tangential velocity component is discontinuous
on some line in the interior of the domain. Hence the flow, potential a.e., has a
vorticity concentrated on this line (so-called vortex sheet). We take w = curlvd, with
vd = (v1, v2), and, for a given constant ψ,

{
v1(x, y) = cosψ
v2(x, y) = sinψ

if cosψ > (x− 0.25) sinψ,

{
v1(x, y) = 0
v2(x, y) = 0

if cosψ ≤ (x− 0.25) sinψ.

Using the parameter ψ one can vary the angle under which the layer enters the domain.
We set ψ = π/3 so the grid is not aligned to the layer. For the discrete velocity vdh ∈
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Table 5.6
V-cycle convergence for Experiment III.

h

ν 1/32 1/64 1/128 1/256 1/512

1 11(0.15) 11(0.15) 11(0.15) 11(0.15) 11(0.15)
1e-2 13(0.20) 13(0.19) 14(0.22) 14(0.21) 13(0.19)
1e-4 19(0.33) 19(0.34) 20(0.35) 21(0.36) 22(0.38)
1e-6 17(0.29) 20(0.36) 24(0.42) 28(0.47) 30(0.50)
1e-8 17(0.29) 20(0.35) 24(0.42) 28(0.48) 32(0.53)

Number of iterations and average reduction factor

Uh we take the nodal interpolant of vd, and set w = curlvdh, obtaining a piecewise
constant function w, which is essentially mesh-dependent due to the discontinuity of
vd (‖w‖∞ = O(h−1)). Results for the convergence behavior of the multigrid method
are given in Table 5.6.

Since discontinuous solutions are generally not allowed for viscous motions and
our given data are mesh-dependent, we do not consider discretization errors in this
example.

5.1. Discussion of numerical results. Recall that the analysis in the previous
sections yields, for the case α = 0,

err(u, h, ν) ≤ cmin{ν−1h2, ‖w‖−1
∞ }(5.5)

under certain assumptions on w. These assumptions are “almost valid” for the prob-
lem Ia and do not hold for the problems Ib and II.

The results of the numerical experiments indeed show the O(h2) behavior of
err(u, h, ν) unless ν is very small. In the latter case the second, ν- and h-independent,
upper bound for err(u, h, ν) in (5.5) is observed and O(h2) convergence is recovered
for smaller h. For fixed h and ν → 0 a growth of the error is observed (up to some
limit). In the experiments Ia,b this growth appears to be less than O(ν−1), indicating
that the ν-dependence in (5.5) might be somewhat pessimistic for these cases.

Although in the last two examples the multigrid convergence for a small values
of ν is somewhat worse, the multigrid V-cycle with block Jacobi smoothing appears
to be a very robust solver. The convergence rates for realistic values of viscosity (in
laminar flows 1− 10−4) are excellent.
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Abstract. A novel multidimensional grid adaptation method based on minimization of the
leading truncation error term of arbitrary second- and higher-order finite difference approximations
is proposed. The method does not explicitly require the truncation error estimate, but increases
the design order of approximation globally by one, so that the same finite difference operator is
superconvergent on the optimal grid. If the differential operator and the metric coefficients are
evaluated identically by some hybrid approximation, the single optimal grid generator can be used
in the entire computational domain and does not depend on points where the hybrid discretization
switches from one approximation to another. If one family of the coordinate lines is given a priori,
then the analytical optimal mapping is constructed for any consistent second-order finite difference
approximation of ∇f in two dimensions. The present approach can be extended directly to nonlinear
partial differential equations and three dimensions. Numerical calculations show that the truncation
error obtained on the two-dimensional optimal grid is both superconvergent and reduced by several
orders of magnitude in comparison with the uniform grid results for all the test examples considered.

Key words. truncation error, optimal grid, finite difference approximation
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1. Introduction. Grid adaptation has become one of the main subjects of inter-
est and research because grid point distribution has a strong effect on the numerical
solution accuracy and therefore directly determines the computational cost. One of
the most important problems associated with grid adaptation is the fact that the con-
centration of grid points in regions that most influence the accuracy of the numerical
solution may at the same time introduce additional error due to grid nonuniformity
[1], [2], [3], [4].

Most, if not all, grid adaptation criteria are based on the equidistribution prin-
ciple. Many commonly used equidistribution methods of generating adaptive grids
are modifications of a technique originally proposed by Babuška and Rheinboldt [5].
As shown in [5] for one-dimensional (1D) finite element discretizations, the grid point
distribution is asymptotically optimal if some error measure is equally distributed
over the field. This idea has been well defined for 1D finite element methods, but a
proper concept has not been developed either for other discretization techniques or
problems involving multiple dimensions. One of the widely used approaches in multi-
ple dimensions is to redistribute grid points in accordance with the arc length and the
local curvature of the numerical solution [6], [7], [8], [9]. Dwyer [6] and Catherall [7]
use the equidistribution principle in a 1D fashion so that grid points are redistributed
along one family of fixed mesh lines. In [8], adaptivity is incorporated by using a
variational approach, which can be treated as a multidimensional extension of the 1D
equidistribution principle. Further development of this idea can be found in [9].
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An alternative technique is to equidistribute the local truncation error or its
estimate. In [10], the optimal coordinate transformation is constructed as the solution
of a constrained parameter optimization problem that minimizes a measure of the
truncation error. The error measure used is a finite difference evaluation of the third
derivative of the numerical solution calculated in the computational space. In [11] a
cell vertex scheme is reformulated as a finite element method. This method allows
construction of an a posteriori error estimate based on calculation of the finite element
residual of the approximate solution, which is similar to the finite difference truncation
error.

Another class of methods is based on error estimates that can be derived by eval-
uating the solution interpolation error [12], [13], [14], [15]. For second-order spatial
finite element discretizations, this approach is reduced to estimation of the local cur-
vature of the numerical solution. Ait-Ali-Yahia et al. [12] defined the cell edge length
squared times the second derivative of the numerical solution as an a posteriori error
estimate. Peraire et al. [14] determined the local principal directions of the symmet-
ric Hessian matrix containing information about the local curvature of the solution.
Then the equidistribution technique was applied separately in each principal direc-
tion. D’Azevedo [15] derived an anisotropic coordinate transformation by interpreting
the Hessian matrix of the data function as a metric tensor that measures the local
interpolation error. Asymptotically optimal element shapes and sizes that minimize
the error/area ratio for linear triangles are generated by the transformation as an
image of a regular mesh.

All the equidistribution methods mentioned above redistribute grid points in ac-
cordance with one or another error estimate obtained on a nonadaptive grid. On
one hand, constructing a sufficiently accurate and reliable error estimate is very dif-
ficult, and, consequently, the grid optimality may be destroyed by poor accuracy of
the error estimate. On the other hand, the error estimate norm is directly dependent
on the metric coefficients. As a result, the grid adaptation itself changes the error
distribution. To account for this change in the error distribution, the grid adapta-
tion procedure based on the error equidistribution strategy should be iterated until
the error estimate norm is equally distributed over the field. Note that, for moving
meshes dynamically adapted to the solution, the iterative procedure should be done at
each time step to attain the optimal mesh characterized by having the error equidis-
tributed throughout the domain. One of the main disadvantages of multidimensional
grid adaptation techniques is a lack of rigorously proved results showing that the grid
adaptation criterion used provides global error reduction in the numerical solution.

The main idea of the present paper is to construct a two-dimensional (2D) op-
timal coordinate transformation based on the grid adaptation criteria proposed in
[4], which minimizes the global asymptotic truncation error of an arbitrary pth-order
finite difference approximation of both fx and fy. In contrast to most multidimen-
sional grid adaptation criteria, the present method does not explicitly require an a
posteriori error estimate, and, at the same time, the design order of approximation
is increased globally by one. As a result, the same finite difference operator is super-
convergent on the optimal grid. Furthermore, for second-order approximations, the
proposed grid adaptation equations can be integrated analytically under the assump-
tion that grid points move along a given family of fixed curvilinear coordinate lines.
This analytical approach is extended to generate the optimal grid for conservation
laws. It is shown that if grid points are redistributed in accordance with the new
grid adaptation criteria, the global order of approximation of the conservation law
equation is increased from 2 to 3 on the optimal grid. Another very attractive feature
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of the present approach is its applicability to hybrid approximations that depend on
some basic properties of the solution, such as flow direction, sonic line, and others.
If the metric coefficients are evaluated by the same hybrid discretization used for the
differential operator, the new grid adaptation criterion remains valid throughout the
computational domain regardless of points where the hybrid scheme switches from
one approximation to another. Generalization of this approach to three and higher
dimensions is straightforward [4]. The numerical examples considered illustrate the
ability of the method and corroborate the theoretical analysis.

2. Grid adaptation criteria in two dimensions. A simply connected do-
main D in 2D space with Cartesian coordinates (x, y) is considered. Without loss of
generality the physical domain D is assumed bounded by four boundaries, B1, B2,
B3, B4. A computational domain Q is defined as a unit square in a 2D space with
Cartesian coordinates (ξ, η). A differentiable one-to-one coordinate transformation
between the physical and computational domains is given by

x = x(ξ, η),
y = y(ξ, η).

(2.1)

This mapping is assumed not singular, and the Jacobian of the transformation is a
strictly positive function:

J = xξyη − xηyξ > 0.(2.2)

The transformation (2.1) maps the boundary of Q one-to-one on the boundary of D
in such a way that

ξ = 0 at boundary B1, η = 0 at boundary B2,
ξ = 1 at boundary B3, η = 1 at boundary B4.

(2.3)

Nodes and cells of a grid in the physical domainD are generated by the transformation
(2.1) as images of nodes and cells of a uniform rectangular grid constructed in the
computational domain Q.

We consider the truncation error of the first derivative fx of a sufficiently smooth
function f(x, y). The first derivative is approximated on a 2D curvilinear grid gener-
ated by the mapping (2.1). The 2D transformation of fx is given by

fx =
yηfξ − yξfη

J
.(2.4)

Approximating the ξ and η derivatives in (2.4) by some pth- and qth-order finite
difference formulas, respectively, yields

Lph(vξ) =

i+l2∑
l=i−l1

alvlk,

Lqh(vη) =

k+m2∑
m=k−m1

bmvim,

(2.5)

where v denotes f , x, or y, vlm = v(lΔξ,mΔη), and Lph and Lqh are pth- and qth-order
finite difference operators, accordingly. The indices l1, l2 and m1,m2, as well as the
coefficients al and bm, depend on particular approximations used for evaluating the ξ
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and η derivatives. Equation (2.5) takes into account that the metric coefficients xξ, yξ
and xη, yη are evaluated by the same finite difference operators used for calculating
fξ and fη, respectively.

Henceforth, it is assumed that the functions f(ξ, η), x(ξ, η), and y(ξ, η) are (p+1)-
times continuously differentiable with respect to ξ and (q + 1)-times continuously
differentiable with respect to η on Q, i.e., f, x, y ∈ Cp+1,q+1(Q). Note that the present
analysis remains valid if f , x, and y are piecewise Cp+1,q+1(Q) functions. Actually,
if any of the f , x, or y functions is not smooth enough (i.e., it is not Cp+1,q+1(Q)),
then the physical domain D should be divided into a number of subdomains so that in
each subdomain all the functions f(ξ, η), x(ξ, η), and y(ξ, η) are Cp+1,q+1(Q). Under
this assumption we can expand (2.5) in a Taylor series with respect to ξi and ηk,
respectively. Omitting the indices i and k, one can write

i+l2∑
l=i−l1

alvlk = vξ + Cpv
(p+1)
ξ Δξp +O(Δξp+1),

k+m2∑
m=k−m1

bmvim = vη + Cqv
(q+1)
η Δηq +O(Δηq+1),

(2.6)

where

v
(p+1)
ξ =

∂p+1v

∂ξp+1
, v(q+1)

η =
∂q+1v

∂ηq+1
, Δξ =

1

I
, Δη =

1

K
,

and where Cp and Cq are constants dependent on al and bm, respectively. Substituting
(2.6) into (2.5) yields

Lp,qh (fx) =
δηyδξf − δξyδηf
δξxδηy − δηxδξy +O(Δξp+1,Δηq+1),(2.7)

where the differential operators δξ and δη are defined by

δξ = ∂
∂ξ + CpΔξ

p ∂p+1

∂ξp+1 ,

δη = ∂
∂η + CqΔη

q ∂q+1

∂ηq+1 .
(2.8)

As the mapping used is nonsingular (0 < J < + ∞ ∀ξ, η ∈ Q), the denominator
of (2.7) can be linearized to give

Lh(fx) = 1
J

[
yηfξ − yξfη + CpΔξ

p
(
yηf

(p+1)
ξ − y(p+1)

ξ fη

)

+ CqΔη
q(fξy

(q+1)
η − yξf (q+1)

η )
]

×
[
1− CpΔξ

p

J

(
yηx

(p+1)
ξ − y(p+1)

ξ xη

)
− CqΔη

q

J

(
xξy

(q+1)
η − yξx(q+1)

η

)]

+ O(Δξp+1,Δηq+1).

(2.9)

It should be emphasized that the error introduced by the linearization is of the order
of O(Δξ2p,Δη2q,ΔξpΔηq). The linearization has been performed under the following
assumptions:

Δξp
∣∣∣yηx(p+1)

ξ − xηy(p+1)
ξ

∣∣∣� J,

Δηq
∣∣∣xξy(q+1)

η − yξx(q+1)
η

∣∣∣� J,
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which can be treated as conditions for the minimum number of grid points needed
for the approximation. By multiplying out the terms in the square brackets and
neglecting higher-order terms, we can write the leading truncation error term Tp,q as
follows:

Tp,q(ξ, η) = 1
J

{
CpΔξ

p
[
yηf

(p+1)
ξ − y(p+1)

ξ fη − fx
(
yηx

(p+1)
ξ − xηy(p+1)

ξ

)]

+ CqΔη
q
[
fξy

(q+1)
η − yξf (q+1)

η − fx
(
xξy

(q+1)
η − yξx(q+1)

η

)]}
.

(2.10)

The truncation error Tp,q consists of two parts: one part arises from the ap-
proximation of fξ and fη, and the other occurs due to the evaluation of the metric
coefficients xξ, yξ, xη, and yη. It should be emphasized that any grid adaptation based
on minimization or equidistribution of the first part of the truncation error alone is
not sufficient because the second part of the truncation error may drastically increase
in regions where the metric coefficients change rapidly. In other words, any inconsis-
tent grid adaptation transfers the error from the first part of the truncation error to
that of the second, and vice versa. To minimize both parts of the truncation error
simultaneously we impose the following restriction on the coordinate mapping. From
(2.10) it follows that if absolute value of the first expression in the square brackets
is less than O(Δξ), and absolute value of the second expression is less than O(Δη),
then the global truncation error is O(Δξp+1,Δηq+1) rather than O(Δξp,Δηq). Thus,
to increase the order of the finite difference approximation (2.7) globally by one, grid
points should be redistributed so that the following equations hold:

J
(
yηf

(p+1)
ξ − y(p+1)

ξ fη

)
= (yηfξ − yξfη)

(
yηx

(p+1)
ξ − xηy(p+1)

ξ

)
+O(Δξ)J2

J
(
fξy

(q+1)
η − yξf (q+1)

η

)
= (yηfξ − yξfη)

(
xξy

(q+1)
η − yξx(q+1)

η

)
+O(Δη)J2.

(2.11)

By removing the parentheses and rearranging corresponding terms, we reduce (2.11) to

yη

[
f

(p+1)
ξ − fyy(p+1)

ξ − fxx(p+1)
ξ

]
= O(Δξ)J,

−yξ
[
f

(q+1)
η − fyy(q+1)

η − fxx(q+1)
η

]
= O(Δη)J.

(2.12)

The equations in (2.12) can be considered optimal grid generation equations in the
sense of minimizing the leading truncation error term of the first derivative fx. The
optimal grid adaptation criteria for fy, which is

fy =
−xηfξ + xξfη

J
,(2.13)

can be derived in the same fashion as has been done for fx. Actually, using the
same approximations (2.5) for all the ξ and η derivatives in (2.13), and linearizing the
corresponding leading truncation error term, the grid adaptation criteria for fy can
be obtained in the following form:

−xη
[
f

(p+1)
ξ − fyy(p+1)

ξ − fxx(p+1)
ξ

]
= O(Δξ)J,

xξ

[
f

(q+1)
η − fyy(q+1)

η − fxx(q+1)
η

]
= O(Δη)J.

(2.14)

The presence of the O(Δξ) and O(Δη) terms on the right-hand side of (2.12) and
(2.14) indicates that the grid adaptation criteria are rather stable under perturbations
of the optimal grid.
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At the same time, a reduction of the O(Δξ) and O(Δη) terms in (2.12) and (2.14)
decreases the corresponding truncation errors on the optimal grid. Therefore, we can
neglect these terms so that (2.12) and (2.14) become identical and can be written as

f
(p+1)
ξ − fyy(p+1)

ξ − fxx(p+1)
ξ = 0,

f
(q+1)
η − fyy(q+1)

η − fxx(q+1)
η = 0.

(2.15)

From the above consideration it follows that if we can construct the mapping which
satisfies (2.15), then the leading truncation error term of the gradient of f(x, y) van-
ishes on the same optimal grid. Because (2.12) and (2.14) have similar properties,
hereafter only (2.12) is considered.

Note that if yξ = 0 in the entire computational domain, (2.12) reduces to

xξf
(p+1)
ξ − fξx(p+1)

ξ = O(Δξ)x2
ξ ,(2.16)

which can be treated as a 1D analogue of (2.12) in the ξ coordinate. The main
properties of (2.16) are analyzed in [4]. Another very useful characteristic of the
optimal mapping is that the equations in (2.12) are invariant with respect to both
translation and stretching of the x, y and ξ, η coordinates.

Remark 2.1. It should be noted that the equations in (2.12) are not a system of
equations and can be considered separately. If improving the accuracy with respect
to the ξ coordinate alone is necessary, a grid must be generated such that only the
first equation in (2.12) holds. However, if increasing the order of approximation of
fx by one in both the ξ and η coordinates simultaneously is desirable, then the grid
must obey the system of equations (2.12).

Remark 2.2. A characteristic feature of the equations in (2.12) is that they do
not depend on the coefficients Cp and Cq. The reason is that the metric coefficients
and the first derivatives fξ and fη are approximated by using the same finite differ-
ence formulas (2.5). Consequently, if in each spatial direction the metric coefficients
and the first derivatives of f(ξ, η) are evaluated consistently by some hybrid finite
difference operators, then the grid adaptation criteria (2.12) can be applied in the
whole computational domain regardless of points where the hybrid scheme switches
from one approximation to another. If the identical numerical approximation is the
case, the optimal grid point distribution is generic because it depends only on the or-
der of approximation and is completely independent of the particular finite difference
formula used.

Remark 2.3. As follows from the analysis presented in [4], the grid adaptation
equation does not guarantee that the coordinate mapping obtained as the solution of
(2.12) is not singular, i.e., 0 < J < + ∞. Because (2.12) converts to (2.16), if the
dimension of the space is decreased by one, the same singularity may occur in two
dimensions as well. In other words, the equations in (2.12) do not ensure existence
and uniqueness of the one-to-one coordinate transformation. A way to overcome this
problem in the case of second-order approximations will be discussed in the next
section.

The equations in (2.12) must be closed by corresponding boundary conditions.
These equations can be shown to be pth-order partial differential equations (PDEs),
and, therefore, p boundary conditions should be imposed at each pair of the opposite
boundaries (i.e., ξ = 0 and ξ = 1, η = 0 and η = 1) to find the unique solution.
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However, at each individual boundary, only one boundary condition is available. For
example, the boundary conditions in the ξ coordinate are

ξ(x, y) = 0, ξ(x, y) = 1.(2.17)

In other words, the equations in (2.12) are not closed. The situation becomes even
more uncertain when only one of the grid adaptation criteria (2.12) is used. However,
this uncertainty yields additional degrees of freedom, and at the same time it is
conceivable that more than one optimal grid exists to satisfy the criteria (2.12). From
this standpoint, the equations in (2.12) should be treated as the grid adaptation
criteria rather than as the optimal grid generation equations [4].

3. Optimal grids for second-order approximations. If both fξ, fη and the
corresponding metric coefficients xξ, yξ and xη, yη are approximated by some second-
order formulas, the grid adaptation criteria (2.15) written for p = q = 2 become

fξξξ = fxxξξξ + fyyξξξ,

fηηη = fxxηηη + fyyηηη.
(3.1)

With

∂
∂ξ = xξ

∂
∂x + yξ

∂
∂y ,

∂
∂η = xη

∂
∂x + yη

∂
∂y ,

(3.2)

fξξξ can be written in the physical space as follows:

fξξξ =
[
xξ

∂
∂x + yξ

∂
∂y

]3
f = fxxxx

3
ξ + 3fxxyx

2
ξyξ + 3fxyyxξy

2
ξ + fyyyy

3
ξ

+ 3fxxxξxξξ + 3fxy(xξξyξ + yξξxξ) + 3fyyyξyξξ + fxxξξξ + fyyξξξ.

Calculating fηηη in a similar fashion and substituting these expressions into (3.1)
yields

3(fxxxξ + fxyyξ)xξξ + 3(fxyxξ + fyyyξ)yξξ + fxxxx
3
ξ + 3fxxyx

2
ξyξ

+3fxyyy
2
ξxξ + fyyyy

3
ξ = 0,

3(fxxxη + fxyyη)xηη + 3(fxyxη + fyyyη)yηη + fxxxx
3
η + 3fxxyx

2
ηyη

+ 3fxyyy
2
ηxη + fyyyy

3
η = 0.

(3.3)

With (3.2), the equations in (3.3) are simplified to

3fxξxξξ + 3fyξyξξ + fxxξx
2
ξ + 2fxyξxξyξ + fyyξy

2
ξ = 0

3fxηxηη + 3fyηyηη + fxxηx
2
η + 2fxyηxηyη + fyyηy

2
η = 0.

(3.4)

Taking into account that the function f(x, y) is given, the first equation in (3.4)
contains only the derivatives with respect to ξ, while the second equation contains
only the derivatives with respect to η. This property leads to the following integration
procedure for (3.4). To integrate the first equation in (3.4) with respect to ξ, we
assume that a family of coordinate lines η = const is known. Therefore, at each point
of the physical space, we can define a function α(ξ, η) as follows:

α(ξ, η) = tanφ =
yξ
xξ
,(3.5)
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where φ is a known angle between a mesh line η = const and the x-axis. By using the
above equation, we can write the yξξ derivative as

yξξ = (αxξ)ξ = αξxξ + αxξξ.(3.6)

Substituting (3.5) and (3.6) into (3.4) yields

3(fxξ + αfyξ)xξξ + 3αξfyξxξ + x2
ξ

(
fxxξ + 2fxyξα+ α2fyyξ

)
= 0.(3.7)

Since

fxξ = fxxxξ + fxyyξ = (fxx + αfxy)xξ,

fyξ = fxyxξ + fyyyξ = (fxy + αfyy)xξ,

(3.7) can be reduced to

xξ
{
3
(
fxx + 2αfxy + fyyα

2
)
xξξ

+ xξ
[
(fxx + 2fxyα+ fyyα

2)ξ + αξ(fxy + αfyy)
]}

= 0.
(3.8)

Without loss of generality, we assume that xξ �= 0 . Actually, if xξ = 0, then yξ �= 0;
otherwise the Jacobian of the transformation would be degenerated. In this case, the
function α given by (3.5) can be redefined as xξ/yξ, and (3.8) can be rewritten in
terms of yξ and yξξ as

yξ
{
3
(
fxxα

2 + 2αfxy + fyy
)
yξξ

+ yξ
[
(fxxα

2 + 2fxyα+ fyy)ξ + αξ(fxxα+ fxy)
]}

= 0.
(3.9)

Because the main properties of (3.8) and (3.9) are identical, hereafter only equation
(3.8) is considered. Equation (3.8) can readily be integrated to give

xξ = C1

(
fxx + 2fxyα+ fyyα

2
)−1/3

exp

[
−1

3

∫ ξ

0

αt(fxy + αfyy)

fxx + 2fxyα+ fyyα2
dt

]
,(3.10)

where C1 is a constant of the integration. Equation (3.10) can be treated as an
analytical optimal grid for an arbitrary second-order approximation of∇f in the sense
of minimization of the leading truncation error term with respect to the ξ coordinate.
If a grid is generated in accordance with the optimal mapping (3.10), the leading
truncation error term in ξ is equal to zero in the entire physical domain D, and the
global order of accuracy with respect to ξ is increased from 2 to 3.

A similar approach can be applied to construct the optimal grid in the η coordi-
nate. Actually, assuming that a family of grid lines ξ = const is given, we introduce a
function β(ξ, η) and derive the optimal grid point distribution in η in a similar manner
as has just been done for ξ. Thus,

yη = C2

(
fxxβ

2 + 2fxyβ + fyy
)−1/3

exp

[
−1

3

∫ η

0

βt(fxxβ + fxy)

fxxβ2 + 2fxyβ + fyy
dt

]
,(3.11)

where

β(ξ, η) = tanψ =
xη
yη
.
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The mapping given by (3.11) provides that the leading truncation error term with
respect to η vanishes on the optimal grid. Note that in the 1D case, (3.10) and (3.11)
are simplified as follows:

xξ = C1(fxx)
−1/3,

yη = C2(fyy)
−1/3.

(3.12)

This result is identical to that obtained earlier in one dimension [4].
As mentioned in Remark 2.3, (3.10) does not provide that the Jacobian of the

transformation J is positive in the entire physical domain. Therefore, the optimal
mapping (3.10) is modified as follows. Because the optimal grid (3.10) has been
obtained under the assumption that mesh lines η = const do not intersect each other,
to provide that J > 0 it is necessary that an arc length increment Δs measured along
a mesh line η = const must be strictly positive. The arc length increment in ξ can
easily be calculated to yield

Δs =
√
x2
ξ + y2

ξΔξ = |xξ|
√

1 + α2Δξ.(3.13)

From (3.13) it follows that Δs is strictly positive in D if the following constraint is
imposed on α and, consequently, on the metric coefficients:

F (ξ, η) = fxx + 2fxyα+ fyyα
2 �= 0.(3.14)

The above constraint can be incorporated into numerical calculations by modifying
the function F as

F̃ (ξ, η) =

{ |F (ξ, η)| , |F (ξ, η)| ≥ ε,
F (ξ,η)2+ε2

2ε , |F (ξ, η)| < ε.
(3.15)

Equation (3.15) is a necessary condition for positiveness and nonsingularity of the
Jacobian of the transformation and, consequently, for existence of the one-to-one
optimal mapping. Furthermore, (3.15) provides smoothness of the metric coefficients
xξ and yξ. Note that (3.15) is not a sufficient condition. The optimal grid point
distribution written in terms of the normalized arc length s is

s(ξ, η) =

∫ ξ
0
F̃−1/3

√
1 + α2exp

[
− 1

3

∫ v
0
αt(fxy+fyyα)

F̃
dt
]
dv

∫ 1

0
F̃−1/3

√
1 + α2exp

[
− 1

3

∫ v
0
αt(fxy+fyyα)

F̃
dt
]
dv
.(3.16)

In numerical calculations, the second derivatives fxx, fyy, and fxy are approxi-
mated numerically and, therefore, depend on the location of grid points in the physical
domain. To find the optimal grid point distribution given by (3.16), the following it-
eration procedure is applied. At each grid point, the approximation of the second
derivatives can be updated when the new grid point distribution is found. In its turn,
the updated second derivatives generate a new optimal grid (3.16).

Let us show that this iteration technique is equivalent to the Picard iteration
method (see, e.g., [16]). Actually, (3.16) can be interpreted as the following integral
equation for the optimal mapping s(ξ, η):

s(ξ, η) =

∫ ξ

0

G(t, s)dt,(3.17)
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where η = const. Taking into account the fact that F̃ ∈ C1(Q), it follows that the
function G is continuously differentiable ∀s ∈ [0, 1] and, consequently, satisfies the
Lipschitz condition. Hence, the integral operator (3.17) is contractive on [0, 1] and
maps [0, 1] into itself. Therefore, the iteration procedure based on (3.17) converges
uniformly to the optimal mapping s(ξ, η). The x and y coordinates of the optimal
grid in ξ are obtained by 1D interpolation of s performed along each line η = const.
The optimal grid in η can be constructed in a similar manner.

Despite the optimal grid point distribution (3.16) being derived under the as-
sumption that a family of mesh lines η = const is prescribed, this relation can be used
directly along the boundaries η = 0 and η = 1 which are given a priori. Actually,
the unknown function α(ξ, η) in (3.16) can always be determined on the boundaries
η = 0 and η = 1 because at each boundary point we can calculate the boundary mesh
line slope φ (3.5). In other words, if the function f(x, y) and the physical domain
boundary ∂D are given, the optimal grid point distribution along the boundaries can
be found by using (3.10) and (3.11). In these equations, the unknown functions α and
β are tangents of angles between the boundary mesh lines ξ(x, y) = 0, ξ(x, y) = 1 and
x = 0; and η(x, y) = 0, η(x, y) = 1 and y = 0, respectively. The functions α(ξ, η) and
β(ξ, η) should satisfy the following equations:

xξη = xηξ,
yξη = yηξ,

(3.18)

where the metric coefficients xξ, yξ and xη, yη are given by (3.10) and (3.11), re-
spectively. Substituting (3.10) and (3.11) into (3.18) results in a very complicated
system of differential equations for the functions α and β; these equations cannot be
integrated analytically.

The above consideration gives rise to the following iterative grid generation pro-
cedure. First, the optimal grid point distribution on the boundaries is calculated by
using (3.10) and (3.11). Then any grid generation technique (e.g., a transfinite inter-
polation) and the optimal boundary point distribution are used to generate an initial
grid. This initial grid, together with an interpolation procedure, serves to define mesh
lines along which the points will move during adaptation. After that, the η = const
grid lines are fixed, and grid points are redistributed along these lines in an optimal
manner by using (3.10). In turn, this redistribution generates new coordinate lines
ξ = const so that we can redistribute grid points along this family of lines in accor-
dance with (3.11). This sweep alters the grid point distribution along the ξ = const
lines and generates new mesh lines η = const. The grid generation procedure should
be iterated until convergence. We should stress, however, that there is no proof that
this iteration method converges. Moreover, as will be shown later, the solution of
the system of equations (2.12) is not unique. This nonuniqueness gives an indication
that for some functions f(x, y), the system of equations (2.12) with the boundary
conditions (2.3) is not well posed.

One interesting property of (3.1) is that the first equation in the system is invariant
with respect to the following coordinate transformation:

ξ̃ = ξ,
η̃ = v1(η),

while the second equation is invariant with respect to a similar transformation:

ξ̃ = v2(ξ),
η̃ = η,
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where v1 and v2 are smooth functions such that

vi(0) = 0, vi(1) = 1, i = 1, 2,
dv1
dη

> 0,
dv2
dξ

> 0.

This invariance means that if the optimal grid is constructed so that only the first
equation in (3.1) holds, a family of the optimal grids (3.2) exists on which the leading
truncation error term with respect to ξ vanishes. In other words, if only one of the
equations in (3.1) is used for grid generation, the optimal grid is not unique. At
the same time, if the physical domain D is bounded by lines y = a0 and y = a1

corresponding to the boundaries η = 0 and η = 1, then a family of the optimal grids
satisfying the system of equations (2.12) is

x = x(ξ, η),

y = v(η),
(3.19)

where x(ξ, η) is defined by (3.16) and the function v meets the following conditions:

v(0) = a0, v(1) = a1, v′η > 0 ∀η ∈ [0, 1].(3.20)

In contrast to the one-parameter family of the solutions ξ̃ = ξ and η̃ = v1(η), which
satisfies just the first equation in (3.1), (3.19) is the solution of the system (2.12).

Remark 3.1. Although the present analysis has been performed for simply con-
nected domains, this approach can be extended to multiply connected domains. It
can be done by dividing the physical domain into a number of simply connected sub-
domains with smooth boundaries so that f(ξ, η), x(ξ, η), and y(ξ, η) are Cp+1,q+1

functions in each subdomain. After that, the present method can be used separately
in each subdomain.

Remark 3.2. It should be emphasized that the above approach can be extended
directly to three dimensions. 3D grid adaptation criteria analogous to (2.15) have been
derived in [4]. These grid generation equations, minimizing the leading truncation
error term of ∇f in three dimensions, are

f
(p+1)
ξ − fxx(p+1)

ξ − fyy(p+1)
ξ − fzz(p+1)

ξ = 0,

f
(q+1)
η − fxx(q+1)

η − fyy(q+1)
η − fzz(q+1)

η = 0,

f
(r+1)
ζ − fxx(r+1)

ζ − fyy(r+1)
ζ − fzz(r+1)

ζ = 0.

(3.21)

Each of the three 3D grid generation equations in (3.21) contains derivatives with
respect to just one of the ξ, η, or ζ coordinates, respectively. Therefore, assuming
that xξ �= 0, and introducing α1 = yξ/xξ and α2 = zξ/xξ, we can integrate the
3D optimal grid generation equation corresponding to the coordinate ξ in the same
fashion as in the 2D case.

4. Optimal grids for nonlinear PDEs. The optimal grid generation proce-
dure developed in the foregoing section can be extended directly to a nonlinear PDE.
Let us consider a nonlinear scalar equation written in the following form:

L(fx, gy, f, g, u, x, y) = 0,(4.1)

where L is a smooth nonlinear function of its arguments and f and g are nonlinear
functions of x, y, and u. Note that (4.1) is solved with respect to u; i.e., this equation
is strongly nonlinear.
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To construct a pth-order in ξ and qth-order in η approximation of (4.1), we
transfer the x and y derivatives into the computational space (ξ, η) and use some
pth- and qth-order accurate schemes to evaluate the ξ and η derivatives, accordingly.
The other quantities in (4.1) are evaluated exactly. The truncation error of such an
approximation is

Tp,q = Lh(f
ex
x , g

ex
y , f

ex, gex, uex, x, y)− L(f ex
x , g

ex
y , f

ex, gex, uex, x, y),

where Lh is a finite difference operator approximating (4.1) and the superscript “ex”
denotes the exact solution of (4.1). Expanding the right-hand side of the above equa-
tion in a Taylor series with respect to the exact solution and omitting the superscript
“ex” yields

Tp,q =
∂L

∂fx
[(fx)h − fx] +

∂L

∂gy
[(gy)h − gy] =

∂L

∂fx
T fp,q +

∂L

∂gy
T gp,q,(4.2)

where T fp,q and T gp,q are truncation errors of the first derivatives fx and gy, respectively.
With (2.10) and a similar expression for T gp,q, the leading truncation error term of (4.1)
becomes

Tp,q(ξ, η) =
CpΔξ

p

J2

[
∂L
∂fx

(
yηf

(p+1)
ξ − x(p+1)

ξ fxyη − y(p+1)
ξ fηyη

)

+ ∂L
∂gy

(
−xηg(p+1)

ξ + x
(p+1)
ξ xηgx + y

(p+1)
ξ xηgy

)]

+
CqΔη

q

J2

[
∂L
∂fx

(
−yξf (q+1)

η + x
(q+1)
η fxyξ + y

(q+1)
η fyyξ

)

+ ∂L
∂gy

(
xξg

(q+1)
η − x(q+1)

η xξgx − y(q+1)
η xξgy

)]
.

(4.3)

The above equation has been derived by assuming that ∂L/∂fx and ∂L/∂gy are
functions of f , g, u, x, and y only, and do not depend on fx and gy. It is also assumed
that the metric coefficients are evaluated by the same finite difference operator used
for approximating the corresponding first derivatives fξ, gξ and fη, gη. Equation (4.3)
indicates that if a grid is generated so that the first term in the square brackets is of
the order of O(Δξ), while the second term is of the order of O(Δη), then the global
orders of approximations with respect to ξ and η are increased from p and q to p+ 1
and q + 1, respectively. Thus, in the sense of minimizing the asymptotic truncation
error of (4.1), the optimal grid should satisfy the following criteria:

∂L
∂fx

yηf
(p+1)
ξ − ∂L

∂gy
xηg

(p+1)
ξ = x

(p+1)
ξ

(
∂L
∂fx

fxyη − ∂L
∂gy

gxxη

)

+ y
(p+1)
ξ

(
∂L
∂fx

fyyη − ∂L
∂gy

gyxη

)
+O(Δξ)J2

∂L
∂gy

xξg
(q+1)
η − ∂L

∂fx
yξf

(q+1)
η = x

(q+1)
η

(
∂L
∂gy

gxxξ − ∂L
∂fx

fxyξ

)

+ y
(q+1)
η

(
∂L
∂gy

gyxξ − ∂L
∂fx

fyyξ

)
+O(Δη)J2.

(4.4)

Because reduction of the O(Δξ) and O(Δη) terms increases the accuracy of the ap-
proximation on the optimal grid, these terms are neglected.

In the case where the governing equation (4.1) can be written in conservation law
form,

∂f(u)

∂x
+
∂g(u)

∂y
= 0,(4.5)
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and some second-order schemes are used to evaluate both the ξ and η derivatives,
(4.4) is reduced to

yηfξξξ − xηgξξξ = xξξξ(fxyη − xηgx) + yξξξ(fyyη − xηgy),
−yξfηηη + xξgηηη = xηηη(xξgx − fxyξ) + yηηη(xξgy − fyyξ).

(4.6)

It should be emphasized that the conservation law (4.5) is a nonlinear PDE with
respect to u because we assume the functions f and g are nonlinear functions of
u. The equations in (4.6) take into account that for the conservation law (4.5), the
derivatives ∂L/∂fx and ∂L/∂gy in (4.6) are equal to unity identically. Note that the
second equation in (4.6) converts to the first equation by exchanging ξ and η for each
other. Therefore, we shall consider just the first equation, and the same results will
remain valid for the second equation by similarly exchanging ξ and η.

The equations in (4.6) can be integrated in the same fashion as we have inte-
grated (3.1). Assuming that one family of mesh lines (e.g., η = const) is given, we
redistribute grid points along these lines in such a way that the first equation in (4.6)
is satisfied in the whole computational domain. With (3.2), the first equation in (4.6)
is transformed to

3(yηfxξ − xηgxξ)xξξ + 3(fyξyη − gyξxη)yξξ + (yηfxxξ − xηgxxξ)x2
ξ

+ 2(fxyξyη − xηgxyξ)xξyξ + (fyyξyη − xηgyyξ)y2
ξ = 0.

(4.7)

Introducing the function α given by (3.5) and using the relations (3.6) yields

(4.8)

3(Fyη −Gxη) + xξ {Fξyη −Gξxη + αξ [yη (fxy + αfyy)− xη (gxy + αgyy)]} = 0,

where F is given by (3.14) and G = gxx + 2gxyα + gyyα
2. Equation (4.8) derived

under the assumption that xξ �= 0 can be further simplified if we use the function β
defined by (3.11). Thus,

yη {3(F −Gβ)xξξ + xξ [Fξ −Gξβ + αξ (fxy + αfyy − β [gxy + αgyy])]} = 0.(4.9)

With yη �= 0, (4.9) can be integrated to give

(4.10)

xξ = C(F − βG)−1/3exp

[
−1

3

∫ ξ

0

βtG+ αt (fxy + αfyy − β[gxy + αgyy])

F − βG dt

]
.

Even though (4.10) depends on both α and β, basic properties of this optimal grid
point distribution are similar to those obtained for the optimal mapping (3.10). By
analogy with (3.10) and (3.13)–(3.15), the necessary condition that the Jacobian of the
transformation is positive in the entire computational domain is satisfied if function
E = F − βG is modified as follows:

Ẽ =

{ |F − βG| , |F − βG| ≥ ε,
(F−βG)2+ε2

2ε , |F − βG| < ε,
(4.11)

where ε is a small positive parameter. As follows from (4.10), if a grid is constructed
such that (4.10) holds, then for the conservation law equation (4.5) the global order
of approximation with respect to ξ is increased by one.
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In contrast to the grid generation procedure developed for ∇f , (4.10) cannot
be integrated separately for each mesh line η = const because the function β(ξ, η)
is involved in the formula. The problem can be overcome by taking the unknown
function β from the previous iteration so that grid points are redistributed at each
mesh line η = const independently. After that, values of β are updated, and the
iteration procedure should be repeated until convergence.

Despite the fact that the optimal grid (4.10) has been derived under the condition
that one family of coordinate lines is given a priori, this analytical formula can be
directly used for calculating boundary layer problems. Assuming that the solution
of (4.5) is sufficiently smooth and has a boundary layer in ξ, the unidirectional grid
adaptation procedure based on (4.10) can be applied with grid points constrained to
move along the η = const family of fixed curvilinear coordinate lines. This family of
coordinate lines can be constructed, e.g., by using the conformal mapping that ensures
existence and uniqueness of one-to-one coordinate transformations. The coordinate
lines η = const obtained this way are used to generate the optimal grid in ξ by
using the formula (4.10). This grid adaptation procedure provides that the global
order of approximation with respect to ξ is increased from 2 to 3, while the order of
approximation in η remains the same. Because of the boundary layer, the asymptotic
truncation error in the ξ coordinate is much greater than that in η. Therefore, this
unidirectional grid adaptation procedure minimizes the most troublesome part of the
global truncation error caused by the boundary layer.

5. Results and discussion. Several 2D test examples are investigated to vali-
date the applicability and efficiency of the new method. For each test example, four
series of calculations have been executed on different grids with the same number of
grid points. The first calculation is done on a uniform grid generated by a transfinite
interpolation of the boundary nodes uniformly redistributed along the boundaries.
The second is performed on the optimal grid obtained as the analytical solution of
(2.12). The third uses the optimal grid (3.16) generated numerically by approximating
the second derivatives fxx, fxy, and fyy with second-order central differences in the
computational domain. The integrals in (3.16) are computed with trapezoidal rule
integration. The fourth calculation is also executed on the uniform grid; however,
instead of a second-order approximation, a third-order accurate discretization is ap-
plied to calculate both the ξ and η derivatives in (2.4). At each boundary, one-sided
second-order differences are used. In order to estimate the method’s accuracy, the
L2 and L∞ norms of the truncation error of different second-order finite difference
approximations of fx and fy are calculated on successively refined grids. Note that
evaluation of the L2 integral norm in the computational space differs from that calcu-
lated in the physical space by the Jacobian factor. Unlike the L2 norm, the L∞ norm
is generic in this sense because it is the same in both the physical and transformed
spaces.

The first test example is a second-order approximation of the first derivative fx
of a function f(x, y) = (x − y)m on a unit square [0, 1] × [0, 1]. The parameter m
has been set at 20, which results in the function having a pronounced boundary layer
of width O(1/m) near points (0, 1) and (1, 0). Isolines of this function are shown in
Figure 5.1. A backward second-order approximation,

(
∂f

∂ξ

)
i

=
−3fi + 4fi+1 − fi+2

2Δξ
,(5.1)
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Fig. 5.1. Isolines of the function f(x, y) = (x− y)m.
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Fig. 5.2. Analytical (left) and numerical (right) optimal 40×40 grids for the function f(x, y) =
(x− y)m.

is used to evaluate both the ξ and η derivatives in (2.4). The test function has been
chosen so that a family of the optimal grids satisfying the system of equations (2.12)
can be integrated analytically to yield

yopt = v(η)

xopt = v(η) +
{
−v(η)(m+1)/3 +

[
(1− v(η))(m+1)/3

+ v(η)(m+1)/3
]
ξ
}3/(m+1)

.
(5.2)

Note that the above equations have been derived by assuming (m + 1)/3 is an odd
number. The numerical optimal grid is generated along fixed coordinate lines η =
const by using (3.10). Figure 5.2 shows the analytical and numerical optimal grids.
Grid lines are concentrated near strong gradients of the function f(x, y), which are
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Fig. 5.3. Error convergence for the second-order approximation of fx of f(x, y) = (x − y)m
calculated on (1) numerical optimal grid, (2) analytical optimal grid, (3) uniform grid, and (4)
uniform grid with a third-order accurate discretization.

located at points (0, 1) and (1, 0). At the same time, there are practically no grid
points in the center of the domain so that very skewed grid cells are generated in
this region. Despite these cell angles being very small, the L2 truncation error norm
computed in the computational space is superconvergent on both the analytical and
numerical optimal grids, as evident in Figure 5.3. The comparison of the second-order
approximation on the optimal grid and a third-order discretization on the uniform grid
with the same number of grid points shows that the optimal grid results are about
102 times more accurate.

As follows from (5.2), the analytical optimal grid is not unique. Actually, any
function v(η) satisfying the conditions (3.20) should provide the optimal grid. Fig-
ure 5.4 shows the L∞ norm of the truncation errors obtained on the analytical and
numerical optimal grids corresponding to

v(η) =

{
0.5(2η)0.25, 0 ≤ η ≤ 0.5,

1− 0.5[2(1− η)]0.25, 0.5 < η ≤ 1.
(5.3)

Similar to the optimal grid generated with v(η) = η, the results calculated on the
numerical optimal grids are about four orders of magnitude more accurate than those
obtained on the finest uniform grid with the same number of grid points.

The next test example is an approximation of the first derivatives fx and fy of
the following function:

f(x, y) = x
3−γ−2θ
γ−θ y

−3+2γ+θ
γ−θ .(5.4)

The physical domain considered is bounded by four curves, y = ξθ−γ0 x, y = (1 +

ξ0)
θ−γx, y = x(x/ηφ0 )θ/γ−1, y = x[x/(1 + η0)

φ]θ/γ−1, where γ, θ, φ, ξ0, and η0 are
parameters. The parameters θ and γ have been chosen as −5 and −1.25, respectively;
this choice results in the function being singular along a line y = 0. Isolines of the
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Fig. 5.4. Error convergence for the second-order approximation of fx of f(x, y) = (x − y)m
calculated on (1) stretched numerical optimal grid, (2) stretched analytical optimal grid, (3) uniform
grid, and (4) uniform grid with a third-order accurate discretization.
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Fig. 5.5. Isolines of the function f(x, y) given by (5.4).

function f(x, y) are shown in Figure 5.5. In this test case, a family of the optimal
grids satisfying equations (2.15) can be found analytically:

xopt = (ξ + ξ0)
γ [v(η) + η0]

φ,

yopt = (ξ + ξ0)
θ[v(η) + η0]

φ,
(5.5)

where v is an arbitrary smooth function satisfying the conditions (3.20). In numerical
calculations, the parameters ξ0 and η0 were taken to be 1.25. A central second-order
discretization is used for all the ξ and η derivatives in (2.4) and (2.13).
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Fig. 5.6. Error convergence for a central second-order approximation of fx of (5.4) calculated
on (1) numerical optimal grid, (2) analytical optimal grid, (3) uniform grid, and (4) uniform grid
with a third-order accurate discretization.

It should be noted that although the test function has the form f = f1(x)f2(y),
the analytical optimal grid (5.5) is not a tensor product grid of two 1D grids, one of
which is optimal for f1(x) and the second one for f2(y). Using (3.12), it can easily

be verified that the mapping (5.5) is optimal neither for f1(x) = x
3−γ−2θ
γ−θ nor for

f2(y) = y
−3+2γ+θ
γ−θ . At the same time, the mapping (5.5) is optimal for the function

(5.4).
In Figure 5.6, error convergence plots of this approximation calculated on the

analytical and numerical optimal grids corresponding to v(η) = η are compared with
results obtained by second- and third-order approximations on a uniform grid. The
L∞ norm of the truncation error of fx calculated on the uniform grid exhibits the
O(Δξ2) convergence rate consistent with the second order of accuracy of the central
differences. At the same time, the same second-order approximation of fx on the
optimal grid (5.5) exhibits a convergence rate of the order of O(Δξ3). To generate
the optimal grid numerically, a family of mesh lines η = const is obtained by using
(3.11). Then grid points are redistributed along these coordinate lines in accordance
with (3.10). This grid point redistribution generates new lines η = const and so on.
The grid adaptation procedure is iterated until convergence. To reduce the residual
by six orders of magnitude, 12 iterations were required. No attempt was made to
optimize the iteration process. Figure 5.6 shows that the numerical optimal grid
provides practically the same convergence rate as the analytical optimal grid (5.5).
The truncation error norm calculated on the finest optimal grid is reduced by about
two orders of magnitude as compared with the uniform grid results calculated with a
third-order accurate formula.

As follows from (5.5), the optimal mapping is not unique. To demonstrate this
property, the function v(η) is chosen as

v(η) =
kη − 1

k − 1
,(5.6)
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Fig. 5.7. Analytical optimal 40×40 grids (5.5) corresponding to v(η) = η (left) and (5.6) (right)
for the function (5.4).
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Fig. 5.8. Error convergence for a central second-order approximation of fy of (5.4) calculated
on (1) numerical optimal grid, (2) analytical optimal grid, (3) uniform grid, and (4) uniform grid
with a third-order accurate discretization.

where the parameter k was chosen to be 10. The analytical optimal grids correspond-
ing to the function v(η) = η and the function (5.6) are shown in Figure 5.7. The
optimal mapping (5.5), (5.6) results in grid lines η = const being concentrated near
the left boundary η = 0, as shown in Figure 5.7. Although this optimal mapping is dif-
ferent from that considered earlier, the error convergence plot for the grid (5.5), (5.6)
is essentially the same as that shown in Figure 5.6 for the optimal grid corresponding
to v(η) = η and, therefore, is not presented here.

As shown in section 2, the optimal mapping (5.5) satisfying the system of equa-
tions (2.15) has to provide superconvergence not only for fx but also for fy. The L∞
norm of the truncation error of fy approximated by using the central second-order
formulas is superconvergent on the same optimal grid (5.5), as is evident in Figure 5.8.
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Fig. 5.9. Isolines of the function (5.7) and the analytical optimal 40× 40 grid (5.8).

The third test function considered,

f(x, y) =
1

x
+

mx

xy − 1
,(5.7)

has singularities along lines x = 0 and y = 1/x. For this function a particular solution
of (2.15) can be found analytically:

xopt(ξ, η) = e−αξ,

yopt(ξ, η) = eαξ +me−βη.
(5.8)

As in the previous test example, this optimal grid satisfies both the grid adaptation
criteria (3.1) and the optimal mapping (3.10) calculated with the function (5.7).

In the present test example, the parameters α, β, and m have been chosen as
1, 2, and 4, respectively. For such a choice of the parameters, the physical domain
boundaries are x = 1, x = e−α, y = 1/x + 4, and y = 1/x + 4e−2. Isolines of the
function f(x, y) and the optimal grid (5.8) are depicted in Figure 5.9. Notably, the
optimal grid is orthogonal neither in the domain nor at the boundaries. Moreover,
the grid lines are concentrated near strong gradients, and at the same time they are
not strictly aligned with the isolines of f(x, y).

As in the first test example, second-order accurate approximations of fx and
fy are obtained by using the second-order approximation (5.1) for all the ξ and η
derivatives in (2.4) and (2.13).

Similar to the previous test case, the optimal mapping (5.8) satisfies the system
of equations (2.15), and, therefore, a grid generated by this transformation is optimal
for the gradient of f(x, y). Note that the numerical optimal grid is generated using
formulas (3.10) and (3.11) so that grid points are redistributed in both ξ and η iter-
atively, as described in section 3. For this test problem, eight iterations were needed
to reach convergence. A comparison of the truncation error convergences of ∇f ob-
tained on the optimal and uniform grids is shown in Figure 5.10. The global order of
the second-order central approximation in two dimensions is increased by one on the
optimal grid. Furthermore, the L∞ norm of the truncation error on the finest mesh is
about four orders of magnitude less than that obtained on the corresponding uniform
grid. As shown in Figure 5.10, the new grid adaptation criterion enables us to reach
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Fig. 5.10. Error convergence for the second-order approximation of ∇f of (5.7) calculated on
(1) numerical optimal grid, (2) analytical optimal grid, (3) uniform grid, and (4) uniform grid with
a third-order accurate discretization.
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Fig. 5.11. Error convergence for the second-order hybrid approximation (5.9) of ∇f of (5.7)
calculated with the consistent and inconsistent discretization of the metric coefficients on the uniform
and optimal grids.

the asymptotic convergence rate on a coarse grid. At the same time, application of a
third-order accurate discretization on the uniform grid does not provide such essential
reduction in the truncation error as was obtained on the optimal grid.

Importance of the identical approximations of the first derivatives fξ, fη and the
corresponding metric coefficients xξ, yξ, xη, and yη is illustrated in Figure 5.11. The
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figure shows that if all the ξ and η derivatives in (2.4) and (2.13) are evaluated by
hybrid discretization

(
∂f

∂ξ

)
i

=

{
1

2Δξ (fi+1 − fi−1), i even,

1
2Δξ (−3fi + 4fi+1 − fi+2), i odd,

(5.9)

the order of approximation of ∇f is increased from 2 to 3 when grid points are
redistributed in accordance with (5.8). However, if the metric coefficients xξ, yξ, xη,
and yη are evaluated by the two-point symmetric second-order difference expression
in the entire computational domain, while both the hybrid approximation of fξ and
fη (5.9) and the optimal grid (5.8) remain the same, the order of the inconsistent
approximation deteriorates to 2 and the L∞ truncation error norm increases by a
factor of 102.5 on the finest mesh.

The last test example is a construction of the optimal grid that minimizes the
leading truncation error term of fx + gy. Second-order central differences are used
to evaluate both the ξ and η derivatives in (4.5) written in the computational space.
The functions f(x, y) and g(x, y) have been chosen to be

f(x, y) = x
3θ−2φ
θφ(1−m) y

φ(2−θ)−mθ(3−φ)
θφ(1−m) ,

g(x, y) = x
−φ(2−mθ)+θ(3−φ)

θφ(1−m) y
2φ−3mθ
θφ(1−m) .

(5.10)

In this case a one-parameter family of the optimal grids satisfying (4.6) can be ob-
tained analytically:

xopt(ξ, η) = (ξ + ξ0)
mθ[v(η) + η0]

φ,

yopt(ξ, η) = (ξ + ξ0)
θ[v(η) + η0]

φ,
(5.11)

where the function v(η) should satisfy the conditions (3.20). In this test example the
parameters θ, φ, m, ξ0, and η0 were set at 1, 3, 0.5, 0.5, and 0.5, respectively. Such
a choice provides that the physical domain is bounded by the following four curves:
(1) y = x/

√
2, (2) y =

√
3/2x, (3) y = 8x2, (4) y = 8x2/27; and the functions f(x, y)

and g(x, y) are singular along a line x = 0. As follows from (5.11), the optimal grid is
not unique. To demonstrate this property, two functions, v1(η) and v2(η), have been
chosen:

v1(η) = η,

v2(η) = kη−1
k−1 , k = 10.

(5.12)

The optimal grids (5.11) defined by the functions v1(η) and v2(η) are shown in Fig-
ure 5.12. The transformation of the η-coordinate caused by the function v2(η) results
in stretching of grid lines to a boundary η = 0, which, like the other boundaries in the
physical domain, remains unchanged. Similar to the previous example, the optimal
grids are essentially nonorthogonal, and, at the same time, the grid nodes are con-
centrated near strong gradients of the f and g functions. In spite of the fact that the
optimal grids shown in Figure 5.12 are quite different, the truncation error conver-
gence rates obtained on these grids are practically identical, as depicted in Figure 5.13.
This figure shows that the central second-order approximation of (4.5), calculated on
the optimal grids (5.11) and (5.12), exhibits the O(Δξ3) convergence rate, which al-
lows us to reduce the L∞ norm of the truncation error by 2.5 orders of magnitude
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Fig. 5.12. Analytical optimal 40 × 40 grids (5.11) corresponding to v(η) = η (left) and (5.6)
(right) for the function (5.10).
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Fig. 5.13. Error convergence for a central second-order approximation of fx + gy of (5.10)
calculated on (1) numerical optimal grid, (2) analytical optimal grid, (3) uniform grid, and (4)
uniform grid with a third-order accurate discretization.

as compared with the uniform grid results. The numerical optimal grid generated by
using the iteration procedure described in the foregoing section also provides super-
convergence. Note that the truncation error calculated on the numerical optimal grid
is about two orders of magnitude more accurate than that obtained with the same
second-order accurate approximation on the corresponding finest uniform grid.

6. Conclusion. A new multidimensional grid adaptation strategy based on the
minimization of the leading truncation error term of an arbitrary order finite differ-
ence discretization has been developed. The main idea of the method is to redistribute
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grid points so that the leading truncation error terms resulting from the differential
operator and the metric coefficients cancel each other. The result is that the design
order of approximation on the optimal grid is increased by one in the entire com-
putational domain. It has been shown that these grid adaptation criteria are stable
under perturbations of the optimal grid. In contrast to most adaptive grid tech-
niques, the present method does not explicitly require an a posteriori error estimate
that makes it computationally inexpensive. Another very attractive characteristic of
the new approach is its applicability to hybrid discretizations. We have proven that
if the differential operator and the metric coefficients are evaluated identically, then
the new grid adaptation criterion is generic in the sense that it remains valid in the
entire computational domain regardless of points where the hybrid difference opera-
tor switches from one approximation to another. When a family of coordinate lines
(e.g., η = const) is given a priori, the 2D optimal mapping that increases the order of
approximation of ∇f in ξ from 2 to 3 has been derived analytically. For some func-
tions, a family of the optimal grids can be constructed; this shows that the optimal
mapping is not unique. One of the main advantages of the new method is that it
can be extended directly to nonlinear PDEs and three dimensions. The numerical
calculations show that the truncation error of both fx and fy obtained on the optimal
grid is superconvergent and reduced by several orders of magnitude as compared with
the second- and third-order uniform grid results for all the test examples considered.
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THE CONVERGENCE OF SPECTRAL AND FINITE DIFFERENCE
METHODS FOR INITIAL-BOUNDARY VALUE PROBLEMS∗
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Abstract. The general theory of compatibility conditions for the differentiability of solutions to
initial-boundary value problems is well known. This paper introduces the application of that theory
to numerical solutions of partial differential equations and its ramifications on the performance of
high-order methods. Explicit application of boundary conditions (BCs) that are independent of
the initial condition (IC) results in the compatibility conditions not being satisfied. Since this is
the case in most science and engineering applications, it is shown that not only does the error in a
spectral method, as measured in the maximum norm, converge algebraically, but the accuracy of finite
differences is also reduced. For the heat equation with a parabolic IC and Dirichlet BCs, we prove
that the Fourier method converges quadratically in the neighborhood of t = 0 and the boundaries
and quartically for large t when the first-order compatibility conditions are violated. For the same
problem, the Chebyshev method initially yields quartic convergence and exponential convergence for
t > 0. In contrast, the wave equation subject to the same conditions results in inferior convergence
rates with all spectral methods yielding quadratic convergence for all t. These results naturally direct
attention to finite difference methods that are also algebraically convergent. In the case of the wave
equation, we prove that a second-order finite difference method is reduced to 4/3-order convergence
and numerically show that a fourth-order finite difference scheme is apparently reduced to 3/2-order.
Finally, for the wave equation subject to general ICs and zero BCs, we give a conjecture on the error
for a second-order finite difference scheme, showing that an O(N−2 logN) convergence is possible.

Key words. compatibility conditions, convergence theory, spectral and finite difference methods
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PII. S1064827500374169

1. Introduction. The regularity of solutions for initial-boundary value prob-
lems (IBVPs) is determined by the compatibility of the initial condition (IC) and the
boundary conditions (BCs). IBVPs will have singular solutions at the corners of the
space-time domain if the BCs do not satisfy the partial differential equation (PDE)
or any of its higher-order derivatives, even if the IC is C∞. The Cauchy–Kowalesky
theorem [19] provides a solution in the neighborhood of t = 0 to the same problem
without BCs. If compatibility exists, then the BCs can always be computed by the
solution obtained from the Cauchy–Kowalesky theorem and the IC. In such cases, the
IBVP could in fact be posed as an initial-value problem (IVP). The set of compati-
bility conditions are derived by equating the time derivatives of the BCs to those of
the solution to the IVP given by the Cauchy–Kowalesky theorem.

Literature on the theory of compatibility conditions and the regularity of solu-
tions for IBVPs is extensive, starting in the 1950s with the work of Ladyzenskaja [10],
[11]. In the 1960s, Ladyzenskaja, Solonnikov, and Ural’ceva [12] and Friedman [3]
discussed the regularity of the solution for linear and quasi-linear parabolic systems.
During this same time, Kreiss [4] and Hersh [7] extended the theory for constant co-
efficient hyperbolic systems by providing the necessary and sufficient conditions for
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the problem to be well-posed. It was further developed in the 1970s by Rauch and
Massey [16] and Sakamoto [17] for hyperbolic systems with time-dependent coeffi-
cients. In the 1980s, Temam [20] extended the theory by obtaining the compatibility
conditions for semilinear evolution equations while Smale [18] gave a rigorous proof
of the compatibility conditions for the heat and wave equation on a bounded domain.
These accomplishments have been confined to the realm of theoretical mathematics.
Yet, not satisfying the compatibility conditions of a system can have a significant
computational impact, particularly for high-order accurate methods, such as spectral
methods, whose performance intrinsically depends on the smoothness of the solution.
For nonsmooth initial data, there is a wealth of information on the convergence theory
of numerical schemes in a variety of norms for parabolic and hyperbolic IVPs [13],
[5], [21], [22]. These analyses can be applied to the IBVPs if the IBVP can be posed
as an IVP with discontinuous ICs through periodic extensions of the ICs to the entire
real axis [6], [9], [14]. However, such periodic extensions may induce singularities that
do not exist in a smooth nonperiodic solution of an IBVP.

More recently, the impact of noncompatible BCs has been explored by Boyd and
Flyer [2] in a computational framework. This paper appeared in a special issue on
spectral methods. In the prologue, Karniadakis states “This is the first such effort in
bringing the theory of compatibility conditions from the mathematical literature to the
numerical community.” This work illustrated the ubiquity of compatibility conditions
and analyzed the connection between incompatibility and the rate of convergence of
Chebyshev spectral series. However, the convergence of the error was not discussed or
compared to alternatives such as the finite difference method. The focus of the paper,
as has been in the mathematical literature, is on smoothing the initial condition so
as to satisfy the compatibility conditions [2], [5], [18], [15]. The difficulty with this
approach is that it leaves the fundamental question unanswered: namely, “What is
the rate of convergence to the solution of the original unperturbed problem?” If the
IC is smoothed, spectral convergence might be achieved but to a solution that differs
algebraically from the original problem.

The focus of the current work is on the convergence of the approximate solution
to the exact solution. As discussed in the first paragraph, the temporal derivatives
of the solution as defined by the IC, differential operator, and Cauchy–Kowalesky
theorem will not equal those determined by the independent BCs. The resulting sin-
gularities in the corners of the temporal-spatial domain, which are independent of
the smoothness of the IC, disrupt the convergence of spectral and finite difference
methods in a manner that differs significantly between parabolic and hyperbolic sys-
tems. A detailed analysis of the induced singularities for two model problems and
their effect on the convergence of both numerical methods is determined. Since an
incompatibility exists any time the BC is independent of the IC, algebraic convergence
in the maximum norm is the expectation for IBVPs. In most science and engineering
applications, this is the usual scenario.

In section 2, the infinite set of compatibility conditions for the generalized heat
and wave equations with time-dependent BCs is presented. The purpose is to lay the
groundwork for describing the inherent singular nature of IBVPs and how it affects the
convergence rate of the error. In section 3, we examine the prototype parabolic case,
namely the heat equation subject to Dirichlet BCs and a smooth parabolic IC. We use
the Fourier method to determine an exact expression for the approximate solution,
represented by a truncated Fourier series. Convergence rates are then developed for
both finite difference and Chebyshev spectral methods, the latter of which is normally
the basis set of choice for a problem on a finite domain. For the parabolic example
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in section 3, ut is discontinuous at t = 0. Nevertheless, the Chebyshev method is
shown to yield spectral convergence for t > 0, but only quartic convergence in the
neighborhood of the discontinuity, which would be the relevant consideration for the
computation of transient heat flow. Furthermore, the usual Fourier method is only
quadratically convergent near the discontinuity and quartically convergent elsewhere.
Thus, the convergence rate of the error is shown to be nonuniform and algebraic as
measured in the maximum norm.

The hyperbolic case is discussed in section 4. Discontinuities that are induced
by the incompatibilities now propagate throughout the region. It is shown that all
spectral methods will yield algebraic convergence for t > 0. The Fourier method
is used again to derive an exact expression for the error. Similar to the parabolic
case, the results are compared with the centered finite difference and Chebyshev
methods which yield algebraic convergence for smooth ICs. The performance of finite
difference methods is also significantly diminished when the compatibility conditions
are not satisfied. For this reason, the appendix contains the rates of convergence for
a second-order finite difference method for a variety of smooth ICs and shows, for
example, that second-order convergence is reduced to 4/3-order.

2. Compatibility conditions for the generalized heat and wave equa-
tions. Here compatibility conditions are reviewed to illustrate their fundamental im-
pact on the smoothness of the solutions to IBVPs. We simply state the necessary
conditions for the solution to be C∞ on the domain for the heat and wave equation
with time-dependent BCs. The complete proofs of necessity and sufficiency are given
for parabolic systems in [11], [12], [3], [18] and for hyperbolic systems in [10], [16],
[17], [4].

Theorem 2.1. The domain is [0, T ] × Ω, where Ω is a d-dimensional spatial
domain with a boundary ∂Ω which is a C∞ manifold of dimension (d− 1). Let L be
an elliptic operator of the form

L =

d∑
i=1

d∑
j=1

Aij(x)
∂

∂xi

∂

∂xj
+

d∑
j=1

Bj(x)
∂

∂xj
+

d∑
j=1

Cj(x).(2.1)

The generalized linear diffusion problem is

ut = Lu, u(x, 0) = u0(x) ∈ Ω.(2.2)

The generalized wave equation is

utt = Lu, u(x, 0) = u0(x), ut(x, 0) = v0(x) ∈ Ω.(2.3)

Both are subject to the BC

u = f(t) ∈ ∂Ω ∀t.(2.4)

Then, the necessary and sufficient compatibility conditions for u(x,t) to be C2k

for the heat equation are

Lku0 =
∂kf

∂tk
, k = 0, 1, 2, . . . ∈ [0, 0]× ∂Ω(2.5)

and for the wave equation are

Lku0 =
∂2kf

∂t2k
and Lkv0 =

∂2k+1f

∂t2k+1
, k = 0, 1, 2, . . . ∈ [0, 0]× ∂Ω.(2.6)
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In essence (2.5) and (2.6) state that at time t = 0, the temporal derivatives
of the solution determined by the application of the differential operator to the IC
must equal the temporal derivatives of the BCs. When these conditions are satisfied,
we do not need to impose BCs because they can be derived from the Taylor series
expansion of the IC. When (2.5) and (2.6) do not hold, we induce a singularity in the
2kth-order derivative of the solution at t = 0 on ∂Ω. Thus, imposing BCs that are
independent of the IC places an infinite set of constraints on the solution which differ
from the constraints enforced by the PDE, resulting in discontinuities in the corners
of the temporal-spatial domain. The manner in which these incompatibilities affect
the accuracy of the numerical method depends on whether the system is parabolic or
hyperbolic. In the next section we will discuss the parabolic case, followed in section
4 by the hyperbolic case.

3. A parabolic example. Our goal is to study the convergence of the error for
approximate spectral and finite difference solutions to IBVPs when the compatibility
conditions of the system are not satisfied. With this in mind, we first study the effect
on parabolic systems, taking as our example the one-dimensional heat equation

ut = uxx(3.1)

subject to BCs

u(0, t) = u(π, t) = 0(3.2)

and IC

u0 = u(x, 0) =
π

8
x(π − x).(3.3)

The first-order compatibility condition, (k = 1) in (2.5), is not satisfied because

Lu0 =

(
∂2u0

∂x2

)
= −π

4
∀x(3.4)

and

∂u

∂t
|x=0,π = 0 ∀t.(3.5)

Thus from (3.1), uxx|x=0,π = ut|x=0,π = 0 yet uxx = −2 in the interior. To see
the impact of the jump discontinuity at the boundary in the second derivative at
t = 0 on the decay rate of the error we will solve the problem exactly at time t = 0
via a truncated Fourier series, then compare this together with finite difference and
Chebyshev methods against the exact solution for all time.

Time integration is assumed exact throughout, which yields the approximate
spectral representation

uN (xi, t) =

N−1∑
n=1,odd

cN (n)e−n
2t sinnxi(3.6)

of the exact solution, given by

u(xi, t) =

∞∑
n=1,odd

e−n
2t

n3
sinnxi.(3.7)
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Gottlieb and Orszag [8] note that for the exact coefficients cN (n), uN (x, t) converges
spectrally to u(x, t). This is also true if u(x, 0) is known for all x because cN (n)
can be computed to any accuracy. In this work, we assume, as with most scientific
data, that u(x, 0) is given in tabular form ui = u(xi, t), where xi = iπ/N . In science
and engineering, we cannot assume we know the function exactly and therefore must
approach the problem from a numerical standpoint. The coefficients cN (n) are then
computed in the traditional manner, using trigonometric interpolation, as

cN (n) =
2

N

N−1∑
i=1

ui sinnxi.(3.8)

With this implementation of the spectral method, it will be shown that the approxi-
mate spectral representation (3.6) converges algebraically to the exact solution in the
maximum norm, and, furthermore, convergence is nonuniform. This characteristic
algebraic convergence is method-independent due to the inherent singularity induced
by violating the compatibility conditions from explicit application of the BCs. In the
next section, we derive an exact expression for cN (n) which will provide the initial
error in the coefficients for the Fourier method.

3.1. The approximate spectral solution. In what follows, we derive an an-
alytical representation of the coefficients cN (n) in (3.6). From (3.7)

u(xi, 0) =

∞∑
n=1,odd

1

n3
sin

(
n
iπ

N

)
,(3.9)

u(xi, 0) =

N−1∑
n=1,odd

[
1

n3
sin(n

iπ

N
)(3.10)

+

∞∑
m=1

1

(2mN + n)3
sin

{
(2mN + n)i

iπ

N

}

+
1

(2mN − n)3
sin

{
(2mN − n)i

iπ

N

}]
,

or

u(xi, 0) =

N−1∑
n=1,odd

{
1

n3
+

∞∑
m=1

1

(2mN + n)3
− 1

(2mN − n)3

}
sin

(
n
iπ

N

)
(3.11)

and

u(xi, 0) =

N−1∑
n=1,odd

{
1

n3
− n

N4
Ψ(n/N)

}
sin

(
n
iπ

N

)
,(3.12)

where

Ψ(s) = 2
∞∑
m=1

3m2 + s2

[m2 − s2]3 .(3.13)

Ψ(s) can be called the alias function since it represents the error in the coefficients
due to truncating the series after N terms. The initial error in the coefficients is due
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to the fact that a sine series cannot represent a nonperiodic polynomial with a finite
number of terms. For use later, we observe that Ψ(s) is positive and monotonically
increasing on the interval [0, 1] with extremes Ψ(0) ≈ 0.4058712 and Ψ(1) = 1.

Equating (3.6) and (3.12), we obtain the desired result

cN (n) =
1

n3
− nΨ(n)

N4
.(3.14)

We study convergence only as it relates to spatial discretization, and therefore tem-
poral integrations are represented analytically. The spectral approximation is then
given by

uN (xi, t) =

N−1∑
n=1,odd

e−n
2t

[
1

n3
− nΨ(n/N)

N4

]
sinnxi.(3.15)

In the next two sections it will be proved that although the spectral series for
both the exact and approximate solutions decay exponentially, the error decays alge-
braically and nonuniformly over the domain. Section 3.2 explores convergence in the
neighborhood of the discontinuity induced by the incompatibility of imposing BCs.
Section 3.3 looks at convergence in the interior of the domain, bounded away from
the singularities at (0, 0) and (0, π).

3.2. Quadratic convergence near (0, 0) and (0, π). The discontinuity in ut
at (0, 0) induces an error in ∂uN/∂t(π/N, 0) that is bounded away from zero for all
N. In what follows, we show that this produces an O(N−2) error in the neighborhood
of (0, 0) and likewise near (π, 0). With a derivation similar to that preceding (3.12),
the exact solution is given by

u(xi, t) =

N−1∑
n=1,odd

{
e−n

2t

n3
−

∞∑
m=2,even

[
e−(mN+n)2t

[mN + n]3
− e−(mN−n)2t

[mN − n]3

]}
sinnxi.(3.16)

Subtracting uN (xi, t), given by (3.15), defines the error

(3.17)

eN (xi, t) =

N−1∑
n=1,odd

{ ∞∑
m=2,even

[
e−(mN+n)2t − e−n2t

[mN + n]3
− e−(mN−n)2t − e−n2t

[mN − n]3

]}
sinnxi.

Then, on the discrete trajectory x1 = π/N and tN = 1/N2

eN

(
π

N
,

1

N2

)
=

1

N2
IN ,(3.18)

where

(3.19)

IN =
1

N

N−1∑
n=1,odd

{ ∞∑
m=2,even

[
e−(m+n/N)2 − e−(n/N)2

[m+ n/N ]3
− e−(m−n/N)2 − e−(n/N)2

[m− n/N ]3

]}
sinn

π

N
.

IN defines the midpoint quadrature of the smooth positive function, which is the
integrand in (3.20) below. Therefore,

I = lim
N→∞

IN =

∫ 1

0

sinπs

∞∑
m=2,even

[
e−(m+s)2 − e−s2

[m+ s]3
− e−(m−s)2 − e−s2

[m− s]3
]
ds.(3.20)
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Fig. 3.1. |eN | for the Fourier method on the interval tε(0, 1] for x = π/N and fixed N .

Numerical evaluation of the midpoint rule (3.20) with N = 512 provides the approx-
imate value I ≈ .0876323127. This completes the proof that convergence is at best
quadratic. For each N there exists a point (π/N, 1/N2) at which the error is I/N2.
The error as a function of time for x = π/N is plotted in Figure 3.1, where the max-
imum occurs at t = 1/N2. Likewise, we can plot the error as a function of space for
t = 1/N2 and see that the maximum error occurs at the endpoints as shown in Figure
3.2(a). Numerical experiments, in the following sections, will confirm that indeed
convergence is quadratic.

3.3. Quartic convergence for a fixed t > ε > 0. For any fixed t > ε > 0 in
the interior of the domain, bounded away from the singularities at (0, 0) and (0, π),
‖eN (xi, t)‖2 converges at best quartically. As was shown in (3.15), the coefficients of
the approximate trigonometric series have an initial error of O(1/N4). This, in turn,
induces quartic convergence for any fixed t.

The difference between (3.7) and (3.15) provides the error in the spectral approx-
imation

eN (xi, t) = u(xi, t)− uN (xi, t) = SN (xi, t) + EN (xi, t),(3.21)

where

SN (xi, t) =
1

N4

N−1∑
n=1,odd

nΨ(n/N)e−n
2t sinn

iπ

N
(3.22)

and

EN (xi, t) =

∞∑
n=N+1,odd

e−n
2t

n3
sinn

iπ

N
.(3.23)
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We will rigorously establish quartic convergence for fixed t > 0 by demonstrating
spectral convergence for EN (xi, t) and, at best, quartic convergence for SN (xi, t).
Starting with (3.23),

EN (xi, t) =

∞∑
n=1,odd

e−(N+n)2t

(N + n)3
sin(N + n)xi(3.24)

= e−N
2t

∞∑
n=1,odd

e−(2N+n2)t

(N + n)3
sin(N + n)xi.(3.25)

Therefore,

|EN (xi, t)| < e−N
2t

∞∑
n=1,odd

1

(N + n)3
< e−N

2t

∫ ∞

N

ds

s3
(3.26)

and finally

|EN (xi, t)| < e−N
2t

2N2
.(3.27)

Now consider the asymptotic behavior of SN (xi, t). From (3.22),

(3.28)

‖SN (xi, t)‖2 =
1

N4

⎧⎨
⎩

N−1∑
n=1,odd

[nΨ(n/N)e−n
2t]2

⎫⎬
⎭

1/2

> Ψ(0)
e−t

N4
≈ 0.4058712

e−t

N4
,

where the last inequality is from the earlier observation that Ψ(s) is monotone in-
creasing on the interval [0,1] and consequently Ψ(1/N) > Ψ(0) ≈ 0.4058712.

This demonstrates that convergence in the l2 norm is at best quartic. In contrast
to Figure 3.2(a), Figure 3.2(b) shows that for any fixed t, the maximum error, as
measured by |eN |, occurs in the middle of the domain at x = π/2 as opposed to the
endpoint, x = π/N , for small t. The reason the error curves change as t becomes large

is that the exponential term e−n
2t dominates, and the error can be approximated by

the lowest wavenumber, n = 1. Thus, for large t, the error is essentially proportional
to sinx which has a maximum at π/2. As will be seen in the next section, numerical
experiments demonstrate that convergence in the l∞ norm is also quartic for t bounded
away from (0, 0) and (0, π).

3.4. Comparison with finite difference methods. Given the nonuniform
convergence of the Fourier method, as illustrated by quadratic convergence for small
t and quartic convergence for large t, it is natural to compare its performance with
fourth and second-order finite difference methods that require less computation. The
finite difference approximations are derived by substituting

ui =

N−1∑
n=1,odd

an(t) sinnxi(3.29)

into

uit =
ui−1 − 2ui + ui+1

δx2
,(3.30)
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Fig. 3.2. (a) |eN (x,N−2)| on the interval xε(0, π) for t = 1/N2. (b) |eN (x, 1)| on the interval
xε(0, π) for t = 1.

where δx is π/N , yielding

an(t) = cN (n)eλ
2
nt, where λ2

n =
−4N2 sin2( nπ2N )

π2
.(3.31)

Likewise, the solution to the fourth-order finite difference approximation

uit =
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12δx2
(3.32)

is given by (3.31), except now

λ2
n =
−4N2 sin2( nπ2N )

3π2

[
3 + sin2

( nπ
2N

)]
.(3.33)

The values of λn are the only difference between solutions to the finite difference and
Fourier method for which λn = n.

However, if we compare the performance of the FD4 to the Fourier method for
large t, it can be seen that there is little difference, as shown in Figure 3.3(a). For
small t, a FD2 method performs just as well as the Fourier method and FD4 with only
a slightly larger constant of proportionality, as seen in Figure 3.3(b). This marginal
error reduction may not be sufficient to justify the expense of the Fourier method.
However, it is reasonable to speculate that a FD4 scheme on a Chebyshev grid could
give comparable results to the Chebyshev method that yields an O(N−4) convergence
error near the endpoints, as will be seen in the next section.

3.5. Comparison with the Chebyshev method. The method of choice for
the interpolation of nonperiodic functions on a finite interval is the Chebyshev method.
Unlike the Fourier method, the Chebyshev method does yield spectral convergence
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Fig. 3.3. (a) The error of a fourth-order centered finite difference method versus the error in
the spectral approximation for x = π/2, t = 1. (b) The error of a fourth-order and second-order
centered finite difference method versus the error in the spectral approximation for x = π/N and
t = 1/N2.

for fixed t. The reason is simply that the cosine series representation of a smooth
IC does not alias. Nevertheless, convergence in the neighborhood of (0, 0) and (π, 0)
is algebraic. To see why this is the case, we implement the Chebyshev method by
expanding the solution in terms of Chebyshev cardinal functions (see [1]).

The error for the Chebyshev method, as a function of space, is qualitatively similar
to Figures 3.2(a) and 3.2(b), with the maximum error occurring at the endpoints for
small t and in the middle of the domain for large t. The error as a function of time is
similar to Figure 3.1 in that it reaches a maximum and then decays, but it differs in
the fact that the decay becomes exponential after the maximum as seen in Figure 3.4.
However, there exists a trajectory along which the max error converges algebraically as
shown in Figure 3.5(a). The difference is that the max error is converging quartically
as opposed to quadratically, as seen for the Fourier case. The increase in accuracy
occurs because the Chebyshev grid is quadratically clustered near the endpoints where
the singularities are occurring, giving an extra factor of O(1/N2). In contrast to the
Fourier method for large t, the Chebyshev method does indeed give the expected
exponential rate of convergence for the error, as indicated in Figure 3.5(b). This is a
direct result of the Chebyshev method’s ability to represent the IC exactly with only
three polynomials.

Thus unlike the Fourier method, at time t = 0, there is no initial error in the
coefficients due to truncation.

For the parabolic case, we can see that the convergence rate of the error in the
maximum norm is nonuniform and algebraic. In general, as long as we are interested
in solutions that are bounded away from singularities induced by violating the com-
patibility conditions, the spectral method will yield spectral convergence. However,
if we are interested in heat transients such as those that occur on a microprocessor,
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Fig. 3.5. (a) The max error in the Chebyshev approximation at the endpoint x = π/N as a
function of resolution N . (b) The error in the Chebyshev approximation for x = π/2 and t = 0.1.

a computationally more efficient method with comparable algebraic convergence may
be more attractive.

4. The hyperbolic case. In contrast to the parabolic case, a hyperbolic op-
erator will propagate the solution through the time-space domain. As a result, sin-
gularities induced by incompatible BCs and the IC are not smoothed as t increases.
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To observe the effect on the convergence of the error for spectral methods, we will
consider the one-dimensional wave equation

utt = uxx(4.1)

subject to BCs

u(0, t) = u(π, t) = 0(4.2)

and ICs

u(x, 0) =
π

8
x(π − x), ut(x, 0) = 0.(4.3)

The first-order compatibility condition, (2.6) for u0 and k = 1, is not satisfied.
The difference in the analysis of section 3.1 is that the time dependence of the exact
and approximate spectral solution is given by an oscillatory function. Thus,

u(xi, t) =

∞∑
n=1,odd

cos(nt)

n3
sinnxi(4.4)

with the analogue to (3.15) being

uN (xi, t) =

N−1∑
n=1,odd

cos(nt)

[
1

n3
− n

N4
Ψ
( n
N

)]
sinnxi.(4.5)

4.1. Global quadratic convergence. The decay rate of the error for hyper-
bolic cases is more dramatic than for parabolic problems. The error induced by
violating the first-order compatibility condition for a hyperbolic problem not only
produces an O(N−2) error for the Fourier method in the neighborhood of (0, 0) and
(π, 0) but propagates throughout the domain, resulting in global quadratic conver-
gence in the maximum norm. The propagation of the error through the x−t plane is
along the characteristic x = t and x = π − t, as shown in Figures 4.1(a) and 4.1(b)
for x ∈ [0, π] and t ∈ [0, π].

The proof of quadratic convergence of the error for small t follows that given in
section 3.2. For large t, the proof is the same except the error is defined along the
discrete trajectory xN/2 = π/2 and tN = π/2 − 1/N . Numerical experiments, given
in Figure 4.2, show that convergence is quadratic along both of these trajectories,
demonstrating the global nature of the error propagation.

4.2. The Chebyshev method. Next, we compare the performance of a Cheby-
shev method with the Fourier method that yields quadratic convergence. As noted in
section 3.5, we use Chebyshev cardinal functions. Figure 4.3 shows the propagation of
the error through the x−t plane for the Chebyshev method. As expected, we see that
the error propagates along the characteristics t = 1±x. The convergence of the error
along the characteristics for any value of t differs significantly from the parabolic case,
where spectral convergence was obtained for t > 0. The convergence of the error, as
shown in Figure 4.4, is quadratic, no better than the Fourier series expansion and
requiring O(N2) operations. At first, one might suspect that the convergence rate
would be O(N4), the same as was observed for the heat equation in the neighborhood
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Fig. 4.1. (a) Propagation of the error through the x−t plane. (b) Contour plot of (a).
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of the discontinuities (x = 0, t = 0) and (x = π, t = 0). The difference, however, is
that in the heat equation there is only a jump discontinuity in the second derivative of
the solution at t = 0. For any t > 0, the discontinuity becomes smoothed out due to
the diffusive operator. Thus, in the neighborhood of the singularities for 0 < t < ε, the
original jump discontinuities become steep gradients that are analytically continuous.
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Spectral methods have difficulty resolving these gradients, but the Chebyshev method
gives quartic convergence due to its quadratically clustered grid near the endpoints,
as opposed to the uniform grid of the Fourier method. However, in the hyperbolic
case, the discontinuities at t = 0 in the second derivative of the analytical solution
are present for all time. Thus, the type of grid used is irrelevant, and any spectral
method will converge quadratically.
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4.3. Comparison with finite difference methods. The quadratic conver-
gence of spectral methods naturally refocuses attention on second-order finite differ-
ence methods. The second-order centered finite difference method given by (3.30)
yields the solution

uN (xi, t) =

N∑
n=1,odd

cos(λnt)

{
1

n3
− n

N4
Ψ(n/N)

}
sinnxi,(4.6)

where

λn =
2N

π
sin
( nπ

2N

)
(4.7)

is a second-order approximation to the eigenvalues n. The error is then given by

eN (xi, t) = u(xi, t)− uN (xi, t) = TN (xi, t) + SN (xi, t) + EN (xi, t),(4.8)

where

TN (xi, t) =

N∑
n=1,odd

cosnt− cosλnt

n3
sinnxi,(4.9)

SN (xi, t) =
1

N4

N∑
n=1,odd

nΨ(n/N) cosλnt sinnxi,(4.10)

EN (xi, t) =

∞∑
n=N+1,odd

cosnt

n3
sinnxi.(4.11)

Using these formulas, we will analytically prove as well as computationally show that
not only does a second-order finite difference method not give quadratic convergence
but rather converges only slightly better than linearly. The dominant error term is
TN (xi, t) which we demonstrate by first showing that

|SN (xi, t)| < O(N−2) and |EN (xi, t)| < O(N−2).(4.12)

For t = x, we have

|SN (t)| = 1

2N4
|

N∑
n=1,odd

nΨ(n/N) cosλnt sinnt|(4.13)

≤ 1

2N4

N∑
n=1,odd

|nΨ(n/N) cosλnt sinnt|

<
1

2N2
.

Similarly,

|EN (t)| = 1

2
|

∞∑
n=N+1,odd

cosnt

n3
sin 2nt| ≤ 1

2

∞∑
n=N+1,odd

|cosnt

n3
sin 2nt|(4.14)

<
1

2

∫ ∞

N

ds

s3
=

1

4N2
.
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Fig. 4.5. (a) The max error in x for the second-order centered finite difference method at t = 1.
(b) The max error in x for the fourth-order centered finite difference method at t = 1.

Surprisingly, Figure 4.5 demonstrates that the error in a second-order finite differ-
ence method converges as O(N−4/3). The proof for 4/3 convergence is rather detailed
and deferred to Appendix A, where it is first shown that

|TN (t)| ≤ O(N−4/3)(4.15)

along the characteristic t = x for xε(0, π). To derive a lower bound is slightly more
complicated, but nevertheless for any average value of t along the same characteristic,

1

π

∫ π

0

TN (t)dt >
C

N4/3
,(4.16)

where C is a constant. These bounds hold for any second-order finite difference
operator in which there is a discontinuity in the second derivative of the solution. The
fact that the convergence of the second-order finite difference scheme is not quadratic
may not be surprising since the approximation is based on Taylor series expansions
that assume continuity of the function at least up to the fourth derivative. However,
the fact that it is 4/3 is surprising.

For a variety of ICs that would correspond to violating different order compatibil-
ity conditions we propose the following conjecture for the upper bounds of the error
term, TN (xi, t), due to a second-order finite difference approximation.

Let

TN (t) =

N∑
n=1,odd

cosλn,N t− cosnt

n3
sinnt =

N∑
n=1,odd

bn,N (t).(4.17)

When we enforce BCs, we violate some order compatibility condition and the coef-
ficients of the error, |bn,N (t)|, will be algebraically decreasing due to the resulting
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discontinuity in a derivative of the Taylor expansion of the IC about the boundary.
Thus, we can always impose the bound

|bn,N (t)| ≤ c

nβ
, β ≥ 1,(4.18)

where c is a constant.
From (4.18) and generalizing the analysis in Appendix A we make the following

conjecture whose derivation is relegated to Appendix B.
Conjecture. The error term TN (xi, t) is bounded from above by

∑N
n=1 |bn,N (t)| ≤ O(N (1−β)2/3), β < 4,

≤ O(N−2 logN), β = 4,
≤ O(N−2), β > 4.

For β < 4, the error from the IC dominates, while for β = 4 both the error from
the IC and second-order difference approximation contribute equally. In the last case
the error from the finite difference operator dominates.

β > 4 implies that at least the fourth derivative of the IC is continuous. Thus, the
best a second-order method can perform is O(N−2). β < 4 implies that the function
is not C4, and therefore we would expect less than quadratic convergence since the
error in a second-order method depends on the continuity of the fourth derivative
of the function. However, the fact that β = 4 yields a convergence rate that is
proportional to log(N) is not only new but quite surprising. The above conjecture
has been supported by the numerical evidence.

For completeness, the convergence rate of the FD4 method that was used in
section 3.4 is considered. However, we still see that convergence is less than quadratic
and in fact appears to be only O(N−3/2), as demonstrated in Figure 4.5(b). The
reduction in the convergence rates of the finite difference methods demonstrates the
significant impact of incompatibilities which occur anytime the BCs are independent
of the IC. In general, violation of the compatibility conditions will likely lead to
algebraic convergence of spectral methods as well as reduce the convergence rate of
finite difference schemes.

5. Conclusions. In this paper, we have applied the theory of compatibility
conditions to the numerical solutions of PDEs and have demonstrated how the subtle
singularities inherent in IBVPs impact the convergence properties of spectral and finite
difference methods. The temporal derivatives of the solution as defined by the initial
condition, differential operator, and Cauchy–Kowalesky theorem will not equal those
determined by the independent BCs. The resulting singularities in the corners of the
temporal-spatial domain, which are independent of the smoothness of the IC, disrupt
the spectral convergence of the error normally associated with spectral methods, in a
manner that differs significantly between parabolic and hyperbolic systems.

For parabolic systems, the Chebyshev spectral method may be considered “self-
healing,” leading to a spectral rate of convergence for the error. However, this is not
true for the Fourier method where aliasing is likely to induce an algebraic error in the
initial Fourier representation. In the neighborhood of the singularities, all methods
yield convergence rates that are algebraic. Thus, as measured in the maximum norm,
the convergence of the approximate solution to the exact solution for spectral methods
is both algebraic and nonuniform. Therefore, the usefulness of spectral methods may
be diminished if we are interested in transient solutions for small t.
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For hyperbolic systems, the situation is more interesting but worse because the
singularities at t = 0 on the boundary propagate throughout the temporal-spatial
domain along the characteristic lines x± ct. Thus, the algebraic rate of convergence
for the error that existed in the neighborhood of the singularities for the parabolic case
exists for all time in hyperbolic problems. As a result, the spectral method does not
yield spectral convergence for hyperbolic IBVPs. This naturally draws attention to
finite difference methods which require only O(N) operations. However, it was shown
that violation of the compatibility conditions can also reduce the order of convergence
for finite difference schemes.

The above study details the impact of the theory of compatibility conditions
on numerical calculations for IBVPs. Application is broad because many scientific
problems are calculated on finite domains where independent BCs are imposed. As a
result, singularities in the corners of the temporal-spatial domain are likely to disrupt
the accuracy of numerical methods. It is in this regard that the above study has
analyzed the convergence rate of the error for spectral and finite difference methods
and explored their application to solving IBVPs.

Appendix A: Proof of 4/3 convergence. The term TN (xi, t), which accounts
for the error in the eigenvalue approximation, dominates the error of the second-order
finite difference scheme. Our goal is therefore to bound the error from above and
below to prove the 4/3 convergence rate that was computationally observed in section
4.3.

We will first prove the upper bound for the error term TN (x, t) along the charac-
teristic t = x for xε(0, π)

|TN (t)| ≤ O(N−4/3).(5.1)

Proof.

TN (t) =

N∑
n=1,odd

cosλn,N t− cosnt

n3
sinnt =

N∑
n=1,odd

bn,N (t),(5.2)

where

λn,N = n
sin( nπ2N )

nπ
2N

.(5.3)

Since the lim supn→N cos(c(n)) sin(d(n)) = 1, we can immediately achieve an upper
bound on the coefficients bn,N

|bn,N | ≤ 2

n3
.(5.4)

This bound is due to the discontinuity in the second derivative of the IC from violating
the compatibility conditions. However, because the series is decreasing slowly as 1/n3,
this bound is only tight for the tail end of the series, when n is large. To describe the
behavior for the initial terms (i.e., small n), we need to derive a secondary bound.
This bound will come from the error in the second-order finite difference operator.
Using trigonometric identities, we can rewrite

cosλn,N t− cosnt = 2 sin
n+ λn,N

2
t sin

n− λn,N
2

t.(5.5)
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To find an upper bound on the product of the sine functions, we use the known result
derived from the Taylor expansion of sin y/y for yε[0, π] which gives

| sin n− λn,N
2

t| < n− λn,N
2

t <
π2

24

n3

N2
t.(5.6)

Therefore,

|bn,N | ≤ |(cosλn,N t− cosnt) sinnt|
n3

≤ π2

24

t

N2
.(5.7)

The trick now is to divide the summation in (5.2) into two parts,

N∑
n=1,odd

bn,N (t) =

Nγ∑
n=1,odd

bn,N (t) +

N∑
n=Nγ+1,odd

bn,N (t),(5.8)

where 0 < γ < 1. Equation (5.7) gives the tightest bound for the initial terms, while
(5.4) gives a tighter bound for the tail end of the series. The bounds are minimized,
giving equal contributions, for γ = 2/3. Therefore, we have

|TN (t)| = |
N∑

n=1,odd

bn,N (t)| ≤
N2/3∑

n=1,odd

|bn,N (t)|+
N∑

n=N2/3+1,odd

|bn,N (t)|(5.9)

≤ N2/3π
2

24

t

N2
+

N∑
n=N2/3+1,odd

2

n3
(5.10)

≤ π2

24

t

N4/3
+

1

N4/3
=

(
1 +

π2

24
t

)
N−4/3.(5.11)

For the second part of the proof, we show that TN (x, t) for any average value of
t along the characteristic t = x on xε(0, π) is bounded from below by

1

π

∫ π

0

TN (t)dt >
C

N4/3
.(5.12)

Proof. Beginning with

1

π

∫ π

0

TN (t)dt =
1

π

N∑
n=1,odd

∫ π

0

cosnt− cosλnt

n3
sinnt,(5.13)

then by using trigonometric identities and integrating, we have

1

π

∫ π

0

TN (t)dt =
1

2

N∑
n=1,odd

f(n(1+λn/n)
2 π) + f(n(1−λn/n)

2 π)

n3
(5.14)

≥ 1

2

N2/3∑
n=1,odd

f(n(1−λn/n)
2 π)

n3
,(5.15)

where

f(y) =
1− cos(y)

y
.(5.16)
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Next, we will bound the argument of f which is of the form 1− sin y
y as shown below.

By inspection, we can show that on yε(0, π), y2/12 < 1 − sin y
y < y2/6, which yields

the following bounds:

n(1− λn/n)

2
π =

π

2
n

(
1− sin nπ

2N
nπ
2N

)
(5.17)

<
nπ

2

nπ
2N

6
=
π3

48

n3

N2
(5.18)

>
nπ

2

nπ
2N

12
=
π3

96

n3

N2
.(5.19)

In the range 0 < y < 1, f(y) can be bounded by its argument 1/4y < f(y) < 1/2y.
Thus, for n < N2/3

1

4

n(1− λn/n)

2
π < f

(
n(1− λn/n)

2
π

)
(5.20)

which from (5.19) implies

π3n3

384N2
< f

(
n(1− λn/n)

2
π

)
.(5.21)

Therefore, from (5.15)

1

π

∫ π

0

TN (t)dt >
π3

768N2

N2/3∑
n=1,odd

1 >
π3

1536N4/3
.(5.22)

Appendix B: General upper bounds on the error term TN(t). In general,
when we have to enforce BCs we will violate some order compatibility condition,
and the coefficients of the error will be algebraically decreasing due to the resulting
discontinuity in a derivative of the Taylor expansion of the IC about the boundary.
Thus, we can always impose the bound

|bn,N (t)| ≤ c

nβ
, β ≥ 1,(5.23)

where c is a constant. From the analysis in Appendix A, we can generalize (5.7), the
error bound induced by the second-order difference operator, for any IC as

|bn,N (t)| ≤ c2tn( nN )2

nβ
= c2t

n3−β

N2
.(5.24)

If we split the summation which would correspond to TN (xi, t) into two parts as was
done in (5.8), we achieve the following approximation:

∑Nγ

n=1 c2t
n3−β
N2 ∼ c2t

4−βN
−2N (4−β)γ , β < 4,

c2tN
−2 logNγ , β = 4,

c3tN
−2, β > 4.

Similarly, for the tail end of the series as N becomes large, we have, using (5.23),

∞∑
n=Nγ+1,odd

∼ c

β − 1
Nγ(1−β).(5.25)

From these approximations, the conjecture in section 4.3 follows for the upper bound
on the error term, TN (xi, t), due to the second-order finite difference scheme.
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Abstract. In this paper we describe an iterative method for indefinite saddle-point systems
arising from mixed finite element discretizations of second-order elliptic boundary value problems
subject to mixed boundary conditions and posed over polyhedral three-dimensional domains. The
method is based on a decoupling of the vector of velocities in the saddle-point system from the vector
of pressures, resulting in a symmetric positive definite velocity system and a triangular pressure
system.

The crucial step in this approach is the construction of the divergence-free Raviart–Thomas–
Nédélec elements from the curls of Nédélec’s edge elements. Because of the large kernel of the
curl-operator, this representation is not unique. To find a basis we consider the graph made up of
the nodes and edges of the mesh and eliminate the edge elements associated with a spanning tree
in this graph. To prove that this technique works in the general case considered here, we employ
fundamental results from algebraic topology and graph theory.

We also include some numerical experiments, where we solve the (decoupled) velocity system by
ILU-preconditioned conjugate gradients and the pressure system by simple back substitutions. We
compare our method with a standard ILU-based block preconditioner for the original saddle-point
system, and we find that our method is faster by a factor of at least 4.5 in all cases, with the greatest
improvement occurring in the nonuniform mesh case.

Key words. mixed finite elements, second-order elliptic problems, mixed boundary conditions,
divergence-free space, spanning trees, decoupled iterative method
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1. Introduction. The problem we are going to consider in this paper is the
following second-order elliptic problem in velocity-pressure formulation

�u+K �∇p = �g,(1.1)

�∇ · �u = 0,(1.2)

subject to mixed boundary conditions over a polyhedral three-dimensional domain
Ω. Such a problem arises, for example, in groundwater flow or oil recovery simula-
tions, where �u corresponds to the velocity, p corresponds to the pressure, and K is
permeability divided by dynamic viscosity.

The numerical treatment of (1.1), (1.2) involves the solution of usually very large
indefinite linear equation systems. In this paper we describe a very efficient and prac-
ticable iterative method to solve these systems by decoupling the vector of velocities
from the vector of pressures, resulting in a symmetric positive definite velocity system
and a triangular pressure system. The crucial step in this approach is the construction
of a basis for the divergence-free Raviart–Thomas–Nédélec elements. The proof that
our algorithm for this construction works uses results from algebraic topology and
graph theory and will also be presented in this paper.
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Because the variable of prime interest in (1.1), (1.2) (especially in the applications
we have in mind) is the velocity �u, the discretization schemes of most interest are those
which preserve conservation of mass (1.2) in an appropriate way, with the prime
candidates being mixed finite element or finite volume techniques. In this paper we
discretize (1.1), (1.2) using the lowest-order mixed Raviart–Thomas–Nédélec elements
on tetrahedral meshes (Nédélec [23]). Here p is approximated in the space of piecewise
constant functions and �u is approximated in an appropriate subspace of the vector-
valued piecewise linear functions, in which the normal component of �u is required to be
continuous across the element boundaries. The resulting discretization enforces mass
conservation on each element of the mesh. Since the quality of the approximations is
determined by the mesh width, it is usually necessary to work with very fine meshes.

As is well known this type of discretization yields symmetric indefinite systems of
saddle-point type. Iterative methods for indefinite systems are less powerful and robust
(w.r.t. a refinement of the mesh) than the methods available for definite systems.
Therefore almost all approaches to solve this system efficiently contain at some point
a reduction of the system to a symmetric positive definite system. At least two
different strategies have been pursued.

The first strategy is to solve the saddle-point system by a preconditioned minimum
residual (MINRES) method using a symmetric positive definite block preconditioner.
The analysis for this strategy seems to be restricted to the two-dimensional case
(e.g., [26, 4]), although the preconditioner described in Rusten and Winther [26] can
be readily applied in three dimensions as well. There is also recent work by Wohlmuth,
Toselli, and Widlund [29] on a domain decomposition preconditioner for Raviart–
Thomas–Nédélec vector fields in three dimensions which can be used in the framework
of Arnold, Falk, and Winther [4].

The second strategy is to decouple the vector of velocities in the saddle-point
system from the vector of pressures. This can be done by (i) mixed hybridization
via Lagrange multipliers [13, 11], (ii) block elimination of the velocity variable [24],
or, as presented in this paper, (iii) a direct elimination of the divergence constraint
(1.2) on the element level. This technique (iii) has two distinct advantages over (i)
and (ii): first, no nonphysical variables are introduced, and, second, the velocity is
obtained directly without (necessarily) computing the pressure, the latter advantage
being particularly attractive in groundwater flow calculations. The method (iii) was
first developed in the related but different case of the Stokes problem by Crouzeix
and Thomasset [28] for two dimensions and by Hecht [17] for three dimensions. In
connection with the solution of system (1.1), (1.2) it appears first in Chavent et al.
[10]. Since the decoupling in this way leads to much smaller and nicer linear equation
systems, it was subsequently possible to develop very competitive and efficient meth-
ods for the two-dimensional case (e.g., [15, 16, 21, 22, 12]). In this paper we present a
very efficient iterative method for the solution of system (1.1), (1.2) that implements
this idea in three dimensions.

Thus our solver is built on three essential steps. The first step decouples the
velocity field in the saddle-point problem from the pressure field. This is done by
writing the velocity as the curl of an appropriate discrete vector potential, automat-
ically satisfying the discrete counterpart of the mass conservation law (1.2). The
required discrete vector potential turns out to be a finite element approximation of
the solution of a related symmetric positive semidefinite problem by edge elements
(Nédélec [23]) which can be found independently of the pressure. Because of the large
kernel of the curl-operator, this system is singular. In Hiptmair and Hoppe [19] a
multilevel method is constructed that solves this singular problem approximately. In
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this paper we make the problem positive definite by eliminating the degrees of free-
dom associated with a spanning tree of the graph made up of the nodes and edges
of the mesh. This also corresponds to finding a local basis for the divergence-free
Raviart–Thomas–Nédélec elements. Such algebraic techniques have already been suc-
cessfully used in other fields (e.g., [2, 20, 6] for Maxwell’s equations, [17, 18, 14] for
incompressible flow (Stokes)); in the context of (1.1), (1.2) there is only one paper by
Cai et al. [8], and that is restricted to uniform rectangular meshes, in which case the
special spanning tree can be written down a priori.

The second step in the solver is the application of a preconditioned conjugate
gradient (CG) method to solve for the discrete velocity. Since the system is symmetric
positive definite, it is easier to solve than the original saddle-point system. It also turns
out to have the added advantage of being about three times smaller than the original
system. In section 7 we have included some results using a simple ILU preconditioner
to illustrate this advantage. We compare our method with the (also ILU-based) block
preconditioner of Rusten and Winther [26] for the original saddle-point system, and
we find that our method is faster by a factor of at least 4.5 in all cases, with the
greatest improvement occurring in the nonuniform mesh case (where an improvement
factor of 9.0 is observed on the finest mesh (36864 freedoms)).

The third and final step in the solver is the recovery of the pressure (if it is
required). The decoupled pressure system turns out to be particularly simple. By
an appropriate numbering of the freedoms it can be made triangular and solved in
optimal time by simple back substitutions. We will prove this rigorously.

The layout of this paper is as follows. In section 2 we shall describe the mathemat-
ical setting for (1.1), (1.2) and its discretization by mixed finite elements. In section 3
we present the decoupling of the vector of velocities from the vector of pressures as a
general algebraic procedure. In section 4 we construct the basis for the divergence-free
Raviart–Thomas–Nédélec elements, and we show in section 5 how this basis is used
to implement the decoupled velocity system. In section 6 we show how the pressure
is recovered, and we finish the paper with some numerical results in section 7.

2. Mixed finite element discretization. In this section we describe the math-
ematical setting for (1.1), (1.2) together with its discretization by mixed finite ele-
ments. Since this is a standard procedure (see, e.g., [7]), we shall be brief.

Let Ω denote an open polyhedron, i.e. a simply connected open domain without
cavities in R

3 with a connected boundary Γ composed of plane faces, which is assumed
partitioned into ΓD ∪ ΓN . Each of ΓD and ΓN is assumed to consist of a finite union
of planar polygonal subsets of Γ, and ΓD and ΓN are both assumed to be connected.
Additionally, ΓN is assumed to be closed. Let �ν(�x) denote the outward unit normal
from Ω at �x ∈ Γ. In general we assume thatK is a bounded, symmetric, and uniformly
positive definite 3 × 3 matrix-valued function on Ω. The system (1.1), (1.2) is to be
solved on Ω subject to mixed boundary conditions:

p = pD on ΓD and �u · �ν = 0 on ΓN .(2.1)

Throughout, we shall assume that ΓD �= ∅, a condition which is generically sat-
isfied in groundwater flow applications, where some inflow and outflow must occur.
The extension to the case when ΓD = ∅ (when p is nonunique) can easily be made by
imposing an extra condition on p in the weak form below (e.g., that p should have a
prescribed mean value; see, e.g., [15]).

To discretize (1.1), (1.2), (2.1) we put it in weak form. Let (·, ·)L2(Ω)d denote the
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usual inner product in L2(Ω)d for d = 1, 2, 3. Then introduce the Hilbert space

H(div,Ω) := {�v ∈ L2(Ω)3 : div�v ∈ L2(Ω)},
with the inner product

(�u,�v)H(div,Ω) := (�u,�v)L2(Ω)3 + (div �u, div�v)L2(Ω),

and its subspace

H0,N (div,Ω) := {�v ∈ H(div,Ω) : �v · �ν|ΓN = 0}
(see [7] for details). Introduce the bilinear forms

m(�u,�v) := (K−1�u,�v)L2(Ω)3 , b(�v, w) := −(div�v, w)L2(Ω),

and the linear functional

G(�v) := (K−1�g,�v)L2(Ω)3 −
∫

ΓD

pD �v · �ν dF.

Then the weak form of (1.1), (1.2), (2.1) is to find (�u, p) ∈ H0,N (div,Ω)×L2(Ω) such
that {

m(�u,�v) + b(�v, p) = G(�v) for all �v ∈ H0,N (div,Ω),

b(�u,w) = 0 for all w ∈ L2(Ω).
(2.2)

The mixed finite element discretization of (2.2) is obtained by choosing finite-

dimensional subspaces V ⊂ H0,N (div,Ω) andW ⊂ L2(Ω) and seeking (�U, P ) ∈ V×W
such that {

m(�U, �V ) + b(�V , P ) = G(�V ) for all �V ∈ V,
b(�U,W ) = 0 for all W ∈ W.

(2.3)

In practice this is implemented by choosing bases {�vi : i = 1, . . . , nV} and
{wj : j = 1, . . . , nW} for V and W. By writing

�U =

nV∑
i=1

ui�vi, P =

nW∑
j=1

pjwj ,

problem (2.3) is then reduced to the indefinite system of linear equations

(
M B
BT 0

)(
u
p

)
=

(
g
0

)
in R

nV × R
nW ,(2.4)

where Mi,i′ := m(�vi, �vi′) is the “mass matrix,” Bi,j := b(�vi, wj) is the “discrete
gradient,” and gi := G(�vi).

In this paper we restrict attention to the (most practically important) case when
V is the lowest-order Raviart–Thomas–Nédélec space on tetrahedra [23]. To define
this, let T denote a triangulation of Ω into conforming tetrahedra T ∈ T . We assume
that all lines along which the boundary condition changes (i.e., the boundaries of the
components of ΓN ) are edges of tetrahedra in T . Let F denote the set of all faces
of the tetrahedra in T . It is convenient to think of these faces as open so that, for
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F ∈ F , F denotes the closure of F (including its boundary). For any F ∈ F , we
let �νF denote the unit normal to the face F which, for convenience, is assumed to be
orientated so that

�νF ∈ {�x ∈ R
3 : x1 > 0} ∪ {(0, x2, x3)

T ∈ R
3 : x2 > 0} ∪ {(0, 0, 1)T }.(2.5)

Let FI , FD, and FN denote the faces F ∈ F which lie in Ω, ΓD, and ΓN , respectively.
The space V is defined to be the space of all functions �v ∈ H0,N (div,Ω) such that

for all T ∈ T , there exist �αT ∈ R
3 and γT ∈ R such that

�v(�x) = �αT + γT�x for all �x ∈ T.(2.6)

Equivalently, we can define V to be the space of all �v : Ω→ R
3 which satisfy (2.6) for

each T ∈ T , and also

(i) �v · �νF is continuous across each face F ∈ FI ,
(ii) �v · �νF = 0 for all F ∈ FN .(2.7)

Because of the special form of (2.6) it is easily shown that �v(�x) · �νF is constant for
�x ∈ F on any face F of T . Thus �v ∈ V can be completely determined by specifying
the constant value of �v · �νF for each F ∈ FI ∪ FD. This leads us to introduce the
standard basis for V which is constructed by associating with each face F ∈ FI ∪FD,
a function �vF ∈ V with the property that

�vF · �νF ′ = δF,F ′ ,(2.8)

with δ denoting the Kronecker delta.
We also have to specify the spaceW. To fulfill the discrete inf-sup condition which

is necessary for existence and uniqueness (see, e.g., [25]), W is chosen as the space
of piecewise constant functions on Ω, with the basis consisting of the characteristic
functions wT of each of the tetrahedra T ∈ T . Thus

nV = (#FI + #FD), nW = (#T ),(2.9)

where, throughout, #A denotes the number of elements of a (finite) set A.

3. Decoupled iterative method for mixed problems. In this section we
formulate our method for decoupling the vector of velocities u from the vector of
pressures p in system (2.4). We have already presented this procedure for the two-
dimensional case in [12]. Recall [7] that (2.4) has a unique solution (u,p) ∈ R

nV×R
nW

for all g ∈ R
nV , and clearly u is in kerBT .

Remark 3.1. The case of u �∈ kerBT (or, equivalently, of a more general right-

hand side (gT ,hT )T of (2.4)) arises when �∇ · �u �= 0 in (1.2). This problem can be
reduced to problem (2.4) following Ewing and Wang [15] (see also [8, 19] for three
dimensions): in a preprocessing step based on domain decomposition (static conden-
sation) a vector u∗ is calculated such that BTu∗ = h; this can be done in O(n) steps
(where n = nV + nW); the remainder ũ = u − u∗ fulfills (2.4) with right-hand side
((g−Mu∗)T ,0T )T and can be calculated with the method described in this paper. See
[27] for details.

To describe our decoupling procedure, first consider (2.4) as an abstract system.
The decoupling of u from p can be achieved by finding

a basis {z1, . . . ,zn̊} of kerBT .(3.1)
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(Since BT has full rank, n̊ = nV − nW .) If we have such a basis, then the solution u
of (2.4) can be written

u =

n̊∑
j=1

ůjzj = ZT ů,(3.2)

for some ů ∈ R
n̊, where Z denotes the n̊ × nV matrix with rows zT1 , . . . ,z

T
n̊ . Also,

since ZB = (BTZT )T = 0, multiplying the first (block) row of (2.4) by Z shows that
ů is a solution of the linear system

Åů = g̊,(3.3)

where

Å = ZMZT and g̊ = Zg.(3.4)

Since M is symmetric positive definite, so is Å, and ů is the unique solution of (3.3).
Thus if the basis (3.1) can be found, then the velocity u in (2.4) can be computed by
solving the decoupled positive definite system (3.3) rather than the indefinite coupled
system (2.4).

In applications to groundwater flow, where one is primarily interested in the
velocity �u in (1.1), (1.2), the method described above is of great relevance. Even when
the pressure p is also of interest our method may still be highly competitive, provided
we can also compute a complementary basis {zn̊+1, . . . ,znV} with the property that

span{z1, . . . ,zn̊,zn̊+1, . . . ,znV} = R
nV .(3.5)

If this is known and if Z ′ denotes the matrix with rows zTn̊+1, . . . ,z
T
nV , then multiplying

the first (block) row of (2.4) by Z ′ shows that p is the solution of the nW×nW system

(Z ′B)p = Z ′(g −Mu).(3.6)

An elementary argument shows that Z ′B is nonsingular, and so the unique solution
p of (3.6) also determines the pressure in (2.4) once the velocity u is known.

We show in the next three sections that in the particular case of the mixed finite
element system (2.4),

(i) it is always easy to find the basis (3.1);
(ii) the resulting symmetric positive definite matrix Å in the reduced problem

(3.3) can be obtained by simple algebraic techniques from the stiffness ma-
trix of an associated symmetric positive semidefinite problem in the space
H( �curl,Ω) discretized by Nédélec’s edge elements;

(iii) the system (3.3) is about 3 times smaller than (2.4);
(iv) a simple choice of complementary basis can be made so that the coefficient

matrix Z ′B in the system (3.6) is lower triangular.
To establish conclusions (i)–(iv) we need to exploit the particular properties of

(2.4). In particular, note that finding the basis z1, . . . ,zn̊ in (3.1) is equivalent to

finding a basis �̊v1, . . . , �̊vn̊ of the finite element space

V̊ := {�V ∈ V : b(�V ,W ) = 0 for all W ∈ W}.
To see why, suppose z1, . . . ,zn̊ are known and let Z = (Zi,j) be the matrix with rows
zT1 , . . . ,z

T
n̊ . Then the formulae

�̊vi =

nV∑
j=1

Zi,j�vj , i = 1, . . . , n̊,(3.7)
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(where {�vj} is the basis of V) determine the basis {�̊vi}. Conversely, if the basis {�̊vi}
of V̊ is known, then the matrix Z (and hence the basis z1, . . . ,zn̊ of ker BT ) is
determined by (3.7).

We now turn our attention to finding a basis of V̊.

4. Construction of a divergence-free basis. As a first step, recall that T is
the set of all tetrahedra in the mesh and that F = FI ∪FD ∪FN is the set of all faces
of the mesh (assumed to be open triangles) which lie in Ω, ΓD, and ΓN , respectively.
Analogously, we can write E = EI ∪ED ∪EN , with EI , ED, and EN denoting the edges
in Ω, ΓD, and ΓN ; and N = NI ∪ ND ∪ NN , with NI , ND, and NN denoting the
nodes in Ω, ΓD, and ΓN . Recall that the boundaries of each of the components of
ΓN belong to ΓN , and, since the lines between Neumann and Dirichlet boundaries are
edges of the mesh, these edges lie in EN . For E ∈ E , let �τE denote the unit tangent
on edge E which, as in (2.5), is assumed to be orientated so that

�τE ∈ {�x ∈ R
3 : x1 > 0} ∪ {(0, x2, x3)

T ∈ R
3 : x2 > 0} ∪ {(0, 0, 1)T }.(4.1)

Through this convention we associate an orientation with each edge of the mesh.

To construct a basis of V̊ it is useful to introduce the following space of finite
elements introduced by Nédélec in [23]. Let

H( �curl,Ω) := {�Φ ∈ L2(Ω)3 : �curl �Φ ∈ L2(Ω)3}

and let U be the finite-dimensional space of all functions �Φ ∈ H( �curl,Ω) such that for

all T ∈ T , there exist �αT , �βT ∈ R
3 such that

�Φ(�x) = �αT + �βT × �x for all �x ∈ T.(4.2)

In fact, U is the lowest-order member of the family of spaces introduced by Nédélec
in [23]. The standard basis of U consists of the set of functions {�ΦE ∈ U : E ∈ E}
which are required to have the property

∫
E′
�ΦE · �τE′ ds = δE,E′ for all E′ ∈ E .(4.3)

This choice of basis functions accounts for the widely used term edge elements.

The basis for V̊ will now be constructed from the fundamental functions �ΨE

defined by

�ΨE = �curl�ΦE(4.4)

(so that �ΦE is the vector potential of �ΨE). The functions (4.4) clearly satisfy

div�ΨE = 0 on each tetrahedron of the mesh, and a subset of them lie in V̊ as the
following proposition shows.

Proposition 4.1. For each E ∈ EI ∪ ED, �ΨE ∈ V̊.
Proof. Consider a general edge E ∈ E . Conditions (4.2) and (4.3) clearly imply

that supp �ΨE consists only of the tetrahedra touching edge E. A typical such tetra-
hedron T with edges E := E1, E2, . . ., E6, and nodes P a, . . ., P d, is depicted in the
figure below:
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�τ 1
E1 = E

�τ 2

E2

�τ 3

E3

�τ 4

E4

�τ 5

E5

�τ 6

E6

P a

P b

P c

P d

with �τ α, α = 1, . . . , 6, denoting unit tangent vectors in the directions shown and
�r β denoting the position vector of P β , β = a, b, c, d. The faces are denoted by
F a, . . ., F d, where F β is opposite P β , β = a, b, c, d, and the unit outward normal
on each face is denoted by �ν β .

Note first that for all �x ∈ T
�ΨE(�x) = �curl�ΦE(�x) = �∇×

(
�βT × �x

)
= 2�βT ,

which is easily seen to be of the form (2.6) (in fact, with γT = 0).

Since �ΨE(�x) is constant on T , we can write for each �x ∈ T and for each
β = a, b, c, d,

�ΨE(�x) · �ν β =
1

|F β |
∫
Fβ

�ΨE(�x) · �ν β dF =
1

|F β |
∫
Fβ

�curl�ΦE(�x) · �ν β dF,

and using Stokes’s integral theorem we get

�ΨE(�x) · �ν β =
1

|F β |
∮
∂Fβ

�ΦE(�x) · �ds =

⎧⎪⎨
⎪⎩

1
|Fβ | for β = c,

− 1
|Fβ | for β = d,

0 otherwise,

(4.5)

where in the last step we used (4.3) to evaluate the line integral (respecting the right-
hand rule and the specific orientation of �τ 1 and �ν β , β = a, b, c, d, as depicted in the
figure above).

Now to obtain the result observe that, since div�ΨE = 0 on each tetrahedron, it
is sufficient to show that

�ΨE ∈ V for all E ∈ EI ∪ ED.(4.6)

To show this we shall verify criterion (2.7). First consider E ∈ EI . Let F ∈ FI . If

F �⊂ supp �ΨE , then we have trivially

�ΨE · �νF is continuous across F.(4.7)

Now take a general tetrahedron T ⊂ supp �ΨE , as pictured above. If F = F c or
F d, then performing the computation (4.5) in the other tetrahedron adjoining F and
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E

Fig. 1. Divergence-free basis function �ΨE .

combining with (4.5) establishes (4.7). On the other hand, when F = F a or F b, (4.7)

also holds since �ΨE ·�νF |T = 0 and since the other tetrahedron adjoining F lies outside

supp �ΨE . Altogether, we have established that �ΨE satisfies criterion (2.7)(i).

To establish (2.7)(ii), let F ∈ FN . If F �⊂ supp �ΨE , then �ΨE · �νF = 0 trivially. If

F ⊂ T ⊂ supp �ΨE , then (since E ∈ EI) with the above notation F has to be either

F a or F b and again �ΨE · �νF = 0, proving (2.7)(ii).

Thus we have shown that �ΨE ∈ V for all E ∈ EI . Similar arguments establish
that �ΨE ∈ V for all E ∈ ED, proving (4.6).

Note that each �ΨE can be expressed as a local linear combination of the basis
functions �vF of V satisfying (2.8); in fact, only those �vF corresponding to faces F that

contain edge E appear in the expansion of �ΨE (see Figure 1).

To find a basis for V̊, let us first look at the pure Dirichlet case, ΓN = ∅. The
functions introduced in Proposition 4.1 are sufficient to span V̊, but there are too
many of them. The following theorem identifies a linearly independent subset of
the functions in Proposition 4.1 that constitutes a basis of V̊. A similar statement
for the pure Neumann case, ΓD = ∅, has already been proved by Dubois [14] (see
Remark 4.7 for a more extensive literature survey).

The proof involves some fundamental notions and results from graph theory and
algebraic topology (see Appendices A and B for a brief introduction). In particular
we need the notion of a spanning tree of a graph (see Theorem A.4). Let G := (N , E)
be the graph formed by the nodes and (orientated) edges of the triangulation T .

Theorem 4.2. Let ΓN = ∅ and let H ⊂ E be such that if H := (N ,H) is a
spanning tree of G, then

{�ΨE : E ∈ E\H} is a basis of V̊.(4.8)

Before proving Theorem 4.2, we will first prove two lemmas. Let V(G) denote
the vector space over Z generated by the cycles of G as defined in Definition A.1(e).
Furthermore, for each face F ∈ F let μF be the elementary cycle of G formed by the
edges E of F . We fix the orientation of this cycle w.r.t. �νF by applying the right-hand
rule. The associated vector μF := [μFE ]E∈E ∈ V(G) is given by

μFE =

⎧⎨
⎩

1 if E is an edge of F and �τE is positively orientated w.r.t. �νF ,
−1 if E is an edge of F and �τE is negatively orientated w.r.t. �νF ,

0 otherwise.
(4.9)
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Lemma 4.3. Let μ := [μE ]E∈E ∈ V(G). Then there exist {αF ∈ Z : F ∈ F} such
that

μ :=
∑
F∈F

αFμ
F .(4.10)

Proof. Let K be the simplicial complex underlying our simplicial triangulation
T . In the notation of algebraic topology (see Appendix B) the vector μ ∈ V(G) can
be identified with the vector of coefficients of a cycle μ of K (with orientation of its
edges defined by the tangent vectors �τE).

Since |K| = Ω is simply connected, we know from Corollary B.4 that each
cycle of K is a bounding cycle and can therefore be written as a linear combina-
tion of the boundaries of the orientated triangles of K. In particular, there exist
{α̃F ∈ Z : F ∈ F} such that

μ =
∑
F∈F

α̃F∂F.(4.11)

The boundary ∂F of an orientated triangle F of K is a special cycle μ̃F of K. As
above it can therefore be identified with a vector μ̃F ∈ V(G). Depending on the
orientation of �νF we either have μ̃F = μF or μ̃F = −μF , and we can write (4.11) in
vector notation:

μ =
∑
F∈F

αFμ
F with αF =

{
α̃F if μ̃F = μF ,

−α̃F if μ̃F = −μF .

Lemma 4.4. Let μ ∈ V(G) and let {αF ∈ Z : F ∈ F} be such that
μ :=

∑
F∈F αFμ

F . Then

∑
F∈F

αF

∫
F

�ΨE · �νF dF = μE for all E ∈ E .(4.12)

Proof. Let F ∈ F . Using (4.5) we get

∫
F

�ΨE · �νF dF =

⎧⎨
⎩

1 if E ⊂ F and �τE positively orientated w.r.t. �νF ,
−1 if E ⊂ F and �τE negatively orientated w.r.t. �νF ,

0 otherwise,

and, therefore, recalling the definition (4.9), we have
∫
F
�ΨE ·�νF dF = μFE . Multiplying

this by αF and summing over F ∈ F we obtain (4.12).
We can now prove Theorem 4.2.
Proof. Let us first check that the number of basis functions in (4.8) coincides

with n̊ = dim V̊. Since Ω is simply connected without cavities, we can apply Euler’s
polyhedron theorem [9]

#N −#E + #F −#T = 1(4.13)

to the triangulation T . Now observe that H is a tree, and therefore #H = #N − 1
(cf. Theorem A.3(iii)). Using this fact together with (4.13) we get

#(E\H) = #E −#N + 1 = #F −#T .(4.14)
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Now recalling that n̊ = nV −nW = #F −#T , it follows from (4.14) that the number
of functions in (4.8) is n̊, as required.

To establish linear independency of the functions in (4.8), suppose {βE′ : E′ ∈ E\H}
are scalars such that

�0 =
∑

E′∈E\H
βE′ �ΨE′ .

Now let E ∈ E\H and let μE denote the vector associated with the unique cy-
cle μE generated by taking edge E into the tree H, which has the property that
μEE′ := δE,E′ for all E′ ∈ E\H (cf. Theorem A.6). Then using Lemma 4.3 we can find
{αF ∈ Z : F ∈ F} such that μE :=

∑
F∈F αFμ

F , and so by Lemma 4.4

0 =
∑
F∈F

αF

∫
F

( ∑
E′∈E\H

βE′ �ΨE′

)
· �νF dF =

∑
E′∈E\H

βE′μEE′ = βE ,

which establishes the linear independency of the functions in (4.8).

Now let us look at mixed boundary conditions, ΓN �= ∅. In the following corollary
we will see that the results of Theorem 4.2 extend to this case provided each component
of ΓN is simply connected. Our proof of this result makes use of the methods of
Hecht [17] developed for the nonconforming P1-P0 elements for the approximation of
solenoidal vector fields in H1(Ω)3 (see Remark 4.7 for a more extensive discussion).

Therefore let nC denote the number of connected components in ΓN and write

ΓN = Γ1
N ∪ Γ2

N ∪ · · · ∪ ΓnC
N , Γ�N ∩ Γ�

′
N = ∅ for all 
 �= 
′ ∈ {1, . . . , nC}.

For 
 = 1, . . . , nC , let N �
N ⊂ N , E�N ⊂ E , and F�N ⊂ F denote the set of mesh nodes,

edges, and faces on Γ�N , respectively.

Corollary 4.5. Suppose nC �= 0 and suppose that Γ�N is simply connected for
each 
 = 1, . . . , nC. Let H ⊂ E such that H = (N ,H) is a spanning tree of G and
such that for each 
 = 1, . . . , nC, the restriction H�

N := (N �
N ,H ∩ E�N ) of H to Γ�N is

also a tree. Then

{�ΨE : E ∈ (EI ∪ ED)\H} is a basis of V̊.(4.15)

Remark 4.6. The general case, when Γ�N is not simply connected for some 
,
involves the introduction of a small number of additional nonlocal basis functions. In
order not to complicate this paper, we omit the details for this case, but they will be
given in [27]. Thus, from now on we will assume that Γ�N is simply connected for all

 = 1, . . . , nC.

Proof. Since (EI ∪ ED) ⊂ E , we also have (EI ∪ ED)\H ⊂ E\H, and therefore

following the proof of Theorem 4.2 the functions �ΨE in (4.15) are linearly independent.

We have only to check that the number of basis functions in (4.15) coincides
with n̊ = dim V̊. To do this, we need two elementary formulae (Cauchy [9]): Euler’s
polyhedron theorem (4.13) and the Euler–Cauchy formula for planar networks of poly-
gons (4.16). Consider a typical Neumann boundary segment Γ�N . Since Γ�N is simply
connected, we have

#N �
N −#E�N + #F�N = 1.(4.16)
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Now observe that H�
N is a tree, and therefore (again by virtue of Theorem A.3(iii))

#(H ∩ E�N ) = #N �
N − 1. Using (4.16) and summing over 
 = 1, . . . , nC , we obtain

#(H ∩ EN ) =

nC∑
�=1

(#N �
N − 1) =

nC∑
�=1

(#E�N −#F�N ) = (#EN −#FN ).(4.17)

Since the sets EI , ED, and EN partition E , we also have

(EI ∪ ED)\H = (E\EN )\H = E\(EN ∪H),

and, therefore, the number of functions in (4.15) is #E − (#EN + #H − #(H ∩
EN )). Combining this with (4.17), and using the fact that H is a tree (and therefore
#H = #N − 1), we finally get

#((EI ∪ ED)\H) = (#E −#N + 1)−#FN = (#F −#T )−#FN ,(4.18)

where in the last step we have used Euler’s polyhedron theorem (4.13). Now recalling
that n̊ = nV − nW (and from section 3 we have nV = #FI + #FD = #F − #FN
and nW = #T ), it follows from (4.18) that the number of functions in (4.15) is n̊, as
required.

Remark 4.7. The idea of spanning trees in the context of finite element methods
first appears in the context of the Stokes problem in a paper by Hecht [17], where
it is used in the same way as here to find a basis for the space of divergence-free
nonconforming P1-P0 elements for the approximation of solenoidal vector fields in
H1(Ω)3.

In an unpublished manuscript [18], Hecht extends these results to a wider family of
finite elements in H1(Ω)3, including the (nonconforming) Raviart–Thomas–Nédélec
elements. The published literature on divergence-free Raviart–Thomas–Nédélec ele-
ments in H(div,Ω) considered here is restricted to the pure Neumann case, ΓD = ∅,
in a paper by Dubois [14], where he uses it to solve model incompressible flow problems
with prescribed vorticity.

In the context of the three-dimensional problem (1.1), (1.2) considered in this
paper, the only other work which we are aware of is the recent paper [8], but this
is restricted to uniform rectangular meshes and a special spanning tree which can be
constructed a priori.

Independently, spanning trees also appear as a technique for computing a discrete
gauge condition in eddy-current calculations in computational electromagnetism (e.g.,
in Albanese and Rubinacci [2] or Kettunen and Turner [20]). A thorough presentation
of the theoretical foundation of those techniques using homology theory (related to our
Appendix B) can be found in Bossavit [6, Ch. 5].

5. Implementation. To implement the decoupled system (3.3) for determining
ů (and hence u) we must work with the matrix Å and the right-hand side g̊ specified
in (3.4). We observe that these are formally defined in terms of multiplications with

the matrix Z which, through (3.7), represents the basis {�̊vi} of V̊ in terms of the basis
{�vj} of V.

In the specific system (2.4) the {�vj} are the Raviart–Thomas velocity basis func-

tions {�vF : F ∈ FI ∪FD} given in section 2, whereas the {�̊vi} are the basis functions

{�ΨE : E ∈ (EI ∪ED)\H} specified in Corollary 4.5 (or Theorem 4.2, if ΓN = ∅). Thus
we can identify the columns of Z with the indices F ∈ FI ∪ FD, whereas the rows of
Z correspond to E ∈ (EI ∪ ED)\H.
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Using this identification of Z we can rewrite (3.7) as

�ΨE =
∑

F∈FI∪FD
ZE,F �vF , E ∈ (EI ∪ ED)\H.(5.1)

Note that the matrix Z is sparse; in fact, ZE,F �= 0 only when edge E is an edge of
the face F .

The set H ⊂ E of edges that form a spanning tree in the graph G = (N , E) can
be found in optimal time (proportional to the number of edges) using Algorithm A.7
presented in Appendix A. The introduction of the special spanning tree for the mixed
boundary problem in Corollary 4.5 does not pose an extra problem to our method.
We need only to modify Algorithm A.7 slightly: We choose x1 ∈ NN and at first
consider only nodes y1 ∈ NN in the function “recursive(.)” to find a spanning tree
H�
N for each Γ�N ; then (without resetting the array “mark[.]”) we call the function

“recursive(x̃)” with argument x̃ ∈ NI ∪ND to find the rest of the spanning tree.
With the same convention as above we can write the elements of the matrix M

appearing in (2.4) as

MF,F ′ = m(�vF , �vF ′), F, F ′ ∈ FI ∪ FD.(5.2)

With these observations, it is simple to write Å as a sum of element matrices. To
be precise, recalling that T is the set of tetrahedral elements, we can write

M =
∑
T∈T

MT , where (MT )F,F ′ =

∫
T

K−1�vF · �vF ′ d�x.

Then we can similarly write Å as

Å =
∑
T∈T

ÅT ,(5.3)

where ÅT = ZTMTZ
T
T , and ZT denotes the matrix whose entries equal the entries of

Z for columns and rows corresponding to T (i.e., faces F ⊂ T and edges E ⊂ T ) and
are zero elsewhere. The representation (5.3) may be important if iterative methods
are being used to solve (3.3). A similar elementwise representation can be given for
the computation of g̊ in (3.4).

Alternatively, Å can be determined (elementwise or globally) from an approxima-
tion of a related bilinear form by Nédélec’s edge elements, without the assembly of
any Raviart–Thomas stiffness matrix entries, as the following calculation shows.

Introduce the bilinear form

a(�Φ, �Φ′) := (K−1 �curl�Φ, �curl�Φ′)L2(Ω)3 for all �Φ, �Φ′ ∈ H( �curl,Ω),(5.4)

and, for E,E′ ∈ E , set

AE,E′ := a(�ΦE , �ΦE′),

where {�ΦE} are the basis functions of the piecewise linear Nédélec’s edge elements
defined in (4.2) and (4.3). Thus (after specifying an ordering of the edges in E), A is
the stiffness matrix corresponding to the bilinear form a(·, ·) discretized by Nédélec’s
edge elements, with a natural boundary condition on all of Γ. Because of the nontrivial
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kernel of a(·, ·), this bilinear form is degenerate and therefore not elliptic onH( �curl,Ω).

In fact, let v ∈ H1(Ω); then a(�∇v, �Φ′) = 0 for all �Φ′ ∈ H( �curl,Ω). Consequently, A is
singular.

The following result shows that the minor of this matrix obtained by restricting
to E,E′ ∈ (EI ∪ ED)\H, where H ⊂ E as defined in Corollary 4.5, determines the
matrix Å in (3.3). (This corresponds to imposing an essential boundary condition on
ΓN and restricting to the orthogonal complement of the kernel of a(·, ·).)

Theorem 5.1. Let H ⊂ E as defined in Corollary 4.5 (or Theorem 4.2, if
ΓN = ∅). Then

ÅE,E′ = AE,E′ for all E,E′ ∈ (EI ∪ ED)\H.
Proof. Let H ⊂ E as defined in Corollary 4.5 (or Theorem 4.2, if ΓN = ∅) and

let E,E′ ∈ (EI ∪ED)\H. Then using the definition (3.4) of Å together with (5.2) and
(5.1) we get

ÅE,E′ =
∑

F,F ′∈FI∪FD
ZE,FMF,F ′ZE′,F ′ = m

(∑
F

ZE,F�vF ,
∑
F ′

ZE′,F ′�vF ′

)
= m(�ΨE , �ΨE′).

Now using the definitions of m(·, ·) and �ΨE , we finally get

ÅE,E′ = (K−1 �ΨE , �ΨE′)L2(Ω)3 = (K−1 �curl�ΦE , �curl�ΦE′)L2(Ω)3

= a(�ΦE , �ΦE′) = AE,E′

Remark 5.2. Hiptmair and Hoppe [19] solve the singular symmetric positive
semidefinite system with stiffness matrix A by multilevel preconditioned CG without
explicitly eliminating columns and rows corresponding to edges E ∈ H. In their
multilevel splitting they eliminate the kernel of a(·, ·) only approximately by relaxing the
orthogonality condition and thus avoid the construction of a basis. Here we eliminate
the kernel a priori, which allows us to then apply the CG algorithm with a range of
possible preconditioners.

Remark 5.3. Observe that the decoupled system (3.3) is about three times smaller
than the original indefinite system (2.4). More precisely, the dimension of (3.3) is
smaller than that of (2.4) by a factor

C :=
#FI + #FD + #T
#FI + #FD −#T .

Since 4(#T ) = 2(#FI) + #FD + #FN we have

C = 3

{
#FI + 5

6 (#FD) + 1
6 (#FN )

#FI + 3
2 (#FD)− 1

2#FN

}
.

Under reasonable mesh regularity assumptions #FI is the dominant part of #F as
#T → ∞, and so C → 3 as #T → ∞.

6. Pressure computations. In this section we present a procedure for the
efficient recovery of the pressure p from the decoupled system (3.6).

In the general situation described in section 3, the assembly of (3.6) requires the
computation of a complementary basis {zn̊+1, . . . ,znV} satisfying (3.5). This is again

equivalent to finding a complementary basis {�v cn̊+1, . . . , �v
c
nV} to {�̊v1, . . . , �̊vn̊} such that

span
{
�̊v1, . . . , �̊vn̊, �v

c
n̊+1, . . . , �v

c
nV

}
= V .(6.1)
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In the context of the specific system (2.4) (using lowest-order Raviart–Thomas–
Nédélec elements) this can be done by finding a distinguished subset of faces

Fc ⊂ FI ∪ FD
such that the corresponding subset of Raviart–Thomas–Nédélec basis functions,
{�vF : F ∈ Fc}, constitutes a complementary basis. Note that this set must con-
tain nW := nV − n̊ = #T elements. The following simple Algorithm 6.1 chooses nW
appropriate faces, yielding a complementary basis, in such a way that the system (3.6)
has a particularly simple form. We have already presented this algorithm to find a
subset of faces Fc ⊂ FI ∪ FD for the two-dimensional case in [12], but here we will
give a rigorous proof that the corresponding subset of Raviart–Thomas–Nédélec basis
functions, {�vF : F ∈ Fc}, constitutes a complementary basis to (4.15) (or to (4.8), if
ΓN = ∅) in V.

Algorithm 6.1.
1. Choose T1 ∈ T to be any tetrahedron with a face F1 ∈ FD and set Fc = {F1}.
2. For j = 2, . . . , nW ,

• choose Tj ∈ T \{T� : 
 = 1, . . . , j − 1} with the property that there exists
Fj ∈ FI such that

Fj ⊂ T j ∩
{
j−1⋃
�=1

T �

}
(6.2)

• update Fc = Fc ∪ {Fj}.
End of loop over j.

3. Assemble Z ′B as

(Z ′B)i,j = b(�vFi , wTj ), i, j = 1, . . . , nW .

Theorem 6.2. Algorithm 6.1 is well defined and the matrix Z ′B given in step 3
is lower triangular.

Proof. Since ΓD �= ∅, there exists a T ∈ T with a face F ∈ FD. Let T be T1.
Now, assume we have found j − 1 < nW = #T tetrahedra T� in step 2 that fulfill
property (6.2). Since Ω is connected, there exists a tetrahedron T ∈ T that has a face

in common with
⋃j−1
�=1 T �. Let T be Tj . The existence of a set Fc therefore follows

by an inductive argument.
Second, let i, j = 1, . . . , nW with i < j. By the algorithm Fi ⊂ T i∩{

⋃i−1
�=1 T �} and

therefore Fi �⊂ T j . Since Tj is not in supp�vFi , it follows that (Z ′B)i,j = b(�vFi , wTj ) =
0, and the matrix Z ′B given in step 3 is lower triangular.

To show that Algorithm 6.1 yields a complementary basis, let us first consider
the pure Dirichlet case, ΓN = ∅.

Theorem 6.3. Let ΓN = ∅. The functions

{�vF : F ∈ Fc}(6.3)

form a complementary basis to (4.8) in V.
Before proving this theorem we will first prove two lemmas again.
Lemma 6.4. Let μ := (μE)E∈E ∈ V(G). Then there exist {α̃F ∈ Z : F ∈ F\Fc}

such that

μ :=
∑

F∈F\Fc
α̃Fμ

F .(6.4)



DECOUPLING MIXED PROBLEMS USING DIV-FREE ELEMENTS 1767

Proof. Let F ∈ Fc and let μF be the vector associated with the elementary cycle
μF formed by the edges E of F in the graph G := (N , E). We will first show that
there exist {αFF ′ ∈ Z : F ′ ∈ F\Fc} such that

μF =
∑

F ′∈F\Fc
αFF ′μF

′
.(6.5)

Let j ∈ {1, . . . , nW} be such that F = Fj in Algorithm 6.1 and let F ′, F ′′, and F ′′′

be the other faces of Tj ; then there exist αFF ′ , αFF ′′ , αFF ′′′ ∈ {−1, 1} such that

μF = αFF ′μF
′
+ αFF ′′μF

′′
+ αFF ′′′μF

′′′

as depicted below:

F
F ′

F ′′

F ′′′

If F ′, F ′′, F ′′′ ∈ F\Fc, the proof of (6.5) is complete. Otherwise assume, without
loss of generality, that F ′ ∈ Fc. By construction there has to be a j′ ∈ {j+1, . . . , nW}
such that F ′ = Fj′ . Let F̃ ′, F̃ ′′, and F̃ ′′′ be the other faces of Tj′ . As before, there

exist αF
′

F̃ ′ , α
F ′

F̃ ′′ , α
F ′

F̃ ′′′ ∈ {−1, 1} such that μF
′

= αF
′

F̃ ′μ
F̃ ′

+ αF
′

F̃ ′′μ
F̃ ′′

+ αF
′

F̃ ′′′μ
F̃ ′′′

and
therefore

μF = αFF ′(αF
′

F̃ ′μ
F̃ ′

+ αF
′

F̃ ′′μ
F̃ ′′

+ αF
′

F̃ ′′′μ
F̃ ′′′

) + αFF ′′μF
′′

+ αFF ′′′μF
′′′
.

If F ′′, F ′′′, F̃ ′, F̃ ′′, F̃ ′′′ ∈ F\Fc, the proof of (6.5) is complete. Otherwise, we can
repeat the above procedure for the faces F ′′, F ′′′, F̃ ′, F̃ ′′, and F̃ ′′′, and since the set
{1, . . . , nW} is finite, the procedure will terminate in a finite number of steps. Alto-
gether, we have established that there exist {αFF ′ ∈ Z : F ′ ∈ F\Fc} such that (6.5)
holds.

Now let μ ∈ V(G). Substituting (6.5) into (4.10), we find that there exist
{α̃F ∈ Z : F ∈ F\Fc} such that μ =

∑
F∈F\Fc α̃Fμ

F .

Lemma 6.5. Let μ ∈ V(G) and {α̃F ∈ Z : F ∈ F\Fc} be such that
μ :=

∑
F∈F\Fc α̃Fμ

F. Then

∑
F∈F\Fc

α̃F

∫
F

�vF ′ · �νF dF = 0 for all F ′ ∈ Fc.(6.6)

Proof. Let F ′ ∈ Fc; then �vF ′ ·�νF = 0 for all F ∈ F\Fc, which implies (6.6).
We can now prove Theorem 6.3.
Proof. Since #Fc = nW , we merely need to show that the union of the sets of func-

tions (6.3) and (4.8) is a linearly independent set. Therefore suppose {βE′ : E′ ∈ E\H}
and {γF : F ∈ Fc} are scalars such that

�0 =
∑

E′∈E\H
βE′ �ΨE′ +

∑
F∈Fc

γF�vF .
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Let E ∈ E\H and let μE denote the vector associated with the unique cycle μE

generated by taking edge E into the tree H = (N ,H), which has the property that
μEE′ := δE,E′ for all E′ ∈ E\H (cf. Theorem A.6 and the proof to Theorem 4.2). Now,
using Lemma 6.4 we can find {α̃F ∈ Z : F ∈ F\Fc} such that μ :=

∑
F∈F\Fc α̃Fμ

F ,
and so by Lemmas 4.4 and 6.5

0 =
∑

F∈F\Fc
α̃F

∫
F

( ∑
E∈E\H

βE �ΨE +
∑
F ′∈Fc

γF ′ �vF ′

)
· �νF dF

=
∑

E′∈E\H
βE′

∑
F∈F\Fc

α̃F

∫
F

�ΨE · �νF dF +
∑
F ′∈Fc

γF ′
∑

F∈F\Fc
α̃F

∫
F

�vF ′ · �νF dF

=
∑

E′∈E\H
βE′μEE′ = βE .

Since the functions {�vF : F ∈ Fc} form a subset of the Raviart–Thomas–Nédélec
basis functions, they have to be linearly independent. Therefore we also have γF = 0,
for all F ∈ Fc, which establishes the linear independence of the functions in (6.3) and
(4.8).

Corollary 6.6. Let nC �= 0 and let Γ�N be simply connected for each

 = 1, . . . , nC. The functions

{�vF : F ∈ Fc}(6.7)

form a complementary basis to (4.15) in V.
Proof. Since #Fc = nW , the result follows directly from Corollary 4.5 and The-

orem 6.3.
Using this complementary basis (6.7) and applying the general theory presented

in section 3, we can therefore find the unique solution p from (3.6) by simple back
substitutions.

The matrix Z ′B is obtained from the original matrix B in (2.4) by deleting
some rows and reordering the rows and columns. Equivalently, the right-hand side
Z ′(g −Mu) of (3.6) is obtained from g −Mu by deleting some rows and reordering
the rows.

7. Numerical results. In this section we want to demonstrate the performance
of the proposed method in two very simple test cases. Let Ω be the unit cube (0, 1)3.
We will consider only the constant coefficient case K ≡ 1, of system (1.1), (1.2), with
zero right-hand side �g = �0. The two experiments are induced by different choices of
boundary conditions. In Figure 2 we illustrate the Neumann boundary ΓN in each
case.

In the first experiment (Figure 2 (left)) we choose

pD(x, y, z) = 1− x on ΓD = {0, 1}×(0, 1)×(0, 1) ∪ [0, 1]×(0, 1)×{1},
�u · �ν = 0 on ΓN = Γ\ΓD,

where �ν(�x) denotes the outward unit normal from Ω at �x ∈ Γ as before.
In the second experiment (Figure 2 (right)) we choose

pD(x, y, z) = 1− x on ΓD = (0, 1)× (0, 1)× {1},
�u · �ν = 0 on ΓN = Γ\ΓD.
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Fig. 2. The “no-flux” boundary ΓN for Experiments 1 and 2, respectively.

We discretize these problems using the mixed finite element discretization (2.3)
with lowest-order Raviart–Thomas–Nédélec elements on a sequence of uniform and
nonuniform meshes of different refinement levels L. The uniform mesh is constructed
from a uniform rectangular mesh of L ∗L ∗L cubes which are each subdivided them-
selves into six tetrahedra. The nonuniform mesh is constructed from a nonuniform
hexahedral mesh of L ∗ L ∗ L hexahedra which are each subdivided themselves into
24 tetrahedra.

To solve the resulting saddle-point system (2.4) we use the decoupled iterative
method described above: The construction of the matrix Å in the decoupled velocity
system (3.3) is carried out in an elementwise fashion as presented in (5.3); the re-
sulting symmetric positive definite system (3.3) is solved with ILU(0)-preconditioned
conjugate gradients (PCG); the matrix Z ′B in the decoupled pressure system (3.6)
is obtained from the original matrix B in (2.4) by deleting some rows and reordering
the rows and columns (as mentioned at the end of section 6); the resulting triangular
system (3.6) is solved by simple back substitutions. The convergence criterion in the
PCG method is the relative reduction of the residual by a factor of 10−5.

Tables 1 and 2 show the performance of our method for Experiments 1 and 2,
respectively. First of all we observe in both cases the reduction in size from the full
mixed system (2.4) to the decoupled velocity system (3.3). (Compare rows 3 and 4
in Tables 1 and 2.) It is approximately 3 as claimed in Remark 5.3.

Second, let us look at the number of floating point operations (Flops) needed
in the decoupling process (row 7). This process is asymptotically optimal
(# Flops = O(# Freedoms)), since the matrix Å and the right-hand side in (3.3) are
constructed in an elementwise fashion and since the matrix Z ′B and the right-hand
side in (3.6) are obtained from the original system (2.4) by simple reordering. While
this decoupling process is still the dominant part in the total Flop count (row 9) on
very small problems (e.g., column 2), its effect gets less important and will eventually
vanish for larger problems (e.g., columns 5 and 8).

The core part of the calculation is the solution of the decoupled velocity system
(3.3). In the uniform mesh case (columns 2–5) the condition number of Å (row 5)
grows as expected with O(̊n2/3), where n̊ is the dimension of Å (row 4). The growth in
the nonuniform mesh case (columns 6–8) is (naturally) slightly worse. This growth of
the condition number is reflected in the iteration and Flop count for the PCG method
to solve (3.3). The number of iterations (row 6) grows with the square root of the
condition number of Å; in the uniform mesh case (columns 2–5) this is a factor of
about 2 from one refinement level to the next.

Remark 7.1. Although the effect of the ILU(0) preconditioner deteriorates as
the grid size decreases, it is extremely cheap to invert and remains a cost effective
way of preconditioning this system. Diagonal scaling, for example, leads to a similar
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Table 1
Performance of the decoupled iterative method for Experiment 1.

Uniform mesh Nonuniform mesh

Refinement level L 2 4 8 16 2 4 8
Freedoms (full mixed) 144 1152 9216 73728 576 4608 36864
Freedoms (decoupled) 48 384 3072 24576 192 1536 12288

Condition # (decoupled) 150 610 2370 9230 1240 10670 89700
PCG-iterations 14 26 45 97 33 90 232

MFlops (decoupling) 0.032 0.34 3.0 25 0.17 1.5 13
MFlops (PCG) 0.031 0.53 8.0 142 0.35 8.0 171
MFlops (total) 0.065 0.89 11.2 169 0.53 9.6 185

Table 2
Performance of the decoupled iterative method for Experiment 2.

Uniform mesh Nonuniform mesh

Refinement level L 2 4 8 16 2 4 8
Freedoms (full mixed) 128 1088 8960 72704 544 4480 36352
Freedoms (decoupled) 32 320 2816 23552 160 1408 11776

Condition # (decoupled) 87 450 2080 8740 360 2780 21300
PCG-iterations 9 18 35 75 24 80 187

MFlops (decoupling) 0.024 0.29 2.8 25 0.15 1.4 12
MFlops (PCG) 0.012 0.31 5.8 106 0.20 6.5 132
MFlops (total) 0.037 0.61 8.7 132 0.36 8.0 145

asymptotic behavior but is more expensive in terms of iterations as well as Flops. For
Experiment 1 the number of iterations using diagonal scaling as the preconditioner in
the PCG method in the uniform mesh case is 38, 109, 245, and 494 for L = 2, 4, 8, and
16, respectively. The number of MFlops is 0.086, 1.73, 29.7, and 47. Future work will
involve a more detailed investigation of various preconditioners like algebraic multigrid
(AMG).

Finally, let us look at the solution of the decoupled pressure system (3.6). Since
the matrix Z ′B in (3.6) is triangular (as shown in Theorem 6.2) it can be solved in an
asymptotically optimal number of operations by simple back substitutions. Therefore
this part of the calculation does not affect the overall cost of the method significantly.
The number of Flops is included in the total Flop count (row 9) reported in Tables
1 and 2, and it accounts for less than 1% of the total cost of the method for larger
problems (e.g., columns 5 and 8).

In Tables 3 and 4 we compare the performance of our method with the perfor-
mance of a preconditioned MINRES method for the original (full mixed) saddle-point
system (2.4) for Experiments 1 and 2, respectively. The convergence criterion for
MINRES is again the relative reduction of the residual by a factor of 10−5. To pre-
condition this MINRES method we take an optimal symmetric positive definite block
diagonal preconditioner presented and analyzed in Rusten and Winther [26] (using an
ILU(0) factorization of BTB for the pressure block).

Remark 7.2. As for the decoupled system it would be possible to employ other,
more efficient preconditioners like AMG for the pressure block. However, in order to
evaluate the performance of the decoupling procedure, our prime incentive, we wanted
to compare “similar” iterative methods for the full mixed and the decoupled system.

Comparing columns 6 and 7 in Table 3 we observe that for the first experiment
our decoupled method is about 4.5 times faster than preconditioned MINRES on
the uniform meshes (rows 3–6), and about 6 times faster on the nonuniform meshes



DECOUPLING MIXED PROBLEMS USING DIV-FREE ELEMENTS 1771

Table 3
Comparison of the decoupled iterative method with a full mixed method [26] for Experiment 1.

Freedoms Iterations MFlops

Mesh L Mixed Decoupled Mixed Decoupled Mixed Decoupled

Uniform 2 144 48 37 14 0.29 0.065
4 1152 384 56 26 3.8 0.89
8 9216 3072 89 45 49 11

16 73728 24576 175 97 790 169

Nonuniform 2 576 192 100 33 3.4 0.53
4 4608 1536 204 90 57 9.6
8 36864 12288 456 232 1030 185

Table 4
Comparison of the decoupled iterative method with a full mixed method [26] for Experiment 2.

# Freedoms Iterations MFlops

Mesh L Mixed Decoupled Mixed Decoupled Mixed Decoupled

Uniform 2 128 32 37 9 0.25 0.038
4 1088 320 57 18 3.6 0.62
8 8960 2816 109 35 59 8.7

16 72704 23552 217 75 960 132

Nonuniform 2 544 160 110 24 3.5 0.35
4 4480 1408 254 80 68 8.0
8 36352 11776 582 187 1300 145

(rows 7–9). The advantage of our method over preconditioned MINRES is even more
impressive for the second experiment (columns 6 and 7 in Table 4). On the uniform
meshes (rows 3–6) it is about 7 times faster, on the nonuniform meshes (rows 7–9)
about 9 times faster.

In conclusion we have found a very competitive and practicable iterative method
to solve saddle-point problems of the form (2.4). The decoupling procedure and the
recovery of the pressure are asymptotically optimal. The decoupled velocity system,
on the other hand, is symmetric positive definite and of second order, and there
may still be room for improvement in solving this system by employing the more
sophisticated preconditioning techniques which are available for such problems.

Appendix A. Some results from graph theory.

Definition A.1 (Berge [5]).

(a) A graph (or more precisely a 1-graph) G is defined to be a pair (X ,U), where
X is a set {x1, x2, . . . , xn} of elements called vertices (or nodes), and U is
a subset {u1, u2, . . . , um} of X × X of elements called arcs (or orientated
edges). For an arc u = (x, y) ∈ X × X , the vertex x is called its initial
endpoint, and the vertex y is called its terminal endpoint. A vertex y ∈ X is
called a neighbor of x ∈ X if either (x, y) ∈ U or (y, x) ∈ U . The set of all
neighbors of a vertex x in the graph G will be denoted by ΓG(x).

(b) A partial graph of a graph G = (X ,U) is a graph H = (X ,V) with V ⊂ U .
(c) A chain is a sequence μ = (ui1 , ui2 , . . . , uiq ) of arcs of a graph G such that

each arc in the sequence has one endpoint in common with its predecessor
and its other endpoint in common with its successor. A chain that does not
encounter the same vertex twice is called elementary. A chain that does not
use the same arc twice is called simple.
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(d) For two vertices x and y of a graph G let us define the equivalence relation
x ≡ y by

[x = y, or x �= y and there exists a chain in G connecting x and y].

The equivalence classes of ≡ are called the connected components of G. A
connected graph is a graph that consists only of one connected component.

(e) A cycle is a simple chain whose terminal endpoint coincides with its initial
endpoint. Let m be the number of arcs in G. With each cycle μ of G we can
associate a vector μ ∈ Z

m with

μi =

⎧⎨
⎩

0 if ui is not in μ,
1 if ui is in μ and shares initial endpoint with its predecessor ,
−1 if ui is in μ and shares terminal endpoint with its predecessor .

The set of all those vectors μ ∈ Z
m generates a vector space over Z. We

denote this vector space by V(G).
(f) A forest is defined to be a graph without cycles. A tree is defined to be a

connected graph without cycles.
Theorem A.2. Let G be a graph with n vertices, m arcs, and p connected

components. The dimension of V(G) is m− n+ p.
Proof. The proof is seen in Berge [5, p. 16].
Theorem A.3. Let H = (X ,U) be a graph with n > 2 vertices. The following

properties are equivalent and each characterizes a tree:
(i) H is connected and has no cycles.
(ii) H has n− 1 arcs and has no cycles.
(iii) H is connected and contains n− 1 arcs.
(iv) H has no cycles and adding an arc creates a unique cycle.
(v) H is connected and removing an arc leaves the remaining graph disconnected.
(vi) Every pair of vertices x, y of H is connected by a unique chain.
Proof. The proof is seen in Berge [5, p. 24].
Theorem A.4. Let G = (X ,U) be a connected graph. There exists a partial

graph H = (X ,V) such that H is a tree.
Proof. The proof is seen in Berge [5, p. 25].
The tree H obtained from G as above is called a spanning tree. An opti-

mal algorithm to find a spanning tree H of a connected graph G is presented in
Algorithm A.7.

Theorem A.5. Let G be a graph with n vertices and m ≥ n arcs. The time
spent on Algorithm A.7 is proportional to the number of arcs, i.e., O(m).

Proof. The proof is seen in Aho, Hopcroft, and Ullman [1].
Theorem A.6. Let G = (X ,U) be a connected graph with n vertices and m arcs,

let H = (X ,V) be a spanning tree of G, and let ui ∈ U be an arc of G not in tree H,
i.e., ui �∈ V. Adding ui to H creates a unique cycle μi, and its associated vector μi

satisfies μii = 1. The set {μi : ui ∈ U\V} forms a basis of V(G).
Proof. The existence of μi for all ui ∈ U\V is guaranteed by virtue of

Theorem A.3(iv). The vectors are linearly independent, since μji = δi,j , for all
ui, uj ∈ U\V. Moreover,

dim{μi : ui ∈ U\V} = #U −#V = m− (n− 1) = dimV(G),

where in the last step we used Theorem A.2 with p = 1.
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Algorithm A.7.

variables
n – number of vertices;
mark[ 1:n] – array of flags;

begin
V = ∅;
for i := 1 to n do mark[xi] := unvisited;
recursive(x1);

end;

procedure recursive( x – vertex );
variables

y – vertex;
begin

mark[x] := visited;
for each vertex y ∈ ΓG(x) do

if mark[y] = unvisited then
V = V ∪ {u} – where u ∈ U with endpoints x and y;
recursive(y);

end;

Appendix B. A topological result on simplicial triangulations.
Definition B.1 (the fundamental group (Armstrong [3, Ch. 5])).
(a) A topological space is a set S together with a collection U of subsets of S

satisfying the following conditions:
(1) ∅ ∈ U , S ∈ U .
(2) If U1, . . . , Un ∈ U , then

⋂n
i=1 Ui ∈ U .

(3) If Ũ ⊂ U , then
⋃
U∈Ũ U ∈ U .

The elements of U are called open sets in S. U is called a topology on S.
(b) Let X be a topological space. A path in X from x0 to x1 (with origin x0

and end x1) is a continuous map α : [0, 1] → X such that α(0) = x0 and
α(1) = x1. Let α be a path in X from x0 to x1 and let β be a path in X from
x1 to x2. The product of α and β is the path αβ from x0 to x2 defined by

αβ(t) =

{
α(2t) for t ∈ [0, 1/2],
β(2t− 1) for t ∈ [1/2, 1].

The inverse of α is the path α−1 from x1 to x0 defined by α−1(t) = α(1− t).
(c) Two paths α and β from x0 to x1 are homotopic (written α � β) if there

exists a continuous map F : [0, 1]× [0, 1]→ X such that

F (0, t) = x0 and F (1, t) = x1 for all t ∈ [0, 1],
F (s, 0) = α(s) and F (s, 1) = β(s) for all s ∈ [0, 1].

(d) Let X be a topological space and let x0 ∈ X. The set of � equivalence classes
of paths with origin x0 and end x0 forms a group under the operations of
multiplication and inverse as defined above. This group is denoted π1(X,x0)
and is called the fundamental group of the pair (X,x0). X is called simply
connected if its fundamental group is trivial.
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Definition B.2 (the first homology group (Armstrong [3, Ch. 8])).
(a) Let V be a vector space over R and let {v0, v1, . . . , vk} ⊂ V such that the

set {v1 − v0, . . . , vk − v0} is linearly independent. The smallest convex set
containing {v0, v1, . . . , vk}, i.e., the convex hull

{
v :=

k∑
i=0

λivi : λi ≥ 0 and

k∑
i=0

λi = 1

}
,

is called a simplex of dimension k (or a k-simplex). The points v0, v1, . . . , vk
are called the vertices (or nodes) of the simplex. The simplices formed by the
subsets of {v0, v1, . . . , vk} are called the faces of the simplex.

(b) A simplicial complex K is a finite set of simplices in V such that
(1) if A ∈ K, then the faces of A are also in K;
(2) if A,B ∈ K and A ∩B �= ∅, then A ∩B ∈ K.

The dimension of K is the maximum dimension of the simplices of K. The
point set union of all simplices in K is denoted by |K|.

(c) Let K be a simplicial complex. An orientated edge in K is an ordered pair
(u, v) such that u and v lie in some simplex of K. An orientated triangle in K
is an ordered triple (u, v, w) such that u, v, w lie in some simplex of K. Note
that (u, v, w) = (v, w, u) = (w, u, v). A change of orientation is denoted by a
minus sign, thus (v, u) = −(u, v) and (v, u, w) = −(u, v, w). The boundary
of the orientated edge (u, v) is defined to be

∂(u, v) = v − u.
The boundary of the orientated triangle (u, v, w) is

∂(u, v, w) = (v, w) + (w, u) + (u, v).

Let n be the number of all edges in K. A linear combination of orientated
edges

n∑
i=1

λi(ui, vi) with the property that

n∑
i=1

λi∂(ui, vi) = 0

and λi ∈ Z for all i = 1, . . . , n is called a (one-dimensional) cycle of K. A
cycle β is called a bounding cycle if we can find a linear combination

k∑
j=1

αj(uj , vj , wj)

of orientated triangles in K such that

β =

k∑
j=1

αj∂(uj , vj , wj).

(d) The set of all cycles of K forms an abelian group under the addition

n∑
i=1

λi(ui, vi) +

n∑
i=1

μi(ui, vi) =

n∑
i=1

(λi + μi)(ui, vi).
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We denote this group by Z1(K). The bounding cycles form a subgroup B1(K)
of Z1(K). The quotient group

H1(K) = Z1(K)\B1(K)

is called the first homology group of K.
We will need only the following fundamental theorem which is a corollary to the

simplicial approximation theorem (Armstrong [3, p. 128]).
Theorem B.3. Let K be a simplicial complex and let v be a vertex of K. If |K|

is connected, abelianizing π1(|K|, v) gives the first homology group H1(K).
Proof. The proof is seen in Armstrong [3, p. 182].
Corollary B.4. If |K| is simply connected, then each cycle of K is a bounding

cycle.
Proof. From Definition B.1(d) we know that if |K| is simply connected, then

π1(|K|, v) is trivial for any vertex v of K. As a consequence of Theorem B.3 this also
implies that H1(K) is trivial (since abelianizing the trivial group has to result in the
trivial group again). Therefore B1(K) = Z1(K).
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Abstract. The steady state solution of the Euler equations of inviscid flow is computed by
an adaptive method. The grid is structured and is refined and coarsened in predefined blocks.
The equations are discretized by a finite volume method. Error equations, satisfied by the solution
errors, are derived with the discretization error as the driving right-hand side. An algorithm based
on the error equations is developed for errors propagated along streamlines. Numerical examples
from two-dimensional compressible and incompressible flow illustrate the method.

Key words. finite volume method, discretization error, error control, error equation, Euler
equations
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1. Introduction. Inadequate grid resolution is the most important contributor
to inaccuracy in computational fluid dynamics (CFD) calculations [31]. This is a
serious obstacle in the industrial use of CFD methods. Grid refinement studies reveal
the sensitivity of the solution to the grid spacing. Such studies are expensive and time-
consuming to make for an applications engineer, and usually only one grid is generated
based on his or her experience. There is a need for solution-adaptive methods.

The errors in the numerical solution of the partial differential equations (PDEs)
governing inviscid flow can be controlled by an adaptive method. By changing the grid
spacing so that the solution errors fulfill given tolerances, the quality of the solution is
guaranteed. Furthermore, computational work and memory is saved since the grid is
not made unnecessarily fine. Two important ingredients in an adaptive algorithm are
a way of estimating the solution error and a data structure for the grid that allows for
modifications of the original grid. We combine computing the solution errors from the
error equations with estimated discretization errors as source terms with refinement
and coarsening in predetermined blocks of the grid.

The equations are discretized by finite volume methods in this paper. They are
of second order on Cartesian grids. The refinement and the coarsening of the grid is
determined by estimates of the solution error. Grid adaptation is necessary not only
at discontinuities in the solution but also in the smooth parts. Differential equations
are derived which are satisfied approximately by the errors. The right-hand side
of the error equations is the discretization error in the finite volume method. This
error is estimated by comparing the space discretization on two different grids. Then
the error equations are solved numerically for the error in the solution. For certain
variables, these equations are particularly simple and the error is propagated along
the streamlines of the flow. An algorithm is devised for such errors. It is relatively
easily implemented in existing codes and takes the sign of the error into account
when the grid is adjusted so that a tolerance on the maximum error is fulfilled. The
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discretization error generated at a point may propagate and influence the solution
error far downstream. The large error in the solution in a cell is not necessarily
caused by too coarse a grid there.

In [3], [4], [5], [30], [33], [40] the discretization or truncation error is estimated by
comparing the discretization on different grids as in Richardson extrapolation. The
adaptivity is based on the discretization error, but there is no direct control of the
error in the solution. The error equations are solved in one-dimensional (1D) exam-
ples in [43] and the solution is computed on adapted grids based on error estimates.
Three different ways of assessing the solution error are compared in [25]. The error
is computed by comparing the solutions on different grids, by comparing the solution
with a higher-order reconstruction, and by solving the error equations. Three other
techniques are compared in [34]. The estimation of a local discretization error is the
standard procedure in the time step regulation of the numerical solution of ordinary
differential equations (ODEs) [23], [39].

Bounds on the errors in finite element methods are computed a posteriori using
the solution to the adjoint problem in [17]. Then another linear system of differential
equations has to be solved for the adjoint solution. The adjoint equation is solved
for 1D problems in [41] and is used in an adaptive procedure to control the error
in a finite volume discretization of the Euler equations. While a full control of the
solution errors is offered by the adjoint solution, it is an expensive method in terms of
computing time and storage, e.g., for time-dependent problems in three dimensions,
and may not always be worth the effort. The idea in the numerical solution of ODEs
controlling only the discretization error is probably a satisfactory procedure also for
many PDEs. A general discussion of numerical errors and their estimation in CFD is
found in [38].

Another possibility is to base the refinement on sensors such as pressure gradients
or vorticity; see, e.g., [9], [12], [13], [35]. This approach yields good results in practice,
but it is difficult to relate the sensor values to quantitative information on the solution
errors. Wavelets are used in [21] to detect sharp features in the solution.

The computational domain is partitioned into a fixed number of blocks. The grid
in each block is structured and all cells in a block are refined or coarsened following
the error estimate. The data structure is simple since the neighbors of a block are the
same in the original grid and all the adapted grids. Inside a block the organization
of the data is also simple since the size of all cells in a block are changed when the
grid there is refined or coarsened as in [18] and [29]. There will be jumps in the grid
size only at the block boundaries, and interpolation is needed for the cell variables
at the boundary. The interpolation of the variables at block boundaries is such that
second-order accuracy is preserved in the cells adjacent to the boundary. Although
we use structured grids the principles are applicable also to unstructured grids and
hybrid grids with a mixture of blocks with structured and unstructured grids. Block
partitioning is also suitable for parallelization of a code. Each processor solves the
equations in a subset of the blocks with communication limited to the boundaries of
blocks with a neighbor in another subset.

The flow equations are solved on structured grids with patches of refinement in [3],
[4], [5], [12], [33], [40]. The refined parts follow the grid lines but can be positioned
arbitrarily in the domain. The data structure is more complicated than ours but
has greater flexibility since the patches can surround the points where refinement
is needed with fewer extra cells. Parallel implementations are found in [14], [42].
Other equations related to the flow equations are solved with similar techniques and
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adaptivity in [10], [24], [36]. Individual cells are split for refinement in [13], [35]. The
parental and adjacent cells are kept track of by a tree data structure. The idea here
is the same for both structured and unstructured grids (cf. [9] and [35]). The price
to be paid for the possibility of introducing cells precisely where they are needed is
the administration of the advanced data structure and the indirect addressing of the
data. For structured grids it is also complicated to obtain second-order accuracy in
the discretization. Instead of introducing more cells, the grid points in one dimension
are moved in [6] and [27] and the grid lines are moved in two dimensions in [28] to
adapt the original grid. The advantage is that the available cells are clustered in
areas where high resolution is required and fewer cells are used in smooth areas. A
disadvantage is the distortion of the grid which may be severe in three dimensions
around complicated geometries. Moreover, instabilities with moving grid algorithms
are discussed in [27] and there is no guarantee that spurious solutions do not appear
[6].

In the next section, the errors in finite volume methods are investigated and the
estimate of the discretization error is justified. The error equations for compressible
and incompressible inviscid flow problems are derived in section 3 from the results
in section 2. The equations are particularly simple for the total pressure in incom-
pressible flow and the entropy and the enthalpy in compressible flow. The adaptation
algorithm is found in section 4. Finally, numerical solutions of the incompressible
flow around a half-cylinder and compressible flow around an airfoil at transonic and
subsonic speeds are computed with the algorithm.

2. Numerical errors in finite volume methods. The PDE

∂u

∂t
+∇ · F(u) = 0, L(u) = 0 on ∂Ω, u = u0 at t = 0,(1)

with the flux vector F is discretized on Ω × [0, tend] by the finite volume method
(FVM) in space and a linear multistep method or a Runge–Kutta method in time.
The domain Ω with boundary ∂Ω is covered by m cells ωj with a normal n̂, boundary
∂ω, and volume or area Aj . This section is devoted to the analysis of the solution
errors in the discrete approximation of (1). The adaptive algorithm is developed only
for steady state problems in this paper, but we include a short discussion of temporal
errors in this section and the next for completeness. Adaptive methods in space and
time are developed in a separate paper [29].

2.1. Space discretization. Integrate (1) over ωj and use Gauss’s theorem to
obtain ∫

ωj

utdω +

∫
∂ωj

F(u) · n̂ds = 0.

In what follows, a coordinate as a subscript of a variable denotes differentiation with
respect to that coordinate. Let ūj be the average of u in cell j and let G be defined
by

Gj(u) = ūjt +A−1
j

∫
∂ωj

F(u) · n̂ds = ūjt + Fj(u).(2)

The solution u of (1) satisfies

G(u) = 0.(3)
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At time tn, ūj is approximated by the numerical solution v̄nj . By reconstruction
from v̄nj (see, e.g., [1], [7]), vnj is created in Ω such that vnj ∈ Cq(Ω), q ≥ 0, and

v̄nj = A−1
j

∫
ωj

vndω.

Let Ψi
j(v) be the discrete flux in cell j on edge i, l be the number of edges, and n̂i be

the normal on edge i. Then the discretization of the integral in (2) is

Φj(v̄) = A−1
j

l∑
i=1

Ψi
j(v) · n̂i.(4)

The discretization of the boundary condition on ∂Ω in (1) is

Λi(v̄) = 0, i = 1 : mb,(5)

atmb boundary cells. Since the numerical scheme may need more boundary conditions
than the analytical solution, Λ(u) is usually not a direct approximation of L(u).

2.2. Time discretization. Let us choose a linear multistep method, defined by
its coefficients αi, βi, i = 0 : k (see [23]), for the approximation of (2) in time. Let Δt
be the time step from tn−1 to tn and introduce

Γ�(v̄
n) = Δt−1

k∑
i=0

αiv̄
n−i
� +

k∑
i=0

βiΦ�(v̄
n−i).(6)

Then v̄n satisfies

Γ(v̄n) = 0.(7)

An explicit Runge–Kutta method with s stages is defined by the coefficients aij , i =
2 : s, j = 1 : i− 1, and bi, i = 1 : s (see [23]). In this case we have

k1 = Φ�(v̄
n−1),

ki = Φ�(v̄
n−1 + Δt

∑i−1
j=1 aijkj), i = 2 : s,

Γ�(v̄
n) = Δt−1(v̄n� − v̄n−1

� ) +
∑s
i=1 biki.

(8)

Also here v̄n satisfies (7).

2.3. The error equation. As a measure of how well Γj approximates Gj in Ω
take

τj(w) = Gj(w)− Γj(w̄)(9)

for w ∈ Cq. If u is the solution of (3), then the truncation error of Γj is

Γj(ū) = −τj(u).(10)

In finite element analysis (see [17]), the finite element method solution v is inserted
into the differential equation G to compute the residual r(v) = G(v) used in the
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error control. Here, we have the reconstruction v from the average solution satisfying
τ(v) = G(v) since Γ(v̄) = 0 in (9). The numerical error δvn in vn satisfying (7) is

δvn = vn − u(tn),

where u(tn) solves (3) at tn. We have from (9) and (3)

Gj(u(tn) + δvn)−Gj(u(tn)) = τj(v
n), j = 1 : m.(11)

The coefficients of the linearized error equation and the right-hand side are evaluated
at the numerical solution.

Since the numerical solution often needs more boundary conditions than the an-
alytical solution, L is extended to L̃ on ∂Ω so that

χi(w) = L̃i(w)− Λi(w̄).(12)

Here, χ measures the discretization error in the boundary conditions. Consequently,

L̃i(u(tn) + δvn) = χi(v
n),(13)

which is the boundary condition of δvn on ∂Ω. The initial condition is assumed to be
exact.

We have derived an error equation for δvn with accompanying boundary condi-
tion. The average error in a cell is

δv̄nj = A−1
j

∫
ωj

δvndω = v̄nj − ūj(tn).

The numerical approximation fulfills a modification of the original equation. If G is
linear, then from (11)

Gjδv
n = τj(v

n).(14)

There are two components of τj in (9). Subtract Γj in (6) or (8) from Gj in (2)
and split the difference into two parts: one due to the temporal discretization (τ tj )
and one due to the spatial discretization (τ sj ). The result is

Gj(w)− Γj(w̄) = τ tj (w) + τ sj (w),

where we are interested only in the spatial error in this paper.
Suppose that we wish to compute the error in a linear functional Ξ(u). Introduce

an inner product (·, ·) and a corresponding norm ‖ · ‖. Then by Riesz’ representation
theorem there is a unique ξ such that the error is

δΞ = Ξ(u+ δv)− Ξ(u) = (ξ, δv).

If we solve the error equation (14), then (at least formally)

δΞ = (ξ,G−1τ).

In a posteriori error analysis [17], [41], the adjoint equation

G∗ϕ = ξ(15)
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is solved for ϕ. Then the discretization is chosen so that the errors satisfy |(ϕ, τ)| ≤ ε.
Since

δΞ = (ξ,G−1τ) = (G∗ϕ,G−1τ) = (ϕ, τ),

the estimate of δΞ is the same with the error equation (14) and the adjoint equation
(15). The advantage with the adjoint equation is that weights are determined for the
influence of different parts of τ on δΞ. A disadvantage is that the solution of (15) is
required. Another problem is if δΞ = ‖δv‖2. Then ξ = δv, which is unknown in (15).
The error equation is also a system of PDEs to solve, but our algorithm in section 4
only computes errors in variables that are particularly easy to calculate.

2.4. FVM error estimate. Assume that Ω is covered by triangles or quadran-
gles in two dimensions and by tetrahedrons or hexahedrons in three dimensions. Then
the discretization error in space can be estimated asymptotically by comparing the
residual Φj on different grids, as follows.

Proposition 2.1. Let cell ω0 consist of the cells ωj , j = 1 : p, and let h be a
measure of the cell size so that size(ω0) = h and size(ωj) = h/r, j = 1 : p. Assume
that u ∈ C1(Ω) and that the space discretization in cell j satisfies

Φj(ū) = Fj(u)− τ(uωj ),(16)

where uωj is determined at a point in ωj. Furthermore, assume that the discretization
error satisfies

τ(u) = hνc(u) + hν+1d(u),(17)

where c is a linear operator

c(a1u1 + a2u2) = a1c(u1) + a2c(u2),(18)

and that γj = Aj/A0, j = 1 : p. Then in ωj , j = 0 : p,

τ(uωj ) =
bj

rν−1

⎛
⎝ p∑
j=1

γjΦj(ūj)− Φ0

⎛
⎝ p∑
j=1

γj ūj

⎞
⎠
⎞
⎠+O(hν+1),

b0 = rν , bj = 1, j > 1.

Proof. For u in ω0 we have

Φ0(ū0) = Φ0

⎛
⎝ p∑
j=1

γj ūj

⎞
⎠ = F0(u)− τ(uω0

).(19)

Since u ∈ C1(Ω) and by (17) and (18)

τ(uω0) = hνc(uω0) + hν+1d(uω0) = hν
p∑
j=1

γjc(uωj ) +O(hν+1).(20)

A summation over ω0 gives

p∑
j=1

γjΦj(ū) =

p∑
j=1

γjFj(u)−
p∑
j=1

γjτ(uωj )

= F0(u)− (h/r)ν
p∑
j=1

γjc(uωj ) +O(hν+1).

(21)



ADAPTIVE ERROR CONTROL 1783

We infer from (19), (20), and (21) that

hν
p∑
j=1

γjc(uωj ) =
rν

rν − 1

⎛
⎝ p∑
j=1

γjΦj(ūj)− Φ0

⎛
⎝ p∑
j=1

γj ūj

⎞
⎠
⎞
⎠ .

By this expression the proposition follows.

The discretization error in space can be estimated by comparing the expression
for the space derivatives on a fine and a coarse grid using the fine grid solution as in
Proposition 2.1. The result is similar to what is usually referred to as a Richardson
estimate [4], [33], [38]. In [43] the error equations are solved in 1D examples with
a driving right-hand side approximating the discretization error for the particular
spatial operator. Our evaluation of τ in the proposition is more general and estimates
explicitly what happens when the grid size is changed.

3. Errors in the equations of inviscid flow. The equations satisfied by the
reconstruction of the numerical solution in (11) are derived for compressible and
incompressible flow. The error in the solution can then be estimated by numerical
solution of these equations. An estimate of the effect of the discretization error, which
can be controlled by changing the space discretization, is obtained on the solution
error, which is desirable to keep within given bounds. We write the equations in the
form (1) instead of the integrated form (2), since if the solution is smooth and satisfies
(2), then it also satisfies (1). If the analytical and the numerical solutions are smooth,
then the solution error satisfies PDEs similar to linearized versions of the original
PDE.

Under certain assumptions, approximate error equations have constant coeffi-
cients and can be solved analytically. It follows from these equations that the solution
error caused by a discretization error behaves differently depending on the component
of the solution, the flow speed, and the dimension.

3.1. Error equations. The analytical solution of a variable u is denoted by û
and the numerical error by δu. The reconstructed numerical solution is u = û + δu.
Let ρ be the density, U = (u, v, w)T the velocity vector, p the pressure, E the total
energy, and H the total enthalpy. Then the error equations for compressible flow on
conservation form are [2]

ρt + (ρu)x + (ρv)y + (ρw)z = τ1,(22a)

(ρu)t + (ρu2)x + (ρuv)y + (ρuw)z + px = τ2,(22b)

(ρv)t + (ρuv)x + (ρv2)y + (ρvw)z + py = τ3,(22c)

(ρw)t + (ρuw)x + (ρvw)y + (ρw2)z + pz = τ4,(22d)

(ρE)t + (ρuH)x + (ρvH)y + (ρwH)z = τ5.(22e)

These equations conserve mass, momentum, and energy. The system is closed by the
internal energy e, the gas constant γ, and the relations

e =
p

(γ − 1)ρ
, q2 = u2 + v2 + w2, E = e+

1

2
q2, H = E +

p

ρ
.
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The equations in (22) can be written in nonconservation form using the substantial
derivative D/Dt [2]:

Dρ

Dt
+ ρ∇ ·U = τ̃1,(23a)

ρ
Du

Dt
+ px = τ̃2,(23b)

ρ
Dv

Dt
+ py = τ̃3,(23c)

ρ
Dw

Dt
+ pz = τ̃4,(23d)

ρ
De

Dt
+ p∇ ·U = τ̃5.(23e)

The relations between τ in (22) and τ̃ in (23) are

τ̃1 = τ1,(24a)

τ̃2 = τ2 − uτ1,(24b)

τ̃3 = τ3 − vτ1,(24c)

τ̃4 = τ4 − wτ1,(24d)

τ̃5 = τ1(q
2 − E)− (uτ2 + vτ3 + wτ4) + τ5.(24e)

The entropy S of the flow is defined by

S = cv log(p/ργ).(25)

Here cv is the specific heat at constant volume. By [2] and (23) we derive the differ-
ential equation for the computed entropy S:

DS

Dt
= cv(γ − 1)

(
τ̃5
p
− τ1

ρ

)
= τS .(26)

In the numerical experiments in section 5, cv = 1 and γ = 1.4.
Another simple equation is fulfilled by the enthalpy H. From (22e) and the

definition of H we arrive at (see also [2])

ρ
DH

Dt
− ∂p

∂t
= τ5 −Hτ1.(27)

In incompressible flow, we let ρ = 1 and ignore the last equation in (23) to obtain
the nonconservation form with τ̃ from (24):

∇ ·U = τ̃1,(28a)

Du

Dt
+ px = τ̃2,(28b)

Dv

Dt
+ py = τ̃3,(28c)

Dw

Dt
+ pz = τ̃4.(28d)

The total pressure P for an incompressible fluid is defined by

P = p+ 0.5q2.(29)
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Multiply the momentum equations in (28) by the velocity vector and use the definition
of the substantial derivative to obtain

DP

Dt
− ∂p

∂t
= uτ̃2 + vτ̃3 + wτ̃4.(30)

Hence, if P̂ is constant in Ω in a steady state solution, the error in P fulfills the linear
equation

U · ∇δP = uτ̃2 + vτ̃3 + wτ̃4,(31)

where U is the computed solution.

3.2. Linearized equations. It is possible to simplify (23) if we make a few
additional assumptions. For steady, compressible flow assume that

1. all derivatives of the analytical solution are small;
2. u, ρ, and p are of O(1) but v and w are small;
3. the errors in the solution are small.

The first two assumptions are common in linearized flow analysis [2].
By (22) and the assumptions, we have, after ignoring small terms,

ρ̂∇ · δU + ûδρx = τ1,

ρ̂ûδux + δpx = τ2 − ûτ1 = τ ′2,

ρ̂ûδvx + δpy = τ3,

ρ̂ûδwx + δpz = τ4,

ρ̂Ĥ∇ · δU + Ĥûδρx + ρ̂ûδHx = τ5.

(32)

The error components δρ, δU, δp, and δH satisfy (32).
Using the definitions of the enthalpy, the speed of sound a2 = γp̂/ρ̂, and the Mach

number M = û/a in (32), we arrive at

∇ · δU− ρ̂
γp̂ û

2δux = (1−M2)δux + δvy + δwz

= −ûτ ′2/p̂+ (γ − 1)(τ5 − 0.5û2τ1)/(γp̂) = τ ′5.
(33)

We have obtained an approximate error equation for the velocity components. For
incompressible flow, M = 0, and this is the error equation derived from the continuity
equation.

The error in the pressure fulfills an equation similar to (33). Take the derivatives
of the three momentum equations in (32) with respect to x, y, and z, multiply the
first equation by 1−M2, and add them together. Then we have from (33)

(1−M2)δpxx + δpyy + δpzz

= (1−M2)τ ′2x + τ3y + τ4z − ρ̂ûτ ′5x = τp.
(34)

The equation for the numerical error in the pressure is elliptic for subsonic flow (M <
1) and hyperbolic for supersonic flow (M > 1).

If we ignore the boundaries of the computational domain, we can write the solution
of (34) for M < 1 by means of the fundamental solution g of the Laplace operator
[37]. First, introduce the change of variables

x = βx1, y = y1, z = z1, β2 = 1−M2,(35)
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and then let r be the vector

r = (x1 − ξ, y1 − η, z1 − ζ)T , r = |r|.
In (34), τp has the form of a divergence τp = ∇ · τ ′p. Suppose that τ ′p stays bounded
as r →∞. The error in the pressure can now be written with g = −1/(4πr),

δp(x1, y1, z1) =

∫
Ω

τp(ξ, η, ζ)g dΩ = −
∫

Ω

τ ′p · ∇g dΩ +

∫
∂Ω

gτ ′p · n̂ dA,(36)

using Gauss’s theorem. Let ∂Ω expand so that the last term in (36) vanishes and
Ω = R3. Then we obtain

δp(x/β, y, z) =
1

4π

∫
τ ′p · r
r3

dΩ.(37)

The conclusion from (37) is that the influence of a discretization error τ ′p(ξ, η, ζ) decays
rapidly as 1/r2 when r grows.

In the hyperbolic case when M > 1 let β2 = M2− 1 and use the same coordinate
transformation as above. Then from (34)

β2δpxx − δpyy − δpzz = −τp.(38)

With the fundamental solution to the wave equation (38) (see [37]) the pressure error
is

δp(x/β, y, z) = − 1

2π

∫
Ω

τp(ξ, η, ζ)√
(x1 − ξ)2 − ((y1 − η)2 + (z1 − ζ)2)

dΩ,(39)

where Ω = {(ξ, η, ζ)| x1 − ξ >
√

(y1 − η)2 + (z1 − ζ)2}. Thus, for fixed y and z the
contribution from τp(ξ, η, ζ) vanishes when x grows.

The analysis can be extended to include also boundaries by introducing Green’s
function for both M < 1 and M > 1 [19].

3.3. Natural coordinates. The natural coordinates (s, n) in two dimensions
are such that one coordinate s follows the streamlines and the other n is orthogonal
to s. The transformation between the (x, y) and (s, n) systems is

dx = u ds− v dn,
dy = v ds+ u dn.

Note that U · ∇ = ∂/∂s. Define the angle θ = arctan(v/u). The speed of sound a is
here given by dp = a2 dρ and the Mach number is M = q/a. Then the momentum
equations in (23) and (28) can be replaced by two equations in the (s, n) coordinate
system. In two dimensions, the steady, compressible flow is governed by

(1−M2)ps − ρq2θn = uτ̃2 + vτ̃3 − q2τ1 = τ̃ s,(40a)

pn + ρq2θs = −vτ̃2 + uτ̃3 = τ̃n,(40b)

and from (26) and (27) we infer that

Ss = cv(γ − 1)(τ̃5/p− τ1/ρ),
Hs = (τ5 −Hτ1)/ρ.(41)
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For incompressible flow, take M = 0 and ρ = 1 in (40) and replace (41) by

Ps = uτ̃2 + vτ̃3 + wτ̃4.(42)

Divide both equations in (40) by ρq2; differentiate (40a) with respect to s and
(40b) with respect to n and compute the sum. With κ = 1/(ρq2) the result is

((1−M2)κps)s + (κpn)n = (κτ̃ s)s + (κτ̃n)n.(43)

The equation is elliptic in p if the flow is subsonic and M < 1. If M > 1 as in
supersonic flow, then (43) is hyperbolic. A similar equation is satisfied by θ. The
other governing equations (41) or (42) are hyperbolic. The conclusion is that part of
the solution error is transported along streamlines, as in (41) or (42), and part of the
error is spread in an elliptic fashion, as in (43), in subsonic flow. If the variation in p,
q, and ρ is small in (43), then subtract the analytical solution satisfying (43) without
the error terms on the right-hand side as in (11). For the error in the pressure δp we
have approximately

(1−M2)κδpss + κδpnn = (κτ̃ s)s + (κτ̃n)n.

Under the assumptions in section 3.2 the coordinates s and n coincide with the x and
y coordinates in (34) and the error equations are the same.

3.4. Flow in a channel. The compressible flow in a channel (see Figure 1) is
perturbed by a right-hand side τ2 = 1 in a circle Ωc with radius 0.2 at (xc, yc) =
(1.25, 1.5) simulating the effect of a discretization error in the momentum equation
in the x-direction in (22b). The grid is uniform with 180 × 76 cells. The solution is
computed at a subsonic speed, M = 0.6, and a supersonic speed, M = 2. The width
of the channel is changed after x = 1 and a shock is generated by the lower wall at
that point in the supersonic case.

The solution for τ2 = 0 is subtracted from the solution when τ2 = 1 and plotted
for different variables in Figure 1. The isolines of the difference illustrate how the dis-
cretization error at (1.25, 1.5) generates errors in the solution variables. The behavior
is different depending on the Mach number. An explanation is offered by the error
equations.

Except for the shock, the flow in Figure 1 satisfies the assumptions for the linear
analysis in section 3.2. The error equations in two dimensions follow from (32), (33),
and (34):

ûδρx + ρ̂(δux + δvy) = 0,(44a)

ρ̂ûδux + δpx = τ2,(44b)

ρ̂ûδvx + δpy = 0,(44c)

(1−M2)δpxx + δpyy = (1 +M2(γ − 1))τ2x,(44d)

(1−M2)δux + δvy = −ûτ2/p̂.(44e)

Let M < 1 and β =
√

1−M2 and introduce the coordinate transformation (35).
Following [37], the solution of (44d) in free space is

δp(x/β, y) = σ

∫
τ2ξg(x1 − ξ, y − η)dΩ = −σ

∫
τ2gξ(x1 − ξ, y − η)dΩ,(45)
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Fig. 1. Isolines of the perturbation in the pressure p (upper) and velocity component u (lower)
for subsonic (left) and supersonic (right) flow.

where g(x, y) = log(x2 + y2)/4π is the fundamental solution in two dimensions and
σ = (1 +M2(γ − 1))/β. Since the support of τ2 is so small we have approximately

δp ≈ στ2(x− xc)
2πβ(((x− xc)/β)2 + (y − yc)2) .(46)

In subsonic flow, δp will decay at least as 1/r outside Ωc.
In supersonic flow, let β =

√
M2 − 1. The fundamental solution is

g(x, y) =

{
1/2, |y| < x,
0, |y| ≥ x

(see [37]). Hence,

δp(x/β, y) = −0.5σ

∫ x1

−∞

∫
x1−ξ>|y1−η|

τ2ξdηdξ

= −0.5σ

∫ ∞

−∞

∫ x1−|y1−η|

−∞
τ2ξdξdη = −0.5σ

∫ ∞

−∞
τ2(x1 − |y1 − η|, η)dη.

(47)

Outside the small circle Ωc, τ2 = 0 and we have

δp(x, y) ≈ −0.5στ2(xc, yc), when x ≥ xc, x− xc = β|y − yc|.(48)

Contrary to subsonic flow, δp will not decay outside Ωc on two rays from (xc, yc). This
behavior is also different from what we have in three dimensions in (39) reflecting the
different properties of the wave equation in odd and even dimensions.

From (44b) we conclude that

δu =

(∫ x

−∞
τ2dξ − δp

)
/(ρ̂û).(49)
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The error δu consists of two parts: one part is convected downstream from the source
τ2 and the other part is spread like the error in p. If we try to reduce δu where it
is large by refining the grid for x ≥ 2 in the channel to the outflow boundary (see
Figure 1), the adaptation will have little effect on the solution error. It will decrease
only after refinement around the source of the discretization error at (xc, yc).

An equation for δv similar to (44d) can be derived by combining (44c), (44b),
and (44e). The error in ρ has one propagating part and one part depending on δp in
the same manner as δu.

The solutions for δp and δu in (46), (48), and (49) agree with the solutions in
Figure 1 locally around (xc, yc) when the influence of the boundaries is negligible.
At the supersonic speed, the waves are reflected in the channel walls and the shock
position is shifted above y ≈ yc and in the reflected part by the convected error. The
perturbations in δp for M = 0.6 at the downstream boundary is explained by the
outflow boundary conditions there.

4. Numerical algorithms. In this section we describe the space discretization
briefly and how the grid is refined given the computed discretization errors.

4.1. Space discretization. The flow equations are solved on a structured grid
in two dimensions. The computational domain is partitioned into a number of blocks.
The location of these blocks is predetermined and the edges of a block follow grid
lines. The grids in each block can be refined or coarsened. At the block boundaries,
jumps are allowed in the grid size. The step length along a boundary may increase
by a factor of 2 when crossing the boundary. By changing all cells in a block, the
administration of the adaptivity is simplified and the interpolation of data between
cells of different size is concentrated at the block boundaries. There is a waste of
cells since all of them are not needed for the accuracy. In [4], the refined patches can
be placed without restrictions, but the bookkeeping is more complicated in such an
algorithm. Every cell in [13] can be refined. This approach requires an extra data
structure, and second-order accuracy is difficult to obtain.

The flux vectors in (4) are computed either with the Jameson scheme [26] or
with the Osher scheme [32]. Both are second-order accurate on Cartesian grids with
constant step sizes in each direction.

Boundary conditions are approximated by introducing ghost cells. In the steady
state solutions, the variables in these cells are either given by the boundary data
in (1) or obtained by extrapolation from the interior of the domain. The order of
the extrapolation is important for the accuracy of the solution, in particular at solid
walls. For the compressible equations, the extra numerical conditions are calculated
according to [11].

For characteristics starting at a boundary going into the domain it is sufficient to
have the boundary condition satisfied to order ν−1 if ν is the order of the discretization
in the interior without losing accuracy [22]. Along a solid wall we have a streamline in
the Euler equations and the behavior of the error in the total pressure or the entropy
is governed by (30) and (26). If the error in the boundary condition is of order ν − 1,
then the error in P or S will also be of that order. This is discussed in [19].

Interpolation is necessary at block faces where there is an increase in the grid
size. In the coarse ghost cells, the average is computed by summing the averages in
the corresponding fine cells with weights proportional to the fine cell areas. The fine
ghost cells are computed by combining the neighboring coarse cell values, so that the
discretization error is of second order on Cartesian grids in the fine cells adjacent to
the boundary. Details of the interpolation are found in [29].
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The steady state solution of incompressible flow is computed by adding ∂p/∂t
to the continuity equation (28a) as in [8]. Then the time-dependent equations are
integrated for both compressible and incompressible flow by a Runge–Kutta scheme
(8) until the time derivatives vanish [26].

4.2. Adaptation algorithm. The solution on the original grid is computed
first. Then that solution is used to compute the solution error with the estimates in
Proposition 2.1 and the error equations in section 3. The choice of grid size in the
different blocks of the computational domain is determined by these estimates. The
error equations are solved also in [43] for estimation of the solution error but without
coupling them to a fully adaptive procedure.

In the following algorithm we control the errors propagated along streamlines for
three reasons:

1. The errors in S, H, and P are often used as measures of the quality of inviscid
flow solutions, and they have this property; see (26), (27), and (30).

2. It is a simple way of introducing a control of the maximum solution error.
3. It is possible to take the signs of the discretization errors into account, thus

avoiding unnecessarily fine grids.

It is more complicated to solve the elliptic or hyperbolic error equation based
on (43) for the pressure error. An approximate solution is computed in one of the
numerical examples in the next section. In the linearized equations (34) and (44),
δp, caused by a source, decays rapidly as the distance from it grows when M < 1
(see Figure 1). In that case, it may be sufficient to control the size of the local
discretization error. It is usually concentrated to the solid boundaries. It is shown in
[19] using the error equation (34) in two dimensions that the effect on δp of such errors
decays from straight and curved boundaries for subsonic and incompressible flow but
is propagated without damping for supersonic flow (cf. (46), (48), and Figure 1).

Assume that a maximum error is required to be below a certain tolerance ε in
a variable, whose error is propagated along streamlines as in (26), (27), (31). Let s
denote the coordinate along the streamlines. They pass through a number of block
interfaces at s = s0, s1, s2, . . . . The contribution to the error in block k is Ik(s) =∫ s
sk−1

τ ds for sk−1 ≤ s ≤ sk. The accumulated error is denoted by E(s) with E(s0) =

0, and in block k

E(s) =
k−1∑
j=1

Ij(sj) + Ik(s) = E(sk−1) + Ik(s) for sk−1 ≤ s ≤ sk.(50)

The algorithm for choosing the grid size in the blocks along a streamline is initialized
by calculating the integrals Ik and the corresponding estimate of the accumulated
error E(s). Then the adaptive algorithm is, with ν = 2,

while max|E(s)| > ε
Locate the maximum of |E(s)| : sM−1 < smax < sM
I+
k (s) = Ik(s) sign (E(smax)) for all k

Find the block km with the maximum of
I+
1 (s1), I

+
2 (s2), . . . , I

+
M−1(sM−1), I

+
M (smax)

Refine block km : Ikm(s) := Ikm(s)/2ν

Update E(s)
end while

(51)
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The error may increase in occasional steps in the process when the maximum error
changes sign. No jumps in grid size at the block boundaries are allowed to be larger
than factor 2. To fulfill this condition, the grid sometimes has to be refined in some
blocks to an unnecessarily fine level. If the error along a number of streamlines in a
block is controlled, then the smallest grid size given by the algorithm applied to each
streamline is chosen.

An alternative would be to estimate |E(s)|,

|E(s)| ≤
k−1∑
j=1

|Ij(sj)|+ |Ik(s)|,

from (50) and refine the grid in a block km where |Ikm | = maxk |Ik|. A problem with
that approach is that sometimes the inequality is not sufficiently sharp and the grid
may be too fine if the sign of the contribution from each block is ignored. Even if the
bound decreases, E(smax) may increase, e.g., if E(smax) > 0 and Ik > 0, k �= km but
Ikm < 0.

5. Numerical results. The steady state solution of the Euler equations of in-
viscid flow is computed around 2 two-dimensional objects: the upper part of a cylinder
and the wing profile NACA 0012. The flow around the half-cylinder is incompressible
and the numerical solution is compared to the analytical solution of the linearized
potential flow equation. For the second geometry, the flow is compressible in a stan-
dard transonic test case and a subsonic case. The enthalpy and the entropy in the
numerical solution are compared to the exact constant value of the enthalpy and to
the exact entropy, which is constant at least in parts of the domain.

5.1. Incompressible flow. The time-independent solution of the incompress-
ible Euler equations in conservation form is computed in two dimensions around the
upper part of a cylinder. The grid is cylindrical and partitioned into blocks. The sys-
tem of equations is discretized by the scheme of Jameson, Schmidt, and Turkel [26].
Fourth-order extrapolation at the boundaries is used to supply missing numerical
boundary conditions at the cylinder.

The solution is compared to the analytical solution of the linearized potential flow
equation. Let Θ be the potential and n the normal direction on the cylinder. Then

ΔΘ = 0 in Ω, U = ∇Θ, P = p+ 0.5q2 = const,

U = (1, 0)T at∞, n ·U = 0 on cylinder.
(52)

With the origin at the center of the cylinder and r the radius, the solution to (52) is

u = 1 + r2(y2 − x2)/(x2 + y2)2, v = −2r2xy/(x2 + y2)2.(53)

If there is no vorticity in the Euler solution, then (53) is the steady state solution of
(28) with τ̃ = 0. The analytical solution (53) defines the boundary conditions at the
outer boundary.

The difference between the analytical solution and the Euler solution around the
cylinder on a uniform grid is plotted in Figure 2. The error propagation downstream
can as expected be observed in the variables u and P . Most of the error in p is
generated at the surface of the cylinder, and it decays in an elliptic way when we go
away from the cylinder. The behavior of the errors in u, p, and P is what we expect
from the analysis in sections 3.2 and 3.4.



1792 LARS FERM AND PER LÖTSTEDT
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Fig. 2. Error distribution around the cylinder.
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Fig. 3. Estimated (dashed and solid) and true values (dotted) of P (left) and δp (right) along
a streamline close to the surface of the cylinder.

In Figure 3, the errors δP and δp are estimated on a streamline close to the
cylinder (s ∈ [0, 2π]) and to y = 0 in front of (s < 0) and behind the cylinder
(s > 2π). The numerical solution is computed on a coarse grid with 30 × 18 cells
divided into 15 blocks. For the total pressure P , (31) is integrated with P = 2.5 as
initial condition with two different right-hand sides. Firstly, the discretization error
is computed by inserting the analytical solution into the discretization as in (10).
Secondly, τ is estimated by Proposition 2.1. The difference in τ1 between the two
alternatives is shown in Figure 4. The first (dashed) and the second (solid) estimates
are close. The difference is comparatively small in Figure 3 between the first (dashed)
and the second (solid) right-hand sides and the true value of P (dotted). The error in
P is somewhat underestimated. This is partly explained by the fact that the estimates
are obtained via integrations along the line of symmetry y = 0 and the surface of the
cylinder. As we can see in Figure 4, this line does not follow the streamline at the
left stagnation point, and an error there cannot be corrected downstream. The error
in p in Figure 3 is calculated by integrating (40b) from the outer boundary with
initial condition p = 0 assuming ρq2θs to be negligible. It is possible to subtract the
estimated errors from the solution and obtain “superconvergence” as in [41] and a
more accurate solution, but without an error estimate in the final solution.

We let the error tolerance be ε = 4.3 · 10−3 and apply the adaptive algorithm in
section 4.2 once to our example. The grid when P is controlled so that |δP | ≤ ε is
plotted in Figure 5, along with obtained errors on that grid. The abscissa follows the
streamline along the cylinder as in Figures 3 and 4. The cylinder surface is marked
by a thick black line. The error is somewhat underestimated in P .
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Fig. 5. Grid for control of P and the measured values of P and δp.

The grid for control of the error of p is generated by (51) and integration of (40b)
and is plotted in Figure 6. The coarse block in the left part of the cylinder gives rise
to a large error in P , which is convected downstream resulting in a peak in δp at the
right stagnation point. A reliable estimate of δp requires control of P (see Figure 7)
where the goal is max(δP, δp) ≤ ε. To reduce δP , it does not help to refine the grid
in the top block on the cylinder, where δP has its maximum. Instead, the grid should
be finer, where δP grows most rapidly (cf. section 3.4 and Figure 1).

The solution error was computed in the L2 norm ‖ · ‖ along the cylinder. A
small error on solid surfaces is often desirable in applications and that is the error we
control here. The errors in P and p were ‖δP‖ = 1.18 · 10−2 and ‖δp‖ = 1.86 · 10−3

in the final adapted grid in Figure 7 which has 1836 cells. For comparison, a uniform
grid was created with 2160 cells. There, the solution errors were ‖δP‖ = 0.986 · 10−2

and ‖δp‖ = 3.28 · 10−3. With nearly equal number of cells, the error in p is reduced
by almost a factor of 2 and the error in P is about the same in the adapted grid
compared to the uniform grid. The gain in adapting the grid is not very dramatic
in this example because the flow is rather smooth. The error reduction is more
substantial in the following numerical experiments.

5.2. Compressible flow. The steady state solution of the compressible Euler
equations ((22) with τ = 0) is calculated around the NACA 0012 airfoil. An original C-
grid is partitioned into blocks and refined with the adaptive algorithm in section 4.2.
The equations are discretized with the Osher scheme [32] with reconstruction for
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Fig. 7. Grid for control of p and P and the measured values of P and δp.

second-order accuracy. The error equations in section 3 break down at discontinuities
such as shocks, but the adaptive algorithm (51) still works well.

In the first example, the flow is transonic with M = 0.8 and the angle of attack
α = 1.25o and ε = 5 · 10−2 in (51). The adaptation algorithm (51) is applied twice:
first on the original grid to generate an intermediate grid and then again to generate
the final grid. Either the error in the enthalpy H or the error in the entropy S is
monitored. The equations (26) and (27) are integrated for the errors in H and S
along the streamlines on the upper and lower surfaces of the airfoil. Then the change
of H or S in a block determines the grid refinement in (51). It is important that the
refinement is based on the difference of H or S between the block boundaries and not
the peak values of them in the blocks (cf. Figures 5, 6, and 7).

The initial grid and the intermediate grids generated from δH and δS are shown
in Figure 8 together with the isobars of the solution. The estimated error in S is
not sufficiently large to motivate a refinement at the shock on the upper part of the
profile. On the contrary, δH captures the shock on the upper and lower side, and the
algorithm (51) introduces grid refinement both at the leading edge and the shocks.
The importance of a good resolution at a shock is discussed in [15] and [16]. Errors
of low order are created in a shock and convected downstream.

Figures 9 and 10 display the computed δH and S on the upper and lower side of
the airfoil with the initial (dotted), intermediate (dashed), and fine (solid) H-grids.
The plots are extended to the outer boundary, and the wing is indicated by a thick
line. The entropy has a jump at the shock on the upper side. In the wake, an average
is taken between S above and below the trailing edge.

As in the previous example, the solution error in the adapted grid with 43632
cells is compared to the error in a uniform grid with 48384 cells. The block at the
leading edge has 64× 64 and 24× 24 cells, respectively. Then along the profile ‖δH‖
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is 3.2 ·10−3 in the adapted grid and 1.4 ·10−2 in the uniform grid. The error is clearly
reduced by redistributing the cells.

Subsonic flow is computed in the last example with M = 0.5, α = 1.25o, and
ε = 2 · 10−3. The initial grid is the same as in Figure 8. The results after applying
the algorithm (51) twice are found in Figure 11. The grids are generated using the
enthalpy or the entropy as a measure of the error. The enthalpy is more sensitive
to the grid density at the trailing edge. The errors are compared on the two grids
in Figure 12, where the solid line corresponds to the H-grid and the dashed line to
the S-grid. In [20], the solution on the adapted S-grid is compared to the solution
on a uniform grid. The adapted and uniform grids have 12816 and 50688 cells. The
error ‖δS‖ is reduced by 82% on the upper side of the wing profile, and the CPU
time with multigrid iteration is slightly less with adaptation compared to uniform cell
distribution. Better accuracy is achieved and memory is saved at about the same cost
in computing time. In a three-dimensional example with transonic flow over a wing,
almost the same solution is obtained with an adapted grid compared to a uniform
grid with only 12% of the cells and 8% of the CPU time.
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Abstract. New approaches are developed for minimizing the profile of a sparse, symmetric
matrix. The heuristic approaches seek to minimize the profile growth, either absolutely or in a
weighted sense. The exchange methods make a series of permutations in an initial ordering to
strictly improve the profile. Comparisons with the spectral algorithm, a level structure method, and
a wave front method are presented.
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1. Introduction. The envelope of an n by n symmetric matrix A is the set of
index pairs that lie between the first nonzero element in each row and the diagonal:

Env(A) = {(i, j) : 1 ≤ i ≤ n, fi(A) ≤ j < i},
where

fi(A) = min{j : 1 ≤ j ≤ i, with aij �= 0}.(1.1)

We assume for convenience that the diagonal elements of A do not vanish. The profile
of a matrix is the number of elements in the envelope plus the number of elements on
the diagonal.1 The LU factorization of a symmetric, positive definite matrix can be
performed within the space associated with the profile.

When solving sparse, symmetric, positive definite linear systems, we often store
only the nonzeros. One of the standard storage structures consists of a pointer from
the column to arrays holding the row indices and numerical values of the nonzero
entries of that column. In contrast, if the matrix is mostly nonzero, the entire n
by n matrix is often stored, both zero and nonzero entries. This storage structure
eliminates the integer row indices and pointer arrays, but it requires the storage of zero
entries as well as nonzeros. Profile storage is useful when the matrix is moderately
sparse, or when the nonzero entries are near the main diagonal. In this approach,
we only store the location of the first nonzero in each row, along with the numerical
values of entries in the row between the first nonzero and the main diagonal. Profile
reducing algorithms, like those presented in this paper, try to minimize the profile by
making a symmetric permutation of rows and columns.

The graph G associated with A has vertices

V = {1, 2, . . . , n}
and edges

E = {(i, j) : i �= j, aij �= 0}.
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Here the edges are unordered pairs. The first strategies for reducing envelope size were
based on graph level structures. A level structure is a partition of the vertices into
disjoint sets L1, L2, . . . , Lk with the property that all vertices adjacent to vertices in
level Li are in either Li−1 or Li or Li+1. The first scheme exploiting a level structure
to reorder the rows and columns of a matrix and to minimize envelope size was the
algorithm of Cuthill and McKee [3]. Later Alan George observed that if the Cuthill–
McKee ordering was reversed, then the size of the envelope was often reduced. Liu
and Sherman [24] show that this reversal can never increase the size of the envelope.
Related level structure methods are developed by Gibbs, Poole, and Stockmeyer [9]
and Gibbs and King [23] for which the envelope size is often comparable, but the
computation time is significantly less.

Another approach for minimizing the profile is Sloan’s method [27], in which the
rows and columns of a matrix are ordered in accordance with a priority function;
this function assigns to each of the presently unordered nodes a value that is a linear
combination of the distance to an “end node” and the associated change in the wave
front. In each step of the algorithm, the node with the highest priority is added to
the list of labeled nodes. Further improvements to this scheme are developed by Duff,
Reid, and Scott [5].

The spectral approach of Barnard, Pothen, and Simon [1] uses an eigenvector
(Fiedler vector) corresponding to the second smallest eigenvalue of the graph’s Lapla-
cian to minimize the profile of a matrix. The matrix ordering corresponds to the
permutation of the components of the Fiedler vector which gives either increasing
or decreasing order. George and Pothen [8] provide analysis justifying this strategy.
More recently Kumfert and Pothen [22] have developed a hybrid scheme that uses the
spectral algorithm to obtain a preordering that is further refined using a modification
of Sloan’s algorithm. In their numerical experiments, this hybrid algorithm gener-
ated profiles 2 to 5 times smaller than those of the reverse Cuthill–McKee algorithm.
This was developed further by Reid and Scott [26] and implemented in the HSL [16]
package MC60 (HSL was formerly known as the Harwell Subroutine Library).

Recently, Boman and Hendrickson [2] and Hu and Scott [17] developed multilevel
algorithms for profile optimization, analogous to the multilevel algorithms that have
proved so successful in graph partitioning [13, 14, 18, 19, 20]. Solving the coarse grid
problem using an adjacent exchange approach, Boman and Hendrickson achieved
performance comparable to that of the original Sloan algorithm. More recently, Hu
and Scott achieved performance comparable to that of the hybrid Sloan algorithm
by using Sloan’s algorithm itself to solve the coarse grid problem. These multilevel
methods are faster than the hybrid method since they do not involve computing the
Fiedler vector.

In this paper, we develop two classes of methods for optimizing the profile of a
matrix. The first class of methods are heuristics based on the following observation:
The envelope of a matrix contains all the (off-diagonal) nonzeros of a matrix, and if P
is a permutation matrix, then the number of nonzeros in A and in PAPT are identical.
Hence, finding P to minimize the profile is equivalent to finding P to minimize the
number of zeros in the envelope. Our algorithm starts in the lower right corner of the
matrix and builds up P, minimizing the growth of zeros in the envelope in each step.
We consider two variations of this approach: “pure greed,” in which the growth of
zeros is minimized in each step, and “weighted greed,” in which a weighted measure
of the growth in zeros is minimized.
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Heuristics like these, as well as those mentioned earlier, usually improve the pro-
file; however, improvement is not guaranteed. The other class of methods that we
develop involve exchanges of adjacent rows and adjacent columns to strictly improve
the profile. Boman and Hendrickson also use adjacent exchanges, along with the
techniques of Kernighan and Lin [21] and Fiduccia and Mattheyses [6], to solve their
coarse grid problem. Here we consider a series of adjacent exchanges—even though
individual exchanges do not improve the profile, a series of exchanges may lead to an
improvement. Formulas are derived for the profile change associated with the entire
series of exchanges. From the structure of these formulas, we obtain a subset of the
possible exchanges that could yield an improvement. These exchange methods can be
applied directly to the starting matrix to improve its profile, or they can be applied
to the ordering generated by any of the heuristics to further improve the profile. In
fact, they could be combined with either of the hybrid methods [22, 26] to obtain a
3-method hybrid, whose profile is at least as good as that of the 2-method hybrid.
Numerical comparisons between the ordering strategies are given in section 4 using
matrices that arise in linear programming (netlib/LP) and matrices from the Harwell-
Boeing and NASA directories of Timothy Davis’s University of Florida sparse matrix
collection at www.cise.ufl.edu/research/sparse/matrices.

2. The new heuristics. Let P be a permutation matrix and let B = PAPT

be the permutation of A. This permutation A can be described by a vector p ∈ Rn

where pi is the row of A corresponding to row i in the permuted matrix B. In our
profile heuristic, we assign values to pi, starting with i = n, and working toward i = 1.
At step k the associated set of “labeled vertices” is defined by

Lk = {pi : k < i ≤ n},

where the initial set Ln is the empty set. The complement of Lk, denoted Uk, is the
set of “unlabeled vertices.” The “wave front” Wk relative to Lk and Uk is defined by

Wk = {i ∈ Lk : aij �= 0 for some j ∈ Uk}.

If A is permuted symmetrically so that the leading columns correspond to Uk and
the trailing columns correspond to Lk, then the wave front is the set of trailing rows
where there will be nonzero multipliers in the leading columns when the lower left
corner of the permuted matrix is eliminated.

Now let us consider the effect of making the assignment pk = j at step k for some
j ∈ Uk. The row indices of those elements aij that both vanish and lie in the envelope
of the permuted matrix are given by

Zk(j) = {i ∈ Wk : aij = 0}.

As noted earlier, the size of the profile is minimized when the number of zeros in the
profile is minimized. A purely greedy labeling approach would simply choose j to
minimize the size of Zk(j), the number of new zeros that enter the envelope at step k.
In other words, if |Zk(j)| denotes the number of elements in Zk(j), the purely greedy
approach chooses pk = j ∈ Uk where

|Zk(j)| = min
l∈Uk
|Zk(l)|.(2.1)
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Fig. 1. Illustration of Algorithm 1.

A possible choice for the starting node pn could be a node of minimum degree in the
graph of the matrix. Letting dj denote the degree of node j, this greedy labeling
strategy is the following.

Algorithm 1 (greedy minimum profile growth).
J = arg min

1≤j≤n
dj

pn = j for any j ∈ J
for k = n− 1, n− 2, . . . , 1

J = arg min
j∈Uk

|Zk(j)|
pk = j for any j ∈ J

end
end Algorithm 1
Here the notation “arg min” denotes the set of indices which attain the minimum,

while Uk is the set of unlabeled vertices at step k.
Figure 1 illustrates one of the deficiences with this purely greedy strategy. The

last column of Figure 1B corresponds to column 6 in the original matrix and the node
of minimum degree. The next four columns (numbers 11 down to 8) in Figure 1B
correspond to columns 7, 12, 1, and 11 in Figure 1A. These columns are attractive
to the greedy algorithm since they create no zeros in the profile in the lower right
5 × 5 corner of the matrix. Now, skipping to the end, the first column in Figure 1B
corresponds to column 9 in Figure 1A. Notice that when putting column 9 of Figure 1A
in column 1 of Figure 1B, we end up with many zeros within the profile (in rows 4,
6, 7, and 9). In this greedy approach, column 9 of Figure 1A was left to the end for
the following reason: If we were to assign column 9 earlier in Figure 1B, zeros would
be created in the profile in rows 11, 10, and 8. Thus Algorithm 1 does not take into
account the fact that these columns are already mostly nonzero, and there is only
room for 3 more zeros. As we delay the assignment of column 9 in Figure 1A, we
create, in each step, more zeros in the profile in Figure 1B.
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To rectify this problem, we can weight our score for each row to take account
of the number of nonzeros that remain in a column (or row). The weight function
should be chosen so that a zero placed in a column with a lot of nonzeros is less
significant than a zero placed in a column with a small number of nonzeros. Let χ be
the indicator function defined by

χ(a) = 1 if a �= 0, χ(a) = 0 if a = 0,

and for i ∈ Lk, let rk(i) be the number of nonzeros associated with unlabeled nodes
in row i:

rk(i) =
∑
j∈Uk

χ(aij).(2.2)

In the purely greedy labeling strategy, we assign to each j ∈ Uk a “score” sk(j) that
is simply the number of elements in the set Zk(j). On the other hand, if W is the
weight function, then the weighted score, based on the row sums rk(i), is

sk(j) =
∑

i∈Zk(j)
W (rk(i)).(2.3)

If W is identically one, then sk(j) = |Zk(j)| and Algorithm 1 corresponds to mini-
mizing sk(j) in each step. But as illustrated in Figure 1, it is better to choose W so
that W (t) is small when t is large. For example, we could take W (t) = 1/t. In this
way, zeros created in rows with lots of nonzeros receive a small weight in the score
for node j. The best node to label at step k is the node j ∈ Uk with the lowest score
sk(j).

The formula (2.3) involves a sum over indices associated with zero entries in A.
Since sparse matrices have many zeros, it would be better to work with an analogous
score expressed in terms of nonzeros. Let Nk(j) be the nonzeros associated with node
j and the wave front at step k:

Nk(j) = {i ∈ Wk : aij �= 0}.

The score of node j based on nonzeros is

Sk(j) =
∑

i∈Nk(j)
W (rk(i)) =

(∑
i∈Wk

W (rk(i))

)
− sk(j).(2.4)

Again, the weight function W should be monotone decreasing since rows with a lot
of nonzeros are less significant than rows with a few nonzeros. Since the scores Sk
and sk are complementary, as indicated in (2.4), minimizing sk is equivalent to max-
imizing Sk. Hence, when working with nonzeros, the biggest score is best, and we
should choose j to maximize Sk(j) in each step. Again, if W is identically one, then
maximizing Sk(j) over j ∈ Uk is equivalent to minimizing sk(j) over j ∈ Uk, which is
the greedy heuristic given in Algorithm 1.

The score Sk(j) takes into account the effect of edges between an unlabeled node
j and the labeled nodes Lk. It does not take into account the effect of edges between
j and the other unlabeled nodes. If an unlabeled node j is connected by a small
number of edges to unlabeled nodes, it should be scored favorably since it is relatively
easy to prevent the growth of zeros in the part of the profile connected with this row.
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Likewise, as the number of edges between j and the other nodes in Uk approaches k,
this node should be scored favorably since there is little room left for zeros in its row.
Our final weighted score S̄k(j), taking into account both edges between j and Lk as
well as edges between j and Uk, is the following:

S̄k(j) = max{W (dk(j) + 1),W (k − dk(j))}+
∑

i∈Nk(j)
W (rk(i)),(2.5)

where dk(j) is the degree of j in the subgraph associated with Uk. The first term
in (2.5) has the following interpretation: It is the score associated with row k if j is
labeled at step k.

The first term in (2.5) leads to a natural starting procedure. For k = n, the
summation in (2.5) disappears and S̄n(j) is maximized by either a node of lowest
degree or a node of highest degree. Since the best place for completely dense (nonzero)
rows and columns is the trailing border of the matrix, this starting procedure treats
dense rows and columns correctly. For completeness, we state the weighted greed
scheme.

Algorithm 2 (weighted greed).
for k = n, n− 1, . . . , 1

J = arg max
j∈Uk

S̄k(j)

pk = j for any j ∈ J
end

end Algorithm 2
If the weight function is strictly monotone, then evaluation of scores could be

computationally expensive, with a work estimate comparable to that of an LU fac-
torization itself. By choosing W to be piecewise constant, the scoring process is sped
up since the score for any node will change only when one of its associated rk(i),
i ∈ N (j), moves across a step in W . In the numerical experiments reported later, we
used a weight function of the following form:

W (i) = 1/i for 1 ≤ i ≤ ψ, W (i) = 1/ψ for i > ψ,(2.6)

where ψ is a small positive integer which we call the cutoff. In the experiments, ψ = 8.
For the matrix of Figure 1A, the profile generated by Algorithm 2 is 54, while the
profile of Figure 1B and Algorithm 1 is 63. The notation nnz, used below, stands for
“number of nonzeros.”

Lemma 2.1. For the weight function (2.6), Algorithm 2 can be implemented in
time bounded by O(nnz(A) log n).

Proof. In each step of Algorithm 2, rk, the vector whose ith component is rk(i), is
adjusted according to the location of nonzeros in column pk of A. Hence, the number
of components of rk and rk−1 that are different is bounded by the number of nonzeros
in column pk of A. It follows that the total number of changes in components of rk
as k ranges between n and 1 is bounded by nnz(A). If W (rk(i)) �= W (rk−1(i)) for
some i, then rk(i) ≤ ψ according to (2.6). For each i ∈ Lk, rk(i) can only decrease
as k decreases since the set Uk in (2.2) decreases in size as k decreases from n down
to 1. Hence, for any given i and for the weight function (2.6), there are at most ψ
values of k for which W (rk(i)) changes. Now consider the last term in (2.5), which we
need to evaluate for each j ∈ Uk. We can think of this sum in the following way: For
each i ∈ Lk associated with a nonzero aij , j ∈ Uk, let us replace aij by W (rk(i)), and
let Ak be the resulting matrix whose remaining elements are all zero. Forming the
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sum in (2.5) for each j ∈ Uk is equivalent to computing the column sums of Ak; the
only nonzero entries are in a submatrix in the lower left corner of Ak. As k decreases
by one, we delete a column and add a row to the submatrix. If the numbers inside
the submatrix were fixed, independent of k, then the work associated with adding a
row, deleting a column, and updating the column sums is bounded by the number
of nonzeros in A. Note though that not only is the submatrix changing (add a row,
delete a column) in each step, but the elements inside the submatrix change too.
However, for each choice of i, we saw earlier that there are at most ψ values of k for
which W (rk(i)) changes its value. Hence, the total number of changes in value of the
elements in the submatrix is bounded by ψnnz(A), and the total work in maintaining
the sum in (2.5) remains O(nnz(A)).

In each step of Algorithm 2, dk, the vector whose entries are the degrees of the
nodes in the subgraph associated with Uk, is adjusted according to the location of
nonzeros in column pk+1 of A: For each i ∈ Uk, we have

dk(i) = dk+1(i)− 1

if aij �= 0 for j = pk+1. As with rk, the total number of changes in components of dk as
k ranges between n and 1 is bounded by nnz(A). In any step k where dk(j) < dk+1(j)
for some j ∈ Uk, we need to check whether the max in (2.5) has increased. Since the
total number of changes in components of dk is bounded by nnz(A), the time needed
to check whether the max in (2.5) increases when dk(j) decreases is O(nnz(A)).

Now consider the second term in the max of (2.5). Assume that each j ∈ Uk
is stored in a list, ordered by degree. This degree-ordered list can be created and
maintained in time bounded by O(nnz(A)) since the number of changes in degree
is bounded by O(nnz(A)). Since k − dk(j) decreases monotonically as k decreases,
there are at most ψ values of k where W (k−dk(j)) changes in value. Hence, the total
number of pairs (j, k) for which W (k−dk(j)) changes in value is at most ψn. Since the
diagonal of A does not vanish, ψn = O(nnz(A)). Consequently, the effort involved
with checking whether the max in (2.5) increases due to an increase in W (k − dk(j))
is O(nnz(A)).

In each step of Algorithm 2, we extract an unlabeled node of minimum score.
If the nodes are ordered in a heap according to their score, we can update the heap
when a node’s score changes in time bounded by O(log k) ≤ O(logn). Since the
number of terms that change in the scores (2.5) is at most O(nnz(A)), the total work
in maintaining the heap is bounded by the product O(nnz(A) log n).

3. Exchange methods. By an exchange method, we mean any strategy for
improving the profile of a matrix based on a series of symmetric interchanges of rows
and of columns. One strategy to improve the profile of a matrix would be to consider
all possible pairs of rows, and corresponding columns, and make an exchange if the
profile is reduced. In this section, however, we focus on more specialized exchanges.

For any n by n matrix A and k < l ≤ n, let Dk:l(A) denote the change in the
profile associated with a series of adjacent exchanges: Interchange row k with k + 1,
row k+ 1 with k+ 2, . . . , row l− 1 with l, and perform the symmetric interchange of
columns. Before stating a formula for Dk:l(A), we give an illustration. Consider the
9 by 9 matrix depicted in Figure 2, and the values k = 2 and l = 8. Throughout this
section, our figures are based on the “skyline view” of matrix profile—in other words,
elements in each column between the first nonzero and the diagonal. The dots denote
nonzero entries and a solid square is placed over each nonzero entry corresponding to a
frontier node, a node on the top boundary of the envelope. The first nonzero beneath
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Fig. 2. Downward exchanges in a symmetric matrix.

a frontier node is covered with an asterisk. When row k is exchanged with row k+ 1,
row k+1 is exchanged with k+2, and so on, down to row l, we obtain Figure 2B. The
single frontier node beneath row k is moved one level higher, increasing the profile by
1. The frontier nodes in row k, on the other hand, fall to positions right above the
asterisks in Figure 2A, reducing the profile by 11. Altogether, the profile is reduced
by 10. To complete the permutation, we perform the corresponding exchange of the
columns. This second set of permutations restores symmetry and moves the columns
around, but it does not affect the height of frontier nodes—there are still 4 frontier
nodes in row 1, 2 in row 2, and so on. Since the number of zeros above the frontier
nodes does not change, the profile change deduced in Figure 2B is correct.

Our formula for Dk:l is the following.
Lemma 3.1. For any k < l ≤ n and for f defined in (1.1), we have

Dk:l(A) = |{j ≥ k : k < fj(A) ≤ l}| −
⎛
⎝∑
j∈Fk

(min{l, gj(A)− 1} − k)
⎞
⎠ ,(3.1)

where

Fk = {j : fj(A) = k},(3.2)
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and

gi(A) = min{j : fi(A) < j, aij �= 0}(3.3)

if the minimum exits. Otherwise, gi(A) = n+ 1.
The elements of the frontier set Fk, the dark squares in Figure 2, are nodes that

are adjacent to k and on the boundary of the envelope. The value of gi is the second
nonzero column index in row i, if it exists. The elements of A corresponding to the
gi and i ∈ Fk are the asterisks in Figure 2. Note that gi(A) could be larger than i,
while fi(A) ≤ i.

Proof. The first set in (3.1) represents those zeros that are added to the profile
as we successively exchange the rows between k and l. The summation in (3.1)
corresponds to the zeros removed from the profile as the rows are exchanged and the
frontier moves towards the diagonal of the matrix. Once we reach the second nonzero
in a row, the frontier in that row remains stationary. To complete the permutation, we
perform the corresponding exchange of the columns. This second set of permutations
restores symmetry and moves the columns around, but it does not affect the number
of zeros above each frontier node. Since the profile of the matrix equals the number
of elements in the upper triangle minus the number of zeros above the frontier nodes,
this second set of permutations does not affect the profile (since the number of zeros
above the frontier nodes does not change).

Suppose that we wish to determine whether a series of downward exchanges can
be performed that would reduce the profile of a symmetric matrix. Referring to (3.1),
we see that as l increases, the first term increases while the second term decreases,
achieving its minimum value when l reaches the maximum of the (gj(A) − 1) over
j ∈ Fk. When l ≥ gj(A)−1 for all j ∈ Fk, the second term in (3.1) remains constant.
Hence, when determining the best value for l, we should restrict our attention to

k < l < l1 := max
j∈Fk

gj(A).

Also note that for l > k, we have the bound

∑
j∈Fk

(min{l, gj(A)− 1} − k) ≤
∑
j∈Fk

(gj(A)− k − 1).

The first term in (3.1) is a monotone increasing function of l, so when minimizing
Dk:l(A) over l > k, we should require that l ≤ l2 where l2 is the largest l with the
property that

|{j ≥ k : k < fj(A) ≤ l}| ≤ m1 :=
∑
j∈Fk

(gj(A)− k − 1).

Lemma 3.1 can be utilized in an exchange scheme to improve a profile in the
following way: For each k = n− 1, n− 2, . . . , 1, we could check whether Dk:l(A) < 0
for some l > k. If L is a value l that minimizes Dk:l(A) over l > k, and ifDk:L(A) < 0,
we should exchange the rows between k and L. In searching for a value of l that
minimizes Dk:l(A), the constraints l ≤ l1 and l ≤ l2 should be exploited to reduce the
search space. In the following summary of the downward exchange scheme, we let P
denote the permutation matrix associated with the permutation vector p.
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Algorithm 3 (down exchanges).
for k = n− 1, n− 2, . . . , 1

L = arg min
k<l≤n

Dk:l(PAPT)

if Dk:l(A) < 0 for some l ∈ L
q = pk; pk:l−1 = pk+1:l; pl = q;

end if
end

end Algorithm 3
Algorithm 3 can be performed in concert with Algorithm 2. That is, right after

making the assignment pk = j in Algorithm 2, we could evaluate the L of Algorithm
2 and make a downward exchange if it is beneficial. This combined mode works since
downward exchanges in the trailing part of the matrix do not change the scores of
unlabeled nodes. This combined mode avoids a second pass over the matrix. For
the experiments reported in section 4, we implement this combined mode; however,
the improvement in the profile connected with the down exchanges is accumulated
and subtracted from the total profile. This allows us to run the code in this more
efficient coupled mode, while tabulating separately the profile improvement due to
the exchanges.

Similar to the downward exchanges, we could perform upward exchanges to im-
prove the profile. For any matrix A and k > l, let Dk:l(A) denote the change in the
profile associated with the interchange of rows k and k− 1, rows k− 1 and k− 2, . . . ,
rows l − 1 and l, and the symmetric interchange of columns. The effect of upward
exchanges is quite different from that of downward exchanges. As an illustration,
consider the 7 by 7 symmetric matrix in Figure 3. Again, a solid black square is
placed over each nonzero corresponding to a frontier node. When row 7 is exchanged
successively with the rows above it, the frontier node in column 7 is moved up to row
1. This increases the profile by 3. At the same time, the frontier nodes in columns
1, 2, 3, and 6, which lie above zeros in row 7, are lowered by one row. The net
decrease in the profile is 1. When the corresponding column interchanges are applied
to the matrix of Figure 3B, symmetry is restored. Since these column exchanges do
not affect the number of frontier nodes in each row, the change in profile deduced in
Figure 3B is correct.

Lemma 3.2. For any l < k ≤ n and for f defined in (1.1), we have

Dk:l(A) =

⎛
⎝ ∑

{j:akj �=0}
max{fj(A)− l, 0}

⎞
⎠− |{j : akj = 0, k > fj(A) ≥ l}|.(3.4)

Proof. As row k is exchanged successively with rows above, the zeros in row k
cause the frontier nodes above them to drop one row lower. The second term in (3.4)
reflects this effect. On the other hand, as row k is exchanged upward, nonzeros in row
k eventually reach the frontier, and each subsequent exchange increases the number of
zeros in the profile by one. The first term in (3.4) reflects the effect of these nonzeros
in row k. To complete the permutation, we perform the corresponding exchange of
the columns. These column exchanges restore symmetry but do not affect the number
of zeros above each frontier node. Hence, this second set of permutations does not
affect the profile.

Let l3 be the largest value of l < k for which∑
akj �=0

max{fj(A)− l, 0} ≥ m2 := |{j : k > fj(A) ≥ 1}|.
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Fig. 3. Upward exchanges in a symmetric matrix.

Since the first term in (3.4) increases as l decreases, and since the second term in
(3.4) is no bigger than m2, we conclude that Dk:l(A) ≥ 0 for all l ≤ l3. Hence, when
searching for the minimum of Dk:l(A) over l < k, we should restrict our attention to
l > l3.

By (3.4) Dk:l(A) is a piecewise linear function of l whose minimum is attained
either at l = k or l = fj(A) for some j. Consequently, to achieve rapid evaluation of
the minimum ofDk:l(A), we should record for each value ofm, the sizes of the level sets

Fm = {j : fj(A) = m},
the same set appearing in Lemma 3.1, and those m for which Fm are nonempty should
be ordered in a linked list. The minimum of Dk:l(A) is achieved, either at l = k or
at one of the m in this list.

Lemma 3.2 can be utilized in an exchange scheme in much the same way that we
utilize Lemma 3.1 in Algorithm 3. However, instead of starting at the bottom of the
matrix and exchanging with rows below, we start at the top of the matrix and exchange
with rows above. In the following summary of the upward exchange scheme, we again
let P denote the permutation matrix associated with the permutation vector p.
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Algorithm 4 (up exchanges).
for k = 2, 3, . . . , n

L = arg min1≤l<k Dk:l(PAPT)
if Dk:l(A) < 0 for some l ∈ L

q = pl; pl:k−1 = pl+1:k; pk = q;
end if

end
end Algorithm 4
The down exchange and up exchange schemes are utilized in a iterative fashion;

we apply Algorithm 3, followed by Algorithm 4, followed by Algorithm 3, and so
on. In practice, there was no significant improvement after a relatively small number
of sweeps, where a sweep denotes a pass through Algorithm 3 followed by a pass
through Algorithm 4. In many cases, there was no improvement at all after 3 sweeps,
while in some cases, there was a small improvement even after 20 sweeps. In the
numerical experiments, we limited the number of sweeps to 5. The execution time of
exchange methods can be reduced, while limiting the possible profile improvement, by
restricting the extent of the adjacent rows that are exchanged. In our experiments, we
did not allow exchanges that went beyond 1000 adjacent row swaps in each exchange
step. Another approach to speed up the exchange process, presented in [25], is to use
a bisection step to determine the rows to exchange.

4. Numerical experiments. In this section, we report on a series of numerical
experiments using three test sets, all found in Timothy Davis’s University of Florida
sparse matrix collection, currently located at

www.cise.ufl.edu/research/sparse/matrices

In particular, we use all 109 matrices in the linear programming test set (most of
David Gay’s linear programming set found originally in Netlib), the 153 symmetric,
nondiagonal matrices in the Harwell-Boeing collection [4], and the 8 symmetric ma-
trices in the NASA test set (matrices which arise in structural engineering problems).

The linear programming test set includes m by n matrices A where m is between
24 and 105,127, with an average value of 3236. The first series of experiments were
based on a set of 14,842 matrices, which we call Test Set 1, constructed in the fol-
lowing way: Using the Chaco partitioning code of Hendrickson and Rothberg [15], we
generated a permutation matrix P designed so that PA(PA)T has as many nonzeros
as possible in diagonal blocks of size roughly k by k where k = 2nnz(A)/m. This
construction arises when one uses block iterative techniques to solve linear program-
ming problems (see [10, 11, 12]). The diagonal blocks generated in this way were used
for the test matrices. These matrices have an average density (fraction of nonzeros)
.45, while their average dimension is 13.1. If the matrices are simply stored as dense
symmetric matrices (only store the upper triangle), the storage requirement would be
3,400,729. Using suitable permutations and profile storage, the storage is reduced by
a factor of more than 2.

Test Set 2 is obtained in the following way: For each of the 109 rectangular
matrices, we form AAT. A matrix with this nonzero pattern arises in interior point
methods as well as in the LP dual active set algorithm. The average density of these
matrices is .11, four times smaller than the density of the matrices in Test Set 1.
The matrices in Test Set 3, the Harwell-Boeing symmetric matrices, have an average
dimension of 2043 and an average density of .03, about four times smaller than the
average density of Test Set 2. The matrices in Test Set 4, the NASA symmetric
matrices, have an average dimension of 15,750, and an average density of .007, about
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Table 1
Profiles, units of 106, for Test Set 1.

w wx m mx r rx s sx x

1.299 1.278 1.303 1.288 1.583 1.313 1.983 1.292 1.272

four times smaller than the average density of Test Set 3. The names of the matrices
in Test Sets 2, 3, and 4 and the nonzero patterns for the matrices in Test Set 1 can
be found at

www.math.ufl.edu/∼hager/papers/profile testsets

We consider the following five methods:
1. Algorithm 2 (weighted greed).
2. Sloan’s method as implemented in Algorithm MC60 from HSL [16] (provided

by John Reid).
3. Reverse Cuthill–McKee algorithm (routine symrcm of Matlab).
4. The spectral method (using Matlab’s eig or eigs routines).
5. Algorithms 3 and 4 (exchange methods).

MC60 allows for several algorithmic modes; supernodes can be exploited, reverse
Cuthill–McKee ordering can be done besides Sloan’s method, a spectral method can
be combined with Sloan’s method by specifying a priority function, and an interface
to a frontal solver is provided. In our experiments, we use simply Sloan’s method
without supernodes (none of the codes in our experiments exploit supernodes). In
the fifth method above, we iterate Algorithms 3 and 4 until either there is no further
improvement in the profile or until we have done 5 iterations. We initially apply
Algorithms 3 and 4 to the given matrix; then we generate a random permutation of
the matrix and repeat Algorithms 3 and 4. We report the best profile gotten after
10 random permutations of the given matrix. Since Algorithms 3 and 4 can be used
to improve the profile of any given matrix, we also applied them to the permuted
matrix generated by each of the first four algorithms. In our experiments, Algorithm
2 nearly always provided a better profile than Algorithm 1; consequently, results for
Algorithm 1 are not given.

In Table 1, we give the total profile for the 14,842 matrices in the first test set.
The column headings are the following:

w – weighted greed, Algorithm 2,
wx – weighted greed followed by Algorithms 3 and 4, the exchange methods,
m – MC60,
mx – MC60 followed by the exchange methods,
r – reverse Cuthill–McKee,
rx – reverse Cuthill–McKee followed by the exchange method,
s – spectral method,
sx – spectral method followed by the exchange methods,
x – apply the exchange methods to the original matrix and 10 permutations of it.

Observe that the smallest profile was gotten by method x, the exchange methods com-
bined with 10 random permutations. The second best profile was gotten by method
wx, the weighted greed/exchange method combination. All the methods received
significant benefit from postprocessing using the exchange methods. The biggest ben-
eficiary was the spectral method, for which the profile improved about 35%.
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Table 2
Unique superiority for Test Set 1.

wx mx rx sx x

45 27 19 80 227

Table 3
Profiles for Test Set 2.

Dim Scale # w wx m mx r rx s sx x

100 103 11 7.1 7.0 7.4 7.2 8.6 7.6 8.8 7.6 6.9

400 105 29 2.2 2.1 2.3 2.1 3.4 2.3 2.9 2.1 2.1

1600 106 40 2.7 2.5 3.0 2.7 4.7 3.1 2.7 2.5 2.7

6400 107 19 2.9 2.8 3.2 3.1 4.4 3.3 4.2 3.0 3.2

25,600 107 7 3.0 2.7 4.6 4.2 14.1 7.7 10.0 5.5 5.9

>25,600 108 3 .6 .6 9.2 8.7 15.8 9.9 11.2 8.8 .9

Although all methods generated the same profile for many of the 14,842 matrices
in the first test set, there were some cases where one method was uniquely superior.
As expected, we see in Table 2 that the exchange method x was more often uniquely
superior than the other methods. Surprisingly, the spectral/exchange combination
sx, ranking fourth in Table 1, was uniquely superior in 80 cases. Although this is a
small number of cases relative to the 14,842 problems, it is significantly larger than
the number of cases for any of the other methods in Table 2.

In order to estimate the deviation between the profiles of Table 1 and the smallest
possible profile, we considered 10,000 random permutations of each matrix. In each
case, we applied Algorithm 3 and 4 and recorded the smallest profile. For these
relatively small matrices, the smallest profile generated from these 10,000 starting
guesses should be very close to the smallest possible profile. In fact, over the entire
set of 14,842 matrices, there were only 14 cases where any of the heuristics generated
a profile strictly better than the best obtained from these 10,000 random starting
guesses, and in these 14 cases, the heuristics yielded a total improvement of just 137.
Hence, we expect that the smallest profile for these 14,842 matrices is very close to
the profile 1,263,882 achieved using the 10,000 random starting guesses. Referring to
Table 1, method x differs from the estimated optimal profile by less than a percent.

In Test Set 2, we apply each of the profile schemes to the matrix AAT associated
with each linear program. In Table 3, the first column indicates the dimension range,
the row scale factor, and the number of matrices. For example, the first row of Table 3
corresponds to a set of 13 matrices whose dimensions lie between 1 and 100, and the
profiles in that row should be multiplied by 103 to obtain the total profile of the 13
matrices in that class. The second row corresponds to a set of 29 matrices of dimension
between 101 and 400, and the profiles in that row should be multiplied by 105. For
the matrices of dimension up to 400, the exchange method x gave the best results. For
larger matrices, weighted greed combined with the exchange methods gave the best
profiles. As the dimension of a matrix increases, the 10 random permutations used in
method x become an increasingly small subset of the total set of permutations.

Running times on a Sun Ultra 10 computer are given in Table 4 for weighted greed,
MC60, and the exchange methods. The time for the exchange method is subdivided
into x3, corresponding to Algorithm 3, and x4, corresponding to Algorithm 4. The
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Table 4
Total running times for Test Set 2.

Dim w wx m mx x3 x4

100 .060 .120 .003 .011 .006 .009
400 .728 1.527 .083 .241 .090 .271

1600 3.222 7.748 .569 2.297 .750 3.603
6400 6.183 23.600 5.530 16.680 4.328 21.264

25,600 9.064 63.460 1.392 48.560 19.136 66.509
>25,600 18.430 157.800 2.684 186.900 648.636 258.818

times for x3 and x4 were the total times of Algorithms 3 and 4 divided by 11 (the
number of permutations including the starting matrix). MC60 is coded in Fortran
while the other algorithms are coded in C. Note that MC60 runs several times faster
than weighted greed. The complexity estimate O(nnz(A)+n log n) for Sloan’s method,
given in [22], when compared to the complexity estimate O(nnz(A) log n) for weighted
greed in Lemma 2.1, also seems to suggest that Sloan’s method should be faster than
our current implementation, which is patterned after the proof of Lemma 2.1. Observe
that when the exchange methods are applied after either weighted greed or Sloan’s
method, overall run time can increase by several factors. Nonetheless, the time to
factor a matrix is often much less than the time used by the exchange method. For
example, Matlab’s built-in Cholesky factorization routine (chol) applied to a matrix
with the same nonzero pattern as that of the eighth NASA problem, skirt, takes 33
secs, compared to .1 secs by MC60 to generate a low profile permutation, and 3.7 secs
for both MC60 and the exchange methods. The combination mx reduces the profile
from 3,766,168 down to 687,730.

Focusing on the times for the exchange methods in Table 4, we note that Algo-
rithm 3 is generally much faster than Algorithm 4. The one exception is the last line
of Table 4. This line corresponds to 3 matrices, and one of these, ken18, dominates
the total time. This matrix, with 105,127 rows, comes from the manufacturer with
a relatively nice row ordering, and a random permutation generates a horrendous
ordering. Algorithm 3, which is the first one to process the permuted matrix, makes
many interchanges while improving the profile. Even though Algorithm 3 is faster
than Algorithm 4, the number of interchanges is so large that the Algorithm 3 time
dominates.

We emphasize that the x3 and x4 times in Table 4 correspond to the exchange
methods applied to a single permuted version of the original matrix (the time was
evaluated by averaging over a set of permutations). It is clear from the times given in
Table 4 that trying to find an optimal profile by randomly permuting the matrix and
improving the profile by exchanges is only appropriate when the matrix is relatively
small.

In Table 5 we give the profiles associated with the Harwell-Boeing test set. These
matrices are generally more structured than the linear programming matrices, and
more sparse. Again, the exchange methods were competitive for dimensions up to
400. Thereafter, the MC60/exchange combination mx or the spectral/exchange com-
bination sx gave the best profiles.

Running times, shown in Table 6, again parallel those of Table 4, with MC60
being the fastest code.

The profiles shown in Table 7 for Test Set 4, the largest and sparsest matrices, were
similar to those of Table 5, with either mx or sx giving the best profiles in each case.
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Table 5
Profiles for Test Set 3.

Dim Scale # w wx m mx r rx s sx x

100 104 19 1.43 1.42 1.32 1.30 1.49 1.32 1.40 1.29 1.34

400 105 31 1.14 1.12 1.05 1.02 1.23 1.05 1.20 1.02 1.08

1600 106 71 2.07 2.00 1.82 1.73 2.36 1.86 2.21 1.88 2.56

6400 106 24 8.28 8.08 5.66 5.55 7.04 6.26 6.16 5.53 9.45

25,600 107 5 4.23 3.98 1.62 1.57 2.36 2.16 2.59 2.00 1.89

>25,600 107 3 8.58 8.52 7.28 7.27 9.91 9.84 5.12 4.54 13.60

Table 6
Total running times for Test Set 3.

Dim w wx m mx x3 x4

100 .121 .247 .006 .021 .012 .026
400 .645 1.328 .051 .161 .053 .245

1600 6.375 15.330 .412 3.808 .927 9.236
6400 6.906 23.260 .717 10.360 2.696 22.191

25,600 7.040 25.300 1.139 15.280 4.222 35.100
>25,600 13.420 41.390 3.324 17.400 6.366 78.282

Table 7
Profiles for Test Set 4.

Dim Scale # w wx m mx r rx s sx x

6400 106 4 2.28 2.26 1.64 1.64 1.89 1.86 1.73 1.48 1.79
25,600 106 2 2.84 2.82 1.34 1.29 1.81 1.67 1.79 1.61 11.23

>25,600 107 2 3.15 3.14 2.41 2.38 2.63 2.55 2.52 2.35 8.18

Table 8
Total running times for Test Set 4.

Dim w wx m mx x3 x4

6400 1.249 2.545 .207 .451 .191 2.143
25,600 2.414 10.950 .199 8.347 2.216 17.627

>25,600 10.700 51.580 1.887 42.670 18.964 81.400

Again, in Table 8, we see that MC60 is significantly faster than the other codes.
These experiments seem to indicate that for matrices in the test suite with di-

mensions up to 400, the best or close to the best profiles are obtained by the exchange
methods applied to a small number of random permutations of the starting matrix.
If the exchange methods are applied after MC60, the profile improves as it must,
but the computing time increases by several factors (at least in our implementation).
By restricting the distance between the rows and columns that are exchanged, the
execution time of the exchange methods is O(nnz(A)). For the matrices AAT as-
sociated with the linear programming test programs, weighted greed combined with
the exchange methods provided the best profiles on average for matrices of dimension
greater than 400. For the Harwell-Boeing and NASA test sets, which are generally
more structured than the linear programming matrices, Sloan’s method was the best
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single method, obtaining the best profile for each class of matrices except for the 3
matrices of dimension greater than 25,600 in Table 5. When the profiles for the sin-
gle methods were further improved using the exchange methods, the combination sx
achieved a better profile than mx in 5 of the 9 matrix classes associated with Tables 5
and 7.
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A WEAKLY OVERLAPPING DOMAIN DECOMPOSITION
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Abstract. We present a new two-level additive Schwarz domain decomposition preconditioner
which is appropriate for use in the parallel finite element solution of elliptic partial differential
equations (PDEs). As with most parallel domain decomposition methods each processor may be
assigned one or more subdomains, and the preconditioner is such that the processors are able to
solve their own subproblem(s) concurrently. The novel feature of the technique proposed here is
that it requires just a single layer of overlap in the elements which make up each subdomain at
each level of refinement, and it is shown that this amount of overlap is sufficient to yield an optimal
preconditioner. Some numerical experiments—posed in both two and three space dimensions—
are included to confirm that the condition number when using the new preconditioner is indeed
independent of the level of mesh refinement on the test problems considered.

Key words. domain decomposition, Schwarz methods, sparse linear systems, finite element
discretization
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1. Introduction. In this paper we introduce a two-level overlapping additive
Schwarz (AS) algorithm which may be applied as an optimal domain decomposition
(DD) preconditioner for the adaptive finite element solution of a variety of second-
order self-adjoint elliptic problems defined on a bounded Lipschitz domain Ω ⊂ R

n

(n = 2, 3). In recent years there has been a great amount of research into DD and
related methods, and we refer to some of the recent survey and review articles, such
as [11, 24, 27, 30, 36, 37], for further details. In particular we note that a number
of the algorithms proposed have been successfully implemented as software (see, for
example, [12, 16, 21]) and many take the form of multiplicative or multilevel methods
(e.g., [3, 8, 10, 15, 38]). Furthermore, by viewing these iterative techniques in terms of
subspace corrections it is possible to develop a unified theory for a variety of algorithms
and so, although this paper mainly discusses a two-level AS approach, it is certainly
possible to generalize this to a multiplicative or a multilevel variant. This is briefly
considered in section 6.

Although the work in this paper applies in both two and three dimensions, the
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first four sections consider the following model problem in just two dimensions so
as to simplify the explanations and illustrations provided. In section 5 the ideas
presented are then generalized to three dimensions. It should also be noted that the
ideas presented may also be applied to a wider variety of boundary conditions than
the zero Dirichlet conditions imposed here for simplicity.

Problem 1.1. Find u ∈ H1
0(Ω) such that

A(u, v) = F(v) ∀v ∈ H1
0(Ω),(1.1)

where Ω ⊂ R
2 is the problem domain and

H1
0(Ω) = {u ∈ H1(Ω) : u|∂ΩE = 0}.(1.2)

Here ∂ΩE is a closed, nonempty subset of the boundary, ∂Ω, upon which zero
Dirichlet boundary conditions are imposed and A(·, ·) and F(·) are the bilinear and
linear forms

A(u, v) =
∫

Ω

(P (x)∇u) · ∇v dx and F(v) =
∫

Ω

fv dx+

∫
∂ΩN

gv ds,(1.3)

where P (x) is bounded, symmetric, and strictly positive-definite, and ∂ΩN = ∂Ω −
∂ΩE is the part of the boundary subject to Neumann boundary conditions: n ·
(P (x)∇u) = g(x).

The Galerkin finite element method for the solution of (1.1) requires a triangula-
tion, T h say, of Ω to be produced so that one may define a piecewise polynomial space
of trial functions, Vh say, on T h. Further details of the construction of this triangu-
lation are given in the following sections and, for the sake of clarity, we consider only
continuous piecewise linear finite element spaces on T h throughout the rest of this
paper. Section 2 also provides background on the relevant theoretical and practical
details of AS preconditioning that are required for section 3. This section introduces
details of the DD preconditioner that we propose and presents a detailed analysis
of its convergence properties. In the analysis it is demonstrated that it is possible
to obtain an optimal preconditioner (i.e., with condition number independent of the
mesh size and the number and size of the subdomains) with an overlap of just one el-
ement at each level of a mesh hierarchy. This is the main result of the paper. Finally,
sections 4 and 5 present a small number of numerical examples using the proposed
DD preconditioner for two- and three-dimensional problems, respectively. The paper
concludes with a brief discussion of possible extensions and applications of this work.

2. Background. In order to approximate the solution of (1.1) from the finite-
dimensional space Vh (of continuous piecewise linears on T h (where h is the diameter
of the largest triangle)), it is necessary to solve the following discrete problem.

Problem 2.1. Find uh ∈ Vh ∩H1
0(Ω) such that

A(uh, vh) = F(vh) ∀vh ∈ Vh ∩H1
0(Ω).(2.1)

This is achieved by choosing a basis for Vh and expressing the problem as a matrix
equation:

Au = b.(2.2)

For the usual, local, choice of basis the stiffness matrix A is sparse, symmetric, and
strictly positive-definite, and so an iterative solution method, such as the conjugate
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gradient (CG) algorithm (e.g., [2, 17]), is most appropriate. However, it is well known
that when the triangulation T h is uniformly refined, the condition number of A grows
like O(h−2) as h→ 0 (see [23], for example); hence it is necessary to apply a precon-
ditioned version of the CG algorithm for realistic mesh sizes h.

In this work we consider the use of AS preconditioning (e.g., [14, 13, 18, 25, 28,
33]), which is suitable for use with both nonuniformly refined meshes and parallel
computer architectures. Let us define V = Vh ∩ H1

0(Ω) to be the trial and test
space in (2.1) and assume that the triangulation T h may be obtained by the uniform
refinement of some coarser triangulation, T H say, of the domain Ω, where V0 is the
corresponding piecewise linear finite element space, VH ∩H1

0(Ω), defined on T H .
Having introduced a coarse mesh T H it is now possible to decompose Ω into (pos-

sibly overlapping) subdomains, Ω1, . . . ,Ωp say, which are each the union of triangles
in T H . We now define the spaces H1

0(Ωi) ⊂ L2(Ω) for i = 1, . . . , p to be the extensions
of H1(Ωi) for which

u(x) = 0 ∀x ∈ (Ω− Ωi) ∪ ∂ΩE ,(2.3)

and the corresponding finite-dimensional spaces Vi = Vh ∩ H1
0(Ωi). Note that these

local spaces, Vi, form a decomposition of the finite element space V:

V =
p∑
i=1

Vi.(2.4)

Thus, for each v ∈ V, there exists a (not necessarily unique) combination of vi ∈ Vi
(i = 1, . . . , p) such that v =

∑p
i=1 vi.

Given any space decomposition of the form (2.4), the AS algorithm defines a
preconditioner, B, for A in (2.2) in the following manner. Let Qi be the projection
from V to Vi (for i = 1, . . . , p) given by

∫
Ω

(Qiu)vi dx =

∫
Ω

uvi dx ∀u ∈ V, vi ∈ Vi,(2.5)

and define Ai to be the restriction of A to Vi × Vi given by

Ai(ui, vi) = A(ui, vi) ∀ui, vi ∈ Vi.(2.6)

Note that (given the usual finite element bases for V and Vi) Qi may be expressed
as a rectangular matrix, Qi say, and a local stiffness matrix, Ai say, may be derived
from Ai (in the same way that the global stiffness matrix A is derived from A above).
The AS (parallel subspace correction) preconditioner for (2.2) is then given by

B =

p∑
i=1

Q
T

i A
−1
i Qi.(2.7)

Note that each of the subdomain solves (A−1
i ri), required when solving the system

B−1s = r at each preconditioned CG iteration, may be performed concurrently and,
for simplicity, we will assume for now that all such subdomain solves are exact.

The following theorem, which is proved in [36], for example (or see [30] for a
slightly more general form), provides the main theoretical justification for considering
preconditioners of the form (2.7).
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Theorem 2.1. The matrix B defined by (2.7) is symmetric and positive-definite.
Furthermore, if we assume that there is some constant C > 0 such that for all v ∈ V
there are vi ∈ Vi such that v =

∑p
i=1 vi and

p∑
i=1

Ai(vi, vi) ≤ CA(v, v),(2.8)

then the spectral condition number of BA is given by

κ(BA) ≤ νcC,(2.9)

where νc is the minimum number of colors required to color the subdomains Ωi in such
a way that no neighbors are the same color.

This result demonstrates that the quality of any AS preconditioner depends only
upon the stability of the splitting of V into subspaces Vi. In particular, if the splitting
is such that (2.8) holds with C independent of h, H, or p, then the preconditioner is
said to be optimal.

Unfortunately, the decomposition described in (2.3) to (2.4) does not permit such
a choice of C since it is entirely local in nature, and so significant reductions in the
low-frequency error components can require many preconditioned CG iterations. This
is easily rectified, however, by the introduction of an extra, coarse grid, term in the
preconditioner (2.7):

B =

p∑
i=0

Q
T

i A
−1
i Qi.(2.10)

Here Q0 is another rectangular matrix corresponding to the L2 projection, Q0 say,
from V to the coarse grid space V0, given by∫

Ω

(Q0u)v0 dx =

∫
Ω

uv0 dx ∀u ∈ V, v0 ∈ V0,(2.11)

and A0 is the stiffness matrix derived from A0, the restriction of A to V0 × V0 given
by

A0(u0, v0) = A(u0, v0) ∀u0, v0 ∈ V0.(2.12)

The following result is also proved in [30] and [36] and applies to the new two-level
preconditioner defined in (2.10).

Theorem 2.2. Provided the overlap between the subdomains Ωi is of size O(H),
where H represents the mesh size of T H , then there exists C > 0, which is independent
of h, H, and p, such that for any v ∈ V there are vi ∈ Vi such that v =

∑p
i=0 vi and

p∑
i=0

Ai(vi, vi) ≤ CA(v, v).(2.13)

The above result demonstrates that, provided a coarse-grid solve is undertaken
and there is a “generous” overlap between the subdomains, the AS technique may
indeed be used to achieve optimal preconditioning. It should be noted, however, that
these two provisos do raise important practical concerns over the efficiency of such



A WEAKLY OVERLAPPING DOMAIN DECOMPOSITION METHOD 1821

a preconditioner. For example, the solution of the coarse-grid problem is hard to
achieve in parallel and so care must be taken when developing parallel software to
ensure that this does not become a significant bottleneck. More importantly, however,
the fixed O(H) overlap that is required between the subdomains means that as the
mesh T h is refined (assuming uniform global refinement for simplicity), the number of
elements of T h in the overlap regions is O(h−2) as h→ 0. This represents a significant
computational overhead when h becomes small.

In practice the usual way in which this second issue is addressed (see, for example,
[30]) is to drop the optimality requirement and allow subdomains only to overlap by
a small, fixed number of fine element layers. In the following section we address this
issue in a different manner by proposing a new two-level optimal AS preconditioner of
the form (2.10), which requires substantially fewer elements in the overlap region as
T h is refined (O(h−1) as h→ 0 as opposed to O(h−2)). This is achieved by considering
a hierarchy of meshes between T H and T h, each defined by a single level of refinement
of its predecessor. While the total overlap between the subdomains remains O(H) in
size, at each level of the mesh hierarchy the overlap is the width of just one element.
This is illustrated in Figure 1, which shows an overlap of size H in two cases: the
first with a uniformly refined mesh in the overlap region, and the second with a mesh
which is refined into the overlap region to a width of just one element at each level of
the mesh hierarchy.

Fig. 1. A comparison between a mesh which is uniformly refined in the overlap region (left)
and one that is nonuniformly refined in the overlap region (right).

3. A new preconditioner. In order to describe the DD preconditioner that we
propose in this section it is necessary to begin by establishing some notation. We
will again consider (1.1) to (1.3) as a test problem, maintaining the zero Dirichlet
boundary conditions for simplicity. Many of the technical details that follow are
concerned with ensuring that both the method itself and the analysis that follows are
completely general with respect to the domain geometry and how it is decomposed.
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Fig. 2. The model example, illustrating a regular Cartesian product decomposition of a simple
rectangular domain: coarse grid T0 (left) and uniformly refined grid T2 (right).

On first reading, however, it might be more straightforward to visualize the ideas
presented by considering a less than general situation. For this reason we also provide
a specific model example using a uniformly refined rectangular domain with a regular
Cartesian product decomposition (see Figure 2).

Let T0 be a coarse triangulation of Ω consisting of N0 triangular elements, τ
(0)
j ,

such that τ
(0)
j = τ

(0)
j ,

Ω =

N0⋃
j=1

τ
(0)
j and T0 = {τ (0)

j }N0
j=1.(3.1)

Also let diameter(τ
(0)
j ) = O(H) (so this triangulation could also be referred to as

T H in the notation of the previous section), and divide Ω into p nonoverlapping
subdomains Ωi. These subdomains should be such that

Ω =

p⋃
i=1

Ωi,(3.2)

Ωi ∩ Ωj = φ (i �= j),(3.3)

Ωi =
⋃
j∈Ii

τ
(0)
j , where Ii ⊂ {1, . . . , N0} (Ii �= φ).(3.4)

We now permit T0 to be refined several times to produce a family of triangulations,
T0, . . . , TJ , where each triangulation, Tk, consists of Nk elements, τ

(k)
j , such that

Ω =

Nk⋃
j=1

τ
(k)
j and Tk = {τ (k)

j }Nkj=1.(3.5)

The successive mesh refinements that define this sequence of triangulations need not
be global and may be nonconforming; however, we do require that they satisfy a
number of conditions, as in [9], for example:



A WEAKLY OVERLAPPING DOMAIN DECOMPOSITION METHOD 1823

1. τ ∈ Tk+1 implies that either
(a) τ ∈ Tk, or
(b) τ has been generated as a refinement of an element of Tk into four similar

children;
2. the level of any triangles which share a common point can differ by at most

one;
3. only triangles at level k may be refined in the transition from Tk to Tk+1.

(Here the level of a triangle is defined to be the least value of k for which that triangle
is an element of Tk.)

In addition to the above we will also require that
4. in the final mesh, TJ , all pairs of triangles on either side of the boundary of

each subdomain Ωi have the same level as each other.
Note that Figure 2 shows a simple example of such a nested sequence of triangulations
for J = 2. In this case every triangle in T2 is a level 2 triangle and the number of
subdomains, p, is 16.

Having defined a decomposition of Ω into subdomains and a nested sequence of
triangulations of Ω we next define the restrictions of each of these triangulations onto
each subdomain by

Ωi,k = {τ (k)
j : τ

(k)
j ⊂ Ωi}.(3.6)

In order to introduce a certain amount of overlap between neighboring subdomains
we also define

Ω̃i,k = {τ (k)
j : τ

(k)
j has a common point with Ωi}.(3.7)

Following this we introduce the finite element spaces associated with these local trian-
gulations. Let G be some triangulation, and denote by S(G) the space of continuous
piecewise linear functions on G. Then we can make the following definitions:

W = S(TJ),(3.8)

W0 = S(T0),(3.9)

Wi,k = S(Ωi,k),(3.10)

W̃i,k = S(Ω̃i,k),(3.11)

W̃i = W̃i,0 + · · ·+ W̃i,J .(3.12)

It is evident that

W =W0 + W̃1 + · · ·+ W̃p,(3.13)

and this is the decomposition that we propose for the two-level AS preconditioner
of the form (2.10). Figure 3 illustrates the meshes Ω̃i,k that are the basis for the
decomposition (3.13) in the case of our regularly decomposed model problem (where
i is the number of the top left subdomain and k = 0, 1, and 2).

In order to prove that this preconditioner is optimal Theorem 2.1 demonstrates
that it is sufficient, given any uh ∈ W, to provide a construction for uh0 ∈ W0 and
uhi ∈ W̃i (i = 1, . . . , p) such that

uh =

p∑
i=0

uhi(3.14)
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Fig. 3. An illustration of Ω̃i,0 (left), Ω̃i,1 (center), and Ω̃i,2 (right), where subdomain i is the
top left subdomain of Figure 2.

and

p∑
i=0

Ai(uhi , uhi ) ≤ CA(uhi , uhi )(3.15)

for some C > 0 which is independent of h, H, and p. To allow such a construction to
be produced it is necessary first to introduce some further notation and then to prove
a preliminary lemma, following an approach similar to that used in [19, 20, 26].

Given the set of nonoverlapping subdomains Ωi we define a coloring of the Ωi
such that no neighboring subdomains are the same color and that the boundary of
each subdomain of color m should have no isolated points in common with the union
of the boundary of all subdomains of color 1 to m − 1. Let the number of colors
required be nc, which we assume is independent of h, H, and p (although it may be
slightly different to νc appearing in Theorem 2.1). Figure 4 illustrates an example
of a suitable coloring (with nc = 4) for the subdomains defined in Figure 2. It also
illustrates a second example, which violates the restriction that each subdomain of
color m should have no isolated points in common with the union of the boundary of
subdomains of lower-numbered colors.

1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 4. Examples of a valid (left) and an invalid (right) coloring of the subdomains used in the
example of Figure 2. The points marked with an X are isolated points on the boundary of subdomains
of color 2 that are also on the boundary of subdomains of color 1.
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Having introduced an appropriate coloring of the subdomains, let c(m) denote
the set of indices of those subdomains of color m (for m = 1, . . . , nc). We may now
define

∂Ωi = the boundary of Ωi,(3.16)

Ωc(m) =
⋃

i∈c(m)

Ωi,(3.17)

∂Ωc(m) = the boundary of Ωc(m)(3.18)

and, for each i ∈ c(m) (m = 1, . . . , nc),

Γi = ∂ΩE
⋃(

∂Ωi
⋂(

m−1⋃
n=1

∂Ωc(n)

))
.(3.19)

Figure 5 illustrates these sets Γi for our regularly decomposed model problem and
the valid coloring shown in Figure 4. Furthermore, with this definition of Γi, it is
possible to introduce three more finite element spaces, Wi,k,0, Ŵi,k, and Ŵi, which

are subspaces of Wi,k, W̃i,k, and W̃i, respectively:

Wi,k,0 = {uhi ∈ Wi,k : u
h
i (x) = 0 ∀x ∈ Γi},(3.20)

Ŵi,k = S(Ω̂i,k),(3.21)

and

Ŵi = Ŵi,0 + · · ·+ Ŵi,J ,(3.22)

where

Ω̂i,k =



⋃
j

τ
(k)
j : τ

(k)
j has a common point with Ωi − Γi


 .(3.23)

Also, let Ω̂i be the subset of Ω which is covered by the triangulation Ω̂i,0. Figure 6

illustrates the meshes Ω̂i,k for one specific choice of i using the first coloring shown
in Figure 4. Note that this construction is such that overlap from subdomain i is
only allowed to occur into subdomains with a larger-numbered color than the color
of subdomain i; see Figure 5.

We are now ready to define a mechanism for extending an arbitrary function
whi ∈ Wi,J,0 to Ŵi, as follows. In defining this mechanism, we note that the vertices

of Ω̂i,k − Ωi,k are easily identified in the example shown in Figure 6.
Algorithm 3.1. Let whi ∈ Wi,J,0. Let Qi,k : L2(Ωi) → Wi,k,0 be the usual L2

orthogonal projection onto Wi,k,0 and define

vhi,0 = Qi,0w
h
i and vhi,k = (Qi,k −Qi,k−1)w

h
i for k = 1, . . . , J.(3.24)

Now denote by v̂hi,k ∈ Ŵi,k the extension of v
h
i,k which is zero at all vertices of Ω̂i,k −

Ωi,k, so it easily follows that

‖v̂hi,k‖2L2(Ω̂i,k)
≤ C0‖vhi,k‖2L2(Ωi)

(3.25)
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1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4

C

B

A

D

Fig. 5. An illustration of Γi for the valid coloring shown in Figure 4: line A is ∪i∈c(1)Γi ∩Ωi;
line B is ∪i∈c(2)Γi ∩ Ωi; line C is ∪i∈c(3)Γi ∩ Ωi; line D is ∪i∈c(4)Γi ∩ Ωi.

Fig. 6. An illustration of Ω̂i,0 (left), Ω̂i,1 (center), and Ω̂i,2 (right), where subdomain i is the
subdomain in the top row and second column of Figures 2 and 5 (i.e., of color number 2).

for some C0 > 0, which is independent of h, H, and p. We are now in a position to
define

v̂hi = v̂hi,0 + · · ·+ v̂hi,J ,(3.26)

which is the required local extension of whi ∈ Wi,J,0 to Ŵi.

Lemma 3.1. Given whi ∈ Wi,J,0 let v̂hi ∈ Ŵi be the extension of whi defined by
Algorithm 3.1 above. Then there exists C1 > 0, which is independent of h, H, and p,
such that

‖v̂hi ‖2H1(Ω̂i)
≤ C1

{
1

H2
‖whi ‖2L2(Ωi)

+ |whi |2H1(Ωi)

}
.(3.27)

Proof. First we introduce the following change of variables:

x = H s, y = H t ; (x, y) ∈ Ωi.(3.28)

Under this transformation the domain Ωi is the image of a domain Ω
′
i whose geometric

properties are independent of H in the (s, t) plane. Furthermore

1

H2
‖whi (x, y)‖2L2(Ωi)

+ |whi (x, y)|2H1(Ωi)
= ‖whi (s, t)‖2L2(Ω′

i)
+ |whi (s, t)|2H1(Ω′

i)
,(3.29)



A WEAKLY OVERLAPPING DOMAIN DECOMPOSITION METHOD 1827

and we may define by Q′
i,k the projection in the (s, t) variables which corresponds to

Qi,k. From [9] it follows that there exists C2 > 0, which is independent of h, H, and
p, such that

1

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

=
1

H2

(
‖Qi,0whi (x, y)‖2L2(Ωi)

+

J∑
k=1

4k‖(Qi,k −Qi,k−1)w
h
i (x, y)‖2L2(Ωi)

)

= ‖Q′
i,0w

h
i (s, t)‖2L2(Ω′

i)
+

J∑
k=1

4k‖(Q′
i,k −Q′

i,k−1)w
h
i (s, t)‖2L2(Ω′

i)

≤ C2‖whi (s, t)‖2H1(Ω′
i)

= C2

(
1

H2
‖whi (x, y)‖2L2(Ωi)

+ |whi (x, y)|2H1(Ωi)

)
.(3.30)

A second inequality that we require comes from [26], where it is shown that there
exists C3 > 0, which is independent of h, H, and p, such that

‖v̂hi (x, y)‖2H1(Ω̂i)
= H2‖v̂hi (s, t)‖2L2(Ω̂′

i)
+ |v̂hi (s, t)|2H1(Ω̂′

i)

≤ C3 inf
v̂h
i

=ξ̂0+···+ξ̂J
(ξ̂k∈Ŵ′

i,k
)

J∑
k=0

4k‖ξ̂k‖2L2(Ω̂′
i)
,(3.31)

where Ŵ ′
i,k is the space which corresponds to Ŵi,k with the change of variables (3.28).

From this, along with (3.25) and (3.30), it follows that

‖v̂hi (x, y)‖2H1(Ω̂i)
≤ C3

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂′
i)

=
C3

H2

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂i,k)

≤ C0C3

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

≤ C0C2C3

(
1

H2
‖whi ‖2L2(Ωi)

+ |whi |2H1(Ωi)

)
,(3.32)

as required.
This lemma forms the main component of our proof that the proposed splitting

is stable. The following theorem completes this proof by explicitly constructing a
suitable decomposition of any uh ∈ W. It should be noted that the proof of the
theorem holds for an arbitrary partition of Ω into subdomains Ωi and could certainly
be simplified if less general partitions (e.g., into strips or regular blocks) were consid-
ered. For the completely general case it is necessary to introduce a small amount of
additional notation. For m ∈ {1, . . . , nc} let

W(m)
0 =

{
uH ∈ W0 : u

H(x) = 0 ∀x ∈
m−1⋃
n=1

Ωc(n)

}
(3.33)
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and let Q
(m)
0 : L2(Ω)→W(m)

0 be the L2 orthogonal projection onto W(m)
0 given by

∫
Ω

(Q
(m)
0 u)w

(m)
0 dx =

∫
Ω

uw
(m)
0 dx ∀w(m)

0 ∈ W(m)
0 .(3.34)

Hence, by the H1 stability of the L2 projection we have

‖Q(m)
0 uh‖H1(Ω) ≤ C4‖uh‖H1(Ω),(3.35)

and using standard finite element interpolation estimates we have

1

H
‖uh −Q

(m)
0 uh‖L2(Ω) + |uh −Q

(m)
0 uh|H1(Ω) ≤ C4‖uh‖H1(Ω)(3.36)

for some C4 > 0, which is independent of h, H, and p. (Note that in the case m = 1,

W(1)
0 =W0 and Q

(1)
0 = Q0 as defined in section 2 above.)

Theorem 3.2. There exists C > 0, which is independent of h, H, and p, such
that for any uh ∈ W there are uH ∈ W0 and ui ∈ W̃i (i = 1, . . . , p) such that

uh = uH + uh1 + · · ·+ uhp(3.37)

and

‖uH‖2H1(Ω) + ‖uh1‖2H1(Ω) + · · ·+ ‖uhp‖2H1(Ω) ≤ C‖uh‖2H1(Ω).(3.38)

Proof. Given any uh ∈ W, we now construct functions uH ∈ W0 and uhi ∈ Ŵi ⊂
W̃i (for i = 1, . . . , p) such that (3.37) and (3.38) are satisfied.

Let rh1 = uh.

Let uH1 = Q
(1)
0 rh1 .

Let wh1 = rh1 − uH1 .

Let [wh1 ]Ωi be the restriction of w
h
1 to Ωi.

For each i ∈ c(1):

use Algorithm 3.1 to define uhi ∈ Ŵi to be the extension of [w
h
1 ]Ωi .

For m = 2 to nc.

Let rhm = whm−1 −
∑
j∈c(m−1) u

h
j (hence r

h
m(x) = 0 for all x ∈ ⋃m−1

n=1 Ωc(n)).

Let uHm = Q
(m)
0 rhm.

Let whm = rhm − uHm.

Let [whm]Ωi be the restriction of w
h
m to Ωi (hence [w

h
m]Ωi ∈ Wi,J,0).

For each i ∈ c(m):

use Algorithm 3.1 to define uhi ∈ Ŵi to be the extension of [w
h
m]Ωi .

Let uH = uH1 + · · ·+ uHnc .

Note that in the above definitions, when i ∈ c(nc) the functions ui are just the
restrictions of whnc to Ωi since the extension operation is just the identity in this case

(because Γi = ∂Ωi for i ∈ c(nc) and so Ω̂i,k = Ωi,k and Ŵi,k =Wi,k for k = 1, . . . , J).
For these definitions of uH and uhi (for i = 1, . . . , p) we now prove that (3.37) and
(3.38) both hold.
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To prove (3.37) first let x ∈ Ωi for i ∈ c(1). Then

uH + uh1 + · · ·+ uhp =

nc∑
n=1

uHn (x) +

p∑
j=1

uhj (x)

= uH1 (x) + uhi (x)

= uH1 (x) + wh1 (x)

= rh1

= uh.

Now let x ∈ Ωi for i ∈ c(m) for any m ∈ {2, . . . , nc}. Then

uH + uh1 + · · ·+ uhp =

nc∑
n=1

uHn (x) +

p∑
j=1

uhj (x)

=

m∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)




=
m−1∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ uHm(x) + uhi (x)

=
m−1∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ uHm(x) + whm(x)

=

m−1∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ rhm(x)

=
m−1∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ rhm−1(x)− uHm−1(x)−

∑
j∈c(m−1)

uhj

=

m−2∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ rhm−1(x)

=
m−3∑
n=1


uHn (x) +

∑
j∈c(n)

uhj (x)


+ rhm−2(x)

= :

=


uH1 (x) +

∑
j∈c(1)

uhj (x)


+ rh2 (x)

= rh1

= uh.

Finally, we observe that if x is on the boundary between two or more subdomains,
then the above argument may be applied to the subdomain of the lowest color to show
that uH +uh1 + · · ·+uhp = uh at this point too. (This argument uses the continuity of

each whm and the fact that whm(x) = 0 for each subdomainm whose boundary contains
x, except the one with the lowest color.)
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To conclude the proof we now demonstrate that (3.38) also holds. In order to do
this, first note that since ∪ncm=1c(m) = {1, . . . , p} and uH =

∑nc
m=1 u

H
m,

‖uH‖2H1(Ω) + ‖uh1‖2H1(Ω) + · · ·+ ‖uhp‖2H1(Ω) ≤
nc∑
m=1


‖uHm‖2H1(Ω) +

∑
i∈c(m)

‖uhi ‖2H1(Ω)


 .

(3.39)

Hence, since nc is assumed to be independent of h, H, and p, it is sufficient to show
that

‖uHm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω) ≤ C‖uh‖2H1(Ω)(3.40)

for some C which is independent of h, H, and p, and any m ∈ {1, . . . , nc}. Let the
quantity on the left-hand side of (3.40) be Sm. Then

Sm = ‖uHm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω̂i)

(since uhi ∈ Ŵi)

≤ C4‖rhm‖2H1(Ω) +
∑

i∈c(m)

‖uhi ‖2H1(Ω̂i)

(using (3.35))

≤ C4‖rhm‖2H1(Ω) + C1

∑
i∈c(m)

{
1

H2
‖whm‖2L2(Ωi)

+ |whm|2H1(Ωi)

}

(using Lemma 3.1)

≤ C4‖rhm‖2H1(Ω) + C1C
2
4

∑
i∈c(m)

‖rhm‖2H1(Ωi)

(using (3.36))

= C4‖rhm‖2H1(Ω) + C1C
2
4‖rhm‖2H1(Ω)

= C5‖rhm‖2H1(Ω).(3.41)

Clearly if m = 1, then rhm = uh and we are done. Otherwise note that

Sm ≤ C5‖rhm‖2H1(Ω)

≤ C5

(
‖rhm−1‖2H1(Ω) + Sm−1

)

≤ C5

(
‖rhm−1‖2H1(Ω) + C5‖rhm−1‖2H1(Ω)

)
(using the same argument as in (3.41) above)

= C6‖rhm−1‖2H1(Ω)

≤ C7‖rh1‖2H1(Ω)

(repeating this argument m− 2 further times)
= C7‖uh‖2H1(Ω),

as required.
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Having demonstrated that the splitting given by (3.13) is stable it is now a simple
matter to invoke Theorem 2.1 (with νc replaced by νc + 1 to take into account the
coarse grid space W0) and the equivalence of the norm A(·, ·)1/2 with the H1 norm
to deduce that the corresponding AS preconditioner is optimal.

The results of this section show that, in two dimensions, it is possible to obtain
an optimal two-level AS preconditioner with an overlap which contains O(h−1) ele-
ments only, provided appropriate use is made of the mesh hierarchy. While the proofs
developed here are fully general in terms of subdomain shapes and connectivity a
simple, more regular example has also been included for illustrative purposes. In
contrasting these results with more standard theoretical results (as in the following
section), which require O(h−2) elements in the overlap regions for optimality, a num-
ber of practical points should be noted. First, as described in [30], for example, the
standard two-level AS method does not use a generous overlap in practice. Typically,
two to four fine mesh layers are found to be most economical. It follows, therefore,
that the weakly overlapping approach that we have analyzed will not generally be
any less (or more) computationally expensive per iteration than standard two-level
AS solvers. What our approach does offer, however, is the guarantee of optimality,
which does not hold when only a fixed number of fine grid layers of overlap are used.
Furthermore, the communication cost at each iteration is O(h−1) in both cases, and
the weakly overlapping approach has the added simplicity of not requiring any trade-
off between cost per iteration (i.e., overlap size) and the total iteration count to be
considered. Second, when the weakly overlapping approach is applied to an arbitrary
decomposition of Ω, the fact that only a single layer of overlap is required at each
mesh level makes its implementation extremely straightforward. This is arguably less
complex than the implementation of a more standard approach where four (say) layers
of elements are required in the overlap, which can be quite cumbersome to calculate
on a geometrically complex decomposition.

4. Numerical examples. In this section we present a small number of two-
dimensional numerical examples which demonstrate the efficiency of the precondi-
tioner introduced above. For these examples we make a slight modification to the
preconditioner so as to allow the practical parallel generation of the partitioned hier-
archical meshes that are required.

In this modified algorithm, once the coarse mesh T0 has been partitioned into the
p nonoverlapping subdomains, Ωi, p copies of it are made. Copy i is then refined only
in Ω̃i,k at level k of the refinement process. The continuous piecewise linear finite
element spaces on the resulting meshes are then

Ui =W0 ∪ W̃i(4.1)

for i = 1, . . . , p. The following corollary follows immediately from Theorem 3.2.

Corollary 4.1. Let the spaces Ui be given by (4.1) for i = 1, . . . , p. Then

W = U1 + · · ·+ Up(4.2)

is also a stable decomposition.

The advantages of this approach are outlined in some detail in [4], where it is
shown that parallel adaptive mesh generation may be achieved in a well load-balanced
manner. The main disadvantage is that one is effectively completing a coarse-mesh
solve as part of each subspace correction (i.e., p times per iteration) rather than
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once per iteration. However, in many practical parallel codes (e.g., [22]) the coarse-
grid solve is completed sequentially on a single processor anyway, so the overhead of
repeating it on all p processors simultaneously is not necessarily that great.

The other minor practical modification that we have made to the preconditioner
outlined in the previous section comes from the use of transition (sometimes known as
“green” [29]) elements in our meshes in order to keep them conforming. In Figure 1
it may be observed that there are a number of “slave” nodes in the nonuniformly
refined mesh which cause the mesh shown to be nonconforming. The solution values
at these nodes are not free: they are determined by the nodal values at the ends of
the edges on which the slave nodes lie. For a practical implementation it turns out
to be much simpler to allow the solution values at these nodes to be free by bisecting
the element on the unrefined side of the edge that has the “hanging” node on it. This
is the approach that is used in the examples below.

For the first two test problems considered, sequences of uniformly refined meshes,
Tk, have been used.

Problem 4.1.

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1),
u = g ∀x ∈ ∂Ω.

Problem 4.2.

−∇ ·
((

102 0
0 1

)
∇u
)

= f ∀x ∈ Ω ≡ (0, 1)× (0, 1),
u = g ∀x ∈ ∂Ω.

In each case f has been chosen to permit the exact solution u = g for a quadratic
choice of g.

Tables 1 and 2 show the number of iterations required by both the conventional
optimal (as defined by (2.10) and Theorem 2.2) and the new two-level AS precon-
ditioners in order to reduce the 2-norm of the initial residual by a factor of 106 for
these two problems, respectively. In each case a 256-element coarse mesh has been
used and the final fine grids have between 4096 and 1,048,576 elements. The number
of subdomains goes from 2 to 16, and for the purposes of these comparisons the local
solves on each subproblem are exact (see below for a discussion of this).

Inspection of these tables shows that there is very little to choose between the
number of iterations required by the conventional optimal AS preconditioner, with
O(h−2) elements in the overlap regions, and the new preconditioner, with just O(h−1)
elements in the overlap regions. This is an important observation since it indicates
that the splitting constant, C, is of approximately the same size for the new splitting
as for the conventional two-level splitting with a generous overlap. Indeed, it is
the significance of this observation that motivates our comparison between the two
approaches. Full details of the practical parallel implementation of the preconditioners
is beyond the scope of this paper (see [5] for a complete description of our parallel
implementation). Nevertheless, the relative timings when using one subdomain per
processor are also included in Tables 1 and 2 in order to illustrate the advantages of
the weakly overlapping approach. It is noticeable that the significant reduction in the
size of the subproblems that must be solved at each iteration of the new algorithm,
due to the smaller number of elements in the overlap region, clearly leads to a reduced
parallel solution time. Not surprisingly, this reduction becomes more significant the
more the mesh is refined.
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Table 1
The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the two different AS preconditioners when solving Problem 4.1 using piecewise linear finite
elements. Column 4 shows the relative speed of the new versus the conventional optimal two-level
preconditioner.

Fine mesh Conventional AS New AS CPU ratio p

4096 6 6 1.0
16384 6 6 0.85
65536 6 6 0.57 2
262144 6 6 0.47
1048576 6 6 0.35
4096 8 9 1.0
16384 8 8 0.65
65536 8 8 0.56 4
262144 8 7 0.42
1048576 8 7 0.27
4096 13 12 0.88
16384 13 12 0.68
65536 12 12 0.52 8
262144 11 11 0.36
1048576 11 11 0.29
4096 14 14 0.73
16384 14 13 0.58
65536 14 13 0.44 16
262144 14 12 0.30
1048576 13 12 0.25

Table 2
The number of iterations required to reduce the 2-norm of the residual by a factor of 106

using the two different AS preconditioners when solving Problem 4.2 using piecewise linear finite
elements. Column 4 shows the relative speed of the new versus the conventional optimal two-level
preconditioner.

Fine mesh Conventional AS New AS CPU ratio p

4096 7 8 1.0
16384 7 8 0.82
65536 7 8 0.69 2
262144 7 8 0.49
1048576 7 8 0.46
4096 11 12 1.0
16384 12 13 0.74
65536 12 13 0.66 4
262144 11 12 0.50
1048576 10 12 0.30
4096 14 15 0.90
16384 14 16 0.67
65536 13 16 0.65 8
262144 13 17 0.53
1048576 13 17 0.39
4096 18 19 0.71
16384 18 19 0.60
65536 19 20 0.58 16
262144 18 21 0.41
1048576 18 21 0.31
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It should also be noted at this point that the results of Tables 1 and 2 do show
an increase in the number of iterations required as p, the number of subdomains, is
increased (for both versions of the algorithm). This may be accounted for by the fact
that nc increases as p increases from 2 to 8, and that for the relatively small values
of p considered here (up to p = 16) the asymptotic limit has not yet been reached,
even though nc is at most 5 in all cases. It may be observed, however, that the
growth in the number of iterations as p increases is already beginning to slow down
as p goes from 8 to 16. Also, the iteration counts for Problem 4.2 are greater than
those for corresponding solutions of Problem 4.1. This may be accounted for in the
theory of the previous section by noting that the norm equivalence A(·, ·)1/2 ∼ H1

will involve a larger ratio of constants in the upper and lower bounds for Problem 4.2
than Problem 4.1.

In practice it is not necessary to solve the subproblems involving the matrices
Ai in (2.10) exactly in order to maintain the optimality of the preconditioner. This
is discussed in some detail elsewhere (see, for example, [11, 36]) and so we merely
comment that our numerical experiments suggest that reducing the residual by a
factor of between 101 and 102 when “solving” these subproblems appears to provide a
good balance between allowing a small increase in the total number of iterations and
keeping the cost of each iteration as low as possible. For the examples in this section
we have applied a preconditioned CG solver with an algebraic preconditioner based
upon an incomplete factorization of Ai (see [6, 7], for example).

We conclude this section by demonstrating the effectiveness of the preconditioner
for a locally, rather than uniformly, refined mesh.

Problem 4.3.

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1),
u = g ∀x ∈ ∂Ω.

In this case f and g are now chosen so that the analytic solution is given by

u = (1− (2x1 − 1)100)(1− (2x2 − 1)100) ∀x ∈ Ω.(4.3)

Note that this solution is unity in the interior of Ω but tends to zero very rapidly in
a thin layer (of width ≈ 0.02) near to the boundary, allowing the Dirichlet condition
u = 0 to be satisfied throughout ∂Ω.

When solving this problem we again use a coarse triangulation which contains just
256 elements divided into 2, 4, 8, and 16 subdomains. Note that for this example it is
only appropriate to refine the mesh in the boundary layer, where the solution changes
from one to zero, and four such sets of results are presented in Table 3 corresponding
to 5, 6, 7, and 8 levels of refinement in the layer. (For the purposes of these tests the
local refinement of an element is triggered when the exact interpolation error on that
element is greater than 10−10 (2-norm) unless the element is already at the maximum
refinement level.) In each case the coarse mesh T0 has been partitioned in such a way
that the number of elements in the final mesh, TJ , in each subregion is approximately
equal. In the cases where p = 8 and p = 16 this means that there are differing
numbers of coarse elements in each subregion (between 8 and 40 when p = 16, for
example); the partitions into 2 or 4 may be computed more simply, however, using
the symmetry of the problem and the coarse mesh (see Figure 7, for example). As
with Tables 1 and 2, the results of Table 3 clearly show independence from h for a
sufficient level of refinement; however, the independence from p is not yet evident for
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Table 3
The number of iterations required to reduce the 2-norm of the residual by a factor of 106 using

the new AS preconditioner when solving Problem 4.3 using piecewise linear finite elements.

Refinements (elements/vertices) p = 2 p = 4 p = 8 p = 16

5 (48680/24853) 7 9 13 18
6 (145088/73569) 7 10 15 18
7 (362272/184685) 8 10 16 18
8 (543632/275913) 8 10 16 19

Fig. 7. The overall refined mesh (left) and a typical mesh on one processor when p = 4 (right)
for Problem 4.3. Here the coarse mesh contains 256 elements and, for this illustration, at most three
levels of refinement are permitted.

the small values considered (up to p = 16), although we again see a reduction in the
growth of the number of iterations as p increases.

As well as verifying our theoretical results in the case of a locally refined mesh,
the last example also illustrates the potential of the technique for use within truly
adaptive algorithms based upon a posteriori error estimates and local refinement (see
[1, 35], for example). Such algorithms are not without their difficulties, however,
since undertaking adaptivity in parallel presents challenging dynamic load-balancing
problems (e.g., [32]) which clearly cannot be dealt with using the simple a priori par-
titioning approach taken above. For one possible means of overcoming these problems
we refer the reader to [4], where a paradigm is presented in which the a posteriori
error estimates are themselves used to assist with load-balancing. We also note the
additional theoretical issue of selecting an appropriate definition for h, the mesh size
parameter, for locally refined meshes. While this does not affect the theoretical results
presented in this paper, it does have an important bearing on quantitative overhead
estimates in terms of the problem size.

5. Extension to three dimensions. So far, for reasons of clarity and sim-
plicity, our discussion has been restricted to problems of the form (1.1)–(1.3) in two
dimensions. In this section we demonstrate that both the theoretical results and the
practical realization may be successfully generalized to three dimensions. Again we
consider problems of the form (1.1)–(1.3), but now we allow Ω ⊂ R

3. We will as-
sume that Ω may be covered by a set of tetrahedra, T0, consisting of N0 tetrahedral

elements τ
(0)
j (j = 1, . . . , N0). In order to refine a tetrahedron we use the standard
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Fig. 8. Refinement of a tetrahedron into eight children by bisecting each edge.

approach of bisecting each edge to produce eight children, as shown in Figure 8. Note
that although the children are not generally geometrically similar, their aspect ratios
are always bounded independently of h. Full details of the refinement algorithm may
be found in [31].

Using the above refinement strategy it is possible to generate a family of three-
dimensional triangulations, T0, . . . , TJ , satisfying the same restrictions as the two-
dimensional family introduced in section 3 (with the obvious modification to condi-
tion 1(b) for eight children). From this, the spaces W, Wi,k,0 (k = 1, . . . , J), and

Ŵi, may be defined in the corresponding manner. Algorithm 3.1 therefore also gen-
eralizes directly to three dimensions. In fact, it is straightforward to see that, with
the exception of the proof of Lemma 3.1, all of the remaining theory in section 3
now generalizes immediately from two to three dimensions. Hence, in order to prove
that the corresponding weakly overlapping preconditioner is optimal for tetrahedral
meshes in three dimensions, it is sufficient to prove Lemma 3.1 for this case. Such a
proof is provided in the appendix.

It should be noted that in three dimensions the number of elements in the overlap
regions when using the weakly overlapping algorithm is O(h−2) as opposed to O(h−3)
when a standard generous overlap is used. Similarly, for practical (nonoptimal) two-
level AS algorithms with a fixed number of fine mesh layers in the overlap region,
the number of elements in the overlap is also O(h−2) in three dimensions. We again
see therefore that the weakly overlapping approach has approximately the same cost
(and communication overhead) per iteration as the practical small overlap two-level
algorithms but with the advantage of guaranteed optimality.

Having discussed the generalization of the main theoretical result of this paper to
three dimensions we now illustrate this with some further numerical examples. These
examples have been chosen to correspond to the two-dimensional examples already
considered in the previous section.

Problem 5.1.

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1),
u = g ∀x ∈ ∂Ω.
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Problem 5.2.

−∇ ·



 102 0 0

0 1 0
0 0 1


∇u


 = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1),

u = g ∀x ∈ ∂Ω.

Here f has again been chosen in each case so as to permit the exact solution u = g
throughout Ω.

Problem 5.3.

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1),
u = g ∀x ∈ ∂Ω.

In Problem 5.3, f and g are now chosen so that the analytic solution is given by

u = (1− (2x1 − 1)70)(1− (2x2 − 1)70)(1− (2x3 − 1)70) ∀x ∈ Ω.(5.1)

Table 4 presents iteration counts for Problems 5.1 and 5.2 using the weakly overlapping
preconditioner on a coarse grid of 384 elements using between 1 and 4 levels of uniform
mesh refinement for a typical set of partitions into 2, 4, 8, and 16 subdomains. It may
be observed that the number of iterations is indeed independent of h. Furthermore,
as p increases the number of iterations appears to have almost stopped growing by
the time p = 16.

Table 4
The number of iterations required to reduce the 2-norm of the residual by a factor of 106 using

the weakly overlapping AS preconditioner when solving Problems 5.1 and 5.2 using piecewise linear
finite elements.

Fine mesh size Problem 5.1 Problem 5.2 Procs.

3072 7 8
24576 8 9 2
196608 10 10
1572864 10 11
3072 13 13
24576 14 15 4
196608 15 16
1572864 16 17
3072 13 13
24576 17 18 8
196608 17 18
1572864 16 17
3072 12 13
24576 20 21 16
196608 18 20
1572864 17 17

To solve Problem 5.3 local h-refinement has been used with a slightly larger coarse
grid, containing 3072 tetrahedral elements. As in two dimensions the precise choice of
partition of this grid is important in terms of both the final load balance and the total
numbers of iterations required. Table 5 presents iteration counts for one such set of
partitions into 2, 4, 8, and 16 subdomains. Again we see that the number of iterations
is almost independent of h already (after just 4 levels of refinement). The partition
into 16 for this problem is probably far from optimal (since simple recursive coordinate
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bisection [34] was used), which may well account for the noticeable jump in iterations
between p = 8 and p = 16. Nevertheless, these simple numerical experiments do
show that the weakly overlapping technique can be effectively implemented in three
dimensions as well as two.

Table 5
The number of iterations required to reduce the 2-norm of the residual by a factor of 106 using

the weakly overlapping AS preconditioner when solving Problem 5.3 using piecewise linear finite
elements.

Refinements (elements/vertices) p = 2 p = 4 p = 8 p = 16

1 (20832/4403) 11 15 19 25
2 (198816/22237) 14 17 20 27
3 (499123/100708) 15 18 21 28
4 (2139159/429435) 17 21 24 30

6. Discussion. In this paper we have presented a two-level AS preconditioner
based upon a weakly overlapping domain decomposition of a nested sequence of
meshes, T0, . . . , TJ . Such a decomposition involves just a single element of overlap
at each level of the mesh hierarchy and so requires only O(h−1) overlapping elements
in total in two dimensions (and O(h−2) in three dimensions). It has been demon-
strated that, when combined with the full coarse mesh space W0, the splitting that
is induced by this decomposition is stable and therefore leads to an optimal precon-
ditioner. Although the work presented here is for an AS algorithm there is no reason
why the same splitting should not also be used in a multiplicative manner. The re-
sulting preconditioner will again be optimal. The extension of this approach to a
multilevel algorithm is less interesting, however, since this leads to a standard multi-
level Schwarz scheme (see [30] for example), with subdomains chosen to be the same
at each level and with the overlap chosen to be minimal at each level. Such schemes
are already known to be optimal.

Although the paper concentrates mainly on test problems of the form (1.1)–(1.3)
in two dimensions, all aspects of the theory in sections 2 and 3 are extended to
three-dimensional problems using nested tetrahedral meshes in section 5. Supporting
numerical experiments in both two and three dimensions are also provided. Further-
more, the simplifying assumption of zero Dirichlet boundary conditions throughout
∂ΩE may also be dropped, so as to include other Dirichlet conditions or even mixed
conditions, without significant modification. Further extensions may also be made
within the theoretical framework described by permitting the initial mesh, T0, to
have unequal element sizes. This would therefore allow the use of a different value for
H, the size of the elements of the coarse mesh, on each subdomain.

Appendix. Proof of Lemma 3.1 in the three-dimensional case.
Proof. First we introduce the following change of variables:

x = H r, y = H s, z = H t ; (x, y, z) ∈ Ωi.(A.1)

Under this transformation the domain Ωi is the image of a domain Ω
′
i whose geometric

properties are independent of H in the (r, s, t) plane. Furthermore

1

H2
‖whi (x, y, z)‖2L2(Ωi)

+ |whi (x, y, z)|2H1(Ωi)

= H
(
‖whi (r, s, t)‖2L2(Ω′

i)
+ |whi (r, s, t)|2H1(Ω′

i)

)
,(A.2)
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and we may define by Q′
i,k the projection in the (r, s, t) variables which corresponds

to Qi,k. From [9] and [26] it follows that there exists C2 > 0, which is independent of
h, H, and p, such that

1

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

=
1

H2

(
‖Qi,0whi (x, y, z)‖2L2(Ωi)

+

J∑
k=1

4k‖(Qi,k −Qi,k−1)w
h
i (x, y, z)‖2L2(Ωi)

)

= H

(
‖Q′

i,0w
h
i (r, s, t)‖2L2(Ω′

i)
+

J∑
k=1

4k‖(Q′
i,k −Q′

i,k−1)w
h
i (r, s, t)‖2L2(Ω′

i)

)

≤ HC2‖whi (r, s, t)‖2H1(Ω′
i)

= C2

(
1

H2
‖whi (x, y, z)‖2L2(Ωi)

+ |whi (x, y, z)|2H1(Ωi)

)
.(A.3)

A second inequality that we require comes from [26], where it is shown that there
exists C3 > 0, which is independent of h, H, and p, such that

‖v̂hi (x, y, z)‖2H1(Ω̂i)
= H3‖v̂hi (r, s, t)‖2L2(Ω̂′

i)
+H|v̂hi (r, s, t)|2H1(Ω̂′

i)

≤ HC3 inf
v̂h
i

=ξ̂0+···+ξ̂J
(ξ̂k∈Ŵ′

i,k
)

J∑
k=0

4k‖ξ̂k‖2L2(Ω̂′
i)
,(A.4)

where Ŵ ′
i,k is the space which corresponds to Ŵi,k with the change of variables (A.1).

From this, along with (3.25) and (A.3), it follows that

‖v̂hi (x, y, z)‖2H1(Ω̂i)
≤ HC3

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂′
i)

=
C3

H2

J∑
k=0

4k‖v̂hi,k‖2L2(Ω̂i,k)

≤ C0C3

H2

J∑
k=0

4k‖vhi,k‖2L2(Ωi)

≤ C0C2C3

(
1

H2
‖whi ‖2L2(Ωi)

+ |whi |2H1(Ωi)

)
,(A.5)

as required.
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Abstract. We consider large-scale least squares problems where the coefficient matrix comes
from the discretization of an operator in an ill-posed problem, and the right-hand side contains noise.
Special techniques known as regularization methods are needed to treat these problems in order to
control the effect of the noise on the solution. We pose the regularization problem as a quadratically
constrained least squares problem. This formulation is equivalent to Tikhonov regularization, and
we note that it is also a special case of the trust-region subproblem from optimization. We analyze
the trust-region subproblem in the regularization case and we consider the nontrivial extensions of a
recently developed method for general large-scale subproblems that will allow us to handle this case.
The method relies on matrix-vector products only, has low and fixed storage requirements, and can
handle the singularities arising in ill-posed problems. We present numerical results on test problems,
on an inverse interpolation problem with field data, and on a model seismic inversion problem with
field data.
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1. Introduction. Discrete forms of ill-posed problems arise when we discretize
the continuous operator in an ill-posed problem and introduce experimental data
contaminated by noise. One of the main sources of ill-posed problems are inverse
problems, where we want to determine the internal structure of a system from the
observed behavior of the system. Inverse problems arise in many important appli-
cations such as image processing [2], seismic inversion [39], and medical and seismic
tomography [30], [32]. Discrete forms of ill-posed problems are usually formulated as
linear systems or least squares problems. The focus of this paper is the numerical
treatment of large-scale discrete forms of ill-posed least squares problems.

We are interested in recovering xLS, the minimum norm solution of

min
x∈Rn

‖Ax− b‖,(1)

where A ∈ R
m×n, b ∈ R

m, and m ≥ n. Throughout the paper we assume that
A comes from the discretization of a continuous operator in an ill-posed problem,
and instead of the exact data vector b, only a perturbed data vector b̄ is available.
Specifically, we regard b̄ as b̄ = b + s, where s is a random vector of uncorrelated
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noise. The norm is the Euclidean norm throughout the paper, and it will be denoted
by ‖ · ‖.

We will assume that the matrix A is large and might not be available explicitly
but that we can compute the action of A and AT on vectors of the appropriate
dimensions. We will also assume that errors in A, due to discretization or finite-
precision representation, are small in comparison to the noise in b̄. Finally, we will
not assume any particular structure for A.

Given the fact that only b̄ is available, we could formulate the problem

min
x∈Rn

‖Ax− b̄‖(2)

and use its minimum norm solution, denoted by x̄LS, to approximate xLS. Unfortu-
nately, as we shall see, the two solutions might differ considerably.

If we use a reasonably accurate discretization to obtain A, this matrix will be
highly ill-conditioned with a singular spectrum that decays to zero gradually, a large
cluster of small singular values, and high-frequency components of the singular vectors
associated with small singular values. If, in addition, the discrete Picard condition [16]
holds, we will have that the expansion coefficients of the exact data vector b in the
left singular vectors basis decay to zero faster than the singular values of A, while
the expansion coefficients of the noise vector s remain constant. Therefore, those
components of x̄LS corresponding to small singular values are magnified by the noise.

As a consequence of the ill conditioning of the matrix A and the presence of noise
in the right-hand side, standard numerical algebra methods such as the ones discussed
in [3], [13, Chap. 5], and [26] applied to problem (2) produce meaningless solutions
with very large norm. Therefore, to solve these problems, we need special techniques
known as regularization or smoothing methods. These methods aim to recover infor-
mation about the desired solution of the unknown problem with exact data from the
solution of a better conditioned problem that is related to the problem with noisy
data but incorporates additional information about the desired solution. The formu-
lation of the new problem involves a special parameter known as the regularization
parameter, used to control the effect of the noise on the solution. The conditioning
of the new problem depends on the choice of the regularization parameter. Excellent
surveys on regularization methods can be found, for example, in [15], [20] and more
recently in [31].

While there are many alternatives for solving small- to medium-scale problems,
this is not the case in the large-scale setting. However, in recent years interesting
methods for large-scale ill-posed problems have been proposed. Among these are
Golub and von Matt [14], Björck, Grimme, and Van Dooren [4], Calvetti, Reichel,
and Zhang [8], Rojas, Santos, and Sorensen [35], as well as several variants of the
conjugate gradient method on the normal equations (CGLS), including the use of
preconditioners chosen according to the structure of the problem [22], [24], [29]. In
spite of these developments, the efficient solution of large-scale discrete forms of ill-
posed problems remains a challenge.

In practice, the most common approach is to apply the conjugate gradient method
to the normal equations associated with problem (2), taking advantage of what seems
to be an intrinsic regularization property of this method. It has been observed that,
at early stages, CGLS generates iterates with components in the direction of right
singular vectors associated with large singular values, while components associated
with small singular values come into play at later stages. This observation leads
to the heuristic that the number of iterations acts as a regularization parameter.
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Thus, we could compute a regularized solution by stopping the iteration before the
unwanted components contaminate the current approximation. The success of this
approach depends, in the first place, on the reliability of the heuristic and, second, on
accurately determining when to stop the iteration, which is a difficult problem in itself,
and most practical termination strategies rely on visual inspection. We are not aware
of any systematic termination criterion for this approach. Alternatively, we could use
CGLS on the Tikhonov regularization problem, discussed in the next section, which
can be formulated as a damped least squares problem. The success of this approach
depends on a good choice of the damping parameter, and also on the availability of a
preconditioner, and good general preconditioners have not emerged yet. The approach
we propose here does not depend on either a heuristic or a preconditioner.

In this paper, we formulate the regularization problem as a quadratically con-
strained least squares problem. It is well known that this approach is equivalent to
Tikhonov regularization (cf. [10] and the references therein), and we also observe that
the problem is a special case of the problem of minimizing a quadratic subject to a
quadratic constraint, which is known in optimization as the trust-region subproblem
arising in trust-region methods (see also [3, sections 5.3 and 9.2.3]). The connection
between the trust-region subproblem and the regularization problem is well known,
but the specific nature of the numerical difficulties for solving the regularization prob-
lem as a trust-region subproblem was first studied extensively in [34]. We discuss the
properties of the trust-region subproblem in the regularization case and apply the
recently developed method LSTRS [35] for the large-scale trust-region subproblem to
the regularization of discrete forms of ill-posed problems from a variety of applica-
tions. The method relies on matrix-vector products only, has low and fixed storage
requirements and robust stopping criteria, and computes both a solution and the
corresponding Tikhonov regularization parameter. Moreover, LSTRS can efficiently
handle the high-degree singularities associated with ill-posed problems. Most of the
results presented here are based on [34].

The organization of the paper is as follows. In section 2 we describe our regu-
larization approach and show its connection with Tikhonov regularization and with
the trust-region subproblem. In section 3 we describe the trust-region subproblem
and show its special properties in the discrete ill-posed case. In section 4 we describe
the method LSTRS from [35] and discuss the issues related to ill-posed problems. In
section 5 we present numerical results of LSTRS on regularization problems, includ-
ing test problems from the Regularization Tools package [19], an inverse interpolation
problem with field data, and a model seismic inversion problem with field data. We
present some conclusions in section 6.

2. Regularization through trust regions. As we mentioned before, regular-
ization involves the formulation of a problem related to both the original problem
with exact data and the problem with noisy data, where we incorporate a priori in-
formation such as the size or smoothness of the desired solution, the noise level in the
data, or the statistical properties of the noise process.

One of the most popular regularization approaches is the classical Tikhonov reg-
ularization approach [40]

min
x∈Rn

‖Ax− b̄‖2 + ε2‖x‖2,(3)

where ε2 > 0 is the regularization parameter, and where the term ‖x‖2 could also be
of the form ‖Lx‖2 for a general square or rectangular matrix L. This matrix could be,
for example, the identity matrix as in (3), or a discrete form of first derivative. In the
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first case, the regularization parameter ε acts as a penalty parameter on the size of
the solution, while in the latter case ε acts as a penalty parameter on the smoothness
of the solution. Notice that if L is any square and nonsingular matrix, then a change
of variable will reduce the problem to the form in (3). We can also accomplish such a
transformation when L is a full-rank rectangular matrix by means of the methods in
[10], [15]. Throughout the paper we assume that this transformation is possible, and
therefore we consider only the case in which L is the identity matrix.

Observe that given ε, problem (3) becomes a damped least squares problem that
we can solve with standard numerical linear algebra techniques for medium- and large-
scale problems (cf. [3], [13]). However, determining an optimal value for the Tikhonov
regularization parameter ε2 can be as difficult as the original problem, and most of
the methods currently available require the solution of several problems of type (3) for
different values of ε. This approach might be very expensive in the large-scale setting.
Recent and promising methods for computing the Tikhonov regularization parameter
for large-scale problems have been proposed in [7], [8], and [25]. Calvetti, Reichel, and
Zhang [8] propose a very elegant way of computing the parameter from the noise level
in the data; Calvetti, Golub, and Reichel [7] propose a strategy based on the L-curve
(see [17], [18]); while Kilmer and O’Leary [25] propose several strategies for computing
the parameter from a problem in an appropriate subspace of smaller dimension.

In this work we will not assume a priori knowledge of the noise level or noise prop-
erties. Instead, we will assume that some information about the size or smoothness
of the desired solution is available, and we formulate the regularization problem as

min
s.t.‖x‖≤∆

‖Ax− b̄‖(4)

with ∆ > 0. As we show next, this formulation is equivalent to Tikhonov regulariza-
tion.

Observe that if b̄ �∈ R(A), where R(A) is the range of A, any solution of problem
(4) is a regular point, and therefore the Karush–Kuhn–Tucker conditions for a feasible
point x∗ to be a solution of problem (4) with corresponding Lagrange multiplier λ∗ are
(ATA−λ∗I)x∗ = −AT b̄, λ∗ ≤ 0, and λ∗(‖x∗‖−∆) = 0. Further, since (4) is a convex
quadratic problem, these conditions are both necessary and sufficient. Equivalence
with problem (3) follows directly, since a solution x∗ to problem (4) is also a solution
to problem (3) corresponding to ε2 = −λ∗. Conversely, if xε is a solution of (3) for a
given ε, then xε solves problem (4) for ∆ = ‖xε‖.

While Tikhonov regularization involves the computation of a parameter that does
not necessarily have a physical meaning in most problems, the quadratically con-
strained least squares formulation has the advantage that, in some applications, the
physical properties of the problem either determine or make it easy to estimate an
optimal value for the norm constraint ∆. This is the case, for example, in image
restoration where ∆ represents the energy of the target image (cf. [2]).

Another example is the following problem closely related to (4):

min
s.t.‖Ax−b̄‖≤ρ

‖x‖,

where ρ is an estimate of the noise level in the data. For A nonsingular, the problem
can be transformed into the form (4) by means of a change of variable. It is possible
to do this in some special applications where an effective approximation to the inverse
of A is available. This is the case in the example presented in section 5.3.
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An additional advantage of the quadratically constrained least squares formula-
tion is that it is a special case of a well-known problem in optimization, namely, that
of minimizing a quadratic on a sphere or the trust-region subproblem

min
s.t.‖x‖≤∆

1

2
xTHx + gTx,(5)

where H ∈ R
n×n, H = HT , g ∈ R

n, and ∆ > 0. Problem (4) is a special case of (5)
when H = ATA and g = −AT b̄.

The high degree of structure of the trust-region subproblem leads to strong theo-
retical properties and makes it possible to design efficient solution methods. For this
reason we shall formulate the regularization problem as a trust-region subproblem.

3. The trust-region subproblem. In this section we present the properties of
the trust-region subproblem. In section 3.1, we consider the problem when H is any
symmetric matrix in R

n×n, and g is any vector in R
n. In section 3.2, we focus on the

special case when H = ATA, g = −AT b̄, and in addition A is a discretized version of
a continuous operator in an ill-posed problem and b̄ contains noise.

3.1. Structure of the problem. A first observation about the trust-region
subproblem is that it always has a solution. A not-so-obvious and quite remarkable
fact about the problem is the existence of a characterization of its solutions, discovered
independently by Gay [11] and Sorensen [36]. The result is contained in the following
lemma.

Lemma 3.1 (see [36]). A feasible vector x∗ ∈ R
n is a solution to (5) with corre-

sponding Lagrange multiplier λ∗ if and only if x∗, λ∗ satisfy (H − λ∗I)x∗ = −g with
H − λ∗I positive semidefinite, λ∗ ≤ 0, and λ∗(∆− ‖x∗‖) = 0.

Proof. See [36] for the proof.
The optimality conditions imply that all the solutions of the trust-region sub-

problem are of the form x = −(H−λI)†g+ z for z ∈ N (H−λI), where N (·) denotes
the null space of a matrix and † denotes pseudoinverse. These solutions may lie in the
interior or on the boundary of the set {x ∈ R

n | ‖x‖ ≤ ∆}. There are no solutions
on the boundary if and only if H is positive definite and ‖H−1g‖ < ∆ (see [28]). In
this case, the unique interior solution is x = −H−1g with Lagrange multiplier λ = 0.
Boundary solutions satisfy ‖x‖ = ∆ with λ ≤ δ1, where δ1 is the smallest eigenvalue
of H. The case λ = δ1 can only occur if δ1 ≤ 0, g ⊥ S1, where S1 ≡ N (H − δ1I), and
‖(H − δ1I)†g‖ ≤ ∆. This corresponds to the so-called hard case, which poses great
difficulties for the numerical solution of the trust-region subproblem since in this case
it is necessary to compute an approximate eigenvector associated with the smallest
eigenvalue of H. Moreover, in practice g will be nearly orthogonal to S1, and we can
expect greater numerical problems in this case. We call this situation a near hard
case. Note that whenever g is nearly orthogonal to S1 there is the possibility for the
hard case or near hard case to occur. Therefore we call this a potential hard case.
We show in section 3.2 that the potential hard case is precisely the common case for
discrete ill-posed problems.

The conditions in Lemma 3.1 are computationally attractive since they provide a
means for reducing the problem of computing boundary solutions for the trust-region
subproblem from an n-dimensional problem to a zero-finding problem in one variable.
We can accomplish this, for example, by solving the following equation in λ, known
as the secular equation:

∆− ‖xλ‖ = 0,(6)
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where xλ = −(H − λI)−1g, and λ is monitored to ensure that H − λI is positive
definite. Newton’s method is particularly efficient for solving an equation equivalent
to (6), and this approach, due to Moré and Sorensen [28], is the method of choice
whenever it is affordable to compute the Cholesky factorization of matrices of the
form H − λI. However, in some applications this computation may be prohibitive
either because of storage considerations or because the matrix H is not explicitly
available. Therefore, we need other strategies to treat the problem in those cases. We
describe one such strategy in section 4.

3.2. Discrete ill-posed trust-region subproblem. We now study the trust-
region subproblem in the special case when H = ATA and g = −AT b̄, where A
comes from the discretization of a continuous operator in an ill-posed problem, and
b̄ contains noise. We will show that the potential hard case is the common case for
these problems and also that it will occur in a multiple instance, where g is orthogonal
to the eigenpaces associated with several of the smallest eigenvalues of H. This was
first shown in [34] and is a consequence of the following result.

Lemma 3.2. Let H = ATA and g = −AT b̄, with b̄ = b+ s. Suppose σk is the kth
largest singular value of A with multiplicity mk. Suppose uj , vj, 1 ≤ j ≤ mk, are left
and right singular vectors associated with σk. Then

gTvj = −σk(uTj b + uTj s) , 1 ≤ j ≤ mk.

Proof. The result follows directly assuming A = UΣV T is a singular value de-
composition of A, since this yields g = −V ΣUT b̄ with V orthogonal.

Since H = ATA = V Σ2V T , we see that for discrete ill-posed problems, the hard
case is always present in an extreme form. Lemma 3.2 implies that whenever σk is
very small then, for any reasonable noise level in b̄, g will be nearly orthogonal to the
subspace spanned by the right singular vectors associated with σk. This is precisely
the case in discrete ill-posed problems, where the matrix A has a large cluster of
very small singular values, and therefore we can expect g to be nearly orthogonal to
the right singular vectors associated with such singular values. Since these vectors
are eigenvectors corresponding to the smallest eigenvalues of ATA, then g will be
orthogonal to the eigenspaces corresponding to several of the smallest eigenvalues of
ATA and the potential hard case will occur in a multiple instance. Figure 1 illustrates
this situation for problem foxgood from the Regularization Tools package by Hansen
[19]. The problem is of dimension 300, and in the logarithmic plot we observe that
gTvk is of order 10−15 for approximately 292 of the right singular vectors of A.

Observe that for large noise level and σk not so small, g will not be nearly or-
thogonal to the eigenspace corresponding to the smallest eigenvalue of ATA and the
hard case will not occur. Therefore, in this case a high noise level implies a less
difficult trust-region subproblem. However, we do not expect to compute a good
approximation in the presence of large noise.

4. LSTRS for discrete ill-posed problems. In this section we give a brief
description of the method LSTRS from [35]. We present the method for a general
symmetric matrix H and nonzero vector g and discuss the advantages of using this
method for the special case of large-scale discrete ill-posed trust-region subproblems
of type (4). LSTRS is based on formulating the trust-region subproblem as a pa-
rameterized eigenvalue problem. Such formulation comes from the observation that
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Fig. 1. Orthogonality of g with respect to right singular vectors of a discretized operator in an
ill-posed problem.

if x∗, λ∗ solve problem (5), then for α = λ∗ − gTx∗, problem (5) is equivalent to

min 1
2y

TBαy
s.t. yTy ≤ 1 + ∆2, eT1 y = 1,

(7)

where e1 is the first canonical unit vector in R
n+1 and Bα =

(
α gT

g H

)
. The solution

of the trust-region subproblem consists of the last n components of the solution of
problem (7).

Problem (7) suggests that if we know the optimal value for α, we can solve
the trust-region subproblem by solving an eigenvalue problem for the smallest eigen-
value of Bα and an eigenvector with special structure. To see this, observe that if
{λ, (1, xT )T} is an eigenpair of Bα, then

(
α gT

g H

)(
1
x

)
=

(
1
x

)
λ,

which is equivalent to

α− λ = −gTx and (H − λI)x = −g .(8)

If λ is the smallest eigenvalue of Bα and since the eigenvalues of H interlace
the eigenvalues of Bα by the Cauchy interlace theorem (cf. [33]), then H − λI is
positive semidefinite. Therefore, two of the optimality conditions in Lemma 3.1 are
automatically satisfied in this case. If, in addition, λ ≤ 0 and ‖x‖ = ∆, we will have
a solution for the trust-region subproblem.



TRUST-REGION APPROACH TO REGULARIZATION 1849

−2 −1 0 1 2 3 4 5 6
−25

−20

−15

−10

−5

0

5

10

15

20

25

λ

φ(
λ)

Fig. 2. Secular function φ(λ).

LSTRS consists of iteratively adjusting the parameter α to drive it towards the
optimal value α∗ = λ∗ − gTx∗. This is accomplished in the following way. Let
φ(λ) = −gTx for x satisfying (H − λI)x = −g, and note that φ′(λ) = xTx. Both φ
and φ′ are rational functions with poles at a subset of the eigenvalues of H. Figure 2
illustrates the typical behavior of φ(λ) when H is a 3 × 3 matrix with eigenvalues
0, 2, 4. The LSTRS iteration is based on approximately solving the secular equation
(6), using rational interpolation on φ and φ′. Observe that, in view of (8), we can
obtain convenient interpolation points by solving eigenvalue problems for the smallest
eigenvalue of Bα for different values of the parameter α. LSTRS computes the inter-
polation points in this way, using the implicitly restarted Lanczos method (IRLM)
[37] as implemented in ARPACK [27] to solve the eigenvalue problems. The IRLM
has fixed storage requirements and relies upon matrix-vector products only, features
that make it suitable for large-scale problems.

The strategy described above works as long as the smallest eigenvalue of Bα has
a corresponding eigenvector that can be safely normalized to have first component
one. The adjustment of the parameter becomes very difficult in the hard case and
near hard case since in these situations the smallest eigenvalue of Bα might not have
a corresponding eigenvector with the desired structure (see [34], [35], [38]). Moreover,
in the near hard case δ1 is a weak pole of φ(λ) and the function becomes very steep
around this value, as Figure 3 illustrates. This makes the interpolation problem very
ill-conditioned. The situation is considerably more difficult for ill-posed problems
where several of the smallest eigenvalues of H are weak poles of φ(λ). We illustrate
this case in Figure 4 which shows φ(λ) for the test problem to be discussed in section
5.3. LSTRS relies on the complete characterization of the hard case given in [34] to
proceed with the iteration even when the desired eigenvector cannot be normalized
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Fig. 4. φ(λ) for the viscoacoustic wave equation, n = 500.
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to have first component one, and to compute nearly optimal solutions in any instance
of the hard case including multiple occurrences as in ill-posed problems.

A detailed description of the results concerning the hard case and the elaborate
algorithmic techniques derived from those results are beyond the scope of this paper.
We refer the reader to [34] and [35] for more details.

From the above presentation we see that LSTRS has desirable features for solv-
ing large-scale trust-region subproblems in general, and for handling discrete ill-posed
problems in particular. This is not surprising since the regularization of discrete forms
of ill-posed problems was part of the motivation for developing the method. There
are, however, some issues that must be taken into account when implementing LSTRS
to treat ill-posed problems. As we saw in section 2, for these problems the smallest
eigenvalues of H are clustered and close to zero, and because of the interlacing prop-
erty the smallest eigenvalues of Bα will also be clustered and small for certain values
of ∆. Computing a clustered set of small eigenvalues with a method that relies only
on matrix-vector products with the original matrix is likely to fail since the multi-
plication will annihilate components precisely in the direction of the eigenvectors of
interest. This difficulty may be overcome through the use of a spectral transforma-
tion. Instead of trying to find the smallest eigenvalue of Bα directly, we work with a
matrix function T (Bα) and use the fact that Bαq = qλ ⇐⇒ T (Bα)q = qT (λ). If we
are able to construct T so that |T (λ1)| � |T (λj)|, j > 1, then a Lanczos-type method
such as the IRLM will converge much faster towards the eigenvector q1 corresponding
to λ1. We use a Chebyshev polynomial T� of degree " constructed to be as large as
possible on λ1 and as small as possible on an interval containing the remaining eigen-
values of Bα. Convergence of IRLM is often greatly enhanced through this spectral
transformation strategy. After convergence, the eigenvalues of Bα are recovered via
the Rayleigh quotients with the converged eigenvectors.

Finally, the occurrence of an interior solution when H = ATA is positive definite
in regularization problems deserves a special comment. In this case the solution of
the trust-region subproblem corresponds to the least squares solution of the original
problem. This solution is contaminated by noise and is of no interest. When we detect
an interior solution we have taken the simple approach of reducing the trust-region
radius and restarting the method. It is worth noting that if we knew that the noise
level in the data was low, then if λ is close to zero when we detect an interior solution,
we could approximate the least squares solution by x satisfying (8) since this would
be a reasonable approximation to x = −H−1g. Note that in this case it would not be
necessary to solve a linear system to obtain the solution.

5. Numerical results. In this section we present numerical experiments to il-
lustrate the performance of LSTRS on regularization problems from different sources,
including both test problems and real applications. We used a MATLAB version
of LSTRS running under MATLAB 5.3 using Mexfile interfaces to access ARPACK
[27] and also the routines to compute matrix-vector products in some of the exam-
ples. Notice that the capabilities of ARPACK have been incorporated into MATLAB
6 and are now available through the routine eigs. We ran our experiments on a
SUN Ultrasparc 2 with a 200 MHz processor and 256 Megabytes of RAM running
Solaris 5.6. The floating point arithmetic was IEEE standard double precision with
machine precision 2−52 ≈ 2.2204 · 10−16.

We present three sets of experiments. In section 5.1 we describe the results
obtained on test problems from the Regularization Tools package [19]. In section 5.2
we present an inverse interpolation problem with field data. In section 5.3 we present
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Table 1
Results of LSTRS on test problems from the Regularization Tools package.

Problem Dim. ∆ ‖x‖ ‖x−xIP ‖
‖xIP ‖ MV Prods. Iter.

Ill heat 300 4.2631 4.2527 3.5684e-01 1721 8
Ill heat 1000 7.7829 7.7497 2.6900e-01 967 8
Well heat 300 4.2631 4.2958 9.1853e-02 1049 4
ilaplace 195 2.7629 2.7362 1.8537e-01 349 4
parallax 300 5.0000 5.0421 – 869 10
phillips 300 2.9999 2.9869 2.6883e-02 521 6
phillips 1000 3.0000 2.9839 3.3607e-02 575 6
shaw 300 17.2893 17.2467 6.0625e-02 510 6
shaw 1000 31.5659 31.6002 5.2847e-02 423 5

a model seismic inversion problem using a standard data set. The various stopping

tolerances on |‖x‖−∆|
∆ were chosen (as they often are in practice) in an ad hoc fashion

after some trial runs.

5.1. Problems from the Regularization Tools package. In this section we
will present the results of LSTRS on problems from the Regularization Tools package
[19]. This package consists of a set of MATLAB routines for the analysis of discrete
ill-posed problems along with test problems that are easy to generate. All the test
problems come from the discretization of a Fredholm integral equation of the first
kind

∫ b

a

K(s, t)f(t)dt = g(s),

and the problem is to compute the unknown function f(t) given g(s) and K(s, t).
In all cases we solved a quadratically constrained least squares problem (4) where

A came from the discretization of the kernel K(s, t) and b = g(si) at discrete points
si ∈ [a, b], where i = 1, . . . , n and n is the dimension of the problem. For some of the
problems the exact solution f(t) was available and in those cases we used xIP = f(ti)
for comparison purposes, where ti ∈ [a, b], i = 1, . . . , n. Note that in general AxIP
is different from b. Unless otherwise specified, we used ∆ = ‖xIP‖ as trust-region
radius. In ARPACK, we used nine Lanczos basis vectors with seven shifts on each
implicit restart. The required accuracy for the eigenpairs was 10−2. The initial vector
for the Lanczos factorization was a randomly generated vector that remained fixed in
all the experiments. We solved the trust-region subproblems to a relative accuracy

of |‖x‖−∆
∆ | < 10−2. We also solved the problems to a higher accuracy but this was

computationally more expensive and did not seem to improve the accuracy of the
regularized solution x with respect to the exact solution xIP for this particular set of
problems. In Table 1, we present the results for a subset of problems from [19].

Several observations are in order concerning Table 1. The third and fourth
columns indicate that in all cases LSTRS solved the trust-region subproblem to the
prescribed accuracy. The quality of the regularized solution or a measure of how
well this solution approximates the exact solution xIP is reported in the fifth column,
where a dash indicates that xIP was not available. We see that, generally, there is a
reasonable agreement between computed and exact solutions, with relative errors of
order 10−2. The number of matrix-vector products is reported in column six, and the
last column shows the number of LSTRS iterations.

The primary purpose of these tests was simply to verify that our approach would
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compute reasonably accurate regularized solutions to well-known examples of discrete
forms of ill-posed problems. We cannot draw any conclusions about computational
cost or expected number of matrix-vector products from these small examples. How-
ever, our limited experience would indicate that the number of matrix-vector products
does not increase significantly with the dimension of the problem, and we give exam-
ples of this in sections 5.2 and 5.3.

Finally, we remark that some modifications probably would have been possible
to improve the accuracy of the computed solutions to this set of examples. For
problems ill-conditioned heat (inverse heat equation) and ilaplace (inverse Laplace
transformation), the relative error is probably higher than one would like. It turns out
that in these cases the solutions are highly oscillatory. This suggests that we should
have solved the trust-region subproblem with a constraint of the form ‖Lx‖, where
L is a discrete form of first derivative. Since our goal here was a basic verification of
LSTRS on such problems, we did not analyze each case separately, nor did we pursue
more elaborate formulations.

5.2. An inverse interpolation problem. The two-dimensional (2-D) linear
interpolation problem consists of using a linear interpolant to find the values of a
function at arbitrary points given the values of the function at equally spaced points.
A more interesting problem is the inverse interpolation problem: finding the values
of the function on a regular grid of points from which we can extract given values of
the function at irregularly spaced points by linear interpolation. We can pose the 2-D
inverse interpolation problem as a least squares problem,

min
x∈Rn

‖Ax− b‖,

where A ∈ R
m×n is the 2-D linear interpolant and b ∈ R

m contains the function
values at irregularly spaced points.

To illustrate the performance of LSTRS on this kind of problem we will use the
example of constructing a depth map of the Sea of Galilee on a regular grid of points,
given depth measurements at irregularly spaced points. The data consists of triplets
vi, wi, bi, i = 1, . . . , 132044, representing coordinates on the plane and depth, respec-
tively. The data was collected from a ship using an echo sounder. The data contains
noise coming from different sources, including malfunctioning equipment that reported
zero depths at points in the middle of the lake and the fact that the measurements
were taken at different times of the year and therefore varied greatly from rainy season
to dry season. See [1] for a complete description of the data acquisition process. In
Figure 5 we show a view from above of a three-dimensional (3-D) plot of the original
data. The straight lines we observe in the figure are the tracks of the ship. Therefore,
the data acquisition process was an additional source of noise. As Clærbout points
out [9], an image of the sea should not include those lines.

In our experiments the size of the grid was n = 201 × 201 = 40401, which is
also the number of unknowns when the 2-D grid is represented as a one-dimensional
vector. The number of rows in A was m = 132044. This matrix was ill-conditioned
and was not available explicitly, but we could compute the action of A and AT on
vectors by means of FORTRAN routines. In all the experiments, we solved the trust-

region subproblems to a relative accuracy of |‖x‖−∆
∆ | ≤ 10−3. The size of the Lanczos

basis was five, and we applied three shifts on each implicit restart. Therefore, the
storage requirement was essentially five vectors of length 40401.
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Fig. 5. Sea of Galilee from original data.

We posed the trust-region subproblem as

min
s.t.‖Lx‖≤∆

1

2
xTATAx− (AT b)Tx,

where L was either the n× n identity matrix I, or the matrix Mp, a discretization of
the following pth power of the (scaled) 2-D Helmholtz operator

(I −∇T ∗ diag(s) ∗ ∇)p,(9)

where I, ∇, and ∇T are the identity, gradient, and divergence operators, respectively;
the vector s > 0 is a 2-D vector of scales; the expression diag(s) denotes a diagonal
matrix with the components of the vector s on the diagonal; and p is a real scalar.

We ran several experiments for different trust-region radii since in this applica-
tion we did not have a priori information about the size or smoothness of the desired
solution. Figure 6 shows the result for ∆ = 6000 and L = I. This image still shows
the tracks of the ship and does not reveal any known features of the depth distribu-
tion of the lake. The contour plot (not shown) is very rough with highly oscillatory
contours. This suggested the need to introduce a constraint on the smoothness of the
solution.
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Fig. 6. Sea of Galilee, regularizing with constraint on size of solution.

We then solved the trust-region subproblem with L = Mp, a discretization of (9),
and ∆ = 26000. Figure 7 shows the solution for p = 0.3. In this image we were
able to identify some of the features reported in [1], such as the shallow areas in the
northeast, a scarp in the southeast, and a more prominent scarp in the southwest.

We also tried the approach of solving the trust-region subproblem with L = I and
applying the Helmholtz operator a posteriori. We call this approach postsmoothing.
We tried the postsmoothing approach with p = −1 for ∆ = 23423, which is the
norm of x when ‖Mpx‖ = 26000, and we obtained an image very similar to the
one in Figure 7. We also used this approach for ∆ = 6000, obtaining the image in
Figure 8, which clearly shows the features mentioned before. Table 2 shows that the
postsmoothing approach is less expensive than using a constraint on the smoothness.
There are two reasons for this difference in efficiency. The first one is that the matrix-
vector products when L = Mp are more expensive than the matrix-vector products
when L = I. The second reason is that the smallest eigenvalues of Bα are close to the
smallest eigenvalues of L−TATAL−1, and these are more clustered for L = Mp than
for L = I. This causes slow convergence of the IRLM. We note, however, that the
cost is not too high in either approach relative to the dimension of the problem.

The postsmoothing approach has the drawback that we do not know its physical
meaning, and a closer look at the result shows that the postsmoothing is causing a
high degree of perturbation on the depths since the lowest point is known to be around
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Fig. 7. Sea of Galilee, regularizing with constraint on smoothness.

256m below sea level, and the lowest point in Figure 8 is -45m. Another interesting
aspect of this particular regularization approach is that it produces very smooth
solutions, which was also noted in [21], and this causes, for example, the resulting
regular grid to miss the true deepest point located approximately at coordinates
(207, 247) and yields a deepest point located at approximately (205, 245) for Figure 8.
It is quite remarkable, though, how the known features of the lake are clearly present
in this image.

5.3. A model seismic inversion problem. We also solved the quadratically
constrained least squares problem (4) where the problem comes from the discretiza-
tion of the linear viscoacoustic model. As explained in [6], this model describes the
behavior of an anelastic fluid, in which the strain response to a change of stress is
linear but not completely instantaneous. A relaxation function G(t, -x) is used to ex-
press the stress-strain relation. The equations of motion relate G(t, -x), the material
density ρ(-x), the pressure (stress) p(t, -x), the particle velocity -v(t, -x), and the body
force source f(t, -x) in the following way:

p,t(t, -x) = −Ġ(t, -x) ∗ ∇ · -v(t, -x) + f(t, -x),(10)

-v,t(t, -x) = − 1

ρ(-x)
∇p(t, -x),
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Fig. 8. Sea of Galilee, regularizing with constraint on size of solution and postsmoothing.

Table 2
Performance of LSTRS on an inverse interpolation problem.

Dimension: 40401 LSTRS MV CPU time
Storage: 5 vectors ∆ ‖x∗‖ Iter. Prods. (min.)
TRS with
postsmoothing 23423 23423 4 206 1.40
Constraint
on smoothness 26000 25980.61 15 723 22.05

where p = 0, -x = 0 for t� 0. In (10), t denotes time and -x denotes position.
These equations are used in [6] to model the propagation of waves in marine

media using the relaxation function for a standard linear fluid. The matrix A in
our quadratically constrained least squares problem corresponds to DF , a linearized
version of the forward map or prediction operator. The matrix AT corresponds to
the adjoint of DF denoted by DF ∗. The operators DF and DF ∗ were not explicitly
available, but their action on vectors was obtained by solving a simplified (layered)
and linearized version of (10). See [5, Chap. 5] and [6] for more details. The data
vector b̄ is a seismogram containing velocities of waves measured in oil wells in the
North Sea. The data is part of the Mobil AVO data set [23], a standard data set for
testing inversion methods. The parameters to be estimated in the experiment are the
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Table 3
Performance of LSTRS on the viscoacoustic wave equation.

LSTRS MV
Dimension ∆ ‖x‖ Iter. Prods. Storage
121121 0.5 0.5 2 15 4 vectors

stress-strain ratio under simple hydrostatic pressure and the material density. The
quadratically constrained least squares problems arise in the context of sophisticated
nonlinear inversion strategies [12], where the norm constraint was of the form ‖x‖ ≤ ∆.
The quadratically constrained least squares problems were obtained from problems of
type

min
s.t.‖Ax−b̄‖≤ρ

‖x‖

by means of a change of variable made possible by the availability of an effective
approximation to the inverse of A. The parameter ρ is an estimate of the noise level
in b̄ and is known a priori in this case. The reformulation of the problem yields ∆ = ρ.

The dimensions of the problem are m = n = 121121. Table 3 shows the result
obtained when we used LSTRS to solve the trust-region subproblem to an accuracy

of |‖x‖−∆
∆ | < 10−5 using four Lanczos basis vectors. The method is very efficient for

small ∆ since in this case the smallest eigenvalue of Bα is well separated from the
rest and the IRLM converges rapidly to such eigenvalue. For larger ∆, the eigenvalue
of interest belongs to a cluster and the IRLM needs more iterations to compute it.

In Table 3 we can observe the low storage and low number of matrix-vectors
products required to solve the problem to a very high accuracy.

6. Conclusions. We considered the problem of regularizing large-scale discrete
forms of ill-posed problems arising in several applications. We posed the regularization
problem as a quadratically constrained least squares problem, showed the relationship
of this approach to Tikhonov regularization and to the trust-region subproblem, and
analyzed the latter in the ill-posed case.

We have presented numerical results obtained when we used the recently devel-
oped method LSTRS for the large-scale trust-region subproblem to solve regulariza-
tion problems from a wide variety of applications including problems with field data.
The method requires solving a sequence of large-scale eigenvalue problems, which is
accomplished with a variant of the Lanczos method. An important feature of LSTRS
is that it computes both the solution and the Tikhonov regularization parameter from
the prescribed norm.

LSTRS is particularly suitable for large-scale discrete forms of ill-posed problems,
for which it computed regularized solutions close to the desired exact solutions using
limited storage and moderate computational effort in general. For real applications
the method required a low number of matrix-vector products with respect to the
dimension of the problem, and storage comparable to or less than the conjugate
gradient method. Our approach also had the desirable feature of providing systematic
stopping criteria.

We are currently investigating various approaches to preconditioning, aiming to
generate eigenvalue problems that can be solved more efficiently. Although further
improvement is needed, LSTRS proved to be a promising method for the numerical
treatment of large-scale discrete forms of ill-posed problems in which the norm of the
desired solution is prescribed.
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Abstract. Parametric sensitivity analysis is becoming a very important tool when studying
differential equations. However, potential pitfalls exist if this analysis is applied naively. In par-
ticular, if the model contains discontinuities, then the application of standard numerical codes will
typically result in incorrect sensitivity trajectories. The purpose of this paper is to demonstrate
the problems associated with “hidden discontinuities” during sensitivity analysis (i.e., discontinuities
not handled explicitly) and to present a code analysis and transformation approach through which
differential equations containing discontinuities can be solved efficiently and correctly with minimal
effort required by the modeler.
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1. Introduction and motivation. Parametric sensitivity analysis is used to
obtain information concerning state variable variations with respect to infinitesimal
perturbations in the values of model parameters. Some common applications for para-
metric sensitivity analysis are experimental design, model reduction, and obtaining
gradients and Jacobians in control parameterization approaches for dynamic opti-
mization and parameter estimation. The advent of better algorithms for computing
forward sensitivities allows this calculation to be performed on much larger and more
complex systems [14, 7]. However, potentially serious problems exist if parametric
sensitivity analysis is applied to dynamic models containing discontinuities. These
problems are addressed in this paper by considering models containing discontinuities
within a hybrid systems framework.

Hybrid discrete/continuous systems (or simply hybrid systems) are dynamical
systems that exhibit both discrete and continuous behavior. The continuous behavior
of the model is usually described by one or more ordinary differential equation (ODE)
or differential-algebraic equation (DAE) systems. The discrete behavior, which occurs
at particular points in time known as events, includes phenomena such as nonsmooth
forcing, switching of the vector field, and jumps in the state. We can broadly dis-
tinguish between two types of events: time events and state events. A time event is
an event where the time of occurrence is known a priori. In contrast, a state event
occurs when some condition involving the state variables is satisfied (e.g., the level of
liquid in a tank reaches a certain height), and the time of occurrence is in general not
known a priori.

Hybrid system models appear in a wide variety of disciplines. They appear di-
rectly when modeling discrete control actions imposed on a system (e.g., a safety
interlock system), disturbances introduced into a continuous system, cell signaling
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models, and certain electrical circuit models. In the examples above, the state events
and the discontinuities they introduce are an important feature of the phenomena
of interest, and it is well known that special action must be taken to simulate such
systems [12, 2, 15]. In other, seemingly continuous examples, hidden discontinuities
can have adverse effects because the special measures mentioned above are not taken.
These discontinuities are typically introduced by modeling abstractions; e.g., physical
properties of fluids are often represented by piecewise smooth semiempirical relation-
ships. Within a code these may appear as nonsmooth intrinsic functions, such as
MIN and MAX, as well as the more obvious IF statements. The problem with models
where the discrete behavior is not of primary interest is that often these discontinu-
ities are not handled explicitly (i.e., they remain “hidden” in the code), and the error
control mechanism of the integrator is relied on to deal with them. It is well known
that numerically integrating systems containing hidden discontinuities is inefficient
and sometimes results in integration failures [12]. In the worst case, ignoring disconti-
nuities can lead to incorrect results that may escape the modeler’s attention [6]. The
situation is far worse and not yet documented in the literature for parametric sensi-
tivity analysis of systems containing hidden discontinuities. Because the sensitivities
will often jump at the discontinuities, if the numerical integration is not stopped and
the jump computed explicitly [8], the computed sensitivity trajectories will generally
be incorrect.

The purpose of this paper is to illustrate the implications of performing para-
metric sensitivity analysis of systems containing hidden discontinuities and describe
automatic techniques that can be applied to code in order to perform parametric
sensitivity analysis with hybrid systems correctly.

2. Formalism. The following hybrid system formalism, adopted from [1, 8], will
be used in this paper. State space is divided into a set of modes, S = ∪nmk=1Sk, where
each mode Sk is characterized by the following:

1. A set of variables {ẋ(k)(p, t), x(k)(p, t), y(k)(p, t), u(k)(p, t), p, t}, where x(k)(p, t),
ẋ(k)(p, t) are the differential variables and their time derivatives, which are

functions of p and t in an n
(k)
x -dimensional function space, y(k)(p, t) are the

algebraic variables, which are functions of p and t in an n
(k)
y -dimensional

function space, u(k)(p, t) are the controls (or inputs), which are functions of

p and t in an n
(k)
u -dimensional function space, p ∈ R

np are the time invariant
parameters, and t ∈ R is time, the independent variable.

2. A set of equations, f (k)(ẋ(k), x(k), y(k), u(k), p, t) = 0, where f (k) : R
n(k)
x ×

R
n(k)
x × R

n(k)
y × R

n(k)
u × R

np × R −→ R
n(k)
x × R

n(k)
y .

3. A set of transitions from one mode to another (possibly the same mode), J (k),
where each transition is characterized by the following:

(a) Transition conditions L
(k)
j (ẋ(k), x(k), y(k), u(k), p, t), j ∈ J (k), defining

the transition times.
(b) Transition functions T

(k)
j (ẋ(k+1), x(k+1), y(k+1), u(k+1), ẋ(k), x(k), y(k),

u(k), p, t) = 0, j ∈ J (k), a system of equations that maps the final values
of the variables in the current mode to the initial values in the next mode.
(Initial conditions are a special case of these transition functions.) The
number of transition functions is determined by the dynamic degrees of
freedom of the DAE in the new mode.

It is assumed that the transition conditions, L
(k)
j (ẋ(k), x(k), y(k), u(k), p, t), are

logical expressions composed of one or more real-valued relational expressions in-



HYBRID PARAMETRIC SENSITIVITY CALCULATIONS 1863

volving relational operators <, ≤, >, or ≥. For example, the logical expression
(x1 ≥ 5) ∨ (x2 > 2 ∧ x2 ≤ 5) contains the relational expressions x1 ≥ 5, x2 > 2, and
x2 ≤ 5. Putting these relational expressions into the form

g ≥ (>)0(2.1)

defines discontinuity functions. The logical proposition of the transition condition
may switch value when one or more discontinuity functions cross zero. A switching
event is defined by the earliest time at which one of the transition conditions becomes
true. Of course, a model may contain more general logical conditions (e.g., integral
expressions or expressions involving the equality operator), and these are described
below.

This paper focuses on the case where

rank

(
∂f (k)

∂ẋ(k)

∂f (k)

∂y(k)

)
= n(k)

x + n(k)
y(2.2)

for all k and t. This is sufficient for a differentiation index less than or equal to one.

3. Algorithm. Several approaches have been developed for hybrid simulation,
ranging from modifying the integrator itself to detect and handle discontinuities [9]
to replacing the discrete aspects of the model with smooth approximations. The ap-
proach used in this work is based on the algorithm described in [15]. In this approach,
the DAE of the current mode, f (k), is augmented with the discontinuity functions as-

sociated with the mode’s transition conditions, L
(k)
j , j ∈ J (k). For example, let

g
(k)
l,j : R

n(k)
x × R

n(k)
x × R

n(k)
y × R

n(k)
u × R

np × R −→ R denote the lth discontinuity

function of transition condition L
(k)
j , j ∈ J (k), where l = 1, . . . , n

(k)
d,j (where n

(k)
d,j is the

number of discontinuity functions in the jth transition condition). The augmented
DAE in mode Sk is given by

F (k)(ẋ(k), x(k), y(k), δ(k), u(k), p, t) =

(
f (k)

δ(k) − g(k)

)
,(3.1)

where g(k) denotes the vector of the discontinuity functions of all transition conditions
in the current mode and δ(k) is the vector of discontinuity variables. Augmenting the
original DAE with these additional explicit equations (referred to as discontinuity
equations) places the discontinuity functions under integration error control. The
additional variables added for the discontinuity equations, δ(k), are algebraic variables
and may be appended to the original algebraic variable vector:

y ≡
(

y
δ

)
.

Although including the discontinuity equations increases the size of the model, because
the system block decomposes, very little additional computational effort is required to
integrate the system [15]. Condition (2.2) along with the assumption the discontinuity
functions do not contain time derivatives of y ensures

rank

(
∂F (k)

∂ẋ(k)

∂F (k)

∂y(k)

)
= n(k)

x + n(k)
y ,(3.2)

for all k, where x(k) and y(k) are the differential and algebraic variables, respectively, of

the augmented system. (That is, n
(k)
y includes the additional discontinuity variables.)



1864 JOHN E. TOLSMA AND PAUL I. BARTON

At each integration step, the interpolating polynomials associated with the dis-
continuity variables are searched for zero crossings using root exclusion tests based
on interval arithmetic. If an integrator based on the predictor-corrector method is
employed, these interpolating polynomials will, in general, be readily available. Other-
wise, polynomials can be fitted to the discontinuity variables during the integration.
Using a root exclusion test based on interval arithmetic is efficient and guarantees
that the correct transition time (i.e., the earliest) will be identified. The transition
time is polished, and consistent states are determined by solving the DAE augmented
with the discontinuity function triggering the event. (The transition time computed
from the interpolating polynomials may not be sufficiently close to the true transition
time, resulting in “discontinuity sticking” where the event just found is immediately
triggered again [15]. Consequently, the value obtained from the interpolation must
be polished by augmenting the DAE with the discontinuity function which triggered
the event and solving this augmented system for t∗, ẋ(k), x(k), and y(k) where t∗ is
“close” to the actual transition time.) The model is then switched into the next mode,
where the new DAE system is consistently initialized using the appropriate transition
function and integration is resumed.

The situation is slightly more complicated when performing parametric sensitivity
analysis with hybrid systems. In the kth mode, the augmented DAE and sensitivity

equations form an (n
(k)
x + n

(k)
y )(np + 1) system given by

F (k)(ẋ(k), x(k), y(k), u(k), p, t) = 0,(3.3)

∂F (k)

∂ẋ(k)
ṡx,1 +

∂F (k)

∂x(k)
sx,1 +

∂F (k)

∂y(k)
sy,1 = −

(
∂F (k)

∂u(k)

∂u(k)

∂p1
+

∂F (k)

∂p1

)
,

...

∂F (k)

∂ẋ(k)
ṡx,np +

∂F (k)

∂x(k)
sx,np +

∂F (k)

∂y(k)
sy,np = −

(
∂F (k)

∂u(k)

∂u(k)

∂pnp
+

∂F (k)

∂pnp

)
,

where s
(k)
x,i ≡ ∂x(k)/∂pi, s

(k)
y,i ≡ ∂y(k)/∂pi, and ṡ

(k)
x,i = ∂s

(k)
x,i/∂t = ∂ẋ(k)/∂pi. Although

this system may be quite large, algorithms exist that exploit the structure for efficient
solution [14, 7].

In addition to computing consistent initial values for ẋ, x, and y in the new
mode, jumps in the sensitivities must also be computed. However, as shown in [8],
these jumps can be readily computed by differentiating the original DAE, discontinuity
function, and transition functions associated with the transfer of the state into the
new mode. The sensitivity of the transition time with respect to parameter pi is given
by

∂g̃
(k)
k+1

∂ẋ(k)

(
ṡ
(k)
x,i + ẍ(k) ∂t

∂pi

)
+

∂g̃
(k)
k+1

∂x(k)

(
s
(k)
x,i + ẋ(k) ∂t

∂pi

)
+

∂g̃
(k)
k+1

∂y(k)

(
s
(k)
y,i + ẏ(k) ∂t

∂pi

)

+
∂g̃

(k)
k+1

∂u(k)

(
∂u(k)

∂pi
+

∂u(k)

∂t

∂t

∂pi

)
+

∂g̃
(k)
k+1

∂pi
+

∂g̃
(k)
k+1

∂t

∂t

∂pi
= 0,(3.4)

where g̃
(k)
k+1 is the discontinuity function that triggers the event. The equation above

is solved for ∂t/∂pi. The required elements of ẋ, ẏ, and ẍ in the equation above can
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be computed from the first and higher order derivatives of the DAE. The jump in
sensitivities can then be computed by solving the following linear system:


 ∂T

(k)

k+1

∂ẋ(k+1)

∂T
(k)

k+1

∂x(k+1)

∂T
(k)

k+1

∂y(k+1)

∂F (k+1)

∂ẋ(k+1)
∂F (k+1)

∂x(k+1)
∂F (k+1)

∂y(k+1)






∂ẋ(k+1)

∂pi
∂x(k+1)

∂pi
∂y(k+1)

∂pi




= −

 ∂T

(k)

k+1

∂ẋ(k+1)

∂T
(k)

k+1

∂x(k+1)

∂T
(k)

k+1

∂y(k+1)

∂F (k+1)

∂ẋ(k+1)
∂F (k+1)

∂x(k+1)
∂F (k+1)

∂y(k+1)






∂ẋ(k+1)

∂t
∂x(k+1)

∂t
∂y(k+1)

∂t


 ∂t

∂pi

−

 ∂T

(k)

k+1

∂ẋ(k)

∂T
(k)

k+1

∂x(k)

∂T
(k)

k+1

∂y(k)

∂T
(k)

k+1

∂u(k)

∂T
(k)

k+1

∂u(k+1)

∂T
(k)

k+1

∂pi

∂T
(k)

k+1

∂t

0 0 0 0 ∂F (k+1)

∂u(k+1)
∂F (k+1)

∂pi
∂F (k+1)

∂t




×




∂ẋ(k)

∂pi
+ ∂ẋ(k)

∂t
∂t
∂pi

∂x(k)

∂pi
+ ∂x(k)

∂t
∂t
∂pi

∂y(k)

∂pi
+ ∂y(k)

∂t
∂t
∂pi

∂u(k)

∂pi
+ ∂u(k)

∂t
∂t
∂pi

∂u(k+1)

∂pi
+ ∂u(k+1)

∂t
∂t
∂pi

I
∂t
∂pi




.

(3.5)

Additional details about the transfer of sensitivities at state events, including formal
existences proofs, are presented in [8].

The hybrid system parametric sensitivity analysis algorithm can be summarized
with the pseudocode shown in Figure 1.

A large amount of additional information must be provided by the modeler when
using the algorithm described above. First, the modeler must be able to lock the
model into the current mode so that the integrator always evaluates a smooth func-
tion. For example, if the model code contains IF statements, then the conditional
branching must be locked to the current mode, regardless of the values of the logical
expressions associated with the IF statements. Second, all of the discontinuity func-
tions contained in the model code must be identified and put into an explicit form.
Finally, additional partial derivative information other than that required for smooth
integration must be provided (e.g., partial derivatives with respect to discontinuity
functions and transition functions). Requiring the modeler to provide this information
is a great burden, a reason that contributes greatly to why discontinuities are typi-
cally not handled explicitly. However, this additional information can be generated
automatically with minimal user intervention using code analysis and transformation
techniques similar to those used in automatic differentiation. The paragraphs below
describe how this information can be generated when the original model is coded in
the form of a program written in some procedural programming language such as C
or Fortran.

Automatic, or algorithmic, differentiation (AD) is a technique for obtaining values
for analytical derivatives of functions, usually in the form of a computer program (e.g.,
a collection of one or more subroutines and functions written in C or Fortran). AD is
based on applying the chain-rule to the sequence of elementary operations involved in
the computation of the dependent variables from the independent variables. (Several
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Hybrid Sensitivity Algorithm

1 Compute consistent initial conditions in initial mode

2 Compute initial sensitivities

3 while (integration not finished) do

4 Take integration step

5 Search discontinuity function interpolating polynomials

6 for zero crossings

7 if (discontinuity function crosses zero and

8 transition condition becomes true) then

9 Compute event time and consistent values for the states

10 and time derivatives in the current mode

11 Solve appropriate transition function to transfer final

12 conditions in current mode to initial conditions

13 in next mode

14 Compute all required derivative information (i.e., required

15 elements of ẋ, ẏ, and ẍ)

16 Compute sensitivity of event time using (3.4)

17 Compute jump in sensitivities using (3.5)

18 end if

19 end

Fig. 1. Pseudocode for hybrid sensitivity algorithm.

variants of AD exist depending on the how the chain-rule is applied.) The original code
is then modified and augmented (either by generating new code or using the operator
overloading features of many modern programming languages) with additional code
to perform the chain-rule operations and compute the values of the partial derivatives
of the dependent variables with respect to the independent variables. A detailed
description of AD is beyond the scope of this paper, and additional information can
be found in [16, 10, 3, 11].

AD tools that generate new code for derivative computation analyze the original
source code to identify the dependence of the dependent variables on the indepen-
dent variables, apply the chain-rule to the elementary operations, and construct new
code that computes derivatives of the elementary operations and accumulates values
of the partial derivatives of the dependent variables. The code analysis and trans-
formation techniques used to construct new code for derivative evaluation can also
be extended to generate a wide variety of information, in particular the information
required for performing the algorithm for parametric sensitivity analysis of hybrid
systems described above. The original source is analyzed and searched for disconti-
nuities. The source is then augmented with additional code that records the current
mode. For example, if an IF statement is identified in the original source, then the
new code records the current clause of this IF statement (i.e., whether the logical
expression evaluates to true or false) and records this value in a bit vector. Similarly,
if a non-smooth intrinsic function (e.g., MIN and MAX) is identified, then the cur-
rently active branch is recorded in the bit vector. On subsequent model evaluations,
the bit vector is analyzed to determine the conditional branching followed on previ-
ous evaluations, and this is used to determine the current discrete mode, rather than
the actual values of the logical expressions associated with IF statements and other
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Fig. 2. Automatic generation of additional information required for hybrid parametric sensi-
tivity analysis with DAEPACK. The squares denote the code that must be supplied by the user. The
ovals denote code generated automatically by DAEPACK.

discontinuities. Using a bit vector to record the current mode typically results in very
little additional memory and computational cost required to perform a locked model
evaluation. In addition to recording the current mode, the original source can also be
modified to evaluate the discontinuity functions in the model and augment the origi-
nal DAE with the discontinuity equations shown in (3.1). To reiterate, all of this can
be performed automatically with minimal user intervention. As mentioned above, the
transition conditions may contain logical expressions other than real-valued relational
expressions (the expressions used to construct discontinuity functions). Although dis-
continuity functions are not created for these types of logical expressions (e.g., t = 0
and i > 4 where i is an integer), the new code can be modified to return a flag in-
dicating events containing these types of transition conditions have been triggered.
However, unlike events caused solely by zero crossings of discontinuity functions, these
other events will be identified only at mesh points in the numerical integration. Once
the new model, augmented with the discontinuity equations and modified to allow for
locked model evaluations, has been generated, standard AD techniques can be applied
to generate the derivatives required for hybrid sensitivity analysis.

The approach described above has been implemented in a software library called
DAEPACK [18, 17]. The DAEPACK library consists of two parts: components for
analyzing general Fortran code and generating automatically new code for evaluating
analytical derivatives, sparsity patterns, discontinuity-locked models, etc. and numeric
components which exploit the automatically generated information for performing nu-
merical calculations efficiently, robustly, and correctly. Figure 2 contains a diagram
showing the additional code required for hybrid parametric sensitivity analysis gener-
ated automatically from the users code representing the original hybrid DAE model.
Figure 3 contains a diagram showing how this automatically generated code is used
with other DAEPACK numerical components for performing a hybrid parametric
sensitivity calculation.

This section describes an automated technique for computing the parametric sen-
sitivities of a hybrid system by explicitly handling the events and transfer of states
and sensitivities across these events. Alternatively, the user may compute the sen-
sitivities of a hybrid system by finite differences. For example, using forward finite
differences, the sensitivity of a state variable, e.g., x(t, p), at t = t∗ is approximately
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Fig. 3. Hybrid parametric sensitivity analysis algorithm with DAEPACK.

the difference between this point on the trajectory evaluated at p and this point on
the trajectory evaluated at p + δp, divided by δp. That is,

s(t∗, p) ≡ ∂x(t∗, p)

∂p
≈ x(t∗, p + δp)− x(t∗, p)

δp
.

There are, however, a number of problems with this. First, the numerical integration
of the hybrid system must be performed reliably. If special provisions must be taken
to ensure correct hybrid simulation (such as the approach described above), then the
additional work required to transfer the sensitivities at the event should be performed.
Other problems are cost and accuracy. In order to compute the sensitivity trajecto-
ries with respect to np parameters, np + 1 numerical integrations must be performed.
Furthermore, each of these integrations should be performed with identical stepsize
histories [13]. If an adaptive stepsize algorithm is used, then this can be quite a dif-
ficult modification to a third-party library code. Also, the user must ensure that the
stepsize history selected is appropriate for each of the np+1 integrations. Even if this
is done, all the problems associated with computing partial derivatives of algebraic
functions with finite differences exist, including selection of appropriate perturbation
and loss of accuracy due to round-off error. If the numerical integrations are not
performed with same stepsize history, then they must be performed at a much higher
tolerance than the accuracy desired in the sensitivities. As described in [13], the error
in the finite difference approximated sensitivities due to truncation error is O(|δp|),
and the error due to the fact the integration is performed with limited accuracy is
O(ε/|δp|), where δp is the parameter perturbation and ε is the numerical integration
tolerance. Consequently, if we desire sensitivity trajectories with accuracy δ, we must
perform each of the np+1 numerical integrations with accuracy δ2. Unfortunately, the
presence of discontinuities in the hybrid system may limit the accuracy of the numer-
ical integration due to calculation failures unless these events are handled explicitly.
Even if the numerical integrations can be performed reliably, the tighter tolerances
required can significantly increase the cost of the overall calculation. These issues are
illustrated with a numerical example in the following section.

The following section contains example problems illustrating the implications of
ignoring discontinuities during sensitivity calculation and how the calculation is per-
formed properly using DAEPACK.
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4. Examples. This section contains two example problems illustrating the ap-
proach described above. The ideas presented in this paper were implemented in
the software library DAEPACK [18]. DAEPACK is divided into two main libraries,
one containing components that generate automatically symbolic information (e.g.,
analytical derivatives and sparsity patterns) from Fortran source code and another
containing numerical components which exploit this symbolic information. In partic-
ular, DAEPACK contains a component that analyzes the user’s Fortran source code
representing a hybrid system model and writes new code that computes the disconti-
nuity functions and allows the user to perform locked model evaluations. In addition,
a component is provided which analyzes Fortran source code and constructs new code
for evaluating partial derivatives using AD. The user must simply provide a list of the
dependent and independent variables. Three numerical codes in DAEPACK of inter-
est in this paper are DSL48S, DSL48E, and DSL48SE. DSL48S is a large-scale, sparse
DAE integrator based on DASSL [4] and employs the parametric sensitivity analysis
algorithm described in [7]. DSL48E implements the state event location algorithm
described in [15]. DSL48SE combines both DSL48S and DSL48E and computes auto-
matically the sensitivity jump at the state events. All of the information required to
perform the hybrid sensitivity calculation properly can be generated with DAEPACK.
All the user must provide is the Fortran source code representing the hybrid system
model of interest.

The first example is a single ODE where the transition condition, x3−5x2+7x ≤ p,
is a function of the time invariant parameter p:

ẋ =

{
4− x : x3 − 5x2 + 7x ≤ p,

10− 2x : otherwise,
(4.1)

where p = 2.9. This model was coded into a Fortran subroutine using a normal IF
statement to represent the discontinuity. The symbolic components of DAEPACK
were applied to this Fortran model to generate new code for the discontinuity-locked
model and all of the necessary derivatives. The parametric sensitivity calculation
was performed twice, once using only DSL48S (where the discontinuity was hidden)
and a second time using DSL48SE to handle properly the discontinuity. The initial
condition for this model is

x(0) = 0.

The transfer functions for this hybrid system are simply x(2) − x(1) = 0. Figure 4
shows the state variable, x, and sensitivity trajectories for both cases. Clearly, the
sensitivity is wrong (quantitatively and qualitatively) if the discontinuity is not han-
dled properly. In fact, the incorrect sensitivity in Figure 4 would seem to indicate
that x is not sensitive at all to the value of p, which it clearly is. Unfortunately, this
model is solved without an apparent problem when the discontinuity is ignored; thus,
the incorrect sensitivity can easily escape the modeler’s attention.

Suppose the user wishes to compute the hybrid sensitivities using finite differ-
ences (see the discussion in the previous section). Further, suppose the user naively
performs the numerical integrations using an integration tolerance of 10−6. Figure 5
contains a plot of three sensitivity trajectories for the hybrid ODE (4.1) in the vicinity
of the first event. The solid line in Figure 5 (the trajectory with a clear “jump”) is the
sensitivity trajectory computed using the approach described in this paper and has
an accuracy of 10−6. The dashed line below this trajectory was computed using finite
differences with a parameter perturbation of 10−5. The dotted line above the solid
lined trajectory was computed using finite differences with a parameter perturbation
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Fig. 4. State and sensitivity trajectories for Example 1. The heavy solid line is the state
trajectory, the thin dotted line is the sensitivity trajectory computed with hidden discontinuities, and
the dashed line exhibiting jumps is the true sensitivity trajectory.

of 10−4. Notice that in both of the finite difference trajectories, a sharp, but smooth,
transient is computed rather than a jump. The duration of this transient is equal to
the shift in time of the event caused by the perturbation of the parameter. Figure 6
contains a plot of the differences between the sensitivity trajectory computed using the
approach described in this paper and the trajectories computed by finite differences
with various parameter perturbations. (All integrations were performed with a toler-
ance of 10−6.) The thin solid line is the difference in the finite difference trajectory
computed using a parameter perturbation of 10−6. The dashed line is the difference
in the finite difference trajectory computed using a parameter perturbation of 10−5.
The dotted line is the difference in the finite difference trajectory computed using a
parameter perturbation of 10−4. This figure precisely illustrates the description in
[13]: the error in the finite difference trajectories is O(ε/|δp|). When the parameter
perturbation is of the order of the integration tolerance, then the finite difference
computed trajectories are completely inaccurate. In this example, we were able to
select a parameter perturbation large enough to obtain reasonably accurate sensitiv-
ity trajectories for a given integration tolerance. However, if we were interested in
the values of the sensitivities near the event, then we would have to choose a much
smaller parameter perturbation. Truncation error considerations may also require the
use of a much smaller parameter perturbation. If either of these were the case, then
we would have to choose a much tighter integration tolerance. In this simple example,
the tightest integration tolerance possible was approximately 10−13. Thus, it is quite
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Fig. 5. Hybrid parametric sensitivity trajectories. The thin solid line is the sensitivity trajectory
computed explicitly with a tolerance of 10−6. The long dashed line (below solid line trajectory) is the
sensitivity trajectory computed using finite differences with a parameter perturbation of 10−5 and
integration tolerance of 10−6. The dashed line (slightly above solid line trajectory) is the sensitivity
trajectory computed using finite differences with a parameter perturbation of 10−4 and integration
tolerance of 10−6.

possible that the numerical integrations may not be able to be performed at the nec-
essary level of accuracy. Computing derivatives of algebraic functions reliably with
finite differences is often a difficult task. As illustrated in this example, using finite
differences to compute parametric sensitivities of hybrid dynamic systems is often a
far more difficult task.

The second example is a small circuit simulation model adapted from [5]:

f1 = x1 + x2 − x3,(4.2)

f2 = r3(x1 + x2) + l3(ẋ1 + ẋ2)− v3,(4.3)

f3 = 100 cos(100πt)− v1,(4.4)

f4 = −v1 − v2,(4.5)

f5 = v1 − v3 − z3,(4.6)

f6 = v2 − v3 − z4,(4.7)

(4.8)

f7 =




(v1 − p1x1)/p2 − ẋ1 : (x1 ≥ 0 ∨ v1 ≥ v3) ∧ (x2 ≤ 0 ∧ v2 ≤ v3),
ẋ1 : (x2 ≥ 0 ∨ v2 ≥ v3) ∧ (x1 ≤ 0 ∧ v1 ≤ v3),

p5v1 + p6v2 + p7x1 + p8x2 − ẋ1 : otherwise,

(4.9)

f8 =




ẋ2 : (x1 ≥ 0 ∨ v1 ≥ v3) ∧ (x2 ≤ 0 ∧ v2 ≤ v3),
(v2 − p3x2)/p4 − ẋ2 : (x2 ≥ 0 ∨ v2 ≥ v3) ∧ (x1 ≤ 0 ∧ v1 ≤ v3),

p9v1 + p10v2 + p11x1 + p12x2 − ẋ2 : otherwise,
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Fig. 6. Error in hybrid parametric sensitivity trajectories. This figure contains a plot of
the difference between the sensitivity trajectory computed explicitly and the trajectories obtained
using finite differences. All integrations are performed with a tolerance of 10−6. The thin solid
line is the difference in the finite difference trajectory computed using a parameter perturbation of
10−6, the dashed line is the difference in the finite difference trajectory computed using a parameter
perturbation of 10−5, and the dotted line is the difference in the finite difference trajectory computed
using a parameter perturbation of 10−4.

where p1 = 12, p2 = 0.24, p3 = 12, p4 = 0.24, p5 = 13.64, p6 = −11.64, p7 = −50,
p8 = 0, p9 = −11.64, p10 = 13.64, p11 = 0, and p12 = −50. The initial conditions for
this model are

x1(0) = 0,

x2(0) = 0,

and the transition functions are x
(k+1)
1 − x

(k)
1 = 0 and x

(k+1)
2 − x

(k)
2 = 0 for all tran-

sitions. Again, this model was coded into a Fortran subroutine, and DAEPACK was
used to generate the additional information (i.e., the discontinuity-locked model and
all partial derivatives). Unlike the first example, this model could not be numerically
integrated beyond the second discontinuity when the discontinuities were not handled
explicitly. Figure 7 contains the sensitivities of variables x1, x2, and x3 with respect
to time invariant parameter p5. A plot of the state trajectories can be found elsewhere
in the literature [15].

5. Conclusions. Parametric sensitivity analysis provides valuable information
required to understand a model and is used in a variety of calculations. Unfortu-
nately, applying standard numerical codes for parametric sensitivity analysis to mod-
els containing discontinuities can lead to disastrous consequences. This is particularly
true for legacy models. Existing models, containing discontinuous relationships, that
yielded correct results when performing numerical integration will generally fail or
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Fig. 7. Sensitivity trajectories (s1 = ∂x1/∂p5, s2 = ∂x2/∂p5, and s3 = ∂x3/∂p5) for Example
2. The solid line is s1, the dashed line is s2, and the thin dotted line is s3.

produce incorrect results when performing parametric sensitivity analysis. Fortu-
nately, by extending the techniques of automatic differentiation, code analysis and
transformation can be used to automatically generate the information required to
perform proper parametric sensitivity analysis.
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Abstract. In this paper we address the numerical solution of a large linear system depending
quadratically on a parameter that varies in a wide range. We analyze a solution method, whose
computational cost grows only sublinearly with the number of parameters, that relies on the use of an
indefinite inner product. Important implementation aspects are treated in detail. The problem arises
in various application areas: we shall report on our experience with cases in structural dynamics.
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1. Introduction. We are interested in the numerical solution of the linear sys-
tem

L(λ)x = b, L(λ) = λ2A+ λB + C(1.1)

as λ ∈ C varies, where x = x(λ). In the following we shall assume that either A or C
is nonsingular and that A,B, and C are n × n complex symmetric matrices, so that
L(λ) is also complex symmetric. We are interested in the case in which system (1.1)
need be solved for several (say hundreds or thousands) values of λ in a wide range.

Equation (1.1) has large application in the solution of difference and ordinary
differential equations, where it has been classically studied [14]. Unfortunately, the
theoretical spectral tools utilized in such setting are computationally inefficient on
large application problems such as electromagnetic scattering [19], wave propagation
in porous media [30], and structural dynamics [6]. The quadratic, and in more general
contexts nonlinear, parameter λ may be treated using Padé approximation when λ is
close enough to a fixed reference value λ0 [19]. When λ is in a wider range, linearization
techniques originating from the eigenvalue setting may be exploited; see, for instance,
[25, 16, 39]. In [6] it was shown that for structural dynamics applications, iteratively
solving the linearized version of (1.1) is in general more efficient than using a direct
sparse solver on (1.1). This is due to the fact that the latter needs to recompute the
factors of the sparse factorization for each value of λ, causing the computation cost to
grow linearly with the number of parameters. Unfortunately, the iterative methods
in [6] did not exploit the symmetry of the problem, so that they suffered from known
limitations of the nonsymmetric solvers employed [29]. Although the problem finds
application in several important areas, general numerical methods other than those
analyzed in [6] do not seem to have been fully investigated (e.g., the methods in [41, 18]
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are application-oriented), and performance comparisons with obvious techniques seem
to be lacking.

In this paper we analyze in detail the iterative solution of (1.1) when a lineariza-
tion of the problem is carried out, so that system (1.1) is transformed into

(A+ λB)z = d
of twice the size, with A and B complex symmetric and z = z(λ). We propose a
Krylov subspace method that exploits the symmetry of the problem so as to devise a
short-term recurrence whose computational cost per iteration is comparable to that
of a Hermitian iterative solver. Collecting B on the right, we obtain the shifted form

(AB−1 + λI2n)ẑ = d, ẑ = Bz,(1.2)

where I2n is the identity matrix of order 2n. Due to the shift invariance of Krylov
subspaces, the space generated for the approximation of ẑ = ẑ(λ) in (1.2) turns out to
be the same for all λ’s. This important property allows us to simultaneously handle
several λ’s at a cost that grows only sublinearly with the number of parameters.

In this paper we give a thorough analysis of the method: relevant aspects are un-
covered that make the approach amenable to dealing with very large three-dimensional
(3D) problems. To this end, a key step is the solution of a system with the complex
symmetric matrix B at each iteration; the solution is necessary to transform the lin-
earized system into the shifted form (1.2). For large dimension problems, such a
solution can be obtained only approximately by means of an iterative method. The
inexact solution with B in general leads to deterioration of performance: a theoret-
ical analysis describes the influence of the inexact procedure on the convergence of
the Krylov subspace method and numerical experiments emphasize the difficulties
one encounters when using the inexact approach. Most numerical and experimental
considerations are carried out on a real application problem, stemming from direct
frequency analysis in structural dynamics, in which A is complex symmetric, B is
purely imaginary, and C is real. For the sake of generality, however, our numerical
experiments allow us to make considerations on the behavior of the method that go
beyond the use on our particular application.

We should mention that the idea of combining the symmetry of the problem
and the shift invariance of Krylov subspace methods for solving (1.1) first appeared
in [33]. This paper aims to investigate the numerous numerical and computational
aspects that need to be addressed in order to make a solver of practical value in real
application problems.

Following a strategy commonly employed in the nonlinear context, one could solve
(1.1) directly for a particular choice of λ and then use the generated information to en-
hance the solution of (1.1) for the parameter values of interest. Such a strategy would
avoid doubling the problem size. Nonetheless, we point to some of the shortcomings
of this strategy, while our numerical experiments show that for a large number of
parameters, the new method outperforms this type of scheme that directly deals with
(1.1).

We next give a synopsis of the paper. In section 2 we give a brief description of
the model problem. In section 3 we introduce the linearized matrix formulation and
the algebraic tools that are used in the algorithm. In section 4 and its subsection,
the Simplified Shifted Lanczos procedure is described. Considerations relating to
the solution of the original and linearized problems are discussed in section 5, while
acceleration strategies are discussed in section 6. Sections 7 and 7.1 are devoted to the
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analysis and numerical experiments, respectively, of the exact and inexact solution
of the system occurring at each iteration of the Lanczos procedure. In section 8 the
method is compared with alternative strategies. Multiple-input systems are discussed
in section 9. Finally, our conclusions and comments for future work are summarized
in section 10.

All tests were run in Fortran on one CPU of a Sun Enterprise 4500 and plot-
ted using Matlab [21]. Capital letters denote matrices, small Roman letters denote
vectors, Greek letters denote scalars, and ı is the imaginary unit. Matlab notation
is used whenever possible. For a complex vector x, xT , x̄ denote the transpose and
conjugate of x, respectively, x∗ = x̄T , and (x)i denotes its ith component. For a ma-
trix X, (X):,i denotes its ith column; unless otherwise stated, its condition number,
cond(X), is the ratio of its largest and smallest nonzero singular values. Moreover,
‖x‖2 =∑n

i=1 |(x)i|2 for x ∈ C
n, and the induced norm is used for matrices. In is the

identity matrix of dimension n and ej is its jth column, whose number of components
is usually clear from the context. The pair (λ, x) with 0 �= x ∈ C

n is an eigenpair
(or latent root and vector) of L if L(λ)x = 0. Finally, diag(α1, . . . , αn) is a diagonal
matrix of size n with diagonal entries α1, . . . , αn.

2. Frequency analysis of linearized dynamical systems. Let us consider
an n-DOF discretized linear system, oscillating with small amplitudes in the neigh-
borhood of a stable equilibrium configuration (see, e.g., [4, 26] for a matrix-oriented
treatment). Assuming linear elastic restoring forces and viscous dissipation, the equa-
tions of motion can be written, by Lagrange equations, in the following matrix form:

Mq̈ +Dq̇ +Kq = p.(2.1)

In (2.1) q is the vector of Lagrangian coordinates, p the vector of generalized compo-
nents of dynamic forces, M and K the kinetic and potential energy matrices, respec-
tively, while D is the damping matrix. In the case of complex harmonic excitation at
frequency f , system (2.1) takes the form

Mq̈ +Dq̇ +Kq = beı2πft.(2.2)

Equation (2.2) admits the steady-state solution q(t) = q̃eı2πft, where q̃ can be ob-
tained as the solution of the linear system(−(2πf)2M + ı2πfD +K

)
q̃ = b.(2.3)

Within the context of steady-state harmonic analysis, a “mixed” damping, encompass-
ing viscous (DV matrix) and hysteretic (DH matrix) contributions, can be introduced
as D = DV + 1

2πfDH . Substitution in the linear system (2.3) leads to
(−(2πf)2M + ı2πfDV +K�

)
q̃ = b, K� = K + ıDH .(2.4)

We shall assume that the dynamic system under study encompasses p hysteretic sub-
systems, each of them characterized by a contribution K(j) to the global stiffness
matrix and by a hysteretic damping factor η(j), so that DH =

∑p
j=1 η

(j)K(j).
The obtained system (2.4) fits our matrix form (1.1) by defining

λ = 2πf, A = −M, B = ıDV , C = K�, x = q̃.

As an alternative to the above formulation, the linear system can be rewritten in
terms of acceleration amplitudes ã = −(2πf)2q̃, leading to the “inverse” form(

M +
1

ı2πf
DV +

1

−(ı2πf)2K�
)
ã = b.
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Table 2.1
Relevant data for our test problems. Matrices B,C are diagonal. Frequencies are given as

λ−1 ∈ 2π[α, β]. #(·) = number of entries, considering symmetry.

Pb. Pb. #(A) cond(A) #(B) ‖B‖ #(C) ‖C‖ freq. (Hz)
size (†) [α, β]

B 3 627 102 378 9.7 · 104 211 381 3 627 0.3 [0.1, 60.1]
C 2 472 24 340 3.6 · 107 36 20243 1475 48 [0.1, 60.1]
F 11 957 419 160 2.6 · 1012 3 243 212 11 907 0.4 [10, 50]
F1 11 907 416 855 2.0 · 107 3 243 212 11 857 0.4 [10, 50]

† Matlab condest estimate of the 1-norm condition number of the matrix.

Such a formulation can be made consistent with (1.1) by defining

λ = (2πf)−1, C = −M, B = ıDV , A = K�, x = −ã.(2.5)

Throughout the paper we shall adopt this formulation whenever addressing the struc-
tural dynamics application.

When nonharmonic independent forces are applied to the system, the right-hand
side of equations (2.1) can be written as p(t) = Fg(t), with F an n ×m matrix and
g(t) = [γ1(t), . . . , γm(t)]. The Fourier transform of p(t) yields the frequency domain
load description p̂(f) = F ĝ(f). In the first part of this paper the “single-input”
case will be considered (m = 1); in this situation a single right-hand side vector
b = F is present in (1.1). The solution, however, must be repeated for all frequencies
of interest in the spectrum of g(t); a similar situation arises in the case of perfectly
correlated stationary random loads. The case m �= 1 (independent deterministic loads
or multicorrelated random loads) will be addressed in section 9.

All numerical experiments described in the paper were done using a subset of the
test cases first considered in [6]; in there, a description of the originating problem is
also presented. Case F1 is a variant of case F , as described below. Table 2.1 reports a
summary of the relevant features for our analysis: for each test case, the problem size,
the number of nonzero elements of A,B, and C (considering symmetry), an estimate
for the condition number of A, and the frequency interval of interest is reported. Note
that problem cases B and C have nonuniform hysteretic damping. In cases F and
F1 it is K� = (1 + ıη)K, with 0 < η < 1, η ∈ R. The ill-conditioning of matrix A in
case F is due to the unfavorable stiffness properties of the mechanical system, which
was originally composed of an elastic body restrained by viscous dampers only, this
causing the stiffness matrix to be singular. To face this problem, highly deformable
springs were placed parallel to the dampers, leading, in case F , to a very high
condition number; in case F1 stiffer springs were inserted which, along with other
slight modifications to the model, provided a significant improvement of the matrix
conditioning.

The case of uniform hysteretic damping is particularly attractive, since spectral
information on the viscous problem can be obtained from the purely hysteretic prob-
lem. Let us thus assume that K� ≡ (1 + ıη)K, with K real symmetric and positive
definite and η > 0. The natural frequencies of the problem lie on a line of the complex
plane. Indeed, let (ξ2(1 + ıη)K −M)x = 0 and set θ = ξ2(1 + ıη). The eigenvalues θ
of the pencil (M,K) are real; therefore

ξ2 =
θ

|1 + ıη|2 (1− ıη)(2.6)

and the eigenvalues ξ are on the line through the origin containing
√
1− ıη.
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The viscous problem can be seen as a perturbation of the uniformly hysteretic
case. We next provide an estimate of the magnitude of the perturbed eigenvalues,
which is based on Geršgorin theorem and follows the analysis in [20, section 9.3]. A
general perturbation analysis can be done using classical theory; see [38] for a study
with pseudospectra. In the following, we shall use the notation introduced in (2.5).

Proposition 2.1. Let (ξ, x) solve the problem
(
(1 + ıη)Kξ2 + ıDV ξ −M

)
x = 0,

with K,DV and M real symmetric, K positive definite and ‖DV ‖ ≤ ε. Also let
σ1 . . . , σn be the eigenvalues of the problem Mq = σ

2(1+ ıη)Kq. Then the eigenvalues
ξ are in the union of the disks∣∣∣ξ − (±σk − ν

2
(D̂V )kk

)∣∣∣ =
∣∣∣ν
2
(D̂V )kk

∣∣∣+∑
j �=k
|ν(D̂V )kj |, k = 1, . . . , n,(2.7)

where ‖D̂V ‖ ≤ ε and ν = ı(1 + ıη)−1.
Proof. Let Q be the real orthogonal eigenvector matrix in the eigenvalue prob-

lem Mq = σ2(1 + ıη)Kq such that QTKQ = I and QTMQ = (1 + ıη)Σ2 with
Σ =diag(σ1, . . . , σn). Let x = Qv. Then(

ξ2I + ξνD̂V − Σ2
)
v = 0,

where D̂V = QTDVQ. The eigenvalues of this problem are the same as the eigenvalues
of the matrices ( −νD̂V Σ

Σ

)
,

(
Σ− ν

2 D̂V
ν
2 D̂V

ν
2 D̂V −Σ− ν

2 D̂V

)
,(2.8)

where the second matrix is obtained by similarity [20, section 9.3].
Applying the Geršgorin theorem to the kth row (or column) of the second matrix

in (2.8) yields∣∣∣ξ − (±σ − ν
2
(D̂V )kk

)∣∣∣ ≤
∣∣∣ν
2
(D̂V )kk

∣∣∣+∑
j �=k
|ν(D̂V )kj |.

We note that since 0 ≤ η < 1 and ν = (1 + η2)−1(η + ı), then the major change
in the spectrum is observed in the imaginary part. Not unexpectedly, our analysis
predicts that for the class of problems considered, the eigenvalues of the viscous
problem tightly distribute about the eigenvalues of the purely hysteretic problem. A
typical spectrum is reproduced in Figure 2.1. When we consider the coefficient matrix
in the shifted form (1.2) we can readily observe that its eigenvalues are obtained by
shifting the eigenvalues ξ’s of the original viscous problem.

3. Matrix formulation. Different matrix formulations can be derived when
linearizing (1.1) in λ. The companion algebraic form yields (see, e.g., [14])

([
0 In
−C −B

]
− λ

[
In 0
0 A

])[
x
λx

]
=

[
0
−b

]
.

Most theoretical results are derived for the formulation above. A symmetric equivalent
formulation can be obtained by simply multiplying the first block row by CT and
accommodating signs and rows, so as to obtain([

B C
CT 0

]
+ λ

[
A 0
0 −CT

])[
λx
x

]
=

[
b
0

]
.(3.1)
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Fig. 2.1. Typical eigenvalue distribution for the purely hysteretic problem (left) and for the
viscous problem (right).

Such symmetric structure has often been used in the context of eigenvalue computa-
tion; see [23, 25] and the recent survey [39]. With obvious notation, system (3.1) can
be written in a more compact form as

(A+ λB)z = d.(3.2)

When A,B, and C are complex symmetric, then A and B are also complex symmetric
and so is (A + λB). Throughout the paper we shall assume that B is nonsingular.
Singularity of B arises if C is singular. This does happen in structural dynamics
applications, assuming C = −M , where Lagrangian coordinates are often present in
the model (e.g., rotation components in framed or plate structures), which are useful
for modeling elastic properties but do not appear in the kinetic energy definition. The
problem of singular C can be solved in a computationally efficient manner when, for
instance, C is diagonal [33]. If instead A is singular and λ �= 0, the formulation with
coefficient matrix σ2C+σB+A should be used, with σ = λ−1, and the considerations
above still apply.

In the complex symmetric setting, the indefinite inner product

(x, y) = xT y for x, y ∈ C
n(3.3)

is used so that (x,Ax) = (Ax, x) for a complex symmetric matrix A: variants of short-
term recurrence methods such as conjugate gradients can thus be implemented that
employ (3.3) rather than the usual definite inner product in C

n [40]. It may be that
(x, x) = 0 for some x �= 0 (called isotropic [13]), so that breakdown can occur; an itera-
tive method employing this inner product should therefore have safeguard strategies,
although breakdown is rarely encountered in practice. Because of our application,
the derivation and matrix analysis will be done for complex symmetric matrices and
the inner product above. Nevertheless, most statements hold for Hermitian matrices
by replacing T with the usual transposition and conjugation, and also hold for real
symmetric matrices.

Collecting B−1 from the right yields the shifted linear system

(AB−1 + λI2n)ẑ = d, ẑ = Bz.(3.4)
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Isolating the frequency parameter in (3.4) is very convenient: if Krylov subspace
iterative methods are employed for solving the system, computational costs may be
substantially lowered. We remark here that if B were to have a positive definite
symmetric part, then the factorization B = LLT ([17]) would lead to a complex
symmetric linearized problem with shifted coefficient matrix L−1AL−T + λI2n. To
make the treatment sufficiently general, in the rest of the paper we shall not restrict to
the case where B has a positive definite symmetric part. Symmetry properties are lost
with matrix AB−1, and nonsymmetric solvers should be applied. Nevertheless, AB−1

is symmetric with respect to a (nonstandard) indefinite inner product. Indefinite inner
products have been used in the past for theoretical purposes (see [13] for a general
treatment) in connection with the generalized eigenvalue problem [25, 23] as well as
in the linear system setting (cf., e.g., [12]).

Definition 3.1. Given a complex Hermitian (symmetric) matrix X , an indef-
inite inner product with respect to X is a bilinear form defined by [x, y]X = x∗Xy
([x, y]X = xTXy) for complex vectors x, y.

Definition 3.2. Matrix A is X -Hermitian (-symmetric) if [x,Ay]X = [Ax, y]X .
Matrix B−1A is B-symmetric and A-symmetric, while AB−1 is A−1- and B−1-

symmetric [25]. We shall see in section 4 that Lanczos-type approaches can be imple-
mented so as to properly exploit the indefinite inner product [·, ·]X , resulting in a com-
putationally advantageous short-term recurrence method. Since the matrices in our
application are complex symmetric, we shall focus our discussion on the (conjugation-
free) indefinite inner product [x, y]X = xTXy.

Here and in the following we opt for inverting matrix B because of its compu-
tationally convenient block diagonal structure. Unless A is singular, the following
alternative linearized formulation can be used:

(I + λBA−1)z̃ = d.(3.5)

Most algorithmic considerations can easily be adapted to the case in which the for-
mulation (3.5) is used. The preference between the two versions depends both on the
spectral properties of the problem (cf. [6]) and on the computational effort involved
in solving with B or A.

4. Iterative solution. In this section we describe the method we use to solve the
system (1.1) through the linearization (3.2). We briefly recall the general properties
of the Lanczos recurrence, and then we specialize it to symmetric (with respect to the
indefinite inner product of Definition 3.2) matrices and to the linearized system.

Given a matrix G ∈ C
n×n and the linear system Gz = d, the coupled two-term

recurrence Lanczos method generates two pairs of vectors {qj}, {pj} and {q̃j}, {p̃j}
that are pairwise biorthogonal, that is, q̃Ti qj = 0, i �= j, and pairwise G-biorthogonal,

p̃Ti Gpj = 0, i �= j. Setting Q = [q1, . . . , qk], Pk = [p1, . . . , pk], and Q̃k, P̃k accordingly,
we have

GPk = Qk+1Lk, GT P̃k = Q̃k+1D
−1
k+1LkDk,(4.1)

where Lk ∈ C
(k+1)×k and Dk ∈ C

k×k are lower bidiagonal and diagonal matrices,
respectively. The vectors qj , pj and q̃j , p̃j can be determined via coupled two-term
recurrences by explicitly writing the relations above. Moreover, Qk = PkUk with
Uk ∈ C

k×k upper bidiagonal, which gives the usual three-term Lanczos recurrence
GQk = Qk+1LkUk [11]. The first basis vector, q1, is the normalized starting residual,
r0 = d − Gz0, where z0 is the starting approximate solution. The auxiliary starting
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vector q̃1 is arbitrary. If a QMR procedure is applied [11], then an approximate
solution is obtained as zk = z0 +Qkyk, where yk solves the problem

min
y∈Ck

‖ ‖d‖ek+1 − (LkUk)y‖.(4.2)

The minimization process can be done “on the fly” and the matrix LkUk need not be
explicitly assembled [11].

In our case, the system to be solved is (AB−1 + λI2n)ẑ = d. Let us for the
moment omit the shift λI2n and concentrate on the matrix AB−1, so that G = AB−1

is B−1-symmetric (cf. Definition 3.2). If q̃1 is chosen to be q̃1 = γ1B−1q1, for some
γ1 ∈ C, then all subsequent vectors q̃j satisfy the relation q̃j = γjB−1qj , j = 2, . . . , k,
for some γj ∈ C [12]. For this choice of auxiliary vector q̃1, the left Krylov subspace
is simply B−1 times the right Krylov subspace; therefore, the recurrence for q̃j may
be obtained by solving a system with B.

It is also worth noticing that the vector B−1qj can also be used to generate the
next right iterate qj+1; therefore a multiplication by GT ≡ B−1A per iteration is
avoided. The resulting algorithm is a B−1-symmetric Lanczos procedure, where only
a set of basis vectors need be recursively computed while the second set of vectors
can be recovered at no additional cost [25, 12].

To deal with the shift, we recall that a Krylov subspace is invariant under shift;
that is, given G ∈ C

n×n and d ∈ C
n, we have Kk(G + λI2n, d) = Kk(G, d) ≡

span{d,Gd, . . . , Gk−1d}, so that (G+λI2n)Qk = Qk+1(LkUk+λĨk), with Ĩk = [Ik; 0] .
Note that the generating vector, d, must be the same. For this reason, the right-hand
side should be the same for all linear systems; therefore a starting zero approximation
z0 = 0 is considered.

Shift invariance allows us to approximate the solution of all systems by generating
only the Krylov subspace associated with one of them. Once the space Kk(AB−1, d)
is constructed, for each λj j = 1, . . . , s, an approximate solution zk(λj) = Qkyk(λj)
may be obtained using a QMR procedure by solving

min
y∈Ck

‖ ‖d‖ek+1 − (LkUk + λj Ĩk)y‖.

The minimization problem is carried out for each parameter, while the expensive step
of generating the Krylov subspace is done once for all. The approximate solution
to the original system is determined as zk = B−1ẑk. From ẑk ∈ Kk(AB−1, d) it
follows zk ∈ B−1Kk(AB−1, d); therefore zk is a linear combination of the vectors p̃i,
i = 1, . . . , k, and so it may be updated directly as zk = P̃kgk. This consideration will
be useful in section 7, where an inexact solution with B is discussed.

4.1. The algorithm. The algorithm for solving the linearized system (3.2),
which includes symmetry with respect to the indefinite inner product and the shifting
procedure, is given below. Key recursions for the simplified and shifted approaches
are marked by boldface. Here we report the algorithm with the QMR procedure to
generate the approximate solution. Other techniques could also be employed.

Algorithm: Simplified Shifted Lanczos method with QMR procedure.

Given A, b, z0,B, λ1, . . . , λs
I = {1, 2, . . . , s}
q0 = b/‖b‖ p0 = q0, p̃0 = B−1p0, q̃0 = p̃0/‖p̃0‖
γ0 = ‖q0‖/‖q̃0‖ ω0 = q̃

T
0 q0
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t0 = Ap̃0, τ0 = p̃
T
0 t0, v

(j)
0 = v

(j)
−1 = 0 j ∈ I

c
(j)
0 = c

(j)
−1 = 1 s

(j)
0 = s

(j)
−1 = 0, ρ(j) = ‖b‖

for i = 0, 1, . . .
αi =

ωi
τi

qi+1 = qi − αiti
ũ = B−1qi+1, u = γiũ q̃i+1=

1
‖u‖u (∗)

ωi+1 = q̃
T
i+1qi+1

γi+1 =
γi
‖u‖ χi+1 = ‖u‖ ‖pi‖ωi+1ω

−1
i

pi+1 = qi+1 + χi+1pi p̃i+1 = ũ+ χi+1p̃i
for each j ∈ I
ν = ‖pi‖+ χi+1 + λjαi, µ = si

(j)c
(j)
i−1χi + c

(j)
i ν

θ = −‖pi+1‖µ−1, c
(j)
i+1 = (1 + |θ|2)− 1

2 , s
(j)
i+1 = c

(j)
i+1θ

v
(j)
i+1 = [p̃iαi − v(j)i (−c(j)i c(j)i−1χi + s

(j)
i ν) + v

(j)
i−1s

(j)
i−1χi]c

(j)
i+1µ

−1 (a)

z
(j)
i+1 = z

(j)
i + v

(j)
i+1ρ

(j)c
(j)
i+1 (b)

ρ(j) = −c(j)i+1θρ
(j)

endfor
Eliminate converged indexes from I. If I = ∅, then stop.
ti+1 = Ap̃i+1/‖pi+1‖
τi+1 = γi+1p̃

T
i+1ti+1

p̃i+1 =
p̃i+1

‖pi+1‖
endfor

The algorithm (in short, SS-Lanczos) requires six vectors of 2n components and
two matrices of size 2n × s. We shall see in section 5 that only some of the rows
of these matrices need be stored in a practical implementation. For large problems,
the major computational effort is the solution with B at each iteration, while other
operations in the algorithm, such as daxpy’s and dots’ with vectors of 2n components,
represent a low percentage of the total computational cost.

Convergence could be monitored by explicitly computing the residual norm. How-
ever, an upper bound is readily available as (see also [11])

‖d− (A+ λjB)zk‖ ≤ ‖Qk+1‖ min
y∈Ck

‖ ‖d‖e1 − (LkUk + λj Ĩ)y‖.(4.3)

The norm of Qk+1 can be bounded by the square root of the sum of its column’s
norm. Moreover, in the algorithm above, ‖ ‖d‖e1 − (LkUk + λj Ĩ)yk‖ = |ρ(j)|. We
explicitly remark that in all our experiments the relative residual norm was always
monitored (also in the inner solver; cf. section 7). The Lanczos procedure may break
down if, for instance, ωi ≈ 0 for some i. A look-ahead procedure has been devised to
overcome breakdown, and near breakdown, and can be implemented in this case as
well [11].

Since the parameters λj ’s are selected in a wide range, convergence curves can
be quite different depending on the value of the parameter. In Figure 4.1 we report
typical convergence histories for test case B when 23 parameter values are considered,
with the values of λ uniformly distributed in the relevant interval. We recall that the
eigenvalues of the coefficient matrix AB−1 + λI2n correspond to the eigenvalues of
the original viscous problem, shifted by the parameter λ. The least translation of the
original spectrum away from zero (cf. Figure 2.1) appears when λ−1 is close to the
right end of the interval. As observed in our experiments, convergence is in general
much slower for those values of the parameter.
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Fig. 4.1. Case B . Convergence history for several different parameters. Convergence curves
from left (fast) to right (slow) are relative to increasing values of λ−1 in 2π[α, β].

When no viscous damping is present in the model, then SS-Lanczos can be applied
to the original problem, (λ2A + C)x = b, which is already in linearized form, as a
function of λ2. It should be mentioned that if the Lanczos process were used on
the double size problem with B = 0, then breakdown would occur at the very first

iteration: from p0 = [p
(1)
0 ; 0] and p̃0 = [p̃

(1)
0 ; 0] it follows that

τ0 = p̃
T
0AB−1p0 = [(p̃

(1)
0 )T , 0T ]

[
0 C
C 0

] [
A−1p

(1)
0

0

]
= 0.

A similar but more harmful problem is encountered when wishing to solve (3.5),
that is, (I + λBA−1)z̃ = d. Indeed, in this case it is easy to show that

p̃TA−1p = [ṽT , 0T ]

[
B C
C 0

]−1 [
v
0

]
= 0 for any v, ṽ.

The algorithm breaks down at the first iteration, and it may break down in subse-
quent iterations in case such an operation is encountered. In this case, a look-ahead
procedure should be implemented in order to step ahead in the recurrence [9]; cf.
section 6 for alternative strategies.

5. Relations to the original problem. In the described procedure, (1.1) is
linearized, and an approximate solution to (3.2) is determined as zk = [yk;xk]. At
termination, xk provides an approximate solution to the original problem. However,
it would be desirable to directly monitor the goodness of the approximate solution
during the Lanczos recurrence. The residual rk = d − (A + λB)zk does not need to
be calculated, but it can be approximated via (4.3). On the other hand, ‖rk‖ and
the norm of the residual b − (λ2A + λB + C)xk may be very different [33], yielding
an uncertain evaluation of the final sought approximation. Let us instead consider
λ−1yk as approximate solution. In theory, for large enough k, xk = λ

−1yk; equality,
however, does not hold for smaller values of k. Let Rk = b− (λ2A+ λB + C)λ−1yk.
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Then [33]

Rk =

[
In,

1

λ
In

]
rk.

Clearly, ‖Rk‖ may be easily estimated through the bound for ‖rk‖ during the Lanczos
recurrence, whereas the residual b − (λ2A + λB + C)xk would have to be computed
explicitly. The choice between xk and λ

−1yk may be done a posteriori at termination.
A further consideration from an application viewpoint is that in several situations

the quantity of interest is not the solution x but only some of its components. This
often happens in structural dynamics applications; in finite-element soil-structure
interaction analyses, for example, response parameters within the ground mesh, where
most of the elements are located, are usually of little interest. In some extreme cases,
such as in the evaluation of rigid foundations impedance functions, only very few
(six for a rigid foundation) components of the displacement vector are of interest.
When only some of the solution components are requested, major computational
and memory savings may be obtained by referencing only such entries. Let N� =
[ek1 , . . . , ek� ], where k1, . . . , k� are the requested component indexes. Then

X(j) ≡ NT
� (λ

2
jA+ λjB + C)−1b.

In general, <� n. In the special case where < = O(1), the tall matrix N� can be used
to construct an ad hoc Lanczos process [5].

We can thus use the approximation X(j) ≈ X(j)
k = λ−1

j N
T
� y

(j)
k . Setting N̂� =

[N�; 0] and f
(j)
i = N̂T

� v
(j)
i , lines (a)–(b) in the algorithm can be modified as

f
(j)
i+1 = [N̂T

� p̃iαi − f (j)
i (−c(j)i c(j)i−1χi + s

(j)
i ν) + f

(j)
i−1s

(j)
i−1χi]c

(j)
i+1µ

−1 (a′)

X
(j)
i+1 = X

(j)
i + λ−1

j f
(j)
i+1ρ

(j)c
(j)
i+1. (b′)

The s vectors f
(j)
i ’s, j = 1, . . . , s, have only < components, with < � 2n, while com-

puting N̂T
� p̃i does not entail any floating point operation. To make the presentation

and the computational experiments more general, in our implementation we have up-

dated the entire upper portion of the approximate solution, that is, vector y
(j)
k , at

each iteration, together with the first n entries of vectors v
(j)
i , v

(j)
i−1, j = 1, . . . , s.

6. Acceleration strategies. Convergence may be slow if the coefficient matrix
of the linearized problem has unfavorable spectral properties. The major problem
encountered when seeking an efficient preconditioner for (AB−1 + λI2n)ẑ = d is that
the matrix AB−1 cannot be formed explicitly, so that usual incomplete factorizations
are in general inapplicable. Moreover, preconditioning a system while maintaining
the shifted structure is by itself a challenging problem. Attempts have been made
in the past by using polynomial preconditioning, which preserves the shifted form
[7]. Polynomial preconditioning consists of applying to a recurrence iterate a linear
combination of powers of the coefficient matrix at each iteration. Unfortunately, in
our case any additional multiplication by the system matrix entails a solution with
B, which makes the whole polynomial preconditioning procedure very expensive.

The location of the parameter λ in the spectral region of the coefficient matrix
may highly influence the convergence of the method. An alternative acceleration
strategy consists of first fixing a reference value λ0 and then solving the problem with
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respect to the parameter ω = λ − λ0, varying ω. This can be done on either the
original problem or the linearized equation.

In the original problem (1.1) let λ = λ0 + ω. Substituting in L(λ) we get

L(λ0 + ω) = ω
2A+ ω(2λ0A+B) + (λ2

0A+ λ0B + C)

= ω2A+ ωL′(λ0) + L(λ0) ≡ Hλ0
(ω).(6.1)

Here L′ stands for the derivative of L with respect to λ. Note that the two matrices
have the same eigenvectors. Matrix Hλ0(ω) can be linearized as

[
L′(λ0) L(λ0)
L(λ0) 0

]
+ ω

[
A 0
0 −L(λ0)

]
≡ Aλ0

+ ωBλ0 .(6.2)

We next give an explicit relation between the eigenpairs of the two linearizations.
Remark 6.1. Let (θ, z) and (ρ, t), with θ, ρ similarly ordered, be the eigenpairs of

Aλ0(Bλ0)
−1 + ωI2n and AB−1 + λI2n, respectively, with z = [x; y]. Assume that λ0

is not an eigenvalue of L(λ). Then

θ = ρ and t =

[
I
CL(λ0)

−1

]
z − λ0

[
AL(λ0)

−1y
0

]
.

Proof. The pair (θ, z) with z = [x; y] is an eigenpair of Aλ0
(Bλ0

)−1 + ωI2n if and
only if ((ω−θ)2A+(ω−θ)L′(λ0)+L(λ0))ŷ = 0 with ŷ = L(λ0)

−1y and x = −(ω−θ)Aŷ.
By explicitly writing L′ and L, the last quadratic eigenvalue problem can be rewritten
as ((λ − θ)2A + (λ − θ)B + C)ŷ = 0; that is, (θ, t) with t = [−(λ − θ)Aŷ;Cŷ] is an
eigenpair of AB−1 + λI2n from which the assertion easily follows.

Numerical experiments not reported here showed that this strategy did not lead
to better performance.

Acting on the linearized version of the matrix L(λ) does change the spectrum.
Writing once more λ = λ0 + ω, then (cf., for instance, [5, 35, 22])

A+ (λ0 + ω)B = (A+ λ0B) + ωB.

If (A + λ0B) is nonsingular, right multiplication with (A + λ0B)−1 yields a linear
system with coefficient matrix

I2n + ωB(A+ λ0B)−1.(6.3)

If Au = −θBu, then shifting and inverting we obtain

B(A+ λ0B)−1v =
1

λ0 − θ v with v = (A+ λ0B)u.

If λ0 is close to some of the eigenvalues of the pencil (A,−B), then the corresponding
eigenvalues of B(A+λ0B)−1 and of matrix (6.3) are magnified. If |ω| = |λ−λ0| � 1,
all remaining eigenvalues of matrix (6.3) conveniently cluster around one. However,
for larger ω, eigenvalues distribute in a less predictable way. This strategy works best
for |ω| small, that is, for λ in a neighborhood of λ0. For this reason, the spectrum of
the matrix in (6.3) may or may not be more appealing than that of AB−1+λI2n in our
iterative solver context. A priori information for choosing the most appropriate shift
is thus required; see also the discussion in [5, section IV.B] and [22]. Regardless of
performance, this approach may be very convenient to avoid possible ill-conditioning
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or even singularity of A or B (e.g., as in our case F), since λ0 may be chosen to make
(A+ λ0B) nonsingular.

Unfortunately, the difficulty in the choice of the reference value λ0 is not the only
shortcoming of the acceleration strategies discussed above. Indeed, at each iteration a
linear system with matrix Bλ0 and A+λ0B need be solved, respectively. In particular,
A + λ0B and Bλ0 may not inherit the sparsity patterns of matrices A,B, and C,
resulting in a possibly much denser coefficient matrix. Similar concerns apply if an
iterative solver is used (cf. section 7). Such a disadvantage need be taken into account
since the overall performance of the iterative scheme strongly depends on the cost of
these solves.

In all cases, the iterative solver described in section 4 may be adapted. For the
sake of simplicity, however, in the following we shall refer only to the solution of
(AB−1 + λI2n)ẑ = d.

7. Exact and inexact solution of the system with matrix B. At each
iteration of the simplified Lanczos method a system solution with matrix B is required.
Due to the structure of B, this actually means solving with the symmetric nonsingular
matrices A and C. In our application C is diagonal; therefore the complexity of solving
with B is mostly due to that of solving with A. Medium to large 3D application
problems yield matrices of type A that may produce quite dense factors if sparse
direct solvers are used, so that most computational time is spent solving with A
at each iteration. An example is shown in Table 7.1, where for our test cases the
following information is reported for one parameter value of λ: elapsed time (Fortran
function etime) to compute the factor1 of A, total elapsed time to solve with the
computed factor during the whole Lanczos process, total elapsed time for the iterative
solver (including the time for computing and using the factors of B), and memory
allocations for the factor (complex and integers). The sparse direct solver me47 [1]
was used to solve with B. The outer tolerance of the iterative solver was set to
tolouter = 10−4. Though quite loose, this tolerance is considered satisfactory for this
kind of application. The factor is computed once and for all, while it is clear that
most time is spent in the solve with A at each iteration.

The large amount of memory allocation required by the factors warns that for
larger 3D problems direct (exact) methods may not be affordable. Iterative (inexact)
methods should be employed to solve with B, leading to the commonly used term
inner-outer iteration for the whole Lanczos recurrence. We shall see that the accuracy
with which the inner system is solved influences not only the overall performance of
the method (and this is typical of inner-outer procedures), but also the level of final
accuracy of the outer iterative solver. In order to overcome the problem arising with
the direct solver, the iterative solver should require much less memory allocation.
On the other hand, memory allocation may be high if iteratively solving with A
requires strong preconditioning. Therefore, the overall effectiveness of the inner-outer
procedure depends on the effectiveness of solving with the stiffness and hysteretic
damping matrix.

The modification occurring in the outer iterative algorithm is minimal and only in-
volves the step that applies B−1. The resulting variant shares the algebraic properties
of usual inner-outer procedures (cf., e.g., [15]) and of flexible versions of known algo-
rithms [27, 37], although in our case it is not the preconditioner that is inaccurately
applied, but part of the matrix itself. The subspace generated by the Lanczos recur-

1For the complex symmetric matrix A, the LDLT factorization is carried out [1].
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Table 7.1
Splitting of computational cost and memory allocations for the test cases in Table 2.1. λ−1 =

10 · 2π. Elapsed time is in seconds.

Test # E–time E–time E–time Mem. alloc.
case its factorization solves iterative solver (cmplxM/intM)
B 12 2.1 0.8 3.2 0.52/0.21
C 92 0.5 1.6 2.9 0.15/0.05
F 105 342 158 509 12/0.86
F1 36 315 52 371 11/0.86

sion is no longer a Krylov subspace. The relation zk ∈ B−1Kk(AB−1, d) does not hold,
in general, whereas the relation zk ∈ span{p̃1, . . . , p̃k} holds, where span{p̃1, . . . , p̃k}
is not a Krylov subspace. Nonetheless, the important matrix equality

AP̃k = Qk+1Lk(7.1)

still holds, with P̃k ≈ B−1Pk, where the approximation depends on how accurately
the inner system is solved. The approximate solution zk can still be updated as in
the exact case by using the generated basis vectors p̃i. Iteratively solving with B with
low accuracy implies that relation (∗) in the algorithm does not hold even in exact
arithmetic. Instead, Bũ = qk − tk, where tk is the residual of the inner solver. The
coupling between the Q̃- and P̃ -recurrences becomes

Q̃kΣ
−1
k = P̃kUk, Σk = diag(‖ũ1‖, . . . , ‖ũk‖).(7.2)

We next show that the approximate solution of the system with B affects the final
attainable accuracy of the outer procedure.

Proposition 7.1. Let Tk = [t1, . . . , tk] be the matrix of inner residuals, that is,
Bũ = qi − ti for i = 1, . . . , k. Then the residual rk = d − (A + λB)zk satisfies the
relation rk = Qk+1hk + λTkyk, so that

‖rk‖ ≤ ‖Qk+1hk‖+ |λ|‖Tkyk‖,(7.3)

where yk, hk are the solution and residual of the least squares problem (4.2), respec-
tively.

Proof. We have

BQ̃kΣ−1
k = Qk − Tk.(7.4)

Moreover, zk = P̃kgk = P̃kUkyk. Therefore,

rk = d− (A+ λB)zk = d−AP̃kgk − λBP̃kgk
(7.1)−(7.2)

= d−Qk+1Lkgk − λBQ̃kΣ−1
k U

−1
k gk

(7.4)
= Qk+1(‖d‖e1 − Lkgk − λ[U−1

k ; 0]gk) + λTkU
−1
k gk

= Qk+1

(
‖d‖e1 − (LkUk + λĨk)yk

)
+ λTkyk,

where Ĩk = [Ik; 0]. The upper bound thus follows from taking norms.
In exact arithmetic, the norm of hk in the first right addend in (7.3) converges

to zero as k → 2n, so that ‖Qk+1hk‖ goes to zero if Qk+1 is not too ill-conditioned.
The second right addend in (7.3) measures how well the inner system is solved. For
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Fig. 7.1. Inner-outer iteration. Convergence history for different values of the inner stopping
tolerance. Left: Example 1. Right: Example 2.

large enough k, ‖rk‖ ≈ |λ| ‖Tkyk‖, where ‖Tkyk‖ in general remains approximatively
at the level of the inner tolerance.

Neither Qk+1 nor hk are the same as if the inner system were solved exactly. More
precisely, the inner solver not only influences the level of final attainable accuracy,
but also the number of iterations to reach that level, delaying convergence in some
cases. Inexact methods are known to suffer of this shortcoming (cf. [24, 29] and the
references therein); an analysis in the symmetric case has been recently done by Golub
and Ye [15], while the real nonsymmetric problem has been studied, for instance, in
the context of flexible methods [27, 37]. A more precise analysis directly related to
the linearized problem (3.2) would be desirable.

7.1. Numerical experiments with the inner-outer method. We illustrate
the behavior of the inner-outer procedure with some numerical tests. We start with
two built-up examples.

Example 1. Let A be the centered finite difference discretization of the two-
dimensional Laplacian on the unit square with homogeneous boundary conditions
and let B be a diagonal matrix, B = I2n + ıD, with D real diagonal with normally
distributed diagonal values (Matlab function randn). We have cond(AB−1) ≈ 56 and
cond(B) ≈ 2.4. The performance of the inner-outer procedure is shown in Figure 7.1
(left) for various values of the inner stopping tolerance. (Random right-hand side with
normally distributed entries and zero starting approximation were considered.) Here
and in Example 2, s = 1 and λ1 = 10. For this example, the inner tolerance provides
quite a sharp approximation of the final attainable accuracy, while the convergence
curve of the inner-outer solver is indistinguishable from that of the exact scheme, as
long as the outer residual is larger than the inner tolerance.

Example 2. Let us consider B = (0.001+ı)D, withD as in Example 1. In this case
cond(AB−1) ≈ 5.9·105 and cond(B) ≈ 5·104. The convergence curves for several inner
tolerance values are shown in Figure 7.1 (right). Convergence starts deteriorating
much earlier than at the final accuracy level. Similar behavior is observed in realistic
problems, as in our test case B (cf. Figure 7.2).

Convergence deterioration depends on the conditioning of AB−1 (cf. [15] in the
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Fig. 7.2. Test Case B . Exact (solid) and inexact (dashed) B-symmetry for various stopping
inner tolerance values tol.

symmetric case); therefore the inner tolerance should be small if the conditioning of
AB−1 is large. In our numerical experiments, ill-conditioning ofK� seemed to strongly
affect the performance of the inner-outer solver, yielding very slow convergence unless
a very strict inner tolerance was used (cf. section 8).

To enhance convergence, preconditioning should be employed when solving with
B. In our experiments, we have used the preconditioned conjugate gradients method
for complex symmetric matrices, which appropriately exploits the indefinite inner
product (3.3); see [40]. Preconditioning has been carried out by using a complex sym-
metric incomplete factorization with fill-in and threshold: a manual complexification
of the real symmetric ICT algorithm by Chow and Saad [3] worked satisfactorily on
our problem. The preconditioner requires two parameters: the number of nonzero
elements per row in the factor (fill-in) in addition to the original entries of the ma-
trix and a threshold value for discarding small entries in the factor [3]; see also [28].
This last parameter was set to the experimentally observed best value, 10−4, in our
experiments.

8. Comparison with other techniques. Solving directly with L(λ) would
be more convenient than turning to the linearized problem of twice the size if the
multiple parameters could be handled efficiently. Efforts in this direction were made
in [41, 18], where, however, the approximation was constructed starting from spectral
information on the unviscous problem.

To exploit the structure in the solution of (1.1), one could use the factors of the
full factorization of L(λ0) as the preconditioner for a value of λ0 for which L(λ0) is
nonsingular. More precisely, for each λ, the preconditioned system of size n

L(λ)L(λ0)
−1x̂ = b, x = L(λ0)

−1x̂,(8.1)

is solved with an iterative method. Note that L(λ0) may be denser than its ad-
dends A,B, and C. In our application problem this is not the case, however, since
B and C are always diagonal; this special structure is very favorable for strategies
attacking the original problem, as we shall see in our numerical experiments. The
goodness of the preconditioner is measured in terms of the magnitude of the error
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norm ‖L(λ)L(λ0)
−1 − In‖ (cf., e.g., [29]). The following lower bound can be easily

proved.

Remark 8.1. The preconditioner matrix L(λ0) satisfies

‖L(λ)L(λ0)
−1 − In‖ ≥

|ω|max
{
‖(λ+ λ0)A+B‖
‖L(λ0)‖ , σmin((λ+ λ0)A+B) · ‖L(λ0)

−1‖
}
,

where σmin(·) is the smallest singular value of the argument matrix.
Proof. Using (6.1), the preconditioned matrix can be written as

L(λ)L(λ0)
−1 = ω(ωA+ L′(λ0))L(λ0)

−1 + In.(8.2)

Therefore,

‖L(λ)L(λ0)
−1 − In‖ ≥ σmin(L(λ0)

−1)|ω|‖(λ+ λ0)A+B‖
=

|ω|
‖L(λ0)‖‖(λ+ λ0)A+B‖.

The other lower bound similarly follows.

It follows that the condition |ω| � 1 (that is, λ close to λ0) is not sufficient
for ensuring a small preconditioning error norm. Indeed, if, e.g., ‖A‖ is much larger
than the norm of B and C, as is usually the case for stiffness matrices in structural
dynamics application, and if |λ0| � 1, then ‖(λ + λ0)A + B‖ � ‖L(λ0)‖ and L(λ0)
will be a poor preconditioner for L(λ), regardless of the distance between λ0 and λ.
Numerical experiments (see Example 3) seemed to agree with this observation.

When an exact factorization of L(λ0) is not feasible, then an incomplete factor-
ization can be used. Since the cost of generating the incomplete (and sparser) factor
is much lower than for the exact factor, the computation can be done for each λ of
interest. In practice, this corresponds to iteratively solving L(λ)x = b independently
for each value of λ with an incomplete factorization of the coefficient matrix as the
preconditioner. Obviously, no advantage is taken of the special structure of the prob-
lem, and cost grows approximately linearly with the number of parameters. Memory
requirements are low since n-vectors are needed, compared with the 2n-vectors of the
linearized approach. If the solution is carried out sequentially, then only the n-vectors
of the iterative method are required, together with the preconditioner, while in SS-
Lanczos vectors of s components are also required. Nevertheless, the major memory
requirements are due to the (incomplete) factorization of L(λ), which needs at least
as much memory as that for A, depending on the application.

Example 3. We numerically compare the SS-Lanczos method (exact and inner-
outer versions) with the described approaches. We experimented with the following:

• PQMR-ME47: complex symmetric QMR [10] on L(λ)x = b preconditioned
by a complete factorization of L(λ0) with λ0 = (60π)−1;
• SSL: SS-Lanczos with QMR procedure;
• PQMR-ICT: complex symmetric QMR on L(λ)x = b preconditioned by an
incomplete factorization of L(λ) with no fill-in;
• ISSL: inner-outer SS-Lanczos with QMR procedure.

Note that fill-in in the PQMR-ICT preconditioner provided an overall worse per-
formance of the method than no fill-in.
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Fig. 8.1. Elapsed time for the methods as a function of the number of parameters. Case B
(left) and C (right).
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Fig. 8.2. Elapsed time for the methods as a function of the number of parameters. Cases F
(left) and F1 (right); In case F the curve for the inner-outer SS-Lanczos method is out (top) of the
plot.

In Figures 8.1 and 8.2 the total elapsed time for cases B , C , F , and F1 is
reported, versus the number of parameters uniformly distributed in the interval. The
outer tolerance tolouter = 10−4 was used.

All plots consistently show that the exact SS-Lanczos method provides the overall
best performance for several frequency values. (In this application problem, a few
hundred distinct frequency values would be needed [6].)

Solving with the inner-outer method is much more expensive than with the exact
SS-Lanczos procedure. The performance discrepancy highly depends on the difficulty
of iteratively solving with K� in the inner-outer method. High preconditioning fill-
in (fill-in=100 for cases B and C, fill-in=30 for cases F and F1) and strict inner
tolerances (tol=10−6 for case B and tol=10−8 for the rest) were employed in order to
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maintain a performance, in terms of iterations and elapsed time, as close as possible
to that of the exact method. Nonetheless, in the highly ill-conditioned case F the
inner-outer method is still too expensive (cf. section 7) compared to all methods:
its convergence curve is out of the plot axes. In spite of the high fill-in, memory
allocations for the preconditioner were always less than one million, also for cases F
and F1 (cf. Table 7.1). As expected, the cost for solving with the exact and inexact
SS-Lanczos method grows very little with the number of parameters compared to the
other approaches.

In order to make a fair performance evaluation against the techniques that directly
attach L(λ), SSL should be compared to PQMR-ME47, since they both use a direct
solver, while ISSL should be compared to PQMR-ICT. In the latter comparison, we
can notice that the sparsity pattern of L(λ) is in our application the same as that of
K�. Solving with L(λ) is thus not much worse than solving withK�, so we expect that
the inner-outer method will not do better than PQMR-ICT if the number of iterations
to solve the linearized problem is larger than the number of frequencies. On the other
hand, unlessK� is severely ill-conditioned as in case F , ISSL outperforms PQMR-ICT
for a large enough number of parameters. In other applications where the sparsity
pattern of B and C is different from that of A, the performance of the method may
significantly change. Our experiments thus show that solving the system by sharing
the common information of all parameters is in general convenient, even in the inexact
case.

We finally notice that PQMR-ME47 remains competitive, though always much
worse than SS-Lanczos, as long as dealing with the factor of K� is not too expensive,
which is the case for the larger cases F and F1 . It is also worth mentioning that in
terms of number of iterations, preconditioning with L(λ0) was completely analogous
to using ICT on each system with the mentioned parameters; the computational cost
and memory requirements, however, were much higher.

9. Multiple-input systems. So far we have considered the case of one right-
hand side b in (1.1) (the forcing load in our application). In the multiple-input case
the vector of generalized dynamical loads in (2.1) can be written as p(t) = Fg(t), with
F an n ×m matrix and g = [γ1; · · · ; γm] ∈ C

m. In the frequency space, this yields
the load

b(λ) = F ĝ(λ), F ∈ C
n×m(9.1)

which thus depends on the frequency parameter. We next consider two alternatives
to cope with the presence of a right-hand side in the system (1.1) that also depends
on the parameter λ:

(i) Solve the linear system (λ2
jA + λjB + C)X = F for j = 1, . . . , s for all

right-hand sides represented by the m columns of F , with X ∈ C
n×m.

(ii) Solve (λ2
jA+ λjB + C)x = b(λj) for j = 1, . . . , s, with x = x(λj).

We shall see that the choice between the two approaches depends on the relative size
of s (the number of parameters) and m (the number of different loading histories).

Case (i). Constant multiple right-hand sides. The linearized problem in this case
can be written as

(A+ λjB)Z = D̂, D̂ = [F ; 0] ∈ C
2n×m, Z = Z(λj).(9.2)

This system can be solved by using a generalization of the SS-Lanczos algorithm
for multiple right-hand sides. Using a block approach, for instance, one constructs
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the block Krylov subspace2 Kmk(AB−1, D̂) and then approximates all shifted systems
using the shift invariance of the space (cf., e.g., [34]). The block version of the two-
term recurrence Lanczos method generates pairs of matrices Qk, Q̃k and Pk, P̃k that
satisfy the relations AB−1Pk = Qk+1Lk and Qk = PkUk, where Lk,Uk are block
lower and upper bidiagonal. An approximate solution to the linearized problem (9.2)
is found as Ẑk = P̃kYk, where Yk ∈ C

km×m solves

min
Y ∈Ckm×m

‖E1χ− (LkUk + λj Ĩ)Y ‖, j = 1, . . . , s,(9.3)

where D̂ = Qk+1E1χ, E1 = [Im; 0] ∈ R
(k+1)m×m and Ĩ = [Imk; 0] ∈ R

(k+1)m×km [32].

Note that the block tridiagonal matrix (LkUk + λj Ĩ) is of size mk. The least
squares solution matrix Yk is updated at each iteration k with a computational cost
of O(m2) [32]; see also [8].

Case (ii). Single frequency-dependent right-hand side. In this case (1.1) becomes

(λ2
jA+ λjB + C)x = b(λj), j = 1, . . . , s,

where b(λj) may depend on λj nonlinearly. The linearized problem takes the form

(A+ λjB)z = d(λj), d(λj) = [b(λj); 0].

Solving all systems independently will make the cost grow approximately linearly with
the number of parameters, and it will not make use of the common matrices A and B.
In [2] a method was devised, for real symmetric positive definite matrix AB−1, that
deals with the multiple right-hand side and associated shift. It would be interesting
to see whether a generalization to our setting would be possible.

Alternatively, all systems may be treated simultaneously, yielding the following
Sylvester equation:

AB−1Ẑ + ẐΛ = D̂, D̂ = [d(λ1), . . . , d(λs)] ∈ C
2n×s, Λ = diag(λ1, . . . , λs),

with Ẑ = B−1[z1, . . . , zs]. Block versions of Krylov subspace methods may be adapted

to solve the problem [31]. More precisely, the block Krylov subspace Ksk(AB−1, D̂) is
generated, and the approximation to the Sylvester equation is carried out on the pro-
jected problem [31]. The implementation is completely analogous to that for constant
multiple loads. However, the least squares problem to be solved for each frequency is

min
y∈Cks

‖(E1χ):,j − (LkUk + λj Ĩks)y‖, y = y(λj), j = 1, . . . , s.(9.4)

Contrary to (9.3), the computational cost for updating the solution yk at each iteration
k depends on the number of parameters and is proportional to s2.

2Given G ∈ C
n×n, D̂ ∈ C

n×m, a block Krylov subspace is given by Kmk(G, D̂) =span{D̂,GD̂,
. . . , Gk−1D̂} and its dimension is at most mk.
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The preference between the two approaches depends on the magnitude of s and
m. If very many parameter values are treated simultaneously, then one may want
to consider, if possible, splitting the load vector b as in (9.1) and solving with F as
the right-hand side matrix. This may be particularly convenient when the system is
characterized by few loading points, so that m = O(1).

10. Conclusions. In this paper we have proposed a method for solving a linear
system with a quadratic parameter that varies in a wide range. The method relies on
the symmetry of the linearized problem with respect to an indefinite inner product.
Shift invariance of the subspace in which the problem is projected is exploited in order
to limit the computational cost growth as the number of parameters increases.

We have addressed the problem of inexactly solving the linear system arising at
each iteration of the solver and uncovered some of the major difficulties related to its
efficient manipulation. The performance of the inner-outer method seems to depend
on the conditioning of matrix A in the original problem. Strategies for optimizing
the inner system solution would certainly lead to better performance; for instance,
we have not explored ordering strategies of the coefficient matrix entries, other than
lexicographic, which may lead to more efficient preconditioning procedures for the
inner system.

In summary, our numerical experience shows that if systems with the leading
matrix A can be solved with a sparse direct solver, then the proposed method greatly
outperforms other currently available techniques. When memory limitations force us
to use an inner-outer procedure, then the performance of the method will in gen-
eral degrade, the amount of degradation depending on the conditioning of A. We
have shown, however, that when A is not too severely ill-conditioned, the inner-outer
method remains highly competitive in case several parameter values need be consid-
ered. Ill-conditioning or singularity of A may be overcome by shifting the linearized
formulation, although such an approach may entail considerable computational cost
overhead, due to a less convenient sparsity pattern of the matrix.

It would be interesting to explore whether an efficient method that directly attacks
the original problem, without passing through the linearization process, could be
devised (cf., e.g., [36] for the eigenvalue setting). Such a method would allow us to
deal with higher orders in λ.
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wide frequency range via the Padé approximation, Comput. Methods Appl. Mech. Engrg.,
169 (1999), pp. 263–277.

[20] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, New York, 1966.
[21] The MathWorks, Inc., MATLAB User’s Guide, Natick, MA, 1998.
[22] K. Meerbergen, The Solution of Parametrized Linear Systems from Mechanical Systems.

Part I: Linear Parameter, Tech. Rep. KM-2000-2, Free Field Technologies, 2000, pp. 1–20.
[23] V. Mehrmann and D. Watkins, Structure-preserving methods for computing eigenpairs of

large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Sci. Comput., 22 (2001), pp.
1905–1925.

[24] G. Meurant, Computer Solution of Large Linear Systems, North-Holland, Amsterdam, 1999.
[25] B. N. Parlett and H. C. Chen, Use of indefinite pencils for computing damped natural modes,

Linear. Algebra Appl., 140 (1990), pp. 53–88.
[26] F. Perotti, Analytical and numerical techniques for the dynamic analysis of non-classically

damped linear systems, Soil Dynamics and Earthquake Eng., 13 (1994), pp. 197–212.
[27] Y. Saad, A flexible inner-outer preconditioned GMRES, SIAM J. Sci. Comput., 14 (1993),

pp. 461–469.
[28] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,

1 (1994), pp. 387–402.
[29] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.
[30] J. E. Santos and P. M. Gauzellino, Parallel algorithms for wave propagation in fluid-

saturated porous media, in Computational Mechanics, New Trends and Applications,
CINME, Barcelona, Spain, 1998, pp. 1–13.

[31] V. Simoncini, On the numerical solution of AX −XB = C, BIT, 36 (1996), pp. 814–830.
[32] V. Simoncini, A stabilized QMR version of block BiCG, SIAM J. Matrix Analysis and Appl.,

18 (1997), pp. 419–434.
[33] V. Simoncini, Linear systems with a quadratic parameter and application to structural dy-

namics, in Iterative methods in Scientific Computation II, IMACS Ser. Computational
and Appl. Math. 5, IMACS, New Brunswick, NJ, 1999, pp. 451–461.

[34] V. Simoncini and E. Gallopoulos, A hybrid block gmres method for nonsymmetric systems
with multiple right-hand sides, J. Comput. Appl. Math., 66 (1996), pp. 457–469.

[35] D. Skoogh, A Rational Krylov Method for Model Order Reduction, Tech. Rep. 1998-47, De-
partment of Mathematics, Chalmers University, Göteborg, Sweden, 1998.
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Abstract. Minimum residual norm iterative methods for solving linear systems Ax = b can be
viewed as, and are often implemented as, sequences of least squares problems involving Krylov sub-
spaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saun-
ders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method
(GMRES) [Y. Saad and M. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869] represent
typical examples. In [C. Paige and Z. Strakoš, Bounds for the least squares distance using scaled
total least squares, Numer. Math., to appear] revealing upper and lower bounds on the residual
norm of any linear least squares (LS) problem were derived in terms of the total least squares (TLS)
correction of the corresponding scaled TLS problem. In this paper theoretical results of [C. Paige
and Z. Strakoš, Bounds for the least squares distance using scaled total least squares, Numer. Math.,
to appear] are extended to the GMRES context. The bounds that are developed are important in
theory, but they also have fundamental practical implications for the finite precision behavior of the
modified Gram–Schmidt implementation of GMRES, and perhaps for other minimum norm methods.

Key words. linear equations, eigenproblem, large sparse matrices, iterative solution, Krylov
subspace methods, Arnoldi method, generalized minimum residual method, modified Gram–Schmidt,
least squares, total least squares, singular values
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1. Introduction. Consider a system of linear algebraic equations Ax = b, where
A is a given n by n (unsymmetric) nonsingular matrix and b an n-dimensional vec-
tor. Given an initial approximation x0, one approach to finding x is to first compute
the initial residual r0 = b − Ax0. Using this, derive a sequence of Krylov subspaces
Kk(A, r0) ≡ span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . , in some way, and look for ap-
proximate solutions xk ∈ x0 + Kk(A, r0) . Various principles are used for constructing
xk which determine various Krylov subspace methods for solving Ax = b. Similarly,
Krylov subspaces for A can be used to obtain eigenvalue approximations or to solve
other problems involving A.

Krylov subspace methods are useful for solving problems involving very large
sparse matrices, since these methods use these matrices only for multiplying vectors,
and the resulting Krylov subspaces frequently exhibit good approximation proper-
ties. The Arnoldi method [4] is a Krylov subspace method designed for solving the
eigenproblem of unsymmetric matrices. The generalized minimum residual method
(GMRES) [27] uses the Arnoldi iteration and adapts it for solving the linear system
Ax = b. GMRES can be computationally more expensive per step than some other
methods; see, for example, Bi-CGSTAB [30], QMR [8, 9] for unsymmetric A, and
LSQR [20, 19] for unsymmetric or even rectangular A. However, GMRES is widely
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used for solving linear systems arising from discretization of partial differential equa-
tions, and it is also interesting to study, since it does in theory minimize the 2-norm
of the residual ‖rk‖ = ‖b−Axk‖ over xk ∈ x0 + Kk(A, r0) at each step. Thus, theo-
retical results on GMRES can, for example, provide lower bounds for the residuals of
other methods using the same Krylov subspaces. GMRES is also interesting to study
computationally, especially since a strong relationship has been noticed between con-
vergence of GMRES and loss of orthogonality among the Arnoldi vectors computed
via (finite precision) modified Gram–Schmidt (MGS) orthogonalization; see [11, 24].
An understanding of this will be just as important for the practical use of the Arnoldi
method as it will be for GMRES itself.

This project is complicated, so we give an introduction involving simplified results.
Given an initial approximation x0 to the solution x of Ax = b, we form the residual

r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,

and use v1 to initiate the Arnoldi process [4]. In theory, after k steps this produces

Vk+1 = [v1, v2, . . . , vk+1], V Tk+1Vk+1 = Ik+1, span{v1, . . . , vk+1} = Kk+1(A, r0).

At each step GMRES takes xk = x0 + Vkyk as the approximation to the solution
x, which gives the residual rk = b − Axk. GMRES uses that yk which in theory
minimizes the 2-norm of this residual, so

‖rk‖ = min
y
‖r0 −AVk y‖ = min

y
‖[v1ρ0, AVk]

[
1
−y
]
‖.

So far this is rigorous and well known, but now we give some ideas in approximate
form, so that they will be easier to follow. It is the purpose of this paper to show for
the ratio of the largest to smallest singular value (condition number) κ([v1ρ0, AVk]),
which increases with k, and the normwise relative backward error

β(xk) ≡ ‖rk‖
‖b‖+ ‖A‖ · ‖xk‖ ,(1.1)

which tends to decrease with k until it is eventually zero, that with exact arithmetic
we have something like the intriguing relationship

β(xk)κ([v1ρ0, AVk]) = O(1).(1.2)

In later sections we will develop rigorous theory for the more precise version of this.
There the columns of [v1ρ0, AVk] in κ(·) are scaled, and a certain condition must
be satisfied. We will argue that the precise version probably also holds even in fi-
nite precision arithmetic and present convincing numerical examples supporting this
hypothesis.

Now we explain why (1.2) is important. An efficient, and the most usual way
of computing the Arnoldi vectors v1, v2, . . . , vk+1 for large sparse unsymmetric A, is
to use the MGS orthogonalization. Unfortunately, in finite precision computations
this leads to loss of orthogonality among these MGS Arnoldi vectors. If these MGS
Arnoldi vectors are used in GMRES we have MGS GMRES. We want to show that
MGS GMRES succeeds despite the loss of orthogonality among the computed MGS
Arnoldi vectors. A similar hypothesis was published in [11, 24] with a justification
based on the link between loss of orthogonality among the Arnoldi vectors and the
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size of the GMRES relative residual. Here is how we hope to prove a significantly
stronger statement in [17] by using what is essentially the result (1.2) of this paper
as a fundamental intermediate step.

Following the important work [5] of Björck, and that of Walker [32], the papers [7]
and [11] showed a relationship between the finite precision loss of orthogonality in the
MGS Arnoldi vectors and the condition number κ([v1ρ0, AVk]). In particular, unless
A is extremely ill-conditioned (close to numericaly singular), for computed quantities

‖I − V Tk+1Vk+1‖F ≤ κ([v1ρ0, AVk])O(ε), ε the computer roundoff unit(1.3)

(where subscript F denotes the Frobenius norm). Combining it with a finite precision
version of (1.2) would show

‖rk‖ · ‖I − V Tk+1Vk+1‖F
‖b‖+ ‖A‖ · ‖xk‖ ≤ β(xk)κ([v1ρ0, AVk])O(ε) = O(ε).(1.4)

This would imply that it is impossible to have a significant loss of orthogonality until
the normwise relative backward error is very small. It could then be shown that there
would be no meaningful deterioration in the rate of convergence, and significant loss
of orthogonality would imply convergence and backward stability of MGS GMRES.
These results would then be somewhat analogous to those shown for the Lanczos
method for the symmetric eigenproblem, where significant loss of orthogonality im-
plied that at least one eigenvalue had been found to about machine precision, and
the first eigenvalues to converge did so with no meaningful deterioration in rate of
convergence; see [16]. Perhaps the ideas here could be combined with some of those
from [16] to prove how the MGS Arnoldi method is affected by rounding errors.

If we can prove a result like (1.4), we will be able to justify theoretically the
well-known observation that, unless the matrix A is extremely ill-conditioned, MGS
GMRES competes successfully in both the rate of convergence and the final accuracy
with the more expensive GMRES implementation based on the Householder reflections
(HH GMRES)[31]. HH GMRES was proved backward stable in [7]. That proof relied
upon the fact that the Householder reflections keep the loss of orthogonality among
the computed Arnoldi vectors close to the machine precision. Orthogonality among
the Arnoldi vectors can be lost using MGS GMRES finite precision computations.
Therefore the results from [7] could not be extended to MGS GMRES, and a different
approach had to be used.

Despite its backward stability, HH GMRES is not widely used. A popular jus-
tification for this is based on the numerical stability versus computational efficiency
argument: It is generally believed that HH GMRES is favorable numerically, but the
cheaper MGS GMRES is accepted (sometimes with a fear of a possible unspecified
loss of accuracy) as a standard for practical computations. One aim of our work is to
eliminate that fear.

This paper is the third of a sequence starting with [22], which revised the funda-
mentals of the scaled total least squares theory. The subsequent paper [21] produced
general purpose bounds we will use here and in [17]. The present paper proves the-
oretical results motivated by the abovementioned finite precision behavior of MGS
GMRES but assumes exact arithmetic in all the proofs. Finite precision analogies of
the statements proven here will require detailed rounding error analyses, and these
are intended for the planned paper [17]. Thus, when completed, we think the work in
[21], in here, and in [17] will represent a substantial step forward in our understand-
ing of MGS orthogonalization in Krylov subspace methods and will also lead to a full
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justification for MGS GMRES computations. We also hope it will produce tools that
will help in the analysis of MGS Arnoldi computations. We would like to investigate
whether the MGS Arnoldi method still gives accurate approximations to eigenvalues,
but we will not consider this here.

Since the results in this paper assume exact arithmetic, they are independent of
any particular implementation of the GMRES method. They apply to any mathe-
matically equivalent residual minimizing Krylov subspace method (such as the MIN-
RES method for symmetric indefinite systems). Some mathematically equivalent
variants of the GMRES method are described in [15, 25]. In most practical appli-
cations some acceleration technique must be applied to improve convergence of the
basic method. For historical reasons such acceleration techniques are frequently and
imprecisely called preconditioning. Assuming exact arithmetic, preconditioning of a
given method is equivalent to the application of the (basic) method to some modified
(preconditioned) system. In this paper we assume, with no loss of generality, that
A represents the matrix and b the right-hand side of the preconditioned system. For
simplicity of notation we assume that A and b are real. Reformulation to the general
complex case is obvious.

The paper is organized as follows. In section 2 we will give the necessary mathe-
matics of GMRES, while in section 3, which represents the main connection with the
preceding papers [22] and [21], we will present bounds for the GMRES residual (The-
orem 3.1). Section 4 will give an extreme example which shows that the assumption
(3.5) required in Theorem 3.1 need not hold up until the very last step of the GMRES
iteration. This is, of course, a highly contrived situation and not indicative of any
realistic problem we have encountered. Section 5 will explain in more detail just why
the bounds from section 3 are so important for our understanding of GMRES and
related methods. We will prove Theorem 5.1, which is the precise version of (1.2)
and represents the main result of this paper. Section 6 will discuss its consequences
in light of possible scalings. Section 7 will display some computational results and
section 8 will present concluding remarks.

In the paper we will use σi(X) to denote the ith largest singular value of X, use
κ(X) to be the ratio of the largest to the smallest singular value of X, and refer to
κ(X) briefly as the condition number of X. The vector of elements i to j of a vector y
will be denoted yi:j , and ej denotes the jth column of the unit matrix I. We will use
‖ · ‖ to denote the 2-norm and ‖ · ‖F to denote the Frobenius norm. Several quantities
used in our bounds will depend on the iteration step k. For simplicity of notation we
sometimes omit the explicit reference to the iteration step when the dependence is
clear from the context and need not be stressed for any particular reason.

As explained above, this paper proves the precise version of (1.2), which is the
fundamental intermediate step of the whole project, and it assumes exact arithmetic
in all the proofs. However, the underlying discussion of MGS GMRES finite precision
behavior motivates the whole work and affects most of the particular considerations in
this paper. Though we separate the exact arithmetic results from the finite precision
arithmetic discussion as much as possible, we cannot split them entirely. Scaling,
for example, affects both (exact precision) bounds for the GMRES residual norm
developed in this paper and finite precision bounds for loss of orthogonality in the
Arnoldi process. Any discussion of scaling must consider both aspects, which are
generally in conflict. When it will be helpful, we will use the word “ideally” to
refer to a result that would hold using exact arithmetic, and “computationally” or
“numerically” to a result of a finite precision computation.
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2. The GMRES method. For a given n by n (usually unsymmetric) nonsingu-
lar matrix A and n-vector b, we wish to solve Ax = b. Given an initial approximation
x0 we form the residual

r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,(2.1)

and use v1 to initiate the Arnoldi process [4]. At step k this forms Avk, orthogonalizes
it against v1, v2, . . . , vk, and if the resulting vector is nonzero, normalizes it to give
vk+1, giving ideally

AVk = Vk+1Hk+1,k, V Tk+1Vk+1 = Ik+1, Vk+1 = [v1, v2, . . . , vk+1].(2.2)

HereHk+1,k is a k+1 by k upper Hessenberg matrix with elements hij , where hj+1,j 
=
0, j = 1, 2, . . . , k − 1. If at any stage hk+1,k = 0 we would stop with AVk = VkHk,k.
In this case all the eigenvalues of Hk,k are clearly eigenvalues of A. When hk+1,k 
= 0
the eigenvalues of Hk,k are approximations to some of those of A, and this gives
the Arnoldi method [4]. Computationally, we are unlikely to reach a k such that
hk+1,k = 0, and for solution of equations we stop when we assess the norm of the
residual (ideally given as below in (2.7)) is small enough.

In general, at each step we take xk = x0 + Vkyk as our approximation to the
solution x, which gives the residual

rk = b−Axk = r0 −AVkyk = v1ρ0 − Vk+1Hk+1,k yk

= Vk+1(e1ρ0 −Hk+1,k yk).(2.3)

GMRES seeks yk which minimizes this residual by solving the linear least squares
problem

‖rk‖ = min
y
‖r0 −AVk y‖ = min

y
‖v1ρ0 −AVk y‖.(2.4)

Using (2.2) and (2.3), (2.4) can be formulated as the least squares problem with the
upper Hessenberg matrix Hk+1,k

‖rk‖ = min
y
‖e1ρ0 −Hk+1,k y‖.(2.5)

To solve (2.5) we apply orthogonal rotations (Ji being the rotation in the i, i+ 1
plane through the angle θi) sequentially to Hk+1,k to bring it to upper triangular form
Sk:

Jk · · ·J2J1Hk+1,k = Q
T
kHk+1,k =

(
Sk
0

)
.

The vectors yk and rk ideally then satisfy

Skyk = (QTk e1ρ0)1:k,(2.6)

‖rk‖ = |eTk+1Q
T
k e1ρ0|

= |ξ1ξ2 · · · ξk| ‖r0‖, ξi = sin θi.(2.7)

The measure (2.7) of the (nonincreasing) residual norm is available without deter-
mining yk, and since yk+1 will usually differ in every element from yk, it would seem
preferable to avoid determining yk or xk until we decide the residual norm (2.7) is
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small enough to stop. Computationally, however, it is not clear that we can base the
stopping criterion on (2.7) alone. The step from (2.4) to (2.5) requires orthogonality
of the columns of Vk+1. However, even if orthogonality of the Arnoldi vectors com-
puted using finite precision arithmetic is well preserved (as in HH GMRES), (2.7)
will not hold for the computed quantities after the residual norm drops near the final
accuracy level; see [7].

Finally, little has been published about the choice of the initial approximation
x0. In many cases x0 = 0 is recommended or considered. For x0 = 0 we have r0 = b
and trivially ‖r0‖ ≤ ‖b‖. This last condition seems very natural and should always
be imposed. For a nonzero x0 it may easily happen that ‖r0‖ > ‖b‖ (even � for
some problems), and any such x0 is a poor initial approximation to the solution x.
Hegedüs [13] suggested that a simple way around this difficulty is to rescale the initial
approximation. Given a preliminary initial guess xp, it is easy to determine the scaling
parameter ζmin such that

‖r0‖ = ‖b−Axpζmin‖ = min
ζ
‖b−Axpζ‖, ζmin =

bTAxp
‖Axp‖2 .(2.8)

Thus, by setting x0 = xpζmin we ensure ‖r0‖ ≤ ‖b‖. The extra cost for implementing
this little trick is negligible; it should be used in GMRES computations whenever a
nonzero x0 is considered. For some related comments see the discussion concerning
the experiments in section 7.

We point out that the previous paragraph does not mean that an arbitrary xp with
(2.8) gives a proper initial approximation x0. Our general feeling is that, even with
(2.8), a nonzero x0 should not be used unless there is a good reason for preferring it
over x0 = 0. It has been observed that without such additional justification, a choice
of nonzero x0 satisfying ‖r0‖ ≤ ‖b‖ can significantly slow down GMRES convergence
[28].

3. Bounds for the GMRES residuals. From the previous section it is clear
that GMRES can be seen as a sequence of least squares problems (2.4) involving
Krylov subspaces of increasing dimensions. In [21] we considered the overdetermined
approximate linear system Bu ≈ c and bounded the least squares (LS) residual

LS residual ≡ min
r,y
‖r‖2 subject to By = c− r(3.1)

from above and from below in terms of the scaled total least squares (STLS) distance

STLS distance ≡ min
s,E,z

‖[s,E]‖F subject to (B + E)zγ = cγ − s,(3.2)

where γ > 0 is the scaling parameter. The bounds from [21] say nothing about an
iterative method, or where B or c come from, and so they are general results. In order
to apply the results from [21] to GMRES we have to identify B, c, and γ with the
proper quantities in GMRES. We have several choices, but as yet there is no choice
which is clearly superior to the others. Therefore we will formulate the bounds in the
following theorem and in section 5 in a general way. Particular scalings (γ and Dk in
the theorem) will be discussed in section 6.

To obtain useful bounds for the kth step of GMRES, we consider c = r0 = v1ρ0
and B = Bk = AVkDk, where Dk is a diagonal matrix of positive scaling coefficients
(Dk > 0). Note that the column scaling by the diagonal matrix Dk does not change
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the optimal residual rk (see (2.4)) and

‖rk‖ = min
y
‖v1ρ0 −AVk y‖ = min

D−1
k
y
‖c−Bk (D−1

k y)‖ .(3.3)

Clearly, for this c and Bk the solution of (3.1) is D−1
k yk, where yk is the solution of

the LS problem (2.4). The column scaling matrix Dk will prove useful later. Note
that, by construction, Bk has full column rank.

We now give bounds on the ‖rk‖ in GMRES, together with bounds on an impor-
tant ratio δk.

Theorem 3.1. Given a scalar γ > 0 and a positive diagonal matrix Dk, use σ(·)
to denote singular values and ‖ · ‖ to denote 2-norms. Let the n by n nonsingular
matrix A, the vectors r0, yk, and rk, the scalar ρ0, and the matrix Vk be as in the
GMRES algorithm (2.1)–(2.5) using exact arithmetic, and let AVk have rank k. De-
note Bk = AVkDk, c = v1ρ0, and define

δk ≡ δk(γ,Dk) ≡ σk+1([cγ,Bk])/σk(Bk) = σk+1([v1ρ0γ,AVkDk])/σk(AVkDk).(3.4)

If

v1 
⊥ {left singular vector subspace of Bk corresponding to σmin(Bk)},(3.5)

then δk < 1 and

µL ≡ σk+1([cγ,Bk]) {γ−2 + ‖D−1
k yk‖2}

1
2 ≤ ‖rk‖

≤ µU ≡ σk+1([cγ,Bk]) {γ−2 + (1− δ2k)−1‖D−1
k yk‖2}

1
2 ,(3.6)

‖rk‖{
γ−2 +

‖D−1
k
yk‖2

1−δ2
k

} 1
2

σk(Bk)

≤ δk ≤ ‖rk‖
{γ−2 + ‖D−1

k yk‖2}
1
2σk(Bk)

,(3.7)

γ‖rk‖
‖[cγ,Bk]‖ ≤ δk ≤

γ‖rk‖
σk([cγ,Bk])

≤ γ‖rk‖
σk(Bk)

≤ γ‖rk‖
σn(A)σk(Dk)

.(3.8)

Proof. We see cγ = v1ρ0γ and Bk = AVkDk satisfy the conditions and assump-
tions of Theorem 4.1 of [21] for any γ > 0, and from (3.3) we see that rk and D−1

k yk
correspond to r and y in (3.1); so the theorem holds with [21, (4.4)] giving (3.6) and
its equivalent (3.7), while Corollary 6.1 of [21] gives all but the last inequality in (3.8),
which holds since V Hk Vk = I.

Note that apart from the last inequality in (3.8) the result does not depend on
orthogonality of the columns of Vk, since Theorem 4.1 of [21] requires nothing of
B = Bk = AVkDk here except that it has full column rank. The only requirement is
for ‖rk‖ to be a minimum (see (2.4), (3.1), and (3.3)) at each step. It should also be
pointed out that due to monotonicity of ‖rk‖ from GMRES, possible oscillations in
the upper bound (3.6) can be eliminated by taking the minimum

‖rk‖ ≤ min
j=1,...,k

{σj+1([v1ρ0γ,Bj ]) {γ−2 + (1− δ2j )−1‖D−1
j yj‖2}

1
2 }.(3.9)

In the paper [21] we compared the bounds for the LS residual used here with
other existing bounds. For example, [21, Corollary 5.1] gives

γ‖rk‖ ≤ δk {‖c‖2γ2 + σ2
k(Bk)− σ2

k+1([cγ,Bk])}
1
2

≤ δk {‖c‖2γ2 + σ2
k(Bk)}

1
2 .(3.10)
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As stated in [21, section 5], our bounds in (3.6) can be significantly better than those
from (3.10). They are also easily applicable to the problem investigated in this paper.
We will therefore not examine (3.10) and the other possible bounds which can be
derived from (3.10) here.

It will be important to examine the tightness of the bounds (3.6). The following
corollary is an immediate consequence of [21, Corollary 4.2].

Corollary 3.2. Under the conditions and assumptions of Theorem 3.1, and
using the notation there together with

η ≡ ‖rk‖ − µL‖rk‖ , ζ ≡ µU − µL‖rk‖ ,(3.11)

we have the following bound on η and ζ:

0 ≤ η ≤ ζ ≤ γ2‖D−1
k yk‖2

2 + γ2‖D−1
k yk‖2

· δ2k
1− δ2k

→ 0 as γ → 0,(3.12)

where the upper bound goes to zero at least as fast as O(γ4) (see (3.8)).
The assumption (3.5) is not necessary for proving the bounds (3.6)–(3.8) and

(3.12). From the proof of [21, Theorem 4.1] it is clear that these bounds require only
δk < 1, and, moreover, the lower bound in (3.6), the upper bound in (3.7) and the
bounds in (3.8) also hold if δk = 1. (The upper bound in (3.6) and the lower bound
(3.7) become∞ and 0 when δk = 1, and so hold trivially.) Using (3.5), however, makes
the theory clean and consistent. The assumption (3.5) is independent of scaling and
it ensures that the bounds do not contain irrelevant quantities; see [22, Remark 4.3].

From (3.12) and (3.8) we see that small δk, γ, ‖rk‖ or ‖D−1
k yk‖/(1− δ2k) ensures

that the bounds (3.6) are not only very tight, but very tight in a relative sense. The
tightness of the bounds depends in an important way on δk; for δk � 1 we get the
strong relationship from (3.6)

‖rk‖ ≈ σmin([v1ρ0γ,AVkDk]) {γ−2 + ‖D−1
k yk‖2}

1
2 .(3.13)

We know 0 ≤ δk ≤ 1 from (3.4). If δk ≈ 1 the bounds in (3.6) and (3.7) become weak,
so we need to see if δk ≈ 1 is possible. In the GMRES context δk will necessarily
be small as ‖rk‖ → 0 (see (3.8)). Proper scaling can always ensure δk � 1. (For
a fixed Dk it was shown in [22, Corollary 4.1] that if (3.5) holds, then δk < 1, δk
increases and decreases with γ, and (3.8) shows γ → 0 ⇒ δk → 0.) Using this
argument, it appears at first that the disturbing case δk ≈ 1 can easily be eliminated
from our discussion. It turns out, however, that this is not entirely true because the
use of scaling also has disadvantages. We will see that we cannot use an arbitrarily
small γ to ensure δk � 1 without (potentially) damaging the tightness of the bounds
for the loss of orthogonality among the Arnoldi vectors (the tightness of the scaled
version of (1.3)). On the other hand, a scaling which might be appropriate from the
point of view of the formulation of the main result (a scaled version of (1.2); see the
following section) might at the same time increase the value of δk. The choice of
scaling therefore represents a delicate task. Despite these subtle details, we will see
that δk ≈ 1 represents a technical problem but not a serious conceptual difficulty. We
will return to the detailed discussion of this point in section 6.

4. Delayed convergence of GMRES. It is possible for convergence of
GMRES to be very slow and stagnate entirely even with exact arithmetic. Suppose

A = [e2γ2, e3γ3, . . . , enγn, e1γ1], b = e1‖b‖, x0 = 0,
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for some γi 
= 0, i = 1, . . . , n; then in (2.1) and (2.2) for k < n

Vk+1 = [e1, e2, . . . , ek+1], Hk+1,k = [e2γ2, e3γ3, . . . , ek+1γk+1],

and in (2.3) and (2.5)

yk = 0, xk = 0, rk = r0, k = 1, 2, . . . , n− 1;

so any convergence at all is delayed until the solution is obtained at step k = n.
Here we have v1 = e1 ⊥ R(AVk) for k < n, so (3.5) does not hold and δk = 1 for
k = 1, 2, . . . , n− 1. In fact (3.6) degenerates to ‖rk‖ = ‖r0‖ for k < n.

5. Backward error theorem. Now we show why we consider the bounds from
Theorem 3.1 to be so important. This provides the scaled versions of (1.2)–(1.4).
Remember that the scaled equivalents of the finite precision results (1.3)–(1.4) are
only for motivation here, and the full proofs of these will be left to [17].

As noticed in [32] and used in [7] (see also [3]), the Arnoldi process (2.2) with
(2.1) ideally gives the QR factorization of [r0, AVk], since on defining upper triangular
Rk+1 ≡ [e1ρ0, Hk+1,k] we see

[r0, AVk] = Vk+1[e1ρ0, Hk+1,k] = Vk+1Rk+1, V Tk+1Vk+1 = Ik+1.(5.1)

By comparing this with (2.1) and (2.2), we see we may now refer to (5.1) as the
Arnoldi process.

If the orthogonalization in (2.2) is carried out by the MGS technique, then it
is straightforward to show that this MGS Arnoldi process provides Vk+1 and Rk+1,
which are computationally identical to those produced by the QR factorization of
[r0, ÃV k] by MGS. Here, ÃV k indicates that the multiplications Avj , j = 1, . . . , k,
are computed numerically. A parallel statement holds when classical Gram–Schmidt
orthogonalization is used in (2.2).

With a computer using finite precision with unit roundoff ε, the computed vectors
v1, v2, . . . tend to lose orthogonality. It was shown by Björck [5] that using MGS in
the QR factorization C = QR computationally leads to Q such that

‖I −QTQ‖F ≤ κ(C)O(ε).
(For convenience in numerical experiments we use the Frobenius norm.)

Thus from the discussion following (5.1), for the finite precision version of (2.2)
using MGS we have (see (1.3))

‖I − V Tk+1Vk+1‖F ≤ κ([v1ρ0, AVk])O(ε).(5.2)

Note that κ([v1ρ0, AVk]) is used here instead of κ([r0, ÃV k]). Using κ([v1ρ0, AVk]) sim-

plifies further considerations; the difference between κ([v1ρ0, AVk]) and κ([r0, ÃV k])
is absorbed in the multiplicative factor O(ε). For the detailed justification see [7] and
[11].

When MGS is used with exact arithmetic in (5.1), the resulting matrix Vk+1 is
invariant with respect to the column scaling in [v1ρ0γ,AVkDk], where γ > 0 and Dk
is a positive diagonal k by k matrix. It appears that, ignoring a small additional error
of O(ε), the matrix Vk+1 resulting from the finite precision MGS Arnoldi process
(5.1) is invariant with respect to positive column scaling. This important result was
noticed in [11, p. 711], and was partially exploited there. It can be justified by
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the following argument (which is a variant of the argument attributed to Bauer; see
[33, pp. 129–130]). If the scaling factors are always powers of the base of the floating
point arithmetic (powers of 2 for the IEEE FP arithmetic), then the resulting Vk+1

computed in finite precision arithmetic using the MGS Arnoldi process (5.1) will be
exactly the same as the Vk+1 computed in finite precision arithmetic using the same
MGS Arnoldi process for the scaled data [r0γ,AVkDk]. If the scaling factors are
not powers of the base of the floating point arithmetic, then there will be additional
rounding errors proportional to unit roundoff ε. Apparently no formal proof of the
last part has been given, so we hope to include one in [17].

If all the above are true, the loss of orthogonality among the MGS Arnoldi vec-
tors computed via (5.1) with a computer using finite precision arithmetic with unit
roundoff ε is bounded by

‖I − V Tk+1Vk+1‖F ≤ κ([v1ρ0γ,AVkDk])O(ε)(5.3)

for all γ > 0 and positive diagonal k by k matrices Dk. One possibility is to scale the
columns of [v1ρ0γ,AVkDk] so they have unit length. That is, take

γ = ρ−1
0 , Dk = diag (‖Av1‖−1, . . . , ‖Avk‖−1) ≡ diag (‖Avj‖−1).(5.4)

The corresponding condition number and the bound (5.3) would then be no more
than a factor

√
k + 1 away from its minimum (see [29]), so this is nearly optimal

scaling. Other convenient choices will be discussed in the next section. Extensive
experimental evidence suggests that for the nearly optimal scaling (5.4), the bound
(5.3) is tight, and usually

‖I − V Tk+1Vk+1‖F ≈ κ([v1ρ0γ,AVkDk])O(ε).(5.5)

It was observed that when MGS was used in (2.2), leading to the MGS GMRES
method (2.1)–(2.6), loss of orthogonality in Vk+1 was accompanied by a small relative
residual norm ‖rk‖/ρ0; see [11]. That is, significant loss of orthogonality in MGS
GMRES apparently did not occur before convergence measured by ‖rk‖/ρ0 occurred.
This fortuitous behavior was analyzed numerically in [11] and a partial explanation
was offered there. A much stronger and more complete theoretical explanation of
the observed behavior can be derived from the bounds (3.6)–(3.8). As a first step,
‖rk‖/ρ0 must be replaced by a more appropriate convergence characteristic.

We will use the terminology (such as normwise) and results reported in
[14, section 7.1]. The backward error for xk as an approximate solution for Ax = b is
a measure of the amounts by which A and b have to be perturbed so that xk is the
exact solution of the perturbed system (A+∆A)xk = b+∆b. The normwise relative
backward error of xk defined by

β(xk) ≡ min
β,∆A,∆b

{β : (A+∆A)xk = b+∆b, ‖∆A‖ ≤ β‖A‖, ‖∆b‖ ≤ β‖b‖}

was shown by Rigal and Gaches [23] (see [14, Theorem 7.1, p. 132]), to satisfy

β(xk) =
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖ =
‖∆Amin‖
‖A‖ =

‖∆bmin‖
‖b‖ .(5.6)

We strongly believe that if no other (more relevant and more sophisticated) cri-
terion is available (such as in [1]), this relative backward error should always be
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preferred to the (relative) residual norm ‖rk‖/‖r0‖ = ‖rk‖/ρ0 in (2.1) when mea-
suring convergence of iterative methods. In practice ‖A‖ has to be replaced by its
approximation—when available—or simply by the Frobenius norm of A. The theoret-
ical reasons for preferring the relative backward error are well known; see, for example,
[2] and [14]. We will add some more practical arguments in section 7. In particular
the residual norm can be very misleading and easily misinterpreted. It is surprising
and somewhat alarming that ‖rk‖/ρ0 remains in use as the main (and usually the
only) indicator of convergence of iterative processes. This statement applies to the
majority of computational results published by numerical analysts. Our results will
put a new emphasis on the importance of the backward error. For GMRES and the
other residual minimizing methods, this raises a key question. If the residual norm is
somewhat in doubt as a measure of convergence, how does this affect the position of
the minimal residual principle as one of the main principles on which practical Krylov
subspace methods are based? The answer needs work, and its further discussion is
beyond the scope of this paper. However, we do not expect that the position of the
minimal residual principle will be considerably shaken by such an analysis; rather
we think it will be reaffirmed. It seems that GMRES, though based on the minimal
residual principle, also produces a very good (nearly optimal) backward error.

We will now describe our main observation. This illustrates and supports the main
goal of our work on MGS GMRES, which is to prove a scaled version of (1.4). Consider
a plot with two lines obtained from the MGS GMRES finite precision computation.
One line represents the relative backward error ‖rk‖/(‖b‖+ ‖A‖ · ‖xk‖) and the other
the loss of orthogonality ‖I − V Tk+1Vk+1‖F (both plotted on the same logarithmic
scale) as a function of the iteration step k. We have observed that these two lines
are always very nearly reflections of each other through the horizontal line defined
by their intersection. For a clear example of this, see the dashed lines in Figure 7.1.
In other words, in finite precision MGS GMRES computations, the product of the
normwise relative backward error and the loss of orthogonality is (as a function of
the iteration step) almost constant and equal to the order of the machine precision ε.
The goal of this paper and [17] is to present a theoretical proof of this observed fact,
and its fundamental consequences, which are that orthogonality among the computed
MGS Arnoldi vectors is effectively maintained until convergence and total loss of
orthogonality implies convergence of the normwise relative backward error to O(ε),
which is equivalent to (normwise) backward stability of MGS GMRES.

Using the results presented in [21] the main ideas are simple and elegant. The
proof itself (as yet incomplete) is, however, technical and tedious. Therefore in
this paper we restrict ourselves to proving and discussing exact arithmetic results
about the product of the normwise relative backward error and the condition number
κ([v1ρ0γ,AVkDk]); with finite precision arithmetic this condition number controls the
numerical loss of orthogonality via (5.5). A detailed rounding error analysis, together
with the results relating the genuine loss of orthogonality ‖I − V Tk+1Vk+1‖F to the
relative backward error, is intended for [17].

In the following theorem the product of the normwise relative backward error of
GMRES and the condition number of the scaled matrix [v1ρ0γ,AVkDk] is bounded
from below and from above. Note that the theorem assumes exact arithmetic and
therefore the result holds for GMRES in general. The theorem is formulated for any
γ > 0 and any positive diagonal Dk; bounds corresponding to the specific choices of
γ and Dk will be given in section 6.
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Theorem 5.1. Under the conditions and assumptions of Theorem 3.1, and using
the notation there, let σ1 ≡ σ1([v1ρ0γ,AVkDk]) = ‖[v1ρ0γ,AVkDk]‖,
κk ≡ κ([v1ρ0γ,AVkDk]). Then

σ1√
2
· {γ

−2 + ‖D−1
k yk‖2}

1
2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≤ σ1
{γ−2 + ‖D−1

k yk‖2}
1
2

‖b‖+ ‖A‖ · ‖xk‖(5.7)

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{γ−2 + (1− δ2k)−1‖D−1

k yk‖2}
1
2

‖b‖+ ‖A‖ · ‖xk‖ ≤ σ1
{γ−2 + (1− δ2k)−1‖D−1

k yk‖2}
1
2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

.

Proof. The tighter lower and upper bounds follow immediately from (3.6) in
Theorem 3.1. However,

1√
2
≤ f

(‖A‖ · ‖xk‖
‖b‖

)
=
{‖b‖2 + ‖A‖2‖xk‖2} 1

2

‖b‖+ ‖A‖ · ‖xk‖ ≤ 1,(5.8)

since for ω ≥ 0, f(ω) ≡ (1 + ω2)
1
2 /(1 + ω) satisfies f(0) = 1, f(ω) < 1 for ω > 0,

f(ω) → 1 for ω → ∞, and f(ω) has for ω > 0 a single minimum f(1) =
√
2/2. This

gives the weaker lower and upper bounds in (5.7).

Note that the ratio of the tighter upper and lower bounds is (exactly as in (3.6))

ν ≡ {γ
−2 + (1− δ2k)−1‖D−1

k yk‖2}
1
2

{γ−2 + ‖D−1
k yk‖2}

1
2

(5.9)

and the corresponding ratio of the weaker bounds is
√
2 ν. We will prefer the weaker

bounds because they are convenient for the discussion of the particular scalings in the
next section, and the factor

√
2 does not affect our considerations.

6. Scaling choices. There is no easy preference for the choice of scaling, since
we have to consider several aspects that are unfortunately in conflict.

As described before, our ultimate goal is to relate the loss of orthogonality among
the Arnoldi vectors to the convergence of MGS GMRES measured by the normwise
relative backward error by obtaining a scaled version of (1.4). Considering (5.3) it
seems that the role of scaling is to minimize κ([v1ρ0γ,AVkDk]), and the nearly opti-
mal scaling (5.4) seems to be the right choice. Scaling decreasing κ([v1ρ0γ,AVkDk])
may, however, increase the value of δ(γ,Dk) and therefore act against the tight-
ness of the bounds in Theorem 5.1; see (3.8) and (3.12). While decreasing γ de-
creases δk [22, Corollary 4.1], decreasing entries in Dk increase the upper bounds in
(3.8) and potentially also δk. In order to describe this in more detail we denote, for
the moment, ϑ ≡ (σk(Dk))

−1, D
′
k ≡ ϑDk, σk(D

′
k) = 1. Now ϑσ1([v1ρ0γ,AVkDk]) =

σ1([v1ρ0γϑ,AVkD
′
k]), κ([v1ρ0γ,AVkDk]) = κ([v1ρ0γϑ,AVkD

′
k]), and for δk in (3.4)

δk ≡ δk(γ,Dk) = σk+1([v1ρ0γ,AVkDk])

σk(AVkDk)

=
σk+1([v1ρ0γϑ,AVkD

′
k])

σk(AVkD
′
k)

= δk(γϑ,D
′
k).(6.1)

This shows the bounds in Theorem 5.1 rescale trivially, giving the same results for
the scaling γ, Dk = ϑ

−1D
′
k, as for the scaling γϑ, D

′
k. It is clear from [22, Corollary
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4.1] that, for a fixed D
′
k, δk(γϑ,D

′
k) increases monotonically with γϑ, and in some cir-

cumstances it can be close to unity. (We assume that the assumptions of Theorem 3.1
hold and therefore δk < 1 always.) It follows that if ϑ is very large (resulting in large
γϑ), then δk(γϑ,D

′
k) can be close to unity. This negatively affects the tightness of

the bounds in Theorem 5.1. Consequently, the near optimal tightness in (5.3) might
be achieved at the cost of weakening (5.7). Similarly, weakening (5.3) may result in a
tighter (5.7).

Please notice that varying ϑ (for a fixed D
′
k) has, due to (6.1), the same effect

on δk(γ,Dk) = δk(γ, ϑ
−1D

′
k) = δk(γϑ,D

′
k) as varying the scaling parameter γ. It

therefore need not be considered here.
To study further the effects of scaling, we will discuss three specific cases: no scal-

ing (γ = 1, Dk = I), the nearly optimal column scaling γ = ρ
−1
0 , Dk = diag(‖Avj‖−1),

and the norm scaling γ = ‖b‖−1, Dk = ‖A‖−1I. We will consider only the weaker
bounds given by Theorem 5.1.

Proposition 6.1. Under the conditions and assumptions of Theorem 3.1 and
using the notation of Theorem 5.1, we have the following bounds:
With no scaling (γ = 1, Dk = I) we have δk ≡ δk(1, I), σ1 ≡ σ1([r0, AVk]), κk ≡
κ([r0, AVk]), and the weaker bounds from (5.7) give

χL1 ≡ σ1√
2
· {1 + ‖yk‖2} 1

2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{1 + (1− δ2k)−1‖yk‖2} 1

2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≡ χU1.(6.2)

The nearly optimal column scaling γ = ρ−1
0 , Dk = diag(‖Avj‖−1) gives

δk ≡ δk(ρ−1
0 , Dk), σ1 ≡ σ1([v1, AVkDk]), κk ≡ κ([v1, AVkDk]), and

χL2 ≡ σ1√
2
· {ρ

2
0 + ‖D−1

k yk‖2}
1
2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{ρ20 + (1− δ2k)−1‖D−1

k yk‖2}
1
2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≡ χU2.(6.3)

Finally, the scaling γ = ‖b‖−1, Dk = ‖A‖−1I gives

δk ≡ δk
(‖A‖
‖b‖ , I

)
, σ1 ≡ σ1

([
v1ρ0
‖b‖ ,

AVk
‖A‖

])
, κk ≡ κ

([
v1ρ0
‖b‖ ,

AVk
‖A‖

])
,(6.4)

χL3 ≡ σ1√
2
· {‖b‖

2 + ‖A‖2‖yk‖2} 1
2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≤ κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖

≤ σ1
{‖b‖2 + (1− δ2k)−1‖A‖2‖yk‖2} 1

2

{‖b‖2 + ‖A‖2‖xk‖2} 1
2

≡ χU3.(6.5)

Throughout this discussion of GMRES in exact arithmetic, we could have replaced
‖yk‖2 by ‖xk−x0‖2, since xk = x0 +Vkyk. However, we chose not to do this in order
that the results be relevant to the finite precision case as well, where Vk may lose
orthogonality. The exception which will follow will allow us to write the result (6.5)



RESIDUAL BOUNDS IN KRYLOV SUBSPACE METHODS 1911

in a very simple form. Consider for the moment x0 = 0. Then (ideally) ‖xk‖ = ‖yk‖
and when δk(‖b‖−1‖A‖, I)� 1, (6.5) reduces to (with the definitions in (6.4))

σ1√
2
≤ κk

‖rk‖
‖b‖+ ‖A‖ · ‖xk‖

<∼ σ1 .(6.6)

For the scaling in (6.3), each of the k+1 columns of [v1, AVkDk] has a 2-norm of
1, so

1 ≤ σ1 ≡ ‖[v1ρ0γ,AVkDk]‖ ≤
√
k + 1 .(6.7)

For the scaling in (6.4) and x0 chosen from (2.8), the 2-norm of each column of
[v1ρ0‖b‖−1, AVk‖A‖−1] is bounded above by 1, so the upper bound in (6.7) holds. If
we assume x0 = 0 as well, then v1ρ0 = r0 = b, so the first column has the 2-norm
of 1, and all of (6.7) holds. However, generalizing a suggestion by Ruiz [26], for any
matrix partitioned into two submatrices

max {‖W‖, ‖Z‖} ≤ ‖[W,Z]‖ = max
‖w‖2+‖z‖2=1

‖Ww + Zz‖
≤ max

‖w‖2+‖z‖2=1
{‖W‖‖w‖+ ‖Z‖‖z‖}

= max
‖w‖2+‖z‖2=1

(‖W‖, ‖Z‖)(‖w‖, ‖z‖)T

≤ {‖W‖2 + ‖Z‖2} 1
2 .(6.8)

Applying these bounds to ‖[v1ρ0γ,AVkDk]‖ with scaling in (6.4) and x0 = 0 gives

1 ≤ σ1 ≡ ‖[v1ρ0γ,AVkDk]‖ ≤
√
2 .(6.9)

Thus for the scaling in (6.4) with x0 = 0, both (6.6) and (6.9) hold, which gives the
simplest form of our main result—the correct version of (1.2).

Proposition 6.2. Under the conditions and assumptions of Theorem 3.1, using
the notation of Theorem 5.1 and assuming that δk � 1, we have with γ = ‖b‖−1,
Dk = ‖A‖−1, and x0 = 0:

1√
2
≤ κk ‖rk‖

‖b‖+ ‖A‖ · ‖xk‖
<∼
√
2,(6.10)

which can be written as

κk
‖rk‖

‖b‖+ ‖A‖ · ‖xk‖ = O(1) .(6.11)

The last results hold even for nonzero x0 whenever ‖yk‖ = O(‖xk‖). (Numerical
experiments suggest that for well chosen x0 (see (2.8)), this assumption is very re-
alistic.) Because of the simple form of (6.10) we call the scaling in (6.4) scaling for
elegance. In the experiments in section 7 we will compare the bounds χL1, χL2, and
χL3, and χU1, χU2, and χU3, together with the effects of the particular scalings on the
tightness of (5.3).

In an iterative solution of equations with nonsingular A we expect ‖rk‖ → 0
so δk → 0 (see (3.8)), and δk � 1 is necessary eventually. For a general (finite
dimensional) problem this seems trivial, but there are extreme possibilities: δk may,
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for example, be close to unity (or δk = 1 in some special cases) for k = 1, 2, . . . , n− 1
and δn = 0 (see section 4). However, in many practical problems there exists a k0
much smaller than n such that δk � 1 for k = k0, k0 + 1, . . . , and in Corollary 3.2

0 ≤ η = η(k) ≈ 0(6.12)

holds for k > k0. In other problems δk � 1 for a number of steps, but then suddenly
δk appears very close to unity. In these cases the smoothed upper bound (3.9) might
be considered—our experiments suggest it is usually close to ‖rk‖ for all iteration
steps k. Typical examples are shown in section 7.

Under the assumptions of Theorem 3.1 δk = δk(γ,Dk) is bounded away from
unity for all positive γ, Dk [21, Theorem 3.1] and, unless the projection of r0 onto
the left singular vector subspace corresponding to σmin(AVkDk) of the matrix AVkDk
is very small compared to ‖rk‖, we can expect that the bounds for ‖rk‖ given by
Theorem 3.1 are sufficiently tight. Still, the choices of Dk having small elements on
the diagonal seems very unfortunate because they (potentially) increase the value
of δk. Fortunately, as shown in section 7, in practical computations small diagonal
elements in Dk have a much less dramatic effect on δk, and on the tightness of the
bounds (3.6) for ‖rk‖, than the weaker upper bound in (3.8) would suggest. Moreover,
we will show that in our experiments the scaling γ = ‖b‖−1, Dk = ‖A‖−1I (which
provided the result (6.10)) indeed relaxed the tightness of the bounds (3.6) for ‖rk‖,
but the resulting relaxed bounds always remained very acceptable.

As mentioned above, under the assumption (3.5) δk is bounded away from unity,
but it can still get very close to unity for some k. We have observed numerically (see
also section 7) that with no scaling (γ = 1, Dk = I), δk gets close to unity quite
rarely. For the other scalings considered in this paper (which are important for the
formulation of our results), some δk may be much closer to unity, and that may also
happen more often. Still, as we will now show for the example of the scaling for
elegance γ = ‖b‖−1, Dk = ‖A‖−1I, the situation δk ≈ 1 cannot occur after GMRES
has converged to a reasonable accuracy, and therefore it does not represent a serious
obstacle for our theory. From (3.8) we have

δk ≤ γ‖rk‖/σk(AVkDk),(6.13)

which with the scaling γ = ‖b‖−1, Dk = ‖A‖−1I, and with ‖r0‖ ≤ ‖b‖ (perhaps via
(2.8)) and V Tk Vk = I, gives a bound in terms of the relative residual ‖rk‖/‖r0‖:

δk ≤ ‖rk‖ · ‖A‖
‖b‖ · σk(AVk) ≤

‖rk‖
‖r0‖ κ(A).(6.14)

Similarly (using the same scaling) with ‖xk‖ = ‖yk‖ we can obtain a bound in terms
of the relative backward error

δk ≤ ‖rk‖
‖b‖+ ‖A‖ · ‖xk‖

√
2κ(A) = β(xk)

√
2κ(A).(6.15)

This follows using (3.7) and (5.8), since

δk ≤ ‖rk‖
{‖b‖2 + ‖A‖2‖xk‖2}1/2σk(AVk)/‖A‖ ≤ β(xk)

√
2κ(A).

Thus, when the relative residual norm drops significantly below κ(A)−1, or the relative
backward error drops significantly below {√2κ(A)}−1, δk = δk(‖b‖−1‖A‖, I)� 1 and
(6.11) will hold.
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For any given Dk there is a particular value of the scaling parameter γ such that
δ(γ,Dk) is related to ‖rk‖ even in a more tight way than described above. For a

fixed Dk define γ
(k)
0 = γ

(k)
0 (Dk) = σk(AVkDk)/ρ0. With the scaling Dk, γ

(k)
0 the first

column of the matrix [v1ρ0γ
(k)
0 , AVkDk] is equal to σk(AVkDk)v1 and has the norm

equal to σk(AVkDk). Moreover, for this Dk, δk(γ,Dk) < 1 for all γ < γ
(k)
0 , and

‖rk‖ = ρ0 if and only if δk(γ
(k)
0 , Dk) = 1 ,(6.16)

δk(γ
(k)
0 , Dk) ≤ ‖rk‖/ρ0 ≤

√
2 δk(γ

(k)
0 , Dk);(6.17)

see [15, (3.11) and (3.12)]. Though with this particular scaling the relationship be-

tween δk(γ
(k)
0 , Dk) and ‖rk‖ is extremely simple, it will not lead to a simple form of

the main result (1.2). Also, possibly small value γ
(k)
0 may inconveniently relax the

bound (5.3) and significantly complicate the analysis left to [17]. Therefore we have
not used this scaling in our paper.

The approach here might also be useful for Krylov subspace methods which
minimize other norms, such as minimum error methods, as we now show. Let
Vk = [v1, . . . , vk] be generated in some way, and r0 = b−Ax0, ρ0 = ‖r0‖, v1 = r0/ρ0,
xk = x0+Vkyk, rk = b−Axk = r0−AVkyk, with A nonsingular. Consider, for exam-
ple, a method that minimizes ‖A−1rk‖ = ‖x−xk‖ at each step (so yk will differ from
that in GMRES). Then taking [c,B] = A−1[v1ρ0, AVk] = [(x− x0), Vk] and γ = ρ

−1
0 ,

Theorem 4.1 of [21] gives (with δk = σk+1([(x− x0)ρ
−1
0 , Vk])/σk(Vk)) the bounds

σk+1([(x− x0)ρ
−1
0 , Vk]) {ρ20 + ‖yk‖2}

1
2 ≤ ‖x− xk‖(6.18)

≤ σk+1([(x− x0)ρ
−1
0 , Vk]) {ρ20 + (1− δ2k)−1‖yk‖2} 1

2 ,

so at least this theory holds for more general minimum norm methods than just
GMRES. Of course, if V Tk Vk = I, then σk(Vk) = 1. We have not studied how this
might be used.

It appears that the approach can also be applied to methods which minimize some
norm with respect to other Krylov subspaces, such as LSQR [20, 19] for solution of
equations with unsymmetric A, or LS solutions with rectangular A. It may also be
useful for methods which are not based on Krylov subspaces.

7. Experimental results. We will illustrate our theoretical results with nu-
merical experiments. We initiated these to look for possible limitations in our theory.
We wished to check the validity of our assumptions in practical computations. We
also wished to find out to what extent the results developed here for exact precision
GMRES would hold for quantities computed in the presence of rounding errors.

In our theory δk = σk+1([v1ρ0γ,AVkDk])/σk(AVkDk) plays an important role.
Section 4 showed it is possible to have δk = 1 for all but the last step, and in that
example the residual stagnated at ‖r0‖ until the final step. On the other hand, δk ≈ 1

cannot in general (for scalings different fromDk, γ
(k)
0 (Dk), see (6.16), (6.17)) be linked

with the (approximate) stagnation of GMRES; the GMRES residual norm may almost
stagnate while δk � 1, and it can decrease rapidly while δk ≈ 1. If δk ≈ 1, then there
can be a large gap between the upper and lower bounds in (3.6). This does not negate
the argument that orthogonality is effectively maintained until convergence in finite
precision MGS GMRES (δk � 1 is necessary eventually), but it does make us question
the tightness of the bounds in (3.6).
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Fortunately, experiments suggest that (3.9) is always a sufficiently good (and
mostly very good) upper bound. We also found that with no scaling (γ = 1, Dk = I)
δk is often reasonably below unity during the entire computation. As k increases
δk can decrease, then increase, but it must eventually become small, for from (3.7),
(3.8), (6.14), and (6.15) we see the upper bound on δk must decrease as ‖rk‖ or
‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖) becomes sufficiently small. However, when δk � 1 from the
start to the end,

‖rk‖ ≈ σk+1([v1ρ0γ,AVkDk]) {γ−2 + ‖D−1
k yk‖2}

1
2

throughout the computation, and the lower and upper bounds are very close. Thus
we can have this unexpectedly very close relationship between ‖rk‖ and the smallest
singular value of [v1ρ0γ,AVkDk]. An interesting experience was that even when δk ≈
1, leading to the upper bound being significantly larger than the lower bound in (3.6),
it was not always the upper bound which was weak. We frequently observed that
the upper bound was tight while the lower bound was a noticeable underestimate
for ‖rk‖. Moreover, the dependence of δk and the tightness of the bounds (3.6) on
the scaling parameters γ,Dk was quite weak. We will illustrate these observations
by presenting results of numerical experiments showing different types of behavior of
δk. These observations could also be further studied theoretically using the results of
Proposition 6.1 or some other approach, but we do not wish to go into it here.

In all experiments b = e ≡ (1, . . . , 1)T . Except for the experiment shown in
Figure 7.10 (where x0 = randn(n, 1) from MATLAB 5.3), x0 is always determined
from (2.8) with xp = randn(n, 1) from MATLAB 5.3. These choices of x0 and xp are
worth a comment. We wish to illustrate our theoretical results on some nontrivial
examples. The randomly generated initial vectors x0 (or xp in (2.8)) were chosen in
our illustrations to avoid any correlation between the initial approximation and the
solution. This is because we sought to illustrate cases where there were no hidden
relationship that affected the computations. In practical computations, however, for
the very same reason, a randomly chosen initial approximation should be avoided.
Sometimes a random initial approximation x0 is reported to give faster convergence
than the other popular choice x0 = 0. As we explain later, we believe that statements
like that represent a serious misunderstanding caused by a superficial view of con-
vergence. As far as genuine convergence characteristics are concerned, we argue that
such statements are of no relevance.

Experiments were performed on a Silicon Graphics Origin 200 Workstation using
MATLAB 5.3, ε = 1.11 × 10−16. In all experiments matrices from the Rutherford–
Boeing collection were used. Results for the matrix FS1836 with n = 183, ‖A‖ ≈
1.2∗109, κ(A) ≈ 1.5∗1011 (see Figures 7.1–7.4) illustrate improvement of the tightness
of the bounds (3.6) as the residual norm drops. For the matrix WEST0132 with
n = 132, ‖A‖ ≈ 3.2 ∗ 105, κ(A) ≈ 6.4 ∗ 1011 (see Figures 7.5–7.8), the tightness of
the bounds (3.6) oscillates during the whole computation. Results for the matrix
STEAM1 with n = 240, ‖A‖ ≈ 2.2 ∗ 107, κ(A) ≈ 3.1 ∗ 107 (see Figures 7.9 and 7.10)
represent the case when the bounds (3.6) are very tight from the start to the end.

We have given two figures for STEAM1 and four figures for the other matrices,
so we now indicate what is in each figure. Figures 7.1, 7.5, 7.9, and 7.10 make the
same use of lines. The dots show the norm of the directly computed residual divided
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Fig. 7.1. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to FS1836.
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Fig. 7.2. The product of the normwise relative backward error and the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm divided by the machine precision unit
ε (dots), and the product of the normwise relative backward error β(xk) and the condition number
of the matrix [v1ρ0γ,AVkDk] for different scalings: the nearly optimal column scaling γ = ρ−1

0 ,
Dk = diag(‖Avj‖−1) (solid line), the norm scaling (scaling for elegance) γ = ‖b‖−1, Dk = ‖A‖−1I
(dotted line), and no scaling γ = 1, Dk = I (dashed line) for MGS GMRES applied to FS1836.
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Fig. 7.3. Norm of the directly computed relative residual (dots), and its lower and upper
bounds µL and µU for different scalings: the nearly optimal column scaling (solid lines), the scaling
for elegance (dotted lines), and no scaling (dashed lines) for MGS GMRES applied to FS1836.
Until the orthogonality is completely lost, the upper bounds are indistinguishable from the actual
quantities.
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Fig. 7.4. Product of the backward error and the loss of orthogonality among the Arnoldi vectors
measured in the Frobenius norm divided by the machine precision unit ε (dots), and the values χL
and χU for different scalings: the nearly optimal column scaling (solid lines), the scaling for elegance
(dotted lines), and no scaling (dashed lines) for MGS GMRES applied to FS1836.
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Fig. 7.5. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to WEST0132.

0 20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

iteration number

beta * loss of orthogonality / epsilon
beta * kappa − nearly opt. scaling    
beta * kappa − scaling for elegance   
beta * kappa − no scaling             

Fig. 7.6. Product of the normwise relative backward error and the loss of orthogonality among
the Arnoldi vectors measured in the Frobenius norm divided by the machine precision unit (dots), and
product of the backward error and the condition number of the matrix [v1ρ0γ,AVkDk] for different
scalings: the nearly optimal column scaling (solid line), the scaling for elegance (dotted line), and
no scaling (dashed line) for MGS GMRES applied to WEST0132.
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Fig. 7.7. Norm of the directly computed relative residual(dots), and its lower and upper bounds
µL and µU for different scalings: the nearly optimal column scaling (solid lines), the scaling for
elegance (dotted lines), and no scaling (dashed lines) for MGS GMRES applied to WEST0132.
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Fig. 7.8. Product of the backward error and the loss of orthogonality among the Arnoldi vectors
measured in the Frobenius norm divided by the machine precision unit ε (dots), and the values χL
and χU for different scalings: the nearly optimal column scaling (solid lines), the scaling for elegance
(dotted lines), and no scaling (dashed lines) for MGS GMRES applied to WEST0132.
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Fig. 7.9. Norm of the directly computed relative residual (dots), the smooth upper bound (solid
line), the loss of orthogonality among the Arnoldi vectors measured in the Frobenius norm (dashed
line, monotonically increasing) and the normwise relative backward error (dashed line, mostly de-
creasing), norm of the approximate solution (dotted line), and the relative error (dashed-dotted line)
for MGS GMRES applied to STEAM240.
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Fig. 7.10. Norm of the directly computed relative residual (dots), the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm (dashed line, monotonically increasing)
and the normwise relative backward error (dashed line, mostly decreasing), norm of the approxi-
mate solution (dotted line), and the relative error (dashed-dotted line) for MGS GMRES applied to
STEAM240 with randomly chosen initial approximation x0.
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by ‖r0‖, that is, ‖b−Axk‖/‖r0‖, which we call the relative residual. (We do not give
the iteratively computed residual norm (2.7); until near convergence, it was always
graphically indistinguishable from the norm of the directly computed residual.) The
solid line gives the smoothed upper bound (3.9) divided by ‖r0‖. The dashed-dotted
line gives the normalized norm of the error ‖x−xk‖/‖x−x0‖; the dotted line gives the
norm of the approximate solution ‖xk‖. The dashed lines give the loss of orthogonality
among the Arnoldi vectors measured in the Frobenius norm ‖I−V Tk Vk‖F (essentially
increasing), as well as the normwise relative backward error ‖rk‖/(‖b‖+ ‖A‖ · ‖xk‖),
which is mostly decreasing. Note the spectacular symmetry of the loss of orthogonality
and the backward error in every case.

For each matrix, the remaining figures present and compare convergence char-
acteristics, upper and lower bounds, and several quantities illustrating our theory
for different scalings of the matrix [v1ρ0γ,AVkDk]. In each of Figures 7.2, 7.3,
7.4 (for FS1836) and 7.6, 7.7, 7.8 (for WEST0132) dashed lines represent results
with no scaling γ = 1, Dk = I, solid lines the nearly optimal column scaling
γ = ρ−1

0 , Dk = diag(‖Avj‖−1), and dotted lines the scaling for elegance γ = ‖b‖−1,
Dk = ‖A‖−1I.

Figures 7.2 and 7.6 are devoted to the tightness of the bound (5.3) for the loss
of orthogonality among the Arnoldi vectors. The dots show the product of the norm-
wise relative backward error and the loss of orthogonality divided by the machine
precision unit {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · ‖I − V Tk Vk‖F / ε, the dashed, solid, and
dotted lines the product {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · κ([v1ρ0γ,AVkDk]) for different
scalings. The figures show that (5.5) is well justified for the nearly optimal column
scaling. Replacing the actual loss of orthogonality ‖I−V Tk Vk‖F in our considerations
by {κ([v1ρ0γ,AVkDk]) ε} does not cause a significant difference (except perhaps at
the beginning of the process with no scaling) even for the other scalings. Close to
convergence (5.5) holds for all the scalings considered in our paper.

Figures 7.3 and 7.7 are devoted to normalized residual bounds, that is, bounds on
‖b−Axk‖/‖r0‖, which are denoted by points. The pairs of dashed, solid, and dotted
lines give the upper and lower bounds µU and µL from (3.6) for different scalings. We
can see that the effect of scaling on the bounds in (3.6) is quite insignificant.

Finally, Figures 7.4 and 7.8 compare the product of the normwise relative back-
ward error and the loss of orthogonality divided by the machine precision unit, that
is, {‖rk‖/(‖b‖ + ‖A‖ · ‖xk‖)} · ‖I − V Tk Vk‖F / ε (denoted by dots), with the upper
and lower bounds χU and χL from (6.2) (dashed lines), (6.3) (solid lines), and (6.5)
(dotted lines). These figures reflect the possible lack of tightness of the bound for the
loss of orthogonality among the Arnoldi vectors shown separately on Figures 7.2 and
7.6, as well as the lack of tightness of the bounds in (6.2)–(6.5). They demonstrate
that though the results developed in this paper assume exact arithmetic, and though
the form of the bounds in (6.2)–(6.5) seems a bit complicated, the simplest form of
our main result (6.11) holds as convergence is approached for all our scalings and for
the quantities actually computed using finite precision arithmetic.

The experiments for the figures discussed up to now (and for Figure 7.9) used
b = e and x0 determined from (2.8) with xp = randn(n, 1) from MATLAB 5.3. The
remaining Figure 7.10 was computed for x0 = randn(n, 1) from MATLAB 5.3 without
using (2.8). Both Figures 7.9 and 7.10 were computed for the matrix STEAM1, and
they show the same quantities as Figures 7.1 and 7.5. If we concentrate on the relative
residual norm only, then it looks as if Figure 7.10 shows much better convergence
(faster, and to much better accuracy) than Figure 7.9. Such a view on convergence,
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though understandable, is completely wrong. We cannot give a full quantitative
explanation within this paper; however, we will present an intuitive but clear argument
on which such an explanation will eventually be based. By using x0 = randn(n, 1)
and then computing the initial residual as r0 = b−Ax0 = e−Ax0 (as on Figure 7.10)
we correlate the initial residual strongly with the dominating parts of the operator
A. (Note that all the matrices used here have some dominating components.) In all
cases the norm of the resulting initial residual is large, ‖r0‖ � ‖b‖. At the early stage
of computation this artificially created dominating information is eliminated, which
creates an illusion of fast convergence. However, no real fast convergence is taking
place, as you can see on the error convergence curve, and the “good final accuracy”
is due to the fact that the initial residual is large. For b = e and x0 determined from
(2.8) with xp = randn(n, 1) from MATLAB 5.3 we get ‖x0‖ � 1 and x0 ≈ 0. Then
r0 contains practically no information about the dominating parts of A, the problem
is difficult to solve, and the convergence is (for many steps) slow. Still, this choice
(which produces results very close to those with the choice x0 = 0) gives the right
information about the behavior of GMRES when applied to the problem Ax = b,
b = e. The illusion of fast convergence and better final accuracy for a random x0

has evolved among some users of numerical software perhaps as a side effect of using
the norm of the relative residual for displaying convergence. Our point is that the
illusive role of a random x0 can easily be revealed by using the absolute values of the
residual norm for displaying convergence and by comparing the convergence curve
for a random x0 to that for the initial approximation set to zero (x0 = 0). Finally,
please note the correspondence of the error and the backward error when comparing
Figures 7.10 and 7.9.

Now we comment on particular characteristics of each problem. For the matrix
FS1836 in Figures 7.1–7.4 the value of δk rises until it is close to unity, stays there for
a few iteration steps, then follows the descent of the residual norm. For all scalings the
upper bounds µU (for ‖rk‖) are very tight until convergence, the lower bounds µL (for
‖rk‖) are weak when δk ≈ 1, but no scaling (γ = 1, Dk = I) gives a significantly tighter
lower bound than the other two at the early stages of the computation (Figure 7.3).
On the other hand, at the early stages of the computation the condition number of
the matrix [v1ρ0, AVk] is for no scaling much larger than for the other scalings, which
explains the difference between the dashed and the other lines on Figures 7.2 and 7.4
for k from 1 to 10. After convergence is approached, all scalings produce about the
same results.

For the matrix WEST0132 (in Figures 7.5–7.8) the value of δk is close to unity
(with some oscillations) for most iteration steps. The upper and lower bounds µU and
µL differ significantly until the sharp drop of the residual. Scalings are not important.
Note that despite the oscillations (we have chosen this matrix on purpose because it
seems to produce challenging results; many other examples not presented here give
much smoother behavior) all the lines on Figures 7.6 and 7.8 converge together as the
sharp drop of the residual is approached.

For the matrix STEAM1 we omit figures analogous to Figures 7.2–7.4 for FS1836
and Figures 7.6–7.8 for WEST0132. The omitted figures would show a good agreement
of the computed results with our theory; they do not offer any other information, and
therefore we see no reason for extending the length of the paper by including them.

Summarizing, our experiments suggest that the equivalents of Theorems 3.1 and
5.1, of the Propositions 6.1 and 6.2 (where κk will be replaced by ‖I−V Tk+1Vk+1‖F and
O(1) by O(ε)), hold for the numerically computed quantities. However, the statements
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must be slightly modified to account for the effect of rounding errors, especially for
the influence of the loss of orthogonality on the size of the directly computed residuals
‖b−Axk‖. A rigorous proof will require further work and is intended in [17].

8. Conclusion. In Krylov subspace methods, approximate solutions to matrix
problems are usually constructed by using orthogonality relations and projections.
Orthogonality and projections create a mathematical elegance and beauty in this
context. In the presence of rounding errors orthogonality and projection properties
are gradually (and sometimes very quickly) lost. Fortunately, as was first shown for
A symmetric and the Lanczos method (see, for example, [16], [10], [12]), not all the
mathematical elegance need be lost with them.

This paper is devoted to GMRES, and our fundamental hypothesis is as follows.
When the Arnoldi vectors are computed via the finite precision MGS process, the loss
of orthogonality is related in a straightforward way to the convergence of GMRES.
In particular, orthogonality among the Arnoldi vectors is effectively maintained until
the normwise relative backward error converges close to the machine precision level.
If we assume that the bound for the loss of orthogonality among the Arnoldi vectors
is tight and (5.5) holds, then our hypothesis could be strengthened to the following:
the product of the loss of orthogonality among the Arnoldi vectors (measured in the
Frobenius norm) and the normwise relative backward error is for any iteration step
a small multiple of the machine precision unit. This last statement would then im-
ply that total loss of orthogonality among the Arnoldi vectors computed via finite
precision MGS orthogonalization would mean convergence of the normwise relative
backward error to machine precision level, and, consequently, it would prove back-
ward stability of MGS GMRES. Our work can also be seen as another step on the
way (probably started by Sheffield (see [6], especially the abstract and section 2, also
[7])) towards the full justification of the MGS orthogonalization in competition with
orthogonalization by Householder reflections for certain classes of problems.

Note that in the present paper we have not proven the finite precision versions of
the statements formulated above. Our paper assumes exact arithmetic in its theoret-
ical part and carries out groundwork for the detailed rounding error analysis of the
MGS GMRES which we plan to publish in [17].
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[15] J. Liesen, M. Rozložńık, and Z. Strakoš, Least squares residuals and minimal residual

methods, SIAM J. Sci. Comput., 23 (2002), pp. 1503–1525.
[16] C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigen-

problem, Linear Algebra Appl., 34 (1980), pp. 235–258.
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Abstract. An adaptive reduced-order controller design is presented for flow control using proper
orthogonal decomposition (POD). In reduced-order controller design, the idea is to start with an en-
semble of data obtained from numerical simulation of the underlying partial differential equations
(PDEs). POD is then used to obtain a reduced set of basis functions which is then used to derive
a reduced-order model of the PDEs via Galerkin projection. This reduced-order model allows us to
derive a reduced-order controller. However, it is not clear, a priori, what is the best way to obtain
an ensemble of data that would give basis functions that represent the influence of the control action
on the system. In this paper we explore an adaptive procedure for reduced-order controller design
that improves the reduced-order model by successively updating the ensemble of data during the
optimization iterations. We illustrate this method on a control problem in thermal flow system mod-
eled by a thermally coupled Navier–Stokes equations. Numerical results are presented for a vorticity
regulation problem in fluid flows using boundary temperature as control mechanism. Through our
numerical experiments we demonstrate the feasibility and applicability of the adaptive reduced-order
controllers.

Key words. reduced-order adaptive control, proper orthogonal decomposition, temperature
control for fluids
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1. Introduction. The reduced-order controller design for physical process mod-
eled by partial differential equations (PDEs) has attracted much attention in recent
years due to its ability to reduce computational cost. In [21, 20], we designed a
reduced-order controller for a flow system using a procedure called proper orthogonal
decomposition (POD).

POD is a model reduction technique for complex nonlinear problems. It was
first proposed by Karhunen [13] and Loeve [15] independently and sometimes called
Karhunen–Loeve (K–L) expansion. Subsequently it has been applied in various appli-
cations. In [16] the method was first called POD and there it was used to study tur-
bulent flows. In [23] other important progress was made and the method of snapshots
was incorporated into the POD framework, which will be described in what follows.
Other applications in turbulent flow simulations are given in [3, 4, 14, 17, 18, 24].

The essential idea is to generate an optimal basis for the representation of an
ensemble of data obtained from numerical computations. One of the features of POD
is that it yields a basis that is optimal in the sense that the information contained in an
N -ordered POD basis expansion is greater than any other N -ordered basis expansion.
Thus, when the PDEs are projected onto this basis using a Galerkin projection, one
obtains a reduced-order model.

Reduced-order models allow us to derive reduced-order controllers. However, we
need to choose the ensemble of data that represent the system behavior for various
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trajectories of the control during the iterative optimization procedure. To meet this
requirement, we propose in this paper an adaptive procedure that successively updates
the ensemble of data and the reduced-order model during the optimization process
using the sequential quadratic programming (SQP) method. The SQP method is
preferred over the unconstrained optimization methods due to its superior convergence
properties, among others. Its application to solve optimal control of Navier–Stokes
flow has been demonstrated in [9, 10] and [19].

In this adaptive procedure, we begin with an initial estimate (Yk, ζζζk) and the
corresponding initial estimate for the control ck for the SQP method and gener-
ate the corresponding ensemble of snapshots from the Navier–Stokes model. With
these snapshots, we find a POD subspace and the corresponding reduced-order model.
This reduced-order model is now used in the SQP algorithm to find the new iterate
(Yk+1, ζζζk+1). This process of updating the reduced-order model is continued in each
of the SQP iterations until convergence is achieved. The approach presented here
bears similarities to the approach presented in [2], wherein using the POD model as
a “surrogate” within the trust region framework is discussed.

For our physical application, we consider control of flow separation/recirculation
in thermal flows. Thermal flow is both challenging and interesting due to the cou-
pling of the fluid flow and the energy transport. It plays an important role in thermal
insulation, cooling of fluids in channels surrounding nuclear reactor core, the circu-
lation of liquid metals in solidifying ingot, and the manufacture of crystals. Also,
thermal convection is often used as a controlling mechanism in many naturally oc-
curring processes. In light of this, several treatments of control problems in thermal
systems can be found in the literature. For instance, [8] studied optimal control of
temperature peaks along the bounding surfaces of containers of fluid flows. In [5], a
feedback control problem in thermal fluid was studied, and in [12] optimal control of
flow separation in channel flow using temperature control was discussed. In [26], an
optimal control problem was solved for the convection-diffusion equations with the
goal of achieving uniform maximum flux to substrate. Our goal here is to apply POD
to an optimal control problem in a backward-facing step channel flow. Backward-
facing step flow serves as a prototype for unsteady separated flow. For high Reynolds
numbers, flow separates near the corner of the step and recirculation appears down-
stream of the step. Such recirculation regions will strongly influence heat and mass
transfer [1]. We will formulate and numerically solve a recirculation control problem
in this configuration with the control action achieved through boundary temperature
on a part of the boundary.

An outline of the POD and the reduced-order model derivation are presented
in section 2. In section 3, we describe the system and governing equations with
relevant boundary conditions; this section also describes the discretization schemes
and solution techniques used to solve these governing equations. Section 4 states
the model control problem and describes the proposed adaptive reduced-order control
approach in the context of solving this model problem. In section 5, we present
computational results showing the effectiveness of the present adaptive approach.
Finally, we conclude the paper in section 6.

2. POD and model reduction. In this section, we outline the POD for model
reduction of a nonlinear uncontrolled dynamical system of the form

ẏ = E(y), y ∈ Rn.(2.1)
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The idea is to replace the given dynamics by an associated dynamics on an M -
dimensional subspace VPOD ⊂ Rn of the state space. This procedure uses two
steps for model reduction: that of finding a low-dimensional subspace and that of
applying Galerkin projection. We begin with an ensemble of data obtained from the
numerical simulation, consisting of samples {Y1, . . . ,YN} of y(t), and try to find an
M -dimensional subspace that best approximates the underlying n-dimensional state
space via a projection.

2.1. The POD procedure. POD provides us a method for achieving this task.
The idea is to find a vector Φ of length n that has a structure typical of the members
of the ensemble data, Yi, i = 1, 2, . . . , N , where Yi = (Yi1, Yi2, . . . , Yin). We can
achieve this by maximizing

max
Φ

E{(YTΦ)(YTΦ)}
ΦTΦ

,(2.2)

where E{·} is a suitably defined averaging operation. It is clear from the properties
of the vector that we can rewrite (2.2) as

max
Φ

(RΦ)TΦ

ΦTΦ
,

where R = E{YYT }. Then the first-order necessary optimality condition for Φ to
provide a maximum in (2.2) is

RΦ = λΦ,(2.3)

which is an eigenvalue problem with n eigenvalues and eigenvectors. Since R is a sym-
metric matrix, we can extract an orthonormal basis Φn for Rn from the eigenvectors.
Thus Φn form a basis for the realizations in our ensemble, i.e.,

Y =

n∑
i=1

(YTΦi)Φi =

n∑
i=1

αiΦi.

Moreover, we have that αi are uncorrelated with one another on average,

E{αiαj} = (RΦi)
TΦj = λiΦ

T
i Φj = λiδij

and

E{YTY} =
n∑
i=1

E{|YΦi|2} =
n∑
i=1

λi,

so that the eigenvalues are the mean-square values of αi, i.e., the information in the
various modes, and the sum of the eigenvalues is the total information.

For practical calculations, the number of grid points n can be rather large leading
to a very large eigenvalue problem. In order to save time in the computation of
eigenfunction, a useful method was proposed in [23], where it was called the method
of snapshots. In the method of snapshots, instead of solving for the eigensystem of
an n× n matrix we need only deal with an N ×N matrix, where N is the number of
ensembles. In order to describe the steps, first assume that the averaging operation
is of the form

E[YYT ] =
1

N

n∑
i=1

YiY
T
i ;
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then (2.3) becomes

1

N

n∑
i=1

YiY
T
i Φ = λΦ.(2.4)

We next assume that the eigenvector Φ can be written in terms of the members of
the ensemble as

Φ =
N∑
i=1

wiY
(i).(2.5)

Substituting (2.4) into (2.3), we have

CW = λW,

where

Cij =
1

N
YT
i Yj and W =




w1

w2

.

.

.

.
wN



.

It follows from the fact that C is a nonnegative Hermitian matrix that it has a com-
plete set of orthogonal eigenvectors W1,W2, . . . ,WN along with a set of eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. We also normalize these by requiring

(Wl,Wl) =

N∑
i=1

wliw
l∗
i =

1

Nλl
.

It is now easy to check

(Φl,Φm) =

{
1, l = m,
0, l 
= m.

This completes the construction of the orthonormal set {Φ1,Φ2, . . . ,ΦN}.
2.1.1. Optimality properties. The optimality properties of POD, including

those discussed in section 2.1.1, are summarized below. These results can be found
in statistical framework terms in [23] and elsewhere.

Proposition 1. Let {Φ1,Φ2, . . . ,ΦN} be the POD basis elements and let
{λ1, . . . , λN} be the corresponding set of eigenvalues. Let yN be the projection of
y onto span{Φ1,Φ2, . . . ,ΦN} and let

yN =

N∑
i=1

βi(t)Φi(x).

Let {Ψi}Ni=1 be an arbitrary orthonormal set such that

yN =

N∑
i=1

αi(t)Ψi.
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Then the following two properties hold:

(i) E{βi(t)βj(t)} = δijλi;

(ii) For every Nk ≤ N,

Nk∑
i=1

E{βi(t)βi(t)} =
Nk∑
i=1

λi ≥
Nk∑
i=1

E{αi(t)αi(t)}.

In essence this proposition states that among all the linear combinations, the one
which corresponds to POD is the best in the sense that it will capture the most infor-
mation possible in the average sense. Moreover, the coefficients βi are uncorrelated,
and thus the claim that the POD expansion is efficient for modeling y(x, t). Moreover,
the accumulated error of this optimal truncated representation is given by

ε =

N∑
i=1

∥∥∥∥∥∥y
i −

M∑
j=1

(yi,Φj)Φj

∥∥∥∥∥∥
2

=

N∑
i=1

∥∥∥∥∥∥
N∑

j=M+1

(yi,Φj)Φj

∥∥∥∥∥∥
2

,

where yi =
∑N
j=1(u

i,Φj)Φj , i = 1, . . . , N, and can be computed using singular value
analysis; see [4, 23].

Since the eigenvalues can be used to find how close the M -dimensional subspace
approximant is to the data set, one can seek M such that the fraction of the total
energy

M∑
i=1

λi

/
N∑
i=1

λi

is close to one and yet M 
 N . Then the POD reduced basis subspace is defined as
VPOD = span{Φ1,Φ2, . . . ,ΦM}.

2.2. The Galerkin projection and the reduced-order model. Given a
collection of N snapshots Yk, k = 1, . . . , N , as possible states of the system (2.1), we
define the modified snapshots set

yk = Yk −Y, k = 1, . . . , N,

by subtracting the mean Y = 1
N

∑N
k=1 Yk and apply POD to this set to find a

reduced-order subspace VPOD = span{Φ1,Φ2, . . . ,ΦM}.
In the Galerkin projection, we write y(t) as

y(t) = P ∗ααα(t) + r(t),

where ααα(t) ∈ RM and P is a suitable projection. Inserting this expression into (2.1),
we get

P ∗α̇αα(t) + ṙ(t) = E(P ∗ααα(t) + r(t)).

The Galerkin method then enforces the residual to be orthogonal to theM -dimensional
subspace such that Pr(t) = 0. This leads to

α̇αα(t) = PE(P ∗ααα(t) + r(t)).

If we now choose the projection P such that r(t) is small in some sense, then the
reduced-order model is given by

α̇αα(t) = PE(P ∗ααα(t)).
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3. The thermal channel flow system. In this section, we describe the thermal
system and the governing equations with relevant boundary conditions. We also
describe the discretization schemes and solution techniques to solve these equations.

3.1. The governing equations. The class of thermally convective flow we con-
sider is modeled by a thermally coupled Navier–Stokes equations that uses Boussi-
nesq approximations based on certain assumptions about the thermodynamics and
the thermal effects on the flow. The first one is that variations in density are negli-
gible except for the body force term ρg in the momentum equations, where ρ is the
density and the vector g is the constant acceleration of gravity. We next assume that
the density ρ in the term ρg can be given by ρ = ρ0[1 − β(T − T0)], where T0 and
ρ0 are reference temperature and density, respectively, T is the absolute temperature,
and β is the thermal expansion coefficient. Furthermore, we assume that in the en-
ergy equation, the dissipation of mechanical energy is negligible and the viscosity µ,
the heat conductivity κ, the thermal expansion coefficient β, and the specific heat at
constant pressure cp are constant. Then under these assumptions the flow is governed
by the equations

ut − µ∆u+ ρ0(u · ∇)u+ grad p = gρ0[1− β(T − T0)] ,

Tt − κ∆T + ρ0cpu · ∇T = 0 ,

∇ · u = 0

in the domain Ω × [0, T ], where Ω is a bounded open set and the heat source is
assumed to be zero. If we assume there is a length scale �, a velocity scale Vmax, and
a temperature scale T1 − T0 in the flow, then one can define nondimensional Prandtl
number Pr = µcp/κ, Grashof number Gr = β�3ρ2

0|g|(T1 − T0)/µ
2, and Reynolds

number Re = ρ0Vmax�/µ. Next, if we nondimensionalize according to x ← x/�,
u← u/Vmax, T ← (T − T0)/(T1 − T0), and p← (p− g · x)/(ρ0Vmax

2), we obtain the
following nondimensional form of Boussinesq equations (uncontrolled system (Su)):

ut − 1

Re
∆u+ (u · ∇)u+ grad p+

Gr

Re2
Tg = 0 ,

Tt − 1

RePr
∆T + u · ∇T = 0 ,

∇ · u = 0

(3.1)

in the domain Ω× [0, T ], where g is now a unit vector in the direction of gravitational
acceleration.

For all of our numerical simulations in this article, we choose the two-dimensional
flow in a backward-facing step channel as our flow setting. A schematic of the ge-
ometry is given in Figure 1. The height of the inflow boundary is 0.5 and that
of the outflow boundary is 1. The length of the narrower section of the chan-
nel is 1 and that of the wider section of the channel is 7 (the total horizontal
length is 8). At the inflow boundary a parabolic velocity profile is prescribed, i.e.,
u(x = 0, 1/2 ≤ y ≤ 1) = 8(y − 1/2)(1 − y), v(x = 0, 1/2 ≤ y ≤ 1) = 0 (the
coordinate system is chosen such that y = 1 on the top boundary), which produces
a maximum inflow velocity of umax = 1/2. On the solid walls the no-slip condition
(u = 0) is imposed. The pseudo stress-free condition,

−p+ 1

Re

∂u

∂x
= 0 and

∂v

∂x
= 0,
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Fig. 1. Computational domain for the backward-facing step channel problem.

at the outflow boundary is not “physical” but is used to represent the flow in an
unbounded region; see [22]. The boundary condition for the temperature is taken
to be T = 2 except at the outflow boundary where we assume ∂T

∂n = 0. We define

the Reynolds number as Re = Vmax·H
ν , where Vmax= maximum inlet velocity, H =

channel height, ν= kinematic viscosity of the fluid. Throughout this simulation we
choose Vmax = 1

2 and H = 1 with a corresponding Re = 1
2ν .

3.2. Discretizations and solution techniques of the governing equations.
In this section, we introduce discretizations and solution techniques of the governing
equations. For spatial discretization, we use a mixed finite element method, and
for the time discretization we use the strongly A-stable backward Euler method. In
setting up the finite element model of the governing equations, one starts with a weak
form. We define the weak form as

(ut + u · ∇u,v) + 1

Re
(∇u,∇v)− (p,∇ · v) + Gr

Re2
(Tg,v) = 0 ,

(Tt + u · ∇T, ψ) + 1

RePr
(∇T,∇ψ) = 0 ,

(∇ · u, q) = 0 , u(0) = u0 , T (0) = T0

(3.2)

for all test functions (v, q, ψ) ∈ V × L2(Ω)× V1, where

V = {v ∈ H1(Ω) : v|Γ\Γout
= 0},

V1 = {ψ ∈ H1(Ω) : ψ|Γ\Γout
= 0},

and (·, ·) denotes the L2(Ω) or L2(Ω) inner product. The state variables (u, p, T ) for
the problem are taken to be

u ∈ L2(0, T ;H1(Ω)), u|Γin
= uin, and u|Γ\Γout\Γin

= 0,

T ∈ L2(0, T ;H1(Ω)), T |Γ\Γout
= Tb, and Tb ∈ L2(0, T ;H1/2(Γ \ Γout)),

p ∈ L2(Ω), u0, T0 ∈ L2(Ω), and uin ∈ L2(0, T ;H1/2(Γin)).

On the finite mesh covering the domain with local element width h, one defines
polynomial trial functions for velocity and pressure. Let Kh be a standard finite
element triangulation of Ω, where h is the maximal length of all the triangulation
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edges in Kh. Let Pk to be the space of all polynomials of degree less than or equal to
k and let

Vh = {vh| vh ∈ C0(Ω̄)× C0(Ω̄), vh|K ∈ P2 × P2 ∀K ∈ Kh},

V h = {vh| vh ∈ C0(Ω̄), vh|K ∈ P2 ∀K ∈ Kh},

Ph = {qh| qh ∈ C0(Ω̄), qh|K ∈ P1 ∀K ∈ Kh}.
These spaces Vh and Ph should lead to numerically stable approximations as h →
0, i.e., they should satisfy the Babuska–Brezzi condition with a mesh-independent
constant γ (see [6]),

min
ph∈Ph

max
vh∈Vh

(ph,∇ · vh)
‖vh‖1 ‖ph‖0 ≥ γ ≥ 0 .

Many stable pairs are available in the literature. Our choice is the triangular element,
which uses piecewise quadratic polynomial shape functions for the velocities and a
piecewise linear polynomial for the pressure. The temperature is also defined using
piecewise quadratic polynomial shape functions defined on the same triangle. A tri-
angular grid is generated as follows. The domain is first divided into squares, and
then each square is subdivided into two triangles by cutting from bottom right to top
left. The velocity, temperature, and pressure are defined on the same triangulation,
and on each triangle the degrees of freedom for quadratic elements are the function
values at the vertices and midpoints of each edge; the degrees of freedom for linear
elements are the function values at the vertices.

We now restrict the weak form (3.2) to Vh×Vh×Ph to obtain the finite element
model: Seek (uh, ph, Th) such that uh|Γin = uin, uh|Γ\Γout\Γin = 0, Th|Γ\Γout = 0,
and (

∂uh
∂t

+ uh · ∇uh + Gr

Re2
Thg,vh

)
+

1

Re
(∇uh,∇vh)− (ph,∇ · vh) = 0 ,

(
∂Th
∂t

+ uh · ∇Th, ψh
)
+

1

RePr
(∇Th,∇ψh) = 0 ,

(∇ · uh, qh) = 0 , u0
h = u0, T 0

h = T0

(3.3)

for all (vh, Th, qh) ∈ Vh×V h×Ph. In matrix notation, with U, T , and P denoting
the nodal values of the velocity, temperature, and pressure, respectively, the system
(3.3) is equivalent to

MU̇+AU+N(U)U+BTP+DT = 0,

NṪ + E(U)T + FT = 0,

BU = 0 .

(3.4)

We discretize the time derivative in (3.4) by a one-step θ-scheme, namely, the A-stable
backward Euler method with θ = 1/2.

Given Un = U(n∆t), Tn = T (n∆t), and the time step ∆t = tn+1 − tn, solve for
Un+1, Tn+1, and Pn+1 from

[M +∆t θ(A+N(Un+1)]Un+1 +∆t BTPn+1 +∆t θDTn+1 = fn ,

[N +∆t θ(F + E(Un+1)]Tn+1 = hn ,

BUn+1 = 0 ,

(3.5)
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Fig. 2. Baseline/uncontrolled flow; vector fields of velocity at t = 100.

with the right-hand sides

fn = [M +∆t(θ − 1)(A+N(Un))]Un +∆t(θ − 1)Tn ,

hn = [N +∆t(θ − 1)(F + E(Un))]Tn.

In each time step we have to solve a nonlinear algebraic system. Our approach to
solving this discrete nonlinear problem is to linearize the convective term by a constant
extrapolation in time; for example, we approximate N(Un+1)Un+1 by N(Un)Un+1.
For the solution of the discrete linear problem, we use banded Gaussian elimination
with pivoting.

The computational grid was nonuniform in both the streamwise and cross-flow
coordinate directions. A fine grid was used in regions where sharp variations in
velocities were expected. All the computations were done with a 45 × 45 grid and a
time step size ∆t = 1/200 for the Reynolds number 200, the Prandtl number 0.72,
and the Grashof number Gr = 40,000. The flow separates at the corner of the step
and a recirculation forms. After the reattachment of the lower wall eddy, the flow
slowly recovers toward a fully developed Poiseuille flow. The resulting steady flow
field is given in Figure 2.

To verify the grid independence of the solution, the same problem was solved
halving the grid size, i.e., using a 90 × 90 grid and a time step size ∆t′ = 1/400.
The results from both grids agreed well and predicted the reattachment point on
the downstream lower wall. Typical computations require about 180 CPU seconds
per time step on a Sun Ultra 60, while the time integration goes for 2000 time
steps.

4. Reduced-order adaptive optimal control approach.

4.1. The control problem for the channel. Minimization of the vorticity
level in a flow domain is of interest in control/delay of transition of flow past bluff
bodies. Thus in this section we formulate a related optimal control problem in chan-
nel flow. The flow configuration considered is a backward-facing step channel. As the
Reynolds number is increased, the flow separates near the corner of the step. The
objective of the optimal control is to reduce the size of the recirculation and hence of
the length of reattachment. The control action is affected through boundary temper-
ature on Γc. In terms of the boundary condition, it takes the following form along
the boundary Γc:

T = c(t) on Γc × [0, T ],
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where c(t) : [0, T ]→ R. The controlled system (Sc) we consider is

ut − 1

Re
∆u+ u · ∇u+∇p+ Gr

Re2
Tg = 0 ,

Tt − 1

RePr
∆T + u · ∇T = 0 ,

∇ · u = 0, u(x, 0) = u0(x), T (0) = T0

(4.1)

in the domain Ω× [0, T ] and the boundary conditions

Γin : u = (8(0.5− y)(1− y), 0); T = 2;

Γout : −p+ 1

Re

∂u

∂x
= 0 and

∂v

∂x
= 0;

∂T

∂n
= 0;

Γtop : u = (0, 0); T = 2;

Γc = Γs ∪ Γbottom : u = (0, 0); T = c(t).

The choice of cost functional or objective functional to meet the control objective of
reducing the recirculation is not trivial. Here we will consider a functional of the form

G(u) =
∫

Ω

|∇ × u|2 dx

which corresponds to minimization of vorticity levels in the flow. The optimal con-
trol problem is defined as follows: find c(t) such that the cost functional J (u, U) =
1
2

∫ T
0

[G(u) + β|U |2] dt is minimized subject to the constraints that the flow fields sat-
isfy the controlled system (Sc).

Note here that by including a term involving U one minimizes the rate of change of
controlling temperature. The parameter β > 0 adjusts the relative weight of the two
terms in the functional. Solutions of this optimal control problem require numerical
approximation. For a typical control problem in flow control, approximations are large
scale, involving hundreds of thousands of variables; see, for example, [12, 9, 10, 7, 25].
Below we discuss reduced-order controller design using POD.

4.2. Construction of POD basis functions. When designing optimal control
without POD-based reduced-order models, one needs to solve the full Navier–Stokes
model and its adjoint equations during each iteration of the optimization algorithm.
Here we present an approach that requires the solution of the full Navier–Stokes
model only when we need to update the model; thus the optimization process is much
faster, resulting in substantial savings in computational work. In order to construct a
reduced-order model, one needs an ensemble. As explained earlier, we use snapshots
in time of the flow fields. As described in [21, 20], it is necessary to remove the
inhomogeneities on the boundary. A convenient way to do this is to introduce a
reference flow field (ur, pr, Tr). Let (ur1 , pr1 , Tr1) be a flow field satisfying the steady
state Navier–Stokes model

− 1

Re
∆u+ u · ∇u+∇p+ Gr

Re2
Tg = 0,

− 1

RePr
∆T + u · ∇T = 0 ,

∇ · u = 0

(4.2)
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in the domain Ω and the boundary conditions

Γin : u = (8(0.5− y)(1− y), 0); T = 2;

Γout : −p+ 1

Re

∂u

∂x
= 0 and

∂v

∂x
= 0;

∂T

∂n
= 0;

Γtop : u = (0, 0); T = 2;

Γc = Γs ∪ Γbottom : u = (0, 0); T = cr,

where cr(= 1) is a constant temperature field imposed on the control boundary Γc,
and let (ur0 , pr0 , Tr0) be another set of flow field satisfying the above steady state
Navier–Stokes model with the boundary value cr = 0 on the control boundary Γc.
We next set (ur, pr, Tr) = (ur1 , pr1 , Tr1)− (ur0 , pr0 , Tr0). Then each flow field in the
modified snapshot set

{
(u(x, tk), p(x, tk), T (x, tk))− c(tk)

cr
(ur(x), pr(x), Tr(x))

}
, k = 1, . . . , N,

satisfies homogeneous boundary conditions on Γc. Finally, we let (um, pm, Tm) be the
mean flow field of these modified fields and define a new snapshot set

{
(u(x, tk), p(x, tk), T (x, tk))− c(tk)

cr
(ur, pr, Tr)− (um, pm, Tm)

}
, k = 1, . . . , N,

which satisfies homogeneous boundary conditions on all boundaries. To these N
snapshots satisfying homogeneous boundary conditions, we apply the POD to obtain
basis functions in descending order according to the information content of the system.

4.3. The reduced-order model. We employ the Galerkin projection on the
Navier–Stokes model with the above POD basis functions to derive the reduced-order
model, which will later be used in the optimization algorithm to solve the optimal
control problem described earlier. The flow field is decomposed as follows:

(u, p, T ) = (um, pm, Tm) +
c(t)

cr
(ur, pr, Tr) +

M∑
i=1

αi(t)Φi,(4.3)

where Φi is the ith POD basis function, αi(t) is the corresponding coefficient, and M
is the total number of POD basis functions used in the Galerkin projection. Using
the Galerkin projection, we get

∫
Ω

R ·ΦidΩ = 0, i = 1, . . . ,M,(4.4)

where R = (R1, R2, R3) and

R1 = ut − 1

Re
∆u+ u · ∇u+∇p+ Gr

Re2
Tg,

R2 = Tt − 1

RePr
∆T + u · ∇T,

R3 = ∇ · u.
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As described in [21, 20] for a similar problem, when the expansion (4.3) is inserted
into (4.4) and in the cost functional J , we get the reduced-order control problem

Minimize J (X, U) =

∫ T

0

[
�(X) +

β

2
U2

]
dt

subject to Ẋ = f(X) +BU ,

X(0) = X0,

(4.5)

where X = (1, ααα, c)T , f(X) = −AX−N(X), �(X) = 1
2 X

TQX, Qi,j = (∇×Φi,∇×
Φj), i, j = 0, . . . ,M + 1, and U is the rate of change of the control c(t).

Although it is not essential for the adaptive control procedure to be described
later, we discretize the problem (4.5) by using the Crank–Nicholson for the time
derivative and trapezoidal rule for the time integral and rewrite it as

Minimize J (Y)

subject to F (Y) = 0 ,
(4.6)

where Y = (X, U),

J (Y) =
N∑
k=1

[
1

2
(�(Xk−1) + �(Xk)) + h(Uk)

]
∆t,

F (Y) =




X1 −X0

∆t
− 1

2
(f(X1) + f(X0)) +BU1

...

...

...
XN −XN−1

∆t
− 1

2
(f(XN ) + f(XN−1)) +BUN



,

and ∆t = T/N . The optimal control problem (4.6) is a constrained optimization
problem. An efficient method for solving optimization problems is the SQP method,
which can be viewed as an application of Newton’s method to the first order necessary
conditions of optimality in the present case. The SQP method is preferred over
the unconstrained optimization methods due to its superior convergence properties,
among others. Its application to solve optimal control of Navier–Stokes flow has been
demonstrated in [9, 10] and [19]. In [21, 11], we applied it to solve a reduced-order
optimal control problem in Navier–Stokes flow. Here we present an adaptive procedure
where one successively updates the state information within the SQP framework.

In SQP methods, a sequence of iterates is generated by solving a quadratic pro-
gramming (QP) subproblem, converging to a solution of the constrained nonlinear
optimization problem. Each QP subproblem minimizes a quadratic model of the
form

(4.7)

Minimize 1
2 (∇Y Y L(Yk, ζζζk)(Y −Yk),Y −Yk) + (∇Y L(Yk, ζζζk),Y −Yk)

subject to FY (Yk)(Y −Yk) + F (Yk) = 0 ,
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where L(Y, ζζζ) = J (Y) + (F (Y), ζζζ) is the Lagrangian function. Once the QP solu-

tion (Ŷk, ζ̂ζζk) has been determined, the major iteration proceeds by determining new
variables

Yk+1 = Yk + ηk(Ŷk −Yk),

ζζζk+1 = ζζζk + ηk(ζ̂ζζk − ζζζk) .
(4.8)

One of the properties of the SQP method is that the SQP iterations do not usually
satisfy the nonlinear constraints except as the solution is approached.

In our application the constraint F (Y) = 0 is provided by the reduced-order
model obtained through the POD procedure. Therefore the reduced-order model
must predict the system behavior accurately for various trajectories of the boundary
temperature c(t) that include not only the optimal trajectory but also other trajecto-
ries appearing during the optimization iterations. In order to meet this requirement
we propose an adaptive procedure in the next section.

4.4. Reduced-order adaptive control. Choosing the ensemble of data that
represent the system behavior for various trajectories during the iterative optimization
procedure is critical in POD-based control design. To meet this requirement, we
propose an adaptive procedure that successively updates the reduced-order model
to be used in the sequential QP optimization algorithm described earlier. We begin
with an initial estimate (Yk, ζζζk) and the corresponding initial estimate for the control
ck for the SQP method and generate the corresponding ensemble of snapshots from
the Navier–Stokes model. With these snapshots, we find a POD subspace and the
corresponding reduced-order model. This reduced-order model is now used in the
SQP algorithm to find the new iterate (Yk+1, ζζζk+1). This process of updating the
reduced-order model is continued in each of the SQP iterations until convergence is
achieved. The computation using the adaptive reduced-order procedure takes the
following form.

Algorithm I. Reduced-order adaptive procedure.
Select the tolerance ε > 0 and perform the following steps:

Step 1. Set k = 1, (Yk−1, ζζζk−1) = (Y0, ζζζ0), and initial control estimate ck−1 = c0.
Step 2. Compute the snapshots and derive the reduced-order model for the control

variable ck−1.
Step 3. Update the constraint and cost functional in the QP subproblem and solve

for (Ŷk−1, ζ̂ζζk−1).
Step 4. Determine the new variables (Yk−1, ζζζk−1) and the control variable ck.
Step 5. If

∣∣ck − ck−1

∣∣ > ε, add 1 to k and go to Step 2.
Step 6. The procedure is completed.

In the next section, we show the effectiveness and feasibility of this algorithm in
the present application.

5. Computational results. For numerical computations here, the flow con-
figuration and all the parameters are the same as in the uncontrolled simulations
presented in section 3, except that the control action is in the form of temperature on
the boundary Γc = Γs ∪ Γbottom. The control objective is to reduce the recirculation
behind the step and thus the reattachment length. The cost functional is taken to be
the vorticity functional defined earlier.

We present numerical results for the adaptive POD approach in solving the op-
timal control problem at Re = 200. The snapshots for Algorithm I were updated
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Fig. 3. Controlled flow; vector fields of velocity at t = 100.

in every iteration by applying the computed optimal control c(t) on Γc and simulat-
ing the system (Sc) in the interval [0,T ] with T = 100. A hundred snapshots were
recorded at constant time intervals ∆t∗ (∆t∗ = 20∆t) for each iteration, and the
POD was used to compute the dominant modes. The eigenvalues of the correlation
matrix decayed rapidly, and we found only 9 modes were enough to capture 99% of
the information content. Initially state and control were given a prescribed value and
the optimal control problem was solved using the algorithm described in section 4.
All computations were performed on a Sun Ultra 60 machine.

The adaptive algorithm terminates after about 5 iterations with significant re-
duction in the cost functional. In implementing Algorithm I, we carried out Step 2
in two different ways. In one implementation, we expanded the ensemble by adding
new snapshots in each iteration. This implementation required more and more POD
modes in each iteration to capture 99% of the information in the snapshots and thus
increased the computational cost. However, the second implementation, which in-
volved replacing the old snapshots with the new in step 2 of Algorithm I, required
only 9 modes throughout the iterations and captured the required percentage of the
information in the ensemble.

We carried out several simulations to study the performance of the controller.
Here we present only a sample of the results. The controlled flow fields with 9,
12, and 14 modes showed similar results, and hence only results with 9 modes are
presented. The flow fields presented in Figure 4 are u and v components of the flow
field u at different stations in the channel for the controlled and uncontrolled cases
with 9 POD modes. Figure 4 illustrates the suppression of flow reversal present in
the uncontrolled flow. We plot the horizontal and vertical components of the baseline
and controlled velocities versus the distance normal to the wall. The top two curves
are for the baseline and controlled horizontal component of the velocity. We see that
the optimal control has affected a very substantial reduction in the back-flow. The
bottom two curves in the figures are analogous to the top curves but for the vertical
component of velocity. The flow fields presented in Figures 2 and 3 are the vector fields
of the baseline and controlled velocities. As indicated by the controlled flow fields,
separation has been effectively eliminated by the optimal temperature. Substantial
reduction in the recirculation bubble is also seen. The reattachment length has been
reduced by more than 99% compared to the uncontrolled case.

Figures 5–10 show controls that were obtained in successive adaptive iterations in
Algorithm I. These figures show convergence of the adaptive strategy. It is a plot of
the temperature on the lower wall of the channel versus time. Note that convergence
is achieved after about 6 iterations.

The penalty parameter β plays a critical role in the controller design. For β ≤ 1
control oscillates at the beginning and the end of the time interval. The amplitude of
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Fig. 4. A comparison of cross-channel profiles of horizontal and vertical velocity components
of the baseline flow with that of the controlled flow.
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Fig. 5. Optimal control (POD) at iteration 1 as a function of nondimensional time for different
values of beta: β = 10 (dashed line), β = 1 (line), β = 20 (dotted line), β = 0.2 (dash-dot line).
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Fig. 6. Optimal control (POD) at iteration 2 as a function of nondimensional time.
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Fig. 7. Optimal control (POD) at iteration 3 as a function of nondimensional time.

the oscillation increases as more weight is placed on achieving the vorticity reduction
by decreasing the parameter value β in the cost functional J . In other words, oscilla-
tions increase as the rate of change of control U is increased; see Figure 5. Whereas for
β > 20 control undershoots. With the value β = 10, a smooth control was obtained.
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Fig. 8. Optimal control (POD) at iteration 4 as a function of nondimensional time.
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Fig. 9. Optimal control (POD) at iteration 5 as a function of nondimensional time.
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Fig. 10. Optimal control (POD) at iteration 6 as a function of nondimensional time.

In general, the computational cost for solving the optimal control problem is
essentially determined by the length of the time interval and the convergence rate of
the optimization process. However, one can easily see that the CPU time requirement
for the reduced-order control computation is much less than that for the case of full-
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order control computation as the number of degrees of freedom is about 1/746 of the
latter. In the control computation using the Sun Ultra 60 workstation, one iteration
of the reduced-order SQP requires 3 minutes. The number of iterations needed to
reach the converged optimal control is 6. During each of these iterations, a reduced-
order dynamical model has to be constructed by solving the Navier–Stokes model with
different control updates to generate the snapshots. This step requires 72 hours. The
remaining steps in the POD take about 3 minutes. The total CPU time requirement
for the adaptive reduced-order control computation is about 73 hours. This is a
substantial savings in computation time since the control computation with full-order
Navier–Stokes model using SQP method would take 480 CPU hours and 18 iterations
to converge. This savings in computational time is mainly due to the fact that the
adjoint equation of the Navier–Stokes model, which is computationally as costly as
the Navier–Stokes equation itself, is computed using the reduced-order model in the
adaptive reduced-order control computation. The reduction in computation time
with the use of reduced-order model instead of full-order Navier–Stokes model will be
much more significant in the three-dimensional case as the difference in the degrees of
freedom between reduced-order model and the original full-order Navier–Stokes model
will become much larger.

The location of the actuator (temperature control) was selected as the bottom
wall and the vertical part of the step. This choice is motivated by the fact that if
one wants maximum influence in the flow, then the control has to be applied in that
vicinity. However, the optimal control can be very different depending on the location.
This was evident in our computational experiments. In one experiment we used inflow
temperature as control and the optimal control was heating, and in another we placed
control at the top wall and the optimal control was again heating.

6. Conclusion. The optimal control techniques for flow control problems are
complex and very computationally demanding. The POD method provides a sys-
tematic way to obtain reduced-order models and allows one to design controllers at
drastically reduced computational cost. However, it is not clear, a priori, what is the
best way to obtain an ensemble of data for POD that would lead to POD basis func-
tions that represent the influence of the control during the optimization algorithm.
Therefore the reduced-order model should be improved to represent such influences.
We presented an adaptive procedure that successively updates the ensemble and the
reduced-order model during the iterative optimization process using SQP. The present
approach was illustrated by implementing it on the boundary optimal control prob-
lems of a thermally coupled Navier–Stokes model. Numerical experiments indicate the
effectiveness of this approach. Compared to the full order optimal control approach,
the reduced-order approach is computationally less costly and yet gives competitive
controls. From the results presented above, we conclude that reduced-order adap-
tive control is feasible and provides an efficient method for solving problems of flow
control, which is practical enough to be implemented in industrial processes.
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Abstract. This article is concerned with the integration of the time-dependent Ginzburg–
Landau (TDGL) equations of superconductivity. Four algorithms, ranging from fully explicit to
nonlinearly implicit, are presented and evaluated for stability, accuracy, and compute time. The
benchmark problem for the evaluation is the equilibration of a vortex configuration in a supercon-
ductor that is embedded in a thin insulator and subject to an applied magnetic field.
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1. Introduction. At the macroscopic level, the state of a superconductor can
be described in terms of a complex-valued order parameter and a real vector potential.
These variables, which determine the superconducting and electromagnetic properties
of the system at equilibrium, are found as solutions of the Ginzburg–Landau (GL)
equations of superconductivity. Because they correspond to critical points of the GL
energy functional [1, 2], they can, at least in principle, be determined by minimizing
a functional. In practice, one introduces a time-like variable and computes equilib-
rium states by integrating the time-dependent Ginzburg–Landau (TDGL) equations.
The TDGL equations, first formulated by Schmid [3] and subsequently derived from
microscopic principles by Gor’kov and Éliashberg [4], are nontrivial generalizations of
the (time-independent) GL equations, as the time rate of change must be introduced
in such a manner that gauge invariance is preserved at all times. The TDGL equa-
tions have been analyzed by several authors; see, for example, the articles [5, 6] and
the references cited therein.

We are interested, in particular, in vortex solutions of the GL equations. These
are singular solutions, where the phase of the order parameter changes by 2π along
any closed contour surrounding a vortex point. Vortices are of critical importance in
technological applications of superconductivity.

Computing vortex solutions of the GL equations by integrating the TDGL equa-
tions to equilibrium has the advantage that the solutions thus found are stable. At
the same time, one obtains information about the transient behavior of the system.
Integrating the TDGL equations to equilibrium is, however, a time-consuming pro-
cess requiring considerable computing resources. In simulations of vortex dynamics
in superconductors, which were performed on an IBM SP with tens of processors
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in parallel, using a simple one-step Euler integration procedure, we routinely expe-
rienced equilibration times on the order of 100 hours [7, 8, 9]. Incremental changes
would gradually drive the system to lower energy levels. These very long equilibration
times arise, of course, because we are dealing with large physical systems undergoing a
phase transition. The energy landscape for such systems is a broad, gently undulating
plain with many shallow local minima. It is therefore important to develop efficient
integration techniques that remain stable and accurate as the time step increases.

In this article we present four integration techniques for problems on rectangu-
lar domains in two dimensions. These two-dimensional domains should be viewed as
cross sections of three-dimensional systems that are infinite and homogeneous in the
direction of the magnetic field, which is orthogonal to the plane of the cross section.
The algorithms are scalable in a multiprocessing environment and generalize to three
dimensions. We evaluate the performance of each algorithm on the same benchmark
problem, namely, the equilibration of a vortex configuration in a system consisting of
a superconducting core embedded in a blanket of insulating material (air) and under-
going a transition from the Meissner state to the vortex state under the influence of
an externally applied magnetic field. We determine the maximum allowable time step
for stability, the number of time steps needed to reach the equilibrium configuration,
and the CPU cost per time step.

The benchmark problem keeps the focus of the present article on the numerical
issues. The problem is standard, and the equilibrium vortex configuration is certainly
well known in the physics community. The capabilities of the methods extend well
beyond the benchmark problem, and the methods have been used successfully to solve
more challenging problems; we refer to [9] for an extensive report on several large-scale
numerical simulations of vortex dynamics in superconducting media with ordered and
disordered defects.

Different algorithms correspond to different dynamics through state space, so the
eventual equilibrium vortex configuration may differ from one algorithm to another.
Hence, once we have the equilibrium configurations, we need some measure to assess
their accuracy. For this purpose we use three parameters: the number of vortices,
the mean intervortex distance (bond length), and the mean bond angle taken over
nearest-neighbor pairs of bonds. When each of these parameters differs less than a
specified tolerance, we say that the corresponding vortex configurations are the same.

Our investigations show that one can increase the time step by almost two orders
of magnitude, without losing stability, by going from the fully explicit to a nonlinearly
implicit algorithm. The nonlinearly implicit algorithm has a higher cost per time
step, but the wall clock time needed to compute the equilibrium solution (the most
important measure for practical purposes) is still significantly less. The wall clock
time can be reduced further by using a multitimestepping procedure.

In section 2, we present the GL model of superconductivity, first in its formulation
as a system of partial differential equations, then as a system of ordinary differential
equations after the spatial derivatives have been approximated by finite differences.
In section 3, we give four algorithms to integrate the system of ordinary differential
equations: an explicit, a semi-implicit, a linearly implicit, and a nonlinearly implicit
algorithm. In section 4, we present and evaluate the results of the investigation. In
section 5, we further evaluate the nonlinearly implicit algorithm from the point of view
of parallelism and multitimestepping. The conclusions are summarized in section 6.

2. GL model. The TDGL equations of superconductivity [2, 3, 4] are two cou-
pled partial differential equations for the complex-valued order parameter ψ = |ψ|eiφ
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The real scalar-valued electric potential Φ is a diagnostic variable. The constants in
the equations are h̄, Planck’s constant divided by 2π; a and b, two positive constants;
c, the speed of light; ms and es, the effective mass and charge, respectively, of the
superconducting charge carriers (Cooper pairs); ν, the electrical conductivity; and
D, the diffusion coefficient. As usual, i is the imaginary unit, and ∗ denotes complex
conjugation.

The quantity |ψ|2 represents the local density of Cooper pairs. The local time
rate of change ∂tA of A determines the electric field, E = (1/c)∂tA +∇Φ, while its
spatial variation determines the (induced) magnetic field, B = ∇×A.

The TDGL equations describe the gradient flow for the GL energy functional.
This functional is zero in the normal state, when ψ = 0 and the externally applied
magnetic field penetrates the superconductor everywhere, ∇×A = H. In the super-
conducting state, it is given by the expression
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The three terms represent the kinetic energy, the condensation energy, and the field
energy, respectively. A thermodynamic equilibrium configuration corresponds to a
critical point of E.

The energy functional (2.4) assumes that there are no defects in the supercon-
ductor. Material defects can be naturally present or artificially induced and can be
in the form of point, planar, or columnar defects (quenched disorder). A material
defect results in a local reduction of the depth of the well of the condensation energy.
A simple way to include material defects in the GL model is by assuming that the
parameter a depends on position and has a smaller value wherever a defect is present;
see [9].

2.1. Dimensionless form. Let ψ2
∞ = a/b, and let λ, ξ, and Hc denote the

London penetration depth, the coherence length, and the thermodynamic critical
field, respectively:
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, Hc = (4πaψ2
∞)

1/2.(2.5)

In this study, we render the TDGL equations dimensionless by measuring lengths in
units of ξ, time in units of the relaxation time ξ2/D, fields in units of Hc

√
2, and

energy densities in units of (1/4π)H2
c . The nondimensional TDGL equations are

(
∂

∂t
+ iΦ

)
ψ =

(
∇− i

κ
A

)2

ψ + τψ − |ψ|2ψ,(2.6)
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σ

(
∂A

∂t
+ κ∇Φ

)
= −∇×∇×A+ Js,(2.7)

where

Js =
1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− 1

κ2
|ψ|2A =

1

κ
|ψ|2

(
∇φ− 1

κ
A

)
.(2.8)

Here, κ = λ/ξ is the GL parameter and σ is a dimensionless resistivity, σ = (4πD/c2)ν.
The coefficient τ has been inserted to account for defects; τ(x) < 1 if x is in a defective
region; otherwise τ(x) = 1. The nondimensional TDGL equations are associated with
the dimensionless energy functional

E =

∫ [∣∣∣∣
(
∇− i

κ
A

)
ψ

∣∣∣∣
2

+
(−τ |ψ|2 + 1

2 |ψ|4
)
+ |∇ ×A−H|2

]
dx.(2.9)

2.2. Gauge choice. The (nondimensional) TDGL equations are invariant under
a gauge transformation,

Gχ : (ψ,A,Φ) �→ (ψeiχ,A+ κ∇χ,Φ− ∂tχ).(2.10)

Here, χ can be any real scalar-valued function of position and time. We maintain the
zero-electric potential gauge, Φ = 0, at all times, using the link variable U,

U = exp

(
− i

κ

∫
A

)
.(2.11)

This definition is componentwise: Ux = exp(−iκ−1
∫ x

Ax(x
′, y, z) dx′), . . . . The

gauged TDGL equations can now be written in the form

∂ψ

∂t
=

∑
µ=x,y,z

U∗
µ

∂2

∂µ2
(Uµψ) + τψ − |ψ|2ψ,(2.12)

σ
∂A

∂t
= −∇×∇×A+ Js,(2.13)

where

Js,µ =
1

κ
Im

[
(Uµψ)

∗ ∂

∂µ
(Uµψ)

]
, µ = x, y, z.(2.14)

2.3. Two-dimensional problems. From here on we restrict the discussion to
problems on a two-dimensional rectangular domain (coordinates x and y), assuming
boundedness in the x direction and periodicity in the y direction. The domain rep-
resents a superconducting core surrounded by a blanket of insulating material (air)
or a normal metal. The order parameter vanishes outside the superconductor, and
no superconducting charge carriers leave the superconductor. The whole system is
driven by a time-independent externally applied magnetic field H that is parallel to
the z axis, H = (0, 0, H). The vector potential and the supercurrent have two nonzero
components, A = (Ax, Ay, 0) and Js = (Jx, Jy, 0), while the magnetic field has only
one nonzero component, B = (0, 0, B), where B = ∂xAy − ∂yAx.
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2.4. Spatial discretization. The physical configuration to be modeled (super-
conductor embedded in blanket material) is periodic in y and bounded in x. In the
x direction, we distinguish three subdomains: an interior subdomain occupied by the
superconducting material and two subdomains, one on either side, occupied by the
blanket material. We take the two blanket layers to be equally thick but do not assume
that the problem is symmetric around the midplane. (Possible sources of asymmetry
are material defects in the system, surface currents, and different field strengths on
the two outer surfaces.)

We impose a regular grid with mesh widths hx and hy,

Ωi,j = (xi, xi+1)× (yj , yj+1), xi = x0 + ihx, yj = y0 + jhy,(2.15)

assuming the following correspondences:

Left outer surface: x = x0 +
1
2hx, i = 0,

Left interface: x = xnsx−1 +
1
2hx, i = nsx − 1,

Right interface: x = xnex +
1
2hx, i = nex,

Right outer surface: x = xnx +
1
2hx, i = nx.

One period in the y direction is covered by the points j = 1, . . . , ny. We use the
symbols Sc and Bl to denote the index sets for the superconducting and blanket
region, respectively:

Sc = {(i, j) : (i, j) ∈ [nsx, nex]× [1, ny]},(2.16)

Bl = {(i, j) : (i, j) ∈ [1, nsx − 1] ∪ [nex + 1, nx]× [1, ny]}.(2.17)

The order parameter ψ is evaluated at the grid vertices,

ψi,j = ψ(xi, yj), (i, j) ∈ Sc,(2.18)

the components Ax and Ay of the vector potential at the midpoints of the respective
edges,

Ax;i,j = Ax(xi +
1
2hx, yj), Ay;i,j = Ay(xi, yj +

1
2hy), (i, j) ∈ Sc ∪ Bl,(2.19)

and the induced magnetic field B at the center of a grid cell,

Bi,j = B(xi +
1
2hx, yj +

1
2hy)(2.20)

=
Ay;i+1,j −Ay;i,j

hx
− Ax;i,j+1 −Ax;i,j

hy
, (i, j) ∈ Sc ∪ Bl;

see Figure 2.1. The values of the link variables and the supercurrent are computed
from the expressions

Ux;i,j = e−iκ
−1hxAx;i,j , Uy;i,j = e−iκ

−1hyAy;i,j ,(2.21)

Jx;i,j =
1

κhx
Im
[
ψ∗
i,jUx;i,jψi+1,j

]
, Jy;i,j =

1

κhy
Im
[
ψ∗
i,jUy;i,jψi,j+1

]
.(2.22)

The discretized TDGL equations are

dψi,j
dt

= (Lxx(Ux;·,j)ψ·,j)i + (Lyy(Uy;i,·)ψi,·)j +N (ψi,j) , (i, j) ∈ Sc,(2.23)

σ
dAx;i,j
dt

= (DyyAx;i,·)j − (DyxAy;·,·)i,j + Jx;i,j , (i, j) ∈ Sc ∪ Bl,(2.24)

σ
dAy;i,j
dt

= (DxxAy;·,j)i − (DxyAx;·,·)i,j + Jy;i,j , (i, j) ∈ Sc ∪ Bl,(2.25)
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i+1

j

j+1

ψi,j
i

Ax;i,j

Bi,jAy;i,j

Fig. 2.1. Computational cell with evaluation points for ψ, Ax, Ay, and B.

where

(Lxx(Ux;·,j)ψ·,j)i = h−2
x

[
Ux;i,jψi+1,j − 2ψi,j + U∗

x;i−1,jψi−1,j

]
,(2.26)

(Lyy(Uy;i,·)ψi,·)j = h−2
y

[
Uy;i,jψi,j+1 − 2ψi,j + U∗

y;i,j−1ψi,j−1

]
,(2.27)

N (ψi,j) = τi,jψi,j − |ψi,j |2ψi,j ,(2.28)

(DyyAx;i,·)j = h−2
y [Ax;i,j+1 − 2Ax;i,j +Ax;i,j−1] ,(2.29)

(DxxAy;·,j)i = h−2
x [Ay;i+1,j − 2Ay;i,j +Ay;i−1,j ] ,(2.30)

(DyxAy;·,·)i,j = h−1
x h−1

y [(Ay;i+1,j −Ay;i,j)− (Ay;i+1,j−1 −Ay;i,j−1)] ,(2.31)

(DxyAx;·,·)i,j = h−1
x h−1

y [(Ax;i,j+1 −Ax;i,j)− (Ax;i−1,j+1 −Ax;i−1,j)] .(2.32)

The interface conditions are

ψnsx−1,j = Ux;nsx−1,jψnsx,j , ψnex+1,j = U∗
x;nex,jψnex,j , j = 1, . . . , ny.(2.33)

At the outer boundary, B is given:

B0,j = HLj , Bnx,j = HRj , j = 1, . . . , ny.(2.34)

The resulting approximation is second-order accurate [10].

3. Time integration. We now address the integration of (2.23)–(2.25). The
first equation, which controls the evolution of ψ, involves the second-order linear
finite-difference operators Lxx and Lyy, whose coefficients depend on Ax and Ay,
and the local nonlinear operator N , which involves neither Ax nor Ay. Each of the
other two equations, which control the evolution of Ax and Ay respectively, involves
likewise a second-order linear finite-difference operator, but with constant coefficients,
and the nonlinear supercurrent operator, which involves ψ, Ax, and Ay. The following
algorithms are distinguished by whether the various operators are treated explicitly
or implicitly.

3.1. Fully explicit integration. Algorithm I uses a fully explicit forward Eu-
ler time-marching procedure for ψ, Ax, and Ay. Starting from an initial triple
(ψ0, A0

x, A
0
y), we solve for n = 0, 1, . . . ,

ψn+1
i,j − ψni,j

∆t
=
(
Lxx(U

n
x;·,j)ψ

n
·,j
)
i
+
(
Lyy(U

n
y;i,·)ψ

n
i,·
)
j
+N

(
ψni,j

)
, (i, j) ∈ Sc,(3.1)
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σ
An+1
x;i,j −Anx;i,j

∆t
=
(
DyyA

n
x;i,·
)
j
− (DyxA

n
y;·,·
)
i,j
+ Jnx;i,j , (i, j) ∈ Sc ∪ Bl,(3.2)

σ
An+1
y;i,j −Any;i,j

∆t
=
(
DxxA

n
y;·,j
)
i
− (DxyA

n
x;·,·
)
i,j
+ Jny;i,j , (i, j) ∈ Sc ∪ Bl,(3.3)

where Jn is defined in terms of ψn, Anx , and A
n
y in the obvious way. The initial triple

is usually chosen so the superconductor is in the Meissner state, with a seed present
to trigger the transition to the vortex state.

Algorithm I has been described in [10]. It has been implemented in a distributed-
memory multiprocessor environment (IBM SP2); the transformations necessary to
achieve the parallelism have been described in [11]. The code uses the message passing
interface (MPI) standard [12] as implemented in the MPICH software library [13] for
domain decomposition, interprocessor communication, and file I/O. The code has
been used extensively to study vortex dynamics in superconducting media [7, 8, 9].
The underlying algorithm provides highly accurate solutions but requires a significant
number of time steps for equilibration. For stability reasons, the time step ∆t cannot
exceed 0.0025.

3.2. Semi-implicit integration. Algorithm II involves an implicit treatment
of the second-order linear finite-difference operators Dyy and Dxx in the equations for
Ax and Ay, respectively:

ψn+1
i,j − ψni,j

∆t
=
(
Lxx(U

n
x;·,j)ψ

n
·,j
)
i
+
(
Lyy(U

n
y;i,·)ψ

n
i,·
)
j
+N

(
ψni,j

)
, (i, j) ∈ Sc,(3.4)

σ
An+1
x;i,j −Anx;i,j

∆t
=
(
DyyA

n+1
x;i,·
)
j
− (DyxA

n
y;·,·
)
i,j
+ Jnx;i,j , (i, j) ∈ Sc ∪ Bl,(3.5)

σ
An+1
y;i,j −Any;i,j

∆t
=
(
DxxA

n+1
y;·,j
)
i
− (DxyA

n
x;·,·
)
i,j
+ Jny;i,j , (i, j) ∈ Sc ∪ Bl.(3.6)

Equations (3.5) and (3.6) lead to two linear systems of equations,

(
I − ∆t

σ
Dyy

)
An+1
x;i = Fi(ψ

n, Anx , A
n
y ), i = 1, . . . , nx − 1,(3.7)

(
I − ∆t

σ
Dxx

)
An+1
y;j = Gj(ψ

n, Anx , A
n
y ), j = 1, . . . , ny,(3.8)

for the vectors of unknowns Ax;i = {Ax;i,j : j = 1, . . . , ny} and Ay;j = {Ay;i,j : i =
1, . . . , nx − 1}. The matrix Dyy has dimension ny × ny and is periodic tridiagonal
with elements −h−2

y , 2h−2
y ,−h−2

y ; the matrix Dxx has dimension (nx − 1)× (nx − 1)
and is tridiagonal with elements −h−2

x , 2h−2
x ,−h−2

x (except along the edges because
of the boundary conditions). Both matrices are independent of i and j. Furthermore,
if the boundary conditions are time independent, they are constant throughout the
time-stepping process. Hence, the coefficient matrices in (3.7) and (3.8) need to be
factored only once; in fact, the factorization can be done in the preprocessing stage,
and the factors can be stored.

In a parallel processing environment, the coefficient matrices extend over several
processors, so (3.7) and (3.8) are broken up in blocks corresponding to the manner in
which the computational mesh is distributed within the processor set. We first solve
the equations within each processor (inner iterations) and then couple the solutions
across processor boundaries (outer iterations). Hence, we deal with interprocessor
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coupling in an iterative fashion. Two to three inner iterations usually suffice to reach
a desired tolerance for convergence. After each inner iteration, each processor shares
boundary data with its neighbors through MPI calls.

3.3. Linearly implicit integration. Algorithm III combines the semi-implicit
treatment of Ax and Ay with an implicit treatment of the order parameter:

ψn+1
i,j − ψni,j

∆t
=
(
Lxx(U

n
x;·,j)ψ

n+1
·,j

)
i
+
(
Lyy(U

n
y;i,·)ψ

n+1
i,·

)
j
+N

(
ψni,j

)
,(3.9)

σ
An+1
x;i,j −Anx;i,j

∆t
=
(
DyyA

n+1
x;i,·
)
j
− (DyxA

n
y;·,·
)
i,j
+ Jnx;i,j ,(3.10)

σ
An+1
y;i,j −Any;i,j

∆t
=
(
DxxA

n+1
y;·,j
)
i
− (DxyA

n
x;·,·
)
i,j
+ Jny;i,j .(3.11)

As before, the first equation holds for all (i, j) ∈ Sc, while the second and third
equations hold for all (i, j) ∈ Sc ∪ Bl. The latter are solved as in the semi-implicit
algorithm of the preceding section, while the former is solved by a method similar to
the method of Douglas and Gunn [14] for the Laplacian.

We begin by transforming (3.9) into an equation for the correction matrix φn+1 =
ψn+1 − ψn. The equation has the general form

(I −∆t(Lxx + Lyy))φ
n+1 = F (ψn, Anx , A

n
y ).(3.12)

If ∆t is sufficiently small, we may replace the operator in the left member by an
approximate factorization,

(I −∆t(Lxx + Lyy)) ≈ (I −∆tLxx) (I −∆tLyy) ,(3.13)

and consider, instead of (3.12),

(I −∆tLxx) (I −∆tLyy)φn+1 = F (ψn, Anx , A
n
y ).(3.14)

This equation can be solved in two steps,

(I −∆tLxx)ϕ = F,(3.15)

(I −∆tLyy)φn+1 = ϕ.(3.16)

The conditions (2.33), which must be satisfied at the interface between the supercon-
ductor and the blanket material, require some care. If we impose the conditions at
every time step, then

φn+1
nsx−1,j = Un+1

x;nsx−1,jφ
n+1
nsx,j

+
[
Un+1
x;nsx−1,j − Unx;nsx−1,j

]
ψnnsx,j ,

φn+1
nex+1,j =

(
Un+1
x;nex,j

)∗
φn+1
nex,j

+
[(
Un+1
x;nex,j

)∗ − (Unx;nsx−1,j

)∗]
ψnnsx,j

for j = 1, . . . , ny. These conditions couple the correction φ to the update of Ax. To
eliminate this coupling, we solve (3.12) subject to the reduced interface conditions

φn+1
nsx−1,j = Un+1

x;nsx−1,jφ
n+1
nsx,j

, j = 1, . . . , ny,(3.17)

φn+1
nex+1,j =

(
Un+1
x;nex,j

)∗
φn+1
nex,j

, j = 1, . . . , ny.(3.18)

When (3.12) is replaced by (3.14), these conditions are inherited by the system (3.15).
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3.4. Nonlinearly implicit integration. Algorithm IV uses a nonlinearly im-
plicit integration procedure for the order parameter:

ψn+1
i,j − ψni,j

∆t
=
(
Lxx(U

n
x;·,j)ψ

n+1
·,j

)
i
+
(
Lyy(U

n
y;i,·)ψ

n+1
i,·

)
j
+N

(
ψn+1
i,j

)
,(3.19)

σ
An+1
x;i,j −Anx;i,j

∆t
=
(
DyyA

n+1
x;i,·
)
j
− (DyxA

n
y;·,·
)
i,j
+ Jnx;i,j ,(3.20)

σ
An+1
y;i,j −Any;i,j

∆t
=
(
DxxA

n+1
y;·,j
)
i
− (DxyA

n
x;·,·
)
i,j
+ Jny;i,j .(3.21)

The new element here is the term N
(
ψn+1
i,j

)
in the first equation.

The second and third equations, with (i, j) ∈ Sc ∪ Bl, are solved again as in the
semi-implicit algorithm; the first, with (i, j) ∈ Sc, is solved by a slight modification
of the method used in the linearly implicit algorithm of the preceding section. The
modification is brought about by the approximation

N
(
ψn+1

)
= τψn+1 − |ψn+1|2ψn+1 ≈ 1

∆t
(S (ψn)− ψn) ,(3.22)

where S is a nonlinear map:

S(ψ) =
τ1/2ψ

[|ψ|2 + (τ − |ψ|2) exp(−2τ∆t)]1/2
.(3.23)

(This approximation is explained in the remark below.) Equation (3.19) is again of
the form (3.12) but with a different right-hand side:

(I −∆t(Lxx + Lyy))φ
n+1 = G(ψn, Anx , A

n
y ).(3.24)

The difference is that, where F in (3.12) contains a term (∆t)N (ψn), G in (3.24)
contains the more complicated term S (ψn)− ψn.

Remark. The approximation (3.22) is suggested by semigroup theory. Symboli-
cally,

N(ψ) = lim
∆t→0

S(∆t)ψ − ψ
∆t

.(3.25)

To find an expression for the “semigroup” S, we start from the continuous TDGL
equations (2.6)–(2.8) (zero-electric potential gauge, Φ = 0), using the polar represen-
tation ψ = |ψ|eiφ:

∂t|ψ| = ∆|ψ| − |ψ||∇φ− κ−1A|2 + τ |ψ| − |ψ|3,(3.26)

|ψ|∂tφ = 2(∇|ψ|) · (∇φ− κ−1A) + |ψ|∇ · (∇φ− κ−1A),(3.27)

σ∂tA = −∇×∇×A+ κ−1|ψ|2(∇φ− κ−1A).(3.28)

At this point, we are interested in the effect of the nonlinear term |ψ|3 on the dynamics.
To highlight this effect, we concentrate on the time evolution of the scalar u = |ψ| and
the vector v = ∇φ− κ−1A. (In physical terms, u2 is the density of superconducting
charge carriers, while u2v is κ times the supercurrent density.) Ignoring their spatial
variations, we have a dynamical system,

u′ = −u|v|2 + τu− u3,(3.29)

v′ = −εu2v,(3.30)
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where ′ denotes differentiation with respect to t, and ε = (κ2σ)−1. This system yields
a pair of ordinary differential equations for the scalars x = u2 and y = |v|2:

x′ = 2x(τ − x− y),(3.31)

y′ = −2εxy.(3.32)

If κ is large, ε is small, and the dynamics are readily analyzed. To leading order, y
is constant; y = 0 is the only meaningful choice. (Recall that xy1/2 is κ times the
magnitude of the supercurrent density.) Then the dynamics of x are given by

x′ = 2x(τ − x).(3.33)

We integrate this equation from t = tn to t:

x(t) =
τx(tn)

x(tn) + (τ − x(tn)) exp(−2τ(t− tn)) .(3.34)

In particular,

x(tn+1) =
τx(tn)

x(tn) + (τ − x(tn)) exp(−2τ∆t) ,(3.35)

where ∆t = tn+1 − tn. Since x(tn) = |ψn|2 and x(tn+1) = |ψn+1|2, it follows that

|ψn+1| = τ1/2|ψn|
[|ψn|2 + (τ − |ψn|2) exp(−2τ∆t)]1/2 .(3.36)

The phase φ of ψ is constant in time. If we multiply both sides by eiφ, we obtain the
expression (3.23) for the “semigroup” S.

4. Evaluation. We now present the results of several experiments, where the
algorithms described in the preceding section were applied to a benchmark problem.

4.1. Benchmark problem. The benchmark problem adopted for this investi-
gation is the equilibration of a vortex configuration in a homogeneous superconductor
without defects (κ = 16, σ = 1, τ = 1) embedded in a thin insulator (air), where the
entire system is periodic in the direction of the free surfaces (y).

The superconductor measures 128ξ in the transverse (x) direction. The thickness
of the insulating layer on either side is taken to be 2ξ, so the width of the entire
system is 132ξ. The period in the y direction is taken to be 192ξ, so the entire system
measures 132ξ × 192ξ.

The computational grid is uniform, with a mesh width hx = hy = 1
2ξ. The

periodic boundary conditions in the y direction are handled through ghost points, so
the computational grid has 264× 386 vertices. The index sets for the superconductor
and blanket (see (2.16) and (2.17)) are

Sc = {(i, j) : i = 5, . . . , 260, j = 1, . . . , 386},(4.1)

Bl = {(i, j) : i = 1, . . . , 4, 261, . . . , 264, j = 1, . . . , 386}.(4.2)

The applied field is uniform:

HL = HR = H = 0.5.(4.3)

(Units of H are Hc
√
2, so H ≈ 0.707 . . . Hc.) As there is no transport current in the

system, the solution of the TDGL equations tends to an equilibrium state.
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4.2. Benchmark solution. First, preliminary runs were made to determine, for
each algorithm, the optimal number of processors in a multiprocessing environment.
Figure 4.1 shows the wall clock time for 50 time steps against the number of processors
on the IBM SP2. Each algorithm shows a saturation around 16 processors, beyond
which any improvement becomes marginal. All problems were subsequently run on
16 processors.
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Fig. 4.1. Elapsed time for 50 time steps as a function of the number of processors.

Next, we used the fully explicit Algorithm I to establish a benchmark equilibrium
configuration. We integrated (3.1)–(3.3) with a time step ∆t = 0.0025 (units of
ξ2/D), the maximal value for which the algorithm remained stable, and followed the
evolution of the vortex configuration by monitoring the number of vortices and their
positions. Equilibrium was reached after 10,000,000 time steps, when the number
of vortices remained constant and the vortex positions varied less than 1.0 × 10−6

(units of ξ). The equilibrium vortex configuration had 116 vortices arranged in a
hexagonal pattern; see Figure 4.2. The wall clock time for the entire computation
was approximately 3,000 minutes. The elapsed time per time step (0.018 seconds) is
a measure for the computational cost of Algorithm I.

4.3. Evaluation of Algorithms II–IV. With the benchmark solution in place,
we evaluated each of the remaining Algorithms (II–IV) for stability, accuracy, and
computational cost.

We found the stability limit in the obvious way, gradually increasing the time
step and integrating to equilibrium until arithmetic divergences caused the algorithm
to fail. Equilibrium was defined by the same criteria as for the benchmark solution:
no change in the number of vortices and a variation in the vortex positions of less
than 1.0× 10−6.
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Fig. 4.2. Equilibrium vortex configuration for the benchmark problem.

Because each algorithm defines its own path through phase space, one can expect
to find neither identical equilibrium configurations nor equilibrium configurations that
are exactly the same as the benchmark. The equilibrium vortex configurations for
the four algorithms were indeed different, albeit slightly. To measure the differences
quantitatively, we computed the following three parameters: (i) the number of vortices
in the superconducting region, (ii) the mean bond length joining neighboring pairs of
vortices, and (iii) the mean bond angle subtended by neighboring bonds throughout
the vortex lattice. In all cases, the number of vortices was the same (116); the mean
bond length varied less than 1.0×10−3ξ, and the mean bond angle varied by less than
1.0×10−3 radians. Within these tolerances, the equilibrium vortex configurations were
the same.

The results are given in Table 4.1; ∆t is the time step at the stability limit (units
of ξ2/D), N the number of time steps needed to reach equilibrium, and C the cost
of the algorithm (seconds per time step). From these data we obtain the wall clock
time needed to compute the equilibrium configuration, T = NC/60 (minutes).

Note that the existence of a stability limit for Algorithm IV is a consequence of
the implementation in a multiprocessing environment. Since we restrict interprocessor
communication to the end of each time step, the implicit character of the algorithm is
lost. On a single processor, Algorithm IV is implicit, and the stability limit is infinite.
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Table 4.1
Performance data for Algorithms I–IV.

Algorithm ∆t N C T
I 0.0025 10,000,000 0.018 3,000
II 0.0500 500,000 0.103 858
III 0.1000 250,000 0.232 967
IV 0.1900 100,000 0.233 388

5. Further evaluation of Algorithm IV. We evaluated the nonlinearly im-
plicit Algorithm IV in more detail by considering its speedup in a multiprocessing
environment and its performance under a multitimestepping procedure.

5.1. Parallelism. First, we investigated the speedup of Algorithm IV in a mul-
tiprocessing environment, using the benchmark problem and two other problems,
obtained from the benchmark problem by twice doubling the size of the system in
each direction. The mesh width was kept constant at 1

2ξ, so the resulting computa-
tional grid had 264× 386 vertices for the benchmark problem, 528× 772 vertices for
the intermediate problem, and 1056× 1544 vertices for the largest problem. Speedup
was defined as the ratio of the wall clock time (exclusive of I/O) to reach equilibrium
on p processors divided by the time to reach equilibrium on a single processor for
the benchmark and intermediate problem, or twice the time to reach equilibrium on
two processors for the largest problem. (The largest problem did not fit on a single
processor.) The results are given in Figure 5.1. The curve for the benchmark problem
was obtained as an average over many runs; the data for the intermediate and largest
problem were obtained from single runs, so they are less smooth. The speedup is
clearly linear when the number of processors is small; it becomes sublinear at about
12 processors for the smallest problem, 14 processors for the intermediate problem,
and 18 processors for the largest problem.
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Fig. 5.1. Performance of Algorithm IV in a multiprocessing environment.

5.2. Multitimestepping. The final set of experiments shows that the perfor-
mance of Algorithm IV is enhanced by a multitimestepping procedure, where A is
updated less frequently than ψ:

ψn+1
i,j − ψni,j

∆t
=
(
Lxx(U

n
x;·,j)ψ

n+1
·,j

)
i
+
(
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i,·

)
j
+N

(
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i,j

)
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)
i,j
+ Jnx;i,j ,(5.2)
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Table 5.1
Effect of update frequency on time and cost of Algorithm IV.

m N C T
1 100,000 0.2330 388
10 200,000 0.0707 236
15 250,000 0.0646 270

σ
An+m
y;i,j −Any;i,j

m∆t
=
(
DxxA

n+m
y;·,j

)
i
− (DxyA

n
x;·,·
)
i,j
+ Jny;i,j .(5.3)

When m = 1, both ψ and A are updated at every time step, but when m is greater
than 1, A is updated only everymth time step. In the limit asm→∞, this procedure
yields the frozen-field approximation, which is a good approximation of the GL model
near the upper critical field when the charge of the superconducting charge carriers
is small [15].

We applied this modification of Algorithm IV with m = 10, 15 to the benchmark
problem of section 4. The results are given in Table 5.1. All computations were
done with ∆t = 0.19 (units of ξ2/D). The data for the computation with m = 1
are taken from Table 4.1. We observe that the cost of the algorithm (C, seconds per
time step) decreases with increasing m, while the number of time steps to equilibrium
(N) increases. If m = 10, the overall wall clock time (T = NC/60, minutes) is
approximately one-third less than the wall clock time for m = 1. For larger values
of m, the increase in the number of steps needed to reach equilibrium offsets any
gain from the decrease in cost. These data suggest an optimal strategy, where A is
updated every 10 time steps.
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Fig. 5.2. Effect of the updating frequency on the evolution of the energy functional.

Figure 5.2 shows the effect of the updating frequency on the evolution of the
free-energy functional (2.9). Note the dramatic increase of the wall-clock time for
m = 15.Eventually, the curve for m = 15 merges with the other curves, but this
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happens well beyond the range of the figure.

6. Conclusions. In summary, we present the following conclusions:

(i) One can increase the time step ∆t nearly 80-fold, without losing stability, by
going from the fully explicit Algorithm I to the nonlinearly implicit Algorithm IV.

(ii) As one goes to the nonlinearly implicit Algorithm IV, the complexity of the
matrix calculations and, hence, the cost C of a single time step increase.

(iii) The increase in the cost C per time step is more than offset by the increase
in the size of the time step ∆t. In fact, the wall clock time needed to compute the
same equilibrium state with the nonlinearly implicit Algorithm IV is one-sixth of the
wall clock time for the fully explicit Algorithm I.

(iv) The (physical) time to reach equilibrium—that is, N∆t, the number of time
steps needed to reach equilibrium times the step size—is (approximately) the same
for all algorithms, namely, 25,000 (units of ξ2/D).

(v) The nonlinearly implicit Algorithm IV displays linear speedup in a multipro-
cessing environment. The speedup curves show sublinear behavior when the number
of processors is large.

(vi) The performance of the nonlinearly implicit Algorithm IV can be improved
further by a multitimestepping procedure, where the vector potential A is updated
less frequently than the order parameter ψ.
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Abstract. In the present paper we consider a heterogeneous model for the dynamics of a
blood solute both in the vascular lumen and inside the arterial wall. In the lumen, we consider an
advection-diffusion equation, where the convective field is provided by the velocity of blood, which
is in turn obtained by solving the Navier–Stokes equations. Inside the arterial wall we consider a
pure diffusive dynamics. Since the endothelial layer at the interface between the lumen and the
wall acts as a permeable membrane, whose permeability depends on the shear rate exerted by the
blood, the solute concentration is discontinuous across this membrane. A possible approach for
the numerical study of this kind of problem is inspired by domain decomposition techniques. In
particular, we introduce a splitting in the computation and alternate the solution of the advection-
diffusion equation in the lumen with that of the diffusion equation in the wall. We set up an efficient
iterative method, based on a suitable reformulation of the problem in terms of a Steklov–Poincaré
interface equation. This formulation is a nonstandard one because of the concentration discontinuity
at the lumen-wall interface and plays a key role in the proof of convergence of our method. In
particular, we prove that the convergence rate performed by the proposed method is independent
of the finite element space discretization and provides a criterion for the selection of an acceleration
parameter.

Several numerical results, referred to as biomedical applications, support our theoretical conclu-
sions and illustrate the efficiency of this algorithm.

Key words. heterogeneous models, domain decomposition techniques, Steklov–Poincaré oper-
ators, advection-diffusion equations, finite elements
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1. Introduction. We consider the numerical treatment of a model for the dy-
namics of blood solutes which was introduced in [14]. This model is based on an
advection-diffusion equation describing the solute dynamics in the vascular lumen,
the convective field being provided by the blood velocity. This equation is coupled
with a pure diffusive model accounting for the solute dynamics inside the arterial
wall, where convection is negligible. The two subdomains (namely the lumen and
the wall) are physically separated by the endothelial layer, which acts as a selective
permeable membrane. The interface equation matching the two subproblems in fact
follows from the specific nature of this membrane. It is worthwhile noticing that, due
to the presence of this membrane, the two concentrations fail to match continuously
at the interface.
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The well posedness of this model, coupled with the Navier–Stokes equations for
the description of the blood velocity and pressure fields, has been analyzed in [14].
The interest for this problem stems from the consideration that, in some cases, the
cause of widespread pathologies of the vascular system has been related to specific
features of the blood flow in a diseased district as well as to the influence of the flow
pattern on the transfer processes of solutes between blood and walls (see, e.g., [1], [7],
[15], [2], [3]). In [2], [3], for example, a more complex physiological model has been
introduced; however, so far it has been tested only on simple two-dimensional (2D)
geometries. On the other hand, more realistic three-dimensional (3D) calculations
have been pursued in [7]; however, in this case the model does not include the arterial
wall as a domain, per se; rather it surrogates the artery wall by prescribing a Dirichlet
boundary condition for the concentration. In this paper, our aim is to set up efficient
numerical methods for solving heterogeneous problems featuring a discontinuous so-
lution. Although stemming from the specific application at hand, the interest of these
methods goes beyond it as they can be applied to any system of advection-diffusion
equations which models the transfer of mass between heterogeneous media through
permeable membranes.

In the numerical analysis of these kinds of problems, a monolithic solver is typ-
ically adopted. Our approach is based on domain decomposition methods, solving
alternatively the different problems in the different subdomains (iterative substruc-
turing approach). In such a way, the discontinuity at the interface is accounted for
naturally. The general theory underlying this approach has been developed in [13,
Chapters 1 and 4]. However, the discontinuity of the solution in this specific applica-
tion makes the convergence analysis of the method “nonstandard.” In particular, we
will focus on the choice of convenient preconditioned iterative techniques and the proof
of convergence in the very general and abstract framework provided by the Steklov–
Poincaré operator theory. In a forthcoming paper, we will consider the extension of
these techniques to the more realistic models considered in [2], [3].

The paper is organized as follows. In section 2 we provide a brief introduction
to the heterogeneous model and recall the well posedness results obtained in [14]. In
section 3 we provide a reinterpretation of the problem in terms of a Steklov–Poincaré
interface equation. This reformulation is not a mere extension of techniques adopted
in other contexts, due to the presence of discontinuous solutions. In section 4, we
introduce an iterative method for the solution of the problem by solving successively
the solute dynamics in the lumen and in the wall. Starting from the Steklov–Poincaré
reformulation of the interface problem, we show that this method can be regarded
as a particular Richardson preconditioned method for the interface problem. Then,
we carry out the convergence analysis of this method; we identify an optimal precon-
ditioner associated to it and propose various generalizations based on the (flexible)
preconditioned GMRES method.

The numerical results presented refer to biomedical applications and illustrate the
efficiency of our schemes (section 5).

1.1. Some notation. Let Ω ⊂ R
d (d = 2, 3) be a physical bounded domain and

x ∈ Ω. We denote by L2 (Ω) the Hilbert space of square integrable functions in Ω.
The scalar product in L2(Ω) is denoted by (·, ·) and the related norm by ‖·‖L2(Ω). The
space of essentially bounded functions in Ω is denoted by L∞ (Ω). The Sobolev space
of functions, whose first (distributional) derivatives belong to L2 (Ω), is denoted by
H1 (Ω) and its norm by ‖·‖H1(Ω).

If Σ ⊂ ∂Ω is open and nonempty, then the space of functions defined on Σ which
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are traces of functions belonging to H1(Ω) is indicated by H1/2(Σ). We recall (see
[5]) that the trace operator γ : H1 (Ω) → H1/2(Σ) is surjective and continuous and
there exists an injective, linear, and continuous map L : H1/2(Σ) → H1 (Ω) called
lifting such that λ = γLλ for all λ ∈ H1/2(Σ). In particular, denoting by φ a function
in H1(Ω) and γφ its trace on Σ, the following trace inequality holds:

∃βt > 0 : ‖γφ‖H1/2(Σ) ≤ βt‖φ‖H1(Ω) ∀φ ∈ H1/2(Σ).(1.1)

We denote by H1
Σ(Ω) the subspace of H1(Ω) of the functions that have null traces

on Σ. In particular, we adopt the usual notation H1
0 (Ω) = H1

∂Ω(Ω). In H1
Σ(Ω) the

following Poincaré inequality holds:

∃α > 0 : ‖φ‖L2(Ω) ≤ α‖∇φ‖L2(Ω) ∀φ ∈ H1
Σ(Ω).(1.2)

If Γ denotes a (d − 1)-dimensional manifold in Ω with Γ ∩ Σ 
= ∅, the trace of

u ∈ H1
Σ(Ω) on Γ belongs to a subspace of H1/2(Γ), usually denoted by H

1/2
00 (Γ). To

simplify our notation we will set Λ = H
1/2
00 (Γ), and Λ′ will denote its dual (see [5]).

We remark that if ζ is any positive function in L2(Σ), the following definition makes
sense:

(ρ, λ)ζ =

∫
Σ

ζρλ =
(√

ζλ,
√

ζρ
)

∀λ, ρ ∈ H1/2(Σ).(1.3)

Indeed, by the Sobolev embedding theorem, λ and ρ belong to L4(Σ); hence λρ belongs
to L2(Σ). Denoting by Lλ and Lρ any continuous lifting of λ and ρ from Σ to Ω, it
follows that∣∣∣(ρ, λ)ζ

∣∣∣ ≤ β2
e‖ζ‖L2(Σ)‖λ‖H1/2(Σ)‖ρ‖H1/2(Σ) ≤ β2‖Lλ‖H1(Ω)‖Lρ‖H1(Ω),(1.4)

with β2 = β2
eβ

2
t ‖ζ‖L2(Σ), where βe is the embedding constant of H1/2(Σ) in L4(Σ)

and βt is the constant of the trace inequality (1.1). Finally, we set

‖λ‖2ζ = (λ, λ)ζ = ‖
√

ζλ‖2L2(Σ).

For space-time functions v : Ω× (0, T )→ R, for all real q and s = 0, 1, we introduce
the space

Lq(0, T ;Hs(Ω)) ≡
{
v : (0, T )→ Hs| v(t) is measurable,

∫ T

0

‖v(t)‖qHs(Ω)dt <∞
}

endowed with the norm

‖v‖Lq(0,T ;Hs(Ω)) ≡
(∫ T

0

‖v(t)‖qHs(Ω)dt

)1/q

.

2. Problem formulation. Let us consider a specific vascular district Ω ⊂ R
d

(d = 2, 3), composed by a lumen or a fluid subdomain Ωf and a structure or wall
subdomain Ωw. Their interface Γ belongs to R

d−1 (see Figure 2.1).
The artificial sections delimiting the district proximally and distally with respect

to the heart will be denoted by Γup and Γdw, respectively. For x ∈ Ω and t > 0 we
denote by u (x, t) the velocity of the blood and by P (x, t) its pressure. Cf (x, t) and
Cw (x, t) denote the concentrations of the solute in the lumen Ωf and in the wall Ωw,
respectively. We assume the blood to be an incompressible Newtonian fluid (which is
a realistic assumption in large and medium vessels—see, e.g., [11]) within rigid walls.
Then, the blood motion is described by the Navier–Stokes incompressible equations,
obtained by the momentum and mass conservation principles. The initial-boundary
values problem we are going to consider for the blood dynamics therefore reads



1962 A. QUARTERONI, A. VENEZIANI, AND P. ZUNINO

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Γ

Γf,dw

Γw,dw

Ωf

Γw,up

Γf,up

wΩ

�
�
�

�
�
���

��
��
��

��
��
��
��

������������

���
���
���
���

��������

��������

Fig. 2.1. Computational domain representing a 2D section of a vascular district featuring the
lumen Ωf and the wall Ωw.

ρ
∂u

∂t
+ ρ (u · ∇)u− ν∆u+∇P = f x ∈ Ωf , t > 0,

∇ · u = 0 x ∈ Ωf , t > 0,

u = b on Γf,up, t > 0, u = 0 on Γ, t > 0,

Pn− ρν∇u · n = Pextn on Γf,dw, t > 0,

u (x, t) = u0 with ∇ · u0 = 0, x ∈ Ωf , t = 0.

(2.1)

In (2.1) we suppose that the boundary ∂Ωf of the computational domain of the fluid
part of the problem is split into the interface with the wall Γ, the upstream or proximal
part Γf,up (where we prescribe the velocity field), and the downstream or distal one,
Γf,dw (where the normal fluid stress is assigned). We are also assuming that the
density of the blood ρb as well as the viscosity ν are constant; the physiological range
of these parameters is discussed in section 5.

The dynamics of solutes is described by an advection-diffusion process. In the
lumen, the convective field is provided by the blood velocity, while in the wall, because
of the very low velocity of the solvent, the advection is negligible (see [8]). The
interface Γ can be regarded as a permeable membrane whose permeability ζ is a
positive function of the shear stress σ exerted by the blood on the wall (see [15]). More
precisely, the solute flux through Γ is proportional to the difference of concentration
between lumen and wall. All these considerations lead to the following model for the
solute concentrations for all t > 0:



∂Cf
∂t

− µf∆Cf + u · ∇Cf = sf in Ωf ,

∂Cw
∂t

− µw∆Cw = sw in Ωw,

µf
∂Cf
∂nf

+ ζ (Cf − Cw) = 0 on Γ,

µw
∂Cw
∂nw

+ ζ (Cw − Cf ) = 0 on Γ,

Cf = Cf,up on Γf,up, Cw = Cw,up on Γw,up,

µf
∂Cf
∂nf

= 0 on Γf,dw, µw
∂Cw
∂nw

= 0 on Γw,dw.

(2.2)

To complete (2.2), we add the initial conditions

Cf (x, t) = Cf0(x), x ∈ Ωf , Cw(x, t) = Cw0(x), x ∈ Ωw, t = 0,
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where the diffusivity coefficients µf and µw are positive and constant and sf (x, t) and
sw(x, t) are possible source terms. In (2.2), we have denoted by Γw,up (Γw,dw) the
part of the wall corresponding to the proximal (distal) section of the fluid domain (see
Figure 2.1).

In this model, observe that the solute is regarded as a passive scalar ; that means
that it is simply convected by the blood in the lumen, neglecting any possible feedback
on the hemodynamics. In particular, viscosity and density of blood are assumed
independent of the solute concentration. This hypothesis is actually coherent with
the models for solute dynamics proposed in [2], [3].

Now, observe that (2.2)4 can be equivalently substituted by the equation

µf
∂Cf
∂nf

= −µw
∂Cw
∂nw

on Γ,

prescribing the continuity of the solute flux between the fluid and the wall domains.
However, we prefer the formulation (2.2), as it leads to a more efficient subdomain
iterative scheme.
Remark 2.1. For some gaseous solutes, the diffusivity coefficient µf depends on

the rate of deformation of blood (see [4]). This feature makes the mathematical analy-
sis of the coupled Navier–Stokes/solute dynamics problem more involved, as addressed
in [14]. However, it does not bring significant differences in the context of the present
work, which is mainly focused on the numerical approximation.

In order to carry out the mathematical analysis of the problem given by (2.1) and
(2.2), as well as its numerical discretization, we resort to their “weak” or variational
formulations. Concerning the Navier–Stokes equations, this can be done in a very
standard way and we refer to, e.g., [12], [17]. For the advection-diffusion problem
we introduce the following notation. For all ψf , φf ∈ H1

∂Ωf\Γ(Ωf ) and ψw, φw ∈
H1
∂Ωw\Γ(Ωw) set

af (ψf , φf ) = µf (∇ψf ,∇φf ) + ((u · ∇)ψf , φf ) ,(2.3)

aw (ψw, φw) = µw (∇ψw,∇φw) .(2.4)

Both af (·, ·) and aw (·, ·) are continuous and coercive bilinear forms; additionally,
aw (·, ·) is symmetric. Then, the weak formulation of problem (2.2) reads as follows.
Problem 2.1. Given the initial condition Cf (x, t = 0) = Cf,0,∈ H1

∂Ωf\Γ(Ωf )
and Cw(x, t = 0) = Cw,0 ∈ H1

∂Ωw\Γ(Ωw) find Cf ∈ L2(0, T ;H1
∂Ωf\Γ(Ωf )), Cw ∈

L2(0, T ;H1
∂Ωw\Γ(Ωw)) such that for all φf ∈ H1

∂Ωf\Γ (Ωf ) and φw ∈ H1
∂Ωw\Γ (Ωw)




(
∂Cf
∂t

, φf

)
+ af (Cf , φf ) + (Cf − Cw, φf )ζ = (sf , φf ) ,

(
∂Cw
∂t

, φw

)
+ aw (Cw, φw) + (Cw − Cf , φw)ζ = (sw, φw) .

(2.5)

If the domain and the data are regular enough, Problem 2.1, coupled with the
(weak form of) Navier–Stokes one, is well posed. More precisely, the following propo-
sition can be shown (see [14]).
Proposition 2.1. If Ωf is a 2D domain smooth enough, then the coupled blood

solute dynamics problem admits a unique solution, depending continuously on the
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data. If Ωf is a 3D domain, the same conclusion holds true, provided the initial data
of the Navier–Stokes problem are sufficiently small.

Concerning the result of this proposition, we point out that the smallness of the
data for the Navier–Stokes problem is actually a standard and an unavoidable hy-
pothesis for ensuring the existence of a convective field in any problem involving an
incompressible fluid. Indeed, no unconditional well posedness result is so far available
for the Navier–Stokes equations (see [17], [12]). Moreover, observe that if the diffu-
sivity of the solute in the lumen is the function of the shear rate (see Remark 2.1) the
smallness of the initial data for the Navier–Stokes problem is necessary even for the
2D case.

We point out that in [14] only full Dirichlet boundary conditions for the blood
were considered, which yield a coercive bilinear form. However, in the current case, a
standard energy argument allows us to prove that the bilinear form is weakly coercive,
which is still sufficient to ensure the well posedness of the associated parabolic problem
(see [5], [6], [12]).

3. Discretization and Steklov–Poincaré operators.

3.1. The semidiscrete problem. We will suppose that the blood velocity and
pressure are available upon solving the weak counterpart of (2.1) and focus our atten-
tion on the computation of Problem 2.1. In view of the subsequent analysis, we first
introduce the semidiscrete model, namely the time-discrete counterpart of Problem
2.1. To this end, we subdivide the time interval [0, T ] in N time steps tn = n∆t,
with ∆t > 0 and n = 1, . . . , N . Setting χ = 1

∆t , we obtain the time-discrete problem
based on the backward Euler method.
Problem 3.1. Given C0

f and C0
w for every n = 0, 1, . . . , N − 1 find Cn+1

f ∈
H1
∂Ωf\Γ(Ωf ) and Cn+1

w ∈ H1
∂Ωf\Γ(Ωw) such that for all φf in H1

∂Ωf\Γ(Ωf ) and φw in

H1
∂Ωw\Γ(Ωw)




âf

(
Cn+1
f , φf

)
+
(
Cn+1
f , φf

)
ζ
− (Cn+1

w , φf
)
ζ
= χ

(
Cn
f , φf

)
+
(
sn+1
f , φf

)
,

âw
(
Cn+1
w , φw

)
+
(
Cn+1
w , φw

)
ζ
−
(
Cn+1
f , φw

)
ζ
= χ (Cn

w, φw) +
(
sn+1
w , φw

)
,

(3.1)

where sn+1
f = sf

(
tn+1

)
, sn+1

w = sw
(
tn+1

)
, C0

f and C0
w are the initial data, and

âf (ψf , φf ) = χ (ψf , φf ) + af (ψf , φf ) ∀φf , ψf ∈ H1
∂Ωf\Γ(Ωf ),(3.2)

âw (ψw, φw) = χ (ψw, φw) + aw (ψw, φw) ∀φw, ψw ∈ H1
∂Ωw\Γ(Ωw).(3.3)

Observe that these bilinear forms are continuous and coercive, and, in particular,
âw (·, ·) is symmetric.

3.2. The Steklov–Poincaré interface equation. We are going to provide a
different formulation of (3.1) which will be useful in view of the subsequent analysis.
In what follows, the specification of the time index n + 1 will be dropped whenever
clear from the context.

Let us start with the “wall-side” of the problem. Let Hw : Λ→ H1
∂Ωw\Γ(Ωw) be

defined such that, for a given function ρ ∈ Λ, uw = Hwρ solves


χuw − µw∆uw = 0 in Ωw,

uw = ρ on Γ, uw = 0 on ∂Ωw \ Γ.
(3.4)
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Moreover, let Gw : L2(Ωw) → H1
0 (Ωw) be the operator such that, for a given

function rw ∈ L2(Ωw), gw = Gwrw satisfies




χgw − µw∆gw = rw in Ωw,

gw = 0 on ∂Ωw.
(3.5)

Correspondingly, we introduce the following operator Hf : Λ → H1
∂Ωf\Γ(Ωf ) for the

“fluid-side” of the problem. Given ρ ∈ Λ, uf = Hfρ satisfies




χuf − µf∆uf + u · ∇uf = 0 in Ωf ,

uf = 0 on ∂Ωf \ Γ, µf
∂uf
∂nf

+ ζuf = ζρ on Γ.
(3.6)

Furthermore, Gf : L2(Ωf )→ H1
∂Ωf\Γ(Ωf ) is such that, given rf ∈ L2(Ωf ), gf = Gfrf

solves




χgf − µf∆gf + u · ∇gf = rf in Ωf ,

gf = 0 on ∂Ωf \ Γ, µf
∂gf
∂nf

+ ζgf = 0 on Γ.
(3.7)

Finally, for a given function ρ ∈ Λ, we define

Sw : Λ→ Λ′ such that Swρ = µw
∂Hwρ
∂nw

+ ζρ,

Sf : Λ→ Λ′ such that Sfρ = −ζ(γfHfρ).
(3.8)

By extending a definition which is common in the framework of domain decomposi-
tion methods we call Sf and Sw the Steklov–Poincaré operators associated with the
heterogeneous problem at hand. A general discussion on the role and the properties
of Steklov–Poincaré (SP) operators in the framework of domain decomposition can
be found in [13]. On the basis of the previous definitions, the time-discrete formula-
tion of the problem can be reformulated in terms of an operatorial interface equation.
Indeed, if we set

S = Sf + Sw and η = −
(
µf

∂Gfrf
∂nf

+ µw
∂Gwrw
∂nw

)
,(3.9)

then, from (2.2)4, the following interface equation needs to be solved for the unknown
ρ at each time step:

Sρ = η .(3.10)

The SP operators can be reinterpreted in a weak from by considering (3.10) in a
distributional sense. Let us denote by 〈·, ·〉 the duality pairing of Λ with Λ′. By
Green formula, we obtain for all λ ∈ Λ

〈Swρ, λ〉 =
〈
µw

∂Hwρ
∂nw

, λ

〉
+ (ρ, λ)ζ = âw (uw,Lwλ) + (ρ, λ)ζ(3.11)
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with Lwλ ∈ H1
∂Ωw\Γ(Ωw) and

〈Sfρ, λ〉 = − (Hfρ, λ)ζ = − (uf , λ)ζ = − (ρ, λ)ζ + µf

〈
∂uf
∂nf

, λ

〉

= − (ρ, λ)ζ + âf (uf ,Lfλ)
(3.12)

with Lfλ ∈ H1
∂Ωf\Γ(Ωf ). In the latter equation, we have exploited the definition of

uf and, in particular, (3.6)2. Consequently,

〈Sρ, λ〉 = µw

〈
∂Hwρ
∂nw

, λ

〉
+ (ρ, λ)ζ − (Hfρ, λ)ζ = âw (uw,Lwλ) + âf (uf ,Lfλ)

(3.13)

for all λ ∈ Λ. By proceeding in a similar way for the right-hand side, the weak
formulation of the interface relation (3.10) finally reads as follows: find ρ ∈ Λ such
that

âw (Hwρ+ Gwrw,Lwλ) + âf (Hfρ+ Gfrf ,Lfλ) = (rf ,Lfλ) + (rw,Lwλ)(3.14)

for all λ ∈ Λ. Finally, we notice that, in the special case φf = Lfλ and φw = Lwλ,
and, provided that rf = χCn

f + sn+1
f , rw = χCn

w + sn+1
w , (3.14) is equivalent to (2.5).

3.3. The fully discrete problem. The space discretization of the problem is
carried out using the finite element method (FEM). To this end, let us introduce Thf
and Thw, two admissible triangulations (see, e.g., [12]) of Ωf and Ωw respectively. For
the sake of simplicity, we assume that Thf and Thw are conforming triangulations on
Γ. Consequently, Th = Thf ∪Thw is an admissible triangulation for Ωf ∪Ωw. Let h be
a characteristic length of the elements K ∈ Th and Vhf and Vhw be a couple of finite-
dimensional subspaces of H1

∂Ωf\Γ and H1
∂Ωw\Γ, respectively. Moreover, denote by

Vhw,0 a finite-dimensional subspace of H
1
0 (Ωw). Finally let Λh be a finite-dimensional

subspace of Λ such that the traces on Γ of functions in Vhf or Vhw belong to Λh. Denote
by Nf the dimension of Vhf , by Nw the dimension of Vhw, and by NΓ the dimension
of Λh. Let {φi,f} (i = 1, 2, . . . , Nf ) and similarly {φi,w} (i = 1, 2, . . . , Nw) be a basis
for Vhf and for Vhw, respectively; moreover, denote with {φi,Γ} (i = 1, 2, . . . , NΓ) a
basis for Λh. In what follows, the subscript h will identify the space discrete solution.

Based on these definitions, the space discretization of Problem 2.1 reads as follows.
Problem 3.2. Given the initial data C0

fh and C0
wh, for every n = 0, 1, . . . , N −1

(being N∆t = T the final time), find Cn+1
fh ∈ Vhf and Cn+1

wh ∈ Vhw such that for all
i = 1, . . . , Nf and j = 1, . . . , Nw




âf

(
Cn+1
fh , φi,f

)
+
(
Cn+1
fh , φi,f

)
ζ
− (Cn

wh, φi,f )ζ = χ
(
Cn
fh, φi,f

)
+
(
sn+1
f , φi,f

)
,

âw
(
Cn+1
wh , φj,w

)
+
(
Cn+1
wh , φj,w

)
ζ
−
(
Cn+1
fh , φj,w

)
ζ
= χ (Cn

wh, φj,w) +
(
sn+1
w , φj,w

)
.

(3.15)

Remark 3.1. Due to the convection dominated nature of the problem (see [15]),
the pure Galerkin discrete formulation (3.15) does not ensure stability to the numer-
ical solution unless the triangulation is fine enough to ensure that the local Péclet
number is less than one. It is therefore mandatory to adopt suitable stabilization tech-
niques. In particular, we will make use of a strongly consistent method like SUPG
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(streamline upwind Petrov Galerkin)—see, e.g., [12]. We address first the analysis
of the scheme to the Galerkin formulation (3.15) in order to point out the intrinsic
features of the method. Later on, we will address the modifications induced by the
presence of stabilizing terms (see section 4.1).

3.3.1. The discrete SP operators. Let us introduce the discrete counterpart
Ŝhw and Ŝhf of the SP operators. Following (3.11), we define

〈Ŝhwρ, λ〉 = âw (uw,Lwλ) + (ρ, λ)ζ ∀ρ, λ ∈ Λh,(3.16)

where

uw ∈ Vhw :

{
âw (uw, φw) = 0 ∀φw ∈ Vhw,0,
uw = ρ on Γ.

Similarly we define

〈Ŝhfρ, λ〉 = − (ρ, λ)ζ + âf (uf ,Lfλ) ,(3.17)

where

uf ∈ Vhf : âf (uf , φf ) + (uf , φf )ζ = (ρ, φf )ζ ∀φf ∈ Vhf .(3.18)

Finally, we set Ŝh = Ŝhw+Ŝhf . Then, the solution of Problem 3.2 can be reformulated
in terms of the interface equation

〈Ŝhρ, λ〉 = 〈η̂, λ〉 ∀λ ∈ Λ,(3.19)

where ρ stands for the trace of Cwh on Γ, i.e.,

ρ = Cwh |Γ
and

η̂ = −
(
µw

∂Gwrw
∂nw

+ µf
∂Gfrf
∂nf

)
,(3.20)

with

rf = rn+1
f = sn+1

f + χCn
fh, rw = rn+1

w = sn+1
w + χCn

wh,(3.21)

where, for the sake of clarity, the time index has been restored.
In what follows we will use several times the so called finite element uniform

extension theorem (FEUET), which states that ‖ρh‖Λ is uniformly equivalent (with
respect to h) to ‖uh,w‖H1(Ωw), where uh,w is the finite element approximation of
problem (3.4), where ρ is replaced by ρh; see [13, Theorem 4.1.3].

Proposition 3.1. The following properties hold for Ŝhw, Ŝhf , and Ŝh:
1. Ŝhw is continuous, symmetric, and coercive in Λh.
2. Ŝhf is continuous and negative; i.e., for any ρ ∈ Λh, 〈Ŝhfρ, ρ〉 < 0.

3. Ŝh is continuous and coercive in Λh.
Proof. Continuity and symmetry of Ŝhw can be proven from the continuity and

symmetry of âw (·, ·) and the definition (3.16), owing to the FEUET. Moreover, Ŝhw
is coercive thanks to the coercivity of âw (·, ·), the positivity of ζ, and the trace
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inequality (1.1). Observe in particular that the continuity and coercivity constants
do not depend on h.

Continuity of Ŝhf follows from the coercivity of the bilinear form on the right-
hand side of (3.18). Again, the continuity constant does not depend on h, depending
on the bilinear form properties. Moreover, from (3.17) and taking again φf = uf in
(3.18), we obtain

−〈Ŝhfρ, ρ〉 = (uf , ρ)ζ = âf (uf , uf ) + ‖uf‖2ζ > 0 ∀ρ ∈ Λh.(3.22)

Item 2 is thus proven. The continuity of Ŝh is now a consequence of the continuity of
Ŝhw and Ŝhf . In particular, we stress that the continuity constant is independent on
h.

Finally, we prove that Ŝh is coercive. Indeed, observe that by the definition of uf
and (3.22)

âf (uf ,Lfρ) = (ρ− γfuf , ρ)ζ = (ρ− γfuf , ρ− γfuf )ζ + âf (uf , uf ) .(3.23)

Consequently, we obtain

〈Ŝhρ, ρ〉 = âw (uw,Lwρ) + âf (uf ,Lfρ) ≥ âw (uw, uw) ≥ τ‖ρ‖2Λ.(3.24)

Finally, observe that the coercivity constant considered above is independent of h.
Indeed, the coercivity constant τ in (3.24) is independent of h. This is due to the
circumstance that uw is the extension of ρ so that we can advocate once again the
FEUET.

As a direct consequence of the previous properties, we obtain the following corol-
lary.
Corollary 3.1. The interface equation (3.19) admits a unique solution which

depends continuously on the data.
Proof. The functional F(λ) ≡ 〈η̂, λ〉 associated with the right-hand side of (3.19)

is continuous in Λh. Moreover, the bilinear form 〈Ŝh·, ·〉 is continuous and coercive
in Λh, as proved in Proposition 3.1. The result then follows from the Lax–Milgram
lemma.

4. The subdomain iterative method. In order to reduce the computational
cost required by the numerical solution of Problem 3.2, we suitably split the whole
problem into a sequence of subproblems to be solved in the two physical subdomains
(the lumen Ωf and the wall Ωw). In [14] we have introduced and analyzed an iterative
scheme based on the interface conditions (2.2)3 and (2.2)4. In the present work, we
consider a relaxed extension of the scheme in order to speed up the convergence. We
will extend the convergence results proven in [14] to the relaxed algorithm, taking
advantage of the reinterpretation of the scheme in terms of SP operators. (That was
not considered at all in [14].) In what follows, for notational convenience we will drop
the specification h, for the space discrete quantities, as well as the specification n+1 for
the time-discrete quantities (i.e., we will write [Cf,k, Cw,k] instead of [Cn+1

fh,k, C
n+1
wh,k]).

It is understood, however, that the iterative method is carried out on the fully discrete
problem.

The scheme which we adopt is the following. Given an initial guess ρ0 for Cw,0 on
the interface Γ, for k = 0, 1, . . . find the sequence of functions [Cf,k, Cw,k] ∈ Vhf×Vhw
by solving for all i = 1, . . . , Nf and j = 1, . . . , Nw

âf (Cf,k+1, φi,f ) + (Cf,k+1, φi,f )ζ = (rf , φi,f ) + (ρk, φi,f )ζ ,(4.1)
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âw (Cw,k+1, φj,w) + (Cw,k+1, φj,w)ζ = (rw, φj,w) + (Cf,k+1, φj,w)ζ ,(4.2)

ρk+1 = Cw,k+1|Γ,(4.3)

where rf and rw are defined in (3.21).
This is a Robin–Robin iterative scheme, as it is based on the conditions (2.2)3

and (2.2)4, which are Robin conditions for each subproblem involved.
In order to resort to an iterative scheme for the variable ρk+1 alone, let us elimi-

nate the unknowns Cf,k+1, Cw,k+1 from (4.1)–(4.3).
Let us take φf = Lfλ in (4.1), where λ is any function of Λh, and split Cf,k+1

as Cf,k+1 = uf,k+1 + gf , where uf,k+1 and gf solve, respectively, problems (3.6) and
(3.7) in a weak sense. Recalling (3.17), we have

(Cf,k+1, λ)ζ = (rf ,Lfλ) + (ρk, λ)ζ − âf (uf,k+1,Lfλ)− âf (gf ,Lfλ)
= −〈∇gf · nf , λ〉 − 〈Ŝhfρk, λ〉 ∀λ ∈ Λh.

(4.4)

Proceeding similarly on (4.2) and recalling that Cw,k+1 = uw,k+1 + gw, we obtain

〈ŜhwCw,k+1, λ〉 = âw (uw,k+1,Lwλ) + (Cw,k+1, λ)ζ ∀λ ∈ Λh

and

âw (gw,Lwλ) = (rw,Lwλ) + 〈∇gw · nw, λ〉 ∀λ ∈ Λh.

Consequently, taking φw = Lwλ in (4.2), by virtue of the latter two equations we have

〈ŜhwCw,k+1, λ〉+ 〈∇gw · nw, λ〉 = (Cf,k+1, λ)ζ ∀λ ∈ Λh.

Substituting (4.4) in the latter, we obtain

〈ŜhwCw,k+1, λ〉 = 〈Ŝhwρk+1, λ〉 = 〈η̂, λ〉 − 〈Ŝhfρk, λ〉 ∀λ ∈ Λh,(4.5)

where from (3.20)

η̂ = − (µf∇gf · nf + µw∇gw · nw).

If we consider a relaxation parameter θ, (4.3) becomes

ρk+1 = θCw,k+1|Γ + (1− θ)ρk.(4.6)

Hence for all λ ∈ Λh, by means of (4.5), we obtain

〈Ŝhw(ρk+1 − ρk), λ〉 = θ〈ŜhwCw,k+1, λ〉 − θ〈Ŝhwρk, λ〉 = θ〈η̂ − Ŝhρk, λ〉.(4.7)

Equation (4.7) actually sheds light on a useful reinterpretation of the Robin–Robin
method, which can be regarded as a preconditioned Richardson method for problem
(3.19), with Ŝhw playing the role of preconditioner for Ŝh. This observation allows for
a straightforward proof of convergence of the scheme. Indeed, we have the following
abstract result (for the proof, see, e.g., [13, Theorem 4.2.2 and Remark 4.2.4]).
Theorem 4.1. Let X be a real Hilbert space, X ′ its dual space, and 〈·, ·〉 the

duality paring between X ′ and X. Let Q : X → X ′ be a linear invertible continuous
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operator which can be split as Q = Q1 +Q2, where Qi (i = 1, 2) are linear operators.
Consider the problem

Qρ = η,(4.8)

where η ∈ X ′ is given and ρ ∈ X is to be determined. Suppose that Q2 is con-
tinuous, symmetric, and coercive and that Q is coercive. Then, there exists a real
value θmax, depending on the continuity and the coercivity constants, such that for
any θ ∈ (0, θmax), the sequence

ρk+1 = ρk + θQ−1
2 (η −Qρk)(4.9)

converges in X to the solution of (4.8) for any ρ0 ∈ X.
We point out that (4.9) is the generic iteration of a preconditioned Richardson

method to solve (4.8), with Q2 acting as preconditioner (see [16], [9]).

Now, if we set X = Λh, Q = Ŝh, Q1 = Ŝhf , Q2 = Ŝhw, we apply this result to
prove the convergence of the sequence {ρk} , k ≥ 0 to the solution of (3.19). Indeed,
all the hypotheses of the theorem are verified, as proven in the previous section.

Observe, moreover, that, in Theorem 4.1, the convergence rate as well as the
optimal value for θ are functions of the coercivity and continuity constants of Q2 and
of Q that in our case read Ŝhw and Ŝhw, respectively. In proving Proposition 3.1 we
pointed out that these constants are independent of the mesh size h in our problem.
This means that the rate of convergence of the proposed preconditioned iterations is
not affected by the mesh size, or, in other words, that the preconditioner is optimal.

Altogether, these observations can be collected in the following final result.
Proposition 4.1. The Robin–Robin iterative scheme (4.1), (4.2), and (4.6) is

convergent for any θ ∈ (0, θmax), and its rate of convergence is independent of the
spatial discretization. Precisely, there exists K < 1 such that for any θ ∈ (0, θmax),
there exists a constant Kθ ≤ K such that

‖ρ− ρk+1‖Λ ≤ Kθ‖ρ− ρk‖Λ, k ≥ 0.

In agreement with this conclusion, Table 4.1 shows that the convergence rate of
the relaxed Robin–Robin scheme is uniformly independent of the parameter h (which
in our computations with uniform grids is related to the number N of finite elements
nodes through the law N ≈ O(h−2)).
Remark 4.1. The convergence result of Theorem 4.1 refers to the preconditioned

Richardson iterative method. However, similar conclusions can be shown when more
efficient methods are applied to the same problem (see Table 4.1), such as the gen-
eralized minimal residual (GMRES) (see [16]), as proven in a very abstract form in
[13, sect. 4.2.1]. On the basis of this result, we will proceed with the GMRES methods
later on in section 4.3.

4.1. The iterative method in the convection dominated case. As previ-
ously pointed out, when advection dominated problems are considered, stabilization
techniques are required. This means that the bilinear form âf (·, ·) introduced in (3.2)
is substituted by

âf,stab (Cf , φf ) = âf (Cf , φf ) + af,h (Cf , φf ) ,(4.10)

where af,h (Cf , φf ) depends on the specific stabilization method. For instance (see,
e.g., [12]), if we set

LsC = −∇ · µf∇C, LssC =
1

2
∇ · uC +

1

2
u · ∇C (Lf = Ls + Lss),
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Table 4.1
Comparison of the number of iterations to reach convergence. In all these tests we have taken

Ωf = (0, 4)× (0, 1), Ωw = (0, 4)× (−1, 0), ux = 4u0(1− y)y, uy = 0. (A) µf = µw = 1.0 cm2s−1,
and ζ = 1.0 cm s−1. (Values ∗ refer to the pure Galerkin method, the other to the stabilized SUPG
method.) (B) µf = µw = 10−3cm2s−1 and ζ = 1.0 cm s−1. Finer grids are obtained by means of a
uniform refinement plus regularization; thus N = O(h−2). For large values of ζ the coupled problem
is severely ill-conditioned, yet the number of iterations is uniformly independent of h.

(A)
h N Unrelax. Rich. Relax. Rich. P-GMRES
0.1 4000 4∗ 4∗ 3∗
0.05 16000 4∗ 4∗ 3∗
0.025 60000 4∗ 4∗ 3∗
0.01875 106000 4∗ 4∗ 3∗
0.012 260000 4∗ 4∗ 3∗

(B)
h N Unrelax. Rich. Relax. Rich. P-GMRES
0.1 4000 8 7 5
0.05 16000 12 10 6
0.025 60000 20 15 7
0.01875 106000 23 17 7
0.012 260000 29-29∗ 20-20∗ 8-8∗

the symmetric and the skew-symmetric parts of the fluid differential operator Lf ,
respectively, then the most common strongly consistent stabilization methods resort
to set

af,h (Cf , φf ) =
∑
K∈Th

δ

(
LCf ,

hK
|u| (Lss + κLs)φf

)
K

,

where K is the generic element of the triangulation Th (supposed to be regular)
with diameter hK , (·, ·)K denotes the L2(K) scalar product, δ is a parameter to be
chosen, and κ identifies the different stabilization techniques. In particular, SUPG
corresponds to set κ = 0, while the Galerkin least squares (GaLS) method is given for
κ = 1. The Douglas–Wang (DW) method, on the other hand, corresponds to κ = −1.
For the SUPG method, we recall that if δ is suitably chosen, it is possible to prove
that the stabilized bilinear form âf,stab (·, ·) is coercive, the constant of coercivity being
independent of h (see [12, Proposition 8.4.1]). A similar result holds for the DW and
for the GaLS methods. In the latter case, the coercivity holds for any positive δ.

Starting form these results, we are able to prove that the convergence rate of the
iterative subdomains method proposed is independent of h even in the stabilized case.
First of all, the problem we consider in this case, in terms of SP operators can be
formulated in a way completely similar to the one proposed in the previous section,
provided that Ŝhf defined in (3.17) and (3.18) is substituted by

〈Ŝhf,stabρ, λ〉 = − (ρ, λ)ζ + âf,stab (uf ,Lfλ) ,(4.11)

with

uf ∈ Vhf : âf,stab (uf , φf ) + (uf , φf )ζ = (ρ, φf )ζ ∀φf ∈ Vhf .(4.12)

The crucial point is to prove that the stabilized SP operator Ŝhf,h is also continuous
with a continuity constant independent of h. Actually, observe that by definition

〈Ŝhf,stabρ, λ〉 = (uf , λ)ζ .
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From (4.12) for φf = uf , we deduce that

‖ γfuf ‖Λ≤ β ‖ ρ ‖Λ,
where β is a constant obtained as a function of the trace and coercivity constants and
therefore independent of h. The continuity constant of Ŝhf,stab is thus independent of
h. Consequently, the extension of Proposition 3.1 to the stabilized case is straightfor-
ward. We therefore conclude that Theorem 4.1 can be applied as well in the stabilized
case, again having independence of the convergence rate and the optimal value of θ
on h.

4.2. Algebraic reinterpretation of the iterative scheme. The coupled Prob-
lem 3.2 requires at each time step the solution of a system in the form

Ac = b.(4.13)

Denoted by NΓ the degrees of freedom associated with the interface Γ, the number
of degrees of freedom associated with the inner nodes in Ωw is given by Nw0 = Nw −
NΓ. Consequently, in (4.13), c = [cf , cw, cΓ]

T ∈ R
Nf+Nw is the vector of unknowns

specifying the discrete solution, with cf ∈ R
Nf , cw ∈ R

Nw0 , cΓ ∈ R
NΓ . b ∈

R
Nf+Nw is a function of the forcing terms, the boundary conditions, and the solution

computed at the previous steps and can be correspondingly split as b = [bf ,bw,bΓ]
T
,

bf ∈ R
Nf , bw ∈ R

Nw0 , bΓ ∈ R
NΓ . Finally, A ∈ R

(Nf+Nw)×(Nf+Nw) has the
following blockwise pattern:

A =




Aff 0 AfΓ

0 Aww AwΓ

AΓf AΓw AΓΓ


 ,(4.14)

where Aff is the Nf × Nf matrix associated with the discretization of the bilinear
form âf (ψf , φf ) + (ψf , φf )ζ for ψf , φf ∈ Vhf . Correspondingly, AfΓ arises from the

discretization of the term − (λ, φf )ζ (with λ ∈ Λh), while Aww is associated with

the discretization of âw (ψw0, φw0) for ψw0, φw0 ∈ Vhw,0 (functions with null trace on
Γ) and AwΓ refers to the discretization of âw (Lwλ, φw0) for λ ∈ Λh. AΓΓ is related
to the discretization of âw (Lwλ,Lwρ) + (λ, ρ)ζ for λ, ρ ∈ Λh. Finally, we note that

AΓf = ATfΓ and AΓw = ATwΓ and Aww and AΓΓ are symmetric.
The algebraic reinterpretation of the Robin–Robin iterative scheme readily fol-

lows. Our substructuring iterative method resorts to a preconditioned Richardson
scheme for (4.13),

Q (ck+1 − ck) = θ(b−Ack) = θrk, k ≥ 0,(4.15)

in which the matrix

Q =




Aff 0 0

0 Aww AwΓ

AΓf AΓw AΓΓ


(4.16)

is the preconditioner.
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If we formally eliminate cf and cw in (4.13), we obtain the reduced system

ΣcΓ = η(4.17)

with η = bΓ−AΓfA
−1
ff bf −AΓwA

−1
wwbw and Σ = AΓΓ−AΓwA

−1
wwAwΓ−AΓfA

−1
ffAfΓ.

Consequently, we obtain the splitting Σ = Σw+Σf , where Σw = AΓΓ−AΓwA
−1
wwAwΓ,

Σf = AΓfA
−1
ffAfΓ. Matrix Σ is the Schur complement of matrix A. Equation (4.17)

represents the finite-dimensional counterpart of (3.19), and Σ is the algebraic counter-

part of the SP operator Ŝh, while Σf and Σw play the role of Ŝhf and Ŝhw, respectively.
By means of the block LU factorization of A, we can explicitly compute the

iteration matrix associated with the following iterative scheme:

I − θQ−1A =




(1− θ)If 0 −θA−1
ffAfΓ

0 (1− θ)Iw −θA−1
wwAwΓΣ

−1
w AΓfA

−1
ffAfΓ

0 0 I − θΣ−1
w Σ


 .

In particular, on the third block the system (4.15) yields

Σw (cΓ,k+1 − cΓ,k) = θ (η − ΣcΓ,k) .(4.18)

The latter relation enlightens the role of the matrix Σw as a preconditioner for the
Schur complement in the interface problem (4.17). As the algebraic counterpart of

the operator Ŝhw, Σw is symmetric and positive definite.
From this perspective, we can reformulate Proposition 4.1 in the following manner.
Proposition 4.2. The preconditioned Richardson scheme (4.15) converges for

any θ belonging to a suitable interval (0, θmax). The preconditioner Q given in (4.16)
is optimal, making the rate of convergence independent of the space discretization.

4.3. Acceleration strategies. The reinterpretation of the Robin–Robin scheme
based on the Richardson framework has the advantage of highlighting that Σw is an
optimal preconditioner for Σ. (As well, Q is an optimal preconditioner for A.) On this
ground, we will take advantage of these preconditioners when more efficient iterative
procedures will be applied. We will start analyzing the effects of the static relax-
ation parameter in the Richardson framework, and then we will consider dynamical
strategies such as GMRES (see [16]).

Stationary Richardson methods. In order to compare the unrelaxed and the re-
laxed schemes, observe that the behavior of the iteration matrix I−θQ−1A is governed
by the third diagonal block I − θΣ−1

w Σ. In our case, Σw and Σ are positive definite,
but Σ is not symmetric since Aff is not symmetric (due to the convection term).
Therefore we cannot assert a priori that Σ−1

w Σ has real positive eigenvalues; thus, an
optimal static choice of θ is not straightforward (see, e.g., [9]). However, as a heuristic
choice, parameter θ is selected assuming that Σ is symmetric, setting

θ =
2

λmin + λmax
,

where σ = {λi} i = 1, . . . , NΓ is the spectrum of Σ−1
w Σ, for which a rough estimate

can be obtained as follows. We observe that since I−Σ−1
w Σ = −Σ−1

w Σf , the iteration
matrix associated with (4.18), in the unrelaxed case, and since τ = {µi} (for i =
1, . . . , NΓ) is its spectrum, the following inequalities hold:

λi = 1− µi and µi ≤ ‖−Σ−1
w Σf‖p ∀i = 1, . . . , NΓ ∀p > 0,(4.19)
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Mp :=
‖ ckΓ − ck−1

Γ ‖p
‖ ck−1

Γ − ck−2
Γ ‖p

≤ ‖−Σ−1
w Σf‖p.(4.20)

Consequently, making the approximation, Mp " ‖−Σ−1
w Σf‖p, and noticing that

λmin + λmax = 2− µmax − µmin we make the following choice: θ " 2
2−Mp

.

Table 4.1 resumes the comparison of these methods for a diffusion dominated case
(A) and an advection dominated one (B). From these results we see that, when the
global matrix A is ill-conditioned, the relaxation technique enhances the convergence
performances with respect to the unrelaxed case.

Dynamical choice of θ. In this approach the choice of θ is pursued automatically
by the chosen algorithm.

Recalling that the matrix A is positive definite but not symmetric, we consider, for
instance, the preconditioned generalized minimal residual (P-GMRES) method (see,
for example, [12], [16]), where Q is the preconditioner for the global system Ac = b.
As we have already pointed out in Remark 4.1, Q being the optimal preconditioner
derived from the previous analysis, the convergence rate of the P-GMRES algorithm is
independent of the number of degrees of freedom of the global system Ac = b. Table
4.1 shows that the P-GMRES method performs better than the stationary strategies
for both test cases.

Finally, we point out that for these tests the coefficients µf , µw, ζ have been
chosen with the purpose of making the matrix A very ill-conditioned; this explains
the different performance of the considered iterative methods. However, when µf ,
µw, ζ are chosen in the biological range for the specific application at hand, the
condition number of A is lower; thus the number of iterations necessary to reach
convergence is smaller for each one of the considered methods. On the other hand,
for the bioengineering applications, a very large number of unknowns is required;
consequently, most of the computational time is spent for solving the subsystems
Qz = r deriving from the preconditioning step. This explains why we have based
the choice of an efficient iterative method not only on the number of iterations but
also on the computational cost of each single iteration. In particular, a reduction of
the time necessary to pursue each iteration is, for example, obtained by resorting to
flexible preconditioned iterative solvers (see [16]). Among all the iterative methods
considered above, the only one that allows a flexible variant is the P-GMRES. Let us
briefly introduce it.

In the framework of descent methods, the computation of the descent direction
z is carried out by solving a system Qz = r (r being the residual) which in our case,
from definition (4.16), requires the solution of two subsystems:

Affzf = rf ,(4.21) 


Aww AwΓ

AΓw AΓΓ




 zw

zΓ


 =


 rw

rΓ


−


 0

AΓfrf


 ,(4.22)

which can be carried out by means of iterative methods such as BiCGStab or GMRES.
The end of this flexible strategy is to compute the global solution Ac = b by solving
(4.21) and (4.22) with a large tolerance, reducing henceforth the computational cost
of the solution process. This can be done through the algorithm described below.
Let us define with Q̂−1

j j = 1, 2, 3, . . . an approximation of Q−1 (obtained in our case
by a low cost solution of (4.21), (4.22)) then the flexible P-GMRES (F-P-GMRES)
algorithm reads (see [16]) as follows.
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Table 4.2
Quantitative comparison between P-GMRES and F-P-GMRES for different test cases. This

example shows that the F-P-GMRES method and the proposed choice of q work well for different
geometries, discretized with different triangulations sharing, however, a comparable number of nodes.
Note that the tolerance of the outer iterative procedure is always the same (equal to 10−10).

P-GMRES F-P-GMRES
(p = 10) (p = 10, q = 5)

Rectangular domains (h = 0.012)
Iterations 2 2

Time/iteration (s) (aver.) 239.18 115.51
Carotid bifurcation

Iterations 3 3
Time/iteration (s) (aver.) 35.93 15.96

Stenosed artery
Iterations 3 3

Time/iteration (s) (aver.) 92.43 40.04

Algorithm 4.1. F-P-GMRES.
Compute z0 = Q̂−1

0 (b−Ax0), β = ‖z0‖2, v1 = r0/β.
For j = 1, . . . ,m Do:

compute w = Avj,

compute zj = Q̂−1
j w.

For i = 1, . . . , j Do:
hi,j = (w,vi),
w = w − hi,jvi,

End Do.
Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j.
Define Zm = [z1, . . . , zm], Hm = {hi,j}1≤i≤j+1;1≤j≤m.

End Do.
Compute ym = argminy‖βe1 −Hmy‖2, and xm = x0 + Zmym.

If ‖Q̂−1
m (b−Axm)‖2 < tol = 10−p p ∈ N then end, else x0 ← xm.

A possible strategy to choose Q̂−1
j at each iteration is as follows. Should 10−p be

the tolerance fixed in Algorithm 4.1, the tolerance of the iterative method applied to
solve systems (4.21), (4.22) is set to 10−q, with q = [p/2].

For the application at hand, by adopting this strategy one obtains that F-P-
GMRES requires less CPU time to converge than P-GMRES (see Table 4.2).

As shown in Table 4.2, the application of the F-P-GMRES method (always based

on the preconditioner provided by Ŝhw) is very efficient. Comparing it with GMRES
we see in fact that, although we have reduced the tolerance of the preconditioning
step, consequently reducing the efficiency of the preconditioner, the number of global
iterations does not increase. Thus the reduction in the computational cost at each
iteration directly provides a reduction in the time needed to solve Ac = b. Moreover,
Table 4.2 shows that the considered algorithms behave well in the case of different
geometries. In particular, we have considered test cases that are relevant for hemo-
dynamics, the stenosed artery, and the carotid bifurcation.

5. Numerical results in case of physiological interest. In the present sec-
tion we show some numerical results about blood and oxygen dynamics in the carotid
bifurcation, a site of relevant interest in biomedical applications. We point out that
our main concern is to test the efficiency of the proposed iterative method and not to
give significant results from a quantitative point of view. For this reason, the model
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Fig. 5.1. A 2D model for the lumen (right) and the wall (left) of a carotid bifurcation. The
dashed line represents the fluid-wall interface, the thick solid line represents the inflow of the lumen,
while the thin solid line represents the outflow of the lumen or the outer surface of the arterial wall.

and the geometry are simplified (and in particular we deal with a 2D geometry ob-
tained from data proposed in [7]), even if we include realistic numerical values for
the physical constants at hand. In a forthcoming paper, on the basis of the good re-
sults illustrated in what follows, we plan to extend the methodology to more complex
models and 3D geometries.

In the present section, as a realistic example, we apply our iterative substructuring
method to the case of a carotid bifurcation, which is a preferential site of atheroscle-
rosis, specifically in the external side of the carotid sinus. A current hypothesis about
the possible reasons of this prominence to disease development is related to a reduc-
tion in the oxygen absorption by the sinus arterial wall, induced by the local flow
patterns (see, e.g., [15]).

For the carotid test case we have considered stationary and pulsatile flow con-
ditions. The selection of the boundary data is based on those proposed in [7]. In
the stationary case, a parabolic profile is imposed on the upstream section, ux =
kumax(R

2 − y2), uy = 0 where k = 10.4, umax = 10 cm s−1, R = 0.31 cm, while null
velocity, u = 0, is prescribed on the wall boundary and zero traction force is pre-
scribed on the outflow section, (ρν∇u−PI) ·n = 0 (see Figure 5.1 for a description of
the boundaries ∂Ωf and ∂Ωw). The pulsatile case differs from the stationary one for
the inflow conditions, ux = kg(t)(R2 − y2), uy = 0, where g(t), represented in Figure
5.2, describes the blood flow at the entrance of the carotid during a heartbeat. In
both cases, a constant blood kinematic viscosity ν = 0.033 cm2 s−1 has been chosen.

With regard to the concentration in the lumen, a reference concentration of oxy-
gen, C0 = 0.04 g cm−3, has been prescribed on the inflow, condition (2.23) has been
prescribed on the wall boundary, and ∇C · n = 0 has been prescribed on the outflow
boundary. This condition is also prescribed on the outer wall in Ωw. The oxygen
dynamics have been simulated choosing the diffusivity µf = µw = 10−5cm2 s−1, and
ζ = 10−4(1+ |σ|) cm s−1, where σ is the shear stress exerted by the blood on the wall.
From the numerical viewpoint, we consider Ωf discretized with 20494 nodes and Ωw
discretized with 15030 nodes (see Figure 5.3). With regard to boundary conditions,
Dirichlet ones are imposed in an essential way, while Neumann and Robin conditions
are imposed in a natural way, as is customary in the framework of Galerkin discretiza-
tion and, in particular, in the framework of the FEM; see [12]. Finally, the numerical
method adopted ensures a first order accuracy in time, being based on an implicit
Euler scheme. The finite elements adopted are piecewise linear. The Navier–Stokes
solver is based on the so-called Yosida method (see [10]) on P

1isoP2 elements.
Concerning the numerical results, the velocity field in the bifurcation shows a

recirculation zone (see Figures 5.3 and 5.4) both in the steady and pulsatile cases.
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Fig. 5.2. Maximum inflow velocity (cm/s) during a heartbeat (left) and computational grid for
the 2D carotid simulation (right).
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Fig. 5.3. Velocity field (top-left), pressure field (P−Pext) (top-right), and oxygen concentration
(bottom) in the carotid bifurcation in the steady case.



1978 A. QUARTERONI, A. VENEZIANI, AND P. ZUNINO

2 3 3.5
−0.7

0

0.8

2 3 3.5
−0.7

0

0.8

0.99

0.991

0.991

0.992

0.992

0.993

0.994

0.994

0.995

0.995

0.996

0.997

0.997

0.998

0.998

0.999

1

2 3 3.5
−0.7

0

0.8

2 3 3.5
−0.7

0

0.8

0.99

0.991

0.991

0.992

0.992

0.993

0.994

0.994

0.995

0.995

0.996

0.997

0.997

0.998

0.998

0.999

1

2 3 3.5
−0.7

0

0.8

2 3 3.5
−0.7

0

0.8

0.99

0.991

0.991

0.992

0.992

0.993

0.994

0.994

0.995

0.995

0.996

0.997

0.997

0.998

0.998

0.999

1

Fig. 5.4. Blood velocity and oxygen concentration in the carotid bifurcation in the pulsatile
case at 1/5, 2/5, 3/5 of a heartbeat. In this case only the concentration in Ωf is visualized. The
recirculation zone which possibly inhibits the oxygen absorption is evident in the different instants
of the heartbeat.

The presence of recirculations induces in the steady case a sensibly lower oxygen
concentration in proximity of the sinus wall and, consequently, the reduction of the
oxygen absorption by the wall, which could be related to the disease development.
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In the pulsatile case the flow pattern is more complex: a recirculation zone, moving
upstream and downstream (yielding a lack of oxygen), is still present next to the
external side of the (inner) carotid sinus. In this case, the oxygen absorption is further
reduced by the low permeability induced by the small values of |σ|. Indeed, the flow
dynamics in the carotid sinus induce small and oscillating shear stresses which actually
determine a permeability reduction according to the law ζ = 10−4(1 + |σ|) cm s−1

(see also [18]).

6. Conclusions. In this paper we analyzed from the numerical viewpoint the
solution of problem (2.2). The multidomain and the heterogeneous nature of this
problem induced us to rely on iterative methods to compute the global solution. Con-
sequently, in the framework of iterative substructuring methods, we introduced special
SP operators in order to take into account conditions (2.23, 2.24). The analysis of
the properties of these operators allowed us to apply domain decomposition theory
in order to prove the convergence of the iterative methods adopted to solve problem
(2.2). Additionally, we proved that the mesh size does not affect the rate of conver-
gence of the methods. Finally the problem of reducing the computational time was
taken into account. To this end, we considered a variant of the GMRES algorithm,
the so called F-P-GMRES, and we verified, with numerical tests, that this method is
particularly efficient in solving the problems arising from the blood solute dynamics.
The simplified test case considered, namely the carotid bifurcation, has been discussed
from both the numerical and the physiological point of view.
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Dunod, Paris, 1968.
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Abstract. It has been observed that optimization codes are sometimes able to solve inequality
state constrained optimal control problems with discretizations which do not converge when used
as integrators on the constrained dynamics. Understanding this phenomenon could lead to a more
robust design for direct transcription codes as well as better test problems. This paper examines how
this phenomenon can occur. The difference between solving index 3 differential algebraic equations
(DAEs) using the trapezoid method in the context of direct transcription for optimal control problems
and a straightforward implicit Runge–Kutta (IRK) formulation of the same trapezoidal discretization
is analyzed. It is shown through numerical experience and theory that the two can differ as much
as O(1/h3) in the control. The optimization can use a small sacrifice in the accuracy of the states
in the early stages of the trapezoidal method to produce better accuracy in the control, whereas
more precise solutions converge to an incorrect solution. Convergence independent of the index of
the constraints is then proven for one class of problems. The theoretical results are used to explain
computational observations.
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1. Introduction. Many optimal control problems contain inequality path con-
straints on the states and/or controls. Along the constraints, the resulting system
becomes a differential algebraic equation (DAE) even if the original dynamics were
an ordinary differential equation (ODE). Depending on which set of variables are con-
strained, a low or high index DAE results. For more on DAEs and their indices, see
[7]. It has been observed that optimization codes are sometimes able to solve state
constrained optimal control problems with discretizations which do not converge when
used as an integrator on the constrained dynamics. Understanding this phenomenon
could lead to a more robust design for direct transcription codes as well as better test
problems.

This paper studies the differences between solving index 3 differential algebraic
equations using the trapezoid (TR) method, which arise because of inequality con-
straints in the direct transcription of optimal control problems versus a straightfor-
ward implementation of the implicit Runge–Kutta (IRK) formulation of the trapezoid
rule. The index 3 case is studied because it often occurs in applications and also be-
cause the behavior of interest here is already present [6].

The direct transcription software SOCS (Sparse Optimal Control Software) de-
veloped by Boeing [1, 2, 3, 5] is used throughout the paper. The results obtained

∗Received by the editors December 28, 2000; accepted for publication (in revised form) October 2,
2001; published electronically February 27, 2002.

http://www.siam.org/journals/sisc/23-6/38304.html
†Mathematics and Engineering Analysis, The Boeing Company, P.O. Box 3707, MS 7L-21, Seattle,

WA 98124-2207 (John.T.Betts@boeing.com).
‡PROS Revenue Management, 3100 Main Street, Suite 900, Houston, TX 77021 (nbiehn@

prosrm.com).
§Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 (slc@

math.ncsu.edu). This author’s research was supported in part by NSF grants DMS-9714811, DMS-
9802259, and INT-9605114.

1981



1982 J. T. BETTS, N. BIEHN, AND S. L. CAMPBELL

here are relevant to other direct transcription algorithms with similar strategies. In
particular, SOCS passes the discretized problem directly to the nonlinear program
(NLP) solver and does not first integrate the dynamics to reduce the dimension of
the problem. We shall see that this difference is not just a question of whether to
solve a larger sparse problem versus a smaller dense problem, as it is often portrayed.
Rather this difference also alters questions of convergence in a fundamental way. The
discretization formulas normally used by SOCS are mathematically equivalent to the
Lobatto IIIA formulas TR and Hermite–Simpson (HS). These methods are symmetric,
stiffly stable, and produce desirable sparsity patterns in the Jacobians of the defect
constraints in the associated NLP. They are implemented as collocation methods in
SOCS. However, neither of these methods converges when applied as an integrator
to an index 3 DAE [6]. This paper is concerned primarily with TR. Computational
experience and a more technical analysis show the same phenomenon occurring when
using HS.

There are other discretizations that one might consider besides TR and HS. How-
ever, switching the discretization in an industrial-grade sparse code like SOCS is a
nontrivial task since efficiency requires that the Jacobians have their sparsity struc-
ture explicitly exploited. Also, other choices which are not collocation methods lead
to other difficulties. Given that the current discretizations work so well on such a
large variety of problems, it is important to determine the classes of problems on
which they can be used.

The TR method implemented as an IRK converges for DAEs of index 0, 1, and
2. For problems with an index greater than 2, simple examples can be constructed
for which the trapezoid method converges to an incorrect solution [6]. Numerical
experience has shown that when used in SOCS, TR can converge to the true optimal
solution, while the straightforward IRK formulation does not [6]. In fact, we have
observed TR working on index 4, 5, and, in the case of boundary controlled PDEs, on
even higher index problems. There are two questions to be resolved. One is how SOCS
is able to converge. That is, what makes convergence possible? The second is why
SOCS converges. There has been prior research on the convergence of discretizations
of optimization problems. We cite here only [9, 10, 13]. Additional references are in
section 5. Previous work on the state constrained problem always assumes that the
discretization converges on a problem with the constraint holding identically. This
type of analysis does not apply to the particular phenomena we are investigating here.
Also, as noted later, analysis which uses convergence of the discrete multipliers is also
not appropriate.

In the next section we give the formulation of the optimal control problem and
the associated DAE along the constraint. Section 3 sets up and proves the first main
theorem of the paper which theoretically predicts the difference between the direct
transcription and IRK solutions. Numerical experiments and discussion are given in
section 4. A greatly condensed version of this first portion of this paper with less
discussion and no proofs appears in [4]. Section 5 develops the convergence of the TR
discretization when index 3 state constraints are active.

In order to avoid confusion between the different uses of TR we shall use SOCS TR
for the SOCS solution using the TR discretization and IRK TR for the TR solution
implemented as an IRK when constraints are active.

Finally, there is an application motivating our investigations which is the opti-
mization of tool paths. In these problems, complexity and problem size sometimes
forces the termination of the iterations in SOCS at coarser meshes than those re-
quired for termination according to the termination criteria. For this reason we are
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very interested not only in behavior on sufficiently fine meshes but also on “coarser”
meshes. Also, in some problems highly accurate constraint satisfaction is important.
For these problems the SOCS philosophy of satisfying all constraints on every mesh
level and at every mesh point is important. This should be contrasted with methods
which only impose constraints at some mesh points or asymptotically.

2. The control problem. As noted in [4, 6] convergence of the optimizer in the
presence of high index constraints occurs already with linear problems. For our pur-
poses here it suffices to consider optimal control problems with an objective function,

∫ tf

t0

L(y, u, t) dt(1a)

with state equations

y′(t) = f(y(t), u(t), t)(1b)

and inequality constraints

g(y(t), u(t), t) ≥ gL,(1c)

y(t0) = y0.(1d)

In SOCS the continuous optimal control problem is transcribed to a finite-dimen-
sional NLP. Let y(tk) = yk and u(tk) = uk where TN = {ti}N0 with t0 < · · · < tN = tf .
Then

x = [yT0 , uT0 , yT1 , uT1 , . . . , yTN , uTN ]T(2)

are the NLP variables with N +1 mesh points. Using TR, we approximate (1b) using
the defect constraints

0 = yk − yk−1 − hk
2

(f(yk, uk, tk) + f(yk−1, uk−1, tk−1)), 1 ≤ k ≤ N,(3)

with hk = tk − tk−1. The objective function (1a) is approximated using a trapezoidal
quadrature. The NLP is solved using a sparse sequential quadratic programming
(SQP) algorithm whose solution is a discrete approximation to the continuous optimal
control problem [3]. A sophisticated mesh refinement algorithm then refines the mesh
for the next iteration [5].

Consider the following optimal control problem from [6]. SOCS correctly finds
the solution.

min
u

∫ 4

0

x2(t) + 10−3u2(t) dt,(4a)

x′ = v,(4b)

v′ = u,(4c)

0 ≤ x− 15 + (t− 4)4,(4d)

x(0) = 5, v(0) = 0.(4e)

The constraint (4d) is active on an interval including
[
34
15 , 4

]
. Since all variables are

determined once the constraint is active, we examine the following index 3 DAE in
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(x, v, u) on [t0, tf ] =
[
34
15 , 4

]
:

x′ = v,(5a)

v′ = u,(5b)

x = 15− (t− 4)4,(5c)

x(t0) = 15− (t0 − 4)4,(5d)

v(t0) = −4(t0 − 4)3,(5e)

u(t0) = −12(t0 − 4)2.(5f)

One can also attempt to numerically solve (5) using the TR directly on the DAE.
Figures 1 and 2 give plots of the u obtained by each of the methods with N = 10.
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Fig. 1. Control given by SOCS TR and the true solution.
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Fig. 2. Control given by IRK TR and the true solution.
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The SOCS solution approximates the true solution while applying TR directly to
the DAE (5) does not. This behavior persists at larger N . A rigorous understanding
of how these two methods which appear to be mathematically equivalent can differ
by so much is the goal of this paper.

3. Analysis of an index 3 system.

3.1. Background and perturbation theorem. Since the numerical solutions
for the control were differing by large amounts, there must be a fundamental difference
between using TR directly on the DAE and in a direct transcription formulation.
The NLP solution is known to satisfy the given constraints up to a tolerance which
is much looser than the accuracy to which the IRK equations are usually solved. It
was suggested in [6] that this NLP “slop” provides one possible explanation for the
large differences in the computed control between IRK TR and SOCS TR. We will see
that the “slop conjecture” can account for computational observations on fine meshes
when SOCS is close to convergence but cannot explain what is observed on coarser
meshes. A careful analysis of an index 3 problem proves enlightening.

Consider the following state equations with constraints:

x′ = Ax + Bu,(6a)

0 ≤ Cx− ĝ(t),(6b)

where A is m×m, B is m× q, C is r×m, and ĝ(t) is r×1. Suppose that the optimal
solution pushes the state x onto the constraint (6b) over an interval [a, b]. This gives
us a DAE (6) in (x, u) along this interval. Let’s first formulate the DAE and then
discretize the DAE using TR.

The resulting DAE system can be written as

Ey′ = Ây − g(t)(7)

with

E =

[
Im 0
0 0

]
, Â =

[
A B
C 0

]
, g(t) =

[
0

ĝ(t)

]
, y =

[
x
u

]
.

Then TR for (7) implemented as an IRK is

EY ′
1 − Âyn−1 = −g(tn−1),(8a)

EY ′
2 − Âyn−1 − h

2
Â(Y ′

1 + Y ′
2) = −g(tn),(8b)

yn = yn−1 +
h

2
(Y ′

1 + Y ′
2),(8c)

where the Y ′
i are the stage derivatives for i = 1, 2. In this section we will assume h

is constant since that suffices for examining how convergence is possible. h will be
allowed to vary in subsequent sections. Exploiting the special structure of E we let

Y ′
i = [X

′
i

U ′
i
], i = 1, 2. Then (8) becomes

X ′
1 = Axn−1 + Bun−1,(9a)

0 = Cxn−1 − ĝ(tn−1),(9b)

X ′
2 = Axn−1 + Bun−1 +

h

2
(A(X ′

1 + X ′
2) + B(U ′

1 + U ′
2)),(9c)
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0 = Cxn−1 +
h

2
C(X ′

1 + X ′
2)− ĝ(tn),(9d)

xn = xn−1 +
h

2
(X ′

1 + X ′
2),(9e)

un = un−1 +
h

2
(U ′

1 + U ′
2).(9f)

Notice that (9e)–(9f) can be substituted into (9c)–(9d) to form the new equations

X ′
1 = Axn−1 + Bun−1,(10a)

X ′
2 = A

(
xn−1 +

h

2
(X ′

1 + X ′
2)

)
+ Bun,(10b)

xn = xn−1 +
h

2
(X ′

1 + X ′
2),(10c)

0 = Cxn − ĝ(tn).(10d)

The information from (9b) was obtained from the previous step and hence may be
eliminated.

The direct transcription software SOCS must satisfy (11a)–(11b) in x̃ and ũ at
every mesh point for a solution to be considered feasible.

x̃n − x̃n−1 − h

2
(Ax̃n−1 + Bũn−1 + Ax̃n + Bũn) + δn−1 = 0,(11a)

Cx̃n − ĝn + εn−1 = 0.(11b)

The parameters δn and ε are included as tolerances for the accuracy to which we solve
(11a) and (11b). We initially view these as the tolerances in the NLP solve. Let us
define

X̃ ′
1 = Ax̃n−1 + Bũn−1,(12)

X̃ ′
2 = Ax̃n + Bũn(13)

so that we may now write (11a) as

x̃n − x̃n−1 − h

2
(X̃ ′

1 + X̃ ′
2) + δn−1 = 0.(14)

Solving for x̃n in (14) and substituting in (13) we have

X̃ ′
1 = Ax̃n−1 + Bũn−1,(15)

X̃ ′
2 = A

(
x̃n−1 +

h

2
(X̃ ′

1 + X̃ ′
2)

)
+ Bũn + Aδn−1.(16)

Taking (15), (16) and (14), (11b), the SOCS discretization looks like,

X̃ ′
1 = Ax̃n−1 + Bũn−1,(17a)

X̃ ′
2 = A

(
x̃n−1 +

h

2
(X̃ ′

1 + X̃ ′
2)

)
+ Bũn + Aδn−1,(17b)

x̃n = x̃n−1 +
h

2
(X̃ ′

1 + X̃ ′
2) + δn−1,(17c)

Cx̃n = ĝn + εn−1.(17d)
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Comparing (10) to (17) we see that we may consider the SOCS solution as a
perturbation of the IRK solution. If we subtract the IRK system from the SOCS
discretization we get a system for the difference between the SOCS TR and the IRK
TR solutions in the form

Gzn = Hzn−1 + γn−1(18)

with

G =




I −h2 −h2 0
0 I − h

2A −h2A −B
0 0 I 0
C 0 0 0


 , H =




I 0 0 0
A 0 0 0
A 0 0 B
0 0 0 0


 ,(19)

γn =




δn
Aδn

0
εn


 , zn =




x̃n − xn
X̃ ′

2 −X ′
2

X̃ ′
1 −X ′

1

ũn − un


 .(20)

Suppose that G is invertible and solve (18) for zn,

zn+1 = G−1Hzn + G−1γn.(21)

The solution of (21) is zk = (G−1H)kz0 +
∑k−1
j=0 (G−1H)k−j−1G−1γj . We assume that

z0 = 0 and obtain the difference between the IRK and SOCS TR solutions starting
from the same initial conditions as

zk =

k−1∑
j=0

(G−1H)k−j−1G−1γj .(22)

The analysis and discussion that follows differs from the usual error analysis of
IRK methods in that it is not enough that we convert (22) to an order estimate since
we need to know the actual size of the perturbation zk and we need to consider mesh
widths that may not be small.

Equation (22) holds for all DAEs of index 1 or higher. We know from previous
theory [6] that IRK TR does converge for DAEs of index 1 and 2 but not for DAEs
of index greater than 2. We assume the DAE (7) is an index 3 problem. For (7)
to be index 3 we must have that CB is singular. Since for time invariant problems
we can decouple the different index subsystems using linear time invariant coordinate
changes, we may assume in our analysis that CB = 0. Without loss of generality we
may further assume that C is full row rank, B is full column rank, and there exist
matrices P̂ and Q̂ so that

P̂CQ̂−1 =
[

I 0
]
, Q̂B =

[
0
I

]
,(23)

where Q̂ represents a coordinate change. Thus we may assume that

C =
[

I 0
]
, B =

[
0
I

]
.(24)
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A linear time invariant index 3 DAE with CB = 0 must also have CAB invertible.
Define

Q = I − h

2
A(25)

and let

Q =

[
Q1 Q2

Q3 Q4

]
, A =

[
A1 A2

A3 A4

]
,(26)

where the partitioning conforms to C and B. From the special form given for C and
B we know that CAB is invertible if and only if A2 is invertible. Q is invertible for
all but a finite number of nonzero h. The value of Q2 = C(I − h

2A)−1B is given
analytically in terms of A by

Q2 = −2hA2(−4I + 2hA4 + 2hA1 − h2A1A4 + h2A2A3)
−1,

which is invertible for small nonzero h since A2 is invertible. Then Q2 is invertible
for all but a finite number of h.

Theorem 3.1. Suppose that the DAE (7) is index 3, h is constant, and (10),
(17), and (24) hold. Assume that CAB and C(I − h

2A)−1B are invertible. Let W =

Q4Q
−1
2 Q1−Q3, Y = Q4Q

−1
2 −2W . Then the difference in the states between the IRK

TR and SOCS TR solutions is

x̄k − xk =

k−1∑
j=0

(−1)k−1−j
([

0 0
−Q4Q

−1
2 I

]
δj

+

[
0 0

−h2W 0

]
Aδj +

[
0

−Y + Q4Q
−1
2

]
εj

)
.(27)

The difference between the controls is

ūk − uk =

k−1∑
j=0

(−1)k−1−j 2

h

{
[−2(k − j − 1)Q4Q

−1
2 −Q−1

2 2(k − j − 1)I]δj

+
h

2
[−2(k − j − 1)W −Q−1

2 Q1 − I]Aδj

+ [−2(k − j − 2)Y + 2Q−1
2 Q1 + 2(k − j − 1)Q4Q

−1
2 ]εj

}
.(28)

Note that the controls can differ considerably depending on the size of δ and ε.
If we suppose that we are on the interval [0, 1], then the value of k at the end of the
interval would act like 1/h. Q−1

2 may possess a 1/h factor as well. Thus a single δj
will introduce a difference between the controls of at least

ūk − uk ∼ O

(
1

h3
‖δj‖

)
.

The difference in the controls for a constant perturbation δ is also O(h−3) due to
cancellation. The worst case given by δj with alternating sign is O(h−4). However,
this is not possible on coarse meshes because of the one-sided nature of constraint
chatter.
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Proof of Theorem 3.1. Since B is full column rank and C is full row rank, if h is
small enough so that I − h

2A is invertible, then G is invertible. Thus G is invertible
for all but a finite number of nonzero h. Row operations yield

G−1 =




I − h
2QBPC h

2 (Q− h
2QBPCQ) h

2 (Q− h
2QBPCQ) h

2QBP
−QBPC −h2QBPCQ + Q −h2QBPCQ + h

2QA QBP
0 0 I 0
−PC −h2PCQ −h2PCQ P


 ,

where P = 2
h (CQB)−1. To simplify, note the identities

Q = I +
h

2
QA,

− h

2
PCQB = −I,(

−h

2
QBPCQ +

h

2
QA

)
B = −B.

Let N = I + h
2A. Then

G−1H =




(I − h
2QBPC)QN 0 0 0

(QA−QBPCQ)N 0 0 −B
A 0 0 B

−PCQN 0 0 −I


 .

To evaluate (22) we need to compute products (G−1H)k. The special forms of C
and B allow us to simplify the different terms in G−1H. The (1, 1) term is

(G−1H)1,1 =

[
0 0

−2Q4Q
−1
2 Q1 + Q4Q

−1
2 + 2Q3 −I

]
.(29)

As we compute a power of G−1H, the (1, 1) term is itself powered. Let (G−1H)ki,j
be the i, j term of (G−1H)k. Examining (29), it is clear that

(G−1H)k1,1 = (−1)k
[

0 0
2Q4Q

−1
2 Q1 −Q4Q

−1
2 − 2Q3 I

]
.

Next we examine powers of the (4, 1) term, since the other terms will depend
upon it. Let

W = Q4Q
−1
2 Q1 −Q3,

Y = Q4Q
−1
2 − 2W,

Z = 2Q−1
2 Q1 −Q−1

2 .

A direct calculation gives

(G−1H)k4,1 =
2

h
[(−1)k+12(k − 1)Y + (−1)kZ (−1)k2kI],

(G−1H)k3,1 =

[
(−1)kA2Y (−1)k+1A2

(−1)k(A4Y + (k − 2) 4
hY − 2

hZ) (−1)k+1(A4 + I(k − 1)4/h)

]
.
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Then

QBPCQN =
2

h

[
2Q1 − I 2Q2

Q4Z 2Q4

]
.

In addition, we see that QAN = 4
hQ− 4

hI −A, which leads to

QAN −QBPCQN =

[ − 2
hI −A1 −A2

4
hQ3 −A3 − 2

hQ4Z − 4
hI −A4

]
.

Thus

(G−1H)k2,1 =

[
(−1)k+1A2Y (−1)kA2

(−1)k((A4 + 4(k−1)
h I)(2W −Q4Q

−1
2 ) + 2

hZ) (−1)k(A4 + 4k
h I)

]
.

We next compute (G−1H)kG−1, which is also done term by term. Some key
cancellations can be made. For example, by multiplying both sides of (I − h

2A)Q = I
on the right by

[
0 −I
0 Q−1

2 Q1

]
,

we see that h
2A2(Q4Q

−1
2 Q1 − Q3) = I. Below we give the 16 different terms of

(G−1H)kG−1.
1. (1, 1)

(−1)k
[

0 0
−Q4Q

−1
2 −I

]
.

2. (1, 2), (1, 3)

(−1)k
[

0 0
−h2W 0

]
.

3. (1, 4)

(−1)k
[

0
−Y + Q4Q

−1
2

]
.

4. (2, 1)

(−1)k
[ −A2Q4Q

−1
2 A2

−(A4Q4Q
−1
2 + 4k

h Q4Q
−1
2 + 2

hQ
−1
2 ) A4 + 4k

h I

]
.

5. (2, 2), (2, 3)

(−1)k
[ −I 0
−h2 (A4 + 4k

h I)W + Q−1
2 Q1 −I

]
.

6. (2, 4)

(−1)k
[ −A2(Y −Q4Q

−1
2 )

(2A4 + 8(k−1)
h I)W − 4

h (Q4Q
−1
2 + Q−1

2 Q1)

]
.
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7. (3, 1)

(−1)k
[

A2Q4Q
−1
2 −A2

(A4 + 4k−1
h )Q4Q

−1
2 + 2

hQ
−1
2 −A4 − 4k−1

h

]
.

8. (3, 2), (3, 3)

(−1)k
[

I 0
2
h (A4 + 4(k−1)

h I)W + Q−1
2 Q1 −I

]
.

9. (3, 4)

(−1)k
[ −A2(Y −Q4Q

−1
2 )

−2(A4 + 4
hI)W − 4

hQ4Q
−1
2 − 4

hQ
−1
2 Q1

]
.

10. (4, 1)

(−1)k
2

h
[−2kQ4Q

−1
2 −Q−1

2 2kI].

11. (4, 2), (4, 3)

(−1)k[−2kW −Q−1
2 Q1 − I].

12. (4, 4)

(−1)k
2

h
[−2(k − 1)Y + 2Q−1

2 Q1 + 2kQ4Q
−1
2 ].

Finally, computing the first and last entries of (G−1H)kG−1γ gives Theorem
3.1.

4. Numerical experiments. The preceding analysis shows that the feasible
solutions examined by SOCS can differ substantially from the IRK solutions. Once h
is sufficiently small, approximations of the true optimal solution become feasible. In
order to determine if this is the full story we conduct some computational tests on
coarser meshes.

Recall the optimal control problem given previously in (4). The constraint is
active on the subinterval [3415 , 4]. The numerical solution for x, v, and u obtained
from SOCS TR and IRK TR were subtracted with N = 10. The results are given
in Table 1. Recall that the tolerances δk and εk are those for SOCS to solve (11a),
(11b).

SOCS solves (11a) up to the square root of machine precision. In addition, when
the constraint is active, (11b) is also solved to the square root of machine precision.
Theorem 3.1 gives absolute error bounds. After substituting

εk = δk =
√

εmach

into the formulas of Theorem 3.1, we observe that the difference between the two
solutions are much larger than the estimates allow. For problem (4) on a mesh of size
N = 10, Theorem 3.1 predicted a difference on the order of 10−5. As seen in Figures
1 and 2 and Table 1, the two solutions differ by much more than that. The NLP
tolerances are not enough to explain what we are seeing computationally on coarse
meshes.
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Table 1
Absolute difference of solutions.

Time |x̃− x| |ṽ − v| |ũ− u|
2.2667 0.0000 0.0000 0.0000

2.4593 0.0070 0.0726 0.7540

2.6519 0.0000 0.1452 3.0159

2.8444 0.0000 0.1452 6.0318

3.0370 0.0000 0.1452 9.0477

3.2296 0.0000 0.1452 12.0637

3.4222 0.0000 0.1452 15.0796

3.6148 0.0000 0.1452 18.0955

3.8074 0.0000 0.1452 21.1114

4.0000 0 0.1452 24.1273

Table 2
Predicted and absolute differences of solutions.

|ṽ − v| |ũ− u|
Actual Pred. Actual Pred.

0.0000 0 0.0000 0

0.0726 0.0726 0.7540 0.7544

0.1452 0.1453 3.0159 3.0177

0.1452 0.1453 6.0318 6.0355

0.1452 0.1453 9.0477 9.0533

0.1452 0.1453 12.0637 12.0710

0.1452 0.1453 15.0796 15.0888

0.1452 0.1453 18.0955 18.1065

0.1452 0.1453 21.1114 21.1243

0.1452 0.1453 24.1273 24.1420

We now turn to identifying what is happening on coarser meshes. Upon closer
examination of the solution obtained from SOCS, we see that not all variables x̃k lie
directly on the constraint. In fact, x̃1 is consistently above the constraint for meshes
larger than N = 5, as illustrated by the second line of the |x̃− x| column in Table 1.

We again set the tolerances

δk =

[ √
εmach√
εmach

]
(30)

since they are the defaults in SOCS. However, in light of the fact that x̃1 does not lie
on the constraint, we set ε1 equal to the distance x̃1 is from the true solution. In the
case when N = 10 we have

ε1 = 0.007, εk =
√

εmach, k ≥ 2.(31)

The results of applying Theorem 3.1 using these new tolerances and N = 10 are given
in Table 2.

The small error created by the constraint chatter in the early stages of SOCS
TR propagates down the numerical solution as seen in (22) to create large differences
between IRK and SOCS later in time. In addition, as h gets smaller the distance from
the constraint also gets smaller.
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Fig. 3. TR on the DAE with perturbation.
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Fig. 4. Perturbation size versus step size.

Table 2 seems to suggest that for this test problem the perturbation (31) accounts
for the ability of SOCS to find the optimum. As an additional check, rather than
simply integrating the DAE (7) using IRK TR, we force the TR equations to include
the addition of ε1 from (31) at the first time step. In other words, at t1 we have

0 = Cx1 − g(t1)− ε1

as part of the IRK equations given in (10a)–(10d). This results in a much more
accurate approximation of the control as seen in Figure 3. The perturbed IRK TR
solution of Figure 3 is also now very close to the SOCS TR solution of Figure 1.

The initial constraint chatter shown in Table 1 is present at a wide range of mesh
sizes. Figure 4 gives a plot of the size of the constraint chatter (perturbation) versus
the step size.

It appears that the constraint chatter is following the curve h3. It is interesting
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Fig. 5. State and control solutions of (32).

to note that Theorem 3.1 says perturbations can be enlarged by 1/(h3). Thus an h3

perturbation is reasonable for inducing a difference between IRK and SOCS on the
order of O(1).

The constraint chatter seen in the test problem (4) is not unique to that problem.
We have performed a number of numerical experiments on a variety of index 3 and
index 4 problems, both linear and nonlinear. In each problem we saw chattering
occurring on many levels. When solving an index 4 problem the constrained solution
bounced on and off the curve with greater frequency than the index 3 case. This
behavior also occurs with nonlinear problems. In addition, the chatter seems to occur
at both the beginning and the end of the state constrained interval for boundary value
problems.

For example, consider the nonlinear problem

min

∫ 4

0

(
x2

1 + x2
2 + u2

)
dt,(32a)

x′
1 = x3,(32b)

x′
2 = x4,(32c)

x′
3 = x2x1 − u + 1,(32d)

x′
4 = x1u− x2,(32e)

1

2
≥ x2 − x2x1.(32f)

State and control plots for (32) computed by SOCS are given in Figure 5.

A close-up examination of the constraint residual on the interval on which it
is active shows that there is again chatter which goes to zero with the mesh size.
However, now the chatter is asymmetrical and changes shape with the mesh. Figure 6
gives an enlarged view of the plot of x2−x2x1 which is equal to 1

2 when the constraint
is active.

5. Convergence to optimal solution on index 3 problems. We now pro-
ceed to show that even though the discretization cannot integrate the constrained
dynamics directly that the approximations of the optimal solution do converge.
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Fig. 6. Chatter along constraint for (32), N = 31 and N = 61.

We consider the optimal control problem (P)

min

∫ tf

t0

L(x(t), u(t)) dt,(33a)

x′(t) = Ax(t) + Bu(t),(33b)

0 ≤ Cx(t)− g(t),(33c)

x(t0) = x0,(33d)

where x(t) is a real vector-valued function of length m and u(t) is length r. Also, A
is m ×m, B is m × r, C is q ×m, and g(t) is a vector-valued function of length q
and is continuous. It is assumed that the functional L : �m+r → � is strictly convex.
Note that we now make no restrictions on A,B,C concerning the index when the
constraints are active. This is consistent with our numerical observations showing
convergence using TR on active inequality constraints of index 4, 5, and higher.

Many papers have discussed approximating a state constrained continuous infinite-
dimensional optimal control problem with a discrete one. One of the first discussions
[8] gave an algorithm to solve general problems which include (33). In that paper, the
state constraint needed to be differentiated until the control appeared. This relates
closely to the order of a constraint or the index of a DAE. Loosely stated, the index of
a DAE is the number of differentiations of the system equations needed to determine
the derivative of the algebraic variables uniquely. For more on order and DAEs, see
[7] and [14].

Convergence rates when approximating the infinite problem by a finite-dimen-
sional NLP were developed in [9, 11, 12]. [9] gives a convergence rate for the Euler
integration scheme using both state and control constraints. [11] uses the Euler inte-
gration scheme and develops convergence rates for problems with constraints on the
states only. Using Runge–Kutta methods, [12] considers control constrained problems.
Each of these papers assumes that the state constraints satisfy a stability requirement.
In terms of (33), this implies that the matrix CB must be nonsingular. Thus the DAE
that arises when the constraints are active is only index 2. Furthermore, each of the
papers listed, and other related work such as [13], assumes or proves under some
assumptions that all of the associated multipliers converge.
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In [16, 17, 20], Polak developed the theory of consistent approximations. A se-
quence of finite NLPs (involving only the discretized control variables) consistently
approximate an optimal control problem if the sequence of minimizers of the finite
problems converge to the minimizers of the original problem. Convergence of the
minimizers is related to convergence of the epigraphs of the associated problems. In
[16], the Euler integration scheme is used to show that general control constrained
problems can be consistently approximated by a sequence of NLPs. Explicit Runge–
Kutta methods can also be used for control constrained problems [20]. Finally, it has
been shown [17] that, using the Euler integration scheme, optimal control problems
with general state constraints can be consistently approximated.

Pytlak discusses algorithms that solve state constrained optimization problems
where the dynamics may be replaced by an index 1 DAE [18, 19]. The algorithm
optimizes only over the discretized control variables. This allows the use of a reduced
gradient algorithm based on the discretized control and adjoint variables [18]. Al-
though this algorithm seems to work quite well, the general strategy is very different
from that of SOCS.

In each of the above papers convergence depends on convergence of the multipliers.
Figure 7 shows two of the discrete multipliers for (4), indicated by ×’s, and the
continuous multipliers, which are the smooth curves. The discrete multipliers are not
converging to any function. Thus the proof that SOCS can use TR with high index
inequality constraints cannot be based on the convergence of multipliers. There is
some indication that the multipliers may converge in a weak sense.
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Fig. 7. Multipliers for (4).

In summary, our situation is different from the papers listed above in that (i) the
dynamics are discretized using the TR or HS methods, (ii) the discretized controls and
states are included as NLP variables, (iii) the discretized dynamics are included as
constraints of the NLP, (iv) experimental results show that the associated multipliers
of the equality and inequality constraints may not converge, (v) experiments show
apparent convergence for problems with purely state constrained problems where CB
is singular, and (vi) as seen in [6], the TR and HS methods may not converge when
applied to the DAEs which arise when constraints are active.

5.1. Consistent approximations. A detailed discussion of consistent approx-
imations is given in [17]. We review only needed notation.
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Consider the two problems

min
x∈X

f(x)(P )

and

min
x∈XN

fN (x).(PN )

The epigraphs of the functions f and fN are defined as E = {(x0, x) | x ∈ X, x0 ≥
f(x)} and EN = {(x0, x) | x ∈ XN , x0 ≥ fN (x)}, respectively. The convergence of a
sequence of NLPs to an optimal control problem is given in terms of the convergence
of the associated epigraphs. Theorems 5.1 and 5.2 are the two main theorems of
consistent approximations [17]. In the following let N be any infinite subset of the
natural numbers.

Theorem 5.1. The epigraphs EN , N ∈ N , of the problems PN converge to the
epigraph E of the problem P if and only if

1. for every x ∈ X, there exists a sequence {xN}N∈N with xN ∈ XN such that
xN → x as N →∞;

2. for every infinite sequence {xN}N∈K , K ⊂ N such that xN ∈ XN and xN →
x as N →∞, then x ∈ X;

3. lim fN (xN ) = f(x) if xN → x, xN ,∈ XN , and x ∈ X.
Theorem 5.2. If the epigraphs of PN converge to the epigraph of P , then if

{x̂N}N∈N is a sequence of global minimizers of the problems PN and x̂ is any accu-
mulation point of this sequence, then x̂ is a global minimizer of P .

If we can show items 1, 2, and 3 in Theorem 5.1, then we have shown that if the
global minimizers of the approximating problem converge, it must be to a minimum
of the original problem. It is important to note that for some problems, a stationary
point of the approximating problems PN may converge to a nonstationary point of
the problem P . However, this is not the case when the approximating problems PN
and the problem P have convex objective functions with convex constraint sets. The
convergence takes place in a Banach space. But X,XN need not be closed. Getting
the correct X,XN is a key technical point.

5.2. Problem statement. Consider again the optimal control problem (P ) in
(33). Let the mesh TN be t0 < t1 < · · · < tn = tf where N = n+1. Let hi = ti+1− ti.
The associated NLP from discretization using the trapezoid rule is

min
h0

2
L(x0, u0) +

hn−1

2
L(xn, un) +

n−1∑
i=1

hi−1 + hi
2

L(xi, ui),

0 = xi+1 − xi − hi
2

(A(xi + xi+1) + B(ui + ui+1)),

0 ≤ Cxi − g(ti),

where i = 0, 1, . . . , n− 1. Let

xN = [x0, x1, . . . , xn]T , uN = [u0, u1, . . . , un]T

be the matrices which approximate x(t) and u(t) at the mesh points. Let the ordered
set of mesh points be denoted TN and the norm of the mesh be

‖TN‖ .
= max

i
hi = max

i
(ti+1 − ti).
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Note that xi ∈ Rm, ui ∈ Rr. For ease of notation, if z(t) is a vector-valued function
over the interval [t0, tf ], let z(TN ) be the matrix of values of z(t).

The linear interpolation of xi and ui are

ūN (t) =

n∑
i=0

uiφi(t), x̄N (t) =

n∑
i=0

xiφi(t),

where the φi(t) are the linear hat functions with the property

φi(tj) =

{
1 if i = j,
0, i �= j.

Given (xN , uN ) ∈ �(m×N)×�(r×N), the pair (x̄N (t), ūN (t)) is in the finite-dimensional
space Φ× Φ where Φ = span{φ0, φ1, . . . , φn}.

If z(t) is a vector-valued function of length l and s ∈ [t0, tf ], then the norm of the
vector z(s) is ‖z(s)‖∞ = maxi |zi(s1)|, 1 ≤ i ≤ l. The function space norm is given by
‖z(t)‖ = supt ‖z(t)‖∞. Finally, if A is a matrix, then ‖A‖∞ is the norm induced by
‖ · ‖∞.

Figure 5 is typical in that the optimal controls with higher index inequality con-
straints are rarely smooth. But they are often continuous and piecewise smooth.
Continuity is also not enough for the analysis to follow. Accordingly, we take the set
of admissible controls as the set of functions which are Lipschitz continuous. That is,
for each u, there exists some L <∞ such that

‖u(s1)− u(s2)‖∞ ≤ L|s1 − s2| for all s1, s2.(34)

If u is Lipschitz continuous, let

‖u(t)‖L = sup
s1,s2∈[t0,tf ]

‖u(s1)− u(s2)‖∞
|s1 − s2| , s1 �= s2.

While we need ‖u‖L <∞, computational examples show that the approximations do
not converge in ‖u‖L. Thus the underlying Banach space has to have a weaker type
of convergence which is compensated for by the definition of the finite-dimensional
approximating spaces. The basic underlying Banach space is

B = {(x, u) | x ∈ C0[t0, tf ], u ∈ C0[t0, tf ]}
with

‖(x, u)‖B = max{‖x‖, ‖u‖}.
The finite-dimensional subspace BN ⊂ B is defined to be

BN = {(x, u) | x ∈ Φ, u ∈ Φ}.
We now define problems P and PN . Let P be

min
(x,u)∈X

f(x, u),

f(x, u) =

∫ tf

t0

L(x, u) dt,
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where f : B → � and X ⊂ B is

X = {(x, u) | x′ = Ax + Bu, Cx− g(t) ≥ 0, x(t0) = x0, ‖u‖L ≤ Λ}.

Here Λ is a fixed finite positive number. The reader should think of Λ as being large
but fixed. In particular, it is larger than ‖u∗‖L for the optimal control u∗, which is
also assumed Lipschitz. It is assumed that the set X is nonempty.

Let TN be any ordered mesh. Define PN to be

min
(x̄N ,ūN )∈XN

fN (x̄N , ūN ),

fN (x̄N , ūN ) =
h0

2
L(x̄N (t0), ūN (t0)) +

hn−1

2
L(x̄N (tn), ūN (tn))

+

n−1∑
i=1

hi + hi−1

2
L(x̄N (ti), ūN (ti)),

where fN : BN → � and XN ⊂ BN is the set of (x̄N , ūN ) such that

x̄N (ti+1)− x̄N (ti)− hi
2

(A(x̄N (ti+1) + x̄N (ti)) + B(ūN (ti+1) + ūN (ti))) = 0,

Cx̄N (ti+1)− g(ti+1) ≥ 0, x̄N (t0) = x0,

‖ūN (ti+1)− ūN (ti)‖∞ ≤ Λ|ti+1 − ti|, 0 ≤ i ≤ n− 1.

Here ti ∈ TN and Λ is the same as in the definition of X. The constraint ‖ūN (ti+1)−
ūN (ti)‖∞ ≤ Λ|ti+1 − ti| is not present in SOCS and is included only for theoretical
reasons.

Since all affine, nonempty, linearly constrained sets are convex we have that the
sets X and XN defined above are convex. Convexity plays an important role. Since
L(x, u) is strictly convex and the constraint sets are convex, there exist unique global
minimizers for the problems P and PN . Thus, if the problems PN approximate the
problems P , by Theorem 5.1 the limit of global minimizers of the PN is the global
minimizer of P .

The usual results in the literature on using trapezoidal discretizations assume
twice differentiable solutions, which are not present in our application. The control
in Figure 5 is typical for inequality constrained problems in that it is only piecewise
smooth. Accordingly we must first examine the convergence of the TR method for
linear ODEs of the form x′ = Ax + f(t) where f(t) is only Lipschitz continuous. Let
zIN (t) be the linear interpolation of the function z(t) over the mesh TN .

Lemma 5.3. If v is Lipschitz continuous with Lipschitz constant ‖v‖L, then its
linear interpolation vIN on a mesh TN satisfies ‖vIN (t)− v(t)‖ ≤ ‖v‖L‖TN‖.

Proof. Take s ∈ [t0, tf ] and let t̂ be the closest mesh point to s, t̂ = minti |ti − s|.
Then

‖vIN (s)− v(s)‖∞ = ‖vIN (s)− v(t̂) + v(t̂)− v(s)‖∞
≤ ‖vIN (s)− v(t̂)‖∞ + ‖v(t̂)− v(s)‖∞
= ‖vIN (s)− vIN (t̂)‖∞ + ‖v(t̂)− v(s)‖∞
≤ ‖vIN (t)‖L |s− t̂|+ ‖v‖L|t̂− s| ≤ 2‖v‖L|t̂− s| ≤ ‖v‖L‖TN‖.
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Lemma 5.4. If z(t) is a Lipschitz continuous function, then its trapezoid quadra-
ture is locally order 2. That is, if ti, ti+1 ∈ TN , then

∥∥∥∥
∫ ti+1

ti

z(s) ds− hi
2

(z(ti) + z(ti+1))

∥∥∥∥
∞

< ‖z‖L‖TN‖2.

Proof. The trapezoid rule is exact for the linear interpolants so that

∫ ti+1

ti

zIN (s) ds =
hi
2

(zIN (ti) + zIN (ti+1)) =
hi
2

(z(ti) + z(ti+1)).

Define E =
∫ ti+1

ti
z(s) ds− hi

2 (z(ti) + z(ti+1)). Then

E =

∫ ti+1

ti

(z(s)− zIN (s)) ds +

∫ ti+1

ti

zIN (s) ds− hi
2

(z(ti) + z(ti+1))

=

∫ ti+1

ti

(z(s)− zIN (s)) ds.

Taking norms and using Lemma 5.3 we have

‖E‖∞ ≤
∫ ti+1

ti

‖z(s)− zIN (s)‖ ds ≤
∫ ti+1

ti

‖z‖L‖TN‖ ds ≤ ‖z‖L‖TN‖2.

Before we prove the next lemma, we must assume that the mesh norm multiplied
by the size of the mesh is bounded. That is, for all N ∈ N , there exists C6 > 0 such
that

‖TN‖N ≤ C6.(35)

Moreover, for any positive integer k we have TN ⊂ TN+k. That is, when we have
a sequence of meshes {TN} we assume that TN+k is gotten by refining TN . This is
consistent with the strategy in SOCS. Assumptions such as (35) are common when
nonuniform meshes are used.

Lemma 5.5. Let 0 < δ < 1. If we apply the TR method to the initial value
problem

x′(t) = Ax(t) + f(t), x(t0) = x0, t ∈ [t0, tf ](36)

with f(t) Lipschitz continuous, then for ‖TN‖ small enough so that ‖TN‖
2 ‖A‖∞ ≤ 1−δ,

the error ej = xj − x(tj) satisfies

‖ej‖∞ ≤ K1‖TN‖(37)

for all j where xj is the solution of the trapezoid difference equation applied to (36).
Proof. The TR method applied to the ODE x′ = Ax + f(t) is

xi+1 − xi =
hi
2

(Axi+1 + Axi + f(ti+1) + f(ti)).

The true solution discretized is

x(ti+1)− x(ti) =
hi
2

(Ax(ti+1) + Ax(ti) + f(ti+1) + f(ti)) + γi.
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Here γi is the local truncation error of the trapezoid method. Define ei = x(ti) − xi
to obtain

ei+1 − ei =
hi
2

(Aei+1 + Aei) + γi, e0 = 0.(38)

Equation (38) is equivalent to

ei+1 =

(
I − hi

2
A

)−1(
I +

hi
2

A

)
ei +

(
I − hi

2
A

)−1

γi.

Taking norms gives

‖ei+1‖∞≤
∥∥∥∥∥
(
I − hi

2
A

)−1
∥∥∥∥∥
∞
‖ei‖∞+

∥∥∥∥∥
(
I − hi

2
A

)−1
hi
2

A

∥∥∥∥∥
∞
‖ei‖∞+

∥∥∥∥∥
(
I − hi

2
A

)−1
∥∥∥∥∥
∞
‖γi‖∞.

Since ‖TN‖
2 ‖A‖∞ < 1 we have that ‖(I − hi

2 A)−1‖∞ ≤ C1 for some constant C1. We
may also write

∥∥∥∥∥
(
I − hi

2
A

)−1
∥∥∥∥∥
∞
≤ ‖TN‖

2
‖A‖∞

(
1 +

∞∑
k=2

(‖TN‖
2
‖A‖∞

)k)
+ 1.

There exists a C2 such that

1 +

∞∑
k=2

(‖TN‖
2
‖A‖∞

)k
≤ C2.

Finally, let C5 = ‖A‖∞(C1+C2)
2 to get

‖ei+1‖∞ ≤ (1 + C5‖TN‖) ‖ei‖∞ + C1 ‖γi‖∞.

Recalling that e0 = 0, we have that at the nth step

‖en‖∞ ≤ C1

n−1∑
i=0

(1 + C5‖TN‖)n−i−1‖γi‖∞

≤ C1 max
i
‖γi‖∞

N−1∑
i=0

(1 + C5‖TN‖)n−i−1.

But from the formula for a finite geometric series and (35) we have

N−1∑
i=0

(1 + C5‖TN‖)i =
(1 + C5‖TN‖)N − 1

C5‖TN‖

≤ (1 + C7

N )N − 1

C5‖TN‖ <
eC7 − 1

C5‖TN‖ =
C8

‖TN‖ ,

where C7 = C5C6 and C8 = eC7−1
C5

. Therefore

‖en‖∞ ≤ C1C8

‖TN‖ max
i
‖γi‖∞.(39)
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But

‖γi‖∞ =

∥∥∥∥x(ti+1)− x(ti)− hi
2

(Ax(ti+1) + x(ti) + f(ti+1) + f(ti))

∥∥∥∥
∞

=

∥∥∥∥x(ti+1)− x(ti)− hi
2

(x′(ti+1) + x′(ti))
∥∥∥∥
∞

=

∥∥∥∥
∫ ti+1

ti

x′(t) dt− hi
2

(x′(ti+1) + x′(ti))
∥∥∥∥
∞

,

which is simply the trapezoid quadrature on the function x′(t). Since x′(t) is Lipschitz,
Lemma 5.4 gives ‖γi‖∞ < K4‖TN‖2 and (37) follows from (39).

Lemma 5.5 states that for every mesh point ti, ‖x̄N (ti) − x(ti)‖∞ ≤ K1‖TN‖ if
the function x̄N (t) satisfies the trapezoid equations. We now show this holds for all t.
Recall that u(t) is Lipschitz continuous; hence x(t) and x′(t) are also Lipschitz, since
x′ = Ax + Bu.

Lemma 5.6. If x̄N (t) satisfies the assumptions of Lemma 5.5, then ‖x(t) −
x̄N (t)‖ ≤ K2‖TN‖.

Proof. Since x̄N (t) satisfies the trapezoid equations, by Lemma 5.5 we have
‖x̄N (ti) − x(ti)‖∞ ≤ K1‖TN‖. In addition, x(t) is Lipschitz continuous, and hence
its linear interpolation is close, ‖xIN (t) − x(t)‖ ≤ K4‖TN‖. At each mesh point
xIN (ti) = x(ti) and so ‖x̄N (ti) − xIN (ti)‖∞ ≤ K1‖TN‖. Since linear functions are
furthest from each other at the boundary, we have ‖x̄N (t) − xIN (t)‖ ≤ K1‖TN‖ and
thus

‖x̄N (t)− x(t)‖ = ‖x̄N (t)− xIN (t) + xIN (t)− x(t)‖
≤ ‖x̄N (t)− xIN (t)‖+ ‖xIN (t)− x(t)‖
≤ K1‖TN‖+ K4‖TN‖ ≤ K2‖TN‖.

Finally, we make the following assumption on the constraint sets.
Assumption 5.1. Given problem P defined above suppose that for every (x, u) ∈

X, there exists a sequence of functions {(yM (t), vM (t))} ∈ X such that

CyM (t)− g(t) > 0, yM (t0) = x0, y′M (t) = AyM (t) + BvM (t)(40)

for all integers M and (yM (t), vM (t))→B (x(t), u(t)) as M →∞.
The above assumption is on the set X ∈ B and has no relation to the mesh. It says

that all feasible solutions are the limit of feasible solutions that satisfy the inequality
constraints with a strict inequality. This does not appear to be very restrictive.

5.3. Satisfying the assumptions of Theorem 5.1. We begin by showing
item 1 in Theorem 5.1.

Lemma 5.7. Let assumption (40) hold and let (x, u) ∈ X. Then there exists a
sequence {x̄N , ūN}N∈N so that for each N , (x̄N , ūN ) ∈ XN and (x̄N , ūN )→B (x, u).

Proof. Let (x, u) ∈ X. By (40) we have that there is a sequence of continuous
functions {yM , vM} ∈ X such that (yM , vM ) → (x, u) and CyM − g > 0 for all M .
For each M there exists a ρ(M) > 0, so that if a function y lies within the ball of
radius ρ(M) around yM , y ∈ Bρ(M)(yM ), we have that Cy − g > 0.

Let ε > 0. Define a sequence x̄N , ūN ∈ XN with N ≥ M as ūN (ti) = vM (ti)
and x̄N (TN ) as the unique matrix in �m×N that satisfies the trapezoid equations
associated with ūN and x̄N (t0) = x0. Choose M large enough so that

‖yM (t)− x(t)‖ <
ε

2
, ‖vM (t)− u(t)‖ <

ε

2
.
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Since ūN (ti) = vM (ti) and x̄N (TN ) is the unique matrix which solves the trapezoid
equations, we choose N large enough so that Lemma 5.6 holds with ‖TN‖ < ε/2K2

and ‖x̄N (t)− yM (t)‖ < min
{
ρ(M), ε2

}
and ‖ūN (t)− vM (t)‖ < ε

2 . Thus

‖x̄N (t)− x(t)‖ = ‖x̄N (t)− yM (t) + yM (t)− x(t)‖
≤ ‖x̄N (t)− yM (t)‖+ ‖yM (t)− x(t)‖ ≤ ε

2
+

ε

2
= ε

and

‖ūN (t)− u(t)‖ = ‖ūN (t)− vM (t) + vM (t)− u(t)‖
≤ ‖ūN (t)− vM (t)‖+ ‖vM (t)− u(t)‖ ≤ ε

2
+

ε

2
= ε.

Finally, note that ‖uN‖L < Λ since it is the linear interpolation of vM with ‖vM‖L <
Λ.

We now show item 2 in Theorem 5.1. Let {(x̄N , ūN )}N∈N ⊂ XN be such that
(x̄N , ūN )→B (x, u). We must show that (x, u) ∈ X. We begin by examining conver-
gence when x̄N is unconstrained.

Lemma 5.8. If (x̄N , ūN ) ∈ BN with (x̄N , ūN )→B (x, u) and

‖uN (ti+1)− u(ti)‖∞ ≤ Λ|ti+1 − ti| for all ti ∈ TN ,(41)

then u is Lipschitz continuous with ‖u‖L ≤ Λ.
Proof. Suppose this is not the case. Then there exists an s1, s2 ∈ [t0, tf ] such that

‖u(s1)− u(s2)‖∞ > Λ̂|s1 − s2| where Λ̂ > Λ. Let ε > 0 be such that Λ + ε < Λ̂. Then

‖u(s1)− u(s2)‖∞ = ‖u(s1)− ūN (s1) + ūN (s1)− u(s2)‖∞
≤ ‖u(s1)− ūN (s1)‖∞ + ‖ūN (s1)− ūN (s2)‖∞ + ‖ūN (s2)− u(s2)‖∞.

Note that if (41) holds for uN , then ‖uN‖L ≤ Λ. Choose N large enough so that
‖ūN − u‖ < ε

2 |s1 − s2|. Then

‖u(s1)− u(s2)‖∞ < ε|s1 − s2|+ Λ|s1 − s2| < Λ̂|s1 − s2|,

which is a contradiction. Thus u is Lipschitz continuous with constant less than or
equal to Λ.

The following lemma was adapted from [15] and uses a standard Gronwall’s lemma
argument.

Lemma 5.9. If x1 and x2 are solutions of x
′
i = Axi + Bui, xi(t0) = x0 where

u1 and u2 are Lipschitz continuous functions, then ‖x1 − x2‖ ≤ ‖B‖∞(tf − t0)‖u1 −
u2‖e‖A‖∞(tf−t0).

We now restrict the space BN to the subspace for which (x̄N (t), ūN (t)) satisfies
the trapezoid equations and x̄N (t0) = x0.

Lemma 5.10. If (x̄N , ūN ) →B (x, u), x̄N (t0) = x0, and (x̄N , ūN ) satisfies the
trapezoid rule

x̄N (ti+1)− x̄N (ti)− hi
2

(A(x̄N (ti+1) + x̄N (ti)) + B(ūN (ti+1) + ūN (ti))) = 0,(42)

then the pair (x, u) satisfies x′(t) = Ax + Bu, x(t0) = x0.
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Proof. We have that (x̄N , ūN ) satisfies (42). Adding zero we have

x̄N (ti+1)− x̄N (ti)− hi
2

(A(x̄N (ti+1) + x̄N (ti)) + B(u(ti+1) + u(ti))

+B(ūN (ti+1)− u(ti+1) + ūN (ti)− u(ti))) = 0.

Let M be any positive integer and replace ūN (t) above with ūM (t), which is fixed.
Define eM (t) = ūM (t)− u(t) to obtain

x̄N (ti+1)− x̄N (ti)−hi
2

(A(x̄N (ti+1) + x̄N (ti))

+ B(u(ti+1) + u(ti)) + B(eM (ti+1) + eM (ti))) = 0.

Since u and ūM are Lipschitz we have that eM is also Lipschitz. If ‖TN‖ is small, then
by Lemma 5.6, ‖x̄N (t) − y(t)‖ ≤ K2‖TN‖ where y satisfies the differential equation
y′ = Ay + Bu + BeM , y(t0) = x0. Let z be the solution of the differential equation
z′ = Az + Bu, z(t0) = x0. Lemma 5.9 implies that

‖y − z‖ ≤ ‖B‖∞(tf − t0)‖eM‖e‖A‖∞(tf−t0).

Now note that M was arbitrary. Since ūN (t) → u(t) uniformly, let us choose M̂
large enough so that

‖eM̂ (t)‖ <
ε

2‖B‖∞(tf − t0)(e‖A‖∞(tf−t0))
,

which gives ‖y(t) − z(t)‖ < ε
2 . Finally choose N ≥ M̂ large enough so that ‖TN‖ ≤

ε/2K2 to get ‖x̄N (t)−y(t)‖ < ε
2 , and hence ‖x̄N (t)−z(t)‖ < ε. Thus x̄N (t) converges

to both x(t) and z(t), which implies that x(t) = z(t) and (x, u) satisfies the differential
equation with initial conditions.

Finally, we consider only the (x̄N , ūN ) pairs which satisfy Cx̄(ti) ≥ g(ti), which
is the set XN defined earlier.

Lemma 5.11. If (x̄N (t), ūN (t)) ∈ XN and converges to (x(t), u(t)) in B, then
(x(t), u(t)) ∈ X.

Proof. First note that since Cx(t) − g(t) ≥ 0 holds on the dense set ∪NTN , it
holds for all t by continuity. By Lemmas 5.8 and 5.10, we have that (x, u) also satisfies
x′ = Ax + Bu, x(t0) = x0 with u Lipschitz continuous. Thus (x, u) ∈ X ⊂ B.

We now show item 3 in Theorem 5.1. Let

f(x, u) =

∫ tf

t0

L(x, u) dt,

and on a given mesh TN ,

fN (x̄N , ūN ) =
h0

2
L(x̄N (t0), ūN (t0)) +

hn−1

2
L(x̄N (tn), ūN (tn))

+

n−1∑
i=1

hi−1 + hi
2

L(x̄N (ti), ūN (ti)).

Assumption 5.2. L(x, u) is a strictly convex functional and if (x, u) ∈ B, then
for all (y, v) such that

‖(x, u)− (y, v)‖B ≤ ∆, ∆ > 0,
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L has the property that

|L(x, u)− L(y, v)| ≤ K3‖(x, u)− (y, v)‖B.
In addition, if (x, u) is Lipschitz in t, then L is also Lipschitz in t.

Although ∆ can be any finite positive integer, the reader should think of ∆ as
being a large number.

For ease of notation, we use wi as the weights associated with the trapezoid rule.
Lemma 5.12. Given (x, u) ∈ B and f and fN defined above, then |f(x, u) −

fN (x, u)| ≤ K6‖TN‖
Proof. Since x and u are fixed, the functions f(x, u) and fN (x, u) can be consid-

ered functions of t and the mesh TN . Hence,

|f(x, u)− fN (x, u)| =
∣∣∣∣∣
∫ tf

t0

L(t) dt−
n∑
i=0

wiL(ti)

∣∣∣∣∣ ,
where wi are the weights corresponding to the trapezoid quadrature formula. Define
LIN (t) as the linear approximation to L(t) on a mesh TN . Recall that the trapezoid
approximation is exact for linear functions. Adding zero we have

|f(x, u)− fN (x, u)| =
∣∣∣∣∣
∫ tf

t0

L(t)− LIN (t) dt +

∫ tf

t0

LIN (t) dt−
n∑
i=0

wiL(ti)

∣∣∣∣∣
=

∣∣∣∣
∫ tf

t0

L(t)− LIN (t) dt

∣∣∣∣ ≤
∫ tf

t0

|L(t)− LIN (t)| dt

≤
∫ tf

t0

K4‖TN‖ dt = (tf − t0)K4‖TN‖ = K6‖TN‖.

Theorem 5.13. Given ε > 0, (x, u) ∈ X, and any sequence {(x̄N , ūN )} ∈ XN

which converges in norm to (x, u), then there is an N large enough so that |f(x, u)−
fN (x̄N , ūN )| < ε.

Proof. We have that

|fN (x, u)− fN (x̄N , ūN )| =
∣∣∣∣∣
n∑
i=0

wi(L(x(ti), u(ti))− L(x̄N (ti), ūN (ti)))

∣∣∣∣∣
≤

n∑
i=0

wi|L(x(ti), u(ti))− L(x̄N (ti), ūN (ti))|.

Since (x̄N , ūN )→B (x, u) we can choose N large enough such that

‖(x, u)− (x̄N , ūN )‖B < min

{
∆,

ε

2K3(tf − t0)

}
,

so that

|fN (x, u)− fN (x̄N , ūN )| ≤
n∑
i=0

wiK3‖(x(ti), u(ti))− (x̄N (ti), ūN (ti))‖B

implies

|fN (x, u)− fN (x̄N , ūN )| < ε

2(tf − t0)

n∑
i=0

wi .
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Note that the trapezoid quadrature is exact for constant functions, namely,

n∑
i=0

wi = tf − t0.

Hence |fN (x, u)− fN (x̄N , ūN )| < ε
2 . But then

|f(x, u)− fN (x̄N , ūN )| ≤ |f(x, u)− fN (x, u)|+ |fN (x, u)− fN (x̄N , ūN )|.
Choose N large enough so that ‖TN‖ < ε

2K6
. Then |f(x, u)− fN (x̄N , ūN )| < ε.

6. Conclusion. We have explained why software such as SOCS can converge
for inequality constrained optimal control problems where the discretization is not
convergent when integrating the constrained dynamics. The optimization uses small
perturbations of the inequality constraints to cancel out the large integration error.
In classical numerical theory the rapid growth of perturbations is considered bad.
Here it is good in that it allows the optimizer to make a small inequality perturbation
counteract the large error of the nonconvergent discretization. For linear problems
with convex cost functions, linear inequality constraints, and Lipschitz optimal control
we have proved convergence of the discrete approximations even though the discrete
multipliers may not converge in the usual sense.

It appears that the proof could be extended to more general situations. The three
key assumptions appear to be the Lipschitz optimal control, convexity, and that the
optimum can be approached from within the feasible set.

Consistent with numerical experience the results hold independent of the order
of the constraint, or equivalently the index of the DAE when the constraints are
active. This is somewhat surprising in that classical DAE integrator theory does have
a strong dependence on the index. Numerical experiments show that there is definite
degradation in convergence rate with increasing index, but the relationship is not
obvious. This remains to be investigated.
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PRINCIPAL ANGLES BETWEEN SUBSPACES IN AN A-BASED
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ESTIMATES∗

ANDREW V. KNYAZEV† AND MERICO E. ARGENTATI‡

SIAM J. SCI. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 23, No. 6, pp. 2008–2040

Abstract. Computation of principal angles between subspaces is important in many appli-
cations, e.g., in statistics and information retrieval. In statistics, the angles are closely related to
measures of dependency and covariance of random variables. When applied to column-spaces of
matrices, the principal angles describe canonical correlations of a matrix pair. We highlight that
all popular software codes for canonical correlations compute only cosine of principal angles, thus
making impossible, because of round-off errors, finding small angles accurately. We review a combi-
nation of sine and cosine based algorithms that provide accurate results for all angles. We generalize
the method to the computation of principal angles in an A-based scalar product for a symmetric
and positive definite matrix A. We provide a comprehensive overview of interesting properties of
principal angles. We prove basic perturbation theorems for absolute errors for sine and cosine of
principal angles with improved constants. Numerical examples and a detailed description of our
code are given.

Key words. principal angles, canonical correlations, subspaces, scalar product, orthogonal
projection, algorithm, accuracy, round-off errors, perturbation analysis
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1. Introduction. Let us consider two real-valued matrices F and G, each with
n rows, and their corresponding column-spaces F and G, which are subspaces in Rn,
assuming that

p = dimF ≥ dimG = q ≥ 1.

Then the principal angles

θ1, . . . , θq ∈ [0, π/2]

between F and G may be defined, e.g., [17, 13], recursively for k = 1, . . . , q by

cos(θk) = maxu ∈F maxv ∈G uT v = uTk vk

subject to

‖u‖ = ‖v‖ = 1, uTui = 0, vT vi = 0, i = 1, . . . , k − 1.

The vectors u1, . . . , uq and v1, . . . , vq are called principal vectors. Here and below ‖·‖
denotes the standard Euclidean norm of a vector or, when applied to a matrix, the
corresponding induced operator norm, also called the spectral norm, of the matrix.
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According to [26, 23], the notion of canonical angles between subspaces goes back
to Jordan (1875). Principal angles between subspaces, and particularly the smallest
and the largest angles, serve as important tools in functional analysis (see books
[1, 12, 18] and a survey [9]) and in perturbation theory of invariant subspaces, e.g.,
[6, 26, 24, 19, 22].

Computation of principal angles between subspaces is needed in many applica-
tions. For example, in statistics, the angles are closely related to measures of de-
pendency and covariance of random variables; see a canonical analysis of [5]. When
applied to column-spaces F and G of matrices F and G, the principal angles describe
canonical correlations σk(F,G) of a matrix pair, e.g., [17, 15], which is important in
applications such as system identification and information retrieval. Principal angles
between subspaces also appear naturally in computations of eigenspaces, e.g., [20, 21],
where angles provide information about solution quality and need to be computed with
high accuracy.

In such large-scale applications, it is typical that n� p; in other words, informally
speaking, we are dealing with a small number of vectors having a large number of
components. Because of this, we are interested in “matrix-free” methods; i.e., no
n-by-n matrices need to be stored in memory in our algorithms.

A singular value decomposition (SVD)-based algorithm [11, 3, 4, 13, 15] for com-
puting cosines of principal angles can be formulated as follows. Let columns of ma-
trices QF ∈ Rn×p and QG ∈ Rn×q form orthonormal bases for the subspaces F and
G, respectively. The reduced SVD of QTFQG is

Y TQTFQGZ = diag(σ1, σ2, . . . , σq), 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0,(1.1)

where Y ∈ Rp×q, Z ∈ Rq×q both have orthonormal columns. Then the principal
angles can be computed as

θk = arccos(σk), k = 1, . . . , q,(1.2)

where

0 ≤ θ1 ≤ · · · ≤ θq ≤ π

2
,

while principal vectors are given by

uk = QF yk, vk = QGzk, k = 1, . . . , q.

The equivalence [3, 13] of the original geometric definition of principal angles
and the SVD-based approach follows from the next general theorem on an equivalent
representation of singular values.

Theorem 1.1. If M ∈ Rm×n, then the singular values of M are defined recur-
sively by

σk = maxy ∈Rm maxz ∈Rn yTMz = yTkMzk, k = 1, . . . ,min{m,n},(1.3)

subject to

‖y‖ = ‖z‖ = 1, yT yi = 0, zT zi = 0, i = 1, . . . , k − 1.(1.4)

The vectors yi and zi are, respectively, left and right singular vectors.
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Proof. The proof of the theorem is straightforward if based on Allakhverdiev’s
representation (see [12]) of singular numbers,

σk =

∥∥∥∥∥M −
k−1∑
i=1

viu
T
i σi

∥∥∥∥∥ ,

and using the well-known formula of the induced Euclidean norm of a matrix as the
norm of the corresponding bilinear form.

To apply the theorem to principal angles, one takes M = QTFQG.

In the most recent publication on the subject, [10], the SVD-based algorithm for
cosine is proved to be mixed stable, and QR factorizations with the complete pivoting
are recommended for computing QF and QG.

The SVD-based algorithm for cosine is considered as the standard one at present
and is implemented in software packages, e.g., in MATLAB, version 5.3, 2000, code
SUBSPACE.m, revision 5.5,1 where QF ∈ Rn×p and QG ∈ Rn×q are computed using
the QR factorization.

However, this algorithm cannot provide accurate results for small angles because
of the presence of round-off errors. Namely, when using the standard double-precision
arithmetic with EPS ≈ 10−16 the algorithm fails to accurately compute angles smaller
than 10−8 (see section 2). The problem has been highlighted in the classical paper
[3], as well as a cure has been suggested (see also publications on cosine-sine (CS)
decomposition methods [25, 28, 26, 23]), but apparently it did not attract enough
attention.

In statistics, most software packages include a code for computing σk = cos(θk),
which are called canonical correlations; see, e.g., CANCOR Fortran code in FIRST
MDS Package of AT&T, CANCR (DCANCR) Fortran subroutine in IMSL STAT/
LIBRARY, G03ADF Fortran code in NAG package, CANCOR subroutine in Splus,
and CANCORR procedure in SAS/STAT Software. While accurately computing the
cosine of principal angles in corresponding precision, these codes do not compute the
sine. However, the cosine simply equals one in double precision for all angles smaller
than 10−8 (see next section). Therefore, it is impossible in principal to observe an
improvement in canonical correlations for angles smaller than 10−8 in double precision.
It might not be typically important when processing experimental statistical data
because the expected measurement error may be so great that a statistician would
deem the highly correlated variable essentially redundant and therefore not useful as
a further explanatory variable in their model. Statistical computer experiments are
different, however, as there is no measurement error, so accurate computation of very
high correlations may be important in such applications.

The largest principal angle is related to the notion of distance, or a gap, between
equidimensional subspaces. If p = q, the distance is defined [1, 12, 13, 18] as

gap(F ,G) = ‖PF − PG‖ = sin(θq) =
√

1− (cos(θq))2,(1.5)

where PF and PG are orthogonal projectors onto F and G, respectively.

This formulation provides insight into a possible alternative algorithm for com-
puting the sine of principal angles. The corresponding algorithm, described in [3],

1Revision 5.8 of SUBSPACE.m in the current MATLAB release 12.1, version 6.1.0.450, May 18,
2001, is still identical to revision 5.5, which we have used for numerical tests in the present paper.
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while being mathematically equivalent to the previous one in exact arithmetic, is ac-
curate for small angles in computer arithmetic as it computes the sine of principal
angles directly, without using SVD (1.1) leading to the cosine. We review the algo-
rithm of [3] based on a general form of (1.5) in section 3 and suggest an improved
version, similar to the CS decomposition algorithm of [28], with the second SVD of
the reduced size.

The CS decomposition methods, e.g., [25, 28, 26, 23], one of which we just men-
tioned, provide a well-known and popular alternative approach for computing princi-
pal angles between subspaces given by selected p (q) columns of orthogonal matrices of
the size n. For example, if the matrix QF⊥ , with orthonormal columns that span the
subspace F⊥, the orthogonal complement of F , is available to us, the CS decomposi-
tion methods compute the SVD of (QF )TQG together with the SVD of (QF⊥)TQG,
thus providing cosine and sine of principal angles. When p is of the same order as
n/2, matrix QF⊥ is about of the same size as matrix QF , and the CS decomposition
methods are effective and are recommended for practical computations. However,
when n � p, the CS decomposition methods, explicitly using matrix QF⊥ of the
size n-by-n− p, will be less efficient compared to “matrix-free” methods we consider
in the present paper. Let us highlight that the cosine- and sine-based methods of
[3] that we investigate here in section 3, while different algorithmically from the CS
decomposition methods, are very close mathematically to them.

A different sine-based approach, using eigenvalues of PF − PG, is described in
[4, 23]; see a similar statement of Theorem 3.4. It is also not attractive numerically,
when n � p, as it requires computing an n-by-n matrix and finding all its nonzero
eigenvalues.

In some applications, e.g., when solving symmetric generalized eigenvalue prob-
lems [20], the default scalar product uT v cannot be used and needs to be replaced with
an A-based scalar product (u, v)A = uTAv, where A is a symmetric positive definite
matrix. In statistics, a general scalar product for computing canonical correlations
gives a user an opportunity, for example, to take into account a priori information
that some vector components are more meaningful than others. In a purely mathe-
matical setting, generalization to A-based scalar products brings nothing really new.
In practical computations, however, it carries numerous algorithmic and numerical
problems, especially for ill-conditioned cases, which are important in applications.

In section 4, we propose extension of the algorithms to an A-based scalar product
and provide the corresponding theoretical justification.

In section 5, we turn our attention to perturbation estimates, which generalize the
following trigonometric inequalities: if an angle θ ∈ [0, π/2] is perturbed by ε ∈ [0, π/2]
such that θ + ε ∈ [0, π/2], then

0 ≤ cos(θ)− cos(θ + ε) ≤ sin(θ + ε) sin(ε) ≤ sin(ε),

0 ≤ sin(θ + ε)− sin(θ) ≤ cos(θ) sin(ε) ≤ sin(ε).

We prove new absolute perturbation estimates for the sine and cosine of principal
angles computed in the A-based scalar product. When A = I, our estimates are
similar to those of [3, 29, 27, 15, 14], but the technique we use is different. More
importantly, our constants are somewhat better, in fact, in the same way the constants
in the middle terms of the trigonometric inequalities above are less than one.

We consider particular implementation of algorithms used in our MATLAB code
SUBSPACEA.m in section 6, with emphasis on the large-scale case, n� p, and sparse
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ill-conditioned matrix A, which may be specified only as a function that multiplies A
by a given vector. When matrices F and G are sparse, our code can still be used even
though it performs orthogonalization of columns of matrices F and G that increases
the fill-in; cf. [15]. Also, we do not even touch here upon a practically important issue
of the possibility of recomputing the correlations with an increase in the data; see
again [15].

Finally, numerical results, presented in section 7, demonstrate the practical ro-
bustness of our code.

For simplicity, we discuss only real spaces and real scalar products; however, all
results can be trivially generalized to cover complex spaces as well. In fact, our code
SUBSPACEA.m is written for the general complex case.

As pointed out by an anonymous referee, several natural questions are left unan-
swered here.

• Our algorithms are based on SVD. How does SVD accuracy (cf. [2, 8, 7,
10]), especially for small singular values, or in ill-conditioned cases, affect the
results?
• In [10], a formal stability analysis is done for the SVD-based algorithm for

cosine, which is proved to be mixed stable. In our numerical tests, practical
robustness of our algorithms is encouraging. Are our methods accurate and
stable theoretically, e.g., see [16]?
• For A-based scalar products, how does the increase of the condition number

of A influence the accuracy? Which parts of our algorithm are responsible
for the main error growth?

We feel, however, that investigating these matters is not within the limited scope
of the present paper, which is already quite long. They may rather serve as interesting
directions for future research.

2. Inaccuracy in the cosine-based algorithm. Let d be a constant and

F = span
{

(1 0)
T
}
, G = span

{
(1 d)

T
}
.

Then the angle between the one-dimensional subspaces F and G can be computed as

θ = arcsin

(
d√

1 + d2

)
.(2.1)

In the table below d varies from one to small values. Formula (2.1) is accurate for
small angles, so we use it as an “exact” answer in the second column of the table. We
use the MATLAB built-in function SUBSPACE.m (revision 5.5) which implements
(1.1) to compute values for the third column of the table.

It is apparent that SUBSPACE.m returns inaccurate results for d ≤ 10−8, which
is approximately

√
EPS for double precision.

d Formula (2.1) SUBSPACE.m

1.0 7.853981633974483e-001 7.853981633974483e-001
1.0e-04 9.999999966666666e-005 9.999999986273192e-005
1.0e-06 9.999999999996666e-007 1.000044449242271e-006
1.0e-08 1.000000000000000e-008 -6.125742274543099e-017
1.0e-10 1.000000000000000e-010 -6.125742274543099e-017
1.0e-16 9.999999999999998e-017 -6.125742274543099e-017
1.0e-20 9.999999999999998e-021 -6.125742274543099e-017
1.0e-30 1.000000000000000e-030 -6.125742274543099e-017
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In this simple one-dimensional example the algorithm of SUBSPACE.m is reduced
to computing

θ = arccos

(
1√

1 + d2

)
.

This formula clearly shows that the inability to compute accurately small angles is
integrated in the standard algorithm and cannot be fixed without changing the algo-
rithm itself. The cosine, that is, a canonical correlation, is computed accurately and
simply equals to one for all positive d ≤ 10−8. However, one cannot determine small
angles from a cosine accurately in the presence of round-off errors. In statistical terms,
it illustrates the problem we already mentioned above that the canonical correlation
itself does not show any improvement in correlation when d is smaller than 10−8 in
double precision.

In the next section, we consider a formula [3] that directly computes the sine of
principal angles as in (2.1).

3. Properties of principal angles and a sine-based algorithm. We first
review known sine-based formulas for the largest principal angle. Results of [1, 18]
concerning the aperture of two linear manifolds give

‖PF − PG‖ = max
{

maxx∈G,‖x‖=1 ‖(I − PF )x‖, maxy∈F,‖y‖=1 ‖(I − PG)y‖} .
(3.1)

Let columns of matrices QF ∈ Rn×p and QG ∈ Rn×q form orthonormal bases
for the subspaces F and G, respectively. Then orthogonal projectors on F and G are
PF = QFQ

T
F and PG = QGQ

T
G, respectively, and

‖PF − PG‖ = max{‖(I −QFQ
T
F )QG‖, ‖(I −QGQ

T
G)QF ‖}.(3.2)

If p �= q, then expression of (3.2) is always equal to one; e.g., if p > q, then the
second term under the maximum is one. If p = q, then both terms are the same and
yield sin(θq) by (1.5). Therefore, under our assumption p ≥ q, only the first term
is interesting to analyze. We note that the first term is the largest singular value of
(I −QFQ

T
F )QG. What is the meaning of other singular values of the matrix?

This provides an insight into how to find a sine-based formulation to obtain the
principal angles, which is embodied in the following theorem [3].

Theorem 3.1. Singular values µ1 ≤ µ2 ≤ · · · ≤ µq of the matrix (I−QFQ
T
F )QG

are given by µk =
√

1− σ2
k, k = 1, . . . , q, where σk are defined in (1.1). Moreover,

the principal angles satisfy the equalities θk = arcsin(µk).
The right principal vectors can be computed as

vk = QGzk, k = 1, . . . , q,

where zk are corresponding orthonormal right singular vectors of matrix (I−QFQTF )QG.
The left principal vectors are then computed by

uk = QFQ
T
F vk/σk if σk �= 0, k = 1, . . . , q.

Proof. Our proof is essentially the same as that of [3]. We reproduce it here for
completeness as we use a similar proof later for a general scalar product.
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Let B = (I−PF )QG = (I−QFQ
T
F )QG. Using the fact that I−PF is a projector

and that QTGQG = I, we have

BTB = QTG(I − PF )(I − PF )QG = QTG(I − PF )QG

= I −QTGQFQ
T
FQG.

Utilizing the SVD (1.1), we obtain QTFQG = Y ΣZT , where Σ = diag(σ1, σ2, . . . , σq);
then

ZTBTBZ = I − Σ2 = diag(1− σ2
1 , 1− σ2

2 , . . . , 1− σ2
q ).

Thus, the singular values of B are given by µk =
√

1− σ2
k, k = 1, . . . , q, and the

formula for the principal angles θk = arcsin(µk) follows directly from (1.2).
We can now use the theorem to formulate an algorithm for computing all the

principal angles. This approach meets our goal of a sine-based formulation, which
should provide accurate computation of small angles. However, for large angles we
keep the cosine-based algorithm.

Algorithm 3.1: Modified SUBSPACE.m.
Input: real matrices F and G with the same number of rows.

1. Compute orthonormal bases QF = orth(F ), QG = orth(G) of column-spaces of F
and G.

2. Compute SVD for cosine: [Y,Σ, Z] = svd(QT
FQG), Σ = diag(σ1, . . . , σq).

3. Compute matrices of left Ucos = QFY and right Vcos = QGZ principal vectors.

4. Compute matrix B =

{
QG −QF (QT

FQG) if rank(QF ) ≥ rank(QG);
QF −QG(QT

GQF ) otherwise.
5. Compute SVD for sine: [Y,diag(µ1, . . . , µq), Z] = svd(B).
6. Compute matrices Usin and Vsin of left and right principal vectors:

Vsin = QGZ, Usin = QF (QT
FVsin)Σ

−1 if rank(QF ) ≥ rank(QG);
Usin = QFZ, Vsin = QG(QT

GUsin)Σ
−1 otherwise.

7. Compute the principal angles, for k = 1, . . . , q:

θk =

{
arccos(σk) if σ2k < 1/2;
arcsin(µk) if µ2k ≤ 1/2.

8. Form matrices U and V by picking up corresponding columns of Usin, Vsin and
Ucos, Vcos, according to the choice for θk above.

Output: Principal angles θ1, . . . , θq between column-spaces of matrices F and G, and

corresponding matrices U and V of left and right principal vectors, respectively.

Remark 3.1. In step 1 of the algorithm, the orthogonalization can be performed
using the QR method or the SVD. In our actual code, an SVD-based built-in MATLAB
function ORTH.m is used for the orthogonalization.

It is pointed out in [10] that errors in computing QF and QG, especially expected
for ill-conditioned F and G, may lead to an irreparable damage in final answers. A
proper column scaling of F and G could in some cases significantly reduce condi-
tion numbers of F and G. We highlight that an explicit columnwise normalization
of matrices F and G is not required prior to orthogonalization if a particular orthog-
onalization algorithm used here is invariant under column scaling in finite precision
arithmetic. Our numerical tests show that the explicit column scaling is not needed if
we utilize a built-in MATLAB function QR.m for orthonormalization. However, the
explicit column scaling apparently helps to improve the accuracy when the SVD-based
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built-in MATLAB function ORTH.m is used for orthonormalization. In [10], QR
factorizations with complete pivoting are recommended for computing QF and QG.

Remark 3.2. A check rank(QF ) ≥ rank(QG) in steps 4 and 6 of the algorithm
removes the need for our assumption p = rank(QF ) ≥ rank(QG) = q.

Remark 3.3. We replace here in step 4

(I −QFQ
T
F )QG = QG −QF (QTFQG), (I −QGQ

T
G)QF = QF −QG(QTGQF )

to avoid storing in memory any n-by-n matrices in the algorithm, which allows us to
compute principal angles efficiently for large n� p as well.

If the matrix QF⊥ , with orthonormal columns that span the subspace F⊥, the
orthogonal complement of F , was available to us when p ≥ q, we could take here

B = QF⊥QG,

as in the CS decomposition methods; see [25, 28, 26, 23]. Under our assumption n� p,
however, the matrix QF⊥ is essentially of the size n and thus shall be avoided.

The 1/2 threshold used in Algorithm 3.1 in steps 7 and 8 to separate small
and large principal angles and corresponding vectors seems to be a natural choice.
However, such an artificial fixed threshold may cause troubles with orthogonality in
the resulting choice of vectors in step 8 if there are several angles close to each other
but on different sides of the threshold. The problem is that the corresponding principal
vectors, picked up from two orthogonal sets computed by different algorithms, may
not be orthogonal. A more accurate approach would be to identify such possible
cluster of principal angles around the original threshold and to make sure that all
principal vectors corresponding to the cluster are chosen according to either step 3,
or step 6, but not both.

Algorithm 3.2: Modified and Improved SUBSPACE.m.
Input: real matrices F and G with the same number of rows.

1. Compute orthonormal bases QF = orth(F ), QG = orth(G) of column-spaces of F
and G.

2. Compute SVD for cosine: [Y,Σ, Z] = svd(QT
FQG), Σ = diag(σ1, . . . , σq).

3. Compute matrices of left Ucos = QFY and right Vcos = QGZ principal vectors.
4. Compute large principal angles, for k = 1, . . . , q:

θk = arccos(σk) if σ
2
k < 1/2.

5. Form parts of matrices U and V by picking up corresponding columns of Ucos, Vcos,
according to the choice for θk above. Put columns of Ucos, Vcos, which are left,
in matrices RF and RG. Collect the corresponding σ’s in a diagonal matrix ΣR.

6. Compute the matrix B = RG −QF (QT
FRG).

7. Compute SVD for sine: [Y,diag(µ1, . . . , µq), Z] = svd(B).
8. Compute matrices Usin and Vsin of left and right principal vectors:

Vsin = RGZ, Usin = RF (RTFVsin)Σ
−1
R .

9. Recompute the small principal angles, for k = 1, . . . , q:
θk = arcsin(µk) if µ

2
k ≤ 1/2.

10. Complete matrices U and V by adding columns of Usin, Vsin.

Output: Principal angles θ1, . . . , θq between column-spaces of matrices F and G, and

corresponding matrices U and V of left and right principal vectors, respectively.

Let us repeat that, in exact arithmetic, the sine and cosine based approaches give
the same results; e.g., columns of Usin and Vsin must be the same as those of Ucos
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and Vcos. Why do we need to recompute essentially the same vectors a second time?
What if we compute only Ucos, Vcos and then recompute just small principal angles
using, e.g., the obvious formula

µk = ‖uk − σkvk‖?(3.3)

An anonymous referee recommended this approach and suggested that it would re-
solve the inaccuracy in the cosine-based algorithm illustrated in the previous section,
without the need for the second SVD.

The answer is that the cosine-based algorithm fails to compute accurately not
only the small principal angles but also the corresponding principal vectors. The
reason for this is that singular values computed in step 2 of Algorithm 3.1 are the
cosines of principal angles, while singular values of the matrix B in step 5 are the
sines of principal angles. Thus, the distribution of singular values is different in steps
2 and 5; e.g., singular values corresponding to small angles are much better separated
in step 5 than in step 2. For example, angles 10−10 and 10−12 will produce a multiple
singular value 1 in step 2 in double precision but will produce two distinct small
singular values in step 5. This means that singular vectors, corresponding to small
principal angles, might not be computed accurately in computer arithmetic using only
SVD in step 2, which will also lead to inaccurate computation of the small principal
angles by formula (3.3). Our numerical tests support this conclusion.

There is some obvious redundancy in Algorithm 3.1. Indeed, we do not need
to calculate columns of Usin and Vsin, corresponding to large sines, and columns of
Ucos and Vcos, corresponding to large cosines, as they are computed inaccurately in
computer arithmetic and we just discard them later in the algorithm. However, first,
for large-scale applications with n � p that we are interested in, the redundancy is
insignificant. Second, this allows us to perform steps 2–3 and steps 4–5 of Algorithm
3.1 independently in parallel. We note that Σ must be invertible in Algorithm 3.1.

For sequential computations, we now describe Algorithm 3.2. Here, we reduce
computational costs of the second SVD by using already computed vectors Ucos and
Vcos for the cosines. The cosine-based algorithm computes inaccurately individual
principal vectors corresponding to small principal angles. However, it may find ac-
curately the corresponding invariant subspaces spanned by all these vectors. Thus,
the idea is that, using Ucos and Vcos, we can identify invariant subspaces in F and
G, which correspond to all small principal angles. Then, we perform the second SVD
only for these subspaces, computing only columns of Usin and Vsin that we actually
need, which may significantly reduce the size of the matrix in the second SVD. This
idea is used in the CS decomposition algorithm of [28].

We keep steps 1–3 of Algorithm 3.1 unchanged but modify accordingly later steps
to obtain Algorithm 3.2. Such changes may significantly reduce the size of matrix B
and, thus, the costs, if large principal angles outnumber small ones; e.g., if there are
no small principal angles at all, the algorithm simply stops at step 3. We note that
matrix ΣR is always invertible, unlike matrix Σ.

Remark 3.4. By construction, matrices RF and RG have the same number
of already orthogonal columns, which removes the need for orthogonalization and for
comparing, in step 6, their ranks.

Remark 3.5. We have three, equivalent in exact arithmetic, possibilities to com-
pute matrix B:

B = (I −RFR
T
F )RG = RG −RF (RTFRG) = RG −QF (QTFRG).
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The first formula is ruled out to avoid storing in memory any n-by-n matrices in the
algorithm. Our numerical tests show that the third expression, though somewhat more
expensive than the second one, often provides more accurate results in the presence of
round-off errors.

To summarize, Algorithms 3.1 and 3.2 use the cosine-based formulation (1.1),
(1.2) for large angles and the sine-based formulation of Theorem 3.1 for small angles,
which allows accurate computation of all angles. The algorithms are reasonably ef-
ficient for large-scale applications with n � p and are more robust than the original
cosine-based only version.

In the rest of the section, we describe some useful properties of principal angles
not yet mentioned. In the present paper, we follow [19] and make use of an orthogonal
projectors technique. For an alternative approach, popular in matrix theory, which is
based on representation of subspaces in a canonical CS form, we refer to [26].

Theorem 3.1 characterizes singular values of the product (I − PF )QG, which are
the sine of the principal angles. What are singular values of the matrix PFQG? A
trivial modification of the previous proof leads to the following not really surprising
result that these are the cosine of the principal angles.

Theorem 3.2. Singular values of the matrix QFQ
T
FQG are exactly the same as

σk, defined in (1.1).
We conclude this section with other simple and known (e.g., [29, 26, 30]) sine

and cosine representations of principal angles and principal vectors, this time using
orthogonal projectors PF and PG on subspaces F and G, respectively.

Theorem 3.3. Let assumptions of Theorem 3.1 be satisfied. Then σ1 ≥ σ2 ≥
· · · ≥ σq are the q largest singular values of the matrix PFPG; in particular,

σ1 = ‖PFPG‖.
Other n− q singular values are all equal to zero.

Remark 3.6. As singular values of PFPG are the same as those of PGPF ,
subspaces F and G play symmetric roles in Theorem 3.3; thus, our assumption that
p = dimF ≥ dimG = q is irrelevant here.

Theorem 3.4. Let assumptions of Theorem 3.1 be satisfied. Then µ1 ≤ µ2 ≤
· · · ≤ µq are the q largest singular values of the matrix (I − PF )PG; in particular,

µq = ‖(I − PF )PG‖.
Other n− q singular values are all equal to zero.

Remark 3.7. Comparing Theorems 3.3 and 3.4 shows trivially that sine of
principal angles between F and G are the same as cosine of principal angles between
F⊥ and G because I − PF is an orthogonal projector on F⊥. If p > n/2 > q, it may
be cheaper to compute principal angles between F⊥ and G instead of principal angles
between F and G.

What can we say about singular values of the matrix (I−PG)PF ? In other words,
how do cosine of principal angles between subspaces F⊥ and G compare to cosine of
principal angles between their orthogonal complements F and G⊥? If p = q, they are
absolutely the same; in particular, the minimal angle between subspaces F⊥ and G
is in this case the same as the minimal angle between their orthogonal complements
F and G⊥, e.g., in [9], and, in fact, is equal to gap(F ,G) = ‖PF − PG‖ as we already
discussed. When p > q, subspaces F and G⊥ must have a nontrivial intersection
because the sum of their dimensions is too big; thus, the minimal angle between
subspaces F and G⊥ must be zero in this case, which corresponds to ‖(I−PG)PF ‖ = 1,
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while ‖(I −PF )PG‖ may be less than one. To be more specific, dim(F ∩G⊥) ≥ p− q;
thus, at least p− q singular values of the matrix (I − PG)PF are equal to one. Then,
we have the following statement, which completely clarifies the issue of principal angles
between orthogonal complements; cf. Ex. 1.2.6 of [4].

Theorem 3.5. The set of singular values of (I − PG)PF , when p > q, consists
of p− q ones, q singular values of (I − PF )PG, and n− p zeros.

In particular, this shows that the smallest positive sine of principal angles between
F and G, called the minimum gap, is the same as that between F⊥ and G⊥; see [18].
This theorem can also be used to reduce the costs of computing the principal angles
between subspaces F and G, when their dimensions p and q are greater than n/2, by
replacing F and G with their orthogonal complements.

Let us finally mention a simple property of principal vectors, emphasized in [29],
which helps us to understand a geometric meaning of pairs of corresponding principal
vectors from different subspaces.

Theorem 3.6. We have

PF vk = σkuk, PGuk = σkvk, k = 1, . . . , q,

and

uTi vj = (PFui)
T vj = uTi PF vj = σju

T
i uj = σjδij , i, j = 1, . . . , q.

In other words, a chosen pair uk, vk spans a subspace, invariant with respect to ortho-
projectors PF and PG and orthogonal to all other such subspaces. The kth principal
angle θk is simply the angle between uk and vk; see (3.3).

Moreover, the subspace span{uk, vk} is also invariant with respect to orthoprojec-
tors I − PF and I − PG. Let us define two other unit vectors in this subspace:

u⊥
k = (vk − σkuk)/µk ∈ F⊥, v⊥k = (uk − σkvk)/µk ∈ G⊥

such that uTk u
⊥
k = vTk v

⊥
k = 0. Then

• uk, vk are principal vectors for subspaces F and G;
• u⊥

k , vk are principal vectors for subspaces F⊥ and G;
• uk, v

⊥
k are principal vectors for subspaces F and G⊥;

• u⊥
k ,−v⊥k are principal vectors for subspaces F⊥ and G⊥,

which concludes the description of all cases.
In the next section, we deal with an arbitrary scalar product.

4. Generalization to an A-based scalar product. Let A ∈ Rn×n be a fixed
symmetric positive definite matrix. Let (x, y)A = (x,Ay) = yTAx be an A-based
scalar product, x, y ∈ Rn. Let ‖x‖A =

√
(x, x)A be the corresponding vector norm

and let ‖B‖A be the corresponding induced matrix norm of a matrix B ∈ Rn×n. We
note that ‖x‖A = ‖A1/2x‖ and ‖B‖A = ‖A1/2BA−1/2‖.

In order to define principal angles based on this scalar product, we will follow ar-
guments of [3, 13] but in an A-based scalar product instead of the standard Euclidean
scalar product. Again, we will assume for simplicity of notation that p ≥ q.

Principal angles

θ1, . . . , θq ∈ [0, π/2]

between subspaces F and G in the A-based scalar product (·, ·)A are defined recursively
for k = 1, . . . , q by analogy with the previous definition for A = I as

cos(θk) = maxu ∈F maxv ∈G (u, v)A = (uk, vk)A(4.1)
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subject to

‖u‖A = ‖v‖A = 1, (u, ui)A = 0, (v, vi)A = 0, i = 1, . . . , k − 1.(4.2)

The vectors u1, . . . , uq and v1, . . . , vq are called principal vectors relative to the A-
based scalar product.

The following theorem justifies the consistency of the definition above and pro-
vides a cosine-based algorithm for computing the principal angles in the A-based
scalar product. It is a direct generalization of the cosine-based approach of [3, 13].

Theorem 4.1. Let columns of QF ∈ Rn×p and QG ∈ Rn×q now be A-orthonormal
bases for the subspaces F and G, respectively. Let σ1 ≥ σ2 ≥ · · · ≥ σq be singu-
lar values of QTFAQG with corresponding left and right singular vectors yk and zk,
k = 1, . . . , q. Then the principal angles relative to the scalar product (·, ·)A as defined
in (4.1) and (4.2) are computed as

θk = arccos(σk), k = 1, . . . , q,(4.3)

where

0 ≤ θ1 ≤ · · · ≤ θq ≤ π

2
,

while the principal vectors are given by

uk = QF yk, vk = QGzk, k = 1, . . . , q.

Proof. We first rewrite definition (4.1) and (4.2) of principal angles in the following
equivalent form. For k = 1, . . . , q,

cos(θk) = maxy ∈Rp maxz ∈Rq yTQTFAQGz = yTk Q
T
FAQGzk

subject to

‖y‖ = ‖z‖ = 1, yT yi = 0, zT zi = 0, i = 1, . . . , k − 1,

where u = QF y ∈ F , v = QGz ∈ G and uk = QF yk ∈ F , vk = QGzk ∈ G.
Since QF and QG have A-orthonormal columns, QTFAQF = I and QTGAQG = I.

This implies

‖u‖2A = yTQTFAQF y = yT y = ‖y‖2 = 1

and

‖v‖2A = zTQTGAQGz = zT z = ‖z‖2 = 1.

For i �= j, we derive

(ui, uj)A = yTi Q
T
FAQF yj = yTi yj = 0

and

(vi, vj)A = zTi Q
T
GAQGzj = zTi zj = 0.

Now, let the reduced SVD of QTFAQG be

Y TQTFAQGZ = diag(σ1, σ2, . . . , σq),(4.4)
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where Y ∈ Rp×q, Z ∈ Rq×q both have orthonormal columns.
Then, by Theorem 1.1 with M = QTFAQG, the equality cos(θk) = σk, k =

1, . . . , q, just provides two equivalent representations of the singular values of QTFAQG,
and yz and zk can be chosen as columns of matrices Y and Z, respectively. The
statement of the theorem follows.

Let us now make a trivial but important observation that links principal angles
in the A-based scalar product with principal angles in the original standard scalar
product, when a factorization of A = KTK, e.g., K = A1/2, is available. We formulate
it as the following theorem.

Theorem 4.2. Let A = KTK. Under assumptions of Theorem 4.1 the principal
angles between subspaces F and G relative to the scalar product (·, ·)A coincide with the
principal angles between subspaces KF and KG relative to the original scalar product
(·, ·).

Proof. One way to prove this is to notice that our definition of the principal angles
between subspaces F and G relative to the scalar product (·, ·)A turns into a definition
of the principal angles between subspaces KF and KG relative to the original scalar
product (·, ·) if we make substitutions Ku �→ u and Kv �→ v.

Another proof is to use the representation

QTFAQG = (KQF )
T
KQG,

where columns of matrices KQF and KQG are orthonormal with respect to the origi-
nal scalar product (·, ·) and span subspaces KF and KG, respectively. Now Theorem
4.1 is equivalent to the traditional SVD theorem on cosine of principal angles between
subspaces KF and KG relative to the original scalar product (·, ·), formulated in the
introduction.

The A-orthogonal projectors on subspaces F and G are now defined by formulas

PF = QFQ
∗A
F = QFQ

T
FA and PG = QGQ

∗A
G = QGQ

T
GA,

where ∗A denotes the A-adjoint.
To obtain a sine-based formulation in the A-based scalar product that is accurate

for small angles, we first adjust (1.5) and (3.1) to the new A-based scalar product:

(4.5)

gapA(F ,G) = ‖PF − PG‖A
= max

{
maxx∈G,‖x‖A=1 ‖(I − PF )x‖A, maxy∈F,‖y‖A=1 ‖(I − PG)y‖A

}
.

If p = q, this equation will yield sin(θq), consistent with Theorem 4.1. Similar to the
previous case A = I, only the first term under the maximum is of interest under our
assumption that p ≥ q. Using the fact that

‖x‖A = ‖QGz‖A = ‖z‖ ∀x ∈ G, x = QGz, z ∈ Rq,

the term of interest can be rewritten as

maxx∈G,‖x‖A=1 ‖(I − PF )x‖A = ‖A1/2(I −QFQ
T
FA)QG‖.(4.6)

Here we use the standard induced Euclidean norm ‖ · ‖ for computational purposes.
Similar to our arguments in the previous section, we obtain a more general formula
for all principal angles in the following.



ANGLES BETWEEN SUBSPACES IN A-BASED SCALAR PRODUCT 2021

Theorem 4.3. Let S = (I − QFQ
T
FA)QG. Singular values µ1 ≤ µ2 ≤ · · · ≤ µq

of matrix A1/2S are given by µk =
√

1− σ2
k, k = 1, . . . , q, where σk are defined in

(4.4). Moreover, the principal angles satisfy the equalities θk = arcsin (µk) . The right
principal vectors can be computed as

vk = QGzk, k = 1, . . . , q,

where zk are corresponding orthonormal right singular vectors of matrix A
1/2S. The

left principal vectors are then computed by

uk = QFQ
T
FAvk/σk if σk �= 0, k = 1, . . . , q.

Proof. We first notice that squares of the singular values µk of the matrix A1/2S,
which appear in (4.6), coincide with eigenvalues νk = µ2

k of the product STAS. Using
the fact that QTFAQF = I and QTGAQG = I, we have

STAS = QTG(I −AQFQ
T
F )A(I −QFQ

T
FA)QG

= I −QTGAQFQ
T
FAQG.

Utilizing the SVD (4.4), we obtain QTFAQG = Y ΣZT , where Σ = diag(σ1, σ2, . . . , σq);
then

ZTSTASZ = I − Σ2 = diag(1− σ2
1 , 1− σ2

2 , . . . , 1− σ2
q ).

Thus, the eigenvalues of STAS are given by νk = 1− σ2
k, k = 1, . . . , q, and the

formula for the principal angles follows directly from (4.3).
For computational reasons, when n is large, we need to avoid dealing with the

square root A1/2 explicitly. Also, A may not be available as a matrix but only as
a function performing the multiplication of A by a given vector. Fortunately, the
previous theorem can be trivially reformulated as follows to resolve this issue.

Theorem 4.4. Eigenvalues ν1 ≤ ν2 ≤ · · · ≤ νq of matrix STAS, where S =
(I−QFQTFA)QG, are equal to νk = 1− σ2

k, k = 1, . . . , q, where σk are defined in (4.4).
Moreover, the principal angles satisfy the equalities θk = arcsin

(√
νk
)
, k = 1, . . . , q.

The right principal vectors can be computed as

vk = QGzk, k = 1, . . . , q,

where zk are corresponding orthonormal right eigenvectors of matrix S
TAS. The left

principal vectors are then computed by

uk = QFQ
T
FAvk/σk if σk �= 0, k = 1, . . . , q.

We can easily modify the previous proof to obtain the following analogue of
Theorem 3.2.

Theorem 4.5. Singular values of the matrix A1/2QFQ
T
FAQG = A1/2PFQG

coincide with σk, defined in (4.4).
It is also useful to represent principal angles using exclusively A-orthogonal pro-

jectors PF and PG on subspaces F and G, respectively, similarly to Theorems 3.3 and
3.4.

Theorem 4.6. Under assumptions of Theorem 4.1, σ1 ≥ σ2 ≥ · · · ≥ σq are the
q largest singular values of the matrix A1/2PFPGA

−1/2; in particular,

σ1 = ‖PFPG‖A.
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Other n− q singular values are all equal to zero.

Proof. First, we rewrite

A1/2PFPGA
−1/2 = A1/2QFQ

T
FAQGQ

T
GAA

−1/2

= A1/2QF

(
A1/2QF

)T
A1/2QG

(
A1/2QG

)T
.

As columns of matrices A1/2QF and A1/2QG are orthonormal with respect to the
original scalar product (·, ·) bases of subspaces A1/2F and A1/2G, respectively, the
last product is equal to the product of orthogonal (not A-orthogonal!) projectors
PA1/2F and PA1/2G on subspaces A1/2F and A1/2G.

Second, we can now use Theorem 3.3 to state that cosine of principal angles be-
tween subspaces A1/2F and A1/2G with respect to the original scalar product (·, ·) are
given by the q largest singular values of the product PA1/2FPA1/2G = A1/2PFPGA

−1/2.

Finally, we use Theorem 4.2 to conclude that these singular values are, in fact,
σk, k = 1, . . . , q, i.e., the cosine of principal angles between subspaces F and G with
respect to the A-based scalar product.

Theorem 4.7. Let assumptions of Theorem 4.4 be satisfied. Then µ1 ≤ µ2 ≤
· · · ≤ µq are the q largest singular values of the matrix A1/2(I − PF )PGA

−1/2; in
particular,

µq = ‖(I − PF )PG‖A.

The other n− q singular values are all equal to zero.

Proof. We rewrite

A1/2(I − PF )PGA
−1/2 =

(
I −A1/2QF

(
A1/2QF

)T)
A1/2QG

(
A1/2QG

)T

= (I − PA1/2F )PA1/2G

and then follow arguments similar to those of the previous proof, but now using
Theorem 3.4 instead of Theorem 3.3.

Remarks 3.6–3.7 and Theorems 3.5–3.6 for the case A = I hold in the general
case, too, with obvious modifications.

Our final theoretical results are perturbation theorems in the next section.

5. Perturbation of principal angles in the A-based scalar product. In
the present section, for simplicity, we always assume that matrices F , G and their
perturbations F̃ , G̃ have the same rank; thus, in particular, p = q.

We notice that F and G appear symmetrically in the definition of the principal
angles, under our assumption that they and their perturbations have the same rank.
This means that we do not have to analyze the perturbation of F and G together at
the same time. Instead, we first study only a perturbation in G.

Before we start with an estimate for cosine, let us introduce a new notation �
using an example:

(G + G̃)� G = (G + G̃) ∩ G⊥,

where � and the orthogonal complement to G are understood in the A-based scalar
product.
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Lemma 5.1. Let σ1 ≥ σ2 ≥ · · · ≥ σq and σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂q be cosine of principal

angles between subspaces F , G and F , G̃, respectively, computed in the A-based scalar
product. Then, for k = 1, . . . , q,

|σk − σ̂k| ≤ max{cos(θmin{(G + G̃)� G, F}); cos(θmin{(G + G̃)� G̃, F})}gapA(G, G̃),

(5.1)

where θmin is the smallest angle between corresponding subspaces, measured in the
A-based scalar product.

Proof. The proof is based on the following identity:

A1/2QFQ
T
FAQG̃ = A1/2QFQ

T
FAQGQ

T
GAQG̃ + A1/2QFQ

T
FA(I −QGQ

T
GA)QG̃,

(5.2)

which is a multidimensional analogue of the trigonometric formula for the cosine of
the sum of two angles. Now we use two classical theorems on perturbation of singular
values with respect to addition:

sk(T + S) ≤ sk(T ) + ‖S‖,(5.3)

and with respect to multiplication:

sk(TST ) ≤ sk(T )‖ST ‖,(5.4)

where T and S are matrices of corresponding sizes. We first need to take T =
A1/2QFQ

T
FAQGQ

T
GAQG̃ and S = A1/2QFQ

T
FA(I −QGQ

T
GA)QG̃ in (5.3) to get

σ̂k = sk(A1/2QFQ
T
FAQG̃) ≤ sk(A1/2QFQ

T
FAQGQ

T
GAQG̃)

+ ‖A1/2QFQ
T
FA(I −QGQ

T
GA)QG̃‖,

where the first equality follows from Theorem 4.5. In the second term in the sum on
the right, we need to estimate a product, similar to a product of three orthoprojectors.
We notice that column vectors of (I−QGQTGA)QG̃ belong to the subspace (G+G̃)�G.
Let P(G+G̃)
G be an A-orthogonal projector on the subspace. Then the second term

can be rewritten, also using the projector QFQ
T
FA = PF , as

A1/2QFQ
T
FA(I −QGQ

T
GA)QG̃ = A1/2QFQ

T
FAP(G+G̃)
G(I −QGQ

T
GA)QG̃

=
(
A1/2PFP(G+G̃)
GA

−1/2
)
A1/2(I −QGQ

T
GA)QG̃;

therefore, it can be estimated as

‖A1/2QFQ
T
FA(I−QGQTGA)QG̃‖ ≤ ‖A1/2PFP(G+G̃)
GA

−1/2‖‖A1/2(I−QGQTGA)QG̃‖.

The first multiplier in the last product equals

‖A1/2PFP(G+G̃)
GA
−1/2‖ = ‖PFP(G+G̃)
G‖A = cos(θmin{(G + G̃)� G, F}),

similar to (4.6) and using Theorem 4.6 for subspaces (G + G̃)� G and F ; while the
second multiplier is gapA(G, G̃), because of our assumption dimF = dimG = dimG̃.
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To estimate the first term in the sum, we apply (5.4) with T = A1/2QFQ
T
FAQG and

ST = QTGAQG̃:

sk(A1/2QFQ
T
FAQGQ

T
GAQG̃) ≤ sk(A1/2QFQ

T
FAQG)‖QTGAQG̃‖

≤ sk(A1/2QFQ
T
FAQG) = σk,

simply because the second multiplier here is the cosine of an angle between G and G̃
in the A-based scalar product, which is, of course, bounded by one from above. Thus,
we just proved

σ̂k ≤ σk + cos(θmin{(G + G̃)� G, F})gapA(G, G̃).

Changing places of QG̃ and QG, we obtain

σk ≤ σ̂k + cos(θmin{(G + G̃)� G̃, F})gapA(G, G̃)

and come to the statement of the lemma.
Remark 5.1. Let us try to clarify the meaning of constants appearing in the

statement of Lemma 5.1. Let us consider, e.g., cos(θmin{(G + G̃)� G, F}). The
cosine takes its maximal value, one, when at least one direction of the perturbation
of G is A-orthogonal to G and parallel to F at the same time. It is small, on the
contrary, when a part of the perturbation, A-orthogonal to G, is also A-orthogonal to
F . As (G + G̃)� G ⊆ G⊥, we have

cos(θmin{(G + G̃)� G, F}) ≤ cos
(
θmin{G⊥, F}

)
= sin (θmax{G, F}) = gapA(G,F),

which is the constant of the asymptotic perturbation estimate of [3] (where A = I).
The latter constant is small if subspaces G and F are close to each other, which can
be considered more as a cancellation prize as in this case cosine of all principal angles
is almost one, and a perturbation estimate for the cosine does not help much because
of the cancellation effect.

Remark 5.2. A natural approach similar to that of [15] with A = I involves a
simpler identity:

QTFAQG̃ = QTFAQG + QTFA(QG̃ −QG),

where a norm of the second term is then estimated. Then (5.3) gives an estimate of
singular values using ‖A1/2(QG̃−QG)‖. As singular values are invariant with respect
to particular choices of matrices QG̃ and QG with A-orthonormal columns, as far as

they provide ranges G̃ and G, respectively, we can choose them to minimize the norm
of the difference, which gives

inf
Q
‖A1/2(QG −QG̃Q)‖,(5.5)

where Q is an arbitrary q-by-q orthogonal matrix. This quantity appears in [15] with
A = I as a special type of the Procrustes problem. In [15], it is estimated in terms of
the gap between subspaces G̃ and G (using an extra assumption that 2q ≤ n). Repeating
similar arguments, we derive

|σk − σ̂k| ≤ inf
Q
‖A1/2(QG −QG̃Q)‖A ≤

√
2 gapA(G, G̃), k = 1, . . . , q.(5.6)
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Lemma 5.1 furnishes estimates of the perturbation of singular values in terms of the
gap directly, which gives a much better constant, consistent with that of the asymptotic
estimate of [3] for A = I; see the previous remark.

Now we prove a separate estimate for sine.
Lemma 5.2. Let µ1 ≤ µ2 ≤ · · · ≤ µq and µ̂1 ≤ µ̂2 ≤ · · · ≤ µ̂q be sine of principal

angles between subspaces F , G, and F , G̃, respectively, computed in the A-based scalar
product. Then, for k = 1, . . . , q,

|µk − µ̂k| ≤ max{sin(θmax{(G + G̃)� G, F}); sin(θmax{(G + G̃)� G̃, F})}gapA(G, G̃),

(5.7)

where θmax is the largest angle between corresponding subspaces, measured in the
A-based scalar product.

Proof. The proof is based on the following identity:

A1/2(I −QFQ
T
FA)QG̃ = A1/2(I −QFQ

T
FA)QGQ

T
GAQG̃

+ A1/2(I −QFQ
T
FA)(I −QGQ

T
GA)QG̃,

which is a multidimensional analogue of the trigonometric formula for the sine of the
sum of two angles. The rest of the proof is similar to that of Lemma 5.1.

We first need to take T = A1/2(I − QFQ
T
FA)QGQ

T
GAQG̃ and S =

A1/2(I −QFQ
T
FA)(I −QGQ

T
GA)QG̃ and use (5.3) to get

sk(A1/2(I −QFQ
T
FA)QG̃) ≤ sk(A1/2(I −QFQ

T
FA)QGQ

T
GAQG̃)

+ ‖A1/2(I −QFQ
T
FA)(I −QGQ

T
GA)QG̃‖.

In the second term in the sum on the right, QFQ
T
FA = PF and we deduce

A1/2(I −QFQ
T
FA)(I −QGQ

T
GA)QG̃ = A1/2(I − PF )P(G+G̃)
G(I −QGQ

T
GA)QG̃

=
(
A1/2(I − PF )P(G+G̃)
GA

−1/2
)(

A1/2(I −QGQ
T
GA)QG̃

)
,

using notation P(G+G̃)
G for the A-orthogonal projector on the subspace (G+ G̃)�G,
introduced in the proof of Lemma 5.1. Therefore, the second term can be estimated
as

‖A1/2(I −QFQ
T
FA)(I − QGQ

T
GA)QG̃‖

≤ ‖A1/2(I − PF )P(G+G̃)
GA
−1/2‖‖A1/2(I −QGQ

T
GA)QG̃‖.

The first multiplier is

‖A1/2(I−PF )P(G+G̃)
GA
−1/2‖ = ‖(I−PF )P(G+G̃)
G‖A = sin(θmax{(G+ G̃)�G, F})

by Theorem 4.7 as dimF ≥ dim((G + G̃) � G), while the second multiplier is simply
gapA(G, G̃) because of our assumption dimG = dimG̃.

To estimate the first term in the sum, we take with T = A1/2(I − QFQ
T
FA)QG

and ST = QTGAQG̃ and apply (5.4):

sk(A1/2(I −QFQ
T
FA)QGQ

T
GAQG̃) ≤ sk(A1/2(I −QFQ

T
FA)QG)‖QTGAQG̃‖

≤ sk(A1/2(I −QFQ
T
FA)QG),
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using exactly the same arguments as in the proof of Lemma 5.1.
Thus, we have proved

µ̂k ≤ µk + sin(θmax{(G + G̃)� G, F})gapA(G, G̃).

Changing the places of QG̃ and QG, we get

µk ≤ µ̂k + sin(θmax{(G + G̃)� G̃, F})gapA(G, G̃).

The statement of the lemma follows.
Remark 5.3. Let us also highlight that simpler estimates,

|µk − µ̂k| ≤ gapA(G, G̃), |σk − σ̂k| ≤ gapA(G, G̃), k = 1, . . . , q,

which are not as sharp as those we prove in Lemmas 5.1 and 5.2, can be derived
almost trivially using orthoprojectors (see [29, 27, 14]), where this approach is used
for the case A = I. Indeed, we start with identities

A1/2PFPG̃A
−1/2 = A1/2PFPGA

−1/2 +
(
A1/2PFA

−1/2
)(

A1/2(PG̃ − PG)A−1/2
)

for the cosine and

A1/2(I − PF )PG̃A
−1/2 = A1/2(I − PF )PGA

−1/2

+
(
A1/2(I − PF )A−1/2

)(
A1/2(PG̃ − PG)A−1/2

)

for the sine, and use (5.3) and Theorems 4.6 and 4.7. A norm of the second term is
then estimated from above by gapA(G, G̃), using the fact that for an A-orthoprojector
PF we have ‖PF ‖A = ‖I − PF ‖A = 1.

Instead of the latter, we can use a bit more sophisticated approach, as in [14],
if we introduce the A-orthogonal projector PG+G̃ on the subspace G + G̃. Then the
norm of second term is bounded by gapA(G, G̃) times ‖PFPG+G̃‖A for the cosine and
times ‖(I − PF )PG+G̃‖A for the sine, where we can now use Theorem 4.6 to provide
a geometric interpretation of these two constants. This leads to estimates similar to
those of [14] for A = I:

|σk − σ̂k| ≤ cos(θmin{F , G + G̃})gapA(G, G̃), k = 1, . . . , q,

and

|µk − µ̂k| ≤ cos(θmin{F⊥, G + G̃})gapA(G, G̃), k = 1, . . . , q.

However, the apparent constant “improvement” in the second estimate, for the sine,
is truly misleading as

cos(θmin{F⊥, G + G̃}) = 1

simply because dimF < dim(G+ G̃) in all cases except for the trivial possibility G = G̃,
so subspaces F⊥ and G + G̃ must have a nontrivial intersection.

The first estimate, for the cosine, does give a better constant (compare to one),
but our constant is sharper; e.g.,

cos(θmin{F , (G + G̃)�G}) ≤ cos(θmin{F , G + G̃}).
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Our more complex identities used to derive perturbation bounds provide an extra
projector in the error term, which allows us to obtain better constants.

We can now establish an estimate of absolute sensitivity of cosine and sine of
principal angles with respect to absolute perturbations of subspaces.

Theorem 5.3. Let σ1 ≥ σ2 ≥ · · · ≥ σq and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃q be cosine

of principal angles between subspaces F , G, and F̃ , G̃, respectively, computed in the
A-based scalar product. Then

|σk − σ̃k| ≤ c1gapA(F , F̃) + c2gapA(G, G̃), k = 1, . . . , q,(5.8)

where

c1 = max{cos(θmin{(G + G̃)� G, F}); cos(θmin{(G + G̃)� G̃, F})},

c2 = max{cos(θmin{(F + F̃)�F , G̃}); cos(θmin{(F + F̃)� F̃ , G̃})},
where θmin is the smallest angle between corresponding subspaces in the A-based scalar
product.

Proof. First, by Lemma 5.1, for k = 1, . . . , q,

|σk−σ̂k| ≤ max{cos(θmin{(G + G̃)� G, F}); cos(θmin{(G + G̃)� G̃, F})}gapA(G, G̃).

Second, we apply a similar statement to cosine of principal angles between subspaces
F , G̃ and F̃ , G̃, respectively, computed in the A-based scalar product:

|σ̃k−σ̂k| ≤ max{cos(θmin{(F + F̃)�F , G̃}); cos(θmin{(F + F̃)� F̃ , G̃})}gapA(F , F̃).

The statement of the theorem now follows from the triangle inequality.
Theorem 5.4. Let µ1 ≤ µ2 ≤ · · · ≤ µq and µ̃1 ≤ µ̃2 ≤ · · · ≤ µ̃q be sine

of principal angles between subspaces F , G, and F̃ , G̃, respectively, computed in the
A-based scalar product. Then

|µk − µ̃k| ≤ c3gapA(F , F̃) + c4gapA(G, G̃), k = 1, . . . , q,(5.9)

where

c3 = max{sin(θmax{(G + G̃)� G, F}); sin(θmax{(G + G̃)� G̃, F})},

c4 = max{sin(θmax{(F + F̃)�F , G̃}); sin(θmax{(F + F̃)� F̃ , G̃})},
where θmax is the largest angle between corresponding subspaces in the A-based scalar
product.

Proof. First, by Lemma 5.2, for k = 1, . . . , q,

|µk−µ̂k| ≤ max{sin(θmax{(G + G̃)� G, F}); sin(θmax{(G + G̃)� G̃, F})}gapA(G, G̃).

Second, we apply a similar statement to sine of principal angles between subspaces
F , G̃ and F̃ , G̃, respectively, computed in the A-based scalar product:

|µ̃k−µ̂k| ≤ max{sin(θmax{(F + F̃)�F , G̃}); sin(θmax{(F + F̃)� F̃ , G̃})}gapA(F , F̃).

The statement of the theorem now follows from the triangle inequality.
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Finally, we want a perturbation analysis in terms of matrices F and G that
generate subspaces F and G. For that, we have to estimate the sensitivity of a
column-space of a matrix, for example, matrix G.

Lemma 5.5. Let

κA(G) =
smax(A1/2G)

smin(A1/2G)

denote the corresponding A-based condition number of G, where smax and smin are,

respectively, largest and smallest singular values of the matrix A1/2G. Let G and G̃ be
column-spaces of matrices G and G̃, respectively. Then

gapA(G, G̃) ≤ κA(G)
‖A1/2(G− G̃)‖
‖A1/2G‖ .(5.10)

Proof. Here, we essentially just adopt the corresponding proof of [29] for the
A-based scalar product using the same approach as in Theorem 4.2.

Let us consider the polar decompositions

A1/2G = A1/2QGTG and A1/2G̃ = A1/2QG̃TG̃,

where matrices A1/2QG and A1/2QG̃ have orthonormal columns and matrices TG
and TG̃ are q-by-q symmetric positive definite; e.g., TG = (QGQ

T
G)1/2. Singular

values of TG and TG̃ are, therefore, the same as singular values of A1/2G and A1/2G̃,
respectively. Then,

(I − PG̃)(G− G̃) = (I − PG̃)QGTG.

Therefore,

A1/2(I − PG̃)QG =
(
A1/2(I − PG̃)A−1/2

)
A1/2(G− G̃)T−1

G ,

and

gapA(G, G̃) ≤ ‖A1/2(G− G̃)‖‖T−1
G ‖ =

‖A1/2(G− G̃)‖
smin(A1/2G)

,

as ‖A1/2(I−PG̃)A−1/2‖ = ‖I−PG̃‖A ≤ 1. The statement of the lemma follows.
Remark 5.4. Some matrices allow improvement of their condition numbers by

column scaling, which trivially does not change the column range. Our simple Lemma
5.5 does not capture this property. A more sophisticated variant can be easily obtained
using a technique developed in [15, 14].

Our cosine theorem follows next. It generalizes results of [27, 14, 15] to A-based
scalar products and somewhat improves the constant.

Theorem 5.6. Under assumptions of Theorem 5.3,

|σk − σ̃k| ≤ c1κA(F )
‖A1/2(F − F̃ )‖
‖A1/2F‖ + c2κA(G)

‖A1/2(G− G̃)‖
‖A1/2G‖ , k = 1, . . . , q.

(5.11)

The theorem above does not provide an accurate estimate for small angles. To fill
the gap, we suggest the following perturbation theorem in terms of sine of principal
angles; cf. [27, 14] for A = I.
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Theorem 5.7. Under assumptions of Theorem 5.4,

|µ− µ̃k| ≤ c3κA(F )
‖A1/2(F − F̃ )‖
‖A1/2F‖ + c4κA(G)

‖A1/2(G− G̃)‖
‖A1/2G‖ , k = 1, . . . , q.

(5.12)

Finally, let us underline that all sensitivity results of the present paper are for
absolute errors. Golub and Zha in [14] observe that relative errors of sine and cosine
of principal angles are not, in general, bounded by the perturbation.

We consider algorithms of computing principal angles with respect to an A-based
scalar product in the next section.

6. Algorithm implementation. In this section, we provide a detailed descrip-
tion of our code SUBSPACEA.m and discuss the algorithm implementation.

Theorem 4.4 is our main theoretical foundation for a sine-based algorithm for
computing principal angles with respect to an A-based scalar product. However, a
naive implementation, using the SVD of the matrix STAS, may not produce small
angles accurately in computer arithmetic. We now try to explain informally this fact,
which is actually observed in numerical tests.

Let, for simplicity of notation, all principal angles be small.

Let us consider a particular case, where columns of matrices QF and QG are
already principal vectors in exact arithmetic. In reality, this is the situation we will
face in Algorithm 6.2. Then, in exact arithmetic, columns of S are A-orthogonal and
their A-norms are exactly the sine of principal angles. Thus, if there are several small
angles different in orders of magnitude, the columns of S are badly scaled. When
we take the norms squared, by explicitly computing the product STAS, we make the
scaling even worse, as the diagonal entries of this diagonal matrix are now the sine of
the principal angles squared, in exact arithmetic. In the presence of round-off errors,
the matrix STAS is usually not diagonal; thus, principal angles smaller than 10−8

will lead to an underflow effect in double precision, which cannot be cured by taking
square roots of its singular values later in the algorithm.

To resolve this, we want to be able to compute the SVD of the matrix STAS with-
out using either STAS itself or A1/2S. One possibility is suggested in the following
lemma.

Lemma 6.1. The SVD of the matrix A1/2S coincides with the SVD of the matrix
QTSAS, where QS is a matrix with A-orthonormal columns, which span the same
column-space as columns of matrix S.

Proof. We have

(QTSAS)TQTSAS = STAQSQ
T
SAS = STAPSS = STAS,

where PS = QSQ
T
SA is the A-orthogonal projector on the column-space of QS , which

is the same, by definition, as the column-space of S, so that PSS = S.

This contributes to the accuracy of our next Algorithm 6.1, based on Lemma 6.1,
to be more reliable in the presence of round-off errors, when several principal angles
are small.

By analogy with Algorithms 3.1 and 3.2, we can remove the restriction that matrix
Σ is invertible and somewhat improve the costs in Algorithm 6.1 by reducing the size
of the matrix S in step 4, which leads to Algorithm 6.2.
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Algorithm 6.1: SUBSPACEA.m.
Input: real matrices F and G with the same number of rows, and a symmetric positive

definite matrix A for the scalar product, or a device to compute Ax for a given
vector x.

1. Compute A-orthonormal bases QF = ortha(F ), QG = ortha(G) of column-spaces of
F and G.

2. Compute SVD for cosine [Y,Σ, Z] = svd(QT
F AQG), Σ = diag(σ1, . . . , σq).

3. Compute matrices of left Ucos = QFY and right Vcos = QGZ principal vectors.

4. Compute the matrix S =

{
QG −QF (QT

F AQG) if rank(QF ) ≥ rank(QG),
QF −QG(QT

GAQF ) otherwise.
5. Compute A-orthonormal basis QS = ortha(S) of the column-space of S.
6. Compute SVD for sine: [Y,diag(µ1, . . . , µq), Z] = svd(QT

SAS).
7. Compute matrices Usin and Vsin of left and right principal vectors:

Vsin = QGZ, Usin = QF (QT
FAVsin)Σ

−1 if rank(QF ) ≥ rank(QG);
Usin = QFZ, Vsin = QG(QT

GAUsin)Σ
−1 otherwise.

8. Compute the principal angles, for k = 1, . . . , q:

θk =

{
arccos(σk) if σ2k < 1/2,
arcsin(µk) if µ2k ≤ 1/2.

9. Form matrices U and V by picking up corresponding columns of Usin, Vsin and
Ucos, Vcos, according to the choice for θk above.

Output: Principal angles θ1, . . . , θq between column-spaces of matrices F and G in the

A-based scalar product, and corresponding matrices of left, U , and right, V , principal
vectors.

Algorithm 6.2: Improved SUBSPACEA.m.
Input: real matrices F and G with the same number of rows, and a symmetric positive

definite matrix A for the scalar product, or a device to compute Ax for a given
vector x.

1. Compute A-orthogonal bases QF = ortha(F ), QG = ortha(G) of column-spaces of
F and G.

2. Compute SVD for cosine [Y,Σ, Z] = svd(QT
F AQG), Σ = diag(σ1, . . . , σq).

3. Compute matrices of left Ucos = QFY and right Vcos = QGZ principal vectors.
4. Compute large principal angles for k = 1, . . . , q:

θk = arccos(σk) if σ
2
k < 1/2.

5. Form parts of matrices U and V by picking up corresponding columns of Ucos, Vcos,
according to the choice for θk above. Put columns of Ucos, Vcos, which are left,
in matrices RF and RG. Collect the corresponding σ’s in a diagonal matrix ΣR.

6. Compute the matrix S = RG −QF (QT
FARG).

7. Compute A-orthogonal basis QS = ortha(S) of the column-space of S.
8. Compute SVD for sine: [Y,diag(µ1, . . . , µq), Z] = svd(QT

SAS).
9. Compute matrices Usin and Vsin of left and right principal vectors:

Vsin = RGZ, Usin = RF (RTFAVsin)Σ
−1
R .

10. Compute the missing principal angles, for k = 1, . . . , q:
θk = arcsin(µk) if µ

2
k ≤ 1/2.

11. Complete matrices U and V by adding columns of Usin, Vsin.

Output: Principal angles θ1, . . . , θq between column-spaces of matrices F and G, and

corresponding matrices U and V of left and right principal vectors, respectively.
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Previous remarks of section 3 for the algorithms with A = I are applicable to
the present algorithms with self-evident changes. A few additional A-specific remarks
follow.

Remark 6.1. In step 1 of Algorithms 6.1 and 6.2, we use our SVD-based func-
tion ORTHA.m for the A-orthogonalization. Specifically, computing an A-orthogonal
basis Q of the column-space of a matrix X is done in three steps in ORTHA.m.
First, we orthonormalize X, using SVD-based built-in MATLAB code ORTH.m with
a preceding explicit column scaling; see Remark 3.1 on whether the scaling is actually
needed. Second, we compute [U, S, V ] = svd(XTAX), using MATLAB’s built-in SVD
code. Finally, we take Q = XUS−1/2. If A is ill-conditioned, an extra cycle may
be performed to improve the accuracy. While formal stability and accuracy analysis
of this method is yet to be done, ORTHA.m demonstrates practical robustness in our
numerical tests. A detailed description and investigation of the algorithm used in
ORTHA.m will be reported elsewhere.

Remark 6.2. We note that, when n � p, the computational costs of SVDs of
p-by-p matrices are negligible; it is multiplication by A, which may be very computa-
tionally expensive. Therefore, we want to minimize the number of multiplications by
A. In the present version 4.0 of our code SUBSPACEA.m, based on Algorithm 6.2,
we multiply matrix A by a vector 2p+ q times in the worst-case scenario of all angles
being small, in steps 1 and 7. We can avoid multiplying by A on steps 2, 8, and 9
by using appropriate linear combinations of earlier computed vectors instead.

Remark 6.3. Our actual code is written for a more general complex case, where
we require matrix A to be Hermitian.

Let us finally underline that in a situation when a matrix K from the factorization
A = KTK is given rather than the matrix A itself, we do not advise using Algorithms
6.1 and 6.2. Instead, we recommend multiplying matrices F and G by K on the right
and using simpler Algorithms 3.1 and 3.2, according to Theorem 4.2.

7. Numerical examples. Numerical tests in the present section were performed
using version 4.0 of our SUBSPACEA.m code, based on Algorithms 3.2 and 6.2. Nu-
merical results presented were obtained, unless indicated otherwise, on Red Hat 6.1
LINUX Dual Pentium-III 500, running MATLAB release 12, version 6.0.0.18. Tests
were also made on Compaq Dual Alpha server DS 20, running MATLAB release
12, version 6.0.0.18 and on several Microsoft Windows Pentium-III systems, running
MATLAB version 5.1–5.3. In our experience, Intel PIII-based LINUX systems typi-
cally provided more accurate results, apparently utilizing the extended 80 bit precision
of FPU registers of PIII; see the discussion at the end of the section.

The main goal of our numerical tests is to check a practical robustness of our
code, using the following argument. According to our analysis of section 5 and similar
results of [3, 27, 14, 15], an absolute change in cosine and sine of principal angles is
bounded by perturbations in matrices F and G, with the constant, proportional to
their condition numbers taken after a proper column scaling; see Theorems 5.6 and
5.12 and Remark 5.4. Assuming a perturbation of entries of matrices F and G at the
level of double precision, EPS ≈ 10−16, we expect a similar perturbation in cosine
and sine of principal angles, when matrices F and G are well-conditioned after column
scaling. We want to check if our code achieves this accuracy in practice.

We concentrate here on testing our sine-based algorithms, i.e., for principal angles
smaller than π/4. The cosine-based algorithm with A = I is recently studied in [10].

Our first example is taken from [3] with p = 13 and m = 26. Matrices F and G
were called A and B in [3]. F was orthogonal, while G was an m-by-p Vandermonde
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matrix with cond(G) ≈ 104. Matrix G was generated in double precision and then
rounded to single precision.

According to our theory and a perturbation analysis of [3, 27, 14, 15], in this
example an absolute change in principal angles is bounded by a perturbation in matrix
G times its condition number. Thus, we should expect sine and cosine of principal
angles computed in [3] to be accurate with approximately four decimal digits.

In our code, all computations are performed in double precision; therefore, an-
swers in Table 7.1 should be accurate up to twelve decimal digits. We observe, as
expected, that our results are consistent with those of [3] within four digits.

Table 7.1
Computed sine and cosine of principal angles of the example of [3].

k sin(θk) cos(θk)

1 0.00000000000 1.00000000000
2 0.05942261363 0.99823291519
3 0.06089682091 0.99814406635
4 0.13875176720 0.99032719194
5 0.14184708183 0.98988858230
6 0.21569434797 0.97646093022
7 0.27005046021 0.96284617096
8 0.33704307148 0.94148922881
9 0.39753678833 0.91758623677
10 0.49280942462 0.87013727135
11 0.64562133627 0.76365770483
12 0.99815068733 0.06078820101
13 0.99987854229 0.01558527040

In our next series of tests, we assume n to be even and p = q ≤ n/2. Let D be a
diagonal matrix of the size p:

D = diag(d1, . . . , dp), dk > 0, k = 1, . . . , p.

We first define n-by-p matrices

F1 = [I 0]T , G1 = [I D 0]T ,(7.1)

where I is the identity matrix of the size p and 0 are zero matrices of appropriate
sizes. We notice that condition numbers of F1 and G1 are, respectively, one and

condG1 =

√
1 + (max{diag(D)})2
1 + (min{diag(D)})2 .

Thus, the condition number may be large only when large diagonal entries in D are
present. Yet in this case, the condition number of G1 can be significantly reduced by
column scaling; see Remark 5.4.

The exact values of sine and cosine of principal angles between column-spaces of
matrices F1 and G1 are obviously given by

µk =
dk√

1 + d2
k

, σk =
1√

1 + d2
k

, k = 1, . . . , p,(7.2)

respectively, assuming that dk’s are sorted in the increasing order. The collective
error in principal angles is measured as the following sum:√

(µ1 − µ̃1)2 + · · ·+ (µp − µ̃p)2 +
√

(σ1 − σ̃1)2 + · · ·+ (σp − σ̃p)2,(7.3)
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where µ’s are the sine and σ’s are the cosine of principal angles, and the tilde sign˜
is used for actual computed values.

We multiply matrices F1 and G1 by a random orthogonal matrix U of the size n
on the left to get

F2 = U ∗ F1, G2 = U ∗G1.(7.4)

This transformation does not change angles and condition numbers. It still allows for
improving the condition number of G2 by column scaling.

Finally, we multiply matrices by random orthogonal p-by-p matrices TF and TG,
respectively, on the right:

F3 = F2 ∗ TF , G3 = G2 ∗ TG.(7.5)

This transformation does not change angles or condition numbers. It is likely, however,
to remove the possibility of improving the condition number of G3 by column scaling.
Thus, if G3 is ill-conditioned, we could expect a loss of accuracy; see Theorems 5.6
and 5.12 and Remark 5.4.

We start by checking scalability of the code for well-conditioned cases. We increase
the size of the problem n and plot the collective error, given by (7.3), for the principal
angles between F3 and G3, against the value n/2. We solve the same problem two
times, using Algorithm 3.2 and Algorithm 6.2 with A = I.

In the first two tests, diagonal entries of D are chosen as uniformly distributed
random numbers rand on the interval (0, 1). On Figure 7.1 (top) we fix p = q = 20.
We observe that the average error grows approximately two times with a ten times
increase in the problem size. On Figure 7.1 (bottom), we also raise p = q = n/2. This
time, the error grows with the same pace as the problem size. Please note different
scales used for errors on Figure 7.1.

To test our methods for very small angles with p = q = 20, we first choose

p = 20, dk = 10−k, k = 1, . . . , p.

We observe a similar pattern of the absolute error as that of Figure 7.1 (top) and do
not reproduce this figure here because of the space limitations.

In our second test for small angles, we set p = q = n/2 as on Figure 7.1 (bottom)
and select every diagonal element of D in the form 10−17·rand, where rand is again
a uniformly distributed random number on the interval (0, 1). The corresponding
figure, not shown here for the sake of brevity, looks the same as Figure 7.1 (bottom),
except that the error grows a bit faster and reaches the level ≈ 4 · 10−14 (compare to
≈ 3 · 10−14 value on Figure 7.1 (bottom)).

In all these and our other analogous tests, Algorithm 3.2 and Algorithm 6.2 with
A = I behave very similarly, so that Figure 7.1 provides a typical example.

In our next series of experiments, we fix a small p = q and n = 100, and compute
angles between F2 and G2 and between F3 and G3 500 times, changing only the
random matrices used in the construction of our Fi and Gi. Instead of the collective
error, given by (7.3), we now compute errors for individual principal angles as

|µk − µ̃k|+ |σk − σ̃k|, k = 1, . . . , p.

We tested several different combinations of angles less than π/4. In most cases, the
error was only insignificantly different from EPS ≈ 10−16. The worst-case scenario
found numerically corresponds to

D = diag{1, 0.5, 10−11, 10−12, 10−13, 5 · 10−15, 2 · 10−15, 10−15, 10−16, 0}
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Fig. 7.1. Errors in principal angles as functions of n/2: p = 20 (top) and p = n/2 (bottom).

and is presented on Figure 7.2. Figure 7.2 (top) shows the distribution of the error
for individual angles between F3 and G3 in Algorithm 3.2 in 500 runs. Figure 7.2
(bottom) demonstrates the performance of Algorithm 6.2 with A = I, for the same
problem. The numeration of angles is reversed for technical reasons; i.e., smaller
angles are further away from the viewer. Also the computed distribution of the error
for individual angles between F2 and G2 are very similar and, because of that, are
not shown here.

We detect that for such small values of p and n most of the angles are computed
essentially within the double precision accuracy. Only multiple small angles present
a slight challenge, more noticeable on Figure 7.2 (bottom), which uses a somewhat
different scale for the error to accommodate a larger error. Nevertheless, all observed
errors in all 500 runs are bounded from above by ≈ 6·10−15 on Figure 7.2, which seems
to be a reasonable level of accuracy for accumulation of round-off errors appearing in
computations with 200-by-10 matrices in double precision.

To test our code for an ill-conditioned case, we add two large values to the previous
choice of D to obtain

D = diag{1010, 108, 1, 0.5, 10−11, 10−12, 10−13, 5 · 10−15, 2 · 10−15, 10−15, 10−16, 0},
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Fig. 7.2. Errors in individual angles in Algorithms 3.2 (top) and 6.2 with A = I (bottom).

which leads to condG1 ≈ 1010.

Figure 7.3 (top) shows the distribution of the error for individual angles between
F2 and G2 in Algorithm 6.2 with A = I after 500 runs. The numeration of angles
is again reversed; i.e., smaller angles are further away from the viewer. There is no
visible difference between the new Figure 7.3 (top) and the previous Figure 7.2 for
the well-conditioned case, which confirms results of [15, 14] on column scaling of ill-
conditioned matrices; see Remark 5.4. Namely, our ill-conditioned matrix G2 can be
made well-conditioned by column scaling. Thus, perturbations in the angles should
be small. Figure 7.3 (top) therefore demonstrates that our code SUBSPACEA.m is
able to take advantage of this.

As we move to computing angles between F3 and G3 in this example (see Figure
7.3 (bottom)), where the distribution of the error for individual angles in Algorithm
6.2 with A = I after 500 runs is shown, the situation changes dramatically. In general,
it is not possible to improve the condition number cond(G3) ≈ 1010 by column scaling.
Thus, according to [3, 15] and our perturbation analysis of Theorems 5.6 and 5.12
and Remark 5.4, we should expect the absolute errors in angles to grow ≈ 1010 times
(compare to the errors on Figure 7.3 (bottom)), i.e., up to the level 10−5. On Figure
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Fig. 7.3. Errors in individual angles between F2 and G2 (top) and F3 and G3 (bottom).

7.3 (bottom), which shows actual errors obtained during 500 runs of the code, we
indeed observe absolute errors in angles at the level up to 10−5, as just predicted.
Surprisingly, the absolute error for angles with small cosines is much better. We do
not have an explanation of such good behavior, as the present theory does not provide
individual perturbation bounds for different angles.

Our concluding numerical results illustrate performance of our code for ill-
conditioned scalar products.

We take G to be the first ten columns of the identity matrix of size twenty, and
F to be the last ten columns of the Vandermonde matrix of size twenty with elements
vi,j = i20−j , i, j = 1, . . . , 20. Matrix F is ill-conditioned, condF ≈ 1013. We compute
principal angles and vectors between F and G in an A-based scalar product for the
following family of matrices:

A = Al = 10−lI + H, l = 1, . . . , 16,

where I is identity and H is the Hilbert matrix of the order twenty, whose elements are
given by hi,j = 1/(i + j − 1), i, j = 1, . . . , 20. Our subspaces F and G do not change
with l; only the scalar product that describes the geometry of the space changes.
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When l = 1, we observe three angles with cosine less than 10−3 and three angles with
sine less than 10−3. When l increases, we are getting closer to the Hilbert matrix,
which emphasizes first rows in matrices F and G, effectively ignoring last rows. By
construction of F , its large elements, which make subspace F to be further away from
subspace G, are all in last rows. Thus, we should expect large principal angles between
F and G to decrease monotonically as l grows. We observe this in our numerical tests
(see Figure 7.4 (top)), which plots in logarithmic scale sine of all ten principal angles
as functions of l.

Of course, such change in geometry that makes sine of an angle to decrease 104

times, means that matrix Al, describing the scalar product, gets more and more ill-
conditioned, as it gets closer to Hilbert matrix H, namely, cond(A) ≈ 10l in our case.
It is known that ill-conditioned problems usually lead to a significant increase of the
resulting error, as ill-conditioning amplifies round-off errors. To investigate this effect
for our code, we introduce the error as the following sum:

error = ‖V TAV − I‖+ ‖UTAU − I‖+ ‖Σ− UTAV ‖,
where the first two terms control orthogonality of principal vectors and the last term
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measures the accuracy of cosine of principal angles. We observe in our experiments
that different terms in the sum are close to each other, and none dominates. The
accuracy of sine of principal angles is not crucial in this example as angles are not
small enough to cause concerns. As U and V are constructed directly from columns of
F and G, they span the same subspaces with high accuracy independently of condition
number of A, as we observe in the tests.

We plot the error on the y-axis of Figure 7.4 (bottom) for a Pentium III 500 PC
running two different operating systems: Microsoft Windows NT 4.0 SP6 (red stars)
and RedHat LINUX 6.1 (blue diamonds), where the x-axis presents condition number
of A; both axes are in logarithmic scale. The MATLAB Version 5.3.1.29215a (R11.1)
is the same on both operating systems.

We see, as expected, that the error grows, apparently linearly, with the condition
number. We also observe, now with quite a surprise, that the error on LINUX is much
smaller than the error on MS Windows!

As the same MATLAB’s version and the same code SUBSPACEA.m are run on
the same hardware, this fact deserves an explanation. As a result of a discussion
with Nabeel and Lawrence Kirby at the News Group sci.math.num-analysis, it has
been found that MATLAB was apparently compiled on LINUX to take advantage of
extended 80 bit precision of FPU registers of PIII, while Microsoft compilers appar-
ently set the FPU to 64 bit operations. To demonstrate this, Nabeel suggested the
following elegant example: compute scalar product

(1 10−19 − 1)T (1 1 1).

On MS Windows, the result is zero, as it should be in double precision, while on
LINUX the result is 1.084210−19.

Figure 7.4 (bottom) shows that our algorithm turns this difference into a signifi-
cant error improvement for an ill-conditioned problem.

Finally, our code SUBSPACEA.m has been used since 1999 in the code LOBPCG.m
(see [20, 21]) to control accuracy of invariant subspaces of large symmetric general-
ized eigenvalue problems, and thus has been tested for a variety of large-scale practical
problems.

8. Availability of the software. See http://www.mathworks.com/support/
ftp/linalgv5.shtml for our code SUBSPACEA.m and the function ORTHA.m it uses,
as well as our fix for SUBSPACE.m, as submitted to MathWorks. They are also
publicly available at the Web page maintained by the first author: http://www-math.
cudenver.edu/̃ aknyazev/software.

9. Conclusion. Let us formulate here the main points of the present paper:

• A bug in the cosine-based algorithm for computing principal angles between
subspaces, which prevents one from computing small angles accurately in
computer arithmetic, is illustrated.
• An algorithm is presented that computes all principal angles accurately in

computer arithmetic and is proved to be equivalent to the standard algorithm
in exact arithmetic.
• A generalization of the algorithm to an arbitrary scalar product given by a

symmetric positive definite matrix is suggested and justified theoretically.
• Perturbation estimates for absolute errors in cosine and sine of principal an-

gles, with improved constants and for an arbitrary scalar product, are derived.
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• A description of the code is given as well as results of numerical tests. The
code is robust in practice and provides accurate angles for large-scale and
ill-conditioned cases we tested numerically. It is also reasonably efficient for
large-scale applications with n� p.
• Our algorithms are “matrix-free”; i.e., they do not require storing in memory

any matrices of the size n and are capable of dealing with A, which may be
specified only as a function that multiplies A by a given vector.
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Abstract. In this paper, a new family of fourth order Chebyshev methods (also called stabilized
methods) is constructed. These methods possess nearly optimal stability regions along the negative
real axis and a three-term recurrence relation. The stability properties and the high order make them
suitable for large stiff problems, often space discretization of parabolic PDEs. A new code ROCK4
is proposed, illustrated at several examples, and compared to existing programs.

Key words. stiff ordinary differential equations, explicit Runge–Kutta methods, orthogonal
polynomials, parabolic partial differential equations

AMS subject classifications. 65L20, 65M20
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1. Introduction. Chebyshev methods are a class of explicit Runge–Kutta meth-
ods with extended stability domains along the negative real axis. The stability prop-
erties of these methods make them suitable for stiff problems which possess a Jacobian
matrix with (possibly large) eigenvalues close to the real negative axis. Since they
are explicit, Chebyshev methods avoid linear algebra difficulties and can be applied
to very large problems. The main applications are parabolic PDEs when discretized
by finite difference. It usually gives a large system of ODEs with a symmetric and
negative definite Jacobian matrix. Thus, the eigenvalues of the discretized parabolic
PDEs are real negative and, furthermore, become larger while refining the space dis-
cretization.

Recently, a new strategy to construct second order Chebyshev methods has been
proposed by Abdulle and Medovikov [2]. It combines the advantages of the methods
introduced by Lebedev [11], [12] and van der Houwen and Sommeijer [9] (see also
[14] for the latest implementation of these methods). An algorithm to construct
nearly optimal stability functions along the real negative axis based on orthogonal
polynomials was proposed in [2]. The advantage of using orthogonal polynomials is the
three-term recurrence relation which can be used to construct the numerical methods.
At the same time, choosing an appropriate weight function for these polynomials leads
to a nearly optimal stability domain (see [2]).

For order more than 2, the only known Chebyshev methods are those of Medovikov
[10]. They are constructed upon the strategy of Lebedev-type methods: the zeros of
the optimal stability polynomials are computed, and the numerical methods are based
on a suitable ordering of these zeros. The drawback is that the ordering, crucial for
the internal stability of the methods, depends on the degree of the polynomials and
needs some art. There are also no recurrence relations. The methods of order 4
proposed in this paper are based on a three-term recurrence relation and avoid the
preceding problems.
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The paper is organized as follows. In section 2 we explain how to compute nearly
optimal fourth order stability polynomials. Section 3 is devoted to the construction
of a family of numerical methods. These methods have been implemented in a new
code called ROCK4 which is briefly described in section 4. Finally, in section 5 we
present some numerical experiments and comparisons with other codes.

2. Fourth order stability polynomials. The aim is to construct a family of
polynomials of order 4 depending on the degree s,1

R̃s(z) = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+O(z5),(2.1)

which remain bounded by 1 as long as possible along the real negative axis, i.e.,

|R̃s(z)| ≤ 1 for z ∈ [−l̃s, 0],(2.2)

with l̃s as large as possible. It is proved in [1] that fourth order optimal stability
polynomials (which exist and are unique see [13]) possess exactly four complex zeros.
Thus, they can be written as

R̃s(z) = w̃4(z)P̃s−4(z),(2.3)

where w̃4(z) = (1−/t1)(1−/t̄1)(1−/t2)(1−/t̄2), ti are complex (conjugate) numbers,

and P̃s−4(z) possesses only real zeros. The idea developed in [2] for second order is
to approximate these polynomials by

Rs(z) = w4(z)Ps−4(z),(2.4)

where w4(z) = (1 − /z1)(1 − /z̄1)(1 − /z2)(1 − /z̄2) and Ps−4(z) is an orthogonal
polynomial associated with the weight function w4(z)

2/
√
1− z2. We want to find

such a decomposition which satisfies (2.2) for z ∈ [−ls, 0] with ls close to l̃s. At the
same time, we want that the product satisfies the fourth order conditions (2.1).

The motivation for considering such polynomials can be found in [2]. Notice that
for first order optimal polynomials we have a formula similar to (2.3), with w̃(z) = 1

and R̃s(z) = Ts(1 +
z
s2 ), where Ts(z) are the Chebyshev polynomials. These optimal

polynomials are at the same time orthogonal with respect to the weight function
1/
√
1− z2. The arguments developed in [2] show that for order 2 the polynomials

(2.3) and (2.4) are very close. These arguments can be generalized for even orders
higher than 2. Figure 2.1 shows for s = 9 the difference between a fourth order
optimal stability polynomial and its approximation. We see that they can hardly be
distinguished.

For second order, the algorithm for computing the orthogonal polynomials and
the zeros of the function w(z) of (2.4) was given in [2]. We adapt here this algorithm
for order 4.

In the following we will work in the normalized interval [−1, 1] instead of [−ls, 0]
by setting x = 1 + 2z

ls
(ls is the length of the stability domain along R

− we want to
optimize), and we take the same notation for the shifted polynomials except for the
fact that we use the variable x instead of z. Thus, we are searching for order 4 at
x = 1 (see below). If we shift the polynomials defined by (2.4) and normalize them

1We use the notation R̃s because we reserve Rs for the stability polynomials we will construct.
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Fig. 2.1. R9(x) and its stability domain, with R̃9(x) in the dotted line, η = 0.95 (damping).

such that |w4(x)Ps−4(x)| ≤ 1 for x ∈ [−1, 1], then w4(1)Ps−4(1) is usually not equal
to 1. As in [2], we therefore introduce a parameter a close to 1, set

Rs(x) =
w4(x)Ps−4(x)

w4(a)Ps−4(a)
,(2.5)

and we search fourth order conditions at the point a. We denote the complex zeros
of w4(x) by x1 = α + iβ, x̄1 = α − iβ, x2 = γ + iδ, x̄2 = γ − iδ, and to emphasize
the dependence of Rs(x) on α, β, γ, δ we will write Rs(x, α, β, γ, δ). We have now an
optimization problem.

Problem. Find a, d, α, β, γ, δ (depending on s) such that

R′
s(a, α, β, γ, δ) = d, R′′

s (a, α, β, γ, δ) = d2,(2.6)

R′′′
s (a, α, β, γ, δ) = d3, R(4)

s (a, α, β, γ, δ) = d4,(2.7)

|Rs(x)| ≤ 1 for x ∈ [−1, a](2.8)

with ls = (1 + a)d as large as possible.(2.9)

If we then set z = (x− a)/d, we will have

Rs(0) = 1, R′
s(0) = 1, R′′

s (0) = 1, R′′′
s (0) = 1, R(4)

s (0) = 1,(2.10)

|Rs(z)| ≤ 1 for z ∈ [−ls, 0].(2.11)

Here again we used the same notation for the shifted polynomials. For more details
about this algorithm we refer the reader to [2].

We have computed the parameters ls, α, β, γ, δ, a (depending on s) for degree 5
up to degree more than 1000. In practice the bound in (2.8) should be replaced by
a value η < 1 so that the stability domain is at a safe distance from the real axis
(see Figure 2.1). We chose η = 0.95. In Table 2.1 we give the values of ls and

c(s) = ls/s
2 for some degrees s. Several authors observed that the optimal values l̃s

satisfy l̃s = c(s)s2, with c(s) rapidly approaching a limit value. The value c(s) � 0.34
is given in [15] (see also [8]) and c(s) � 0.35 in [10]. We observe in Table 2.1 that
ls � 0.35 · s2, which means that our stability regions are nearly optimal.
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Table 2.1
The stability parameters of Rs(x).

Degree Stability Value Degree Stability Value
s region ls c(s) = ls/s2 s region ls c(s) = ls/s2

5 5.9983 0.239931 100 3538.1276 0.353813
10 32.4470 0.324470 250 22184.4995 0.354952
20 138.3586 0.345897 500 88746.9995 0.354988
50 879.8864 0.351955 750 199684.4999 0.354995

3. Fourth order Chebyshev methods. In the preceding section we have ex-
plained how to compute our stability polynomials. Assume now that we have such a
family of fourth order polynomials (depending on the degree s)

Rs(z) = w4(z)Ps−4(z),(3.1)

which satisfy

|Rs(z)| ≤ 1 for z ∈ [−ls, 0],(3.2)

where w4(z) = (1 − /z1)(1 − /z̄1)(1 − /z2)(1 − /z̄2) and Ps−4(z) is an orthogonal
polynomial associated with the weight function

w4(z)
2/
√
1− z2,(3.3)

and normalized such that Ps−4(0) = 1. For a given degree s we will further use the
family of orthogonal polynomials (Pj)

s−4
j=0 associated with the weight function (3.3),

normalized such that Pj(0) = 1. These polynomials possess a three-term recurrence
relation

Pj(z) = (µjz − νj)Pj−1(z)− κjPj−2(z).

In [2] it was explained how to compute explicitly these polynomials, given the zeros
of the function (3.3). The same procedure can be applied here, and the recurrence
coefficients can be computed simply by solving a linear system.

For second order methods, it is sufficient to construct a numerical method which
is of order 2 for linear problems, since the order conditions are the same for both linear
and nonlinear problems. This is not true for orders larger than 2, and it is therefore
not sufficient to consider only the linear case. Here we have to give a realization of our
weight function w4(z) so that the order conditions up to order 4 (8 conditions) are
satisfied. As in [10] we will use the theory of composition of methods (the “Butcher
group”) to realize fourth order Runge–Kutta–Chebyshev methods.

Suppose that we have two Runge–Kutta methods. The idea of composition of
methods is to apply one method after the other to an initial value y0 with the same
step size. The result of this process can be interpreted as a large Runge–Kutta
method: a composition of the two latter methods. For the theory of composition of
Runge–Kutta methods, we refer to [3],[6, pp. 264–273],[5].

To construct a fourth order Runge–Kutta method with the polynomials (3.1) we
proceed as follows:

• We construct a first method, denoted by P , which possesses Ps−4(z) as sta-
bility polynomial.
• We then determine a second method, denoted by W , which possesses w4(z)
as stability polynomial, to achieve fourth order for the “composite” method
denoted by WP .
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Fig. 3.1. Tableau of the method P (left) and W (right).

The resulting method will be of order 4 and will possess Rs(z) = w4(z)Ps−4(z) as
stability polynomial.

The first method. To construct the method P we apply a procedure similar
to that used in [2]. That is, the three-term recurrence relation of the orthogonal
polynomials (Pj)

s−4
j=1 is used to define the internal stages of the method as follows:

g0 := y0,
g1 := y0 + hµ1f(g0),
gj := hµjf(gj−1)− νjgj−1 − κjgj−2, j = 2, . . . , s− 4,
y1 := gs−4.

(3.4)

Applied to y′ = λy with z = hλ yields

gs−4 = Ps−4(z)g0.(3.5)

This method is given in the left tableau of Figure 3.1. The coefficients of the method
P can be expressed recursively in term of the coefficients νj , µj , κj . Indeed, using the

notation ki = f(y0 + h
∑i−1
j=1 ãijkj) (autonomous form), we obtain for the first stage

g1 = y0 + hµ1f(y0) = y0 + hã21k1;(3.6)

this yields a21 = µ1. For the second stage we have

g2 = hµ2f(y0 + hã21k1)− ν2(y0 + hã21k1)− κ2y0

= y0(−ν2 − κ2) + h(−ν2ã21)k1 + hµ2k2;
(3.7)

hence ã31 = −ν2ã21 and ã32 = µ2. (Notice that −ν2 − κ2 = 1 because of the
normalization Pj(0) = 1.) The third stage is then given by

g3 = hµ3f(y0 + h(ã31k1 + ã32k2))− ν3(y0 + h(ã31k1 + ã32k2))− κ3(y0 + hã21k1)
= y0(−ν3 − κ3) + h(−ν3ã31 − κ3ã21)k1 + h(−ν3ã32)k2 + hµ3k3,

and thus ã41 = −ν3ã31 − κ3ã21, ã42 = −ν3ã32 and ã43 = µ3. By induction we obtain
the following lemma.

Lemma 3.1. For the method P given by (3.4) the coefficients ãij , b̃i, c̃i of the
corresponding Runge–Kutta method are given by

ãi,j = −νi−1ãi−1,j − κi−1ãi−2,j , j ≤ i− 2, i ≤ s− 3 (ãjj := 0),
ãi,i−1 = µi−1, i ≤ s− 3,

b̃j = ãs−3,j , 1 ≤ j ≤ s− 4,

(3.8)

and the c̃i satisfy the usual relation c̃i =
∑i−1
j=1 ãij.

We emphasize that the coefficients ãij , b̃i will be used only to compute the method
W . For the implementation of the method, formulas (3.4) will be used.
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0

c̃2 ã21

...
...

. . .

c̃s−4 ãs−4,1 . . . ãs−4,s−5∑
b̃i b̃1 . . . b̃s−3 b̃s−4∑

b̃i + ĉ2 b̃1 . . . b̃s−3 b̃s−4 â21

...
...

. . .∑
b̃i + ĉ4 b̃1 . . . b̃s−3 b̃s−4 â41 . . . â43

b̃1 . . . b̃s−3 b̃s−4 b̂1 . . . b̂3 b̂4

Fig. 3.2. Tableau of method WP .

The second and the “composite” methods. For the method W we take a
fourth stage method (right tableau of Figure 3.1) so that the composite method WP is
given by Figure 3.2. In the tableau of method WP , we will denote by ci the elements
of the first column, by aij the elements of the “triangle,” and by bi the elements of
the last row. The order conditions of the method WP are the usual ones for order 4:

wp( � ) =
∑

bi = 1,

wp( /�
�

) = 2
∑

biaij = 1,

wp( /\�
��

) = 3
∑

biaijaik = 1,

wp( /
\
�

�

�

) = 6
∑

biaijajk = 1,

wp( �|/\
� ��

) = 4
∑

biaijaikail = 1,

wp( /
\
�

�

�

\� ) = 8
∑

biaijajkail = 1,

wp( /
\/
�

�

��

) = 12
∑

biaijajkajl = 1,

wp( /
\
�

�

�/
�

) = 24
∑

biaijajkakl = 1.

(3.9)

Here we used the trees notation (connected graphs without cycles and a distinguished
vertex) for the elementary weights (wp(. . . )) involved in the order conditions (see [6,
pp. 145–154] or [3]).

Theorem 12.6 of [6, p. 267] can be used to express the order conditions of the
method WP in function of the two submethods, W and P . See also [5] for a new
simple proof of this latter theorem (with another normalization for the elementary
weights). We obtain

wp( � ) = w( � ) + p( � ),

wp( /�
�

) = w( /�
�

) + 2w( � )p( � ) + p( /�
�

),

wp( /\�
��

) = w( /\�
��

) + 3w( /�
�

)p( � ) + 3w( � )p( � )2 + p( /\�
��

),

wp( /
\
�

�

�

) = w( /
\
�

�

�

) + 3w( /�
�

)p( � ) + 3w( � )p( /�
�

) + p( /
\
�

�

�

),

wp( �|/\
� ��

) = w( �|/\
� ��

) + 4w( /\�
��

)p( � ) + 6w( /�
�

)p( � )2 + 4w( � )p( � )3 + p( �|/\
� ��

),
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wp( /
\
�

�

�

\� ) = w( /
\
�

�

�

\� ) + 4( 1
3w( /

\
�

�

�

)p( � ) + 2
3w( /\�

��

)p( � )) + 6( 1
3w( /�

�

)p( /�
�

) + 2
3w( /�

�

)p( � )2)

+ 4w( � )p( � )p( /�
�

) + p( /
\
�

�

�

\� ),

wp( /
\/
�

�

��

) = w( /
\/
�

�

��

) + 4w( /
\
�

�

�

)p( � ) + 6w( /�
�

)p( � )2 + 4w( � )p( /\�
��

) + p( /
\/
�

�

��

),

wp( /
\
�

�

�/
�

) = w( /
\
�

�

�/
�

) + 4w( /
\
�

�

�

)p( � ) + 6w( /�
�

)p( /�
�

) + 4w( � )p( /
\
�

�

�

) + p( /
\
�

�

�/
�

),

where w(. . . ) and p(. . . ) are the expressions (3.9) for the methods W and P , respec-
tively. These formulas allow us to compute recursively the expressions w( �), w(/�

�

), . . .
for the method W , since the expressions p( �), p(/�

�

), . . . can be computed with the co-
efficients of the method P given by (3.8). This leads to the following equations for
the method W :

b̂1 + b̂2 + b̂3 + b̂4 = w( � ),

b̂2ĉ2 + b̂3ĉ3 + b̂4ĉ4 = w( /�
�

)
2 ,

b̂2ĉ
2
2 + b̂3ĉ

2
3 + b̂4ĉ

2
4 = w( /\�

��

)
3 ,

b̂3â32ĉ2 + b̂4(â42ĉ2 + â43ĉ3) = w( /
\
�

�

�

)
6 ,

b̂2ĉ
3
2 + b̂3ĉ

3
3 + b̂4ĉ

3
4 = w( �|/\

� ��

)
4 ,

b̂3ĉ3â32ĉ2 + b̂4ĉ4(â42ĉ2 + â43ĉ3) = w( /
\
�

�

�

\� )
8 ,

b̂3â32ĉ
2
2 + b̂4(â42ĉ

2
2 + â43ĉ

2
3) = w( /

\/
�

�

��

)
12 ,

b̂4â43â32ĉ2 = w( /
\
�

�

�/
�

)
24 .

(3.10)

This is a system of 8 equations for 10 unknowns b̂i, âij (ĉi are determined by ĉi =∑i−1
j=1 âij .) These equations are similar to the equations of usual fourth order methods

(i.e., when w( �) = 1, w(/�
�

) = 1, . . . ; see [6, pp. 135–136]). We have two degrees of

freedom, and we choose ĉ3 = w( �)
3 and ĉ4 = 2w( �)

3 after some experimentation. This

choice keeps the absolute value of the coefficients b̂i, âij less than 1, which is suitable
for a numerical method.

The solution of equations (3.10) gives us the coefficients of the method W . Thus,
we have obtained a family of methods (depending on the degree of the stability polyno-
mial) of order 4 with recurrence formulas and with the polynomial (3.1) as a stability
function.

The embedded method. For the estimation of the local error of the constructed
numerical method

y1 = y0 + h

s∑
i=1

bif


y0 + h

i−1∑
j=1

aijkj


 = y0 + h

s∑
i=1

biki,(3.11)

we use an embedded method of order 3.
Since for fourth order methods there is no embedded method of order 3 using the

same function values ki = f(y0 + h
∑

aijkj) (see [6, p. 167]), we search for a lower
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0

ĉ2 â21

ĉ3 â31 â32

ĉ4 â41 â42 â43

ĉ5 b̂1 b̂2 b̂3 b̂4

b̄1 b̄2 b̄3 b̄4 b̄5

Fig. 3.3. Tableau of the method W .

order method of the form

y1 = y0 + h


 s∑
i=1

βif


y0 + h

i−1∑
j=1

aijkj


+ βs+1f(y1)


 = y0 + h

(
s∑
i=1

βiki + βs+1ks+1

)
.

(3.12)

This is no extra work (if the step is accepted) because f(y1) has to be computed
anyway for the next stage. As a measure of the error after one step we will take

err = ‖y1 − y1‖.(3.13)

We want to keep the recurrence formulas for the embedded method. Therefore,
the embedded method will be a composition of the method P , defined in (3.4), with
a new method W denoted by W . For that, we add a fifth stage to the method W
as shown in Figure 3.3. Similarly to (3.10) we derive third order conditions for the
method W :

b̄1 + b̄2 + b̄3 + b̄4 + b̄5 = w( � ),

b̄2ĉ2 + b̄3ĉ3 + b̄4ĉ4 + b̄4ĉ5 = w( /�
�

)
2 ,

b̄2ĉ
2
2 + b̄3ĉ

2
3 + b̄4ĉ

2
4 + b̄5ĉ

2
5 = w( /\�

��

)
3 ,

b̄3â32ĉ2 + b̄4(â42ĉ2 + â43ĉ3) + b̄5(̂b2ĉ2 + b̂3ĉ3 + b̂4ĉ4) = w( /
\
�

�

�

)
6 .

(3.14)

Notice that ĉ5 =
∑

b̂i = w( �). The last equation of (3.14) can be simplified since

b̂2ĉ2 + b̂3ĉ3 + b̂4ĉ4 = w(/�
�

)
2 (see (3.10)). We obtain a system of 4 equations for 5

unknowns b̄i. We require the following additional condition:

w̄5(−ls) = 0,(3.15)

where w̄5(z) is the stability polynomial of the method W and ls the length of the
stability domain along the negative real axis (see (3.2)).

Solving (3.14) and (3.15), numerical computations show that the stability poly-
nomials of the embedded methods are bounded (by η = 0.95) on the same interval as
the stability polynomials of the numerical methods (see Figure 3.4). There is a sim-
ple criterion to check if R̄s+1(z), the stability polynomials of the embedded method,
is bounded by η on the same interval as Rs(z). Recall that Rs(z) = w4(z)Ps−4(z)
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−40 −30 −20 −10 0

−1

0

1

−60 −50 −40 −30 −20 −10 0

−1

0

1

Fig. 3.4. Stability polynomials of the method WP and the embedded method WP (dotted line)
for s = 9 (left) and s = 13 (right).

and R̄s+1(z) = w̄5(z)Ps−4(z). Denote by zi the zeros of Ps−4(z). Because Ps−4(z)
is an orthogonal polynomial its zeros are simple and all in the stability interval, say
−ls < z1 < · · · < zs−4 < 0.

Lemma 3.2. With the above notations, suppose that R̄s+1(−ls) = 0. If there exist
δ > 0 such that R̄s+1(z) < Rs(z) for z ∈ (zs−4, zs−4 + δ), then

|R̄s+1(z)| ≤ |Rs(z)| for z ∈ (z1, zs−4 + δ).(3.16)

Proof. Define d(z) = R̄s+1(z)−Rs(z); we have

d(z) = Ps−4(z)z
4(β0 + β1z),

since R̄s+1(z)− ez = O(z4) and Rs(z)− ez = O(z5).
Suppose that there exist z ∈ (z1, zs−4) such that |R̄s+1(z)| > |Rs(z)|. Then, using

the second hypothesis, either there exist ẑ �= zi such that d(ẑ) = 0 or d(z) has a double
zero at some zi. In both cases, it must then exist ε > 0 such that |R̄s+1(z)| > |Rs(z)|
for z ∈ (z1, z1+ ε). Since R̄s+1(−ls) = 0, d(z) must have a double zero at z1 or vanish
at least once in (−ls, z1). In both cases, counting the zeros of d(z) outside of the
origin leads to a contradiction.

4. Description of ROCK4. We implemented the numerical method described
in section 3 in a code called ROCK4 for Orthogonal-Runge–Kutta–Chebyshev (appro-
priately permuted). This is the fourth order version of the code ROCK2 introduced
in [2]. In this section we briefly describe the code.

Step size estimation. As in ROCK2, we implemented the “step size strategy with
memory” of Watts [16] and Gustafsson [4],

hnew = fac · hn
(

1

errn+1

) 1
4 hn
hn−1

(
errn
errn+1

) 1
4

,(4.1)

in order to allow the step size to decrease reasonably without rejection (see also [7,
p. 124]).

Stage number selection. While most stiff codes have a fixed number of stages, we
used, as usual in Chebyshev codes, a family of fourth order methods. At each step we
first select a step size in order to control the local error; then we select a stage order
so that the stability property (see section 2 and Table 2.1)

hρ

(
∂f

∂y
(y)

)
≤ 0.35s2(4.2)
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is satisfied, where ρ(. . . ) denotes the spectral radius of the Jacobian matrix of the
ODEs. This is possible because for practical purposes, the error constants of the
family of fourth order methods are found to be almost the same. They are close to
the error constants of optimal stability polynomials which have been described in [1].

Spectral radius estimate. The user can supply a function which estimates a bound
for the spectral radius (for example, by using Gershgorin theorem; see [6, p. 89]). By
specifying that the Jacobian is constant, this function will be called only once. If it
is not possible to get an estimate of the spectral radius easily, the code ROCK4 can
also compute it internally. For that, we have implemented with a slight modification
a nonlinear power method proposed by Sommeijer, Shampine, and Verwer (see [14]).

Storage. Due to the three-term recurrence formula, the method requires only a
few storage vectors. The number of storage vectors does not depend on the number
of stages used. For the computation of an integration step and the error estimation,
ROCK4 uses three vectors for the recurrence formula and five additional vectors for
the finishing four-stage method and the embedded method. Notice that the low
memory demand of these methods is suitable since we want to apply them to large
problems.

5. Numerical experiments. We conclude this paper with several stiff problems
taken from the test set of stiff problems proposed in [7] (first and second editions). All
the parameters chosen for the examples are taken from [7]. We compare the following
codes:

ROCK4: the fourth order code described in this paper.
ROCK2: the second order code based on orthogonal polynomials and described

in [2].
RKC: the second order Chebyshev code of Sommeijer, Shampine, and Verwer (see

[14]).
RADAU5: the well-known implicit code by Hairer and Wanner of order 5 based

on a Radau IIA collocation method (see [7]).
For all examples which follow, we compared the obtained numerical results for

the different codes with a reference solution for the given ODEs. The computing time
is then displayed as a function of the error (in an Euclidian norm). For each problem
the codes have been applied with different tolerances, say

tol = 10−2, 10−2− 1
4 , 10−2− 1

2 , . . . .(5.1)

The integer-exponent tolerances are displayed as enlarged symbols. The results were
computed with scalar tolerances atol = rtol = tol for all problems. The symbol for
tol = 10−5 is distinguished by its gray color.

The following examples are parabolic PDEs, discretized by the method of line
into a system of ODEs. We replace the second order spatial derivatives by the finite
difference scheme

∂2u(xi, yj , t)

∂x2
=

ui+1,j − 2ui,j + ui−1,j

(∆x)2
+O((∆x)2

)
,

where uij are functions depending on time.
Example 1. The first example is the Burgers’ equation

ut +

(
u2

2

)
x

= µuxx,(5.2)
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with initial condition

u(x, 0) = 1.5x(1− x)2,(5.3)

and boundary conditions

u(0, t) = u(1, t) = 0(5.4)

for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 2.5. We discretize the space variable of (5.2) by the method
of lines with ∆x = 1

501 , and we choose µ = 0.0003.

100 10−3 10−6 10−9

10−1

100

101

BURGERS SMOOTH

error

sec

ROCK2

ROCK4

RKC

RADAU5

Fig. 5.1. Work-precision diagram for Burgers’ equations.

Thus, we obtain an ODE (in time) of dimension 500. It is then solved by the
different codes for 0 ≤ t ≤ 2.5. For RADAU5 we used the banded algebra option, and
for the Chebyshev codes we provide an estimation of the spectral radius by applying
the Gershgorin theorem.

We see in Figure 5.1 that the two lower order methods, RKC and ROCK2, are
better for lower tolerances. ROCK2 is slightly more efficient and better at deliver-
ing an accuracy close to the tolerance. For higher tolerances the high order codes
RADAU5 and ROCK4 are better, with an advantage for ROCK4. This latter code
also nicely preserves the tolerance proportionality.

Example 2. The second example is the two-dimensional Brusselator reaction-
diffusion problem

∂u

∂t
= 1 + u2v − 4.4u+ α

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f(x, y, t),

∂v

∂t
= 3.4u− u2v + α

(
∂2v

∂x2
+

∂2v

∂y2

)
,

(5.5)
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100 10−3 10−6 10−9 10−12102

103

104

BRUSS-2D

error

sec

ROCK2

ROCK4

RKC

RADAU5

Fig. 5.2. Work-precision diagram for the two-dimensional Brusselator problem.

with initial conditions

u(x, y, 0) = 22 · y(1− y)3/2, v(x, y, 0) = 27 · x(1− x)3/2,

and periodic boundary conditions

u(x+ 1, y, t) = u(x, y, t), u(x, y + 1, t) = u(x, y, t)

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 0. The function f is defined by

f(x, y, t) =

{
5 if (x− 0.3)2 + (y − 0.6)2 ≤ 0.12 and t ≥ 1.1,
0 else.

We discretize the space variables of equations (5.5) with xi =
i

N+1 , yi =
i

N+1 , i =

1, 2, . . . , N and choose N = 128 and α = 0.1. Thus, we obtain a system of 2N2 =
32768 equations. We chose the output points tout = 1.5 and 11.5. The spectral radius
of the Jacobian ρ � 13200 can be estimated with the Gershgorin theorem; thus as in
the previous example, we provide a bound for it when using Chebyshev methods. As
advised in [7, p. 157] the linear equations in the code RADAU5 are solved by FFT
methods so that the code is optimized for this problem. (Otherwise it will certainly
not be competitive with Chebyshev methods.)

We see in Figure 5.2 that ROCK2 and RKC behaves similarly. For higher order
methods, RADAU5 behaves better for low tolerances, while ROCK4 is better for
higher tolerances. Between Chebyshev codes, except for very low tolerances ROCK4
gives the best results and nicely preserves the tolerance proportionality (as do ROCK2
and RADAU5).

Example 3. The third example is the FitzHugh and Nagumo model for explaining
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100 10−3 10−6 10−9

100

101
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error

sec

ROCK2

ROCK4

RKC

RADAU5

Fig. 5.3. Work-precision diagram for FitzHugh and Nagumo equations.

the nerve conduction as a traveling wave:

∂u

∂t
=

∂2u

∂x2
− f(u)− v,

∂v

∂t
= η(u− βv),

(5.6)

where

f(u) = u(u− α)(u− 1),

with initial conditions

u(x, 0) = v(x, 0) = 0,

and boundary conditions

∂u

∂x
(0, t) = −0.3, ∂u

∂x
(100, t) = 0

for 0 ≤ x ≤ 100 and 0 ≤ t ≤ 400.
We chose α = 0.139, η = 0.008, and β = 2.54 and discretize the space variable in

200 equidistant steps xi =
2i+1

4 , i = 0, . . . , 199. We compute numerically a bound for
the spectral radius of the Jacobian which was used for the Chebyshev methods. This
is a mildly stiff problem, and we see in Figure 5.3 the advantage of the Chebyshev
methods compared to an implicit one. Again, ROCK2 works slightly better than
RKC. ROCK4 behaves well and is better compared to other Chebyshev methods
even for low tolerances.
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Conclusion. We have presented a new fourth order Chebyshev method and im-
plemented it in a code called ROCK4. The numerical examples show a good behavior
of this code for problems it is intended for. We emphasize that this code, as does other
Chebyshev codes, is very simple to use. In fact, it is as simple to use as the forward
Euler method. The first version of this code (as well as ROCK2) and some examples
are available on the Internet at the address http://www.unige.ch/math/folks/hairer/
software.html. Experiences with this code are welcome.

Acknowledgments. The author is grateful to Ernst Hairer and GerhardWanner
for helpful discussions. He also thanks Alexei Medovikov for his constant interest in
this subject.
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Abstract. In this paper, we consider Hamilton–Jacobi equations on a manifold, typically on
the graph of some previously computed function z(x, y), and we show how the corresponding level
set method allows us to generate and/or to refine a mesh in regions where this function z has large
derivatives. Such as it is, the method needs to be strongly improved and accelerated, but the principle
is awfully natural, and in principle the method is fully automatic. Similar ideas are also useful in
image processing, in particular for the active contours method.

Key words. Hamilton–Jacobi equations, viscosity solutions, level set method, anisotropic mesh
generation, high order numerical two dimensional schemes
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1. Introduction. The method we are presenting here is fairly general. However,
for concreteness, we restrict ourselves to the following prototype: we consider in R

3

a manifold Σ, which we assume to be the graph of a smooth function z: Ω → R:,
Σ := {(x, z(x));x = (x1, x2) ∈ Ω̄}, where Ω is a bounded domain in R

2. The function
z is assumed to be known and smooth, but its derivatives can be very large in some
regions of Ω̄.

The purpose of this paper is to show—at least in principle—how to generate a
mesh which is automatically refined in regions where the graph of z—in other words,
the manifold Σ—is “steep” (in a sense to be precised later). Practically, z is the
(previously computed) numerical solution of some unspecified PDE on the domain Ω.
If no such underlying function z is available, then we can always choose z ≡ 0, in
which case we will just deal with the classical eikonal equation.

In this paper, we assume that z and its derivatives are known analytically at every
point of Ω̄. Of course, in realistic applications, z is interpolated from its values at
points of the mesh on which it has been computed, say by a finite element or a finite
volume method.

There exists much literature on grid generation and refinement algorithms. Among
many others, let us mention, for instance, [25, 13, 29, 18, 22, 45] and [11, 40] in the
case of finite differences methods.

The main idea that we propose here is to generate such an adapted grid by solving
the Hamilton–Jacobi equation on the graph of z, i.e., on the manifold Σ, equipped
with a suitable Riemannian metric. Indeed, it is well known that the classical eikonal
equation

∂tφ(x, t) + |∇φ(x, t)| = 0(1.1)
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is a powerful tool to move curves at unit speed in the (Euclidean) normal direction.
In order to generate a mesh which is refined in regions where z has large deriva-

tives, it is perfectly natural to slow down the motion of curves in these regions. The
most natural way to do that is to move curves on the graph of z, at a given speed, in
the (Riemannian) normal direction with a suitable metric. In other words, the curves
move with constant speed on a stiff mountain, but their horizontal projections move
very slowly so that the resulting mesh is automatically refined in these regions.

Although the principle is very general, the two natural metrics that we essentially
consider here are based on the positive definite quadratic forms associated to either
the matrix

(i)

G1(x) =

(
1 + ( ∂z∂x1

)2 ∂z
∂x1

∂z
∂x2

∂z
∂x1

∂z
∂x2

1 + ( ∂z∂x2
)2

)
(1.2)

(ii) or to

G2(x) = I +t H(z)(x)H(z)(x),

where H(z)(x) :=

(
∂2z

∂xi∂xj

)
(x): Hessian matrix of z.(1.3)

Note that G1 is nothing but the restriction of the ambient Euclidean metric in R
3 to

the manifold Σ.
Let us briefly comment on these two particular (strongly anisotropic) choices.
With the first choice, in regions where |∇z| � 1, the Riemannian distance between

two neighbor points A and B (see Figure 1) is much bigger than their Euclidean

distance, except if vectors 
AB and ∇z are orthogonal (in other words if A and B are
essentially on the same level curve of z). Indeed, the eigenvector of G1(x) associated to
the larger eigenvalue λ2(x) = 1+|∇z(x)|2 is∇z(x), whereas the eigenvector associated
to λ1(x) = 1 is (∇z)⊥(x).

Consequently, with this first choice, the motion will be much slower
1. in regions where the (Euclidean) norm |∇z| is large, and
2. inside these regions in the direction of ∇z. For instance, locally, we can

have as in Figure 1 dG1(A,B) = dG1(A,C) if ∇z(A) � 1. In contrast,
an isotropic metric defined, for instance, by G3(x) = F (|∇z(x)|)I (see, e.g.,
[45]) would lead to dG3(A,B)� dG3(A,C) 	 dG3(A,B′) which is in principle
inappropriate in this context.

With the choice (1.3), the motion is slowed down in regions where the second
order derivatives of z are large, regardless of the size of the gradient. The motivation
for that is very natural (see, e.g., the above-mentioned references [25, 18, 13]). Indeed,
for example, in the context of P1 finite element approximations, there is no need to
refine a mesh in regions where the gradients are large, if the solution is essentially
linear, like in region BC in Figure 2 (in the one dimensional case).

In such a case, the mesh should be refined only in intervals AB and CD. In
the multidimensional case this simple remark is reflected in the error estimates for
the finite element method (see again the above references). In particular, in two
dimensions, these error estimates are optimal when the triangles are almost equilateral
with respect to a metric like G2.

Remark 1.1. The approach described here in the case of the scalar-valued function
z of two variables is in principle completely general: z could be any vector or (tensor-)
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valued function defined on a domain in R
3. This function z could even be defined on

a two dimensional manifold M ∈ R
3, say the wing of an airplane, and the goal is then

to build a “good” mesh, automatically refined near singularities of the flow (transonic
shocks, geometric singularities of the wing, etc.). In this view, the purpose would be
to generate the mesh on the boundary and then to march in time in order to generate
the fully three dimensional mesh.

With these ideas, our method turns out to be a variant of the classical level set
methods [38, 42, 30, 36]. Naturally, quite similar problems arise in image processing
[3], in particular in active contours (snakes) [17], etc. In the above-mentioned refer-
ences, several authors deal with very similar problems (see, e.g., [30]), but in general
the motivation is different. As far as we know, this very simple idea of generating a
refined mesh by solving the Hamilton–Jacobi (HJ) equation on a manifold has never
been explicitly expressed.

A last comment is that the results presented here are far from being optimal.
As we will see later, there are still many imperfections in generating the grid. Our
purpose here is to show only that this strategy is natural, and in principle tractable,
even though the first version of the algorithm described here needs to be (strongly)
improved.

The outline of the paper is as follows. In section 2, we recall a few basic facts
on HJ equations. In sections 3 and 4, we briefly describe the numerical schemes that
we have used, and we show in a few examples the level curves of the corresponding
viscosity solution. In sections 5 and 6, we describe the principle of the construction of
a triangular mesh based on these level curves, and we show a few numerical results.
Finally, we recall the definition of viscosity solutions to the HJ equation in section 7.

2. The HJ equations on a manifold.

2.1. Basic facts. Although the method is fairly general, for simplicity we re-
strict ourselves to the typical situation described in section 1: Ω is a bounded domain
in R

2, and Σ is the graph of a smooth function z: Ω→ R, equipped with a Rieman-
nian metric: at every point (x, z(x)) of Σ, we are given a positive definite symmetric
bilinear form g(x; ., .): in the coordinates system x = (x1, x2), the length of dx is
defined by

L(x, dx) := |dx|G(x) = (dx,G(x)dx)
1
2 = (gij(x)dxidxj)

1
2 = |G(x)

1
2 dx|(2.1)
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with the Einstein summation convention. Here, G(x) = (gij(x))1≤i,j≤2, (u, v) :=

δiju
ivj is the Euclidean scalar product in R

2, and |u| = (u, u)
1
2 . The corresponding

length of a curve Γ := {(γ(t), z(γ(t))), t ∈ [0, T ]} on Σ is then

L(Γ) =

∫ T

0

L(γ(t), γ̇(t))dt :=

∫ T

0

(γ̇(t), G(γ(t))γ̇(t))
1
2 dt(2.2)

Now, let X(x) := (x, z(x)) and X(y) be given points on Σ. A (minimal) geodesic curve
on Σ is a curve Γ for which L(Γ) is extremal (minimal) among all curves on Σ with
the same endpoints. Under standard assumptions, there exists a (unique) minimal
C1 geodesic curve between two arbitrary points X(x) and X(y) on Σ if these points
are close enough (cf., e.g., [48]). Moreover, the “speed” |G(γ(t))1/2γ̇(t)| is constant
along a geodesic, and if the parameter t is the arc length, then minimizing L(Γ) is
equivalent to minimizing the energy

E(Γ) :=

∫ T

0

(L(γ(t), γ̇(t)))2dt(2.3)

with the same boundary conditions (see, e.g., [21]). Here and often in the paper, we
allow ourselves the confusion between curves on Σ and their horizontal projections in
Ω.

2.2. The variational problem. Now, let C0 := {(x, z(x)), x ∈ c0} be a curve
on Σ, whose horizontal projection c0 is a given (smooth) curve in Ω̄, parametrized,
e.g., by its arc length s (practically, c0 is the boundary of the domain Ω), let x be a
nearby point in Ω, and let us consider the following problem:

{
Find y ∈ c0 such that dG(x, y) = Min

{
dG(x, y′); y′ ∈ c0

}
= dG(x, c0),

(2.4)

where dG(x, y) := Inf
{∫ T

0
L(γ(t), γ̇(t))dt; γ(0) = y, γ(T ) = x, γ(t) ∈ Ω̄ ∀t ∈ [0, T ]

}
.

Clearly (cf., e.g., [48]), for the case of geodesics with fixed endpoints, if c0 is
smooth and if d(x, c0) is small enough, then there exists a unique solution to (2.4),
characterized by the Euler–Lagrange equations

− d

dt

(
∂L

∂γ̇

)
+
∂L

∂γ
= 0,(2.5)

(
∂L

∂γ̇
(γ(0), γ̇(0)), τ

)
= 0,(2.6)

where τ = τ(y) is the tangent vector to c0 at y = γ(0). Again, we can restrict ourselves
to considering only the horizontal projection

G(γ(0))γ̇(0)

|G(γ(0))γ̇(0)| = ±n,(2.7)

where n = n(γ(0)) is one of the two possible unit normal vectors in Ω ⊂ R
2. Note

that for the Euclidean metric in R
2, the vector γ̇(0) is not normal to c0, but in the

particular case where G = G1, this vector is the horizontal projection of the normal
geodesic (cf., e.g., [42, 30])

Γ̇(0) = ±|Γ̇(0)|T ∧N.(2.8)
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Naturally, in practical situations, the horizontal projection Ω ⊂ R
2 could be replaced

by a two dimensional manifold M ⊂ R
3, e.g., the wing of an airplane.

Geometrically, (2.6) says that the “ball” of center x and radius dG(x, y) is tangent
to the curve c0 at y; see Figure 3.

2.3. The HJ equations. Now, the purpose is to move the curve C0 on Σ, or,
equivalently, the curve c0 in Ω ∈ R

2 at a given Riemannian speed V , by the level set
method (see, e.g., [8, 38, 42, 26]). Dividing if necessary the matrix G(x) by (V (x))2,
we restrict ourselves to the case V ≡ 1.

In other words, we define c0 as the horizontal projection of the zero level curve of
a function Φ(x, 0) = Φ0(x) : Ω→ R, and we look for a function (x, t) �→ Φ(x, t) such
that, for any t ≥ 0,

ct := {x ∈ Ω; Φ(x, t) = 0} .(2.9)

A formal first order Taylor expansion gives

0 = Φ(x, t) = Φ(y, 0) + t∂tΦ(y, 0) +∇Φ(y, 0).(x− y) + o(|t|+ |x− y|).(2.10)

Now, multiply both sides of (2.7) by G−1(y). Since |γ̇(0)|G = 1 and V = 1, we obtain
at first order, after some manipulations,

x− y = t γ̇(0) + o(t) = ± t
G−1(y)n

|G−1(y)n|G + o(t) = ± t
G−1(y)∇Φ

|G−1/2(y)∇Φ| + o(t),(2.11)

since the vector ∇Φ is parallel to n. Finally,

0 = Φ(x, t) = 0 + t(∂tΦ± (G−1(y)∇Φ,∇Φ)
1
2 ) + o(t).

Therefore, the function Φ must satisfy

∂tΦ± (G−1(y)∇Φ|∇Φ)
1
2 = ∂tΦ± |G−1/2(y)∇Φ| = 0.(2.12)
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Choosing the sign of the initial datum Φ0 on each side of c0 imposes the direction of
propagation and therefore suppresses the above ambiguity. From now on, we choose
the positive sign in (2.12). Therefore the Hamiltonian

H(x, p) := |G−1/2(x)p|(2.13)

is convex with respect to p.

2.4. The stationary problem. Now, Ω is a bounded domain in R
2 with a

(theoretically) smooth boundary c0 := ∂Ω. In fact, what we would like to compute is
the family of level curves

c̃t :=
{
x ∈ Ω; dG(x, ∂Ω) = t, t ≥ 0

}
(2.14)

(we will see below that curves c̃t and ct are the same), or, equivalently, the family of
curves

C̃t := {(x, z(x));x ∈ c̃t} .(2.15)

In the case of the Euclidean metric it is a classical result (see, e.g., [6, 32, 20]) that
χ(x) := d(x, ∂Ω) is a viscosity solution to the stationary equation

|∇χ(x)| = 1 in Ω(2.16)

and satisfies in the classical sense the Dirichlet boundary condition

χ(x) = 0 on ∂Ω.(2.17)

In fact, χ is the unique viscosity solution to (2.16) which satisfies (2.17). The defi-
nition of viscosity solutions are recalled below; see section 7. Here, the matrix G(x)
depends smoothly on x, and it is easy to adapt the above result to show the following
proposition.

Proposition 2.1. Ψ(x) := dG(x, ∂Ω) := infy∈∂Ω d
G(x, y) is the unique viscosity

solution to problem

|G−1/2(x)∇Ψ(x)| = 1 in Ω,(2.18)

which satisfies in the classical sense the boundary condition

Ψ(x) = 0 on ∂Ω.(2.19)

2.5. The initial boundary-value problem. Naturally, the stationary solution
to (2.18), (2.19) is unknown (see, e.g., [41] for computational aspects). The principle
of the level set method [10, 8, 38] is to compute the family of curves (ct) defined
by (2.14) with suitable initial data and boundary conditions. Indeed, the family of
curves (ct) depends on the initial curve c0 = ∂Ω =

{
x ∈ Ω̄; Φ0(x) = 0

}
and not on

the particular solution Φ to

∂tΦ + |G−1/2(x)∇Φ| = 0 in Q = Ω× (0, T ).(2.20)

More precisely, we choose an initial datum Φ0 such that

c0 := ∂Ω :=
{
x ∈ Ω̄; Φ0(x) = 0

}
,(2.21)

Ω0 := Ω :=
{
x ∈ Ω̄; Φ0(x) > 0

}
,(2.22)
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and we impose

|G−1/2(x)∇Φ0(x)| = 1 on ∂Ω.(2.23)

The choice of “optimal” boundary data is a subtle question, which in particular raises
in general the issue of discontinuous viscosity solutions (see again [6, 1, 12]). We recall
that the family (ct) is called “regular” if relations similar to (2.21), (2.22) between ct
and Ωt hold for all t > 0; cf. [10, 8]. Here, using the independence of level curves ct
with respect to the particular solution Φ to (2.20), we follow the simplest choice:

Φ(x, t) = −t on ∂Ω× (0, t).(2.24)

The motivation for this choice is the compatibility with the obvious solution

Φ̃(x, t) = Ψ(x)− t = dG(x, ∂Ω)− t(2.25)

to problem (2.20), (2.24) with the initial data

Φ̃(x, 0) = Ψ(x),(2.26)

which, of course, satisfies conditions (2.21), (2.22), (2.23). With this choice it is clear
that curves ct and c̃t are the same. Of course, solving the problem (2.20), (2.24),
(2.26) is purely theoretical, since we do not know explicitly the function Ψ.

Therefore, we in fact solve problem (2.20), (2.24), (2.27), with

Φ(x, 0) = Φ0(x).(2.27)

Adapting [32, Prop. 11.1] and standard results of uniqueness [6, 32], we obtain the
following proposition.

Proposition 2.2. For any Lipschitz function Φ0 satisfying conditions (2.21),
(2.22), (2.23), the initial boundary value problem (2.20), (2.24), (2.27) has a unique
viscosity solution Φ, whose level curves {ct, t ≥ 0} do not depend on the particular
choice of boundary conditions and initial data.

Moreover, consider Ω0 := Ω and Ωt :=
{
x ∈ Ω; dG(x, ∂Ω) > t

}
; then Φ is in

principle given by the Oleinik–Lax [35, 33] or Hopf [28, 5, 33, 7] type of formula:

Φ(x, t) =

{
Inf
{

Φ0(y); dG(y, x) ≤ t
}

if x ∈ Ω̄t,
dG(x, ∂Ω0)− t if x ∈ Ω̄\Ω̄t.(2.28)

For related results with the classical eikonal equation, see, e.g., [7, 5, 33] and the
references therein. We recall (see, e.g., [24]) that (2.23) would be necessary to define
locally the bicharacteristics if the “initial” condition (2.19) for the stationary problem
(2.18) is (only) given on curve ∂Ω.

Remark 2.1. We remark here that, since Ω is bounded, the function Φ given by
(2.28) converges in finite time to the stationary solution Ψ defined in Proposition 2.1
and obviously has the same level curves {x ∈ Ω; dG(x, ∂Ω) = t}. This remark is the
basis of the fast marching method developed in [49, 44], etc.

In principle, an adaptation of this fast marching method to this Riemannian
anisotropic situation would be the fastest and most natural way to compute the suc-
cessive positions of the front. However, this method has been classically developed in
the case where the Hamiltonian H is a function of u2 and v2, where (u, v) := ∇Φ.
This property, combined with the convexity of H, implies, e.g., u∂H/∂u ≥ 0 [37], and
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a similar inequality for v, which is essential to build the monotone upwind approxi-
mation scheme described, e.g., in [46, 47]. In contrast, in the strongly anisotropic case
considered here, this property is far from being satisfied, and the switching between
“backward” and “forward” approximation has to be carefully modified.

Therefore, since our purpose in this paper was to introduce the principle of our
Riemannian approach for grid generation or refinement, we did not consider this fast
marching method in detail. For more recent references in this direction, we refer, e.g.,
to [37] or [43].

3. Numerical schemes. In view of the above remark, we want to approximate
the initial boundary-value problem (2.20), (2.24), (2.27). We recall that (2.20) is
hyperbolic in ∇Φ = U = (u, v). We adopt the Osher–Shu approach [39]; in other
words, we use a Cartesian grid (xi, yj) = (i∆x, j∆y), and we first semidiscretize
(2.20) to obtain

∂

∂t
Φi,j(t) = −hnum(xi, yj , u

−
ij , u

+
ij , v

−
ij , v

+
ij) 	 −H(xi, yj ,∇Φ(xi, yj)),(3.1)

where U±
ij := (u±ij , v

±
ij) are approximations to ∇Φ(xi, yj), and hnum is simply a two

dimensional continuous, monotone numerical Hamiltonian. Let us describe more pre-
cisely the three classical steps in the algorithm.

3.1. The interpolation. At point (xi, yj), we first construct either an ENO or
a TVD polynomial interpolation of Φ. For instance, a TVD interpolation of first order
is

u− = D−x
ij =

Φi,j − Φi−1,j

∆x
, u+ = D+x

ij =
Φi+1,j − Φi,j

∆x
,

v− = D−y
ij =

Φi,j − Φi,j−1

∆y
, v+ = D+y

ij =
Φi,j+1 − Φi,j

∆y
,

or [38] a second order TVD interpolation with a minmod limiter is

u− = D−x
ij +

∆x

2
m(D−x−x

ij , D+x−x
ij ), u+ = D+x

ij −
∆x

2
m(D+x+x

ij , D+x−x
ij ),

v− = D−y
ij +

∆y

2
m(D−y−y

ij , D+y−y
ij ), v+ = D+y

ij −
∆y

2
m(D+y+y

ij , D+y−y
ij ).

We have also used a second order ENO interpolation (see [39]) for the level curves of
Figures 5A–5F.

3.2. Numerical Hamiltonian. Knowing the (u, v)±ij = ∇Φ(xi, yj)+O(∆xr) in
regions where the solution is smooth, we want to approximate the ODE

∂

∂t
Φi,j(t) = −hnum(xi, yj , u

−, u+, v−, v+),

where the numerical Hamiltonian hnum is a robust approximation of H(xi, yj ,∇Φij).
We choose the Lax–Friedrichs numerical Hamiltonian

hnumLF (x, y, u−, u+, v−, v+) := H

(
x, y,

u− + u+

2
,
v− + v+

2

)
(3.2)

− α

2
(u+ − u−)− β

2
(v+ − v−)
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with

α = sup
u,v

∣∣∣∣∂H(x, y, u, v)

∂u

∣∣∣∣ , β = sup
u,v

∣∣∣∣∂H(x, y, u, v)

∂v

∣∣∣∣ .
We note that, e.g., in (1.2) or (1.3) the eigenvalues of G(x) are larger than 1. Therefore
in (2.13), the eigenvalues of G−1/2 are smaller than 1, so that it is easy in (3.2) to guar-
antee the CFL condition (∆t( 1

∆x + 1
∆y ) ≤ 1) uniformly in (x, y). However (see Hoch

[27]), one can explicitly compute the optimized coefficients, α(x, y) =
√
G−1

11 (x, y) and

β(x, y) =
√
G−1

22 (x, y), based on the metric at point (x, y), for which this numerical
Hamiltonian has the minimal diffusion and remains monotone.

3.3. Time discretization. We now discretize the ODE ∂
∂tU = L(U). Here, we

have used the TVD Runge–Kutta second order method of Osher and Shu [39].




U (0) = Un,

U (i) =

i−1∑
j=0

αij U
(j) + βij ∆t L(U (j)), i = 1 . . . s = 2,

Un+1 = U (s).

(3.3)

We recall the principle of this approximation: if any spatial stability is satisfied for
the Euler time approximation scheme, e.g., TV (Un + ∆tLx(Un)) ≤ TV (Un), then
the same stability holds for (3.3), modulo C∆t. An easy way to obtain such a scheme
is to impose ∀(i, j): (αij , βij) ≥ 0, since then (3.3) is a convex combination of Euler
steps with ∆t replaced by (

min
i,j

(βijα
−1
ij )

)
∆t.

3.4. The boundary conditions. As in section 2, we impose the boundary
condition (3.5), and for second order schemes we add near ∂Ω one layer of ghost
points (xi, yj) out of Ω, at a distance of order ∆x, and we define the values Φni,j at
these ghost points at time tn = n∆t in order to satisfy a discrete approximation of
(2.25). In fact, let x = xi,j be such a ghost point. We first define the signed distance

Ψ̃(x) :=

{
Ψ(x) = dG(x, ∂Ω) in Ω,
−dG(x, ∂Ω) out of Ω.

Now, let y be (an approximation of) the normal projection of x on ∂Ω:

x− y = −d(x, ∂Ω)n(y) = −dn(y),

where d is the Euclidean distance. Since n = n(y) = ∇Ψ(y)
|∇Ψ(y)| = x−y

|x−y| is the inward

normal vector to ∂Ω, and since the Hamiltonian H in (2.13) is homogenous of order
one, we have

|∇Ψ(y)| = (H(y,n(y)))
−1

.

We approximate Ψ(x) by

Ψh(x) = Ψ(y) +∇Ψ(y).(x− y) = −d |∇Ψ(y)| = − d(x, ∂Ω)

H(y,n(y))
.(3.4)
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Fig. 4A and 4B. The role of the compatibility conditions (3.6).

In view of (2.25) we define the approximate boundary data

Φh(x, tn) :=Ψh(x)− tn.(3.5)

3.5. The initial data. In the same spirit, we define the initial condition Φ(x, 0)
for x in Ω by the approximation

Φh(x, 0) := +
d(x, ∂Ω)

H(y,n(y))
,(3.6)

where d(x, ∂Ω) is again the Euclidean distance of x to ∂Ω, which in our case is
easy to calculate. Theoretically, any other choice of the initial data satisfying (2.21),
(2.22) would be permitted, but for x near ∂Ω, formula (3.6) is a discretization of the
compatibility condition (2.23) between the boundary condition (3.5) and the initial
data. In order to illustrate the role of the denominator in (3.6), we have considered
in Figures 4A and 4B the following example: Ω is the unit square, G = G1 is given
by (1.2), and z(x) = δε1(x1 − x0

1)δε2(x2 − x0
2), with δε defined in (4.4) below 0 < ε1 =

0.01� ε2 = 0.1, x0
1 = 0, x0

2 = 0.25. In other words, the graph of z mimics a boundary
layer on a part of {x1 = 0}. We have used the first order TVD (monotone) method
described in section 3. We show in Figures 4A and 4B the level curves {x; Φ(x, tn) = 0}
for the same sequence, tn = Kn∆t, K ∈ N fixed, of the solution when the metric G(x)
involves a boundary layer. In Figure 4B, where we have dropped the denominator in
(3.6), the level curves almost do not detect the boundary layer.

4. Level curves: Results. Here, we show a few level curves {x; Φ(x, tn) = 0}
for a regular sequence of times tn = Kn∆t. We recall that Φ is the unique viscosity
solution to (2.20), (2.24), (2.27), computed with the algorithms discussed in section
3, and that our purpose is to generate a mesh based on these level curves of Φ(., tn),
automatically refined in regions where z is stiff.

We have tested the above-mentioned algorithms on several examples:
(i) Ω is either a square or a circle. In the first case, note the shocks—sometimes

smoothed out by the numerical viscosity—due to the corners of the square.
Of course this difficulty disappears in the case of a circle.

(ii) The involved Riemannian metric is associated to the matrix: G(x) =
V −2(x)Gi(x), i = 1, 2, so that the speed is multiplied by V (x). Here, V (x)
is a given positive scalar speed, say V (x) = Max(h(x), Vmin), adjusted to
impose a (very small) minimal speed Vmin in very stiff regions, and

h(x) =

{
h1(x) := (detG(x))−1/2 or
h2(x) := exp(1− (detG(x))10).

(4.1)
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The presence of h still makes the motion slower in stiff regions. On the other
hand,

G1(x) = I +∇z ⊗∇z, G2(x) = I + tH(z)H(z).(4.2)

(iii) This function z is a given (combination of) smooth real valued function(s),
with large first and second order derivatives, which is analytically known.
Typically (see Figures 5A–5D),

z(x) = z(x1, x2) = K1 atan (K2f(x1, x2)) ,(4.3)

where K1 and/or K2 are constants, adjusted to produce sharp fronts near the
curve {f(x1, x2) = 0}.
In other cases (see Figures 5E, 5F), z(x) = z(x1, x2) is proportional to a
regularized delta-function

z(x) = δε(|x− x0|) =
C

ε
δ1

( |x− x0|
ε

)
(4.4)

or a tensor-product z = z1 ⊗ z2,

zi(x) = Ciδεi(aix1 + bix2 + ci);(4.5)

see Figures 4A, 4B, 5D. In (4.4), δ1(s) ≥ 0,
∫

R
δ1(s)ds = 1, and δ1(s) ≡ 0 for

|s| ≥ 1.
The last two examples are chosen to simulate a sort of boundary layer or
some oblique singularity near by the boundary.

(iv) In all cases, except in Figures 4A and 4B, we have used a second order
ENO interpolation with a second order TVD time discretization. The CFL
condition is 0.5, and nx = ny = 101. On the top of each figure, we have
noted the corresponding metric G in (ii), the coefficient h in (4.1), and the
minimum speed Vmin in (ii).

A few comments are in order:
(i) Note the changes of topology of the level curves after having passed an ob-

stacle, e.g., in Figure 4A, and Figures 5D–5F.
(ii) Note that the minimal speed is too small in Figure 5D, so that the level curves

do not advance fast enough. This fact is a severe drawback if the purpose is
to generate a mesh, as in section 5. On the contrary, it is an advantage if the
purpose is to detect contours in image processing (snakes).

(iii) In pictures 5E and 5F, the involved function z is the same, given by (4.4),
but Figures 5E and 5F, respectively, correspond to the metrics G1 and G2.
As noted by one of the referees, here the metric G1 (and still more the metric
G2) is stiff, so that the corresponding level curves motion is still slower, and
therefore the location of the level curves is much better in the latter case.
By the way, we have not systematically shown here a comparison between
these two typical examples of metrics. Clearly, a numerical simulation of the
one dimensional example of Figure 2 would strongly discriminate these two
metrics.

5. Applications to grid generation. We want to generate a mesh whose ver-
tices are located on successive level curves of the viscosity solution Φ to problem
(2.20), (2.24), (3.5). The level curves of Φ allow us to generate a mesh as soon as
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0 1
0

1

G(x)=G1(x), h(x)=h1(x), Vmin=.001

0 1
0

1

Fig. 5A.

0 1
0

1

G(x)=G2(x), h(x)=h1(x), Vmin=.001

Fig. 5B.

0 1
0

1

G(x)=G1(x), h(x)=h2(x), Vmin=10^(8)

Fig. 5C.

0 1
0

1

G(x)=G1(x), h(x)=h1(x), Vmin=10^(6)

0 1
0

1

Fig. 5D.

we are able to connect points between two fronts. The elements that we generate are
triangles or in some experiments mixed (quadrangles or triangles).

First, we recall that the ODE associated to (2.20) is

dx

dt
=

G−1(x)∇Φ(x, t)

|G−1/2(x)∇Φ(x, t)| = ∇pH(x,∇Φ).(5.1)
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0 1
0

1

G(x)=G1(x), h(x)=h1(x), Vmin=.001

Fig. 5E.

0 1
0

1

G(x)=G2(x), h(x)=h1(x), Vmin=.001

Fig. 5F.

These curves are the horizontal projections of the bicharacteristics, given by

{
dx
dt = ∇pH(x, p),
dp
dt = −∇xH(x, p), p = ∇Φ(x, t).

(5.2)

At each time step, having numerically solved (2.20) provides an approximation of
p = ∇Φ(xi, yj). We then interpolate p to locally solve numerically (5.1). We detect
the appearance of shocks in step 5 below. We restrict ourselves to the description of
the case of triangles.

5.1. Principle of the construction of a triangular mesh. The principle is
the following:

1. Define the domain Ω, and define Φ0 by (3.6). In our numerical experiments,
Ω is either a square or a circle.

2. Define a finite number of points {M̃0
j , 1 ≤ j ≤ Ñ0}, with M̃0

N0
= M̃0

0 , com-
pute an approximation (by the trapezoidal rule) of the Riemannian distance
d0
j := dG(M̃0

j , M̃
0
j+1), and replace the M̃0

j by new points M0
j , which are

approximately equidistant with respect to dG. Their average Riemannian
distance d̃0 is thus near a desired reference length dgr.

3. n:=0.
4. Choose m = mn = [Kdn/∆t], where [x] is the integer part of x and K is

a constant so that the average triangles will be “approximately” equilateral
with respect to dG. In the Euclidean case, we would choose K =

√
3/2.

5. For k = 1 . . .m,
(i) update Φ from tn+k−1 to tn+k, using the algorithm defined in section 3;
(ii) then update the points Mj according to the ODE (5.1);
(iii) check the Riemannian distances dn+k

j := dG(Mn+k
j ,Mn+k

j+1 );

• if dn+k
j < C1d

n, then suppress one point: Mn+k
j := (Mn+k

j +

Mn+k
j+1 )/2, (C1 = 1√

2
);
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• if dn+k
j > C2d

n, then add one point: Mn+k
j+1/2 between Mn+k

j and

Mn+k
j+1 ; (C2 =

√
2);

(iv) if necessary, relabel points Mn+k
j .

6. At time tn+m,
(i) define Mn+m

j+1/2 	 the Riemannian midpoint between Mn+m
j and Mn+m

j+1 ;

here we have used the approximation used in [25], Mn+m
j+1/2 = Mn+m

j +

α un+m
j , where we have noted un+m

j = Mn+m
j Mn+m

j+1 and α =(|un+m
j |G(Mn+m

j+1 )

)(|un+m
j |G(Mn+m

j+1 ) + |un+m
j |G(Mn+m

j )

)−1
;

M  M
    
     j

t n

t

 M -1
j+1

j

 M M

n+m

j-1/2   M
   j-1

 Mj
  j+1/2

n
n

n

(ii) project these new points Mn+m
j+ 1

2

on the level curves {Φ(x, tn+m) = 0},
using, say, two or three steps of the Newton method;

(iii) check whether the triangles Mn
j M

n
j+1M

n+m
j+1/2 and Mn+m

j−1/2M
n
j M

n+m
j+1/2 are

approximately equilateral with respect to the distance dG, by computing

for a triangle ABC, q = min(dG(AB),dG(AC),dG(BC))
max(dG(AB),dG(AC),dG(BC))

∈ ]0, 1]. We also use

the edge flipping technique (see, e.g., [25]): if necessary, we exchange the
diagonals of a quadrangle, depending on the quality of the two resulting
triangles.
If necessary, add or remove one point at time tn+m;

(iv) in any case, relabel the points Mn+m
j := Mn+m

j+1/2; evaluate the average

Riemannian distance dn+m.
7. In the case where the above iteration fails for some points Mn+m

j , freeze these
points, use some “cuisine” to detect the underlying change of topologies in
the level curves of Φ(., tn+m) and to generate the corresponding local part of
the mesh.

8. Go back to step 4, with n := n + m, until all the points Mn
j are frozen.

Remark 5.1. The most difficult parts are steps 6(ii) and 7, which require a more
detailed analysis, and will be addressed in a forthcoming work [4]. Note that such
changes of topologies essentially appear in two types of situations:

(i) when there is a “pass” in the graph of the stationary viscosity solution Ψ(x) =
dG(x, ∂Ω) (see, e.g., Figures 5D–5F);

(ii) when this stationary solution Ψ presents a local maximum, i.e., when its level
curves of level t are (locally) about to disappear, i.e., when the corresponding
part of the mesh is almost finished. Not surprisingly, this step is one of the
most difficult to handle, and should be handled by a local Delaunay type
algorithm, adapted to the Riemannian metric (see, e.g., [25]).

5.2. Here we present some meshes. The reference length dgr and the other
parameters are defined below or in section 5.1.
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0 1
0

1

dgr=0.04, qmin=0.265, 978 Triangles
 first order, nx=201 ny=201, dt=0.0025 cfl=1

Fig. 6A.

0 1
0

1

dgr=0.03, qmin=0.255, 2196 Triangles
 first order, nx=201 ny=201, dt=0.0025 cfl=1

Fig. 6B.

0 1
0

1

dgr=0.03, qmin=0.167, 2232 Triangles
 first order, nx=201 ny=201, dt=0.0025 cfl=1

Fig. 6C.

0 1
0

1

dgr=0.05, qmin=0.292, 799 Triangles
 first order, nx=201 ny=201, dt=0.0025 cfl=1

Fig. 6D.

Comments and figure captions.
(i) All these simulations have been performed with G(x) = G1(x)=I +∇z⊗∇z,

and V (x) ≡ 1; we have also added a limitation on the coefficient of G(x), i.e.,
on ∇z we have imposed |zx| < C and |zy| < C, (C=2). In each case, dgr is
defined in section 5.1, qmin is the minimal quality of the triangles, nx and
ny the number of grid points dt the time step, and cfl the courant number.

(ii) Figures 6A, 6B, and 6C, respectively, correspond to Figures 5A, 5B, and 5C.
The latter are motivated, with a slightly different method, by [25]. In the
case of Figure 6C, the underlying stiff function z is defined implicitly, which
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0 1

0

1

dgr=0.025, qmin=0.224, 3978 Triangles
 first order, nx=201 ny=201, dt=0.0025 cfl=1

Fig. 6E.

creates some trouble near by x2 = 0.5.
(iii) The “ellipse” in Figure 6D is defined by f(x1, x2) := (x1 − .5)2 + 2 ∗ (x2 −

.5)2 − (0.4)2 = 0.
(iv) Figure 6E. Here, the metric is stiff near two ellipses and a parabola. This is a

cartoon of a bow shock near a double ellipse. For computational simplicity, we
have simply introduced as in section 4, a metric which is stiff near the involved
curves without even removing the nodes inside the body! Nevertheless, the
triangles look correctly refined.

6. Conclusion. In this paper we have introduced the simple and natural idea of
moving curves with respect to the HJ equation on a manifold, or more precisely accord-
ing to a given Riemannian metric, in order to generate and/or refine an anisotropic
mesh. This idea is clearly in the line of the level set method, and several papers
have used similar concepts, in a different context and with different motivations (see,
e.g., [30, 42]), but as far as we know, this idea had never been explicitly stated in
this way, especially in this context. As we said in the introduction, this work is a
first attempt in this direction. There are still numerous problems to solve, and our
algorithms need to be strongly improved. First, one should deal with the stationary
problem (see [41, 16]) or more recently [27] with the numerical Hamiltonian of section
3.2 with the optimized coefficient α(x, y) and β(x, y). Moreover, one should use an
adapted version of the fast marching method [49, 2, 46], and more recently [37, 43].
As we said in Remark 2.1, the difficulty here is the strong anisotropy, so that the
upwinding must be carefully performed.

Clearly, one of the main drawbacks of the present version is the Lagrangian feature
of the mesh generation. Therefore, one should strongly improve steps 5, 6, and 7 in
the mesh generation; in particular, one could combine step 7 with a local Delaunay al-
gorithm based on a Riemannian metric, in the spirit of [25], and, still more important,
generate the characteristics (5.2) in an Eulerian way, e.g., by following a suggestion of
J.D. Benamou (Private Comm.) in connection with the correct numerical upwinding.

We address some of these questions in forthcoming works, e.g., in [4]. In principle,
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our anisotropic approach could have natural applications in image processing, in either
image enhancement or edge detection. Indeed, some numerical results in [27] look
qualitatively good, but not significantly better than other methods, at least on the
examples that we have considered.

Finally, and we thank one of the referees for this question, let us mention that the
approach developed here is independent from another Riemannian method, based on
the theory of harmonic functions, developed for mesh generation in [23] (see also [15,
14, 31]), and independently used in image processing, e.g., in [47]. The latter theory
amounts to solving a second order elliptic boundary value problem and is definitely a
kind of (beautiful) multi-D generalization of the (one dimensional) theory of geodesics
with, however, some severe restrictions of convexity, nonpositive curvature, etc. on the
involved manifolds.

In contrast, the method presented here is a variant of the Eikonal equation, clas-
sically seen as a “curve mover,” in the spirit of the Huygens principle. This equation
is definitely a first order (hyperbolic) equation, with only one (upstream) boundary
condition on each ray, starting on the boundary of the domain of interest, and moving
until the propagating fronts have swept the whole domain. The method is in principle
multi-D with no restriction on the shape of the domain. On the other hand, as we
have seen, it still needs substantial numerical improvements before being competitive.

7. Appendix. For convenience, we recall the definition of viscosity solution and
refer, e.g., to [6, 19, 20] for more details. Let us consider the evolution equation

∂tu + H(x,∇u) = 0.(7.1)

Definition 7.1. u ∈ C(Ω) is called a viscosity solution to (7.1) if u is both a
subsolution and a supersolution: for all C1 test function v, at any point (x0, t0) in
Ω× (0, t) where (u-v) has a local maximum (resp., minimum), then

∂tv(x0, t0) + H(x0,∇v(x0, t0)) ≤ 0 (resp.,≥ 0).(7.2)

The definition of viscosity solution in the stationary case is quite similar. As to
the initial boundary value problem, in the general case the formulation involves dis-
continuous viscosity solutions, which take into account the possibility that sometimes
boundary conditions cannot be satisfied in the classical sense on the whole boundary,
e.g., in the case of the problem

|φ′(x)| − 1 = 0 on (0, 1), φ(0) = 0 , φ(1) = 2.

In this paper, the solution Ψ to the stationary problem (2.18), (2.19), as well as
the solution Φ to problem (2.20), (2.24), (3.6), satisfy the boundary condition in the
classical sense.
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Abstract. We study the performance of Chebyshev spectral methods for time-dependent radia-
tive transfer equations. Starting with a method for one-dimensional problems in homogeneous media,
we show that the modifications needed to consider more general problems such as inhomogeneous
media, polarization, and higher dimensions are straightforward. In this method, we approximate
the spatial dependence of the intensity by an expansion of Chebyshev polynomials. This yields a
coupled system of integro-differential equations for the expansion coefficients that depend on angle
and time. Next, we approximate the integral operation on the angle variables using a Gaussian
quadrature rule resulting in a coupled system of differential equations with respect to time. Using a
second-order finite difference approximation, we discretize the time variable. We solve the resultant
system of equations with an efficient algorithm that makes Chebyshev spectral methods competitive
with other methods for radiative transfer equations.

Key words. Chebyshev spectral method, radiative transfer
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PII. S1064827500382312

1. Introduction. Spectral methods have been widely applied to the Navier–
Stokes [1, 2], Schrödinger [3], acoustic [4], and Maxwell [5] equations, among others,
with great success. In this paper we are interested in using a Chebyshev spectral
method [6, 7] for the vector radiative transfer equation

1

v

∂

∂t
I(r, Ω̂, t) + Ω̂ · ∇rI(r, Ω̂, t) +Q[I](r, Ω̂, t) = F(r, Ω̂, t)(1.1)

governing wave propagation in a medium D ⊂ R
n (n = 1, 2, 3) that scatters, ab-

sorbs, depolarizes, and emits radiation. Applications for the vector radiative transfer
equation include polarized light propagation in clouds, fog, rain, and biological tis-
sue [8] as well as seismic wave propagation in heterogeneous media [10, 11]. In (1.1)
I = (I,Q, U, V ) is the 4× 1 Stokes vector needed to describe the polarized radiation
field completely. The total intensity is represented by I, the linear polarization state
by Q and U , and the circular polarization state by V . The Stokes vector I depends
on position r ∈ R

n, direction Ω̂ ∈ S
2 (S2 denotes the surface of the unit sphere), and

time t ∈ [0, T ]. In (1.1), v is the constant wave speed in the medium, and

Q[I](r, Ω̂, t) = σt(r)I(r, Ω̂, t)− σs(r)
∫

S2

S(Ω̂, Ω̂′) I(r, Ω̂′, t) dΩ̂′(1.2)

is the scattering operator. The total scattering cross-section σt(r) is the sum of the
scattering cross-section σs(r) and the absorption cross-section σa(r). All of these

cross-sections are real and nonnegative. The scattering matrix S(Ω̂, Ω̂′), which we
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assume is position independent, describes the directional distribution of energy density
that scatters in direction Ω̂ due to unit energy density incident in direction Ω̂′. In
addition, this matrix describes polarization changes manifested by scattering. Finally,
the source term F(r, Ω̂, t) accounts for any sources contained in the medium.

The radiative transfer equation has to be solved with appropriate initial and
boundary conditions. We assume that no radiation other than the source F enters
into the medium so that

I(r, Ω̂, t) = 0 on Γ,(1.3)

where Γ = {(r, Ω̂, t) ∈ ∂D × S
2 × [0, T ] such that ν(r) · Ω̂ < 0}, and ν(r) denotes

the unit outward normal vector to the boundary ∂D. In addition, we assume that no
energy is present in the medium at time t = 0,

I(r, Ω̂, 0) = 0 in D × S
2.(1.4)

The transport problem (1.1)–(1.4) is well-posed [12]. It models the incoherent or
scattered intensity for which its source manifests from coherent intensity incident at
the boundary [8, 9].

Equation (1.1) is usually solved using Monte Carlo methods (see [13] and ref-
erences therein for details). The main advantage of Monte Carlo methods is their
relative simplicity and their ability to handle complicated geometries. For large op-
tical depths, they require a large number of particles to obtain statistical accuracy
leading to long computational times. Other common numerical methods such as fi-
nite differences and finite elements have been applied to the scalar radiative transfer
equation with no polarization. However, for vector problems, Monte Carlo methods
are preferred.

Despite the high accuracy and competitive cost of spectral methods, there is not,
to our knowledge, any attempt to solve the time-dependent, vector radiative transfer
equation using spectral methods. However, there are two works that are related to this
problem. Ritchie, Dykema, and Braddy [14] solve the scalar, time-dependent problem
radiative transfer equation in which polarization is neglected with a Fourier spectral
method. Kim and Ishimaru [15] solve the one-dimensional, time-independent, vector
radiative transfer equation in homogeneous media with Chebyshev spectral methods.
In contrast to Fourier methods, which are restricted to problems with periodic bound-
ary conditions, Chebyshev spectral methods can consider a broad variety of boundary
conditions [7]. This is important for many applications such as optical imaging [16].

In this paper, we show that the underlying ideas of the Chebyshev spectral
method shown in [15] are robust to generalizations such as time-dependent, inhomo-
geneous, and higher-dimensional problems. Keeping the ease of implementation and
the low computational cost of a basic algorithm, we introduce modifications needed
for these general problems. In section 2, we start with the basic algorithm for the
one-dimensional, scalar problem in homogeneous media. We generalize this method
to inhomogeneous, vector, and higher-dimensional problems in section 3. We present
results from numerical experiments in section 4. A summary of our work and some
concluding remarks appear in section 5.

2. Time-dependent, scalar problems in one-dimensional homogeneous
media. In this section, let us consider the plane-parallel problem shown in Figure 2.1.
The medium, which infinitely extends in the x-y directions, is bounded by two planes
located at z = 0 and z = d, and its spatial properties, σt and σs, are constant.
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dscattering medium

x
y

z

φ

θ Ω̂

incident wave

Fig. 2.1. The plane-parallel problem.

In addition, the source F does not vary with respect to x and y. We also neglect
polarization so that Q = U = V = 0 in (1.1)–(1.4), and the 4 × 4 matrix S(Ω̂ · Ω̂′)
is replaced by the scalar function P (Ω̂, Ω̂′) = S11(Ω̂, Ω̂

′) (the (1, 1) entry of S). The
scalar function P is called the phase function. Under these assumptions, the vector
radiative transport equation (1.1) reduces to

1

v

∂

∂t
I(z, µ, φ, t) + µ

∂

∂z
I(z, µ, φ, t) +Q[I](z, µ, φ, t) = F (z, µ, φ, t),(2.1)

with

Q[I] = σtI(z, µ, φ, t)− σs
∫ 2π

0

∫ 1

−1

P (µ, µ′, φ− φ′) I(z, µ′, φ′, t) dµ′dφ′.(2.2)

Here, µ = cos θ, where θ is the propagation direction angle defined with respect to the
positive z-direction, and φ is the azimuthal angle (see Figure 2.1). The special form
of the azimuthal dependence, φ− φ′, in the phase function P is a direct consequence
of the rotational invariance of the scattering matrix.

By representing the azimuthal dependence of the intensity as a Fourier series,

I(z, µ, φ, t) =

∞∑
n=−∞

In(z, µ, t) e
inφ,(2.3)

where the coefficients of this expansion are defined as

In(z, µ, t) =
1

2π

∫ 2π

0

I(z, µ, φ, t) e−inφdφ,(2.4)
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one finds that each Fourier mode decouples from the others in (2.1). Dropping the
index n for simplicity, we find that the resultant problem for each harmonic is

1

v

∂

∂t
I(z, µ, t) + µ

∂

∂z
I(z, µ, t) +Q[I](z, µ, t) = F (z, µ, t) in X,(2.5a)

I(z = 0, µ, t) = 0 on (0, 1]× [0, T ],(2.5b)

I(z = d, µ, t) = 0 on [−1, 0)× [0, T ],(2.5c)

I(z, µ, t = 0) = 0 in [0, d]× [−1, 1],(2.5d)

where X = [0, d]× [−1, 1]× [0, T ] and

Q[I] = σtI(z, µ, t)− σs
∫ 1

−1

p(µ, µ′) I(z, µ′, t) dµ′.(2.6)

In (2.5a) F is a coefficient of an azimuthal Fourier series expansion of the source.
Here, we distinguish the Fourier coefficient of the phase function P defined in (1.2)
by p in (2.6). It is normalized according to

∫ 1

−1

p(µ, µ′)dµ′ = 1.

Henceforth, we concentrate on solving (2.5) for only one Fourier mode since each
mode is decoupled from the others.

2.1. Spatial discretization. Let us change variables in (2.5) from z ∈ [0, d] to
s ∈ [−1, 1] by the linear transformation s = 2z/d− 1. Under this change of variables,
(2.5a) becomes

1

v

∂

∂t
I(s, µ, t) +

2

d
µ
∂

∂s
I(s, µ, t) +Q[I](s, µ, t) = F (s, µ, t).(2.7)

Now we approximate the spatial dependence of the intensity by the Chebyshev spectral
expansion

I(s, µ, t) ∼=
N∑
k=0

ak(µ, t)Tk(s).(2.8)

The Chebyshev polynomials Tk(s) are orthogonal with respect to the weighted inner
product

(Tj , Tk) =

∫ 1

−1

Tj(s)Tk(s)
ds√
1− s2 =

{
πδj,k for k = 0,
π
2 δj,k for k ≥ 1

(2.9)

and are normalized so that Tk(s = ±1) = (±1)k. Here, δj,k is the Kronecker delta.
Since the expansion functions Tk do not satisfy the boundary conditions (2.5b) and
(2.5c), the extra set of equations

I(s = −1, µ, t) =
N∑
k=0

(−1)kak(µ, t) = 0 on (0, 1]× [0, T ],(2.10a)

I(s = +1, µ, t) =
N∑
k=0

ak(µ, t) = 0 on [−1, 0)× [0, T ](2.10b)
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must be included. Each boundary condition imposes the value of the intensity only
over half of the angular data (µ < 0 or µ > 0). Therefore, the composition of (2.10a)
and (2.10b) defines a single equation for the expansion coefficients on [−1, 1]× [0, T ].
Furthermore, we note that considering different boundary conditions does not alter
any other aspect of this method.

The Chebyshev spectral approximation to (2.7) is given by (2.8) with (2.10) and

1

v

∂ak
∂t

+
2

d
µ

(
Tk,

∂I

∂s

)
+ (Tk,Q[I]) = (Tk, F ), k = 0, . . . , N.(2.11)

Next, we approximate the spatial derivative by another spectral expansion,

∂I(s, µ, t)

∂s
∼=

N∑
k=0

Ak(µ, t)Tk(s),(2.12)

where Ak is related to ak through

ak =
1

2k
[ck−1Ak−1 −Ak+1] for k = 1, 2, . . . , N.(2.13)

In (2.13), we assume that AN+1 � AN so that aN = 1
2N cN−1AN−1. The normaliza-

tion quantity ck is defined as

ck =

{
2 for k = 0,

1 for k = 1, . . . , N − 1.
(2.14)

Substituting (2.8) and (2.12) into (2.11) we obtain the system of integro-differential
equations

∂ak(µ, t)

∂t
+

2v

d
µAk(µ, t) + vQ[ak](µ, t) = vFk(µ, t), k = 0, . . . , N,(2.15)

for the expansion coefficients ak and Ak. Note that there are N+1 equations in (2.15),
an extra equation due to the boundary condition (2.10), plus the N relations (2.13)
for the 2N+2 unknowns in {ak, Ak}. Later in this discussion, we use (2.13) to reduce
the number of unknowns to N +1. In (2.15), Fk are the coefficients of the Chebyshev
spectral approximation of the source function. Finally, we note that the resolution
requirements needed to compute an accurate numerical solution of the system do not
directly depend on the thickness of the medium z = d. Rather, spectrally resolving
the source function over the spatial domain dictates the resolution requirements. In
other words, sources that rapidly vary in the spatial domain require more Chebyshev
modes than smoothly varying ones.

2.1.1. Angular discretization. In using a Chebyshev spectral approximation
for the spatial variable, we obtain the integro-differential system (2.15) for expan-
sion coefficients that depend on angle and time. We now focus attention on accu-
rately treating the scattering operation. While there are several different ways of
treating the integral operation in the radiative transfer equation, such as spherical
harmonics and finite element expansions, a simple and effective method is the dis-
crete ordinate method. By using this method, one can accurately approximate the
scattering operator and easily adjust the angular resolution needed for different lev-
els of anisotropy. Methods using spherical harmonics expansions require moderately
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low levels of anisotropy for efficient use. Otherwise, the number of spherical har-
monics needed becomes restrictively large for practical computations. Finite element
methods are useful for highly anisotropic scattering [20] but are more complicated to
implement than discrete ordinate methods. Choosing any of these methods for the
angular discretization would work without interfering with the rest of the algorithm.

Now let us replace the continuous angular variable µ with a set of discrete points
{µi}. Then

∂ak(µi, t)

∂t
+

2v

d
µiAk(µi, t) + vQ[ak](µi, t) = vFk(µi, t) for i = 1, . . . , q,(2.16)

where k = 0, . . . , N . We use these discrete points µi to approximate the scattering
operator as

Q[ak](µi, t) = σtak(µi, t)− σs
q∑
j=1

wjp(µi, µj) ak(µj , t).(2.17)

The quality of this approximation will of course depend on the choice of the quadrature
rule. We refer to [17] and references therein for a more detailed discussion on this
subject. We chose a quadrature rule where µj are the zeros of the Legendre polynomial
of order q and wj are the corresponding Gaussian weights.

Using matrix notation, (2.16) can be written as

∂ak(t)

∂t
+

2v

d
LAk(t) + vQ[ak](t) = vFk(t) for k = 0, . . . , N,(2.18)

where we have introduced the q × 1 vectors

ak(t) = (ak(µ1, t), ak(µ2, t), . . . , ak(µq, t)),(2.19a)

Ak(t) = (Ak(µ1, t), Ak(µ2, t), . . . , Ak(µq, t)),(2.19b)

Fk(t) = (Fk(µ1, t), Fk(µ2, t), . . . , Fk(µq, t)),(2.19c)

and the q × q matrix L = diag(µ1, µ2, . . . , µq).

2.2. Temporal discretization. To integrate (2.18) in time, we use a trapezoid
rule and obtain

[
I +

v∆t

2
Q

]
an+1
k +

v∆t

d
LAn+1

k =

[
I− v∆t

2
Q

]
ank −

v∆t

d
LAn

k +
v∆t

2

[
Fn+1
k + Fnk

]
,

(2.20)

where I is the identity matrix and ank and An
k are the coefficients for the intensity

and its spatial derivative evaluated at time tn = n∆t, respectively. The numerical
scheme (2.20) corresponds to the Crank–Nicholson method which is fully implicit,
second-order accurate, and unconditionally stable.

Now we discuss an efficient algorithm to solve (2.20). At each time step we must
solve

Kak +MAk = fk,(2.21)

where K = I + v∆tQ/2, M = v∆tL/d, and fk is a known quantity corresponding to
the right-hand side of (2.20).
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From (2.13) we see that transforming from ak to Ak is a simple operation possess-
ing an inherent sparsity. To take advantage of this sparsity, we construct a system of
equations to solve for the coefficients of the intensity’s spatial derivative rather than
coefficients of the intensity (see [18] and references therein for details regarding this
technique). After transforming terms involving ak to operations on Ak, we obtain a
block tridiagonal system

MA0 +Ka0 = f0 for k = 0,(2.22a)

MA1 +KA0 − 1

2
KA2 = f1 for k = 1,(2.22b)

MAk +
1

2k
K [Ak−1 −Ak+1] = fk for k = 2, . . . , N − 1,(2.22c)

MAN +
1

2N
KAN−1 = fN for k = N .(2.22d)

For the boundary conditions (2.5b) and (2.5c), we evaluate each expansion coefficient
ak at the quadrature points µi and operate on that result by (2.13) to obtain

a+
0 −A+

0 +
1

4
A+

1 −
N−1∑
k=2

(−1)k
2

[
1

k + 1
− 1

k − 1

]
A+
k +

1

2(N − 1)
A+
N = 0,(2.23a)

a−
0 + A−

0 +
1

4
A−

1 +

N−1∑
k=2

1

2

[
1

k + 1
− 1

k − 1

]
A−
k −

1

2(N − 1)
A−
N = 0.(2.23b)

Here, we have defined A∓
k to be subvectors of Ak,

Ak =

[
A−
k

A+
k

]
,(2.24)

where A−
k corresponds to the part of Ak in which µi < 0 and A+

k corresponds to the
part of Ak in which µi > 0. The same notation applies for a∓

0 .
Equations (2.22) and (2.23) define a system of equations for A0,A1, . . . ,AN and

a0. After computing a solution for these unknowns, we can compute the desired
expansion coefficients of the intensity ak by applying (2.13) again. One can solve
this system using Gaussian elimination, but the cost is O

(
q3(N + 1)3

)
. Instead, we

use the generalized deflated block elimination method [19] that takes advantage of
the inherent sparsity of this system to reduce the number of operations significantly.
The number of operations needed to solve (2.22) and (2.23) using this method is
O(q3(N − 1)). We discuss the details of this solution method in Appendix A.

3. Generalizations. We now study the modifications needed to deal with more
general problems. We carry out these modifications in a way that preserves the order
of accuracy, computational cost, and ease of implementation.

3.1. Layered media. In many applications the properties of the medium in the
vertical direction are not homogeneous. In that case, a multilayered model where
the scattering and total cross-sections are piecewise constant functions in space might
be applied. Using the Chebyshev spectral method, we find that solving problems
in layered media is essentially the same as solving homogeneous problems in each
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layer. Dealing with interfaces between layers requires only adding extra conditions
that reside with the boundary conditions in the resultant system of equations.

For simplicity, let us consider a medium with only two layers. In that case

σs,t(z) =

{
σ

(1)
s,t for z ∈ [0, d1),

σ
(2)
s,t for z ∈ [d1, d2].

(3.1)

In addition to the boundary conditions (2.5b) and (2.5c), we impose that the intensity
at the interface z = d1 between the layers is continuous so that

I(z, µ, t) =

{
I(1)(z, µ, t) for z ∈ [0, d1],

I(2)(z, µ, t) for z ∈ [d1, d2].
(3.2)

Now let us introduce two spatial variables

s1 = 2
z

d1
− 1 for z ∈ [0, d1],(3.3)

s2 = 2
z − d1
d2 − d1 − 1 for z ∈ [d1, d2](3.4)

so that the radiative transfer equation for each harmonic is

[
1

v

∂

∂t
+

2

d1
µ
∂

∂s1
+Q(1)

]
I(1)(s1, µ, t) = F

(1)(s1, µ, t) for s1 ∈ [−1, 1],(3.5a)

[
1

v

∂

∂t
+

2

d2 − d1µ
∂

∂s2
+Q(2)

]
I(2)(s2, µ, t) = F

(2)(s2, µ, t) for s2 ∈ [−1, 1].(3.5b)

Here, we define the scattering operator as

Q(j)[I] = σ
(j)
t I(sj , µ, t)− σ(j)

s

∫ 1

−1

p(µ, µ′)I(sj , µ′, t) dµ′, j = 1, 2,(3.6)

and the source function as

F (z, µ, t) =

{
F (1)(z, µ, t) for z ∈ [0, d1],

F (2)(z, µ, t) for z ∈ [d1, d2].
(3.7)

The boundary conditions for this problem are

I(1)(s1 = −1, µ, t) = 0 on (0, 1]× [0, T ],(3.8a)

I(2)(s2 = +1, µ, t) = 0 on [−1, 0)× [0, T ],(3.8b)

and the continuity condition at the interface implies that

I(1)(s1 = +1, µ, t) = I(2)(s2 = −1, µ, t) on [−1, 1]× [0, T ].(3.9)

Now we consider Chebyshev spectral approximations for I(1) and I(2):

I(j)(sj , µ, t) ∼=
N∑
k=0

a
(j)
k (µ, t)Tk(sj), j = 1, 2.(3.10)
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In performing the same analysis used for the homogeneous case, we obtain

∂

∂t
a
(1)
k (µ, t) +

2v

d1
µA

(1)
k (µ, t) + vQ(1)[a

(1)
k ](µ, t) = vF

(1)
k (µ, t),(3.11a)

∂

∂t
a
(2)
k (µ, t) +

2v

d2 − d1µA
(2)
k (µ, t) + vQ(2)[a

(2)
k ](µ, t) = vF

(2)
k (µ, t)(3.11b)

for k = 0, . . . , N . Notice that (3.11a) and (3.11b) each resemble (2.15) modulo scalar
factors. Hence, we use exactly the same method outlined above for the homogeneous
case for each equation.

After applying a transformation similar to the one discussed in section 2.2 on

(3.11), we construct a system of equations for (A
(1)
k ,A

(2)
k ,a

(1)
0 ,a

(2)
0 ). In particular,

with (3.11), we have 2N + 2 equations for 2N + 4 unknowns. The other two needed
equations are the boundary conditions

N∑
k=0

(−1)ka(1)k (µ, t) = 0 on (0, 1]× [0, T ],(3.12a)

N∑
k=0

a
(2)
k (µ, t) = 0 on [−1, 0)× [0, T ],(3.12b)

and the continuity condition

N∑
k=0

[
a
(1)
k (µ, t)− (−1)ka(2)k (µ, t)

]
= 0.(3.13)

Once again, since both (3.12a) and (3.12b) each impose conditions on half of the
angular domain, the composition of these two equation defines a single equation on
[−1, 1] × [0, T ]. The continuity condition (3.13) gives another equation defined on
[−1, 1]× [0, T ]. Therefore, we have 2N + 4 equations for 2N + 4 unknowns.

Because coupling between expansion coefficients corresponding to different layers
occurs only through the boundary and continuity conditions, the solution method for
layered media is essentially the solution for two homogeneous problems. In general,
the solution method for layered media problems corresponds to a composition of n
homogeneous problems where n is the number of layers. Although the addition of
more layers linearly increases the amount of work needed to compute a solution, in
practice one needs fewer numbers of Chebyshev modes to resolve each layer.

3.2. Inhomogeneous media. For more general problems where a multilayered
model cannot be applied, we must consider continuously varying cross-sections. The
difficulty in dealing with these variable coefficients in a spectral approximation is that
they necessarily lead to convolution sums. These convolutions make standard fully
implicit time stepping impractical to compute since they couple all of the Chebyshev
modes, thereby destroying the sparsity used to compute solutions efficiently. On
the other hand, it is well known that fully explicit schemes for standard Chebyshev
methods with N modes have a stability condition of v∆t < O(1/N2). This is a
disadvantage when compared with other fully explicit schemes using Fourier spectral
or finite difference methods with stability conditions v∆t < O(1/N). To circumvent
this restriction, we use a semi-implicit method where only the spatial inhomogeneities
are treated explicitly.
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We first express the variable cross-sections as

σs,t = σ
(0)
s,t + σ̃s,t(s),(3.14)

where σ
(0)
s and σ

(0)
t are constants. We choose to represent the variable cross-sections

in this way so we can treat a portion of the cross-section implicitly. This is important
for the time stability limit of the scheme. By substituting (3.14) into the radiative
transfer equation, we obtain

1

v

∂

∂t
I(s, µ, t) +

2

d
µ
∂

∂s
I(s, µ, t) +Q[I](s, µ, t) = F (s, µ, t)− Q̃[I](s, µ, t),(3.15)

with

Q̃[I](s, µ, t) = σ̃t(s)I(s, µ, t)− σ̃s(s)
∫ 1

−1

p(µ, µ′) I(s, µ′, t) dµ′.(3.16)

The only difference between (2.7) for the homogeneous case and (3.15) is the inhomo-
geneous term Q̃[I].

In order to maintain high accuracy and low computational cost, we treat Q̃[I]
explicitly in time with a second-order Adams–Bashforth scheme so that

(3.17)

[
I +

v∆t

2
Q

]
an+1
k +

v∆t

d
LAn+1

k =

[
I− v∆t

2
Q

]
ank −

v∆t

d
LAn

k

+
v∆t

2

[
Fn+1
k + Fnk

]− v∆t
2

[
3Q̃[a]nk − Q̃[a]n−1

k

]
.

The convolution terms

[σ̃t,s ( a]
n
k (µi) =

∫ 1

−1

σ̃t,s(s)I(s, µi, tn)Tk(s)
ds√
1− s2(3.18)

contained within Q̃[a]nk are evaluated explicitly in time, so there is no coupling between
different k modes at time level n+ 1. These convolutions can be computed either in
the spatial domain (pseudospectrally) or in the Chebyshev transform domain. Notice
that the only difference between the homogeneous and inhomogeneous problem lies
in constructing the right-hand side of (3.17).

Dealing with the inhomogeneities explicitly in time compromises the stability of
the numerical scheme. Specifically, the explicit terms in (3.17) require v∆tmax(σ̃t) <
1 for stability. This range is not restrictive in most applications since only a portion
of the variable cross-sections is treated explicitly. However, if this stability condition
does become problematic, an implicit fractional step method similar to that presented
in [14] may be applied. Another possibility is to decompose the medium into strips
over which the variable cross-sections are assumed to be piecewise constant with
some variable perturbation. Then, one can construct and solve the corresponding
layered background medium problem with the same method for inhomogeneous media
presented above in each layer. This approach would minimize the size of the variable
perturbation within each strip, thereby reducing the time step restriction.

3.3. Vector radiative transfer. Modifying the methods presented in section 2
to include polarization is straightforward. In fact, the only modification required lies
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in constructing the system of equations for



I(s, µ, t)
Q(s, µ, t)
U(s, µ, t)
V (s, µ, t)


 ∼=

N∑
k=0



a
(I)
k (µ, t)

a
(Q)
k (µ, t)

a
(U)
k (µ, t)

a
(V )
k (µ, t)


Tk(s),(3.19)

where a
(I)
k , a

(Q)
k , a

(U)
k , and a

(V )
k are the spatial projections of the Stokes parameters

onto the Chebyshev polynomial of order k. Proceeding in a similar manner as in
section 2, we obtain

∂

∂t




a
(I)
k

a
(Q)
k

a
(U)
k

a
(V )
k


+

2v

d
L




A
(I)
k

A
(Q)
k

A
(U)
k

A
(V )
k


+ vQ




a
(I)
k

a
(Q)
k

a
(U)
k

a
(V )
k


 = v




f
(I)
k

f
(Q)
k

f
(U)
k

f
(V )
k


, k = 0, . . . , N,(3.20)

where

a
(j)
k = (a

(j)
k (µ1, t), a

(j)
k (µ2, t), . . . , a

(j)
k (µq, t)), j = I,Q, U, V.(3.21)

Similar notation applies for A
(j)
k and f

(j)
k . Here, L is the 4q × 4q block diagonal

matrix defined as L = diag(L,L,L,L), where L = diag(µ1, µ2, . . . , µq) as in section 2.
By introducing the vectors

ψk =
(
a

(I)
k , a

(Q)
k , a

(U)
k , a

(V )
k

)
,(3.22)

Ψk =
(
A

(I)
k , A

(Q)
k , A

(U)
k , A

(V )
k

)
,(3.23)

we see that (3.20) can be written in the form

∂

∂t
ψk +

2v

d
LΨk + vQ[ψk] = vFk, k = 0, . . . , N.(3.24)

This system of equations is exactly the same as (2.18), and so it can be treated in
exactly the same way. Because each unknown Chebyshev mode ψ is a 4q × 1 vector,
the work needed to compute the solution for a vector problem is O(43q3(N − 1)).

3.4. Two spatial dimensions. We now consider scalar radiative transfer equa-
tions in two spatial dimensions. From the numerical point of view, the most important
changes appear in going from the one-dimensional case to the two-dimensional one.
Generalizations from two spatial dimensions to three are usually straightforward.

We first consider the two-dimensional radiative transfer equation arising from a
source term F that depends on x and z. This source can model problems involving for
example, beam waves. The homogeneous medium through which the wave propagates
is still infinite in the x-y direction and bounded by two planes located at z = 0 and
z = dz. After the linear transformation s = 2z/dz − 1, the scalar two-dimensional
radiative transfer equation is

(3.25)
1

v

∂

∂t
I(s, x, Ω̂, t) +

2

dz
µ
∂

∂s
I(s, x, Ω̂, t) +

√
1− µ2 cosφ

∂

∂x
I(s, x, Ω̂, t)

+Q[I](s, x, Ω̂, t) = F (s, x, Ω̂, t),
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with

Q[I] = σtI(s, x, µ, φ, t)− σs
∫ 2π

0

∫ 1

−1

P (µ, µ′, φ− φ′) I(s, x, µ′, φ′, t) dµ′dφ′.(3.26)

Boundary and initial conditions are given by (2.5b)–(2.5d) for all points x. Due to
the cosφ in front of the partial derivative with respect to x, the Fourier modes of the
azimuthal variable do not decouple as in the one-dimensional problem. Therefore,
the discrete ordinate method must be extended to include a quadrature rule for the
azimuthal variable as well.

Since the medium is infinite in the horizontal direction, it is natural to deal with
the x dependence of the intensity I by a Fourier series. Consequently, we approximate
I by the expansion

I(s, x, Ω̂, t) ∼=
Nv∑
k=0

Nh/2∑
l=−Nh/2

akl(Ω̂, t)Tk(s)e
ilx.(3.27)

Proceeding in an analogous way to section 2 we obtain a semidiscrete equation for
each mode l that is decoupled from the others. Each decoupled semidiscrete equation
has the same form as (2.15), where the operator Q has to be replaced by

(3.28) Ql[akl](µ, φ, t) = σt akl(µ, φ, t) + il
√
1− µ2 cosφakl(µ, φ, t)

− σs
∫ 2π

0

∫ +1

−1

P (µ, µ′, φ− φ′) akl(µ′, φ′, t) dµ′dφ′.

This problem can be solved by the same procedure as the one-dimensional case for
each mode l independently. It is also clear that the case where the coefficients σt and
σs depend on the position can be treated with a semi-implicit method as in section
3.2.

As a second example, let us consider that the horizontal direction is bounded by
two planes at x = 0 and x = dx so that we have the two extra boundary conditions

I(z, x = 0, Ω̂, t) = 0 on Γx,(3.29)

I(z, x = dx, Ω̂, t) = 0 on Γx,(3.30)

where Γx denotes the set of points [0, dz]×S
2× [0, T ] such that ν(x) · Ω̂ < 0. After the

linear transformation r = 2x/dx−1, we approximate the intensity I and its derivatives
by the expansions

I(s, r, Ω̂, t) ∼=
Nv∑
k=0

Nh∑
l=0

akl(Ω̂, t)Tk(s)Tl(r),

∂

∂s
I(s, r, Ω̂, t) ∼=

Nv∑
k=0

Nh∑
l=0

Akl(Ω̂, t)Tk(s)Tl(r),

∂

∂r
I(s, r, Ω̂, t) ∼=

Nv∑
k=0

Nh∑
l=0

Bkl(Ω̂, t)Tk(s)Tl(r).

(3.31)

Again, proceeding in a similar fashion we obtain the semidiscrete set of equations

∂akl
∂t

+
2v

dz
µAkl +

2v

dx

√
1− µ2 cosφBkl + vQ[akl] = vFkl(3.32)
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for k = 0, 1, . . . , Nv and l = 0, 1, . . . , Nh. After discretization in the angular variables
µ and φ and the time variable t, and using relations

akl =
1

2k
[ck−1Ak−1,l −Ak+1,l] ,(3.33a)

akl =
1

2l
[cl−1Bk,l−1 −Bk,l+1] ,(3.33b)

one could resolve the resulting system for the 2(N +1)+(N +1)2 variables a0l, BkNh ,
and Akl as in section 2. However, this procedure is cumbersome due to the recursion
relation between Bkl and Akl. Therefore, we solve the fully discretized equations
arising from (3.32) with an alternating direction implicit or approximate factorization
method. The two-step method (see Appendix B) is

[
I +

v∆t

4
Q

]
a∗
kl +

v∆t

dz
LzA

∗
kl =

[
I− v∆t

4
Q

]
ankl −

v∆t

dz
LzA

n
kl +

v∆t

2

[
Fn+1
kl + Fnkl

]
,

[
I +

v∆t

4
Q

]
an+1
kl +

v∆t

dx
LxB

n+1
kl =

[
I− v∆t

4
Q

]
a∗
kl −

v∆t

dx
LxB

∗
kl(3.34)

for each k and each l. The matrices Q, Lz, and Lx in (3.34) are defined in Appendix B.
Algorithm (3.34) again has the desired property of preserving the structure of the one-
dimensional problem. For each fixed l, one needs only to solve two block tridiagonal
systems. This method is second-order accurate and unconditionally stable.

4. Numerical examples. Here, we present computations for different radiative
transfer problems. We also examine the convergence of these methods in space and
time. The convergence of the discrete ordinate method is well established [21]. Kim
and Ishimaru [15] demonstrated that the Chebyshev spectral method, in conjunction
with the discrete ordinate method, is able to resolve highly anisotropic scattering for
these problems.

As an example, we consider a normally incident pulsed plane wave entering the
medium at z = 0 and solve for the incoherent or scattered intensity. Figures 4.1(a)
and (b) show the numerical solutions to scalar and vector problems, respectively. In

these examples and all that follow, we normalize spatial units by - = 1/σ
(0)
t and time

units by -/v.
For the scalar problem (Figure 4.1(a)), we computed the magnitude of the backscat-

tered flux

F(t) = 2π

∫ 0

−1

I(z = 0, µ, t)|µ|dµ(4.1)

for three different media of thickness d = 20. The scattering and absorption cross-
sections

σs,a = σ(0)
s,a + σ̃s,a(z)

all have σ
(0)
s = 0.98 and σ

(0)
a = 0.02, and

σ̃s,a(z) = As,a exp

[(
z − zs,a
ws,a

)2
]
.
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Fig. 4.1. Example of radiative transfer computations: the left plot (a) shows the backscattered
flux response of a normally incident pulsed plane wave from a plane-parallel medium of thickness
d = 20 using the Henyey–Greenstein phase function with g = 0.85. The inset shows a detail of the
flux responses’ tails on a logarithmic scale. Here, we used 65 Chebyshev modes and 20 quadrature
points with ∆t = 0.01. The right plot (b) shows the transmitted average intensity response of a
left-handed circularly polarized pulsed plane wave normally incident upon a plane-parallel medium
containing randomly distributed dielectric spheres immersed in water. The incident light pulse has
wavelength λ = 633nm (wavelength generated by a He-Ne laser) and the spherical scatterers are
identically sized with radius a = 0.05µm. The refractive index of the spheres relative to that of
water is approximately n = 1.19. The scattering matrix for this medium is given by Mie theory. For
these computations, we used 65 Chebyshev modes, 40 quadrature points, and ∆t = 0.01.

The parameters for each medium are given in Table 4.1.
We use the Henyey–Greenstein phase function

P (cosΘ) =
1

2

1− g2
(1 + g2 − 2g cosΘ)3/2

,(4.2)

where cosΘ = µµ′+
√
1− µ2

√
1− µ′2 cos(φ−φ′) is the cosine of the scattering angle

and g is the mean cosine scattering angle or anisotropy factor. Scattering is isotropic
for g = 0 and becomes more and more sharply peaked in the “forward” direction
(cosΘ = 1) as g → 1.

Since the source is normally impinging the medium, the problem is independent
of φ and therefore requires only the zero Fourier φ-harmonic. Consequently, we use
the phase function

p(µ, µ′) =
1

2π

∫ 2π

0

P (µ, µ′, φ− φ′)d(φ− φ′).(4.3)

The source function is

F (z, µ, t) = p(µ, 1)f(vt− z) exp
[
−
∫ z

0

σt(z
′)dz′

]
,(4.4)

where

f(t) = exp

[
−
(
t− to
T

)2
]

(4.5)

is the temporal pulse shape. This source function comes about from the incident
intensity as it attenuates from scattering and absorption while propagating into the
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Table 4.1
Parameter values for the three different media depicted in Figure 4.1(a).

Medium As zs ws Aa za wa

homogeneous 0 — — 0 — —
absorbing 0 — — 0.5 15 2
scattering 1 5 1 0 — —

medium, thereby giving rise to the scattered component of the intensity [8]. The time
at which the pulse center reaches the boundary at z = 0 is to and the pulse width is
T . For this computation, to = 1, T = 0.5, and g = 0.85.

We observe in Figure 4.1(a) that the presence of the scattering inhomogeneity
centered at zs = 5 gives rise to an increase of the backscattered response (dashed line).
By causality, the first indication of this presence takes place at t ≈ 11. This is the
time that it takes for light to propagate from the boundary to the inhomogeneity and
back to the boundary. Similarly, we observe a decrease in the backscattered response
at t ≈ 31 due to the absorption inhomogeneity centered at za = 15 corresponding to
the time needed to reach the inhomogeneity and return to the surface.

In Figure 4.1(b), we show the copolarized (solid line) and cross-polarized (dot-
dashed line) components of the transmitted average intensity

U(t) = 1

2

∫ 1

0

I(z = d, µ, t)dµ.

The incident pulse is left-handed circularly polarized so that I = V = 1 and Q =
U = 0 and normally impinges a medium of thickness d = 1. For these computations,
to = 1 and T = 0.5. We define the copolarized intensity to be the component that is
left-handed circularly polarized

ILHC =
1

2
(I + V )

and the cross-polarized intensity to be the component that is right-handed circularly
polarized

IRHC =
1

2
(I − V ).

Because early transmitted responses consist of light that has undergone very little
scattering as it propagated through the medium, it is entirely copolarized. As time
increases, scattering gives rise to depolarization so that the cross-polarized component
increases. For very large times, we observe in Figure 4.1(b) that both components are
equal.

4.1. Temporal convergence. To verify that the temporal discretization is
second-order accurate, we examine time-resolved, backscattered flux responses for
the scalar problems explained in sections 2, 3.1, and 3.2. As a test problem, we
considered a pulse with to = 1 and T = 0.5 in a medium with thickness d = 1 and
anisotropy g = 0.5 up to time t = 10. Since there is no known analytical solution
to this problem, we compared flux responses using different time steps to a reference
solution computed with ∆t = 0.001. Specifically, we computed the infinity norm of
the difference of a solution with lower resolution and the reference solution normalized
by the infinity norm of the reference solution. For all of these computations, we used
20 quadrature points.
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Fig. 4.2. Computed relative errors of time-resolved, backscattered flux responses as a function
of the time step ∆t. These computations used 20 quadrature points. The medium is d = 1 thick
with anisotropy g = 0.5.

Table 4.2
Observed rates of convergence for the time discretization using the infinity norm of the difference

between the computed solution and a reference solution with ∆t = 0.001.

Medium Convergence rate

homogeneous 2.0174
layered 2.0055

inhomogeneous 1.9874

For the homogeneous problem, we considered a medium with σs = 0.98 and
σa = 0.02, and used 65 Chebyshev modes. For the layered problem, we considered
three layers with interfaces at z = 0.4 and z = 0.7 with

σs(z) =



0.98 for z ∈ [0, 0.4],

1.96 for z ∈ (0.4, 0.7],

0.90 for z ∈ (0.7, 1],

σa(z) =



0.02 for z ∈ [0, 0.4],

0.04 for z ∈ (0.4, 0.7],

0.10 for z ∈ (0.7, 1],

and used 17 Chebyshev modes in each layer. For the inhomogeneous problem, we
considered

σ̃s(z) = 0.98 exp

[
−
(
z − 0.4

0.3

)2
]
, σ̃a(z) = 0.02 exp

[
−
(
z − 0.4

0.3

)2
]
,

and used 65 Chebyshev modes.
Plots of the backscattered flux errors appear in Figure 4.2. We tabulated the

observed rates of convergence in Table 4.2. As expected, the time discretization
exhibits a second-order convergence rate.

4.2. Spatial convergence. Since we use a Chebyshev spectral method to ap-
proximate the spatial dependence of the intensity, we expect a superalgebraic conver-
gence as the number of Chebyshev modes increases. To isolate the spatial properties
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Fig. 4.3. Relative errors of average intensities as a function of the number of Chebyshev modes
for the continuous wave problem. These computations used 60 quadrature points for an isotropic
medium (g = 0).

of this method, we perform computations for a continuous wave source in a homo-
geneous medium with σs = 0.98 and σa = 0.02. Furthermore, we consider isotropic
scattering (g = 0) with 100 quadrature points.

To model an incident continuous wave, we consider the limit in which the temporal
pulse width tends toward infinity (T →∞). In that case, the source function is

F (z, µ) = p(µ, 1) e−σtz,(4.6)

and, consequently, the specific intensity is independent of time.
To examine the convergence properties of the spatial approximation for this prob-

lem, we examine the average intensity

U(z) = 1

2

∫ 1

−1

I(z, µ)dµ(4.7)

computed using the Gaussian quadrature rule used with the scattering operator. As
with the temporal convergence study, we do not have a known analytical solution.
Instead, we compare results to a highly resolved reference solution with N = 513
Chebyshev modes.

A plot of this spatial convergence study appears in Figure 4.3. We compute
the 2-norm of the difference between a particular solution and the reference solution
normalized by the 2-norm of the reference solution. In Figure 4.3 we observe the
expected superalgebraic convergence of this method. In fact, the relative errors for
Chebyshev modes larger than 65 are below the allowed accuracy of double floating-
point arithmetic.

5. Summary and concluding remarks. We have presented a complete dis-
cussion of Chebyshev spectral methods for solving radiative transfer problems. In
particular, we have examined problems in which we apply Chebyshev spectral meth-
ods to the spatial variable, Gaussian quadrature methods to the angular variable, and
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finite differences in the time variable. The resultant linear system of equations at each
time step is sparse. This method easily handles homogeneous as well as continuously
inhomogeneous and layered media. We have shown that these methods maintain the
same structure and ease of implementation as the homogeneous problem. In addition,
we show that it modifies easily to solve vector problems and has the potential to solve
higher-dimensional problems efficiently.

For all of the cases presented here, we use the generalized deflated block elimi-
nation method to solve the bordered, block tridiagonal system of equations at each
time step. This method is adequate in computing solutions for the problems we have
examined here. However, it is noteworthy to mention that there is an obvious rich-
ness in the structure of this linear system beyond its sparsity (see Appendix A). It is
quite possible that more can be done to take advantage of this structure to construct
even more efficient methods for computing solutions. As we begin to implement this
method for larger problems, examining this system in greater detail will become more
important and hence will be the subject of future studies. Furthermore, we intend to
use this method to examine polarization techniques for optical imaging problems in
future work.

Appendix A. The generalized deflated block elimination method. To
solve the system of equations (2.22) and (2.23) efficiently, let us construct two vectors
that contain the unknown quantities,

X =
[
A0, A1, · · · , AN

]T
,(A.1)

Y =
[
a0

]
,(A.2)

where the superscript T denotes the transpose. Then, we can compactly write (2.22)
and (2.23) as

[
A B
CT D

] [
X
Y

]
=

[
F
G

]
.(A.3)

Here, A is the (N +1)× (N +1) block tridiagonal matrix composed by q× q matrices
M and K

A =




M 0
K M − 1

2K
1
4K M − 1

4K
.. .

. . .
. . .

1
2kK M − 1

2kK
.. .

. . .
. . .

1
2(N−1)K M − 1

2(N−1)K
1

2NK M




,(A.4)

B is the (N + 1)× 1 block column matrix

B =
[
K , 0 , . . . , 0

]T
,(A.5)

D is the q × q identity matrix, and CT is the 1× (N + 1) block row matrix

CT =
[
I0 ,

1
4 I1 , · · · , 1

2

(
1
k+1 − 1

k−1

)
Ik , · · · , − 1

2(N−1) IN

]
,(A.6)
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where Ik is a q × q matrix made up of 1
2q × 1

2q submatrices

Ik =

[
I 0
0 (−1)k+1

I

]
.(A.7)

The right-hand side vectors of this linear system are

F =
[
f0 , f1 , · · · , fN

]T
,(A.8)

G =
[
0
]
.(A.9)

Each of the blocks in these matrices and vectors is q × q. Therefore, (A.3) is a bor-
dered, block tridiagonal system of equations.

By arranging the linear system of equations in this way, we can apply the gen-
eralized deflated block elimination method to solve this system [19]. This algorithm
isolates the block tridiagonal part of this system from its borders, allowing one to
exploit the sparsity. Contributions from the borders, B, CT , and D come about
as corrections to the block tridiagonal system solve. The generalized deflated block
elimination algorithm is

1. solve AW = B,
2. solve Aw = F ,
3. compute S = D − CTW ,
4. solve SY = G− CTw,
5. compute X = w −WY .

In addition, the storage requirements in solving this system using this algorithm is
very small. The diagonal blocks of A are diagonal matrices, and the off-diagonal blocks
of A are all the same modulo a scalar factor. Therefore, only the q× q matrix, K, and
a q× 1 vector containing the diagonal elements of M are necessary to effectively store
the matrix A. Furthermore, since each individual block in CT are scalar multiples of
identity matrices, computing the product of it and some other vector requires very
few operations.

Appendix B. Alternating direction method. Replacing the continuous an-
gular variables µ and φ by a set of discrete quadrature points µi and φj , where
i = 1, . . . , q1 and j = 1, . . . , q2, we find that the semidiscrete spectral approximation
(3.32) in matrix notation is

∂akl(t)

∂t
+

2v

dz
L1Akl(t) +

2v

dx
L2Bkl(t) + vQ[akl](t) = vFkl(t) for k, l = 0, . . . , N,

(B.1)

with

akl(t) = (akl(µ1, φ1, t), akl(µ1, φ2, t), . . . , akl(µ1, φq, t), . . . , akl(µq1 , φq2 , t)) ,
(B.2)

and similar representations for Akl, Bkl, and Fkl. The (q1q2) × (q1q2) diagonal ma-
trices L1 and L2 are defined by

L1 = diag(µ1,
q2times· · · , µ1, µ2,

q2times· · · , µ2, . . . µq1 , . . . , µq1)

L2 = diag(µ1 cosφ1, µ1 cosφ2, . . . , µ1 cosφq2 , . . . µq1 cosφ1, . . . , µq1 cosφq2).
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The Crank–Nicholson time-differencing scheme is given by

(B.3)

[
I +

v∆t

2
Q

]
an+1
kl +M1A

n+1
kl +M2B

n+1
kl

=

[
I− v∆t

2
Q

]
ankl −M1A

n
kl −M2B

n
kl +

v∆t

2

[
Fn+1
k + Fnk

]
,

where M1 = v∆tL1/dz and M2 = v∆tL2/dx. The expansion coefficients of the spatial
derivatives Bkl and Akl are related to akl through (3.33). Let us write formally the
inverse relations of (3.33) as Akl = T1akl and Bkl = T2akl so that we can make an
approximate factorization of (B.3)

(B.4)

[
I +

v∆t

4
Q +M1T1

] [
I +

v∆t

4
Q +M2T2

]
an+1
kl

=

[
I− v∆t

4
Q−M1T1

] [
I− v∆t

4
Q−M2T2

]
ankl +

v∆t

2

[
Fn+1
k + Fnk

]
.

Observe that all the extra terms introduced in (B.4) are of orderO(∆t2). Furthermore,
the same terms are introduced in the left- and right-hand side. We can conclude that
by subtraction of the extra terms in both sides of the equation, (B.4) is equivalent to
(B.3) up to O(∆t3) (since an+1

kl − ankl ∼ O(∆t)). Then the two-stage method

[
I +

v∆t

4
Q +M1T1

]
a∗
kl =

[
I− v∆t

4
Q−M1T1

]
ankl +

v∆t

2

[
Fn+1
k + Fnk

]
,(B.5)

[
I +

v∆t

4
Q +M2T2

]
an+1
kl =

[
I− v∆t

4
Q−M2T2

]
a∗
kl(B.6)

solves (B.1). Again using that Akl = T1akl and Bkl = T2akl we obtain the numerical
scheme (3.34).
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Abstract. The convergence of a penalty method for solving the discrete regularized American
option valuation problem is studied. Sufficient conditions are derived which both guarantee conver-
gence of the nonlinear penalty iteration and ensure that the iterates converge monotonically to the
solution. These conditions also ensure that the solution of the penalty problem is an approximate
solution to the discrete linear complementarity problem. The efficiency and quality of solutions
obtained using the implicit penalty method are compared with those produced with the commonly
used technique of handling the American constraint explicitly. Convergence rates are studied as the
timestep and mesh size tend to zero. It is observed that an implicit treatment of the American con-
straint does not converge quadratically (as the timestep is reduced) if constant timesteps are used.
A timestep selector is suggested which restores quadratic convergence.

Key words. American option, penalty iteration, linear complementarity
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1. Introduction. The valuation and hedging of financial option contracts is a
subject of considerable practical significance. The holders of such contracts have the
right to undertake certain actions so as to receive certain payoffs. The valuation
problem consists of determining a fair price to charge for granting these rights. A
related issue, perhaps of even more importance to practitioners, is how to hedge the
risk exposures which arise from selling these contracts. An important feature of such
contracts is the time when contract holders can exercise their rights. If this occurs
only at the maturity date of the contract, the option is classified as “European.” If
holders can exercise any time up to and including the maturity date, the option is
said to be “American.” The value of a European option is given by the solution of
the Black–Scholes PDE (see, e.g., [33]). An analytical solution can be obtained for
cases with constant coefficients and simple payoffs. However, most options traded on
exchanges are American. Such options must be priced numerically, even for constant
coefficients and simple payoffs. Note also that the derivatives of the solution are of
interest since they are used in hedging. More formally, the American option pricing
problem can be posed as a time dependent variational inequality or a differential linear
complementarity problem (LCP).

In current practice, the most common method of handling the early exercise
condition is simply to advance the discrete solution over a timestep, ignoring the
constraint, and then to apply the constraint explicitly. This has the disadvantage
that the solution is in an inconsistent state at the beginning of each timestep (i.e.,
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a discrete form of the LCP is not approximately satisfied). As well, this approach
can obviously be only first order correct in time. On the other hand, this explicit
application of the constraint is computationally very inexpensive.

Another common technique is to solve the discrete LCP using a relaxation method
[33]. In terms of complexity, this method is particularly poor for pricing problems
with one space-like dimension. A lower bound for the number of iterations required
to solve the LCP to a given tolerance with a relaxation method would be the num-
ber of iterations required to solve the unconstrained problem using a preconditioned
conjugate gradient method. Assuming that the mesh spacing in the asset price S
direction is O(∆S) and that the timestep size is O(∆t), then the condition number
of a discrete form of the parabolic option pricing PDE is O

[
∆t/(∆S)2

]
. Let N be

the number of timesteps. If we assume that ∆S = O(∆t) = 1/N , then the number of
iterations required per timestep would be O(N1/2).

A multigrid method has been suggested in [5] to accelerate convergence of the
basic relaxation method. Although this is a promising technique, multigrid methods
are usually strongly coupled to the type of discretization used, and hence they are
complex to implement in general purpose software.

There are a large number of general purpose methods for solving linear comple-
mentarity problems [22, 7, 25]. We can divide these methods into essentially two
categories: direct methods, such as pivoting techniques [7], and iterative methods,
such as Newton iteration [25] and interior point algorithms [22].

Some of these methods which have been applied specifically to American option
pricing include linear programming [9], pivoting methods, [14], and interior point
methods [15]. As pointed out in [15], pivoting methods (such as Lemke’s algorithm
[7]) and LP approaches are not well equipped to handle sparse systems, especially in
more than one dimension (multifactor options).

Complementarity problems (both linear and nonlinear) can be posed in the form
of a set of nonlinear equations. Various nonsmooth Newton methods have been sug-
gested for these types of problems [26, 27, 11, 19, 17]. More recently, combinations of
nonsmooth Newton and smoothing methods have been proposed [20].

It is well known that an LCP (or, equivalently, a variational inequality) can be
solved by a penalty method [10, 30, 24, 12, 8]. In this article, we will explore some
aspects of using penalty methods for pricing American options. We will restrict at-
tention to one dimensional problems, which are more amenable to analysis. However,
we have successfully used penalty methods for two factor (two dimensional) problems
[40, 39]. In this work, the nonlinear discrete penalized equations are solved using
Newton iteration. Another approach which also uses a Newton method has been sug-
gested in [6]. Note that relaxation methods are frequently used to solve the discrete
penalized nonlinear equations [8].

The advantage of the penalty method is that a single technique can be used for
one dimensional or multidimensional problems, and standard sparse matrix software
can be used to solve the Jacobian matrix. This technique can be used for any type of
discretization, in any dimension, and on unstructured meshes. In particular, there is
no difficulty in handling cases where the early exercise region is multiply-connected,
as in [40]. As well, a single method can be used to handle American options and
other nonlinearities, such as uncertain volatility and transaction cost models [33, 1].
In addition, nonlinearities due to the use of flux limiters for drift-dominated problems
[37] can also be handled easily.

The objective of this article is to analyze the properties of penalty methods for
the solution of a discrete form of a comparatively simple problem: a single factor
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American option. In this way, we hope to gain some insight into the use of penalty
methods for more complex problems. A single factor American option can be posed
as a variational inequality, which in turn can be expressed as a discrete LCP prob-
lem at each timestep. However, it is important to examine the penalty method in
the context of the overall problem: we need to find time accurate solutions to the
variational inequality. Consequently, we can expect that we have a good initial guess
for the solution of the variational inequality from the previous timestep. In fact, it
is important to recall that simply advancing the solution for a timestep (ignoring
the constraint) and applying the constraint in an explicit fashion will solve the time
dependent variational inequality to O(∆t). Consequently, any method used to solve
the LCP at each step should take full advantage of a good initial guess.

We will also study the convergence of these methods as the timestep and mesh
size are reduced to zero. We will determine sufficient conditions for monotone conver-
gence of the penalty method in one dimension. It may be possible to require weaker
conditions, perhaps using the methods in [24]. However, option pricing problems are
typically degenerate parabolic and in nonconservative form. This can be expected to
complicate the methods in [24].

In practice, we observe that the penalty method works well for multifactor options
[40, 39] and for nonlinear problems. In other words, although the conditions we derive
are sufficient, they do not appear to be necessary. Consequently, it appears that the
penalty method can be used for more general situations. In addition, we will compare
the penalty method (where the LCP is approximately solved at each timestep) with
an explicit technique for handling the American constraint.

Essentially, the method proposed in this work uses a nonsmooth Newton iteration
[4] to solve the penalized problem. A disadvantage of the penalty method as formu-
lated in this work is that the American constraint is satisfied only approximately,
but since this error can be easily made to be much smaller than the discretization
error, this does not appear to be a practical disadvantage. On the other hand, the
advantages of this approach are (under certain conditions) as follows:

• This method has finite termination (in exact arithmetic); i.e., for an iterate
sufficiently close to the solution, the algorithm terminates in one iteration.
This is especially advantageous when dealing with American option pricing,
since we have an excellent initial guess from the previous timestep. In fact, as
we shall see, for typical grids and timesteps, the algorithm takes, on average,
less than two iterations per timestep to converge. Finite termination also
implies that the number of iterations required for convergence is insensitive
to the size of the penalty factor (until the limits of machine precision is
reached).
• The iteration is globally convergent using full Newton steps.

Of course, if we did not have the advantage of having a good initial guess, a
pivoting method [7] can be very efficiently implemented if the coefficient matrix is
a tridiagonal M-matrix. We emphasize here that the penalty method should not be
regarded as a general purpose method for LCP problems. The real advantage of the
penalty method is that this technique takes full advantage of the fact that a good
initial iterate is available, and we take full advantage of sparsity, which is important
in multifactor problems. Another approach which attempts to take advantage of a
good initial iterate combined with standard sparse solvers is described in [21].

If we solve the LCP at each step (using the penalty approach), and if constant
timesteps are used, we observe that second order convergence is not obtained as
the timesteps and mesh size tend to zero. This phenomenon can be explained by
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examining the asymptotic behavior of the solution near the exercise boundary. A
timestep selector is developed which restores second order convergence.

Asymptotically, the second order method is superior to the commonly used bi-
nomial lattice technique [16]. However, it is of practical interest to determine at
what levels of accuracy a second order PDE method will be computationally more
efficient than the lattice method. We present numerical comparisons to assist in this
determination.

In the following we will restrict attention to the American put option. However,
these methods can be applied to dividend paying calls, as well as complex options
which involve solving a set of one dimensional American-type problems embedded
in a higher dimensional space. Examples of these types of options include discretely
observed Asian options [38], Parisian options [31], shout options [36], and segregated
fund guarantees [35].

2. Formulation. Consider an asset with price S which follows the stochastic
process

dS = µSdt+ σSdz,(2.1)

where µ is the drift rate, σ is volatility, and dz is the increment of a Wiener process.
We wish to determine the value V (S, t) of an American option where the holder can
exercise at any time and receive the payoff V ∗(S, t). Denote the expiry time of the
option by T , and let τ = T − t. Then the American pricing problem can be formally
stated as an LCP [33]

LV ≥ 0,

(V − V ∗) ≥ 0,

(LV = 0) ∨ (V − V ∗ = 0),(2.2)

where the notation (LV = 0) ∨ (V − V ∗ = 0) denotes that either (LV = 0) or
(V − V ∗ = 0) at each point in the solution domain, and

LV ≡ Vτ −
(
σ2

2
S2VSS + rSVS − rV

)
,(2.3)

and r is the risk free rate of interest. A put option is a contract which gives the holder
the right to sell the asset for K (known as the “strike”). A call option is similar except
that the holder has the right to buy the asset for K. The payoff for a put is

V ∗(S) = V (S, τ = 0) = max(K − S, 0).(2.4)

The boundary conditions are

V (S, τ) = 0, S →∞,(2.5)

LV = Vτ − rV, S → 0.(2.6)

Condition (2.5) follows from the payoff (2.4), while (2.6) is obvious given (2.3).

3. The penalty method. The basic idea of the penalty method is simple. We
replace problem (2.2) by the nonlinear PDE [10]

Vτ =
σ2

2
S2VSS + rSVS − rV + ρmax(V ∗ − V, 0),(3.1)

where, in the limit as the positive penalty parameter ρ → ∞, the solution satisfies
V ≥ V ∗.
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4. Discretization. We will now discretize (3.1) and select a suitable form for
the discrete penalty term. Let V (Si, τn) = V n

i be the discrete solution to (3.1) at
asset value Si and time (going backwards) τn. Applying a standard finite volume
method with variable timeweighting [40] then gives

FV n+1
i = qn+1

i ,(4.1)

where

FV n+1
i ≡ Ai

(
V n+1
i − V n

i

∆τ

)

+ (1− θ)


∑
j∈ηi

γij(V
n+1
j − V n+1

i ) +
∑
j∈ηi

�Lij ·UiV n+1
ij+1/2 −AirV

n+1
i




+ θ


∑
j∈ηi

γij(V
n
j − V n

i ) +
∑
j∈ηi

�Lij ·UiV n
ij+1/2 −AirV

n
i


 .(4.2)

Fully implicit and Crank–Nicolson discretizations correspond to cases of θ = 0 and
θ = 1/2, respectively, and

Ai = (Si+1 − Si−1)/2,

ηi = {i− 1, i+ 1},
∆τ = τn+1 − τn,

γij =
σ2S2

i

2|Sj − Si| ,

V n+1
ij+1/2 = value of V at the face between nodes i and j,

Ui = (−rSi)̂i,

�Lij =

{
−î if j = i+ 1,

+î if j = i− 1,

î = unit vector in the positive S direction.(4.3)

The discrete penalty term qn+1
i in (4.1) is given by

qn+1
i =

{
(Ai/∆τ)(V ∗

i − V n+1
i )Large if V n+1

i < V ∗
i ,

0 otherwise,
(4.4)

where Large is the penalty factor. (This will be related to the desired convergence
tolerance in section 4.1.) The face value V n+1

ij+1/2 can be evaluated using either central

weighting or, to ensure nonoscillatory solutions, a flux limiter [37]

V n+1
ij+1/2 =

{
(V n+1
i + V n+1

j )/2 if γn+1
ij + �Lij ·Ui/2 > 0,

second order flux limiter [37] otherwise.
(4.5)

In general, for standard options with typical values for σ, r, central weighting can
be used at most nodes (except perhaps as S → 0). In order to determine sufficient
conditions for the convergence of the nonlinear iteration for the penalized American
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equation, we require that the coefficients of the discrete equations have certain prop-
erties. We will ensure that these conditions are satisfied by using central or upstream
weighting. (In practice, we have observed that even if these conditions are not met,
convergence of the penalty method is still rapid [40].) If we use central or upstream
weighting in the following, then (4.1) becomes

V n+1
i − V n

i = (1− θ)


∆τ

∑
j∈ηi

(
γ̄ij + β̄ij

)
(V n+1
j − V n+1

i )− r∆τV n+1
i




+ θ


∆τ

∑
j∈ηi

(
γ̄ij + β̄ij

)
(V n
j − V n

i )− r∆τV n
i




+ Pn+1
i (V ∗

i − V n+1
i ),(4.6)

where

Pn+1
i =

{
Large if V n+1

i < V ∗
i ,

0 otherwise,
(4.7)

and where

γ̄ij =
σ2S2

i

2Ai|Sj − Si| ,

β̄ij =

{
�Lij ·Ui/2Ai if γij + �Lij ·Ui/2 ≥ 0,

max( �Lij ·U, 0)/Ai otherwise.

For future reference, we can write the discrete equations (4.6) in matrix form. Let

V n+1 =
[
V n+1

0 , V n+1
1 , . . . , V n+1

m

]′
, V n = [V n

0 , V n
1 , . . . , V n

m]
′
, V ∗ = [V ∗

0 , V ∗
1 , . . . , V ∗

m]
′
,

and

[M̂V n]i = −

∆τ

∑
j∈ηi

(
γ̄ij + β̄ij

)
(V n
j − V n

i )− r∆τV n
i


 .(4.8)

Note that the first and last rows of M̂ will have to be modified to take into account the
boundary conditions. (An obvious method for applying conditions (2.5)–(2.6) results
in the first and last rows of M̂ being identically zero except for positive entries on the
diagonal). In the following, we will assume that upstream and central weighting are
selected so that γ̄ij + β̄ij ≥ 0. This implies that the matrix M̂ is an M-matrix, i.e.,
a diagonally dominant matrix with positive diagonals and nonpositive off-diagonals.
Note that all of the elements of the inverse of an M-matrix are nonnegative.

Let the diagonal matrix P̄ be given by

P̄ (V n+1)ij =

{
Large if V n+1

i < V ∗
i and i = j,

0 otherwise.
(4.9)

We can then write the discrete equations (4.6) as

[
I + (1− θ)M̂ + P̄ (V n+1)

]
V n+1 =

[
I − θM̂

]
V n +

[
P̄ (V n+1)

]
V ∗.(4.10)
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4.1. Solution of the discrete LCP. The discrete form of the LCP (2.2) can
be written as

FV n+1
i ≥ 0,

V n+1
i − V ∗

i ≥ 0,

(FV n+1
i = 0) ∨ (V n+1

i − V ∗
i = 0),(4.11)

where F is given by (4.2). On the other hand, the discrete solution of the penalized
problem (4.10) has the property that either

V n+1
i − V ∗

i ≥ 0 (⇒ qn+1
i = 0 and FV n+1

i = 0)(4.12)

or

V n+1
i − V ∗

i ≤ 0 (⇒ qn+1
i > 0 and FV n+1

i > 0).(4.13)

However, from (4.11) the exact solution of the discrete LCP has V n+1
i − V ∗

i = 0 at
those nodes where FV n+1

i > 0. In order to obtain an approximate solution of (4.11)
with an arbitrary level of precision, we need to show that the solution of (4.10) satisfies
V n+1
i − V ∗

i → 0 as Large → ∞ for nodes where FV n+1
i > 0. This follows if we can

show that the term

Pn+1
i (V ∗

i − V n+1
i )(4.14)

in (4.6) is bounded independent of Large. It is also desirable that the bound be
independent of the timestep and mesh spacing, so that Large can be chosen without
regard to grid and timestep size. In Appendix A we determine sufficient conditions
which allow us to bound (4.14). The results can be summarized as the following
theorem.

Theorem 4.1 (error in the penalty formulation of the discrete LCP). Under
the assumptions that the matrix M̂ in (4.10) is an M-matrix and that timesteps are
selected so that

1− θ


∆τ

∑
j∈ηi

(
γ̄ij + β̄ij

)
+ r∆τ


 ≥ 0,(4.15)

∆τ

∆S
< const. ∆τ,∆S → 0,(4.16)

∆S = min
i

Si+1 − Si,

then the penalty method for the American put ((4.10) with terminal condition (2.4))
solves

FV n+1
i ≥ 0,(4.17)

V n+1
i − V ∗

i ≥ −
C

Large
, C > 0,(4.18)

(FV n+1
i = 0) ∨

(
|V n+1
i − V ∗

i | ≤
C

Large

)
,(4.19)

where C is independent of Large, ∆τ , and ∆S.
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Note that condition (4.16) is not practically restrictive, since violation of this
condition would result in an imbalance between time and space discretization errors.

Condition (4.15) is trivially satisfied for any timestep size if a fully implicit method
(θ = 0) is used. However, if Crank–Nicolson timestepping is used, condition (4.15) es-
sentially requires the boundedness of ∆τ/(∆S)2. This timestep condition arises since
we require that (I − θM̂)V n be bounded. This is essentially a requirement on the
smoothness of the discrete solution using Crank–Nicolson timestepping. Note that for
pure parabolic problems, careful analysis is required [28] to obtain quadratic conver-
gence estimates for Crank–Nicolson methods (without restrictions on ∆τ/(∆S)2). In
fact, in [28], it is necessary to take a finite number of fully implicit steps initially in
order to smooth rough data. This approach will be used in our numerical examples
and will be discussed in detail in later sections.

In our numerical experiments, we routinely violate condition (4.15). As a check
on the solution, we monitor the quantity

max American error = max
n,i

max[0, (V ∗
i − V n

i )]

max(1, V ∗
i )

.(4.20)

This is a measure of the maximum relative error in enforcing the American con-
straint using the penalty method. This quantity will be small if the quantity (4.14)
is bounded, and Large is sufficiently large. As long as we use the modification to
Crank–Nicolson timestepping suggested in [28], we observe that the a posteriori error
check (4.20) is indeed small.

It remains an open question if we can remove condition (4.15) for the timestepping
method suggested in [28] (Crank–Nicolson with a finite number of fully implicit steps).

In practice, we can use the following heuristic argument to estimate the size of
Large in terms of the relative accuracy required. In (4.10), suppose that (1−θ)M̂V n+1

and (I − θM̂)V n are bounded independent of Large. Then, as Large → ∞, (4.10)
reduces to

V n+1
i �

(
Large

1 + Large

)
V ∗
i(4.21)

for nodes where V n+1
i < V ∗

i . If V
∗
i �= 0, then we have

∣∣∣∣V
n+1
i − V ∗

i

V ∗
i

∣∣∣∣ � 1

Large
.(4.22)

Therefore, if we require that the LCP be computed with a relative precision of tol for
those nodes where V n+1

i < V ∗
i , then we should have Large � 1/tol .

Note that in theory, if we are taking the limit as ∆S,∆τ → 0, then we should
have

Large = O

(
1

min [(∆S)2, (∆τ)2]

)
.(4.23)

This would mean that any error in the penalized formulation would tend to zero at
the same rate as the discretization error. However, in practice it seems easier (to us
at any rate) to specify the value of Large in terms of the required accuracy. In other
words, we specify the maximum allowed error in the discrete penalized problem. We
then reduce ∆S,∆τ until the discretization error is reduced to this level of accuracy.
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5. Penalty iteration. We will use Newton iteration to solve the discrete non-
linear equations (4.10). Of course, due regard must be paid to the discontinuous
derivative which appears in the penalty term. More formally, we are solving the
nonsmooth equation (4.10) using a generalized Newton iteration [4, 27, 25].

We will define the derivative of the penalty term, which is required in the Newton
iteration as

∂Pn+1
i (V ∗

i − V n+1
i )

∂V n+1
i

=

{
−Large if V n+1

i < V ∗
i ,

0 otherwise,
(5.1)

which is a particular choice of a member of the generalized Jacobian of (4.10).
Consequently, a generalized Newton iteration applied to (4.10) yields the following

algorithm. Let (V n+1)k be the kth estimate for V n+1. For notational convenience,
we will define P̄ k ≡ P̄

(
(V n+1)k

)
and V̄ k ≡ (V n+1)k. If V̄ 0 = V n, then we have the

following algorithm.

Penalty American Constraint Iteration.
For k = 0, . . . until convergence

[
I + (1− θ)M̂ + P̄ k

]
V̄ k+1 =

[
I − θM̂

]
V n + P̄ kV ∗(5.2)

if

[
max
i

|V̄ k+1
i − V̄ k

i |
max(1, |V̄ k+1

i |) < tol

]
or
[
P̄ k+1 = P̄ k

]
quit

EndFor.
It is worthwhile at this point to determine the complexity of the above iteration

compared to an explicit evaluation of the American constraint. Assuming that all of
the coefficients are stored, that Crank–Nicolson timestepping is used with nonconstant
timesteps, and that there are I nodes in the S direction, the first iteration of the
penalty algorithm requires the following:

(i) 6I multiplies to evaluate the right-hand side of (5.2), where we have made
the pessimistic assumption that P̄ kV ∗ requires I multiplies. This step also determines
the entries in M̂ , assuming all possible quantities are precomputed and stored.

(ii) 2I multiply/divides to factor the matrix in (5.2).
(iii) 3I multiply/divides for the forward and back solve.
(iv) I divides for the convergence test. (This is also pessimistic, since we can

skip the test on the first iteration, or if no constraint switches have occurred.)
This gives a total of 12I multiply/divides for the first penalty iteration and 7I mul-
tiply/divides for subsequent iterations.

If constant timesteps are used, 4I multiplies are needed to evaluate the right-hand
side of (5.2), leading to a total of 10I multiply/divides for the first penalty iteration
and 7I multiply/divides for subsequent iterations.

If an explicit method is used to evaluate the constraint, then there is only one
matrix solve per timestep. To be precise here, an explicit method for handling the
constraint is the following algorithm.

Explicit American Constraint Timestep.

[
I + (1− θ)M̂

]
V̂ n+1 =

[
I − θM̂

]
V n,(5.3)

V n+1 = max(V̂ n+1, V ∗).
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For constant timesteps (assuming that all coefficients are precomputed and stored),
(i) 3I multiply/divides are required to evaluate the right-hand side of (5.3),

assuming that P̄ = 0;
(ii) assuming that the matrix is factored once and the factors stored, 3I multi-

ply/divides are required for the forward and back solve;
giving a total of 6I multiply/divides per timestep. For nonconstant timesteps,

(i) 5I multiply/divides are required to evaluate the right-hand side of (5.3),
assuming that P̄ = 0;

(ii) 2I multiply/divides are required to factor the matrix;
(iii) 3I multiply/divides are required for the forward and back solve;

giving a total of 10I multiply/divides per timestep.

6. Convergence of the penalty iteration. Recall that the basic penalty al-
gorithm (5.2) can be written as

[
I + (1− θ)M̂ + P̄ k

]
V̄ k+1 =

[
I − θM̂

]
V n + P̄ kV ∗.(6.1)

In Appendix B, we prove the following result.
Theorem 6.1 (convergence of the nonlinear iteration of the penalized equations).

Under the assumptions that the matrix M̂ in (4.10) is an M-matrix, then
• the nonlinear iteration (5.2) converges to the unique solution to (4.10) for any
initial iterate V̄ 0;

• the iterates converge monotonically, i.e., V̄ k+1 ≥ V̄ k for k ≥ 1;
• the iteration has finite termination; i.e., for an iterate sufficiently close to the
solution of the penalized problem (4.10), convergence is obtained in one step.

In [40], it was demonstrated experimentally that using a smooth form of the
penalty function (4.4) did not aid convergence of the solution of the nonlinear equa-
tions. Intuitively, this is somewhat surprising. It might be expected that the non-
smooth penalty function (4.4), which has a discontinuous derivative, might cause
oscillations during the iterations. However, the above result concerning monotonic
convergence explains why the penalty iteration works so well, even with a nonsmooth
derivative. Since V̄ k+1 ≥ V̄ k for k ≥ 1, in the worst case we have V̄ 0

i ≥ V ∗
i , V̄

1
i < V ∗

i ,
V̄ p
i > V ∗

i for some p ≥ 2. No further constraint switches will occur. In other words,
for any given node, the iteration will not oscillate between V̄ k

i > V ∗
i and V̄ k+1

i < V ∗
i

(k ≥ 1). Note that V̄ 0 can be arbitrary but that V̄ 1 is given by the solution to (6.1).
After V̄ 1 is determined, the iterates increase monotonically.

It is interesting to observe the connection between the penalty iteration and a
pivoting method for solving the LCP. Let the set of all nodes be denoted by ν. If
we let the set of nodes i where V n+1

i satisfy FV n+1
i = 0 be denoted by χ, then as

pointed out in [7], we can regard a pivoting method as a technique for determining χ
in a systematic way. Once χ is known, then we can order the nodes i ∈ χ first, and
those nodes in ν−χ last, and solve the resulting system. In the case where M̂ is an M
matrix, then the pivoting method [7] becomes very simple. Let χk be the set of nodes
where F(V n+1

i )k = 0. Suppose that at the k′th pivoting step a node is placed in χk.
Any further pivoting operations will not remove that node from χp, p > k. In the
terminology of LCP algorithms, once a node has become basic, it will never become
nonbasic as the algorithm proceeds. In this case, it is clear the pivoting algorithm
terminates in at most number of pivoting steps equal to the size of the matrix.

Each iteration of the penalty method carries out a sorting step. Those nodes in
χk are labelled by having Pi = 0. If the coefficient matrix is an M-matrix, once a
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node is placed in χk, it remains in χp, p > k on subsequent iterations. (Note that this
is true only for k ≥ 1.) The next iteration simply moves nodes in ν − χk to χk+1 or
terminates. This property would hold for a problem in any dimension, provided the
coefficient matrix is an M-matrix. If we have a good estimate for χ0, and the number
of nodes which move into or out of χ0 is small, then the convergence of the penalty
method will be rapid.

There also appears to be a connection between the approach used here and in
[21]. In [21], each iteration consists of obtaining an initial estimate of constrained
nodes using a few projected relaxation iterations; then the remaining nodes are solved
using a sparse iterative method. It is argued in [21] that this is a good method if a
good estimate of the constrained nodes is available. In some sense the penalty method
combines these two steps, since an outcome of the sparse solve in the penalty iteration
is an indication of whether or not a node is still constrained.

More interestingly, we observe that the penalty iteration is rapidly convergent for
multifactor options with nonzero correlation [39]. The discretized equations in this
case are not M-matrices, and in the convection dominated case, the discrete equations
are nonlinear.

7. Numerical examples. In order to carry out a careful convergence study, we
need to take into consideration the fact that the payoff function (2.4) has only piece-
wise smooth derivatives. This can cause problems if Crank–Nicolson timestepping
is used. Specifically, oscillatory solutions can be generated [41]. For example, if we
consider a simple European put option, then we know that the asymptotic solution
near the expiry time τ = 0 and close to the strike K is [33]

put value = O
(
τ1/2

)
.(7.1)

This would suggest that Vttt = O(τ−5/2). The local finite difference truncation er-
ror for a Crank–Nicolson step (near τ = 0) would then be O

[
Vttt(∆τ)3

]
. If we

set τ = ∆τ (the first step), then the local error would be O[(∆τ)1/2], resulting in
poor convergence. Fortunately, this analysis is a bit too simplistic. The behavior
of the solution in (7.1) is due to the nonsmooth payoff near K, which causes VSS
to behave (near τ = 0, S = K) as O

(
τ−1/2

)
[33]. This large value of VSS causes a

very rapid smoothing effect due to the parabolic nature of the PDE. Consequently,
if an appropriate timestepping method is used, we can expect the initial errors to be
damped very quickly. However, there is a problem with Crank–Nicolson timestepping.
Crank–Nicolson is only A-stable, not strongly A-stable. This means that some errors
are damped very slowly, resulting in oscillations in the numerical solution.

Since a finite volume discretization in one dimension can be viewed as a special
type of finite element discretization, we can appeal to the finite element analysis
in [28]. This analysis was specifically directed towards the case of parabolic PDEs
with nonsmooth initial conditions. Essentially, in [28] it is shown that if we take
constant timesteps with a Crank–Nicolson method, then second order convergence
(in time) can be guaranteed if (i) after each nonsmooth initial state, we take two fully
implicit timesteps and then use Crank–Nicolson thereafter (payoffs with discontinuous
derivatives qualify as nonsmooth); and (ii) the initial conditions are l2 projected onto
the space of basis functions. In our case, this means that the initial condition should
be approximated by continuous, piecewise linear basis functions.

However, consider the case of a simple payoff such as that for a put option.
Although this has a discontinuous derivative at K, no smoothing is required provided
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Table 1
Value of a European put, σ = .8, T = .25, r = .10, K = 100, S = 100. Exact solution (to seven

figures): 14.45191. Change is the difference in the solution from the coarser grid. Ratio is the ratio
of the changes on successive grids.

No smoothing Rannacher smoothing
Nodes Timesteps Value Change Ratio Value Change Ratio

68 25 14.50470 14.41872
135 50 14.41032 .09438 14.44357 .02485
269 100 14.43238 .02215 4.3 14.44982 .00625 4.0
539 200 14.44246 .01008 2.2 14.45138 .00156 4.0
1073 400 14.44726 .00480 2.1 14.45177 .00039 4.0

we have a node at K. This is because we have a piecewise linear representation of the
initial condition, consistent with the implied basis functions used in the finite volume
method. In the case of a discontinuous initial condition, smoothing is necessary since
this is not in the space of continuous piecewise linear basis functions. Finally, we
remark that although second order convergence does not guarantee that the solution
is nonoscillatory, in practice the above methods work well.

We can demonstrate the effectiveness of the simple idea of taking two fully implicit
methods at the start and Crank–Nicolson thereafter (which we will henceforth refer
to as Rannacher smoothing [28]) for a European put option with known solution.
We will use the rather extreme value of σ = .8 for illustrative purposes. Results
are provided in Table 1, which demonstrates that the solution with no smoothing
converges erratically as the grid spacing and timestep size are reduced. In contrast,
the smoothed solution shows quadratic convergence.

The reason for the poor convergence of the nonsmoothed runs can be explained by
examining plots of the value V , delta (VS), and gamma (VSS), as shown in the left side
of Figure 1. (Recall that it is of practical importance to determine delta and gamma
for hedging purposes [16]). Note that although the value appears smooth, oscillations
appear in delta (near the strike) and are magnified in gamma. The same problem
was run using Rannacher smoothing, and the results are shown in the right side of
Figure 1. The oscillations in delta and gamma have disappeared. All subsequent runs
will use Rannacher smoothing.

It might appear appropriate to use a timestepping method with better error damp-
ing properties, such as a second order BDF method [2]. However, our experience with
this method for complex American style problems (see [34]) was poor. We conjecture
that this is due to a lack of smoothness in the time direction, causing problematic
behavior for multistep methods. This effect will be addressed in some detail below.

8. Implicit and explicit handling of the American constraint. We will
now compare an implicit treatment of the American constraint (using the penalty
technique) with an explicit treatment (see pseudocode (5.3)). In these examples we
use constant timesteps, a convergence tolerance of tol = 10−6 (see pseudocode (5.2)),
and consequently a value of Large = 106.

Two volatility values were used in these examples: σ = .2, .8. We truncate the
computational domain at S = Smax, where condition (2.5) is applied. The grid for
σ = .2 used Smax = 200, while the grid for σ = .8 used Smax = 1000. Both grids
were identical for 0 < S < 200. The grid for σ = .8 added additional nodes for
200 < S < 1000.

Table 2 compares results for implicit (penalty method) and explicit handling of
the American constraint with constant timesteps. First, we note that for the penalty
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Fig. 1. European put, σ = .8, T = .25, r = .10, K = 100. Crank–Nicolson timestepping, grid
with 135 nodes. Left: no smoothing, right: Rannacher smoothing. Top: option value (V ), middle:
delta (VS), bottom: gamma (VSS).

method the total number of nonlinear iterations is roughly the same across the two
values of σ at each refinement level. This indicates that the volatility parameter has
little effect on the number of iterations required. Now consider the results for the case
where σ = .2. Taking into account the work per unit accuracy, the implicit method
is slightly superior to the explicit technique. However, note that the implicit method
does not appear to be converging quadratically. (The ratio of changes is about 3
instead of 4, which we would expect for quadratic convergence.) The explicit method
appears to be converging at a first order rate (ratio of 2). Now consider the high
volatility (σ = .8) results. Taking into account the total work, it would appear that
in this case the explicit method is a little better than the implicit method. The latter
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Table 2
Value of an American put option, T = .25, r = .10, K = 100, S = 100. Iters is the total number

of nonlinear iterations. Change is the difference in the solution from the coarser grid. Ratio is the
ratio of the changes on successive grids. Constant timesteps. Rannacher smoothing used. Work is
measured in terms of number of multiply/divides.

Nodes Timesteps Iters Value Change Ratio Work (flops)

Explicit constraint, σ = .2

55 25 25 3.04600 8.3× 103

109 50 50 3.06049 .01449 3.3× 104

217 100 100 3.06598 .00549 2.6 1.3× 105

433 200 200 3.06822 .00224 2.5 5.2× 105

865 400 400 3.06922 .00100 2.2 2.1× 106

Implicit constraint, σ = .2

55 25 33 3.05607 1.7× 104

109 50 66 3.06555 .00948 6.7× 104

217 100 134 3.06854 .00299 3.2 2.7× 105

433 200 269 3.06953 .00099 3.0 1.1× 106

865 400 543 3.06988 .00035 2.8 4.3× 106

Explicit constraint, σ = .8

68 25 25 14.61682 1.0× 104

135 50 50 14.65685 .40020 4.1× 104

269 100 100 14.67045 .01360 2.9 1.6× 105

539 200 200 14.67542 .00497 2.7 6.5× 105

1073 400 400 14.67738 .00196 2.5 2.6× 106

Implicit constraint, σ = .8

68 25 33 14.62708 2.1× 104

135 50 68 14.66219 .03511 8.5× 104

269 100 142 14.67324 .01105 3.2 3.5× 105

537 200 299 14.67686 .00362 3.1 1.5× 106

1073 400 627 14.67813 .00127 2.9 6.0× 106

seems to have an error ratio of about 2.9, while the explicit method has a somewhat
lower convergence rate.

As an additional accuracy check, for all runs we also monitored the quantity
(4.20), which is a measure of the maximum relative error in enforcing the American
constraint using the penalty method.

As well, we also monitored the size of the normalized residual of (4.10) for all
unconstrained nodes (i.e., those nodes where Pi = 0). More precisely,

max linear solver error = max
n,i∈κn

|Kni |
|Bn| ,

Kn+1
i =

([
I + (1− θ)M̂n+1

]
V̄ n+1 −

[
I − θM̂n

]
V n
)
i
,

Bn+1 = max
i∈κn+1

∣∣∣([I − θM̂n
]
V n
)
i

∣∣∣ ,
κn+1 = {i | P̄n+1

i = 0}.(8.1)

In Table 3, we give the statistics for a single run, varying the Large parameter
((4.9)). Note that the value of Large = 106 results in a maximum relative error in
enforcing the American constraint of � 10−9. Consequently, since this is well below
the time and spatial discretization errors, we will use this value for all subsequent
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Table 3
Test of varying the penalty parameter Large ((4.9)). American put option, T = .25, r = .10,

K = 100, sigma = .8, value at S = 100. Nodes = 269, timesteps = 100. Iters is the total number of
nonlinear iterations. Constant timesteps. Rannacher smoothing used. tol = 1/Large ((5.2)). ∗ ∗ ∗
indicates iteration failed to converge, due to machine precision limitations.

Large Total iterations Value Max linear solver Max American

error (8.1) error (4.20)

104 142 14.67323 6.0× 10−14 5× 10−8

106 142 14.67324 4.7× 10−14 5× 10−10

108 142 14.67324 4.1× 10−14 5× 10−12

1010 142 14.67324 4.2× 10−14 5× 10−14

1012 *** *** *** ***

tests. It is interesting to see that the number of iterations is independent of the value
of Large. This is a result of the finite termination property of the iteration. We can
see from Table 3 that the upper limit to Large is determined by machine precision.
Consequently, we can solve the discrete LCP problem to arbitrary accuracy (limited
by machine precision) with a fixed number of nonlinear iterations.

9. Analysis of constant timestep examples. In terms of approximately solv-
ing the discrete LCP (4.11), the penalty method performs as the analysis predicts.
The number of nonlinear iterations per timestep is typically of the order 1.4–1.6, in-
dependent of the volatility, for reasonable timesteps. The a posteriori check (4.20)
(a maximum relative error of 10−9, with tol = 10−6 in terms of satisfaction of the
discrete LCP constraint) indicates that the error introduced by the penalty method is
quite small. This error is a function of tol, Large (pseudocode (5.2)), and hence can
be adjusted to the desired level. In these examples we have violated condition (4.15),
which indicates that this condition is sufficient but not necessary for bounding the
size of the penalty term independent of ∆t,∆S. However, the results are disappoint-
ing in terms of the convergence of the discretization of the LCP. We do not observe
quadratic convergence for the implicit handling of the American constraint.

An error ratio of about 2.8 would be consistent with global timestepping con-
vergence at a rate of O[(∆τ)3/2]. Now, from [29, 32], we know that the value of
an American call option (where the underlying asset pays a proportional dividend)
behaves like V = const . + O

(
τ3/2

)
near the exercise boundary and close to the ex-

piration of the contract (τ → 0). This would give a value for Vτττ in this region
of

Vτττ = O[τ−3/2].(9.1)

It appears that the behavior of the American put near the exercise boundary and
close to expiry is [23]

V = const .+O[(τ log τ)3/2]

� const .+O[(τ1−ε)3/2)], ε > 0, ε� 1, τ → 0.(9.2)

In the following we will ignore the ε in (9.2) and assume that the behavior of Vτττ is
given by (9.1).
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From (9.1), the local time truncation error for Crank–Nicolson timestepping is
(near the exercise boundary)

local error = O

[
(∆τ)3

τ3/2

]
.(9.3)

Assuming that the global error is of the order of the sum of the local errors, from
(9.3) we obtain

global error = O


i=1/∆τ∑

i=1

(∆τ)3

(i∆τ)3/2


 � O[(∆τ)3/2],(9.4)

which is consistent with the observed rate of convergence. Now, instead of taking
constant timesteps, suppose we take timesteps which satisfy

max
i

(|V n+1
i − V n

i |) � d,(9.5)

where d is a specified constant. In order to take the limit to convergence, at each
grid refinement we will halve both the grid spacing and d. It is reasonable to assume
that the maximum change over a timestep (at least near τ = 0) will occur near K.
Therefore, from (7.1),

∆V n+1 = max
i

(|V n+1
i − V n

i |) � O

[
∆τn+1

√
τn

]
.(9.6)

Therefore, from (9.5) and (9.6), we have

∆τn+1 = O[d
√
τn].(9.7)

Assuming a local error of the form (9.3), and using (9.3) and (9.7), this gives a local
error with the variable timesteps satisfying (9.5) as

local error = O

[(
(∆τ)n+1

)3
(τn)3/2

]
= O

[
d3(τn)3/2

(τn)3/2

]
= O(d3).(9.8)

This implies a global error (with O(1/d) timesteps) of

global error = O(d2).(9.9)

Therefore, suppose that we take variable timesteps consistent with (9.5). Then
at each refinement stage, where we double the number of grid nodes, and double the
number of timesteps (by halving d), we should see quadratic convergence. Note that
we should reduce the initial timestep ∆τ0 by four at each refinement. We make no
claim that the above analysis of the time truncation error is in any way precise but
only suggestive of an appropriate timestepping strategy.

10. A timestep selector. The timestep selector used is based on a modified
form of that suggested in [18]. Given an initial timestep ∆τn+1, then a new timestep
is selected so that

∆τn+2 =


min

i


 dnorm

|V (Si,τn+∆τn+1)−V (Si,τn)|
max(D,|V (Si,τn+∆τn+1)|,|V (Si,τn)|)




∆τn+1,(10.1)
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where dnorm is a target relative change (during the timestep) specified by the user.
The scale D is selected so that the timestep selector does not take an excessive number
of timesteps in regions where the value is small. (For options valued in dollars, D = 1
is typically appropriate.) In (10.1), we have normalized the factor used to estimate
the new timestep. This is simply to avoid slow timestep growth for large values of
the contract. This could be a problem with call options, for example, where the
computational domain is truncated at a large value of S. If we did not examine the
relative changes over a timestep, then it is possible that the timestep would be limited
by large absolute changes in the solution (which would occur as S →∞), even though
the relative changes were small.

Since V (Si = K, τ � 0) � 0, we expect that the denominator of (10.1) will take its
largest value near S = K, since V increases rapidly there. Consequently, the timestep
selector (10.1) will approximately enforce the condition that

∆V n+1 � D × dnorm.(10.2)

Hence we will have

∆τn+1 = O(dnorm
√
τn),(10.3)

so that we should see a global error of O[(dnorm)2], which follows from (9.9).
Note that timestep selector (10.1) estimates the change in the solution at the new

timestep based on changes observed over the old timestep. Some adjustments can be
made to this simple model if a more precise form for the time evolution of the solution
is assumed, but we prefer (10.1) since it is simple and conservative.

In practice, we select a (∆τ)0 for the coarsest grid, and then (∆τ)0 is cut by four
at each grid refinement. There is not much of a penalty for underestimating a suitable
(∆τ)0 since the timestep will increase rapidly if the estimate is too conservative. In
the following runs, we used values of (∆τ)0 = 10−3 and dnorm = .2 on the coarsest
grid. The value of dnorm was reduced by two at each grid refinement.

11. Variable timestep examples. Table 4 presents results for the cases con-
sidered in Table 2 but this time using the timestep selector (10.1). In this case, the
implicit method appears to be a clear winner in terms of flops per unit accuracy.
Use of variable timesteps actually seems to degrade the convergence of the explicit
method. This can be explained by looking at the timestep history. The timestep
selector uses small timesteps at the start and then takes large steps at the end. Note
that the average timestep size (total time divided by number of timesteps) is larger
for the variable timestep run compared to the constant timestep run (Table 2). This
clearly negatively impacts the explicit method, which seems to show a first order rate
of convergence. On the other hand, the implicit method appears to exhibit close to
quadratic convergence.

Figure 2 shows value, delta, and gamma for the σ = .2 case, using both explicit
and implicit treatments of the American constraint. Although the value and delta
appear similar for both cases, there are clearly large oscillations in the gamma near
the early exercise boundary for the explicit method. The implicit method does show
some small oscillations near the exercise boundary. However, this is due to the use
of Crank–Nicolson timestepping, as noted in [6]. These oscillations disappear if fully
implicit timestepping is used, as shown in Figure 3.

12. Comparison with binomial lattice methods. It is interesting to com-
pare the results here with those obtained using the binomial lattice method, which
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Table 4
Value of an American put option, T = .25, r = .10, K = 100, S = 100. Iters is the total number

(over all time steps) of nonlinear iterations. Change is the difference in the solution from the coarser
grid. Ratio is the ratio of the changes on successive grids. Variable timesteps. Rannacher smoothing
used. Work is measured in terms of number of multiply/divides.

Nodes Timesteps Iters Value Change Ratio Work (flops)

Explicit constraint, σ = .2

55 18 18 3.04499 9.9× 103

109 33 33 3.05825 .01326 3.6× 104

217 63 63 3.06425 .00600 2.2 1.4× 105

433 122 122 3.06717 .00292 2.1 5.3× 105

865 239 239 3.06863 .00146 2.0 2.1× 106

Implicit constraint, σ = .2

55 18 27 3.06403 1.5× 104

109 33 51 3.06867 .00464 5.7× 104

217 63 98 3.06975 .00108 4.3 2.2× 105

433 122 194 3.07002 .00027 4.0 8.5× 105

865 239 385 3.07008 .00006 4.5 3.2× 106

Explicit constraint, σ = .8

68 31 31 14.64828 2.1× 104

135 66 66 14.66856 .02022 8.9× 104

269 136 136 14.67472 .00616 3.3 3.7× 105

537 276 276 14.67703 .00231 2.7 1.5× 106

1073 554 554 14.67800 .00097 2.4 5.9× 106

Implicit constraint, σ = .8

68 31 45 14.65863 3.2× 104

135 66 98 14.67417 .01554 1.4× 105

269 136 208 14.67778 .00361 4.3 5.7× 105

537 276 430 14.67862 .00084 4.3 2.4× 106

1073 554 872 14.67882 .00020 4.2 9.5× 106

is commonly used in finance [33]. In Appendix C, we show that this technique is
simply an explicit finite difference method on a log-transformed grid. Consequently,
the truncation error is O(∆τ), where the total number of steps is N = O[1/(∆τ)].

The binomial lattice method requires about 3/2N2 flops (counting only multiplies,
and assuming all necessary factors are precomputed). Note that we obtain the value
of the option at t = 0 only at the single point S0

0 , in contrast to the PDE methods
which obtain values for all S ∈ [0, Smax]. As a result, the methods are not directly
comparable. Nevertheless, assuming that we are interested only in obtaining the
solution at a single point, it is interesting and useful to compare these two techniques.

Given N = O[1/(∆τ)], the complexity of the binomial method is O(N2). Since
the error in the lattice method is O(∆τ) = O(1/N), we have

error binomial lattice = O
[
(complexity)−1/2

]
.(12.1)

Suppose instead that we use an implicit finite volume method with Crank–Nicolson
timestepping and that the penalty method is employed for handling the American
constraint. The complexity of this approach is O(N2), where we have assumed that
N = O[1/(∆S)]. (Note that this is the case if we use the timestep selector (10.1)
and dnorm = O(∆S).) It is also assumed that the the number of nonlinear iterations
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Fig. 2. American put, σ = .2, T = .25, r = .10, K = 100. Crank–Nicolson timestepping,
Rannacher smoothing, variable timesteps, grid with 433 nodes. Left: explicit constraint, right:
implicit constraint. Top: option value (V ), middle: delta (VS), bottom: gamma (VSS).

per timestep is constant as ∆S → 0, which is observed as long as dnorm = O(∆S).
When timesteps are selected using (10.1), we have observed quadratic convergence.
This implies

error implicit finite volume = O
(
N−2

)
= O

[
(complexity)−1

]
.(12.2)

Therefore, the implicit finite volume method is asymptotically superior to the binomial
lattice method, even if the solution is desired at only one point.

It is interesting to determine at what levels of accuracy we can expect the implicit
PDE method to become more efficient than the binomial method. Table 5 gives the
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Fig. 3. Gamma (VSS) of an American put, σ = .2, T = .25, r = .10, K = 100. Fully implicit
timestepping; Rannacher smoothing; variable timesteps. Grid with 433 nodes used. Constraint
imposed implicitly.

results for a binomial lattice solution (algorithm (C.2)) for the problems solved earlier
using an implicit PDE approach. This table should be compared to Table 4.

For further points of comparison, we also computed solutions to the problem used
in [13]. We used two versions of the problem in [13], one with an expiry time of T = 1
and the other with T = 5. Figure 4 summarizes the convergence of both the binomial
lattice and PDE methods for all four problems. The absolute error is computed by
taking the exact solution as obtained by extrapolating the PDE solution down to zero
grid and timestep size, assuming quadratic behavior. The PDE method becomes more
efficient than the binomial lattice method at tolerances between .01–.003 depending
on the problem parameters. These crossover points occur at tolerances which would
be used in practice. Note that in these comparisons, we are putting the best possible

Table 5
Binomial lattice method. Value of an American put, T = .25, r = .10, K = 100, S = 100.

Change is the difference in the solution from the coarser grid. Ratio is the ratio of the changes on
successive grids. Work is measured as the number of multiplies.

Timesteps Value Change Ratio Work (flops)

σ = .2

50 3.06186 3.8× 103

100 3.06611 0.00425 1.5× 104

200 3.06810 0.00199 2.1 6.0× 104

400 3.06913 0.00103 1.9 2.4× 105

800 3.06962 0.00049 2.1 9.6× 105

1600 3.06987 0.00025 2.0 3.8× 106

3200 3.06999 0.00012 2.1 1.5× 107

σ = .8

50 14.62649 3.8× 103

100 14.65269 0.02620 1.5× 104

200 14.66582 0.01313 2.0 6.0× 104

400 14.67238 0.00656 2.0 2.4× 105

800 14.67563 0.00325 2.0 9.6× 105

1600 14.67726 0.00163 2.0 3.8× 106

3200 14.67807 0.00081 2.0 1.5× 107
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Fig. 4. American put, K = 100. Absolute error as a function of number of floating point
operations (flops), measured as the number of multiply/divides for all the test problems, at S = 100,
t = 0.

light on the binomial lattice method, since we ignore the fact that we obtain much
more information with the implicit PDE technique.

13. Application of penalty methods to more general problems. As de-
rived in the appendices, a sufficient condition for monotone convergence of the penalty
iteration is that the discretized differential operator is an M-matrix. In practice, we
have found that this condition is not necessary for rapid convergence of the penalty
iteration. For example, in [40, 39], we have applied the penalty method to Ameri-
can options with stochastic volatility, convertible bonds (which have American type
maximum and minimum constraints), and American options on two assets, with good
results. In this case, the discretized differential operator was not an M-matrix, and,
if a flux limiter was used, the discretized differential operator was nonlinear. We also
routinely violated the timestep condition (4.15). As long as the Rannacher smooth-
ing technique was used, the solution was sufficiently smooth enough that no ill effects
were observed with the penalty iteration.

Note that the discrete M-matrix condition was not required in the proof of con-
vergence of the penalty method for an elliptic obstacle problem with the Laplacian
as the differential operator [24]. However, timestep restrictions were required in the
proofs of convergence of the penalty method for parabolic problems in [30]. In view of
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our computational experience, it appears to us that these conditions are artificial. We
conjecture that the penalty iteration converges rapidly under much weaker conditions
than those outlined in the appendices.

14. Conclusion. We have derived sufficient conditions so that the solution of
the discrete penalized equations solves an approximate version of the discrete LCP
formulation of the American option pricing problem. The error in the approxima-
tion can be made arbitrarily small by increasing the penalty factor. We have also
given sufficient conditions so that a Newton iteration method for solving the discrete
nonlinear penalized equations converges monotonically to the unique solution of the
nonlinear algebraic equations. This explains the observed rapid convergence of this
technique.

If constant timesteps are used, the computed solution appears to converge at less
than a second order rate in the limit as the grid spacing and timestep are reduced to
zero. An heuristic analysis of the behavior of the solution near the exercise boundary
indicates that convergence (with constant timesteps) occurs only at the rate (∆t)3/2.
However, a timestep selection method was suggested which, based on our analysis,
should be expected to restore quadratic convergence. Numerical experiments con-
firmed that this convergence rate was indeed obtained using this timestep selector.

In general, the use of an implicit penalty method combined with the timestep
selector can be recommended. As well as being more efficient in terms of the number
of flops per unit accuracy, the solution obtained using an implicit method is quali-
tatively superior to the solution obtained using an explicit method for handling the
American constraint. The explicit solution exhibited large oscillations in gamma near
the exercise boundary.

The implicit PDE method is asymptotically superior to the standard (in finance)
binomial lattice method, which has only linear convergence. However, if low accuracy
solutions are required at only a single point, then a binomial method can be more
efficient than the PDE approach. For typical parameters, the crossover point where
the PDE method is to be preferred occurs at an absolute error tolerance of between
.01−.003. However, if information at more than a single point is desired, then the PDE
method is always preferable. As well, the binomial lattice method is highly optimized
for simple cases. For example, the addition of discretely observed barriers [3, 42]
causes difficulties for binomial methods. However, this case presents no particular
difficulty for a PDE finite volume method.

The penalty method described here has been applied to multidimensional prob-
lems as shown in [40, 39]. This method has the advantage that standard sparse matrix
software can be used to solve the Jacobian matrix. This is especially important for
multifactor problems. In fact, the penalty method in [40] was applied to problems
which did not satisfy the sufficient conditions derived in this work, with no apparent
ill effects. It is a topic of further research to extend the convergence results in this
paper to the more general problems described in [40, 39].

Appendix A. Error in the penalty formulation. In this appendix, we de-
termine sufficient conditions which allow us to bound (4.14). Suppose that node k is
the node where the penalty term Pn+1

k (V ∗
k − V n+1

k ) attains its maximum. Consider
the term

[M̂(V ∗ − V n+1)]k =∆τ
∑
j∈ηk

(
γ̄kj + β̄kj

)
[(V ∗

k − V n+1
k )− (V ∗

j − V n+1
j )]

+ r∆τ [V ∗
k − V n+1

k ].(A.1)
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Since the penalty term attains its maximum value at node k, we have

[(V ∗
k − V n+1

k )− (V ∗
j − V n+1

j )] ≥ 0

V ∗
k − V n+1

k ≥ 0.(A.2)

Since γ̄kj + β̄kj ≥ 0, it follows from (A.1)–(A.2) that [M̂(V ∗ − V n+1)]k ≥ 0 at node
k. Alternatively,

[M̂V n+1]k ≤ [M̂V ∗]k,(A.3)

implying

[I + (1− θ)M̂V n+1]k ≤ [I + (1− θ)M̂V ∗]k.(A.4)

Writing (4.10) at node k, we have

([
I + (1− θ)M̂

]
V n+1

)
k
=
([

I − θM̂
]
V n
)
k
+
([
P̄ (V n+1)

]
(V ∗ − V n+1)

)
k
.(A.5)

Noting that Pn+1
k (V ∗

k − V n+1
k ) ≥ 0, it follows from (A.5) and (A.3) that

∣∣[Pn+1
k (V ∗

k − V n+1
k )]

∣∣ = ∥∥Pn+1(V ∗ − V n+1)
∥∥
∞

≤
∣∣∣([I + (1− θ)M̂

]
V n+1

)
k

∣∣∣+
∣∣∣([I − θM̂

]
V n
)
k

∣∣∣
≤
∣∣∣([I + (1− θ)M̂

]
V ∗
)
k

∣∣∣+
∣∣∣([I − θM̂

]
V n
)
k

∣∣∣
≤
∥∥∥[I + (1− θ)M̂

]
V ∗
∥∥∥
∞

+
∥∥∥[I − θM̂

]
V n
∥∥∥
∞

≤ ‖V ∗‖∞ + (1− θ)
∥∥∥M̂V ∗

∥∥∥
∞

+
∥∥∥[I − θM̂

]
V n
∥∥∥
∞

.(A.6)

We now proceed to bound each of the terms on the right-hand side of (A.6).
Given a put payoff of the form

V ∗ = V 0 = max(K − S, 0),(A.7)

where K is the strike, we have ‖V ∗‖∞ = K. In bounding ||M̂V ∗‖∞, we note that the
worst case occurs at Si = K so that

‖M̂V ∗‖∞ ≤ const . |M̂V ∗|i, Si = K

= O

(
∆τ

∆S

)
,(A.8)

where ∆S = mini(Si−Si−1). We assume that the timestep and mesh size are reduced
to zero in such a way that

∆τ

∆S
= const .,(A.9)

where this constant is independent of ∆τ,∆S. (It does not make any sense to drive
the S discretization to zero if the timestep truncation error is also not reduced as
well.) Consequently, we can assume that ‖M̂V ∗‖∞ is bounded independent of Large
and ∆τ,∆S.
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If we also assume that the timestep is selected so that

1− θ


∆τ

∑
j∈ηi

(
γ̄ij + β̄ij

)
+ r∆τ


 ≥ 0,(A.10)

then we have (recalling that M̂ is an M-matrix with row sum r∆τ)
∥∥∥[I − θM̂

]
V n
∥∥∥
∞
≤ (1− r∆τ) ‖V n‖∞ ≤ ‖V n‖∞ .(A.11)

Assuming condition (A.10) is satisfied, it follows from (4.10) and (A.7) that

‖V n‖∞ ≤ max(
∥∥V n−1

∥∥
∞ , ‖V ∗‖∞) = ‖V ∗‖∞ = K.(A.12)

Note that if a fully implicit discretization is used (θ = 0), then condition (A.10)
is trivially satisfied. For Crank–Nicolson timestepping, condition (A.10) implies that
∆τ/(∆S)2 ≤ const . as ∆S,∆τ → 0.

Consequently, we have shown that

∥∥Pn+1(V ∗ − V n+1)
∥∥
∞ ≤ 2K +O

(
∆τ

∆S

)
.(A.13)

In other words, at any node where V n+1
i < V ∗

i , we have |Large(V ∗
i − V n+1

i )| ≤ C,
where C is independent of Large. Therefore, by choosing Large sufficiently large, the
error in the solution of the LCP can be made arbitrarily small, and Theorem 4.1
follows.

Appendix B. Monotone convergence. We will first prove that iteration (6.1)
has a monotone property. Writing (6.1) for iteration k gives

[
I + (1− θ)M̂ + P̄ k−1

]
V̄ k =

[
I − θM̂

]
V n + P̄ k−1V ∗.(B.1)

First, note that (B.1) always has a solution, since I+(1−θ)M̂ + P̄ k−1 is a diagonally
dominant M matrix and is consequently nonsingular.

This can be written as[
I + (1− θ)M̂ + P̄ k

]
V̄ k +

[
P̄ k−1 − P̄ k

]
V̄ k =

[
I − θM̂

]
V n + P̄ k−1V ∗.(B.2)

Subtracting (B.2) from (6.1) gives

[
I + (1− θ)M̂ + P̄ k

]
(V̄ k+1 − V̄ k) =

[
P̄ k − P̄ k−1

]
(V ∗ − V̄ k), k ≥ 1.(B.3)

Now examine each of the components of the right-hand side of (B.3). There are two
possible cases:

Case 1: V̄ k
i < V ∗

i ⇒ P̄ k
ii = Large

⇒ (Large − P̄ k−1
ii )(V ∗ − V̄ k)i ≥ 0

⇒ [
P̄ k − P̄ k−1

]
i
(V ∗ − V̄ k)i ≥ 0,

Case 2: V̄ k
i ≥ V ∗

i ⇒ P̄ k
ii = 0

⇒ (−P̄ k−1
ii )(V ∗ − V̄ k)i ≥ 0

⇒ [
P̄ k − P̄ k−1

]
i
(V ∗ − V̄ k)i ≥ 0.
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Thus we always have

[
P̄ k − P̄ k−1

]
(V ∗ − V̄ k) ≥ 0, k ≥ 1.(B.4)

Since [I+(1−θ)M̂+P̄ k] is an M-matrix, it follows from (B.3)–(B.4) that (V̄ k+1−V̄ k) ≥
0 for k ≥ 1, or, in component form, (V̄ k+1 − V̄ k)i ≥ 0 ∀i for k ≥ 1.

We now demonstrate that the iteration (6.1) has finite termination. Let the set of
all nodes in the discretization be denoted by ν. Given any iterate V̄ k, we can define

χk = {i | (P̄ k)i = 0},
ν − χk = {i | (P̄ k)i > 0}.(B.5)

Since for k ≥ 1 we have that the iterates increase monotonically, any node in χk

remains in χj ∀j > k ≥ 1. If at any stage ν − χk = ν − χk−1, then (P̄ k − P̄ k−1) = 0,
and the iteration terminates with a zero update ((B.3)). If a node in ν − χk becomes
unconstrained, this node moves into the set χk+1. This node will always remain in
χj , j > k ≥ 1. The number of nodes in the set ν − χk+1 is then at least one less than
the number of nodes in ν − χk. Eventually, either ν − χk+1 = ν − χk or ν − χk+1 is
exhausted, and the iteration terminates. Hence the iteration always converges, and a
solution exists.

The above argument assumes exact arithmetic. In practice, we apply the extra
termination condition based on the update in algorithm (5.2) as a precaution against
errors in floating point arithmetic. Of course, we will also need the update termination
test if the problem has nonlinearities other than the simple American constraint.

We now demonstrate that the solution obtained by the penalty iteration is unique.
Suppose there are two solutions V̄1 and V̄2 to the penalized problem. Let P̄ 1 ≡ P (V̄1)
and P̄ 2 ≡ P (V̄2). Then[

I + (1− θ)M̂ + P̄ 1
]
V̄1 =

[
I − θM̂

]
V n + P̄ 1V ∗,(B.6) [

I + (1− θ)M̂ + P̄ 2
]
V̄2 =

[
I − θM̂

]
V n + P̄ 2V ∗.(B.7)

We can write (B.6) as

[
I + (1− θ)M̂ + P̄ 2

]
V̄1 +

[
P̄ 1 − P̄ 2

]
V̄1 =

[
I − θM̂

]
V n + P̄ 1V ∗.(B.8)

Subtracting (B.7) from (B.8) gives

[
I + (1− θ)M̂ + P̄ 2

]
(V̄1 − V̄2) =

[
P̄ 1 − P̄ 2

]
(V ∗ − V̄1).(B.9)

Using a similar argument as we used in proving monotone iteration, we have that

[
P̄ 1 − P̄ 2

]
(V ∗ − V̄1) ≥ 0.(B.10)

Since [I + (1− θ)M̂ + P̄ 2] is an M-matrix, it follows from equations (B.9–B.10) that
(V̄1 − V̄2) ≥ 0. Interchanging subscripts, we have (V̄2 − V̄1) ≥ 0, and hence V̄2 = V̄1.
Consequently, Theorem 6.1 follows.

Appendix C. The binomial lattice method. Let Snm = u2m−nS0
0 for m =

0, . . . , n denote the value of the asset price at time tn = n∆t and lattice point m,

where u = eσ
√

∆t and ∆t = T/N . Note that T is the expiry time of the option and N
is the number of timesteps. Also note that we are considering time t going forward in
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this case, in contrast to τ = T − t (time going backwards) as in the previous sections.
This results in a solution algorithm which proceeds backwards from t = T to t = 0
(i.e., from t = tN to t = 0).

Let V n
m be the value of the option associated with asset price Snm, at time t = n∆t.

Of course, we have V N
m = max(K − SNm , 0) for m = 0, . . . , N . Define

p =
er∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
.(C.1)

Then the value of the American put option V 0
0 (at the single point S = S0

0) is obtained
from the following algorithm.
Binomial Lattice Algorithm.

For n = N − 1, . . . , 0
For m = 0, . . . , n

V̄ n
m = e−r∆t

(
pV n+1

m+1 + (1− p)V n+1
m

)
,(C.2)

V n
m = max(K − Snm, V̄ n

m)

EndFor
EndFor.

The above method is usually derived in the financial literature based on prob-
abilistic arguments. In fact, we can see that this is equivalent to an explicit finite
difference method with a particular choice for the timestep. Consider the following
Black–Scholes equation for a European option:

Vt +
σ2

2
S2VSS + rSVS − rV = 0.(C.3)

Define a new variable X = logS so that (C.3) becomes

Vt +
σ2

2
VXX +

(
r − σ2

2

)
VX − rV = 0.(C.4)

Letting V = ertW , (C.4) becomes

Wt +
σ2

2
WXX +

(
r − σ2

2

)
WX = 0.(C.5)

Now let Wn
m = W (logS0

0 +(2m−n)σ
√
∆τ , n∆τ) for m = 0, . . . , n. Discretizing (C.5)

using central differencing in the X direction and an explicit timestepping method, we
obtain

Wn
m =

[
p∗
(
Wn+1
m+1

)
+ (1− p∗)

(
Wn+1
m

)]
+O[(∆t)2],(C.6)

where p∗ = 1/2[1 +
√
∆t(r/σ − σ/2)]. Writing (C.6) in terms of V n

m gives

V n
m = e−r∆t

[
p∗
(
V n+1
m+1

)
+ (1− p∗)

(
V n+1
m

)]
+O[(∆t)2].(C.7)

Expanding p in (C.1) in a Taylor series, noting the definition of p∗, and assuming that
V n+1
m+1 − V n+1

m = O(
√
∆τ), we obtain

V n
m = e−r∆t

[
p
(
V n+1
m+1

)
+ (1− p)

(
V n+1
m

)]
+O[(∆t)2].(C.8)

Comparing (C.8) with algorithm (C.2), we can see that the binomial lattice method
is simply an explicit finite difference discretization of the discrete LCP (2.2), with the
American constraint applied explicitly.
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A NEW METHOD FOR MICRO-MACRO SIMULATIONS OF
VISCOELASTIC FLOWS∗
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Abstract. In this paper we develop a robust numerical method derived from the Brownian
configuration field method [M.A. Hulsen, A.P.G. Van Heel, and B.H.A.A. Van Den Brule, J. Non-
Newtonian Fluid Mech., 70 (1997), pp. 79–101] for the simulation of flows of dilute polymeric so-
lutions. The statistical properties of the Wiener stochastic process in the stochastic differential
equation describing the evolution of the configuration vector are exploited in order to derive a simple
expression for the polymeric contribution to the stress. The method is tested numerically by solving
the benchmark problem of the flow of an Oldroyd B fluid past a cylinder in a channel using a spectral
element method. Results are presented to demonstrate the advantages of the proposed method.

Key words. viscoelastic flows, spectral element methods, mesoscopic models

AMS subject classifications. 76A10, 65N35
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1. Introduction. Among the more important recent advances in computational
rheology, the use of kinetic theory models to evaluate the polymeric contribution to
the stress ranks highly. Whereas in macroscopic methods closed-form constitutive
equations have been used, these have often been of limited use in faithfully simulating
complex polymeric flows. In bypassing a macroscopic description of the stress evolu-
tion and using a coarse-grained microscopic description instead, more of the physics of
viscoelastic fluids may be incorporated. The use of stochastic differential equations for
the simulation of complex viscoelastic flows was initiated in 1993 by Laso and Öttinger
[13]. Then, a new and powerful Brownian dynamics technique, the so-called Brownian
configuration field method was introduced by Hulsen, Van Heel, and Van Den Brule
[12]. Here, the idea is that a stochastic differential equation is solved for ensembles of
conformation vectors corresponding to dumbbell connectors having the same initial
configuration and subject to the same Brownian forces in time. This technique avoids
the difficulties associated with the tracking of individual particles. However, as with
all micro-macro simulations to date, the computations are significantly more costly in
terms of time and memory than is the case with closed-form constitutive equations.
The main reason for this extra cost is that a significant number of configuration fields
(typically several thousand) have to be computed and stored in order to reduce the
noise in the computed polymeric stress. Despite the success enjoyed by variance re-
duction methods [3] in reducing the number of degrees of freedom required in the
problem, Brownian configuration methods remain expensive. In the case of Hookean
dumbbells, the present paper is intended to be a step towards making such methods
more affordable.

The paper is organized as follows. In the next section, we describe two common
approaches for the numerical calculation of the flow of an Oldroyd B fluid. Then, in
the case of mesoscopic calculations, section 3 is devoted to an explanation of a new
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way of computing the extra-stress which overcomes the CPU and memory limitations
of the Brownian configuration field method. In sections 4 and 5, we discretize the
governing equations using a spectral element method for the benchmark problem of
an Oldroyd B fluid past a cylinder in a channel. Finally, in section 6 we show how
the present results can be extended to the Oldroyd B multimode model.

2. Problem description. Let Ω ⊂ R
d be some bounded Lipschitz domain hav-

ing boundary ∂Ω. We consider inertialess, isothermal flow of an incompressible fluid
with density ρ for which the momentum conservation and the continuity equations in
Ω are

ρ
∂u

∂t
− ηs∆u+∇p =∇.τ + f ,(2.1)

∇.u = 0,(2.2)

where u denotes the fluid velocity, p is the pressure, τ is the polymeric contribution
to the stress tensor, f is a body force, and ηs is the solvent viscosity. The extra-
stress τ needs an equation to close the system. For dilute solutions of polymers,
this may be a differential or integral constitutive equation (macroscopic approach) or
an expression derived from a macromolecular model (mesoscopic approach) in which
case a stochastic differential equation needs to be solved. Some models such as the
Oldroyd B model have both a constitutive equation and a macromolecular model
representation. In the next two subsections, we will describe the two approaches for
this model.

2.1. Macroscopic approach: Constitutive equation. For an Oldroyd B
fluid and a time dependent flow, the polymeric extra-stress tensor satisfies the follow-
ing hyperbolic equation:

τ + λ
�
τ= ηpγ̇(u),(2.3)

where λ is the relaxation time of the fluid, γ̇(u) = (∇u+∇uT ) is the rate of strain
tensor, and ηp is the polymeric fluid viscosity. Given the velocity field u, the upper-
convected derivative � in (2.3) is then defined by

�
τ=

∂τ

∂t
+ u.∇τ −∇u.τ − (∇u.τ )T .(2.4)

Usually, a decoupled numerical scheme is used, i.e., for a given source term τ , (2.1)
and (2.2) form a standard Stokes problem, and once the velocity has been computed,
the extra-stress can be determined from (2.3). The advantage of constitutive equations
is their simplicity: a differential equation just needs to be discretized with possibly
some stabilizing techniques to account for its hyperbolic character. The CPU and
memory requirements may be less than for its mesoscopic counterpart, and noise-free
solutions can be obtained. Viscoelastic flows are characterized by a Deborah number
(see (5.1)), which is a nondimensional measure of the elasticity of the fluid. The
macroscopic approach is less robust (it is possible that only simulations at modest
Deborah numbers can be performed), and a closed form equation may not be available
for the most general models.
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Fig. 1. Description of a single dumbbell placed in the fluid in X(t).

2.2. Mesoscopic approach. In this subsection, we briefly describe the Brow-
nian configuration field method [12, 15, 20] first introduced in 1997 by Hulsen et al.
The idea of this mesoscopic approach is to model the polymer chains by elastic dumb-
bells that consist of two beads connected by a spring (see Figure 1). Then, we model
the polymer chains and their interactions with the solvent. The configuration vector
Q(t) describes the configuration of a dumbbell, i.e., the orientation and elongation in
space of the spring connecting the two beads as it moves along its trajectory X(t).
Note that X(t) is nothing but the trajectory of the fluid particles. For the Oldroyd
B model, the spring force F is proportional to the configuration vector

F = HQ(t),(2.5)

where H is the spring constant.

In order to reduce the number of parameters, the configuration vector is scaled
by a characteristic length to give Q̃(t)

Q̃(t) =
Q(t)√
kBT
H

,

where kB is Boltzmann’s constant and T the absolute temperature. Adopting an
Eulerian point of view and taking the same initial configuration and the same Brown-
ian forces in time for ensembles of dumbbells leads to the configuration field method.
Then, the configuration field Q̃(x,t) satisfies the following stochastic differential equa-
tion (see [16] for details):

dQ̃(x,t) =

(
−u(x,t).∇Q̃(x,t) +∇u(x,t)Q̃(x,t)− 1

2λ
Q̃(x,t)

)
dt(2.6)

+

√
1

λ
dW(t).
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In (2.6), W(t) is the so-called Wiener process which accounts for the Brownian forces
acting on each bead. The Wiener process has some important properties that will
be used in the next section to derive a simple expression for the extra-stress. It is a
Gaussian process with zero mean and covariance 〈W(t)W(t′)〉 = min(t, t′)I. It should
also be noted that each component of W(t) depends only on time and has a constant
spatial value all over the domain Ω.

The local value of the extra-stress τ (x,t) (which is a macroscopic quantity) can be

determined from an ensemble of Ncf configuration fields {Q̃m(x,t)}1≤m≤Ncf that ex-
perience different uncorrelated Wiener processes {Wm(t)}1≤m≤Ncf . For the Oldroyd
B model, τ (x,t) is given by the Kramers expression (see page 69 of [1])

τ (x,t) =
ηp
λ


−I+

lim

Ncf →∞


 1

Ncf

Ncf∑
m=1

Q̃m(x,t)⊗ Q̃m(x,t)




 ,(2.7)

where the symbol ⊗ denotes the tensor product of two vectors. Initially, the fluid is
at rest so that the equilibrium extra-stress tensor must be zero. Each component of
the initial configuration fields Q̃m(x,t0) satisfies a space-independent scalar normal
law with zero mean and unity variance [2], and thus

lim

Ncf →∞


 1

Ncf

Ncf∑
m=1

Q̃m(x,t0)⊗ Q̃m(x,t0)


 = I.(2.8)

In order to state more precisely the typical CPU and memory cost required by
a mesoscopic computation, let us use a simple implicit Euler scheme for the time
discretization of (2.6). For a given uniform partition 0 = t0 < t1 < · · · < tmax of the
time range [0, tmax] with ti = i∆t, (i = 1, . . . ,max), the mth configuration field to be
used in (2.7) satisfies

Qm(x,ti)+

(
u(x,ti).∇Qm(x,ti)−∇u(x,ti)Qm(x,ti)+

1

2λ
Qm(x,ti)

)
∆t(2.9)

= Qm(x,ti−1) +

√
∆t

λ
∆Wm(ti).

The tildes of the configuration field vectors have been dropped for better readability
and in what follows it is understood that Qm(x,t) is a dimensionless quantity. The
Wiener process has also been scaled by

√
∆t so that we now have 〈∆Wm(ti)

2〉 =
〈(Wm(ti) − Wm(ti−1))

2〉 = I. In practice, it is not possible to take an infinite
number of configuration fields in order to evaluate the extra-stress with (2.7), and,
instead, a finite number of them is used. According to the central-limit theorem,
for Ncf sufficiently large, the statistical error of the extra-stress is proportional to
1/
√
Ncf . Therefore, the numerical solution converges towards the noise-free solution

at a slow rate of order O(1/√Ncf ). This means that in order to get solutions with low
noise level, (2.9) has to be solved a great number of times (typically, Ncf = O(103))
and explains why the mesoscopic approach is so CPU intensive. It also means that
many spatial vectors {Qm(x,ti−1)}1≤m≤Ncf coming from the previous calculation at

time ti−1 must be stored in order to evaluate the right-hand side of (2.9) at time ti.
Variance reduction techniques make it possible to reduce the noise level [3]; however,
the efficiency of such techniques may be less effective as the Deborah number increases
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[2]. In the next section, we will see how the properties of the Wiener process may be
exploited in order to get noise-free extra-stresses at a relatively low CPU and memory
cost.

3. A new method for noise-free extra-stresses. We first introduce some
notation that will be useful in what follows. We denote by qtl(x, ti) a d -dimensional
vector whose value is updated at time ti = i∆t. The superscript tl indicates that
this vector was originally created at time tl = l∆t (with l ≤ i). In order to model
the Wiener process of (2.9) at time ti, it is convenient to introduce d sets of Ncf
real random numbers {∆W j

m(ti)}1≤m≤Ncf (j = 1, . . . , d) obeying a scalar normal
law. Then, we introduce d constant d -dimensional vectors {bj}1≤j≤d, where bj has
unit value at its jth component and zero elsewhere. With those definitions, the mth
Wiener process of (2.9) can be written

∆Wm(ti) =

d∑
j=1

bj∆W
j
m(ti).(3.1)

Finally, we define a real function of the relaxation time λ for any given time step ∆t;
thus

α(λ) =

√
∆t

λ
.(3.2)

For any kind of spatial discretization of (2.9) (e.g., a finite element method, finite
difference method, or spectral element method), we are now in position to prove the
following theorem that will be used to derive a new expression for the extra-stress.

Theorem 3.1. Let Qm(x,ti) be the discrete solution of (2.9) at time ti = i∆t
(i ≥ 1) for any given Wiener process ∆Wm(ti). Then, there exists d × i vectors
independent of m, denoted by {qti−lj (x, ti)}1≤j≤d0≤l≤i−1, such that

Qm(x,ti) =

d∑
j=1

{(
i−1∑
l=0

α(λ)q
ti−l
j (x, ti)∆W

j
m(ti−l)

)
+ qt1j (x, ti)∆W

j
m(t0)

}
.(3.3)

Proof. We will prove this theorem by induction on i. We first show that (3.3)
is true for i = 1. At t = t0, the configuration fields are at equilibrium, and, for the
Oldroyd B model, they come from the same distribution as the Wiener processes so
that we can write Qm(x,t0) = ∆Wm(t0). The relation (3.1) can be applied at time
t0 to give

Qm(x,t0) = ∆Wm(t0) =

d∑
j=1

bj∆W
j
m(t0).(3.4)

Let Eu(x,ti) be the matrix resulting from the discretization of the left-hand side of
(2.9) at time ti for a given velocity field u. Then, at time t1, (2.9) can be formally
rewritten as

Eu(x, t1)Qm(x,t1) = α(λ)∆Wm(t1) +Qm(x,t0)(3.5)

= α(λ)∆Wm(t1) +

d∑
j=1

bj∆W
j
m(t0),
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where we have replaced Qm(x,t0) by its equivalent expression (3.4).

Multiplying (3.5) throughout by E−1
u (x, t1), and using equation (3.1) at time t1

for ∆Wm(t1), we obtain

Qm(x,t1) =

d∑
j=1

(
α(λ)E−1

u (x, t1)bj∆W
j
m(t1) +E−1

u (x, t1)bj∆W
j
m(t0)

)
.(3.6)

We can now define a new vector qt1j (x, t1) created at time t1 by

qt1j (x, t1) = E−1
u (x, t1)bj(3.7)

so that we can rewrite (3.6) in the form

Qm(x,t1) =

d∑
j=1

(
α(λ)qt1j (x, t1)∆W

j
m(t1) + qt1j (x, t1)∆W

j
m(t0)

)
.(3.8)

The above equation shows that the relation (3.3) is true for i = 1.

We now suppose that the relation (3.3) is true at time ti−1, and we will prove
that it is true at time ti. At time ti, (2.9) can be formally rewritten as

Eu(x, ti)Qm(x,ti) = α(λ)∆Wm(ti) +Qm(x,ti−1).(3.9)

By the inductive hypothesis the relation (3.3) is true at time ti−1 so that we have

Qm(x,ti−1) =

d∑
j=1

{(
i−2∑
l=0

α(λ)q
ti−1−l
j (x, ti−1)∆W

j
m(ti−1−l)

)
+ qt1j (x, ti−1)∆W

j
m(t0)

}

=

d∑
j=1

{(
i−1∑
l=1

α(λ)q
ti−l
j (x, ti−1)∆W

j
m(ti−l)

)
+ qt1j (x, ti−1)∆W

j
m(t0)

}
,(3.10)

where the last expression has been obtained after a change of indices for l.

Multiplying (3.9) throughout by E−1
u (x, ti) and replacing Qm(x,ti−1) by its ex-

pression above, we obtain

Qm(x,ti) =

d∑
j=1

{(
i−1∑
l=1

α(λ)E−1
u (x, ti)q

ti−l
j (x, ti−1)∆W

j
m(ti−l)

)
(3.11)

+E−1
u (x, ti)q

t1
j (x, ti−1)∆W

j
m(t0)

}
+ α(λ)E−1

u (x, ti)∆Wm(ti).

We define the vector q
ti−l
j (x, ti) created at time ti−l and updated at time ti as the

function of the vector q
ti−l
j (x, ti−1) created at the same time ti−l and updated at the

previous time step ti−1 by setting

q
ti−l
j (x, ti) = E−1

u (x, ti)q
ti−l
j (x, ti−1) for l = 1, . . . , i− 1.(3.12)

Using the above expressions of q
ti−l
j (x, ti) and replacing the Wiener process ∆Wm(ti)
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by its equivalent expression (3.1), equation (3.11) becomes

Qm(x,ti) =

d∑
j=1

{(
i−1∑
l=1

α(λ)q
ti−l
j (x, ti)∆W

j
m(ti−l)

)
(3.13)

+qt1j (x, ti)∆W
j
m(t0)

}
+

d∑
j=1

α(λ)E−1
u (x, ti)bj∆W

j
m(ti).

We can now define the newly created vectors qtij (x, ti) at time ti by

qtij (x, ti) = E−1
u (x, ti)bj ;(3.14)

then (3.13) can be written

Qm(x,ti) =

d∑
j=1

{(
i−1∑
l=1

α(λ)q
ti−l
j (x, ti)∆W

j
m(ti−l)

)

+α(λ)qtij (x, ti)∆W
j
m(ti) + qt1j (x, ti)∆W

j
m(t0)

}
(3.15)

=

d∑
j=1

{(
i−1∑
l=0

α(λ)q
ti−l
j (x, ti)∆W

j
m(ti−l)

)
+ qt1j (x, ti)∆W

j
m(t0)

}
.

The above relation shows that (3.3) is true at time ti as long as it is satisfied at time
ti−1. Since (3.3) is true at the initial time t1, by induction, the relation is valid for
any time ti = i∆t (i ≥ 1), and this concludes the proof.

The proof of Theorem 3.1 gives an explicit expression for the vectors q
ti−l
j (x, ti)

which can be obtained with (3.14) at their time of creation and subsequently updated
according to (3.12). The next theorem shows how the extra-stress can be computed

from the vectors {qti−lj (x, ti)}1≤j≤d0≤l≤i−1.

Theorem 3.2. The extra-stress tensor τ (x,ti) at time ti can be computed from

the vectors {qti−lj (x, ti)}1≤j≤d0≤l≤i−1 in a deterministic way by

τ (x,ti)=
ηp
λ


−I+

d∑
j=1

{(
i−1∑
l=0

α(λ)2q
ti−l
j (x, ti)⊗ q

ti−l
j (x, ti)

)
+ qt1j (x, ti)⊗ qt1j (x, ti)

}
.

(3.16)

Proof. According to (2.7), the extra-stress tensor τ (x,ti) at time ti is given by

τ (x,ti) =
ηp
λ


−I+

lim

Ncf →∞


 1

Ncf

Ncf∑
m=1

Qm(x,ti)⊗Qm(x,ti)




 .(3.17)

Before passing to the limit when Ncf → ∞, we rewrite Qm(x,ti) ⊗ Qm(x,ti) by
replacing Qm(x,ti) by its expression (3.3) established in Theorem 3.1, and, using the
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distributivity of the tensor product, we have

Qm(x,ti) ⊗ Qm(x,ti) =

d∑
j=1

{(
i−1∑
l=0

α(λ)q
ti−l
j (x, ti)∆W

j
m(ti−l)

)
+ qt1j (x, ti)∆W

j
m(t0)

}

⊗
d∑

j′=1

{(
i−1∑
l′=0

α(λ)q
ti−l′
j′ (x, ti)∆W

j′
m (ti−l′)

)
+ qt1j′ (x, ti)∆W

j′
m (t0)

}

=

d∑
j=1

i−1∑
l=0

d∑
j′=1

i−1∑
l′=0

α(λ)2∆W j
m(ti−l)∆W

j′
m (ti−l′)q

ti−l
j (x, ti)⊗ q

ti−l′
j′ (x, ti)

+

d∑
j=1

i−1∑
l=0

d∑
j′=1

α(λ)∆W j
m(ti−l)∆W

j′
m (t0)q

ti−l
j (x, ti)⊗ qt1j′ (x, ti)

+

d∑
j=1

d∑
j′=1

i−1∑
l′=0

α(λ)∆W j
m(t0)∆W

j′
m (ti−l′)q

t1
j (x, ti)⊗ q

ti−l′
j′ (x, ti)

+

d∑
j=1

d∑
j′=1

∆W j
m(t0)∆W

j′
m (t0)q

t1
j (x, ti)⊗ qt1j′ (x, ti).

(3.18)

In order to simplify this expression, we note that {∆W j
m(tl)}1≤m≤Ncf and

{∆W j′
m (tl′)}1≤m≤Ncf are two sets of random numbers following the scalar normal

law. If they are generated independently, i.e., they come from two different times
tl �= tl′ or different components j �= j′, their covariance is zero. Those properties can
be summarized as follows:

lim

Ncf →∞
1

Ncf

Ncf∑
m=1

∆W j
m(tl)∆W

j′
m (tl′) = δjj′δll′ ,(3.19)

where δ is the Kronecker delta. Using (3.18) and (3.19), we can now simplify the

expression 1
Ncf

∑Ncf
m=1 Qm(x,ti)⊗Qm(x,ti) when Ncf →∞:

lim

Ncf →∞


 1

Ncf

Ncf∑
m=1

Qm(x,ti)⊗Qm(x,ti)


(3.20)

=
d∑
j=1

i−1∑
l=0

d∑
j′=1

i−1∑
l′=0

α(λ)2δjj′δi−l,i−l′q
ti−l
j (x, ti)⊗ q

ti−l′
j′ (x, ti)

+

d∑
j=1

i−1∑
l=0

d∑
j′=1

α(λ)δjj′δi−l,0q
ti−l
j (x, ti)⊗ qt1j′ (x, ti)

+

d∑
j=1

d∑
j′=1

i−1∑
l′=0

α(λ)δjj′δ0,i−l′qt1j (x, ti)⊗ q
ti−l′
j′ (x, ti)

+

d∑
j=1

d∑
j′=1

δjj′δ00q
t1
j (x, ti)⊗ qt1j′ (x, ti)

=

d∑
j=1

(
i−1∑
l=0

α(λ)2q
ti−l
j (x, ti)⊗ q

ti−l
j (x, ti)

)
+

d∑
j=1

qt1j (x, ti)⊗ qt1j (x, ti).
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With the result above and (3.17), we find the required relation for the extra-stress
τ (x,ti)

τ (x,ti) =
ηp
λ

(
− I+

d∑
j=1

{(
i−1∑
l=0

α(λ)2q
ti−l
j (x, ti)⊗ q

ti−l
j (x, ti)

)

+ qt1j (x, ti)⊗ qt1j (x, ti)

})
.(3.21)

The above equation gives a nice interpretation of the so-called memory effects
which are of great importance for viscoelastic fluids. Indeed, (3.21) shows that in
order to compute the extra-stress τ (x,ti) at time ti, we need to know the history of

the fluid at times {tl}1≤l≤i which is contained in the vectors {qti−lj (x, ti)}0≤l≤i−1.
Furthermore, this relation is entirely deterministic and gives noise-free solutions. We
also see that at every new time step, d d-dimensional vectors have to be created and
stored. Therefore, the computation becomes more and more expensive as we advance
in time. This is why for the time discretization of (2.6), we have adopted an implicit
Euler scheme which allows us to take larger time steps and to reach higher Deborah
numbers than its explicit counterpart. In (3.21), the vectors {qti−lj (x, ti)}0≤l≤i−1

receive equal weighting. If, for efficiency purposes, the “old” vectors qtij are removed
before the steady state is reached, then information is lost and the variables (u, p, τ )
will not converge to the right solution. In the next section, we apply this new method
using a spectral element method for spatial discretization of (2.1), (2.2), and (2.9).

4. Weak formulation and spectral element discretization.

4.1. Functional spaces and variational formulation. We now introduce the
following linear spaces over the flow domain Ω ⊂ R for the velocity, pressure, and
extra-stress, respectively:

V =
{

u ∈ (H1(Ω)
)2
: u = 0 on ∂Ω0 �= ∅

}
,(4.1)

P = L2
0(Ω),(4.2)

Σ =
{
τ : τ ∈ [L2(Ω)]2×2

s

}
.(4.3)

Given the velocity field u, the inflow boundary ∂Ω− of Ω having boundary ∂Ω is
defined in the usual way by

∂Ω− = {x ∈ ∂Ω : u(x).n(x) < 0} ,(4.4)

where Ω has outward pointing normal vector n.
With that definition of ∂Ω−, we can now introduce the following space for the

configuration field:

Q =
{
q : q ∈ [L2(Ω)]2, u.∇q ∈ [L2(Ω)]2 ∀u ∈ V and q = qinflow on ∂Ω

−} .(4.5)

Equipped with these functional spaces, we introduce the following bilinear forms:
A,M : V × V −→ R, B : P × V −→ R, C : Σ× V −→ R; thus

M(u,v) =
ρ

∆t

∫
Ω

u.vdx ∀u,v ∈ V,(4.6)

A(u,v) = ηs

∫
Ω

∇uT :∇vdx ∀u,v ∈ V,(4.7)
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B(p,v) =

∫
Ω

p∇.vdx ∀p ∈ P, v ∈ V,(4.8)

C(T,v) =

∫
Ω

T :∇vdx ∀T ∈ Σ, v ∈ V.(4.9)

Using an implicit Euler scheme for the time discretization and the extra-stress being
computed at the previous time step, the weak formulation of the Stokes problem may
be formally written as follows: find (u(ti), p(ti)) ∈ V × P for any given extra-stress
τ (ti−1) ∈ Σ such that

M(u(ti),v) +A(u(ti),v)−B(p(ti),v)(4.10)

=M(u(ti−1),v)− C(τ (ti−1),v) ∀v ∈ V,
B(w,u(ti)) = 0 ∀w ∈ P.(4.11)

We now define one trilinear and one bilinear form E : V × Q × Q −→ R and b :
Q×Q −→ R to be used for the configuration field equation

E(u,q,S) =

∫
Ω

(
q+

(
u.∇q−∇u.q+

q

2λ

)
∆t
)
.Sdx ∀u ∈ V, q,S ∈ Q,(4.12)

b(b,S) =

∫
Ω

b.Sdx ∀b,S ∈ Q.(4.13)

With these definitions of E(·, ·, ·) and b(·, ·), the Galerkin weak formulation of the
configuration field equation becomes the following: find {qti−lj (ti)}0≤l≤i−1

1≤j≤d ∈ Q such
that

E(u(ti),q
ti−l
j (ti),S) = b(q

ti−l
j (ti−1),S) ∀S ∈ Σ.(4.14)

Note that on the right-hand side of (4.14) for l = 0, we have used the convention that

qtij (ti−1) = bj , where bj has been introduced in section 3. Once the vectors q
ti−l
j (ti)

have been computed, the extra-stress τ (ti) can be easily determinated with the re-
lation (3.21). It should be noted that the choice of spaces V, P,Σ, and Q are chosen
to ensure that the integrals in the Galerkin weak formulation are bounded. However,
the function spaces required for establishing the well-posedness of the problem may
well have to be smaller than V, P,Σ, and Q.

4.2. Spectral element discretization. The Legendre spectral element method
[14, 17] may be used for the discretization of the continuous problem (4.10), (4.11), and
(4.14). The domain Ω is partitioned into K (say) nonoverlapping spectral elements
{Ωk}1≤k≤K . Then, letting PN denote the space of polynomials of degree less than or
equal to N in both Cartesian directions x and y within each spectral element Ωk, our
choice of finite-dimensional subspaces V N ⊂ V , PN ⊂ P , QN ⊂ Q, and ΣN ⊂ Σ for
the velocity, pressure, configuration field, and extra-stress, respectively, are

V N = V ∩ (PN )2,
PN = P ∩ PN−2,

QN = Q ∩ (PN )2,
ΣN = Σ ∩ (PN )2×2.

Note that the pressure approximation space was thus chosen in order to satisfy the
Babuška–Brezzi condition for the velocity/pressure compatibility. However, due to
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the complexity of (4.10), (4.11), and (4.14), and, in particular, their nonlinearity, no
available analysis indicating appropriate choices of compatible approximation spaces
presently exists.

Mapping of each of the spectral elements {Ωk}Kk=1 onto a parent element,

Ω̂ = {(ξ, η) : −1 ≤ ξ, η ≤ 1} ,

is achieved using the transfinite mapping technique of Gordon and Hall [11]. We may
then write down discrete representations uN (ti) and qN (ti) for the velocity vector
and configuration field at time ti, respectively, as follows:

uN (ti)|Ωk ≡ ukN (ti, ξ, η) =

N+1∑
l=1

N+1∑
m=1

u(ti)
k
l,mhl(ξ)hm(η) ∈ VN ,(4.15)

qN (ti)|Ωk ≡ qkN (ti, ξ, η) =

N+1∑
l=1

N+1∑
m=1

q(ti)
k
l,mhl(ξ)hm(η) ∈ QN .(4.16)

In (4.15) and (4.16), hl(ξ), 1 ≤ l ≤ N + 1, denotes the lth degree N Lagrange
interpolating polynomial, having the property that

hl(ξm) = δlm,(4.17)

where ξm is the mth Gauss–Lobatto–Legendre point. The spectral representation of
the pressure in Ωk is taken as

pkN (ti, ξ, η) =

N−1∑
l=1

N−1∑
m=1

p(ti)
k
l,mh̃l(ξ)h̃m(η),(4.18)

where h̃l(ξ), 1 ≤ l ≤ N−1, is the lth Lagrange interpolating polynomial of degreeN−2
based on the interior Gauss–Lobatto–Legendre points. The integrals appearing in
(4.10), (4.11), and (4.14) are determined numerically using Gauss–Lobatto quadrature
rules, and the discretized equations can now be written in the following matrix-vector
product form:

(M+A)u(ti)−Bp(ti) = −Cτ (ti−1) +Mu(ti−1),(4.19)

BTu(ti) = 0,(4.20)

Eu(ti)q
ti−l
j (ti) = q

ti−l
j (ti−1) for l = 0, . . . , i − 1 and j = 1, 2,(4.21)

where u,p, and q
ti−l
j in (4.19)–(4.21) are vectors containing, in an obvious way, the

nodal values of the velocity, pressure, and configuration field variables. Once the
vectors q

ti−l
j have been computed with (4.21), the extra-stress to be used into (4.19)

is determined with the formula (3.16) of Theorem 3.2. For a given velocity field u(ti),
the configuration field equation (4.21) constitutes a hyperbolic system of first-order
partial differential equations. The Galerkin spectral element method may produce
highly oscillatory numerical solutions for such equations. To treat this problem, we use
the SUPG element-by-element method which was found to be an efficient method for
the discretization of a steady state Oldroyd B flow [5]. The main idea of that method is
to order the spectral elements according to their location along the streamlines. Then,
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R
H

Fig. 2. Cylinder radius R placed symmetrically in a 2D channel of half width H.

the configuration field equation is solved sequentially on each spectral element, which
makes possible the use of a direct solver for (4.21). The inflow boundary conditions
are obtained from the upstream elements or the inflow boundary conditions. Note
that the matrix Eu(ti) needs to be LU decomposed only once every time step since it

is independent of q
ti−l
j .

5. Numerical example: Flow around a cylinder in a channel.

5.1. Description of the benchmark problem. The problem of planar vis-
coelastic flow around a cylinder has become popular recently as evidenced by the
number of publications dealing with this benchmark problem over the last three years
(e.g., [7, 10, 18, 19]). To be able to compare our results with those of others, we choose
the aspect ratio Λ = R/H = 1/2, where H is the width of the channel and R is the
radius of the cylinder (see Figure 2). A global Deborah number for this problem may
be defined by

De =
λU

R
,(5.1)

where U is the average velocity of the fluid in the channel at entry. The computational
region extends a distance 20R upstream and downstream of the cylinder so that the
assumption of fully developed flow conditions at entry and exit is valid. The ratio of
the solvent viscosity ηs to the total viscosity η = (ηs + ηp) was taken equal to 0.59
so as to match that used by other authors. The most popular quantity used for the
comparison of numerical results is the drag factor F ∗ on the cylinder

F ∗ =
F

4πηU
,

where F is the drag on the cylinder

F =

∫ π

0

{(
−p+ 2ηs ∂ux

∂x
+ τxx

)
cos θ +

(
ηs

(
∂uy
∂x

+
∂ux
∂y

)
+ τxy

)
sin θ

}
Rdθ.

The problem is solved by dividing the flow domain into 22 conforming spectral ele-
ments (see Figure 3), and polynomial degrees ranging from N = 8 to N = 14 are used
in the two spatial directions. The time steps are chosen equal to ∆t = 0.05.

5.2. Numerical results. Two types of calculations are performed: the first one
uses the constitutive equation (2.3), and the second one uses the new mesoscopic
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Fig. 3. Flow domain divided into 22 spectral elements.

approach described in section 3. For the two cases, the parameters (De, ηs, ηp,∆t)
and the numerical scheme (spectral element method with an implicit Euler scheme for
the time discretization) are the same. The iterations are stopped when the following
convergence criterion is fulfilled for all collocation points x ∈ Ω:

‖u(x, ti+1)− u(x, ti)‖
∆t

≤ 10−3.

At time ti, the proposed mesoscopic method requires d× i vectors q
ti−l
j (ti) to be

computed with (3.12) and (3.14). The total number of solves from t = t0 to t = ti is

therefore
∑i
k=0 d×k = d×i×(i+1)/2. In practice, a maximum of 200 = O(102) time

steps was found to be sufficient to reach the steady solution. In this case the total
number of solves is O(104). Since the computation of the extra-stress is deterministic,
the solution is noise-free. On the other hand, for the traditional configuration field
method, it is usual to take 3000 = O(103) configuration fields. Therefore, we would
have to solve equation (2.9) O(102) × O(103) = O(105) times from t = t0 to t = ti.
However, in this case, inevitably, the solution would be subject to noise. The present
approach is therefore very competitive in terms of cost and quality of the solution.

Tables 1 and 2 give the values of the drag factor for two types of computations (the
first one uses the formulation presented in this paper, and the second uses the classical
Oldroyd-B constitutive equation) for different level of discretizations (N = 8, . . . , 14)
and different Deborah numbers. The mesoscopic calculation is clearly more robust
since Deborah numbers up to De = 0.8 can be reached, whereas the constitutive
equation allows computation to proceed only up to De = 0.6. The convergence of
the drag factor with mesh refinement is also better: the difference between the two
finest meshes at De = 0.6 is 0.004% for the mesoscopic computation and falls to
0.2% for its macroscopic counterpart. The superiority of the method can be seen
clearly by comparing Figures 4 and 5 which show the profiles of τxx for three levels
of discretization (N = 8, 10, and 12) at the same Deborah number De = 0.6 for the
macroscopic and mesoscopic computation, respectively. For high Deborah numbers,
and as already pointed out in numerous papers [4, 8, 9, 10], the drag factor is not a
good indicator of the quality of the solution because the critical part of the flow lies
in the wake of the cylinder where the τxx component of the extra-stress is exceedingly
difficult to capture. This is why, although there are published results for the drag
factors up to De = 1.85 [19], evidence of convergence in the wake of the cylinder is
available only up to De = 0.7 [5, 10]. Figures 6 and 7 show the profiles of τxx for
three level of discretization (N = 8, 10, and 12) for the mesoscopic computation at
De = 0.7 and De = 0.8, respectively. The convergence with mesh refinement is still



2136 C. CHAUVIERE

Table 1
Drag factor F ∗ computed on uniform meshes (N = 8, . . . , 14). Mesoscopic simulation.

De N=8 N=9 N=10 N=11 N=12 N=13 N=14
0.3 9.7735 9.7741 9.7740 9.7739 9.7740 9.7739 9.7739
0.4 9.5623 9.5655 9.5655 9.5660 9.5658 9.5655 9.5656
0.5 9.4136 9.4178 9.4200 9.4226 9.4213 9.4207 9.4210
0.6 9.3226 9.3189 9.3293 9.3341 9.3317 9.3317 9.3313
0.7 9.2904 9.2591 9.2886 9.2882 9.2895 9.2898 -
0.8 9.3328 9.2352 9.3037 9.2743 9.2958 - -

Table 2
Drag factor F ∗ computed on uniform meshes (N = 8, . . . , 14). Macroscopic simulation.

De N=8 N=9 N=10 N=11 N=12 N=13 N=14
0.3 9.8022 9.8034 9.8030 9.8029 9.8032 9.8031 9.8032
0.4 9.5897 9.5969 9.5953 9.5969 9.5960 9.5952 9.5963
0.5 9.4317 9.4428 9.4510 9.4633 9.4540 9.4547 9.4551
0.6 9.2801 9.2872 9.3450 9.3807 9.3591 9.3803 9.3611

good both on the cylinder surface (−1 ≤ x ≤ 1) and in the wake of the cylinder
(x > 1), even at the highest Deborah number.

6. Extension of the method to multimode Oldroyd B fluids. In practice,
fluids have a continuous spectrum of relaxation times. This is approximated by tak-
ing several (say p) relaxation times {λr}1≤r≤p associated with polymeric viscosities
{ηpr}1≤r≤p. The extra-stress that now enters the linear momentum equation is the
sum of the contribution of each mode (λr, ηpr), i.e., for a p-mode model

τ (x,ti) =

p∑
r=1

τ r(x,ti).(6.1)

For the Oldroyd B multimode model, the equation satisfied by the rth mode of the
configuration field Qr

m(x, ti) is

Qr
m(x, ti)+

(
u(x,ti).∇Qr

m(x, ti)−∇u(x,ti)Q
r
m(x, ti)

)
∆t(6.2)

=

(
1− ∆t

2λr

)
Qr
m(x, ti−1) +

√
∆t

λr
∆Wr

m(ti),

where all the terms depending on λr have been taken explicitly so that the matrix
Eu(x, ti) resulting from the discretization of the left-hand side is now independent of
the modes and needs to be LU decomposed only once every time step.

Introducing a real function of the relaxation time λ for any given time step ∆t
thus

β(λ) =

(
1− ∆t

2λ

)
,(6.3)

the following result can be shown by induction on i in the same way as Theorem 3.1.

Theorem 6.1. Let Qr
m(x, ti) be the rth mode discrete solution of (6.2) at time

ti = i∆t (i ≥ 1) for any given Wiener process ∆Wr
m(ti). Then, there exists d × i

vectors independent of m and independent of the mode r, noted {qti−lj (x, ti)}1≤j≤d0≤l≤i−1
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Fig. 4. Profiles of τxx on the cylinder surface and in the wake of the cylinder for different
meshes at De = 0.6. Macroscopic simulation.
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Fig. 5. Profiles of τxx on the cylinder surface and in the wake of the cylinder for different
meshes at De = 0.6. Mesoscopic simulation.

such that

Qr
m(x,ti)=

d∑
j=1

{(
i−1∑
l=0

α(λr)β(λr)
lq
ti−l
j (x, ti)∆W

rj
m (ti−l)

)
+ β(λr)

iqt1j (x, ti)∆W
rj
m (t0)

}
.

The vectors q
ti−l
j (x, ti) are created and updated similarly to the single mode case.

In the same fashion as in Theorem 3.2, we can derive a simple expression for the rth
mode contribution to the extra-stress

τ r(x,ti) =
ηpr
λr

(
−I+

d∑
j=1

{
i−1∑
l=0

(
α(λr)

2β(λr)
2lq

ti−l
j (x, ti)⊗ q

ti−l
j (x, ti)

)
(6.4)

+β(λr)
2iqt1j (x, ti)⊗ qt1j (x, ti)

})
.
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Fig. 6. Profiles of τxx on the cylinder surface and in the wake of the cylinder for different
meshes at De = 0.7. Mesoscopic simulation.
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Fig. 7. Profiles of τxx on the cylinder surface and in the wake of the cylinder for different
meshes at De = 0.8. Mesoscopic simulation.

In order to write the total extra-stress in a condensed way, we define i constants
{χl}0≤l≤i−1 at time ti; thus

χl =

p∑
r=1

ηpr
λr
α(λr)

2β(λr)
2l for l = 0, . . . , i− 2,(6.5)

χi−1 =

p∑
r=1

ηpr
λr

(
α(λr)

2β(λr)
2(i−1) + β(λr)

2i
)
.(6.6)
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With those definitions and the help of (6.1) and (6.4), the total extra-stress can be
written

τ (x,ti) = −
(

p∑
r=1

ηpr
λr

)
I+

d∑
j=1

i−1∑
l=0

χlq
ti−l
j (x, ti)⊗ q

ti−l
j (x, ti).(6.7)

The equation above shows that the difference between the single mode Oldroyd B
model and the multimode model lies in the computation of {χl}0≤l≤i−1, which is an
inexpensive calculation. This is a big advantage over simulations using constitutive
equations, where an equation similar to (2.3) has to be solved for each mode.

7. Conclusion. The principal idea in the proposed method lies in the fact that
the random part appearing in the discretized stochastic equation follows the normal
law, which enables a simple expression for the extra-stress to be derived for the Ol-
droyd B model. The multimode case was shown to be a simple extension to the
presented approach. The method has been tested numerically on the benchmark
problem of an Oldroyd B fluid past a cylinder in a channel. The results have shown
that the method is superior in terms of stability to using a constitutive equation. It
is also cheaper than the original Brownian configuration field method. The present
approach was extended to dumbbell models having finitely extensible elastic spring
forces such as the FENE-P model in [6].
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Abstract. For a Lipschitz-polyhedron Ω ⊂ R
3 we consider eigenvalue problems curlα curl u =

λu and gradα divu = λu, λ > 0, set in H (curl; Ω) and H (div; Ω). They are discretized by
means of the conforming finite elements introduced by Nédélec. The preconditioned inverse iteration
in its subspace variant is adapted to these problems. A standard multigrid scheme serves as the
preconditioner. The main challenge arises from the large kernels of the operators curl and div.
However, thanks to the choice of finite element spaces these kernels have a direct representation
through the gradients/rotations of discrete potentials. This makes it possible to use a multigrid
iteration in potential space to obtain approximate projections onto the orthogonal complements
of the kernels. There is ample evidence that this will lead to an asymptotically optimal method.
Numerical experiments confirm the excellent performance of the method even on very fine grids.
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1. Introduction. Let Ω ⊂ R
3 be a Lipschitz-polyhedron [36], whose boundary

is partitioned into ΓD and ΓN . Our focus is on the vector-valued eigenvalue problems

curlα curl u = λu in Ω ,
divu = 0 in Ω ,

u× n = 0 on ΓD ,
α curl u× n = 0 on ΓN ,

(1.1)

and

gradα divu = λu in Ω ,
curl u = 0 in Ω ,

u · n = 0 on ΓD ,
α divu · n = 0 on ΓN .

(1.2)

Here, the vectorfields u is an eigenfunction, λ ≥ 0 stands for the eigenvalue, and
α ∈ L∞(Ω) is a uniformly positive coefficient.

We seek approximations of a few of the smallest nonzero eigenvalues and corre-
sponding eigenfunctions. This problem is of considerable relevance in several areas
of scientific computing. For instance, (1.1) describes so-called electromagnetic res-
onators if u is regarded as the (scaled) electric field. We refer to [1, sect. 1] for more
detailed explanations. When we want to determine a few of the lowest resonant modes
for a given cavity Ω, we exactly encounter the eigenvalue problem (1.1). Beyond the
calculation of resonant modes, approximations of the lowest eigenmodes are the ba-
sis for modal [28] approaches: A set of dominant modes is computed once, and the
fields at other frequencies are then approximated by a superposition of these modes.
This can be used to extract lumped parameters for electromagnetic devices in the
frequency domain. A completely different application emerges in the study of coupled
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solid-fluid systems. When one tries to find their eigenmodes, the eigenvalue problem
(1.2) appears [9].

Of course, there is a close relationship between (1.1) and (1.2) and eigenvalue
problems for second order elliptic differential operators. For the latter case, which
amounts to a generalized eigenvalue problem for large sparse symmetric positive def-
inite matrices, a huge body of work about numerical solution methods has been
compiled over the years [4, 5, 22, 38, 48, 54]. The driving force was the sheer size of
the eigenproblems arising from discretized PDEs. Millions of unknowns rule out the
use of methods that rely on dense matrices or factorizations. In addition, it is highly
desirable to avoid a deterioration of the convergence of the iterative schemes for large
problems. As far as the solution of discretized elliptic boundary value problems is
concerned, multigrid methods meet this requirement. It turned out that the multi-
grid idea can be grafted onto solution methods for discrete elliptic eigenproblems in
several ways, resulting in eigensolvers with optimal or quasi-optimal computational
complexity. For instance, Hackbusch [38, 39] applies multigrid principles directly to
the nonlinear eigenvalue problem to compute eigenvalue/vector approximations on
the final grid by combining a multigrid iteration and nested iteration. Let us also
mention the multigrid minimization technique of Mandel and McCormick [54], its ex-
tension by Deuflhard, Friese, and Schmidt [27], as well as the class of methods which
apply multigrid as a linear solver. Essentially, the idea underlying this last class is to
linearize the discrete eigenvalue problem by methods like inverse iteration [64] and to
solve the associated system of linear equations approximately by multigrid [5]. Rep-
resenting the application of the multigrid procedure by a multigrid preconditioner
and taking inverse iteration (without a shift) as an outer iteration defines precondi-
tioned inverse iteration (PINVIT). Recently, a new convergence theory for PINVIT
has been devised, providing sharp convergence estimates and substantial insight into
the underlying geometry [50,61,62].

The scheme of preconditioned inverse iteration is also known in the literature
as the preconditioned gradient method for the eigenvalue problem. The idea behind
this term is to compute a sequence of iterates with decreasing Rayleigh quotients
by successively correcting the iterates in the direction of the negative preconditioned
gradient of the Rayleigh quotient. By doing so, one expects that the sequence of
iterates converges to an eigenvector while the Rayleigh quotients tend to the smallest
eigenvalue. Preconditioned gradient methods have been studied predominantly by
Russian authors: see, for instance, Samokish [66], Petryshyn [65], Godunov, Ogneva,
and Prokopov [35], D’yakonov [29], D’yakonov and Orekhov [31], and Knyazev [47,48],
as well as the monograph of D’yakonov [30], including an extensive bibliography.
Recently, Ovtchinnikov and Xanthis [63] introduced a new variant. Knyazev in [48]
gives a survey on preconditioned eigensolvers.

Preconditioned inverse iteration has been generalized to a subspace algorithm for
computing some of the smallest eigenvalues together with the eigenvectors by emulat-
ing the subspace variant of inverse iteration [64]. Once again, the associated matrix
equation is solved approximately. After each subspace correction step the Rayleigh–
Ritz procedure is applied. It provides the Ritz values and Ritz vectors spanning the
approximating subspace. Convergence estimates have been presented in [20, 59]. In
sum, the resulting preconditioned eigensolver inherits the typical asymptotic multi-
grid efficiency [51] from the multigrid procedure used to solve the associated linear
equations.

On a smaller scale, researchers have also investigated ways to compute solutions
to (1.1) and (1.2) [1,68]. It is obvious that the large kernels of the differential opera-
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tors curl and div pose the main challenge: A straightforward application of iterative
techniques developed for the symmetric positive definite case is doomed because these
methods single out the smallest eigenvalues and will invariably churn out kernel vec-
tors in the end. However, as λ > 0 is requested, these are not the desired answer. We
are left with the task of steering the iterations away from the kernels.

One option is regularization, i.e., adding a term corresponding to a weak version of
grad div · for (1.1) and curl curl · for (1.2) to the differential operator (cf. [1, sect. 4.1]
and [10]). This will make the kernel “visible” and convert the problem into a standard
positive definite one. Thus it becomes amenable to “shift-and-invert” techniques
combined with, e.g., an implicitly restarted Lanczos method. The resulting indefinite
linear systems of equations can be solved by means of Krylov-subspace methods,
whose convergence will degrade, however, for very large problems.

An alternative option is projection of approximate eigenvectors onto a comple-
ment of the kernels. This is the gist of our method, which we call projected pre-
conditioned inverse iteration (PPINVIT). The idea to forgo regularization in favor
of projections is fairly natural. For instance, it is used in [67] for two-dimensional
problems arising in waveguide design. Yet, little is gained unless a fast projection and
good preconditioners are at our disposal.

Recently, multilevel methods for the solution of H(curl; Ω)- and H(div; Ω)-
elliptic boundary value problems have become available [3, 41, 43] if discretization is
based on special conforming finite elements. The goal of this paper is to demonstrate
how they can be forged into eigenproblem solvers featuring multigrid efficiency. The
key idea is to combine the subspace variant of PINVIT [59] with an inexact multigrid
projection onto the orthogonal complements of the kernels.

Since the approach crucially hinges on particular properties of the finite elements,
those are reviewed in the next section. Then we give a detailed description of the algo-
rithm, complete with projection control and termination criteria. The fourth section
is dedicated to some theoretical investigations of the convergence of the method. Yet,
we have not succeeded in providing a comprehensive theoretical analysis. To compen-
sate for this, we report some numerical experiments in the final section. They give
evidence of the efficacy and satisfactory performance of the method for some typical
large eigenvalue problems.

2. Discrete eigenvalue problems. The Galerkin-discretization starts from the
weak form of the eigenvalue problems: In the case of (1.1) we seek u ∈HΓD (curl; Ω),
λ > 0 such that

(α curl u, curl v)0 = λ (u,v)0 ∀v ∈HΓD (curl; Ω) .(2.1)

If (1.2) is of concern the weak form reads: Seek u ∈HΓD (div; Ω), λ > 0 such that

(α divu,divv)0 = λ (u,v)0 ∀v ∈HΓD (div; Ω) .(2.2)

As usual, we adopt the notation (·, ·)0 for the L2(Ω)-inner product. In addition, a
subscript ΓD tags spaces of functions satisfying zero (tangential/normal) traces on
ΓD.

By testing (2.1) with gradients and (2.2) with curls we observe that solutions u
are either weakly divergence-free or weakly curl-free. As HΓD (curl; Ω) ∩H(div; Ω)
and HΓD (div; Ω) ∩H(curl; Ω) are both compactly embedded in L2(Ω) [46] and the
bilinear forms on the left-hand sides of (2.1) and (2.2) are symmetric positive semidef-
inite, the Riesz–Schauder theory guarantees the existence of increasing sequences of
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real positive eigenvalues 0 < λ1 ≤ λ2 ≤ · · · . From symmetry we can also conclude
that the corresponding eigenspaces are L2(Ω)-orthogonal.

This carries over to the discrete eigenfunctions obtained through a Galerkin-
discretization of (2.1) and (2.2). In particular, we use conforming finite elements
based on a hexahedral or simplicial triangulation Th = {Ti}i of Ω. Then, using
the constructions proposed by Nédélec in [58], we obtain the finite element spaces
W1

p(Th) ⊂H(curl; Ω) andW2
p(Th) ⊂H(div; Ω) of any polynomial order p ∈ N0. De-

tails and descriptions of the degrees of freedom are given in, e.g., [21,34,56,58]. Dirich-
let boundary conditions can be enforced by setting the degrees of freedom (d.o.f.) on
ΓD to zero.

In the case of lowest polynomial order, p = 0, the finite elements are either known
as Whitney-forms [16] or, in the engineering literature, as edge elements (H(curl; Ω)-
conforming scheme) and face elements (H(div; Ω)-conforming scheme), respectively.
They owe these names to the definition of their d.o.f., which are given by path integrals
along edges of the mesh and flux integrals over its faces, respectively. The finite
element spaces form affine equivalent families if special transformations are used [42].
This makes it possible to show approximation properties on shape regular families of
meshes (cf. [26]). In addition, if quasi uniformity is assumed, the inverse inequalities

‖curl uh‖0 ≤Ch−1 ‖uh‖0 ∀uh ∈W1
p(Th) ,

‖divuh‖0 ≤Ch−1 ‖uh‖0 ∀uh ∈W2
p(Th)

(2.3)

hold, where h := max{diamT, T ∈ Th} is the meshwidth and C > 0 are generic
constants. By this terminology we mean that C may depend only on Ω,ΓD, α, p,
and the shape regularity of the finite element mesh. On the other hand, the value of
generic constants may change between different occurrences.

Despite the glaring differences in their definitions, the finite element spaces for
H(curl; Ω) and H(div; Ω) introduced above are closely related. As discussed in
[18,19,42], they all can be viewed as spaces of discrete differential forms. This is the
rationale behind our decision to treat both (1.1) and (1.2) in a common framework.
In a sense, we will adopt the common notation Vh for both W1

p(Th) or W2
p(Th) with

suitable Dirichlet boundary conditions imposed.
Hitherto, discrete differential forms supply the only conforming finite element

discretization of (2.1) and (2.2) that can steer clear of so-called spurious modes. For
instance, if one uses H1(Ω)-conforming finite elements to discretize the Cartesian
components of the vectorfields u, the discrete spectrum may feature eigenvalues that
are not related to an eigenvalue of the continuous problem [14,17,33]. On the contrary,
in recent years rigorous arguments have been found about why discrete differential
forms ensure a correct approximation of the spectrum [12, 15, 23, 24, 33, 57]. For
shape-regular families of meshes convergence of the eigenvalues will be quadratic in
the meshwidth [23] under mild assumptions on the smoothness of the eigenfunctions.

A key role in the convergence theory is played by discrete potentials. They refer
to an exceptional property of discrete differential forms, namely that they give rise
to analogues to de Rham’s exact sequences in a purely discrete setting [13, 19]. In
particular, for contractible Ω, ΓD = ∂Ω or ΓN = ∂Ω,

{uh ∈W1
p(Th), curl uh = 0} = gradW0

p (Th) ,(2.4)

{uh ∈W2
p(Th), divuh = 0} = curlW1

p(Th) ,(2.5)

where W0
p (Th) stands for the space of continuous finite element functions, piece-

wise polynomial of degree p+ 1 over Th, the conventional Lagrangian finite elements
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(see [25]). A proof of these identities can be found in [42]. Now it is clear whyW0
p (Th)

and W1
p(Th) have been dubbed spaces of discrete potentials. Those will be denoted

by Sh, and Gh : Sh �→ Vh is the related differential operator mapping into the kernel
of the respective differential operator; that is, Gh := grad or Gh := curl.

In the case of complex topologies and Dirichlet boundary conditions on parts of
∂Ω, the kernels of the differential operators are no longer completely given by suit-
able discrete potentials. What is still missing are low-dimensional spaces of discrete
harmonic vectorfields, H1(Th) ⊂W1

0(Th) and H2(Th) ⊂W2
0(Th), whose dimensions

depend on the topology of Ω and the arrangements of the connected components of
ΓD. For instance, if ΓD = ∂Ω the dimension of H1(Th) is equal to the number of
connected components of ∂Ω. A basis for H1(Th) is given by the gradients of piece-
wise linear continuous functions that assume the value 1 on one connected component
of ΓD and vanish on the other. Evidently, this basis can be constructed with little
effort. In the case of Neumann boundary conditions throughout, dimH1(Th) is equal
to the number of homology classes of boundary cycles that are bounding relative to
Ω. To find a basis, we associate a cutting surface to each homology class and compute
the gradient of a piecewise linear function that is continuous except for a jump of
height 1 across the cutting surface [2]. The surfaces can be determined by means of
graph-theoretic algorithms [37]. In the case of mixed boundary conditions the situ-
ation is more involved [32, 52], but for concrete geometries the harmonic vectorfields
can usually be found easily. In what follows we will write Hh for a space of har-
monic vectorfields and will take for granted that a basis {h1, . . . ,hq} of Hh has been
computed.

Summing up, we face the following abstract discrete eigenvalue problem: Seek
uh ∈ Vh such that

a(uh,vh) = λ (uh,vh)0 ∀vh ∈ Vh ,(2.6)

where a(·, ·) stands for the positive semidefinite bilinear form from (2.1) or (2.2). We
associate operators Ah : Vh �→ V ′

h and Mh : Vh �→ V ′
h with the bilinear forms in

(2.6), which converts it into an operator equation

Ahuh = λMhuh .(2.7)

The basis of Vh dual to the set of d.o.f. is called the nodal basis {bι}ι∈J , with J
a suitable index set. The basis functions are locally supported and satisfy

‖bι‖0 ≤ C diam supp(bι) ‖bι‖A , ι ∈ J ,(2.8)

with ‖·‖A the energy-seminorm induced by a(·, ·). Given the nodal basis, (2.7) can
also be read as a matrix equation, Ah being the stiffness matrix and Mh the mass
matrix, which are both large and sparse.

We follow the convention that functions will be given Roman symbols, whereas
Greek letters are used for functionals. Those related to the base space Vh will be
given bold tokens, whereas entities from the potential space Sh are printed in plain
style.

3. PPINVIT. Standard inverse iteration (without shift) for an eigenvalue prob-
lem Ahuh = λMhuh with symmetric positive definite operators Ah : Vh �→ V ′

h,
Mh := Vh �→ V ′

h computes a new iterate xnew
h ∈ Vh from the old xh ∈ Vh through

yh = κA−1
h Mhx

old
h , xnew

h := yh/ ‖yh‖0
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for some κ �= 0. First, observe that the choice of κ is immaterial. Therefore, we may
set κ = r(xh), where

r(xh) =
〈Ahxh,xh〉
〈Mhxh,xh〉(3.1)

denotes the Rayleigh quotient and 〈·, ·〉 the duality pairing. This choice of κ has the
effect that yh − xh converges to zero when r(xh) approaches the smallest eigenvalue.
Thus we recover the typical situation, where a correction is determined by solving
a linear system with a small residual as its right-hand side. This paves the way for
the application of a preconditioner Bh : V ′

h �→ Vh, an approximate inverse of Ah, to
compute yh. We arrive at the update formula

yh = xh −Bh(Ahxh − r(xh)Mhxh), xnew
h := yh/ ‖yh‖0 ,(3.2)

which is the basic building block for the algorithm of PINVIT [61]. The iterates will
converge linearly to an eigenvector belonging to the smallest eigenvalue. The theoret-
ically possible but unlikely case that PINVIT gets stuck in a higher eigenvalue does
not occur in practice due to rounding errors. If an invariant subspace corresponding
to the s smallest eigenvalues is desired, we can resort to the subspace variant. After a
Rayleigh–Ritz projection, it updates each of the s Ritz vectors x1

h, . . . ,x
s
h according

to (3.2) with r(xh) replaced by the Ritz values [20,59].

Let us return to the actual setting, in which Ah is only positive semidefinite. Then
it is natural to demand that yh is contained in the L2(Ω)-orthogonal complement of
Ker(Ah), as this is satisfied for any eigenvector belonging to a nonzero eigenvalue.
In other words, the (exact) inverse iteration should be based on the pseudoinverse

A†
h : V ′

h �→ Vh. Then xh will converge to an eigenvector corresponding to λ1 as
long as the starting vector (for the case of exact arithmetic) is not orthogonal to that
eigenvector.

The pseudoinverse A† is elusive and has to be approximated. We suggest to do
so by means of a plain multigrid method. It relies on a hierarchy of nested meshes
T0 ≺ T1 ≺ · · · ≺ TL := Th and the corresponding finite element spaces V0 ⊂ V1 ⊂
· · · ⊂ VL := Vh. The natural way to create such meshes is through successive
refinement of an initial rather coarse mesh T0, as described in [6, 11] for tetrahedral
meshes. The refinement strategies make sure that the shape regularity of T0 is almost
preserved for all finer meshes.

We instantly get a sequence of operators Al : V l �→ V ′
l generated by the bilinear

form a(·, ·) on V l. The embedding of the spaces V l−1 ⊂ V l spawns the canonical
prolongation operators Il : V l−1 �→ V l, l = 1, . . . , L. Their adjoints I∗l : V ′

l �→ V ′
l−1

are known as restrictions [40, sect. 3.6]. These operators are purely local and cheaply
implemented [43].

The definition of the symmetric multigrid preconditioner is based on the recursive
algorithm sketched in Figure 1. There RTl is defined by

〈
ρl, R

T
l φl

〉
= 〈φl, Rlρl〉,

ρl,φl ∈ V ′
l. Based on the algorithm of Figure 1 the application of the multigrid

preconditioner Bh : Vh �→ V ′
h can be realized as follows:

ch := Bhρh ⇐⇒ ch := 0; mgcycle(L, ch,ρh) .(3.3)

The operators Rl : V ′
l �→ V l occurring in the algorithm are conventional smoothing

operators on level l, l = 1, . . . , L. We will consider only point smoothers of Jacobi- or
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mgcycle< A > (int l,reference ul ∈ V l, const ρl ∈ V ′
l)

{
if(l == 0) { u0 = A†

0ρ0 }
else {

// Presmoothing
for(int i = 0 ; i < µ1 ; + + i) { ul ← ul +Rl(ρl −Alul) }
// Coarse grid correction
σl := ρl −Ahul; ρl−1 := I∗l σl; cl−1 := 0 ∈ V l−1

for(int i = 0 ; i < ν ; + + i) { mgcycle< A >(l − 1,cl−1,ρl−1) }
ul ← ul + Ilcl−1

// Postsmoothing
for(int i = 0 ; i < µ2 ; + + i) { ul ← ul +RTl (ρl −Alul) }
}
}

Fig. 1. Multigrid algorithm defining the preconditioner Bh. The parameters µ1, µ2, ν ∈ N

define the type of the cycle. For ν = 1 we get a V (µ1, µ2)-cycle and for ν = 2 a W (µ1, µ2)-cycle.

Gauß–Seidel-type. For the latter, one sweep on level l, l = 1, . . . , L, with initial guess
ul ∈ V l and right-hand side ρl ∈ V ′

l reads

foreach(ι ∈ Jl) { ul ← ul +
〈ρl,ul〉
a(bι,bι)

· bι } .

Though Ah is singular, relaxation will go smoothly, as (2.8) guarantees a(bι,bι) >
0. However, bι does not exactly belong to Ker(Al)

⊥. Thus, the action of Bh will
invariably introduce components in Ker(Ah) into the iterates. Eventually the iterates
might tumble into the kernel.

To prevent this, we have to weed out the kernel contributions as soon as they are
introduced. Formally, this can be done by projecting yh from (3.2) onto Ker(Ah)

⊥.
Fortunately, if Ω is contractible, the representation of Ker(Ah) through discrete po-
tentials according to Ker(Ah) = GhSh enables us to express the L2(Ω)-orthogonal
projection Ph : V �→ Ker(A)⊥ through

Ph := Id−GhT †
hG

∗
hMh ,(3.4)

where Th : Sh �→ S ′h is the operator associated with the bilinear form

d : S × S �→ R, d(uh, vh) = (Ghuh, Ghvh)0 , uh, vh ∈ Sh .(3.5)

Yet, the exact computation of T †
hρh for some ρh ∈ S ′h is hardly feasible. Just recall

that in the case of the eigenvalue problem inH(curl; Ω) the operator Th is the discrete
Laplacian, i.e., in general described by a huge sparse stiffness matrix. Therefore, we
cannot help using an approximate pseudoinverse also in this case. A multigrid scheme
analogous to the one outlined in Figure 1 comes in handy, this time to be conducted in
the potential space with the operators Al replaced by their counterparts Tl : Sl �→ S ′l .
This will yield an approximate projection P̃h

P̃h := Id−GhChG∗
hMh ,(3.6)

where Ch stands for the approximate (pseudo-)inverse of Th furnished by the multigrid
cycle. Reassuringly, we do not have to worry about pollution in Ker(Gh) this time
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update(reference xh ∈ Vh,κ ∈ R)
{

project(xh)
φh := Ahxh ; ψh :=Mhxh
ρh := φh − κ ·ψh
ch := 0 ∈ Vh

mgcycle< A >(L,ch,ρh)
xh ← xh − ch
project(xh)
xh ← xh/|xh|
}

project(reference xh ∈ Vh)
{

// Treat harmonic vectorfields
for(int i = 1; i ≤ q; + + i)

{ xh ← xh −
(
h̃i,xh

)
0
· h̃i }

ηh :=Mhxh
φh := G∗

hηh
ch = 0 ∈ Sh
mgcycle< T >(L,ch,φh)
xh ← xh −Ghch}

Fig. 2. Update procedure for PPINVIT.

because in (3.4) the operator Gh is applied to the result, suppressing any kernel
component.

If we have to take into account discrete harmonic vectorfields in Hh := Span {h1,
. . . ,hq}, their basis should be approximately orthogonalized to GhSh. This can be
done once and for all before the actual eigenvalue computations, utilizing a few steps
of the approximate multigrid projection P̃h. For the sake of efficiency, a nested
iteration approach should be employed. Eventually, the basis functions should be
L2(Ω)-orthonormalized to each other by solving a small linear system of equations. If

h̃1, . . . , h̃q are the functions thus obtained, H̃h := Span{h̃1, . . . , h̃q} will be another
suitable space of discrete harmonic vectorfields. Given this preprocessing, orthogo-
nality to H̃h can be easily enforced.

The final algorithm implementing the inexact projection is given in Figure 2
(right). We point out that Gh is a local operator, too, whose matrix representation
can be derived from the embedding GhSh ⊂ Vh [43, sect. 6]. Let us elucidate this
for edge elements: Assuming nodal bases of Vh and Sh the evaluation of Gh boils
down to simply distributing the nodal values from vertices (to which d.o.f. of Sh are
associated) to edges, taking into account their orientations by means of weights +1
or −1.

In the end, incorporating the total action of project into P̃h, we get the following
update formula for an approximate eigenvector:

yh = P̃h(Id−Bh(Ah − κMh))P̃hxh, xnew
h = yh/ ‖yh‖0 .(3.7)

Cast into an algorithm, this yields the procedure update displayed in Figure 2 (left).
It is hazardous to replace κ in (3.7) by the plain Rayleigh quotient (3.1) because

significant kernel components might remain after the inexact projection. If we set
κ = r(xh), we might encounter κ� λ though Ahxh = λMhPhxh; i.e., the components
of xh in Ker(Ah)

⊥ already provide the desired eigenvector. Guided by the idea that
the scheme should come close to inverse iteration in the complement Ker(Ah)

⊥ we
should choose κ = r⊥(xh) = 〈Ahxh,xh〉 / (Phxh, Phxh)L2(Ω). In practice, we are
denied this option as Phxh is not available. However, we still want a replacement for
r⊥ that is insensitive to kernel components. A promising candidate is the “two-step
Rayleigh quotient”

rQ(x) =

〈
AhM

−1
h Ahxh,xh

〉
〈Ahxh,xh〉 ,(3.8)
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ppinvit step (reference (θ1, . . . , θs)
T ∈ R

s, reference (x1
h, . . . ,x

s
h) ∈ (Vh)

s)
{

// Ritz-projection
for(i = 1 ; i ≤ s ; + + i) {
φih := Ahx

i
h; zih = λix

i
h; cgm < Mh > (zih,φ

i
h)

aii :=
〈
φih, z

i
h

〉
; mii :=

〈
φih,x

i
h

〉
for(j = 1 ; j < i ; + + i) { aij = aji :=

〈
φjh, z

i
h

〉
; mij = mji :=

〈
φjh,x

i
h

〉
}

} // Rayleigh–Ritz procedure
As := (aij) ∈ R

s,s; Ms := (mij) ∈ R
s,s;

Find Y ∈ R
s,s and Ritz values Θ = diag(θ1, . . . , θs) such that AsY = MsYΘ

// Ritz vectors
(x1
h, . . . ,x

s
h)← (x1

h, . . . ,x
s
h) · Y

// Approximate projected inverse iteration
for(i = 1 ; i ≤ s ; + + i) { update(xih, θi) }
}

Fig. 3. One step of the subspace variant of the algorithm for PPINVIT. cgm < Mh > (zh,Œh)
refers to m ∈ N CG-steps for the solution of Mhzh = Œh.

with rQ(x) ≥ r⊥(xh) ≥ r(xh). Obviously, it yields an eigenvalue if we have already
hit an eigenvector in Ker(Ah)

⊥. Two issues arise, nevertheless: First, there is a risk
of breakdown if Ahxh = 0. This means that the current approximate eigenvector lies
in Ker(Ah), which hints at inadequate approximate projections. A way to detect and
cure this condition will be discussed in section 5. The second problem is that the
evaluation of (3.8) entails the solution of a linear system Mhzh = Ahxh for the mass
matrix Mh. As Mh is well conditioned unless some elements are badly distorted, a
few steps of an iterative method (CG,Gauß–Seidel) will usually give a reasonable ap-
proximate solution. Moreover, if (λ,xh) is already close to an eigenvalue/eigenvector
pair, λxh is an excellent initial guess.

With all building blocks in place, we can now state the crucial update step of
the algorithm for the computation of the s, s ∈ N, smallest nonzero eigenvalues and
corresponding eigenvectors of (2.7). Its details are given in Figure 3. The proce-
dure ppinvit step is meant to improve on approximations θi and xih, i = 1, . . . , s, for
eigenvalues and eigenvectors.

The discussion of termination criteria is postponed until section 5. Initial guesses
for the eigenvectors can easily be obtained through nested iteration by prolongating
approximate eigenfunction from coarser grids.

Remark. For positive definite operators the Rayleigh–Ritz method is often applied
to a modified/enlarged subspace (consisting of the actual subspace, the actual search
directions, and possibly the old iterates). This is known to improve convergence [48,49]
if Ah > 0. Yet, this trick is not advisable for the semidefinite problem because a
massive amplification of kernel components might occur.

4. Convergence. The theoretical examination of the algorithm starts with the
L2(Ω)-orthogonal decomposition and dual polar decomposition

Vh = X h ⊗Zh , Zh := Ker(Ah), V ′
h = X ′

h ⊗Z ′
h .(4.1)
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With respect to the splittings (4.1) the operators can be written in block form. For a
symmetric preconditioner it reads

Bh =

(
B⊥⊥ B0⊥
BT0⊥ B00

)
: X ′

h ⊗Z ′
h �→ X h ⊗Zh ,(4.2)

and for the other operators

Ah =

(
A⊥ 0
0 0

)
, Mh =

(
M⊥ 0
0 M0

)
, A†

h =

(
A−1

⊥ 0
0 0

)
P̃h =

(
Id⊥ 0
0 P0

)
.

These formulas are immediate from the definition of the operators and the properties
of the splittings. Be aware that B0⊥ �= 0 causes the pollution by kernel components,
and P0 �= 0 hints at an inexact projection.

Using AhA
†
h +Q∗

h = Id∗h, where Qh : Vh �→ Zh is the L2(Ω)-orthogonal projec-
tion, we obtain from (3.7) with κ = rQ(xh)

yh = P̃h

(
(Ih −BhAh)(Ih − κA†

hMh) + κBhQ
∗
hMh + κA†

hMh

)
P̃hxh .

Splitting yh = y0 + y⊥, xh = x0 + x⊥, x0,y0 ∈ Zh, y
⊥,x⊥ ∈ X h and plugging in

the block forms of the operators leads to

(
y⊥ − zh

y0

)
=

(
Id⊥ 0
0 P0

)((
Id⊥−B⊥⊥A⊥ 0
−BT0⊥A⊥ Id0

)(
Id⊥− κA−1

⊥ M⊥ 0
0 Id0

)

+

(
0 κB0⊥M0

0 κB00M0

))(
Id⊥ 0
0 P0

)(
x⊥

x0

)

with zh := κA−1
⊥ M⊥x⊥. This results in a kind of error propagation equation

(
y⊥ − zh

y0

)
=

(
Id⊥ −B⊥⊥A⊥ κB0⊥M0P0

−P0B
T
0⊥A⊥ P0(Id0 + κB00M0)P0

)(
x⊥ − zh

x0

)
.(4.3)

Note that (zh, 0)
T is what an exact inverse iteration for the pseudoinverse would give

us before scaling. Thus (4.3) reflects how much PPINVIT differs from an exact inverse
iteration. Next, we aim at quantitative estimates of this deviation. To this end we
seek bounds for norms of the block-operators in (4.3).

Various norms need to be considered for operators Xh : Vh �→ Vh:

‖Xh‖0→0 := sup
vh∈Vh

‖Xhvh‖0
‖vh‖0

, ‖Xh‖Z→0 := sup
vh∈Zh

‖Xhvh‖0
‖vh‖0

,

‖Xh‖A→A := sup
vh∈Vh

‖Xhvh‖A
‖vh‖A

, ‖Xh‖A→0 := sup
vh∈Vh

‖Xhvh‖0
‖vh‖A

,

‖Xh‖Z→A := sup
vh∈Zh

‖Xhvh‖A
‖vh‖0

.

In order to bound the operator norm ‖I −B⊥⊥A⊥‖A→A we remember that ‖·‖A is
the energy-seminorm in H(curl; Ω) and H(div; Ω), respectively. In other words,
this norm agrees with the convergence rate of the multigrid method in the energy-
seminorm. In [41, 43, 44] it was shown that this convergence rate is bounded away
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from 1 independently of the number L of grid levels involved in the multigrid scheme.
This justifies the assumption

‖Id⊥ −B⊥⊥A⊥‖A→A ≤ γ < 1 .(A1)

In fact, numerical experiments give evidence that we can expect γ to be smaller than
0.5, at worst [43].

Next, we have to gauge the impact of the inexact projection. Again, we can rely
on theoretical results and practical experience with multigrid methods to justify

‖Gh(Idh − ChTh)uh‖0 ≤ β ‖Ghuh‖0 ∀uh ∈ Sh(A2)

for β < 1 uniformly in L. Note that β is the convergence rate of the iterative solver
in potential space. The practical range for β will be the same as for γ. From (A2)
and Th = G∗

hMhGh we conclude

λmax(Gh(T
†
h − Ch)G∗

hMh) = λmax(G
∗
hMhGh(T

†
h − Ch)) = λmax(Idh − ThCh) = β .

Because of (Idh −GhT †
hG

∗
hMh)x

0
h = 0 for x0

h ∈ Zh, this teaches us that∥∥P0x
0
h

∥∥
0
=
∥∥x0

h −GhChG∗
hMhx

0
h

∥∥
0

≤
∥∥∥(Idh −GhT †

hG
∗
hMh +Gh(T

†
h − Ch)G∗

hMh)x
0
h

∥∥∥
0

≤
∥∥∥Gh(T †

h − Ch)G∗
hMhx

0
h

∥∥∥
0
≤ β

∥∥x0
h

∥∥
0
.

(4.4)

The remaining terms involving the multigrid preconditioner will be tackled under the
restrictive assumption of uniform refinement creating a quasi-uniform hierarchy of
meshes. Hence, we have inverse estimates at our disposal. In addition, we take for
granted a geometric decrease of the meshwidths and symmetric smoothing operators,
i.e., Rh = RTh . Please note that these assumptions are needed only for the sake of
theoretical treatment.

Under the above circumstances, the symmetric bilinear form sl : V l × V l �→ R

that defines the smoother Rl via

sl(Rlφl,vl) = φl(vl) ∀vl ∈ V l, φl ∈ V ′
l

fulfills

Ch−2
l (ul,ul)0 ≤ s(ul,ul) ≤ Ch−2

l (ul,ul)0 ∀ul ∈ V l .

For the point smoothers that we have in mind, this is a consequence of (2.8). In par-
ticular, s(·, ·) turns out to be positive definite. Then the Cauchy–Schwarz inequality
gives for x0

l ∈ Z l

∥∥RlMlx
0
l

∥∥2

0
≤ Ch2

l s(RlMlx
0
l , RlMlx

0
l ) = Ch2

l sup
wl∈Vl

s(RlMlx
0
l ,wl)

2

s(wl,wl)

≤ Ch4
l sup

wl∈Vl

〈
Mlx

0
l ,wl

〉2
‖wl‖20

≤ Ch4
l

∥∥x0
l

∥∥2

0
,

from which we infer

‖RlMl‖Z→0 ≤ Ch2
l and ‖RlMl‖Z→A ≤ Chl .(4.5)
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The latter estimate is a consequence of the inverse inequalities (2.3) that involve

a(ul,ul) ≤ Ch−2
l ‖ul‖20 .(4.6)

The same arguments reveal

‖RlAlxl‖20 ≤ Ch2
l s(RlAlxl, RlAlxl) = Ch2

l sup
wl∈Vl

s(RlAlxl,wl)
2

s(wl,wl)

≤ Ch4
l sup

wl∈X l

〈Alxl,wl〉2
‖wl‖20

≤ Ch2
l ‖xl‖2A .

The inverse inequality in V l is concealed in the final estimate. Eventually,

‖RlAl‖A→0 ≤ Chl and ‖RlAl‖A→A ≤ C .(4.7)

Now we are in a position to examine the full multigrid cycle. For the sake of simplicity
the analysis is confined to a V(1,1)-cycle.

Theorem 4.1. Assume a hierarchy of shape-regular, quasi-uniform meshes with
geometrically decreasing meshwidths. In addition, the smoothers have to be symmet-
ric and are to provide convergent linear iterations in the ‖·‖A-seminorm. Then the
preconditioners Bl spawned by V(1, 1)-cycles satisfy

‖BlAl‖A→0 ≤ KA, ‖BlMl‖Z→0 ≤ K0, ‖BlMl‖Z→A ≤ K⊥ ,

with constants KA > 0, K0 > 0, and K⊥ > 0 that depend on the shape regularity of
the meshes T0, . . . , TL, but not on l.

Proof. The recursive nature of the multigrid algorithm suggests that we study
two subsequent levels l and l − 1. For ease of notation, we will use a subscript h to
refer to level l (fine grid), and H will tag entities associated with level l − 1 (coarse
grid).

We retrace the single steps of the algorithm of Figure 1 and start with ρh := Ahxh
for some xh ∈ Vh. Presmoothing takes it to wh := RhAhxh since a zero initial
guess has to be used. Afterwards, the coarse grid correction will result in cH :=
BHI

∗
hAh(xh −wh). Then, with PHh : Vh �→ XH denoting the a(·, ·)-orthogonal pro-

jection, we infer from I∗hAh = AHP
H
h that cH = BHAHP

H
h (Idh −RhAh)xh . As the

multigrid method is supposed to converge in the ‖·‖A-seminorm, ‖IdH −BHAH‖A→A <
1 is guaranteed, so that

‖BHAH‖A→A ≤ 2 .(4.8)

The smoother alone also provides a convergent iteration, i.e., ‖Idh −RhAh‖A→A <
1⇒ ‖RhAh‖A→A ≤ 2, such that

‖cH‖0 ≤ ‖BHAH‖A→0 ‖xh‖A , ‖cH‖A ≤ 2 ‖xh‖A .

With uh := wh + IhcH , which, due to (4.7), fulfills

‖uh‖0 ≤ (‖BHAH‖A→0 + Ch) ‖x‖A , ‖uh‖A ≤ 4 ‖xh‖A ,

we can express the result of postsmoothing as

BhAhxh = uh +Rh(Ahxh −Ahuh) = wh + uh −RhAhuh .
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Again, we invoke (4.7) and see

‖BhAhxh‖0 ≤ (‖BHAH‖A→0 + Ch) ‖x‖A+ Ch ‖uh‖A ≤ (‖BHAH‖A→0+ Ch) ‖x‖A .

Consequently, ‖BhAh‖A→0 ≤ ‖BHAH‖A→0+Ch. Taking into account that B0 = A†
0,

i.e., ‖B0A0‖A→0 = 0, and the geometric decrease of the meshwidths, this ensures
‖BhAh‖A→0 ≤ KA, for KA > 0 independent of the level.

Analogous considerations can be carried out with ρh :=Mhx
0
h for some x0

h ∈ Zh.
Presmoothing yields wh := Rhρh = RhMhx

0
h, and after the cycle on the coarse grid

we end up with

cH = c1 + c2 := BHI
∗
hMhx

0
h +BHI

∗
hAhwh .(4.9)

As I∗hMh = MHQ
H
h , where QHh : Vh �→ VH is the L2(Ω)-orthogonal projection, we

get for the first contribution to cH

‖c1‖0 ≤ ‖BHMH‖Z→0

∥∥x0
h

∥∥
0
, ‖c1‖A ≤ ‖BHMH‖Z→A

∥∥x0
h

∥∥
0
.(4.10)

Similarly, from I∗hAh = AHP
H
h , (4.5), and (4.8), it follows that

‖c2‖0 ≤
∥∥BHAHPHh wh

∥∥
0
≤ ‖BHAH‖A→0 ‖wh‖A ≤ Ch ‖BHAH‖A→0

∥∥x0
h

∥∥
0
,

‖c2‖A ≤
∥∥BHAHPHh wh

∥∥
A
≤ ‖BHAH‖A→A ‖wh‖A ≤ Ch

∥∥x0
h

∥∥
0
.

Combining this with (4.9), (4.10), and the result of the first part of the proof yields

‖cH‖0 ≤ (‖BHMH‖Z→0 + ChKA)
∥∥x0

h

∥∥
0
,(4.11)

‖cH‖A ≤ (‖BHMH‖Z→A + Ch)
∥∥x0

h

∥∥
0
.(4.12)

Next, we consider the coarse grid correction uh = wh + IhcH . As the prolongation
is an identity mapping in disguise, the following estimates are straightforward from
(4.11), (4.12), and (4.5):

‖uh‖0 ≤
(‖BHMH‖Z→0 + ChKA + Ch2

) ∥∥x0
h

∥∥
0
,(4.13)

‖uh‖A ≤ (‖BHMH‖Z→A + Ch)
∥∥x0

h

∥∥
0
.(4.14)

The postsmoothing results in BhMhx
0
h = uh +wh −RhAhuh . By (4.7) and (4.8) we

know

‖RhAhuh‖0 ≤ Ch ‖uh‖A , ‖RhAhuh‖A ≤ C ‖uh‖A .(4.15)

First, appealing to (4.14), (4.5), and the assumed ‖·‖A-convergence of the smoothing
iterations, we find

∥∥BhMhx
0
h

∥∥
A
≤ (‖BHMH‖Z→A + Ch)

∥∥x0
h

∥∥
0
.

On the coarsest grid l = 0, we have B00M0 = 0 and B0⊥M0 = 0. Then the geometric
decrease of the meshwidth leads to the assertion of the lemma for ‖BlMl‖Z→A. The
same argument can be applied to ‖BlMl‖Z→0 because from (4.13), (4.5), (4.15), and
(4.14) we can infer

∥∥BhMhx
0
h

∥∥
0
≤ (‖BHMH‖Z→0 + Ch(KA +K⊥) + Ch2

) ∥∥x0
h

∥∥
0
.
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Now, we can convert (4.3) into the estimates

(∥∥y⊥
h − κzh

∥∥
A∥∥y0

h

∥∥
0

)
≤
(

γ κK⊥β
KAβ β2(1 + κK0)

)(∥∥x⊥
h − κzh

∥∥
A∥∥x0

h

∥∥
0

)
.(4.16)

All the constants are basically independent of the meshwidth and the number L of
levels involved in the multigrid solvers. A quantitative conclusion can be rigorously
drawn from (4.16) (see [45] for the technical proof).

Theorem 4.2. If κ := κQ < κ∗ for all steps of the iteration and the initial iterate
xh satisfies

∥∥x0
h

∥∥
0

‖xh‖A
≤ (1− γ)

2κ∗K⊥
,

then this will hold for all other iterates, provided that β is below a threshold depending
on KA,K⊥,K0, and γ only.

This guarantees that the iterates cannot plunge into the kernel if a sufficient
damping of kernel components is achieved by the projection.

Heuristic insights into the significance of (4.16) can be gained from the theory of
PINVIT in the positive definite case [50, 61, 62]. If, with κ = r⊥, for some positive
Γ < 1

∥∥y⊥
h − κA−1

⊥ M⊥x⊥
h

∥∥
A
≤ Γ

∥∥x⊥
h − κA−1

⊥ M⊥x⊥
h

∥∥
A
,(4.17)

the PINVIT convergence theory in [50] gives a simple sharp estimate for the Rayleigh
quotient r⊥ of the new iterate y⊥

h (cf. Theorem 1 in [50]), demonstrating that PINVIT
converges at least linearly to the eigenvalue λ1.

In the semidefinite case the theory applies to PINVIT in Ker(A)⊥ only for the
unrealistic choice of a perfect projection, i.e., β = 0. Such an exact projection is
prohibitively expensive. Hence, we prefer to deal with moderately small β > 0.
Consequently, we have to accept that the iterates in Ker(A)⊥ will inevitably be per-
turbed by the term κB0⊥M0P0x

0 in (4.3). Nevertheless, (4.17) may hold with Γ < 1
throughout the iteration. Then convergence according to the PINVIT theory is guar-
anteed (apart from the minor modification of replacing r⊥ by rQ). Unfortunately,
if
∥∥x⊥

h − κA−1
⊥ M⊥x⊥

h

∥∥
A
� ∥∥x0

h

∥∥
0
the constant in (4.17) may blow up. However,

(4.16) teaches that in this case a significant reduction of the kernel component will
be achieved, provided that β is sufficiently small. Hence, Γ > 1 might happen in a
single step, but in the next step (4.17) is likely to hold with a rather small Γ. In
other words, for a β � 1 the kernel components are damped out in the course of the
iteration. Therefore, the perturbations become more and more insignificant. This
effect is elusive, and we have not succeeded in giving a rigorous analysis.

Let us study as a low-dimensional model system the eigenvalue problem for Ah =
diag(2, 5, 8, 0) and Mh = Id with γ = 0.5. Then the preconditioner Bh is a 4 × 4
matrix. We take bmax as the bound for the absolute value of B00 and for the A-norm
of B0⊥.1 Figure 4 illustrates the relative damping of kernel components by PPINVIT.
Therefore, the maximal ratio |x0

h|/|xh| after 10 steps of PPINVIT using the two-step

1Note that the low dimension of the model problem is motivated by the fact that PINVIT takes
its extremal convergence in a two-dimensional space which is spanned by those eigenvectors whose
corresponding eigenvalues enclose the Rayleigh quotient of the actual iterate. Moreover, as a result
of Lemma 3.1 in [61] the assumption that all eigenvalues are of the algebraic multiplicity 1 appears
nonrestrictive.
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Fig. 4. Relative damping of the kernel component for the model problem.

Rayleigh quotient rQ is displayed in a contour plot for β ∈ [0, 1] and bmax ∈ [0, 1].
The maximal ratio has been determined for each point of the underlying 50× 50 grid
among 150000 combinations of random preconditioners and random start vectors
with a fixed initial kernel component. For β < 0.2 the kernel is damped out very well
independently of the choice of bmax. We conclude that a sufficiently good projection
can weed out the kernel components after a modest number of iterations.

The same conclusion can be drawn from a second experiment: We recorded the
components of those iterates that display the poorest convergence of rQ in the first and
fourth step of PPINVITT (Figure 5). For 107 combinations of random preconditioners
(γ = 0.5, β = 0.25, bmax = 0.2) the components are plotted against the two-step
Rayleigh quotients rQ of those iterates. In the first step of PPINVIT the kernel
components appear as the dominating part. In the fourth step we identify the ith
and i + 1th component as the prevailing ones if rQ ∈ [λi, λi+1]. The kernel has all
but disappeared. Thus, Figure 5 highlights a key trait of PPINVIT: Convergence is
brought about by the subtle interaction of multiple steps.

5. Projection control and termination criteria. The theoretical considera-
tions highlight the importance of a good projection: It goes without saying that the
method will fail if the projection is too weak to reign in kernel components. Taking
the cue from Theorem 4.2, we aim to force the ratio ‖x0

h‖0 : ‖xh‖A below a threshold
δ > 0 for all iterates.

From the properties of the inexact projection P̃h and (4.4) we learn that

β

1− β ·
‖xh − P̃xh‖0
‖xh‖A

≤ δ =⇒ ‖P0xh‖0
‖xh‖A

≤ δ .(5.1)

Of course, good bounds for β are hard to get. We take a crude estimate based on the
decrease of the L2(Ω)-norm of the residual during a multigrid sweep. It is computed
whenever a projection is carried out, and β is chosen to be the maximum of all
estimates thus obtained. The final adaptive projection is depicted in Figure 6. There,
σ ∈]0, 1[ is a safety factor intended to prevent gross underestimation of β.
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Fig. 5. Components of those iterates xh showing poorest convergence (i.e., the smallest decrease
of the Rayleigh quotient in one PPINVIT step) for the model problem. Components in the directions
of eigenvectors to λ1, λ2, λ3, and 0 correspond to symbols (◦,×,+, �). Left: first step of PPINVIT.
Right: fourth step of PPINVIT.

project(reference xh ∈ Vh,δ > 0,σ ∈ [0, 1[)
{
for(int i = 1; i ≤ q; + + i) { xh ← xh − (h̃ixh · h̃i) }
ν := 〈Ahxh,xh〉
do {
φh := G∗

hMhxh; ch = 0 ∈ Sh
mgcycle< T >(L,ch,φh); zh := Ghch; xh ← xh − zh
ρh := φh − Thch; β := 〈φh, φh〉 / 〈ρh, ρh〉; β̄ ← max{β̄, (1− σ)β + σ}
µ :=

β̄

(1− β̄) ·
〈Mhzh, zh〉

ν
} while (µ > δ);
}
Fig. 6. Enhanced projection with adaptive control. The global variable β̄ is set to 0 initially.

Our next concern is the termination of the iteration. After the completion of the
Rayleigh–Ritz procedure (cf. Figure 3) there are on hand the Ritz values θi and the
Ritz vectors xih with

∥∥xih∥∥0
= 1, i = 1, . . . , s. The M−1

h -norm of the residual rih =

Ahx
i
h−θiMhx

i
h provides a simple residual bound [64] for the quality of the Ritz value

θi. It is guaranteed that in each interval [θi −
∥∥rih∥∥M−1

h

, θi +
∥∥rih∥∥M−1

h

] an eigenvalue

of (Ah,Mh) is contained. For disjoint intervals the θi provide s approximations to s
different eigenvalues of (Ah,Mh). In practice, the inverse of the mass matrix may be
approximated through one Gauß–Seidel step. This yields a quantity that is equivalent
to the M−1

h -norm independent of the meshwidth.
Beyond, we suggest that the ratio r/rQ of Rayleigh-quotients of approximate

eigenfunctions is used to judge whether the iteration has been successful. Only if it
is very close to 1 can the results be trusted.

Remark. It is not a moot point that δ should be reduced during the iteration as
the approximate eigenvectors get closer and closer to the exact eigenvectors. However,
we failed to find a strategy with heuristic, let alone rigorous, underpinning.
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6. Numerical experiments. For all numerical experiments covered in this sec-
tion we relied on lowest order edge/face elements on uniform Cartesian grids. Ritz
projections and eigenvalues/eigenfunctions on the coarsest grids were determined by
means of suitable LAPACK routines. All computations were carried out in double
precision arithmetic, whereas the matrices were stored in single precision format. We
computed seven eigenfunction/eigenvalue pairs in each case. Unless stated otherwise,
the eigenvalue problem (1.1) is investigated.

For the tests we resorted to a setting marked by discontinuous coefficients and a
reentrant corner, more precisely Ω :=]0, 1[3\[0, 1

3 ]
3, ΓN := Ω̄ ∩ {x1 = 1}, and

α(x) =



1 if x2 <

2
3 ,

100 if x2 ≥ 2
3 and 1

3 ≤ x1, x3 ≤ 2
3 ,

10 elsewhere .

This creates challenging conditions for multigrid methods. The uniform grid on level
l, l = 0, . . . , 5, consisted of 26·8l equal cubes. This means that for l = 5 the discretized
problems (1.1) and (1.2) feature 2599200 and 2626560 d.o.f., respectively.

Experiment 1. To begin with, we monitored the behavior of the “two-step”

Rayleigh quotients rQ from (3.8) and the M−1
l -norms

〈
M−1
l ρl,ρl

〉1/2
of the resid-

uals ρl := Alxl − rQ(xl)Mlxl of approximate eigenfunctions xl ∈ V l, l = 3, 4, 5. Of
course, M−1

l ρl could not be computed exactly but was realized by two Gauß–Seidel
(GS)-sweeps. Both quantities were tracked for 3 eigenfunctions (belonging to eigen-
values #1, #3, and #5) during 15 iterations of PPINVIT. Interpolants of solenoidal
polynomial vectorfields fi := xrmx

r
l ·3ek, {m, l, k} = {1, 2, 3}, k = i mod 3, r = idiv 3,

served as initial guesses for the ith eigenfunction, i = 1, . . . , 7. By and large, the effect
of different initial guesses quickly abates during the iterations.

Single symmetric multigrid V(1,1)-cycles with lexicographic GS-smoothers were
used both in V l and potential space. The inverse mass matrix required for the calcu-
lation of the two-step Rayleigh quotient was approximated by three steps of the pre-
conditioned conjugate gradient (PCG) method with a symmetric GS-preconditioner.

The values of rQ were considered as useful approximations of eigenvalues and
thus it makes sense to examine their relative errors with respect to “exact discrete
eigenvalues” (computed by nested iteration up to a relative error of 10−6). The results
for problem (1.1) are plotted in Figure 7.

First of all, a rather uniform decrease of the errors/residual norms takes place.
Next, we note that the M−1

l -norm of the residual permits us to assess the accuracy
of the approximate eigenvalue very well. As expected, the larger the eigenvalue the
poorer the convergence (up to a total failure to converge for the seventh eigenvalue).
One should follow the customary advice that dimension of the subspace should be
chosen somewhat larger than the number of eigenvalue one is interested in.

Experiment 2. Retaining most of the setting of the previous experiment we studied
the impact of choices of different multigrid cycles for both the update and projection
step. In Table 1 we report the rate

ρ =
(
(rQ(x

(10)
h )− λexact)/(rQ(x

(2)
h )− λexact)

) 1
8

(6.1)

of convergence of the eigenvalue approximations between the second and tenth step
of the iteration.

The effect of very accurate preconditioners/projections seems to be limited, as
predicted by the theory of PINVIT: We cannot be better than exact inverse iteration
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Fig. 7. Experiment 1: Left: Relative errors of two-step Rayleigh quotients when compared with
“exact discrete eigenvalues”. Right: Approximate M−1

l
-norms of residuals.

and improving the preconditioner has little impact if the Rayleigh quotient is already
close to the exact eigenvalue. Moreover, the rates highlight the danger of too many
smoothing steps on edge d.o.f. This will make the constants KA, K⊥, and K0 from
(4.16) soar and has to be offset by improved projection.

Experiment 3. Of course, choosing random initial guesses is foolish, in particular,
as a nested iteration approach will do much better in a multilevel environment. The
behavior of the approximate M−1

l -norms of the eigenfunction residuals during nested
iteration was recorded for the various settings. On each level l the iteration was

terminated if
〈
M−1
l ρl,ρl

〉 1
2 ≤ τ for eigenfunction #1 through #5, where τ > 0 is a

prescribed threshold.
The same multigrid cycles as before were employed. Moreover, we chose τ = 0.01

and τ = 0.1. In the latter case the evaluation of M−1
h in the computation of rQ

was based on only one symmetric GS-sweep, which is much cheaper than the three
PCG-steps used for the former case. The results can be looked at in Figure 8.

As before, the data strikingly confirm that the convergence of multigrid-PPINVIT
is independent of the depth of refinement: About the same number of iterations is
required on each level to achieve the prescribed reduction of the norm of the residuals.

Experiment 4. In experiment 3 we boldly relied on a single symmetric GS-sweep to
get an approximation for rQ. Now, we aim to investigate how different approximations
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Table 1
Experiment 2: Error reduction factors ρ for eigenvalues #1 through #7 and different choices

of cycles for approximate inverses Bh and Ch.

Cycles l #1 #2 #3 #4 #5 #6 #7

2 0.19 0.25 0.40 0.65 0.72 0.62 0.66
Bh: V(1,1) 3 0.21 0.24 0.40 0.64 0.72 0.63 0.66
Ch: V(1,1) 4 0.21 0.24 0.40 0.64 0.71 0.63 0.66

5 0.21 0.23 0.40 0.64 0.70 0.63 0.66

2 0.19 0.25 0.40 0.65 0.72 0.62 0.66
Bh: V(1,1) 3 0.21 0.24 0.40 0.64 0.72 0.63 0.66
Ch: W(2,2) 4 0.21 0.24 0.40 0.64 0.71 0.63 0.66

5 0.21 0.23 0.40 0.64 0.70 0.63 0.66

2 0.18 0.16 0.34 0.62 0.71 0.63 0.67
Bh: W(2,2) 3 0.14 0.17 0.36 0.63 0.71 0.64 0.67
Ch: V(1,1) 4 0.10 0.18 0.37 0.63 0.71 0.64 0.67

5 0.12 0.19 0.37 0.63 0.72 0.64 0.70

2 0.17 0.16 0.35 0.62 0.71 0.63 0.67
Bh: W(2,2) 3 0.14 0.17 0.36 0.63 0.71 0.64 0.67
Ch: W(2,2) 4 0.11 0.18 0.37 0.63 0.71 0.64 0.67

5 0.13 0.18 0.37 0.63 0.71 0.64 0.67

2 0.18 0.16 0.35 0.62 0.72 0.63 0.67
Bh: W(4,4) 3 0.15 0.17 0.36 0.63 0.71 0.64 0.67
Ch: V(1,1) 4 0.13 0.18 0.37 0.63 0.72 0.64 0.75

5 0.15 0.32 0.56 0.78 1.01 1.24 1.21
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Fig. 8. Experiment 3: Nested iteration, M−1
l

realized by 3 PCG-steps. Left: τ = 0.1. Right:
τ = 0.01.

ofM−1
h perform. In particular, we used either one, two, or three steps of SGS or PCG.

In any other respect the setting is just borrowed from experiment 1. The decrease of
the errors in the eigenvalue approximations according to (6.1) are listed in Table 2.
The picture is blurred, but the general message is that spending much effort on M−1

h

does not pay off in terms of asymptotic convergence rates, but can boost convergence
during the first few steps of the iteration, when eigenvalue approximations are still
poor.

Experiment 5. We repeated experiment 3 with face elements instead of edge
elements. The (level-dependent)M−1

l -norms of some residuals are plotted in Figure 9.
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Table 2
Experiment 4: Behavior of different approximations of M−5

5 on level 5, Bh: V (1, 1), Ch: V (1, 1).

M−1
l

by #1 #2 #3 #4 #5 #6 #7

Relative error after step #8 of PPINVIT
3 PCG 1.4·10−5 1.1·10−5 6.71e-04 0.012 0.033 0.033 0.10
2 PCG 1.9·10−5 1.2·10−5 0.00064 0.011 0.033 0.033 0.10
1 PCG 0.035 0.0044 0.00071 0.013 0.015 0.0074 0.039
3 SGS 2.0·10−5 1.2·10−5 0.00066 0.012 0.033 0.033 0.10
2 SGS 4.4·10−5 6.1·10−5 0.00073 0.012 0.033 0.032 0.10
1 SGS 0.0074 0.015 0.018 0.026 0.054 0.045 0.13

Decrease ρ of relative error according to (6.1)
3 PCG 0.21 0.23 0.40 0.64 0.70 0.63 0.66
2 PCG 0.22 0.21 0.38 0.61 0.70 0.63 0.66
1 PCG 0.41 0.35 0.29 0.40 0.43 0.36 0.46
3 SGS 0.20 0.19 0.36 0.57 0.65 0.61 0.63
2 SGS 0.17 0.15 0.27 0.40 0.45 0.42 0.46
1 SGS 0.19 0.21 0.22 0.24 0.28 0.26 0.29
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Fig. 9. Experiment 5: Nested iteration for face elements, M−1
h

realized by 3 PCG-steps. Left:
τ = 0.1. Right: τ = 0.01.

Qualitatively, the residual norms behave as for edge elements. If we had reported
all experiments for face elements, too, this statement would have been appropriate
for any other case.

Experiment 6. The final experiment scrutinizes whether projection control as
discussed in section 5 can really offset poor projections. To that end we used a
plain symmetric GS-sweep for Ch, which yields an outrageously bad P̃h on fine grids.
Otherwise, the algorithm of the first experiment was retained and we focused on
level 4.

Projection control with δ = 0.1, δ = 0.01, and a safety factor σ = 1
4 was enabled.

In addition, as we observed wild fluctuations of the number of GS-steps suggested
by the projection control, we imposed that this number could not shrink by more
than a factor of two between subsequent projections (zig-zag-evasion). In Figure 10
the behavior of relative errors of eigenvalues is logged. Some ratios r(xh)/rQ(xh) are
recorded in Figure 11.
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Fig. 10. Experiment 6: Projection control with δ = 0.1 (left), δ = 0.01 (right).
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Fig. 11. Experiment 6: 1 − r(xh)/rQ(xh) for different projection controls with δ = 0.1 (left),
δ = 0.01 (right).

Sufficiently tight projection control ensures convergence. However, the results
also highlight the need for an adaptive choice of δ because it seems hard to determine
in advance when δ will be sufficiently small. This experiment also hints that the ratio
of Rayleigh quotients, which is to tend to 1, can help detect ineffective projections.

Remark. In our experimental setting singularities of eigenfunctions at reentrant
edges and coefficient discontinuities can be expected. Therefore, adaptive refinement
would be advisable. It could be done along the lines of [53, 60], taking into account
the techniques of [8]. Numerical evidence hints that no deterioration of multigrid
convergence will occur on locally refined meshes [7,55]. Thus, PPINVIT will probably
not be affected much.

7. Conclusion. We presented a multigrid-preconditioned inverse iteration meth-
od for the solution of large discrete semidefinite eigenvalue problems in H(curl; Ω)
andH(div; Ω). Though a complete theoretical analysis is still missing, there is strong
numerical evidence that the method inherits the efficiency of multigrid based iterative
solution procedures. Besides a thorough theoretical understanding many issues re-
main to be examined: among others, improved adaptive projection control, detection
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of topological complications, and potential acceleration by means of preconditioned
steepest descent or various kinds of subspace enlargements and, last but not least, the
benefit of shift strategies.
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Abstract. First, we consider the problem of orthonormalizing skinny (long) matrices. We
propose an alternative orthonormalization method that computes the orthonormal basis from the
right singular vectors of a matrix. Its advantages are that (a) all operations are matrix-matrix
multiplications and thus cache efficient, (b) only one synchronization point is required in parallel
implementations, and (c) it is typically more stable than classical Gram–Schmidt (GS). Second, we
consider the problem of orthonormalizing a block of vectors against a previously orthonormal set
of vectors and among itself. We solve this problem by alternating iteratively between a phase of
GS and a phase of the new method. We provide error analysis and use it to derive bounds on how
accurately the two successive orthonormalization phases should be performed to minimize total work
performed. Our experiments confirm the favorable numerical behavior of the new method and its
effectiveness on modern parallel computers.
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1. Introduction. Computing an orthonormal basis from a given set of vectors
is a basic computation, common to most scientific applications. Often, it is also one
of the most computationally demanding procedures because the vectors are of large
dimension, and because the computation scales as the square of the number of vectors
involved. Further, among several orthonormalization techniques the ones that ensure
high accuracy are the more expensive ones.

Skinny (or long) matrices, whose row dimension far exceeds their column di-
mension, arise naturally in various scientific contexts. Examples include statistical
analysis, where there are many more observations than variables, and iterative meth-
ods that use a small subspace of vectors to span the required solutions. For a variety
of reasons, an orthonormal basis of these vectors must be computed. Traditionally,
this is obtained through the QR factorization, even though quite often the matrix R is
not of primary interest, but rather the orthonormal basis Q. The QR factorization is
computed through Householder transformations (we call this method simply QR) or
through classical Gram–Schmidt (GS) or modified Gram–Schmidt (MGS). Although
less stable numerically, GS with reorthogonalization is usually preferred to the QR
method because of better computational properties.

Yet, all of these methods have performance limitations on modern, cache based
processors and parallel computers. Their implementations are based on level 1 or
level 2 BLAS operations [8, 9, 15], which have low cache reuse. Level 3 BLAS imple-
mentations are possible, but they are not suitable for skinny matrices. On parallel
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platforms, such as the increasingly popular clusters of workstations, reduction in com-
munication and synchronization overheads has not kept up with the explosive growth
of network bandwidth and processor speed [21]. As a result, the global synchroniza-
tion required by frequent inner products does not scale with the number of processors.
A method is still needed that operates only on blocks of vectors and requires a number
of synchronizations that is independent of the size of the matrix.

In many applications, orthonormalization occurs in an incremental fashion, where
a new set of vectors (we call this internal set) is orthogonalized against a previously
orthonormal set of vectors (we call this external), and then among themselves. This
computation is typical in block Krylov methods, where the Krylov basis is expanded by
a block of vectors [11, 12]. It is also typical when certain external orthogonalization
constraints have to be applied to the vectors of an iterative method. Locking of
converged eigenvectors in eigenvalue iterative methods is such an example [19, 22].
The nature of these applications suggests that the internal set is usually a skinny
matrix with fewer vectors than the external set.

Conceptually, this problem can be viewed as an update of a QR factorization
that has already produced the orthonormal set of external vectors which should not
be modified. Computationally, however, the problem is usually tackled as a two
phase process; first, orthogonalizing the internal vectors against the external ones
(external phase), and second, orthogonalizing the internal vectors among themselves
(internal phase). For the external phase, block GS and MGS are the most competitive
choices, while for the internal phase an efficient orthonormalization procedure for
skinny matrices is needed.

Most of the previous efforts to address the above two problems considered blocks of
vectors, and used hybrids of the more scalable GS across blocks, and the more accurate
MGS within blocks [2, 14]. Performance improves, but the number of synchronization
points is still linear to the number of vectors, and BLAS level 2 kernels are still
dominant despite blocking. Interestingly, such efforts have focused on a full QR
factorization of a set of vectors, rather than on the two phase problem.

In this paper, we introduce a method based on the singular value decomposition
(SVD) that uses the right singular vectors to produce an orthonormal basis for a
given skinny matrix. The idea itself is not new, dating back at least to Poincaré,
and it is sometimes encountered in chemistry and wavelet literature [5, 6, 16, 17, 20].
However, it has not received any attention as a computationally viable orthogonal-
ization method, and to our knowledge there is no analysis of its numerical properties.
The method, which we call SVQB, uses exclusively level 3 BLAS kernels, and it has a
constant number of synchronization points. We show that it is not as accurate numer-
ically as MGS, but it is better than GS in the absence of special sparsity structure.
More interestingly, we show that more stable alternatives, such as MGS or House-
holder, are an overkill for our two phase problem. Coupling the SVQB method for
the internal phase with a block GS with reorthogonalization for the external phase
results in a method also with constant synchronization requirements.

The paper is organized as follows. First we describe the SVQB method for skinny
matrices, we analyze its numerical stability, and we confirm our theory through nu-
merical experiments and comparisons with other methods. Second, we couple SVQB
with a block GS for the two phase problem. We analyze the numerical interaction
between the two methods, and based on this theory we tune the two phases to avoid
unnecessary reorthogonalizations. Following this, we present timings from a series
of experiments on the Cray T3E, IBM SP-2, and on a cluster of SUN workstations.
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These verify that the block computations and the small number of synchronizations
help the new method achieve accurate orthogonality faster than other competitive
methods.

2. The problem(s). Let V ∈ �n×k be a set of orthonormal vectors, and
W ∈ �n×m be a set of vectors, where k + m ≤ n. In practice, we expect m < k
and m � n. When m � n, W is often referred to as a skinny matrix. The first
problem we consider is that of obtaining an orthonormal set of vectors Q such that
span(Q)=span(W ). The second problem is again to obtain an orthonormal Q such
that span([V W ])=span([V Q]) and Q ⊥ V . In both problems Q can be any orthonor-
mal basis, not necessarily from a QR factorization. In finite precision, the equality of
the spans can be relaxed, but the orthonormality requirement must remain.

The distinction between the two problems is made for computational reasons.
First, orthonormalizing skinny matrices is a problem important in itself, which allows
for efficient solutions without a QR factorization. In the presence of an external
matrix V , methods like the classical GS would orthogonalize each vector ofW against
all previous orthogonal vectors in both W and V . In that case, the difference between
the two phases is blurred. However, such algorithms allow only for level 2 BLAS
computational kernels and introduce at least O(m) number of synchronization points
on parallel computers. To improve computational performance we need to consider
W as a block (or subblocks within W ). A block GS method would orthogonalize the
block against V (and other previous subblocks in W ). In this case, the orthogonality
among the vectors within the block must be resolved at a different time in a distinct
internal phase. Finally, because V cannot be modified, distinguishing between the
problems allows non-QR factorization methods to be used for the internal phase.

For the internal phase, GS and MGS are popular QR factorization methods which
both incur the same number of arithmetic operations, they are based on level 2 BLAS
kernels, and they can be implemented in parallel with a modest number of m + 1
synchronization points [11, 24]. MGS is more numerically stable with the error in
the orthogonality of Q bounded by εκ(W ), where κ(W ) is the condition number of
W [1, 3]. Householder reflections yield a matrix Q which is orthogonal to machine
precision (ε) but require twice the arithmetic of (M)GS. In practice, for most matrices,
a second orthogonalization with GS is typically enough for producing orthogonality
to machine precision [7], and thus GS is often preferred over other methods.

In the context of the two phase problem, producing an internal set of vectors Q
with orthogonality close to machine precision is unnecessary because of the interde-
pendence of the phases. For example, external orthogonalization against V may spoil
the internal orthogonality of W , and vice versa. Therefore, this two phase problem
obviates the use of expensive but stable methods such as Householder.

3. The SVQB method. An especially interesting orthonormal basis of the
span(W ) is the one derived from the right singular vectors of W . Assume that the
vectors in W are normalized. The singular values of W are the square roots of
the eigenvalues of S = WTW , and the right singular vectors are the corresponding
eigenvectors of S. Let SU = UΛ be the eigendecomposition of S and define Q =
WUΛ−1/2. Obviously, span(Q) = span(W ) and QTQ = I. If the W vectors are
not normalized, the diagonal of S, D = diag(S), contains the squares of their norms
(Sii = WT

i Wi). Therefore, we can implicitly work with the normalized WD−1/2 by
scaling the columns and rows of S. This is inexpensive and is as numerically stable
as explicit normalization. The resulting factorization is not a QR but rather a “QB”
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factorization, where Q is orthonormal and B a full matrix. In exact arithmetic, the
algorithm for this singular vector QB factorization (which we call SVQB) follows.

Algorithm 3.1. Q = SVQB(W ).

1. S′ = WTW.
2. Scale S = D−1/2S′D−1/2, with D = diag(S′).
3. Solve SU = UΛ, for all eigenpairs.
4. Compute Q = WD−1/2UΛ−1/2.
When some of the vectors inW are linearly dependent, one or more of the eigenvalues
and their corresponding vectors in Q are zero. In finite precision, a similar effect is
caused by almost linearly dependent vectors and eigenvalues close to zero. Because
of numerical noise, such eigenvalues cannot be bounded away from zero. To prevent
normalization overflows, and to avoid an explicit computation of the norm of the
vectors Q, we set a minimum threshold for eigenvalues. If ε is the machine precision,
we insert the following two steps:

3.1. τ = ε maxi(Λii).
3.2. If Λii < τ , set Λii = τ for all i.

Other strategies for dealing with linear dependencies are also possible. For example,
we could consider only those eigenvectors with eigenvalues greater than some “safe”
threshold. The resulting basis is then smaller, but it is guaranteed to be orthonormal
and to numerically span a subspace of the original vectors. Finally, because of finite
precision arithmetic, the algorithm may have to be applied iteratively (Q(i+1) =
SVQB(Q(i))) until an orthonormal set Q is obtained.

The solution of the eigenvalue problem and the implicit normalization involve only
m × m matrices (S and U), and thus they are inexpensive. On parallel computers
these can be duplicated on each processor. The matrix-matrix multiplication for
computing S and the multiplication of W with U each contribute 2nm2 floating point
operations, which makes the algorithm twice as expensive as GS. However, these
operations are level 3 BLAS kernels and can be performed efficiently on cache based
computers. Alternatively, the matrix multiplication for computing the symmetric S
can be performed with half the operations, but level 2 BLAS kernels will have to be
used. Moreover, a parallel implementation of the SVQB method requires only one
synchronization point when computing the matrix S.

We note that our interest in the singular vectors stems only from the computa-
tional efficiency of SVQB. A standard bidiagonalization kernel for computing the SVD
of W directly could offer better numerical stability [4]. However, its cache utilization
and parallel efficiency is similar to that of QR (with Householder transformations),
without yielding the same level of machine precision orthogonality. We have not
considered such methods, as they offer no advantages over the QR method.

3.1. The Cholesky QR method. Similarly to the SVQB method, we can
derive a block QR factorization based on the Cholesky factorization. Note that if
S = WTW = RTR, where R is the Cholesky factor, Q = WR−1 defines the QR
factorization for W [11]. Although this method (denoted as CholQR) is rarely used
computationally, it has some attractive characteristics: it is a QR factorization; it is
based on a level 3 BLAS kernel and a triangular system solution; it involves only 50%
more arithmetic than GS; and it also requires one synchronization point in parallel
implementations. Researchers have noticed that it is not as stable as MGS, but it
is often more stable than GS [2, 10]. One of the problematic issues with CholQR is
that the more ill conditioned S is, the less stable the Cholesky factorization becomes.
Regularizing it effectively is not as straightforward as in the case of SVQB, where the
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smallest singular pairs can simply be left out of the computation. Finally, the cache
performance of CholQR is usually inferior to that of SVQB because of the triangular
solve.

4. Stability analysis of SVQB. For many applications, such as block Krylov
iterative methods, the orthonormality of the resulting vectors Q, not the upper tri-
angular R of the QR factorization, is of importance. For example, Krylov methods
will still make progress, albeit a slower one, if provided with a slightly different or-
thonormal set Q. Thus, as it is common in the literature, we measure stability as
the departure of the resulting Q from orthonormality rather than its backward error.
Because of its block, nonsequential nature, we expect the SVQB procedure to be less
stable than MGS. However, as we show below, it is often more stable than GS.

Theorem 4.1. Let W be a set of m linearly independent vectors of �n. Let
Q̄ be the floating point representation of the matrix computed by applying the SVQB
procedure on W . If κ(W ) is the condition number of W , then

‖I − Q̄T Q̄‖ ≤ c0 min
(
ε κ(W )2, 1

)
,

where ‖.‖ denotes the 2-norm, ε is the machine round off, and c0 is a constant de-
pending on n and m.

Proof. Let S = WTW , and let S̃ be the floating point representation of S. Then

S̃ = S + δS, with ‖δS‖ ≤ c1 ε ‖S‖.(4.1)

We can further write this as ‖δS‖ ≤ c1 ε ‖W‖2. The effect of performing scaling on
the matrix S corresponds to each vector in W having norm 1 implicitly, and, in that
case, ‖δS‖ ≤ c1 ε m.

Let Ū , with ŪT Ū = I, and Λ̄ be the computed eigenvectors and eigenvalues of
the small m×m symmetric matrix S̃. From standard backward error analysis, these
can be considered an exact eigendecomposition of a nearby matrix S̄ = Ū Λ̄ŪT . Using
relation (4.1) we can express the error in S̄ as

S̄ = S̃ + δS̃, with ‖δS̃‖ ≤ c2 ε ‖S‖+O(ε2).(4.2)

From the above, and by letting c3 = c1 + c2, the matrices S and S̄ are related by

‖S̄ − S‖ = ‖δS̃ + δS‖ ≤ c3 ε ‖S‖.(4.3)

Let λ̄min = mini Λ̄ii, and λ̄max = maxi Λ̄ii, and consider a similar notation for
eigenvalues of other matrices. Because our algorithm sets eigenvalues λ̄i that are
smaller than ελ̄max equal to this threshold, we define a diagonal matrix Λ̂ such that

Λ̂ii =

{
Λ̄ii if Λ̄ii > ελ̄max,
ελ̄max, if Λ̄ii ≤ ελ̄max.

(4.4)

Let Q̄ = Q + δQ = WŪ Λ̂−1/2 + δQ be the floating point representation of the
matrix returned by the SVQB procedure. Then, ‖δQ‖ ≤ c4 ε ‖W‖ ‖Ū‖ ‖Λ̂−1/2‖. If we
denote by λi the exact eigenvalues of S, with λmax the largest one, then ‖W‖ =

√
λmax.

Note also that ŪT Ū = I, and thus ‖Ū‖ = 1. From (4.4) we have

‖Λ̂−1‖ ≤ min

(
1

λ̄min
,

1

ελ̄max

)
.(4.5)
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Because for symmetric eigenproblems the error in the eigenvalue is bounded by the
error in the matrix, for any λ̄i we have

∣∣λ̄i − λi∣∣ ≤ ‖S̄−S‖ ≤ c3 ε ‖S‖ = c3 ε λmax.
Then, there are constants c5 and c6, such that

λ̄min = λmin + c5 ε λmax and λ̄max = λmax + c6 ε λmax.(4.6)

We note that κ(W ) =
√
κ(S) =

√
λmax/λmin, and, because ε + c6 ε

2 = O(ε), a
substitution of (4.6) into (4.5) yields

‖Λ̂−1‖ ≤ min

(
1/λmin

1 + c5 εκ(S)
,

1

ελmax

)
.(4.7)

The first term is chosen as the minimum if none of the Λ̄ii is in the order of
ελ̄max or smaller. This means that all the singular values of W ,

√
λi, must be larger

than
√
ε, because they can be represented by eigenvalues of S̄, despite the squaring.

Therefore, κ(S) < O(1/ε), and 1 + c5 εκ(S) = O(1). Thus, the bound (4.7) becomes

‖Λ̂−1‖ ≤ c7 min

(
1

λmin
,

1

ελmax

)
.(4.8)

By setting c8 = c4c7, we can give a bound for ‖δQ‖, as well as for ‖Q‖ = ‖WŪ Λ̂−1/2‖:

‖δQ‖ ≤ c8 min
(
ε κ(W ),

√
ε
)
,(4.9)

‖Q‖ ≤ c8 min
(
κ(W ), 1/

√
ε
)
.(4.10)

We emphasize that the above is not the backward error for the exact result of
SVQB but for the product of computed matrices that yields Q̄. The exact backward
error is not relevant because the orthogonality of Q̄ is of interest.

Let us consider the departure of the computed Q̄ = Q+ δQ from orthonormality:

‖I − Q̄T Q̄‖ = ‖I − Λ̂−1/2ŪTWTWŪ Λ̂−1/2 + δQTQ+QT δQ‖+O(δQ2)

≤ ‖I − Λ̂−1/2ŪTSŪ Λ̂−1/2‖+ 2‖δQ‖‖Q‖.(4.11)

From relations (4.1)–(4.4) and the orthonormality of Ū , this becomes

‖I − Q̄T Q̄‖ ≤ ‖I − Λ̂−1/2ŪT S̄Ū Λ̂−1/2 + Λ̂−1/2ŪT (δS̃ + δS)Ū Λ̂−1/2‖+ 2‖δQ‖‖Q‖
≤ ‖I − Λ̂−1/2Λ̄Λ̂−1/2‖+ ‖Λ̂−1‖‖δS̃ + δS‖+ 2‖δQ‖‖Q‖.(4.12)

From definition (4.4), the first term is zero if κ(S) < O(1/ε). Otherwise, it is equal to
max(1 − λ̄i/ελ̄max, for λ̄i ≤ ελ̄max). However, this is less than one, and in that case
the other terms are also O(1). From bounds (4.3) and (4.8)–(4.10), and by setting
c0 > c3c7 + 2c28, we obtain

‖I − Q̄T Q̄‖ ≤ c3c7 min
(
εκ(W )2, 1

)
+ 2c28 min

(
εκ(W )2, 1

)
≤ c0 min

(
ε κ(W )2, 1

)
.(4.13)

Next, we bound |κ(Q̄)−1|, thus showing that when applying SVQB iteratively, Q̄
converges fast to an orthonormal basis. We first state the following lemma (see [13]).

Lemma 4.2.
1. If ‖I −QTQ‖ ≤ α, then ‖QTQ‖ ≤ ‖Q‖2 ≤ 1 + α.
2. If ‖I −QTQ‖ ≤ α < 1, then ‖I − (QTQ)−1‖ ≤ α

1−α .
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Proposition 4.3. If ‖I − QTQ‖ ≤ α < 1, then the condition number κ(Q)
satisfies

κ(Q) ≤
√

1 + α

1− α.

Proof. By definition, κ(Q) =
√‖QTQ‖‖(QTQ)−1‖. The proof follows from

Lemma 4.2, since ‖QTQ‖ ≤ ‖Q‖2 ≤ 1 + α, and ‖(QTQ)−1‖ = ‖I − I + (QTQ)−1‖ ≤
1 + ‖I − (QTQ)−1‖ ≤ 1

1−α .
Theorem 4.4. Let W be a set of m linearly independent vectors of �n, with

condition number κ(W ). Let Q̄ be the floating point representation of the matrix
computed by applying the SVQB procedure on W . If ε is the machine round off, then

if
√
ε κ(W ) < c < 1, κ(Q̄) ≤ 1 +O(ε κ(W )2)).

Proof. If we let α = O(ε κ(W )2) < c2 < c < 1, according to Theorem 4.1,

‖I−Q̄T Q̄‖ < α, and by using Proposition 4.3, we have κ(Q̄) ≤
√

1+α
1−α ≤

√
1 + 2α

1−α ≤
1 + α

1−α . This proves the bound because, in this case, α is bounded away from
1.

The case where κ(W ) ≥ 1√
ε

cannot be bounded in the general case because

numerical error dominates. However, some intuition can be gained by considering the
structure of Q̄T Q̄ as obtained from (4.12) and the bounds (4.9)–(4.10) and (4.3):

Q̄T Q̄ = Λ̂−1/2Λ̄Λ̂−1/2 + Λ̂−1/2∆SΛ̂−1/2 + ∆Q,

where ∆S = O(ελ̄max) and ∆Q = O(1) element-wise. Note that after scaling,
Λ̂−1/2∆SΛ̂−1/2 also becomes element-wise O(1). From the definition of Λ̂, the en-
tries of the diagonal matrix Λ̂−1/2Λ̄Λ̂−1/2 are 1 for all eigenvalues above the ελ̄max

threshold, and λ̄i/(ελ̄max) = 1/(εκ(S̄)) for the rest. Thus, the eigenvalues of Q̄T Q̄
are O(1) perturbations of the these diagonal values, so the smallest eigenvalue cannot
be bounded away from zero. If we assume that the only finite precision errors occur
from the inability to represent eigenvalues of S̄ smaller than ελmax, i.e., ∆S = 0 and
∆Q = 0, then, obviously, κ(Q̄T Q̄) = εκ(S̄) < εκ(S), and thus κ(Q̄) <

√
εκ(W ).

Note that in this case the vectors of Q̄ are exactly orthogonal to each other, yet their
condition number is far from 1.

Although κ(Q̄) <
√
εκ(W ) cannot be proved in general, we have observed it in all

our numerical experiments. A plausible explanation is that O(1) perturbations after
vector scaling introduce random noise which we expect to be in linearly independent
and relatively well-conditioned directions.

4.1. Convergence comparisons. The above theorems suggest that in most
situations, applying SVQB once or twice should produce orthogonal vectors. In the
case of extremely ill-conditioned vectors, a third application of the procedure might
be necessary. This is akin to the behavior of GS with reorthogonalization [7, 13, 18],
but it is expected to be better than iterative GS without internal reorthogonalization.

If an accurate Cholesky decomposition can be computed, the CholQR procedure
should be identical to SVQB. In fact, it might be possible to prove bounds for CholQR
similar to the ones in the previous section. However, even with an accurate decom-
position, for very large condition numbers we expect CholQR to be less stable than
the eigenvalue-based SVQB method.
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Table 4.1
W = Krylov(A, 30), where A is a 2-D Laplacean of size 1089×1089, and an initial vector of all

ones. κ(W ) = 3e+ 20. However, after scaling, because of numerical error, κ(W ) becomes: 6e+ 16.

SVQB CholQR GS MGS
Iteration κ(Qu) κ(Q̄) κ(Q′

u) κ(Q̄) κ(Q̄) κ(Q̄)
1 6e+16 1e+09 4e+08 1e+09 2e+16 2e+01
2 4e+08 1e+01 4e+00 6e+01 1e+14 3e-14
3 4e+00 1+ε 1+ε 1+7e-12 8e+10 1+ε
4 – – – 1+ε 3e+06 –
5 – – – – 1+1e−03 –
6 – – – – 1+ε –

Table 4.2
W = Hilbert matrix of size(100). κ(W ) = 2e+ 19.

SVQB CholQR GS MGS
Iteration κ(Qu) κ(Q̄) κ(Q′

u) κ(Q̄) κ(Q̄) κ(Q̄)
1 2e+19 3e+11 9e+10 2e+12 2e+19 7e+02
2 9e+10 2e+03 7e+02 6e+04 4e+16 1+2e-13
3 8e+02 1+5e-11 1+2e-11 1+2e-07 2e+14 1+ε
4 1+2e-11 1+ε 1+ε 1+ε 4e+12 –
5 – – – – 4e+10 –
6 – – – – 4e+08 –
7 – – – – 2e+00 –
8 – – – – 1+ε –

Table 4.3
W = [ ones(1, 30), diag(rand(30, 1)*eps*eps*eps) ].

SVQB CholQR GS MGS
Iteration κ(Qu) κ(Q̄) κ(Q′

u) κ(Q̄) κ(Q̄) κ(Q̄)
1 2e+49 3e+41 4e+34 4e+34 2e+01 1+ε
2 4e+34 7e+25 4e+19 4e+19 1+ε –
3 4e+19 3e+11 2e+07 4e+06 – –
4 2e+07 1+1e−03 1+1e−04 1+4e−03 – –
5 1+1e−04 1+ε 1+ε 1+ε – –

To demonstrate the relative effectiveness of these methods, we apply them on three
sets of vectors and report the improvements on their condition numbers. The first set
is the 30 Krylov vectors generated from a vector of all ones and the two-dimensional
(2-D) Laplacean on a regular, finite difference, square mesh with Neumann conditions.
The dimension of the matrix is 1089, and the initial vector is not considered among
the set of 30. The second set consists of the columns of the Hilbert matrix of size
100. The third set is rather artificial, and it has been used to show the benefits
of MGS over GS [2, 13, 14]. We use the following variation, shown in MATLAB
notation: W = [ ones(1,30); diag( rand(30,1)*eps*eps*eps ) ] . All tests are
run in MATLAB on a SUN Ultra-2 workstation with ε = 2.2e−16. The condition
numbers are computed by the Matlab function cond and therefore could be inaccurate
whenever they exceed 1016. The results for these three cases are shown in Tables 4.1,
4.2, and 4.3, respectively.

We compare SVQB against CholQR, GS, and MGS by printing the condition
number κ(Q̄) of the vectors that these methods produce after each iteration. Since



A BLOCK ORTHOGONALIZATION PROCEDURE 2173

the implicit normalization in step 4 of SVQB does not guarantee normality for ill-
conditioned problems, we also print the condition number κ(Qu) of the unscaled
vectors, Qu = WŪ , and the condition number of the same vectors after explicitly
scaling them by their norms, κ(Q′

u). Note that at any iteration, κ(Qu) is equal to
κ(Q′

u) of the previous iteration. For example, after the first iteration κ(Qu) = κ(W ).
This verifies that explicit normalization is not needed. If scaling by Λ̄−1/2 does not
produce normal vectors, another iteration must be performed either way, during which
the implicit normalization of columns and rows of S in step 2 of SVQB has the same
effect as explicit normalization. In addition, explicit normalization would introduce
additional work, and, more importantly, an additional synchronization point.

The results in all tables confirm the developed theory. When the condition number
is smaller than 1/

√
ε, the reduction obeys closely the bound in Theorem 4.4. The

application of one step of SVQB reduces the condition number of a set of vectors by
at least

√
ε. This reduction is sharp for the examples in Tables 4.1 and 4.2, but if the

vectors are explicitly normalized the reduction could be larger (see Table 4.3).
As expected, the CholQR method behaves similarly to SVQB (Table 4.3). In some

cases, the orthogonality of CholQR is inferior to that of SVQB (see Table 4.2), and
thus it is possible that it takes more iterations to produce a fully orthonormal set (see
Table 4.1). This is in spite of the fact that in our implementation, we first compute
the lowest eigenvalue of WTW and shift it so that the Cholesky decomposition is
applied on a numerically positive definite matrix.

As discussed earlier, GS without reorthogonalization for each vector is not effec-
tive for large condition numbers. In such cases, GS may offer no improvement between
successive iterations (see the first GS iteration in Table 4.2), or it may require many
iterations to produce a set with a relatively small conditioner number (see Tables 4.1
and 4.2). Once this is achieved, however, one or two further iterations provide a fully
orthonormal set. An exception is the example in Table 4.3 for which GS requires
only one reorthogonalization. The reason is that GS takes advantage of the sparse
structure of the matrix, performing computations only among very small elements,
thus achieving low relative error.

MGS is clearly more stable than the rest of the methods. However, because the
departure from orthogonality for MGS is bounded by εκ(W ) [1], even for relatively
small κ(W ), a second MGS is often needed (see Tables 4.1 and 4.2). Note that the
ε κ(W )2 bound for SVQB is virtually identical to that of MGS, if κ(W ) is close to 1,
thus diminishing any advantages over SVQB.

5. The two phase problem. The above theory and examples establish that
SVQB is a competitive choice for the internal orthonormalization of the two phase
problem. If we denote as W ′ = Ortho(V,W ) any orthonormalization procedure for
the external phase, W ′ = (I − V V T )WD−1/2, where D1/2 is a diagonal matrix with
the normalizing norms of the vectors, the two phase algorithm can be described as
follows.

Algorithm 5.1. Q = Ortho-SVQB(V,W ).

1. W ′ = Ortho(V,W ).
2. Q = SVQB(W ′).

The most common choices for Ortho() are GS and MGS. Because efficiency is
important, especially when the number of vectors in V , k, is large, block GS with
some form of reorthogonalization is usually employed. As we show below, accuracy
close to machine precision is less critical because the orthogonality achieved in one
phase may not be preserved in the other.
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In finite precision, the above algorithm does not always compute an accurately
orthonormal set Q, and thus it has to be applied in an iterative fashion. To develop
an efficient iterative version of Ortho-SVQB, we must first examine the numerical
interaction between the two phases.

5.1. Numerical interplay of the phases. The reason that full orthogonality
is not always necessary in each phase is that SVQB procedure may destroy previous
orthogonality against V , and Ortho(V,W ) may destroy the orthogonality in W .

Lemma 5.1. Let W be a set of vectors with ‖V TW‖ ≤ µ ‖W‖. Let Q̄ =
SVQB(W ) be the result of the internal step of the Ortho-SVQB algorithm. Then,

‖V T Q̄‖ = O

(
(µ+ ε) min

(
κ(W ),

1√
ε

))
.

Proof. Following the notation of Theorem 4.1, let Q̄ = WŪ Λ̄−1/2 + δQ. Using
bounds (4.8) and (4.9) we have ‖V T Q̄‖ = ‖V TWŪ Λ̄−1/2+V T δQ‖ ≤ µ‖W‖‖Λ̄−1/2‖+
O(‖δQ‖) = O ((µ+ ε)min(κ(W ), 1/

√
ε)) .

The lemma states that even when W is exactly orthogonal to V , i.e., µ = 0, the
SVQB procedure at the next step may destroy that orthogonality up to a maximum
of
√
ε. For example, consider the following matrices:

V =


 0.17164335073404

0.00000000003278
−0.17164335076682


 and W =


 1 1

1 1 + 10−6

1 1


 .

A Matlab computation shows that ‖V TW‖ = 3.2e-17, and κ(W ) = 4.2e+6. After the
step Q = SVQB(W ), we observe that ‖V TQ‖ = 4e-11, which agrees with our lemma.
Therefore, it is not important to choose one of the more accurate Ortho() methods,
such as MGS, to obtain good orthogonality against V , as this may be lost later.

The Ortho() procedure in the first step of the Ortho-SVQB algorithm has an even
worse effect on the orthogonality of the W vectors.

Lemma 5.2. Let V TV = I, and W a set of normal vectors with ‖WTW −I‖ = ν,
and ‖V TW‖ = δ < 1. Let Q = Ortho(V,W ) = (W−V V TW )D−1/2 be the normalized
result of the external orthogonalization. Assume that there is no floating point error
in computing Q. Then,

‖QTQ− I‖ ≤ ν + 2δ2

1− δ2 .

Proof. If we let S = V TW , we have Dii = wTi wi − wTi V V Twi = 1 − eTi STSei.
Note that for all diagonal elements of STS, it holds that eTi S

TSei ≤ ‖STS‖ = δ2 < 1.
As a result, for all diagonal elements of D, we have Dii > 1− δ2. This holds for the
min(Dii) too, and therefore ‖D−1‖ < 1/(1 − δ2). In addition, we see that for all i,
1/Dii − 1 < δ2/(1− δ2). From the above we can compute

‖QTQ− I‖ = ‖D−1/2(WTW − I)D−1/2 +D−1 − I −D−1/2(WTV )(V TW )D−1/2‖
≤ ν‖D−1‖+ ‖D−1 − I‖+ ‖D−1‖‖STS‖
≤ ν/(1− δ2) + δ2/(1− δ2) + δ2/(1− δ2) = (ν + 2δ2)/(1− δ2).

The lemma states that even when the vectors W are orthonormal, i.e., ν = 0,
they will lose their mutual orthogonality after the Ortho() step ifW is not sufficiently
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orthogonal against V (i.e., ‖V TW‖ > √ε). In finite precision, additional orthogonality
loss is expected. The bound above is sharp within a constant. For example, consider

V =


 a

a√
1− 2a2


 and W =


 1 0

0 1
0 0


 .

Initially, WTW = I, but after Q = Ortho(V,W ), we can verify that ‖QTQ − I‖ =
a2/(1 − a2). The lemma gives a bound of 4a2/(1 − 2a2), which for small a it is four
times larger than the actual loss of orthogonality.

6. The iterative GS-SVQB algorithm. Section 5.1 suggests that GS is suf-
ficient for the external phase, so the rest of the paper focuses on the GS-SVQB algo-
rithm. Figure 6.1 shows four possible GS-SVQB implementations, based on which of
the two steps (GS or SVQB) is carried out iteratively. We choose the most appropriate
algorithm based on computational considerations and on the developed theory.

Algorithm 1:
repeat

Q(i) = GS(V,W (i−1))
W (i) = SVQB(Q(i))

until
(
W (i)TW (i) = I and W (i) ⊥ V )

Algorithm 2:
repeat

repeat Q(i) = GS(V,W (i−1))
repeat W (i) = SVQB(Q(i))

until
(
W (i)TW (i) = I and W (i) ⊥ V )

Algorithm 3:
repeat

repeat Q(i) = GS(V,W (i−1))
W (i) = SVQB(Q(i))

until
(
W (i)TW (i) = I and W (i) ⊥ V )

Algorithm 4:
repeat

Q(i) = GS(V,W (i−1))
repeat W (i) = SVQB(Q(i))

until
(
W (i)TW (i) = I and W (i) ⊥ V )

Fig. 6.1. Four possible iterative implementations of the GS-SVQB algorithm. The outer loop
is repeated until W becomes numerically orthonormal and orthogonal to V . The inner loops could
be repeated until full orthogonalization is achieved or for a specified number of steps. Our theory
suggests that Algorithm 4 is the most preferable.

First, we note that GS is expensive because the size of V is usually much larger
than that of W , so we try to minimize the number of times it is repeated. Second,
two or three applications of GS are usually sufficient to produce full orthogonality
against V . However, according to Lemma 5.1, such an orthogonality could be wasted
by as much as εκ(W ) in the SVQB step. Thus, Algorithms 2 and 3 that apply GS
repeatedly are inappropriate. Algorithm 1 also may result in wasted work when SVQB
and GS do not reach synergistic levels of accuracy.

Algorithm 4 seems the most appropriate choice. Note that iterating SVQB to
produce good orthogonality within W is justified, since at the following outer step
GS can destroy it only by O(‖V TW‖2) (Lemma 5.2). Especially if ‖V TW‖ ≤ O(

√
ε)

is obtained at the current step, orthogonality within W will be maintained fully.

6.1. Tuning the algorithm. The next step is to identify efficient and practical
conditions for terminating the outer and inner repeat loops of Algorithm 4. To avoid
unnecessary work, Lemmas 5.1 and 5.2 suggest that the two steps, GS and SVQB,
must be balanced by keeping both κ(W ) and ‖V TW‖ comparably small.

First, we seek the conditions under which the final outer iteration i does not
require SVQB applications. Because Q(i) must be orthonormal, i > 1, and Q(i) =
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GS(V,W (i−1)) must not have destroyed the internal orthogonality of W (i−1). Thus,
Lemma 5.2 implies test (6.1), which can be checked inexpensively as a GS by-product:

‖V TW (i−1)‖ < √ε.(6.1)

We also need to test whether W (i−1) was orthonormal before the GS step. Since
κ(W (i−1)) is not known yet, we use the singular values of Q(i−1) obtained in the last
SVQB. Theorem 4.1 implies that if SVQB produced an orthonormal W (i−1), then
κ(Q(i−1)) = O(1). Therefore, this condition must be tested along with (6.1):

if ‖V TW (i−1)‖ < √ε and κ(Q(i−1)) = O(1) then exit(6.2)

The outer loop should repeat if the GS procedure has not managed to orthogo-
nalize W (i−1) against V . We perform reorthogonalization according to a popular test
due to Daniel et al. [7], whenever the norm of Q(i) becomes less than 0.7 times the
norm of W (i−1). However, SVQB also can cause loss of orthogonality against V .

Assume that the inner loop of SVQB produces W (i) with κ(W (i)) > O(1). Obvi-
ously, GS at the next outer iteration will not reduce the condition number of Q(i+1)

= GS(V,W (i)). However, the next application of SVQB, W (i+1) = SVQB(Q(i+1)),
will destroy orthogonality versus V by as much as εκ(Q(i+1)) (Lemma 5.1), making a
third (i+ 2) outer iteration necessary. To avoid this, the SVQB inner loop should be
iterated to produce at least κ(W (i)) = O(1). The inner loop executes at least once,
to guarantee full orthonormality of W (i), when no second outer iteration is needed.

We summarize the above analysis into the following algorithm. The condition
number κlast is computed from the eigenvalues of the matrix S = Q(j−1)TQ(j−1) and
thus corresponds to the matrix before the application of the last SVQB. A bound on
the resulting κ(W (i)) can be inferred through Theorem 4.4, and this is what the until
condition checks. Finally, note that ‖V TW (i−1)‖ can be computed during GS.

Algorithm 6.1. Q = iGS-SVQB(V,W ) (iterative GS-SVQB method).
W (0) = W
κlast = large number
i = 1
repeat

δ = ‖V TW (i−1)‖
W (i) = GS(V,W (i−1))
if (δ <

√
ε) and (κlast = O(1))

break (skip final SVQB)
Q(0) = W (i)

j = 1
Reortho = ( (Daniel’s test) or (κ(W (i)) > O(1)) )
repeat

κlast = κ(Q(j−1))
Q(j) = SVQB(Q(j−1))
j = j + 1

until (κlast < O(1/
√
ε))

W (i) = Q(j−1)

i = i+ 1
until (Reortho = false )

7. Further optimizations. The above is a block algorithm that targets per-
formance. However, the tests it performs are pessimistic as they apply on the block
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Fig. 7.1. A practical implementation of the SVQB algorithm.

W as a whole. This may be wasteful, since individual vectors in W may become
orthogonal to V and to other vectors in W . Further reorthogonalizations should ex-
empt these vectors, performing computations on a smaller block. Fortunately, we
can perform tests on individual vectors and adjust the block dynamically, without
affecting the block structure or the number of synchronizations of the algorithm. In-
terestingly, large bounds in Lemmas 5.1 and 5.2 can be the result of only a couple
of ill-conditioned vectors. By grouping vectors based on individual tests, the bounds
still apply, only for smaller blocks, and thus provide better direction to the algorithm.

Specifically, after the GS phase and without additional computation, we can sepa-
rate those vectors that do not need reorthogonalization (good vectors) and those that
need it (bad vectors), W = [WgWb]. However, some of the good vectors may be very
close to other vectors in W . Moreover, because the SVQB phase mixes all vectors,
the identity of the good ones will disappear.

We can solve this problem inexpensively. As in the regular SVQB, we compute

S = [ SgSbg
STbg
Sb

] = [Wg Wb]
T [Wg Wb] = WTW. First we perform an eigenvalue decom-

position of Sg. This will subdivide the good group into Wg = [Qgg Qgb]. The group
Qgg consists of all the singular vectors corresponding to large singular values of Sg.
These Qgg vectors are orthogonal both to V and to each other and can be appended
to V in future iterations. Note that Qgg has at least one vector. The group Qgb
consists of all the singular vectors with small singular values, and so they may have
lost their orthogonality against V as well. Therefore, we should combine the Qgb with
the Wb vectors and apply Qb = SVQB([Qgb Wb]). Finally, the resulting Qb needs
to be orthogonalized versus Qgg. The many implementation details fall beyond the
scope of this paper. Figure 7.1 shows the conceptual steps of this algorithm.

Notice that all of the above eigenvalue decompositions, orthogonalizations, vector
groupings, and tests are performed not on the W vectors, but on m×m matrices and
their eigenvectors, with negligible computational cost. The main operation is still
S = WTW , which is BLAS 3 and incurs only one synchronization.

7.1. Variable block algorithm. When the number of vectors in W is large,
applying the SVQB method on the full block may not always be cache efficient or
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numerically stable. Typically, there is an optimal block size beyond which cache
performance decreases. In addition, the conditioning of W is bound to deteriorate
with block size. For these reasons, we want a variable block size that can be tuned
according to the machine and the problem.

Let b be the desirable block size. We partition W into p = m/b sets of vectors,
W = [W1, . . . ,Wp], and apply the iGS-SVQB on each one individually. After a Wi

subblock is made orthonormal and orthogonal to V and to previous Wj , j < i, it is
locked with V and the next Wi+1 is targeted. The algorithm follows.

Algorithm 7.1. Q = bGS-SVQB(V,W, b) (variable block iGS-SVQB method).

p = m/b
Partition W = [W1, . . . ,Wp]
Q = [ ] , Z = V
for i = 1, p

Qt = iGS-SVQB(Z,Wi)
Z = [Z,Qt]
Q = [Q,Qt]
The number of synchronization points in the bGS-SVQB algorithm is O(p), and

a larger percentage of the computation is spent on the GS procedure. For b = 1, the
algorithm reduces to the classical GS method, while for b = m the algorithm is the
iGS-SVQB method. We expect to identify a range of block sizes for which the cache
performance is optimal, while the synchronization requirements are not excessive.

8. Timing experiments. We have tested our implementation of bGS-SVQB
against a variety of orthogonalization alternatives. To provide a common comparison
framework for all methods, we use a “bGS-Method” algorithm that is identical to our
bGS-SVQB, except that a different method is used to orthogonalize the block.

The first method is the classical GS algorithm with reorthogonalization. This is
the only method whose structure differs slightly from the “bGS-Method.” For GS, it
is more efficient to orthogonalize each vector in the block at once against all V vectors
and all previously orthogonalized vectors in W . Thus, block size does not affect the
behavior of GS, and in the figures we simply refer to it as GS.

We also compare against the QR factorization with Householder reflections. The
method is denoted as bGS-QR and uses the QR implementation from the ScaLAPACK
library [4] for both single and multiprocessor platforms. Finally, we compare against
the computationally similar CholQR method. The method, denoted as bGS-CholQR,
uses the (sequential) Cholesky decomposition in the ScaLAPACK library.

All algorithms have been implemented in Fortran 90, using MPI, and run on the
Cray T3E 900 and the IBM SP2 parallel computers at NERSC National Lab, and on
a 64-node cluster of SUN Ultra 5s at the College of William and Mary. 256 MB of
memory are available on each node of all machines, while on the SP2 the nodes are
two-processor SMP nodes, but they are assigned individual MPI processes. The T3E
network is considerably faster than the SP2 and the COW networks (Power Switch
and Fast Ethernet, respectively). On the NERSC platforms we link with the MPICH
libraries and we use the machine optimized libraries for ScaLAPACK and BLAS. On
the SUN cluster, we use LAM MPI and BLAS 3/2 kernels automatically optimized
with ATLAS from the University of Tennessee [23].

Our first numerical example is an easily reproducible set of 30 Krylov vectors of
the diagonal matrix A = diag([1:n]) (in Matlab notation), and the initial vector x
= [ 1 log([2:n]) ]’, with n = 500000. We let V = ∅ and build W as the set of
normalized vectors, W =

[
x,Ax,A2x, . . . , A29x

]
. The condition number of the result-
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Fig. 8.1. Single node MFLOPS as a function of block size for the four methods. The clear
performance advantage of block methods is expected to counterbalance the increase in the number of
FLOPs. The methods orthonormalize 30 vectors of dimension 500000. Left graph depicts Cray T3E
results. Right graph depicts IBM SP2 results.

ing set W , as computed by the Matlab cond function, is 1.3892E+20. The goal is to
orthonormalize the setW as accurately as possible, through various orthogonalization
methods and block sizes: bGS-Method(V,W, b). Initially, most of the computation
is spent on the “Method,” while as more blocks get orthonormalized GS takes over,
reducing the computational differences between methods.

Figure 8.1 illustrates the single-node floating point performance (MFLOP rate)
achieved for each of the four algorithms as a function of block size, on the T3E (left
graph), and on the SP2 (right graph). As expected, the GS rate is constant regardless
of block size. The single-node performance of the bGS-QR does not improve with block
size on either machine, which points both to the ScaLAPACK implementation and to
the inherent block limitations of the QR. On the other hand, the block structure of
SVQB and CholQR allows them to outperform GS significantly, even for small blocks
of 8–10 vectors. The Cholesky back-solve implementation seems to better exploit
the architecture of the SP2 than the T3E. However, on both platforms, bGS-SVQB
improves GS performance by at least 70–80% for these small block sizes. We should
mention that the block MGS method in [14] is expected to have worse single-node
performance than GS because only one of the two phases involves BLAS 3 kernels.

Good node performance is important only if it leads to accurate and faster or-
thogonalization. All of the algorithms tested produced a final orthonormal set Q,
with ‖QTQ − I‖ = 10−13. Figure 8.2 shows that execution times of block methods
are superior to the GS method. The graphs plot execution time as a function of block
size, for three methods, and for various numbers of processors. The left graph corre-
sponds to the Cray T3E and the right one to the IBM SP2. The bGS-CholQR and
bGS-SVQB are consistently faster than GS, for any block size on the SP2, and for
block sizes of 4 or above on the T3E. It is also clear, because of the logarithmic time
scale, that the relative improvement over the GS timings persists on a large number
of processors, despite smaller local problem sizes. bGS-SVQB is 20% faster than GS
on the T3E and more than 25% faster on the SP2. Note that the good performance
of bGS-CholQR on the SP2 (35% faster than GS) does not carry over to the T3E.

Our next experiment measures the effects of synchronization as the number of
nodes increases by fixing the problem size on each processor and using a constant
block size of 6. For this test, the setW has 30 Krylov vectors generated by the matrix
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Fig. 8.2. Time versus block size for three methods and for various numbers of processors. Re-
sults obtained on the T3E (left graph) and on the IBM SP2 (right graph). Time scale is logarithmic.

of the discretized Laplacean on a three-dimensional cube. Every processor holds a
32× 32× 32 uniform grid locally (so the matrix size is proportional to the number of
nodes) and uses it to create the Krylov space. The W vectors are generated in chunks
of six successive Krylov vectors, and each chunk is orthonormalized by a call to bGS-
Method(V,W, 6). Figure 8.3 plots the execution times of the four methods over a wide
range of processor numbers. The T3E has been used for this experiment because of the
large number of available nodes. In the absence of communication/synchronization
costs, the times should be equal for all processors. The time increase observed in the
figure is relatively small for all methods because of the extremely fast T3E network.
However, the effects are more apparent on GS and bGS-QR, as their curves increase
faster than the respective ones for bGS-CholQR and bGS-SVQB. Finally, on this
problem the bGS-SVQB is more than 30% faster than GS (an improvement over the
previous numerical problem).

Because of superscalar processors and a higher-latency network, we expect the
block algorithms to perform better on the SUN cluster. We use the same test case
of 30 Krylov vectors from the uniform-grid Laplacean, with each processor storing
a 32 × 32 × 32 subgrid. The left graph in Figure 8.4 shows the effect of blocking
on the single-node execution time of the algorithms. The effects are much more
dramatic than on the other machines, as execution time is reduced by about half.
This is attributed to the ATLAS fine tuning of the BLAS kernels. Note that CholQR
improves single-node performance on this architecture. The time variability is typical
of caching effects. The right graph of the figure shows the scalability of the algorithms
under constant computational load per processor. A block size of 12 is used, i.e.,
bGS-Method(V,W, 12). Our proposed methods clearly outperform GS, and their time
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Fig. 8.4. Left graph: execution time of three methods versus block size on a single SUN Ultra 5.
BLAS 3 libraries are optimized with ATLAS. Right graph: scalability of the three methods on a
cluster of 64 SUN Ultra 5s, under constant problem size (32768 = 323 vector rows) per processor
and block size of 12. Ideal scalability would show as a flat horizontal line.

is not only substantially smaller than GS but also seems to increase slower with the
number of processors.

9. Conclusions. We have introduced and analyzed a new method, called SVQB,
that computes an orthonormal basis of a skinny matrix W from its right singular vec-
tors. The method is attractive computationally because it involves only BLAS 3
kernels and it requires only one synchronization point in parallel implementations.
We have proved that the departure from orthonormality of the resulting vector set
is bounded by O(εκ(W )2), if κ(W ) < O(1/

√
ε). We have also considered the prob-

lem of two phase orthonormalization, where a block of vectors is orthonormalized
against a previously orthonormal set of vectors with GS and among itself with SVQB.
Computational efficiency suggests the independent, block application of each of the
methods. However, each phase impairs the orthogonality produced during the other
phase. We have provided bounds that describe this numerical interdependence and
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have used them to balance the work performed by each of the two orthogonalization
phases within an iterative scheme. Our Matlab examples have demonstrated that our
theoretical bounds are in accordance with practice, and our parallel implementations
on the Cray T3E, the IBM SP2, and on a SUN COW have shown that our method
improves the performance of other orthonormalization alternatives.
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